
 »
RTLS Toolbox

RTLS Toolbox
The RTLS (Real Time Localization System) Toolbox, is a collection of RTLS
techniques that
can be implