
Application Report

Lit. Number – Month Year

1

Getting Started With TMS570LS Microcontrollers

Sunil Oak AEC-Automotive Microcontrollers

ABSTRACT

This application report provides a brief overview of the TMS570LS series of microcontrollers. It
describes the initialization procedure for the TMS570LS series of microcontrollers. The
document also shows code fragments from source files that are generated using the HALCoGen
tool. All code constructs used in this document are also defined in header files also generated by
the same utility.

Contents

1 Block Diagram ... 3
2 Overview of Features .. 4
3 Standard Initialization Sequence for TMS570LS Microcontrollers ... 7

3.1 Enabling Floating Point Coprocessor (FPU) ... 8
3.2 Initialization of Cortex-R4F Registers .. 9
3.3 Initialize stack pointers for all CPU operating modes .. 11
3.4 Enable the Cortex-R4F CPU‟s Vectored Interrupt Controller (VIC) Port 12
3.5 Configure Flash Access .. 13
3.6 Configure flash bank and pump power modes .. 14
3.7 Configure PLLs .. 17

3.7.1 FMzPLL ... 17
3.7.2 FPLL .. 20

3.8 Enable Clock Sources ... 22
3.8.1 Available Clock Sources on TMS570LS Microcontrollers ... 22
3.8.2 Control Registers for Enabling and Disabling Clock Sources 23
3.8.3 Example Clock Source Configuration .. 24

3.9 Clock Domains .. 25
3.9.1 Mapping Clock Domains to Clock Sources ... 26
3.9.2 Example Clock Domain Mapping .. 27
3.9.3 Configuring VCLK and VCLK2 Frequencies .. 27

3.10 Run CPU Self-Test .. 29
3.11 Release Reset and Clocks to Peripherals ... 30
3.12 Memories‟ Self-Test .. 31
3.13 Memories‟ Auto-Initialization ... 32
3.14 Vectored Interrupt Manager Configuration .. 34

3.14.1 Example VIM RAM Configuration .. 34
3.14.2 Configure Interrupts to be Fast Interrupts or Normal Interrupts 36
3.14.3 Enabling Interrupts .. 36

3.15 Additional Initializations Required by Compiler ... 39
3.16 Call the Main Application ... 39

Overwrite this text with the Lit. Number

2 Getting Started With TMS570LS Microcontrollers

Figures

Figure 1. Device Block Diagram .. 3
Figure 2. Flash Read Control Register: FRDCNTL, Address = 0xFFF87000 13
Figure 3. Flash Bank Fall-Back Control Register: FBFALLBACK, Address = 0xFFF87040 14
Figure 4. Flash Bank Access Control Register: FBAC, Address = 0xFFF8703C 15
Figure 5. Flash Pump Access Control Register 1: FPAC1, Address = 0xFFF87048 16
Figure 6. Flash Pump Access Control Register 2: FPAC2, Address = 0xFFF8704C 16
Figure 7. FMzPLL Block Diagram ... 17
Figure 8. PLL Control Register 1: PLLCTL1, Address = 0xFFFFFF70 ... 18
Figure 9. PLL Control Register 2: PLLCTL2, Address = 0xFFFFFF74 ... 19
Figure 10. FPLL Block Diagram .. 20
Figure 11. PLL Control Register 3: PLLCTL3, Address = 0xFFFFE100 ... 21
Figure 12. Clock Source Disable Register: CSDIS, Address = 0xFFFFFF30 23
Figure 13. Clock Source Disable Set Register: CSDISSET, Address = 0xFFFFFF34 23
Figure 14. Clock Source Disable Clear Register: CSDISCLR, Address = 0xFFFFFF38 24
Figure 15. GCLK, HCLK , VCLKx Source Register: GHVSRC, Address = 0xFFFFFF48 26
Figure 16. Asynchronous Clock Source Register: VCLKASRC, Address = 0xFFFFFF4C 26
Figure 17. RTI Clock Source Register: RCLKSRC, Address = 0xFFFFFF50 27
Figure 18. Peripheral Clock Control Register: CLKCNTL, Address = 0xFFFFFFD0 28
Figure 19. Memory Hardware Initialization Global Control Register: MINITGCR, Address =

0xFFFFFF5C .. 32
Figure 20. Memory Self-Test / Initialization Control Register: MSIENA, Address = 0xFFFFFF6032
Figure 21. Memory Self-Test / Initialization Status Register: MSTCGSTAT, Address =

0xFFFFFF68 .. 33
Figure 22. VIM Interrupt Address Memory Map ... 34
Figure 23. FIQ/IRQ Control Register 0: FIRQPR0, Address = 0xFFFFFE10 36
Figure 24. FIQ/IRQ Control Register 1: FIRQPR1, Address = 0xFFFFFE14 36
Figure 25. Interrupt Enable Set Register 0: REQENASET0, Address = 0xFFFFFE30 37
Figure 26. Interrupt Enable Set Register 1: REQENASET1, Address = 0xFFFFFE34 37
Figure 27. Interrupt Enable Clear Register 0: REQENACLR0, Address = 0xFFFFFE40 37
Figure 28. Interrupt Enable Clear Register 1: REQENACLR1, Address = 0xFFFFFE44 38

Tables

Table 1. Clock Sources on TMS570LS Microcontrollers ... 22
Table 2. Clock Domains on TMS570LS Microcontrollers .. 25

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 3

1 Block Diagram

Figure 1 shows a high-level block diagram of the TMS570LS series microcontroller.

Figure 1. Device Block Diagram

Flash
2.0MB
with ECC

CRC

OSC

NHET

SYS

LIN2

MiBSPI1

DCAN1
OSCIN

OSCOUT

TRST
TMS
TCK

TDI
TDO

RST

PORRST

TEST

NHET[31:0]

LIN2RX
LIN2TX

MIBSPI1SIMO
MIBSPI1SOMI
MIBSPI1CLK

MIBSPI1SCS[3:0]

CAN1RX
CAN1TX

FLTP1

ECLK

MIBSPI3SIMO
MIBSPI3SOMI
MIBSPI3CLK

DCAN2 CAN2RX
CAN2TX

128 Words

128 Buffers

MIBSPI3SCS[3:0]

VIM

HET TU
8 DCP

64 Messages

64 Messages

DMA

16 Channels

Primary SCR

ETMETMTRACECTL

ETMTRACECLKOUT CCM-R4

RTP

DMM

RTCK

R
T

P
D

A
T

A
[1

5
:0

]

R
T

P
S

Y
N

C

R
T

P
C

L
K

1 Port

MIBSPI1ENA

with Parity

with Parity

with Parity

with Parity

VCCP1

with Parity

with MPU

ETMDATA[31:0]

MIBSPI3ENA

FLTP2

with MPU

R
T

P
E

N
A

8 Transfer
Groups

64 Channel

with Parity

2 Channel

Clock

Monitor

MiBSPI3

128 Buffers
with Parity

8 Transfer
Groups

Flexray
8k Byte

with Parity

FRAYRX1
FRAYTX1

FRAYTXEN1
FRAYRX2
FRAYTX2
FRAYTXEN2

DCAN3 CAN3RX
CAN3TX32 Messages

with Parity

RAM

160kB

with ECC

FMzPLL

Kelvin_GND

DAP

DMMENA
DMMSYNC

DMMCLK
DMMDATA[1:0] with Parity

Periph Bridge

Cortex-R4F

 Msg RAM

Flexray

with MPU
with Parity

RTI

SCR2

TU

SCR1

Note:
Priorities

SCR2 : round robin

SCR : round robin
SCR1 : 1=DMA, 2=DMM, 3=DAP

DMMDATA[15:2]*

MiBADC2

64 Words
with Parity

A
D

2
IN

[7
:0

]
A

D
2

E
V

T

MiBSPIP5 MIBSPI5SIMO[3:0]*
MIBSPI5SOMI[3:0]*
MIBSPI5CLK*

MIBSPI5SCS[3:0]*

MIBSPI5ENA*

128 Buffers
with Parity

8 Transfer
Groups

32 Regions

with DMMDATA[15:2] pins

64 Words

with

ICEPick

2 RAM blocks

ESMERROR

MiBADC1
64 Words
with Parity

A
D

1
IN

[7
:0

]

V
S

S
A

D
A

D
R

E
F

H
I

A
D

R
E

F
L

O

A
D

1
E

V
T

12Bit 12Bit

with MPU

Cortex-R4F

with MPU

GIO
GIOA[7:0]/INT[7:0]

GIOB[7:0]

LIN1
LIN1RX
LIN1TX

STC
LBIST

EMIFADD[21:0]
EMIFDATA[15:0]

EMIFCS[3:0]

EMIFWE
EMIFOE

EMIF
EMIFBADD[1:0]

V
C

C
A

D

A
D

S
IN

[1
5:

8
]

P
O
M

* MIBSPIP5 pins are multiplexed

ETMTRACECLKIN

EMIFDQM[1:0]

SCR

PCR

FPLL
for Flexray

VMON
VccIO

Vcc

Overwrite this text with the Lit. Number

4 Getting Started With TMS570LS Microcontrollers

2 Overview of Features

The TMS570LS series is a high-performance microcontroller family which has been certified for
use in IEC 61508 SIL3 safety systems.

The microcontrollers included in the TMS570LS Series are:

– TMS570LS20216

– TMS570LS20206

– TMS570LS10216

– TMS570LS10206

– TMS570LS10116

– TMS570LS10106

TMS570LS Series microcontrollers contain the following:

 Dual ARM Cortex™-R4F processors operating in lock-step

– 1.6 DMIPS/MHz

– CPU clock speeds up to 160MHz, providing up to 250 DMIPS

– Big-Endian

– Core-Compare Module (CCM-R4) to monitor lock-step operation

– Supports Built-In Self-Test (BIST)

 Integrated Memory

– Up to 2MB Flash Memory

 Non-volatile, electrically-erasable and programmable with 64-bit data bus interface

 Single 3.3V supply needed for all read, program and erase operations

 Connected to Tightly-Coupled Memory interface (TCM A) of the Cortex™-R4F CPU

 Protects accesses with ECC (Single Error Correction Double Error Detection) logic

 Supports accesses up to 160MHz in pipelined mode

– Up to 160KB SRAM

 Supports single-cycle accesses at the maximum specified clock speed

 Allows read/write accesses in byte, half-word (16 bits), and word (32 bits) sizes

 Protects accesses with ECC (Single Error Correction Double Error Detection) logic

 External Memory Interface (EMIF)

– Provides 8- or 16-bit interface to external asynchronous memories, 22 address lines

– Supports up to 4 chip selects

– Each chip select can address up to 32MB in 16-bit mode or 16MB in 8-bit mode

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 5

 TMS570 High-Performance Architecture for Safety-Critical Applications

– Consistent memory map across entire microcontroller family

– Real-Time Interrupt (RTI) for use as OS timer

 Up to 6 configurable periodic interrupts

– Vectored Interrupt Manager (VIM)

 Supports vectored interrupt controller (NVIC) port on the Cortex™-R4F CPU

 Reduces interrupt latency even if NVIC port is not used

– 2-Channel Cyclic Redundancy Checker (CRC)

 Allows integrity checks for memories

 Direct Memory Access (DMA) controller

– 16 channels

– 32 hardware requests configured by control packets

– Control packet information protected by parity error detection

– Built-in Memory Protection Unit (MPU) dedicated to prevent erroneous DMA transfers

 Enhanced High-End Timer (NHET)

– Programmable timer coprocessor with its own assembly microcode

– 128-word instruction memory with parity protection

– 32 programmable channels for output compare or input capture functions

– Unused channels can be used as general-purpose I/O signals

– Dedicated transfer unit (HTU) with 8 programmable transfer configurations

– Control packet information protected by parity error detection

– Built-in Memory Protection Unit (MPU) dedicated to prevent erroneous HTU transfers

 Analog-to-Digital Converters (ADC)

– Two 12-bit-resolution Successive Approximation Resistor A2D converters

– Dedicated memory to store up to 64 conversion results, with parity protection

– 24 total input channels, 8 shared channels

 Communication Modules

– Dual-channel FlexRay™ Controller

 8 KB message RAM with parity protection

 Dedicated transfer unit (FTU)

 Parity protection for transfer unit configuration memory

 Dedicated MPU to protect against erroneous transfers by FTU

– Three Multi-Buffered Serial Peripheral Interface (MibSPI) Controllers

Overwrite this text with the Lit. Number

6 Getting Started With TMS570LS Microcontrollers

 4 chip selects and 1 enable for each MibSPI

 128 transmit and receive buffers with parity protection for each MibSPI

 One MibSPI supports unique parallel interface mode with up to 4-bit data

– Two Local Interconnect Network (LIN) Interface Controllers

 Compliant to LIN specification version 2.0

 Support the standard Serial Communication Interface (SCI) mode

– Three Controller Area Network (CAN) Controllers

 Two controllers with 64 mailboxes, one controller with 32 mailboxes

 Parity protection for mailbox memory

 Trace and Calibration Interfaces

– Embedded Trace Macrocell (ETM-R4) for Cortex™-R4F

 Provides trace for instruction and data accesses by the Cortex™-R4F CPU

– Parameter Overlay Module (POM)

 Re-routes flash accesses to external memory via the EMIF

 Allows application to update parameters without re-programming the flash

– Data Modification Module (DMM)

 Provides ability to modify data anywhere within the 4GB addressable space

– RAM Trace Port (RTP)

 Provides a high-speed trace of RAM accesses

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 7

3 Standard Initialization Sequence for TMS570LS Microcontrollers

A typical basic sequence to be followed for initialization and configuration of key features on the
TMS570LS Series microcontrollers is summarized below and detailed in the following sections.
This is not a mandatory sequence. Applications that are non-safety-critical can choose to not
use the ECC feature for flash and RAM accesses, for example.

 Enable the Floating Point Unit (FPU) inside the Cortex-R4F CPU

 Initialize the CPU registers and FPU registers

 Initialize stack pointers for all operating modes

 Enable CPU‟s dedicated vectored interrupt controller (VIC) port

 Set up flash wrapper for required wait states and pipelined mode

 Set up flash bank and pump power modes

 Configure PLL control registers

 Enable desired clock sources

 Map device clock domains to desired clock sources

 Run the Built-In Self-Test for the CPU

 Release peripherals from reset and enable clocks to all peripherals

 Run self-tests on all device memories using Programmable Built-In Self-test (PBIST)

 Perform auto-initialization for all on-chip SRAMs

 Program Vectored Interrupt Manager memory to map all interrupt service routine addresses

 Configure IRQ / FIQ interrupt priorities for all interrupt channels

 Enable the desired interrupts

 Initialize copy table, global variables, and constructors

 Call the main application

The following sections describe each of the above steps in more detail. Code examples are also
provided.

Overwrite this text with the Lit. Number

8 Getting Started With TMS570LS Microcontrollers

3.1 Enabling Floating Point Coprocessor (FPU)

The floating point coprocessor is disabled upon a CPU reset and must be enabled.

 First access to the FPU must be enabled.

MRC p15, #0x0, r0, c1, c0, #2

MOV r3, #0xf00000

ORR r0, r0, r3

MCR p15, #0x0, r0, c1, c0, #2

MRC p15, #0x0, r0, c0, c0

 Enable the FPU

MOV r0, #0x40000000

FMXR FPEXC, r0

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 9

3.2 Initialization of Cortex-R4F Registers

The TMS570LS series of microcontrollers include dual Cortex-R4F CPUs running in a lock-step
operation mode. A Core Compare Module (CCM-R4) compares the output signals from each
R4F CPU. Any difference in the two CPUs‟ outputs is flagged as a fault of a high severity level.
The CPU internal core registers need to be initialized to a predefined state in order to prevent an
error from being flagged during system initialization.

 Initialize CPU registers R0 through R12

mov r0, lr

mov r1, #0x03D0

mov r2, #0x0000

mov r3, #0x0000

mov r4, #0x0000

mov r5, #0x0000

mov r6, #0x0000

mov r7, #0x0000

mov r8, #0x0000

mov r9, #0x0000

mov r10, #0x0000

mov r11, #0x0000

mov r12, #0x0000

 Initialize CPU banked registers

 orr r13, r1, #0x0001

 msr cpsr_cxsf, r13

 msr spsr_cxsf, r13

 mov lr, r0

 mov r8, #0x0000

 mov r9, #0x0000

 mov r10, #0x0000

 mov r11, #0x0000

 mov r12, #0x0000

 orr r13, r1, #0x0002

 msr cpsr_c, r13

 msr spsr_cxsf, r13

 mov lr, r0

 orr r13, r1, #0x0007

 msr cpsr_c, r13

 msr spsr_cxsf, r13

 mov lr, r0

 orr r13, r1, #0x000B

 msr cpsr_c, r13

 msr spsr_cxsf, r13

 mov lr, r0

 orr r13, r1, #0x0003

 msr cpsr_c, r13

 msr spsr_cxsf, r13

Overwrite this text with the Lit. Number

10 Getting Started With TMS570LS Microcontrollers

 Initialize the FPU registers

 fmdrr d0, r1, r1

 fmdrr d1, r1, r1

 fmdrr d2, r1, r1

 fmdrr d3, r1, r1

 fmdrr d4, r1, r1

 fmdrr d5, r1, r1

 fmdrr d6, r1, r1

 fmdrr d7, r1, r1

 fmdrr d8, r1, r1

 fmdrr d9, r1, r1

 fmdrr d10, r1, r1

 fmdrr d11, r1, r1

 fmdrr d12, r1, r1

 fmdrr d13, r1, r1

 fmdrr d14, r1, r1

 fmdrr d15, r1, r1

 Initialize CPU return stack

 bl $+4

 bl $+4

 bl $+4

 bl $+4

 bx r0

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 11

3.3 Initialize stack pointers for all CPU operating modes

Define the base addresses for the stacks used for the different operating modes. The addresses
listed below are only examples and can be defined by the application as required.

user: .word 0x08000000+0x00001000

svc: .word 0x08000000+0x00001000+0x00000100

fiq: .word 0x08000000+0x00001000+0x00000100+0x00000100

irq: .word 0x08000000+0x00001000+0x00000100+0x00000100+0x00000100

abort: .word 0x08000000+0x00001000+0x00000100+0x00000100+0x00000100+0x00000100

undef: .word

0x08000000+0x00001000+0x00000100+0x00000100+0x00000100+0x00000100+0x00000100

The Cortex-R4F CPU can operate in one of several modes:

 User mode (USR) is the usual mode for the execution of ARM or Thumb programs. It is
used for executing most application programs. Many control registers on the TMS570LS
microcontroller are not writable in user mode.

 msr cpsr_c, #0xDF

 ldr sp, user

 Fast interrupt mode (FIQ) is entered upon taking a fast interrupt.

 msr cpsr_c, #0xD1

 ldr sp, fiq

 Interrupt mode (IRQ) is entered on taking a normal interrupt.

 msr cpsr_c, #0xD2

 ldr sp, irq

 Abort mode (ABT) is entered after a data or instruction abort.

 Undefined mode (UND) is entered when an undefined instruction exception occurs.

 msr cpsr_c, #0xDB

 ldr sp, undef

 System mode (SYS) is a privileged mode for the operating system. This is also the default
mode of the CPU after a CPU reset.

 Supervisor mode (SVC) is a protected mode for the operating system and is entered upon
taking a Supervisor Call (SVC).

 msr cpsr_c, #0xD3

 ldr sp, svc

The application can initialize the stack pointers in the above sequence. This will leave the CPU
in the Supervisor (SVC) mode once the stack pointers are initialized.

Overwrite this text with the Lit. Number

12 Getting Started With TMS570LS Microcontrollers

3.4 Enable the Cortex-R4F CPU’s Vectored Interrupt Controller (VIC) Port

The CPU has a dedicated port that enables the Vectored Interrupt Manager (VIM) module to
supply the address of an interrupt service routine along with the interrupt (IRQ) signal. This
provides faster entry into the interrupt service routine versus the CPU having to decode the
pending interrupts and identify the highest priority interrupt to be serviced first.

The VIC port is disabled upon any CPU reset and must be enabled by the application. The VIC
is enabled by setting the VE bit in the CPU‟s System Control Register, as shown below.

 mrc p15, #0, r0, c1, c0, #0

 orr r0, r0, #0x01000000

 mcr p15, #0, r0, c1, c0, #0

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 13

3.5 Configure Flash Access

The flash memory on the TMS570LS series microcontrollers is a non-volatile electrically
erasable and programmable memory.

The TMS570LS microcontrollers contain a digital wrapper module that manages all accesses to
the flash memory. A flash access can be completed without any wait states required for bus
master clock speeds up to 36MHz. If the bus clock is faster than 36MHz, then any flash access
requires the appropriate number of wait states depending on the bus clock speed. The
TMS570Ls series microcontrollers support clock speeds up to 160MHz. Please refer to the
device datasheet for the actual maximum allowed speed as it varies per the package type.

Suppose that the application requires the microcontroller to run at the maximum supported
speed of 160MHz. This requires 1 address wait state and 3 data wait states for any access to
the flash memory. These wait states need to be configured in the flash wrapper registers.

The flash wrapper also features a special pipeline mode. When this mode is enabled, the
wrapper reads 128 bits from the flash memory and holds them in buffers that the CPU can read
from without any wait state. The CPU can read 32 or 64 bits of instructions or data from the
pipeline buffers.

The register inside the flash wrapper that controls the wait states and the pipeline mode is
shown below.

Figure 2. Flash Read Control Register: FRDCNTL, Address = 0xFFF87000

 The RWAIT field configures the number of data read wait states.

 The ASWSTEN field enables the generation of 1 address wait state. The address bus is
latched one cycle before it is decoded for a pipeline hit or miss.

 The ENPIPE field is sued to enable or disable the pipeline mode of the flash wrapper.

The sequence to configure the wait states and to enable the pipeline mode is as follows.

 flashWREG->FRDCNTL = 0x01000000U

 | (3U << 8U) // 3 data wait states

 | (1U << 4U) // 1 address wait state enabled

 | 1U; // Enable pipeline mode

Overwrite this text with the Lit. Number

14 Getting Started With TMS570LS Microcontrollers

3.6 Configure flash bank and pump power modes

The flash banks and pump used on the TMS570LS series microcontrollers support three
different operating modes to optimize power consumption.

a. Active mode

 Flash bank sense amplifiers and sense reference are enabled

 All circuits of flash charge pump are enabled

b. Standby mode (only for flash banks)

 Flash bank sense reference is enabled but sense amplifiers are disabled

c. Sleep Mode

 Flash bank sense amplifiers and sense reference are disabled

 All circuits of flash charge pump are disabled

The flash banks and charge pump are in the active state by default and after any system reset.
The flash wrapper allows the application to configure “fall back” power states for the flash banks
and charge pump. The flash banks and pump automatically switch the power mode to the
selected fall back state when there is no access to the flash banks detected within a user-
configurable time.

The flash wrapper also contains special timers to automatically sequence the flash banks and
pump between the active and the selected fall-back states. A read access to any flash bank
which is in a non-active power state will “wake up” both the selected bank and the charge pump
to active power state. Programming and erase operations are only allowed on banks in active
state.

The flash wrapper register that controls the flash banks‟ power states is shown below.

Figure 3. Flash Bank Fall-Back Control Register: FBFALLBACK, Address = 0xFFF87040

Each of the BANKPWRx fields configures the fall-back mode for a single flash bank. The
TMS570LS microcontrollers support up to 4 flash banks.

Configuration of fall back mode for the flash banks:

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 15

enum flashWPowerModes

{

 SYS_SLEEP = 0U, /** Flash bank power mode sleep */

 SYS_STANDBY = 1U, /** Flash bank power mode standby */

 SYS_ACTIVE = 3U /** flash bank power mode active */

};

flashWREG->FBFALLBACK = 0x00000000

 | (SYS_SLEEP << 6U) // Bank3 falls back to SLEEP

 | (SYS_SLEEP << 4U) // Bank2 falls back to SLEEP

 | (SYS_SLEEP << 2U) // Bank1 falls back to SLEEP

 | SYS_SLEEP; // Bank0 falls back to SLEEP

The above code fragment configures even the fall-back mode for each available flash bank to be
the sleep mode. The application can choose to configure these modes differently as required.
The power savings can be disabled completely by selecting the active state to also be the fall-
back power state, which is the default.

There are a few other registers that control the timing sequence for entry to a fall-back mode
and wake up to active mode. These are described now.

Figure 4. Flash Bank Access Control Register: FBAC, Address = 0xFFF8703C

 The OTPPROTDIS field is not relevant to power modes.

 The BAGP field configures the flash banks‟ Active Grace Period (AGP). This is the starting
count value for a down-counter. An access to a flash bank before this counter counts down
to 0 causes a reload of this counter to the configured AGP value. In effect, the AGP delays
the flash banks‟ entry into the selected fall-back mode by 0 to 255 HCLK/16 cycles. This
value must be greater than 1 when the fall-back mode is not ACTIVE.

 The VREADST field controls the delay, in terms of HCLK cycles, between the time when the
charge pump generates the required read voltage (VREAD) and the time when the flash
bank starts its own power up sequence.

NOTE: The flash banks have hard-coded timings for transitioning from sleep to standby to active
power states. These timings are not configurable by the application.

Overwrite this text with the Lit. Number

16 Getting Started With TMS570LS Microcontrollers

flashWREG->FMAC = 0x00000003; // Select flash bank3

flashWREG->FBAC |= 0x0000FF00; // Select 255 HCLK/16 cycles as the bank3 AGP

flashWREG->FMAC = 0x00000002; // Select flash bank2

flashWREG->FBAC |= 0x0000FF00; // Select 255 HCLK/16 cycles as the bank2 AGP

flashWREG->FMAC = 0x00000001; // Select flash bank1

flashWREG->FBAC |= 0x0000FF00; // Select 255 HCLK/16 cycles as the bank1 AGP

flashWREG->FMAC = 0x00000000; // Select flash bank0

flashWREG->FBAC |= 0x0000FF00; // Select 255 HCLK/16 cycles as the bank0 AGP

Figure 5. Flash Pump Access Control Register 1: FPAC1, Address = 0xFFF87048

 The PSLEEP field configures the time that the flash pump takes for transitioning from the
sleep state to the standby state. This is specified in terms of HCLK/2 cycles. Please check
the TMS570LS datasheet to identify the minimum time required for the flash pump to switch
from the sleep state to the standby state.

 The PUMPPWR field defines whether the flash pump falls back into sleep mode, or remains
active.

flashWREG->FPAC1 = 0x00640000; // PSLEEP = 100 HCLK/2 cycles,

 // Pump fall-back state = SLEEP

Figure 6. Flash Pump Access Control Register 2: FPAC2, Address = 0xFFF8704C

 The PAGP field defines the active grace period for the flash charge pump. This defines the
starting count for a down counter. An access to the flash memory reloads this counter with
the selected PAGP value. After the last access to flash memory, the down counter delays
the flash pump‟s entry to the selected fall-back mode by 0 to 65536 HCLK/16 cycles.

flashWREG->FPAC2 = 0x000000FF; // PSLEEP = 255 HCLK/16 cycles

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 17

3.7 Configure PLLs

The TMS570LS series of microcontrollers contain a Frequency-Modulated Phase-Locked-Loop
(FMzPLL) macro that allows the input oscillator frequency to be multiplied to a higher frequency
than can be conveniently achieved with an external resonator or crystal. Additionally the
FMzPLL allows the flexibility to generate many different frequency options from a fixed crystal or
resonator.

The FMzPLL allows the application to superimpose a “modulation frequency” signal on the
selected base frequency signal output from the FMzPLL. This reduces the electromagnetic
energy of the output signal by spreading it across a controlled frequency range around the base
frequency. This mode is disabled by default, and the application can enable it in applications
sensitive to noise emissions.

The TMS570LS microcontrollers also contain a second non-modulating PLL macro. This is the
FPLL macro. The FPLL can be independently configured to generate a second high-frequency
clock source for specific uses.

3.7.1 FMzPLL

3.7.1.1 FMzPLL Block Diagram

Figure 7 shows a high-level block diagram of the FMzPLL macro.

Figure 7. FMzPLL Block Diagram

 The oscillator circuit drives an external crystal or resonator, which generates the reference
input clock (CLKIN). The FMzPLL macro supports CLKIN from 5MHz to 20MHz.

 The FMzPLL divides down this CLKIN by a value, NR, such that the divided clock (INTCLK)
is between 1.63MHz and 6.53MHz. NR can be between 1 and 64.

 The FMzPLL multiplies INTCLK by a value NF, such that the multiplication result (VCOCLK)
is between 120MHz and 500MHz. NF can be between 92 and 184.

 The VCOCLK is divided down by a value OD. The divided clock (Post-ODCLK) frequency
must not exceed the maximum device frequency. OD can be between 1 and 8.

Overwrite this text with the Lit. Number

18 Getting Started With TMS570LS Microcontrollers

 The post-ODCLK is further divided by a value R to generate the FMzPLL output clock
(PLLCLK). The PLLCLK frequency must not exceed the device maximum frequency
specified in the datasheet.

3.7.1.2 FMzPLL Slip Detector

The FMzPLL macro has a slip detector circuit that compares the CLKIN to the VCOCLK and
flags any 2-cycle slips. The application can choose the response to a PLL slip indication from
among 3 choices: do nothing, or cause a system reset, or bypass the FMzPLL such that the
CLKIN frequency itself is supplied as the output from the FMzPLL macro.

3.7.1.3 FMzPLL Configuration

The FMzPLL has two registers (PLLCTL1 and PLLCTL2) located within the System module on
the TMS570LS microcontrollers. These are described now.

Figure 8. PLL Control Register 1: PLLCTL1, Address = 0xFFFFFF70

 Reset-On-Slip (ROS) selects whether a PLL slip condition causes a system reset or not.

– ROS = 1 causes a system reset when a PLL slip is flagged.

NOTE: The Bypass On Slip (BPOS) functionality must be disabled to use the ROS functionality.

 Bypass-On-Slip (BPOS) defines the PLL behavior when a slip is flagged.

– BPOS = 10 ignores a PLL slip condition flagged by the FMzPLL macro.

– Writing any other value to BPOS causes the FMzPLL to be bypassed so that the CLKIN
is used as the output from the FMzPLL macro.

NOTE: If the ROS bit is also „1‟ when the FMzPLL is bypassed, then a system reset occurs and
the FMzPLL output is not bypassed.

 PLLDIV defines the R-divider.

– R = PLLDIV + 1

– fPLLCLK = fpost-ODCLK / R

 Reset-on-Oscillator-Fail (ROF) controls the response to an oscillator failure detected by the
clock monitor and is not relevant to the PLL configuration discussion.

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 19

 REFCLKDIV defines the NR-divider.

– NR = REFCLKDIV + 1

– fINTCLK = fCLKIN / NR

 PLLMUL defines the NF multiplier

– NF = (PLLMUL / 256) + 1

– fVCOCLK = fINTCLK * NF

Figure 9. PLL Control Register 2: PLLCTL2, Address = 0xFFFFFF74

 Setting the FM ENA bit enables the modulation frequency to be superimposed on the output
of the FMzPLL macro.

 SPREADINGRATE defines the modulation frequency used.

– NS = SPREADINGRATE + 1

– Modulation frequency, fmod = fs = fINTCLK / (2 * NS)

 BWADJ defines the FMzPLL modulation bandwidth adjustment.

– NB = BWADJ + 1

– fBW = fnom_BW / NB

NOTE: NB must be set to 7 when modulation is not used. This is also the default value.

 ODPLL defines the OD-divider.

– OD = ODPLL + 1

– fpost-ODCLK = fVCOCLK / OD

 SPR_AMOUNT defines the frequency modulation depth divider.

– NV = SPR_AMOUNT + 1

Overwrite this text with the Lit. Number

20 Getting Started With TMS570LS Microcontrollers

3.7.1.4 Example FMzPLL configuration

 systemREG1->PLLCTL1 = 0x00000000U

 | 0x20000000U // No reset on slip, bypass on slip

 | (0U << 24U) // R = 1

 | (5U << 16U) // NR = 6

 | (119U << 8U); // NF = 120

 systemREG1->PLLCTL2 = 0x00000000U // Modulation disabled

 | (255U << 22U) // NS = 256

 | (7U << 12U) // NB = 8

 | (1U << 9U) // OD = 2

 | 61U; // NV = 62

This example configuration results in a FMzPLL output clock frequency of:

fPLLCLK = (fCLKIN / 6) * 120 / 2 / 1 = fCLKIN * 10

TI provides a GUI-based utility that allows the user to easily calculate the PLL control register
settings.

This utility can be found at: http://focus.ti.com/docs/toolsw/folders/print/fmzpll_calculator.html

3.7.2 FPLL

3.7.2.1 FPLL Block Diagram

Figure 10. FPLL Block Diagram

 The FPLL generates a clock output signal using an external resonator or crystal.

 The NR-divider divides the input frequency OSCIN by 1 or 2 to generate the PLL internal
clock INTCLK.

 INTCLK is multiplied by a programmable value NF to generate an output clock. The
frequency of this output clock must be between 10MHz and 100MHz. The value of NF
ranges from 1 to 15.

 The output clock is subsequently divided by an R-divider, which ranges from 1 to 8.

 The output of the R-divider is available for use as a clock source for any device clock
domain.

http://focus.ti.com/docs/toolsw/folders/print/fmzpll_calculator.html

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 21

3.7.2.2 FPLL Configuration

The FPLL is configured using the PLL control register 3 in the system module of the TMS570LS
microcontroller.

Figure 11. PLL Control Register 3: PLLCTL3, Address = 0xFFFFE100

 OSC_DIV defines the NR-divider of the FPLL.

– NR = OSC_DIV + 1

– fINTCLK = fOSCIN / NR

 PLL_MUL defines the NF-multiplier of the FPLL.

– NF = PLL_MUL + 1

– fOutput_CLK = fINTCLK * NF

 PLL_DIV defines the R-divider of the FPLL

– R = PLL_DIV + 1

– fPLLCLK = fOutput_CLK / R

3.7.2.3 Example FPLL Configuration

 systemREG1->PLLCTL3 = 0x00000000U

 | (1U << 22U) // NR = 2

 | (5U << 8U) // NF = 6

 | 0U // R = 1

This example configuration generates an output clock frequency of:

fPLLCLK = (fOSCIN / NR) * NF / R = (fOSCIN / 2) * 6 / 1 = fOSCIN * 3

TI provides a GUI-based utility that allows the user to easily calculate the FPLL control register
settings.

This utility can be found at: http://focus.ti.com/docs/toolsw/folders/print/fpll_calculator.html

http://focus.ti.com/docs/toolsw/folders/print/fpll_calculator.html

Overwrite this text with the Lit. Number

22 Getting Started With TMS570LS Microcontrollers

3.8 Enable Clock Sources

3.8.1 Available Clock Sources on TMS570LS Microcontrollers

The TMS570LS microcontrollers support 5 different clock sources, as listed in the table below.

Table 1. Clock Sources on TMS570LS Microcontrollers

Clock Source
Number

Clock Source Name Description

0 OSCIN
This is the primary oscillator, typically driven by an external resonator
or crystal. This is the only available input to the FMzPLL and the FPLL
macros. The OSCIN frequency must be between 5MHz and 20MHz.

1 FMzPLL output

This is the output of the FMzPLL, which is generated using the OSCIN
as the input clock. The FMzPLL output clock frequency must not
exceed the maximum device frequency specified in the device
datasheet. The FMzPLL features a modulation mode where a
modulation frequency is superimposed on the FMzPLL output signal.

2 Not implemented
No clock signal is connected to source # 2. This clock source must not
be enabled or chosen for any clock domain.

3 Not implemented
No clock signal is connected to source # 3. This clock source must not
be enabled or chosen for any clock domain.

4 LF LPO
This is the low-frequency output of the internal reference oscillator.
The LF LPO is typically an 80KHz signal, and is generally used for low
power mode use cases.

5 HF LPO
This is the high-frequency output of the internal reference oscillator.
The HF LPO is typically a 10MHz signal, and is used as a reference
clock for monitoring the main oscillator.

6 FPLL output

This is the output of the FPLL, which is generated using the OSCIN as
the input clock. The FPLL does not support modulation, and its output
is typically used to support communication protocols with strict jitter
requirements on the clock used to generate the baud rate.

7 Not implemented
No clock signal is connected to source # 7. This clock source must not
be enabled or chosen for any clock domain.

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 23

3.8.2 Control Registers for Enabling and Disabling Clock Sources

Figure 12. Clock Source Disable Register: CSDIS, Address = 0xFFFFFF30

 Each bit of the CSDIS controls the clock source of the same number: bit 0 controls clock
source 0, bit 1 controls clock source 1, and so on.

 Figure 12 also shows the default states of the clock sources supported on the TMS570LS
microcontrollers:

– Clock sources 0, 4 and 5 are enabled, while clock sources 1 and 6 are disabled upon
any system reset

– Clock sources 2, 3 and 7 are not implemented and cannot be enabled in the application.

 Setting any bit commands the corresponding clock source to be disabled.

– The clock source can only be disabled once there is no clock domain or secondary clock
source (FMzPLL, FPLL) using the clock source to be disabled.

Figure 13. Clock Source Disable Set Register: CSDISSET, Address = 0xFFFFFF34

Overwrite this text with the Lit. Number

24 Getting Started With TMS570LS Microcontrollers

Figure 14. Clock Source Disable Clear Register: CSDISCLR, Address = 0xFFFFFF38

 The system module also contains two additional registers that can be used to enable or
disable clock sources. These registers are provided so that the application can avoid using
read-modify-write operations for enabling or disabling clock sources.

 Setting any bit in the CSDISSET register commands the corresponding clock source to be
disabled.

 Setting any bit in the CSDISCLR register enables the corresponding clock source.

3.8.3 Example Clock Source Configuration
 systemREG1->CSDISCLR = 0x00000000U

 | 0x00000001U // Enable clock source 0

 | 0x00000002U // Enable clock source 1

 | 0x00000010U // Enable clock source 4

 | 0x00000020U // Enable clock source 5

 | 0x00000040U; // Enable clock source 6

The above configuration enables clock sources 0, 1, 4, 5, and 6. The clock sources 2, 3 and 7
are not implemented on the TMS570LS microcontrollers and must be left disabled.

Of the clock sources that are enabled, number 0, 4 and 5 are enabled by default and will have
become valid by the time the processor is released from reset upon a power-up. These are the
main oscillator and the two outputs from the internal reference oscillator.

Clock source 1 and 6 are the two PLL outputs. The FMzPLL as well as the FPLL have a defined
start-up time, and their outputs are not available for use until this time. The application must wait
for the valid status flags for these clock sources to be set before using the PLL outputs for any
clock domain.

while (!((systemREG1->CSVSTAT & 2) // Wait for FMzPLL to become valid

 & (systemREG1-> CSVSTAT & 0x40))); // Wait for FPLL to become valid

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 25

3.9 Clock Domains

There are multiple clock domains on the TMS570LS microcontrollers to ease the configuration
and controllability of the different modules using these clock domains.

Table 2. Clock Domains on TMS570LS Microcontrollers

Domain Name Clock Name Comments

CPU clock domain GCLK GCLK controls all the CPU sub-systems, including
the floating point unit (FPU), and the memory
protection unit (MPU)

System bus clock domain HCLK HCLK shares the same clock source as GCLK, and
is always the same frequency as HCLK.

System peripheral clock
domain

VCLK_sys VCLK_sys is used for the system modules such as
VIM, ESM, SYS, etc. VCLK_sys is divided down
from HCLK by a programmable divider from 1 to 16.

Peripheral clock domains VCLK and VCLK2 VCLK is the primary peripheral clock, and is
synchronous with VCLK_sys.

VCLK2 is a secondary peripheral clock and is
reserved for use by the enhanced timer module
(NHET) and the associated transfer unit (HTU).

VCLK2 is also divided down from HCLK by a
programmable divider from 1 to 16.

fHCLK must be an integer multiple of fVCLK2,

fVCLK2 must be an integer multiple of fVCLK.

Asynchronous clock domains VCLKA1 and VCLKA2 These clock domains are reserved for use by
special communication modules that have strict jitter
constraints. The protocols for these communication
modules (e.g. CAN, FlexRay) do not allow
modulated clocks to be used for the baud rate
generation. The asynchronous clocks allow the
clock sources for the baud clocks to be decoupled
from the GCLK, HCLK and VCLKx clock domains.

Real-Time Interrupt clock
domains

RTI1CLK This clock is used for generating the periodic
interrupts by the RTI module.

Overwrite this text with the Lit. Number

26 Getting Started With TMS570LS Microcontrollers

3.9.1 Mapping Clock Domains to Clock Sources

The system module on the TMS570LS microcontrollers contains registers that allow the clock
domains to be mapped to any of the available clock sources. These registers are defined now.

Figure 15. GCLK, HCLK , VCLKx Source Register: GHVSRC, Address = 0xFFFFFF48

 GHVWAKE defines the clock source that will be used for the GCLK, HCLK and VCLKx
domains when the microcontroller wakes up from a low power mode. Please refer to the
platform architecture user guide for the TMS570LS microcontrollers for more details on the
low power modes supported.

 HVLPM defines the clock source used for the HCLK and VCLKx domains when the CPU
clock domain GCLK is disabled.

 GHVSRC defines the clock source to be currently used for the GCLK, HCLK and VCLKx
domains. As shown by the reset value of the GHVSRC field, the clock source # 0, that is,
the main oscillator, is used as the default clock source for the GCLK, HCLK and VCLKx
domains.

Figure 16. Asynchronous Clock Source Register: VCLKASRC, Address = 0xFFFFFF4C

 VCLKA1 is used for generating the DCAN bit timings, and the VCLKA1S field defines the
clock source used for the VCLKA1 domain.

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 27

 VCLKA2 is used for generating the FlexRay timings, and the VCLKA2S field defines the
clock source used for the VCLKA2 domain.

Figure 17. RTI Clock Source Register: RCLKSRC, Address = 0xFFFFFF50

 RTI1SRC field defines the clock source used for the RTI1CLK domain. This domain is
mapped to VCLK by default.

 If the clock source for RTI1CLK is selected to be something other than VCLK, then the
RTI1CLK frequency must be at least 1/3rd of the VCLK frequency. This can be achieved by
using the RTI2DIV field, which defines the divider values used to divide down the clock
source selected for RTI1CLK.

3.9.2 Example Clock Domain Mapping
systemREG1->GHVSRC = (0U << 24U) // Use main oscillator as wake up source for GHV CLK

 | (0U << 16U) // Use main oscillator for HV CLK when GCLK is off

 | (1U); // Use FMzPLL as current source for GHV CLK

systemREG1->VCLKASRC = (0U << 8U) // Use main oscillator for FlexRay bit timing

 | (0U); // Use main oscillator for DCANx bit timings

systemREG1->RCLKSRC = (1U << 8U) // Set the RTI1CLK divider to divide-by-2

 | (0U); // Use FMzPLL as source for RTI1CLK

3.9.3 Configuring VCLK and VCLK2 Frequencies

The VCLK and VCLK2 clock signals are divided down from the HCLK clock signal. These are
independent dividers that can be configured via the system module Clock Control Register
(CLKCNTL), as shown below.

Overwrite this text with the Lit. Number

28 Getting Started With TMS570LS Microcontrollers

Figure 18. Peripheral Clock Control Register: CLKCNTL, Address = 0xFFFFFFD0

 VCLK2R defines the divide ratio between HCLK and VCLK2.

 VCLKR defines the divide ratio between HCLK and VCLK.

– VCLK2 and VCLK can be from HCLK/1 to HCLK/16

NOTE: VCLK2 frequency must also be an integer multiple of VCLK frequency.

NOTE: There must be some delay between configuring the divide ratios for VCLK2 and VCLK.

systemREG1->CLKCNTL |= 0x00000000U ; // VCLK2 = HCLK/1

temp = systemREG1->CLKCNTL; // dummy read to cause delay

systemREG1->CLKCNTL |= 0x00010000U; // VCLK = HCLK/2

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 29

3.10 Run CPU Self-Test

Please refer to chapter 7 of the Technical Reference Manual for the TMS570LS Microcontroller
for information on the configuration and execution of the CPU self-test.

Overwrite this text with the Lit. Number

30 Getting Started With TMS570LS Microcontrollers

3.11 Release Reset and Clocks to Peripherals

The peripherals are kept under reset, and need to be explicitly brought out of reset by the
application. This can be done by setting the Peripheral Enable (PENA) bit of the Clock Control
Register, shown below.

systemREG1->CLKCNTL |= 0x00000100U; // Release peripheral reset

The clocks to the peripheral modules are also disabled upon any system reset and need to be
explicitly enabled by the application. This can be done by setting the bits corresponding to the
peripheral select quadrant occupied by the peripheral module in the PCR module registers for
clearing the power down states of peripheral modules (PSPWRDWNCLRx). Please refer to the
datasheet for the TMS570LS Microcontrollers for information on the peripheral select quadrants
for each peripheral.

In the example below, the clocks to all implemented peripherals are being enabled.

pcrREG->PSPWRDWNCLR0 = 0xFFFFFFFFU;

pcrREG->PSPWRDWNCLR0 = 0xFFFFFFFFU;

pcrREG->PSPWRDWNCLR0 = 0xFFFFFFFFU;

pcrREG->PSPWRDWNCLR0 = 0xFFFFFFFFU;

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 31

3.12 Memories’ Self-Test

Please refer to the Technical Reference Manual for the TMS570LS microcontrollers for
information on executing the self-test on the on-chip memories using the programmable BIST
(PBIST) engine.

Overwrite this text with the Lit. Number

32 Getting Started With TMS570LS Microcontrollers

3.13 Memories’ Auto-Initialization

The system module on the TMS570LS microcontroller allows all on-chip SRAMs to be initialized
in hardware. This is especially essential since all the on-chip memories support some form of
read protection. The CPU data RAM supports ECC while the peripheral memories support parity
error detection. This mechanism also automatically initializes the ECC or parity memories, as
required. The following registers are used in this process.

Figure 19. Memory Hardware Initialization Global Control Register: MINITGCR, Address =
0xFFFFFF5C

 MINITGENA must be configured to 1010b to enable the hardware memory initialization
mechanism.

Figure 20. Memory Self-Test / Initialization Control Register: MSIENA, Address = 0xFFFFFF60

 Each bit of MSIENA refers to a single SRAM module on the microcontroller. Refer to the
device datasheet for the on-chip SRAM mapping to the initialization channel number.

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 33

Figure 21. Memory Self-Test / Initialization Status Register: MSTCGSTAT, Address = 0xFFFFFF68

 MINI DONE gets set when all memories selected via the MSIENA field have been initialized
to zeros. The application can poll this bit.

systemREG1->MINITGCR = 0xA; // Enable memory init

systemREG1->MSIENA = 0xFFFFFFFF; // Select all SRAMs for init

while (!(systemREG1->MSTCGSTAT & 0x00000100U)); // Wait until memory init is done

Overwrite this text with the Lit. Number

34 Getting Started With TMS570LS Microcontrollers

3.14 Vectored Interrupt Manager Configuration

The Vectored Interrupt Manager (VIM) module on the TMS570LS microcontrollers supports
flexible mapping of interrupt request channels and the interrupt generating sources. The default
mapping between the channel number and the interrupting module is defined in the device
datasheet. The interrupt channel number also defines the inherent priority between the
channels, with the lower numbered channel having the higher priority. That is, the priority
decreases in the following order: channel 0  channel 1  channel 2  … channel 63.

For this app note, assume that the application prefers to keep the default priority order between
the channels. Refer to the Technical Reference Manual for details on the control registers for
changing the mapping between interrupt channels and sources.

The VIM module contains a memory that holds the starting addresses of the interrupt service
routines for each interrupt enabled in the application. This memory starts at base address
0xFFF82000 on the TMS570LS microcontrollers. It is organized in 65 words of 32 bits.

Figure 22. VIM Interrupt Address Memory Map

3.14.1 Example VIM RAM Configuration

The below code fragment shows the configuration of the interrupt service routine addresses‟ in
the VIM memory.

Definitions:

typedef void (*t_isrFuncPTR)();

#define VIM_CHANNELS 64U

typedef volatile struct vimRam

{

 t_isrFuncPTR ISR[VIM_CHANNELS];

} vimRAM_t;

#define vimRAM ((vimRAM_t *)0xFFF82000U)

Configuration:

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 35

static const t_isrFuncPTR s_vim_init[] =

{

 phantomInterrupt,

 phantomInterrupt,

 phantomInterrupt,

 rtiCompare0Interrupt,

 rtiCompare1Interrupt,

 rtiCompare2Interrupt,

 rtiCompare3Interrupt,

 rtiOverflow5Interrupt,

 rtiOverflow1Interrupt,

 rtiTimebaseInterrupt,

 gioHighLevelInterrupt,

 hetHighLevelInterrupt,

 htuHighLevelInterrupt,

 spi1HighLevelInterrupt,

 sci1HighLevelInterrupt,

 adc1Group0Interrupt,

 adc1Group1Interrupt,

 can1HighLevelInterrupt,

 phantomInterrupt,

 erayHighLevelInterrupt,

 crcInterrupt,

 esmLowLevelInterrupt,

 swInterrupt,

 pmuInterrupt,

 gioLowLevelInterrupt,

 hetLowLevelInterrupt,

 htuLowLevelInterrupt,

 spi1LowLevelInterrupt,

 sci1LowLevelInterrupt,

 adc1Group2Interrupt,

 can1LowLevelInterrupt,

 phantomInterrupt,

 adc1MagInterrupt,

 erayLowLevelInterrupt,

 dmaFTCAInterrupt,

 dmaLFSAInterrupt,

 can2HighLevelInterrupt,

 dmmHighLevelInterrupt,

 spi3HighInterruptLevel,

 spi3LowLevelInterrupt,

 dmaHBCAInterrupt,

 dmaBTCAInterrupt,

 phantomInterrupt,

 can2LowLevelInterrupt,

 dmmLowLevelInterrupt,

 can1IF3Interrupt,

 can3HighLevelInterrupt,

 can2IF3Interrupt,

 fpuInterrupt,

 ftuXferStatusInterrupt,

 sci2HighLevelInterrupt,

 adc2Group0Interrupt,

 adc2Group1Interrupt,

 erayT0CInterrupt,

 spi5HighLevelInterrupt,

 sci2LowLevelInterrupt,

 can3LowLevelInterrupt,

 spi5LowLevelInterrupt,

 adc2Group2Interrupt,

Overwrite this text with the Lit. Number

36 Getting Started With TMS570LS Microcontrollers

 ftuErrorInterrupt,

 adc2MagInterrupt,

 can3IF3Interrupt,

 phantomInterrupt,

 erayT1CInterrupt,

 phantomInterrupt

 };

3.14.2 Configure Interrupts to be Fast Interrupts or Normal Interrupts

Two registers in the VIM module allow each of the 64 interrupts to be assigned to either the fast
interrupt (FIQ) queue, or the normal interrupt queue (IRQ). These registers are shown now.

Figure 23. FIQ/IRQ Control Register 0: FIRQPR0, Address = 0xFFFFFE10

Figure 24. FIQ/IRQ Control Register 1: FIRQPR1, Address = 0xFFFFFE14

Setting any bit in the above two registers makes the corresponding interrupt request become an
FIQ interrupt. As shown, the interrupt requests 0 and 1 are always FIQ. All others are IRQ
interrupts by default.

3.14.3 Enabling Interrupts

Control registers in the VIM module allow each interrupt request to be enabled or disabled.

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 37

Figure 25. Interrupt Enable Set Register 0: REQENASET0, Address = 0xFFFFFE30

Figure 26. Interrupt Enable Set Register 1: REQENASET1, Address = 0xFFFFFE34

Setting any bit in the above two registers enables the corresponding interrupt request to trigger
either an IRQ or an FIR exception to the Cortex-R4F CPU.

The interrupt requests 0 and 1 are always enabled and cannot be disabled.

Figure 27. Interrupt Enable Clear Register 0: REQENACLR0, Address = 0xFFFFFE40

Overwrite this text with the Lit. Number

38 Getting Started With TMS570LS Microcontrollers

Figure 28. Interrupt Enable Clear Register 1: REQENACLR1, Address = 0xFFFFFE44

Setting any bit in the interrupt enable clear registers disables the corresponding interrupt. When
an interrupt is disabled, it does not prevent the interrupt flag to get set when the interrupt
condition is generated but no IRQ or FIR exception is generated for the Cortex-R4F CPU.

Overwrite this text with the Lit. Number

 Getting Started With TMS570LS Microcontrollers 39

3.15 Additional Initializations Required by Compiler

If the source program is written using C or C++, the TI compiler requires the creation of the
C/C++ run-time environment. This includes:

 Initialization of copy table, if required

 Initialization of global and static variables defines in C/C++

 Initialization of global constructors

 Make a function call to branch to the main application

These requirements could be different for each compiler. The compiler reference manual must
be referred to identify the specific requirements for the compiler being used.

3.16 Call the Main Application

This is a normal function call when using C/C++. It could be a branch or branch-link to the name
of the routine that executes the application.

For example:

 main();

 exit();

	OLE_LINK4
	OLE_LINK5

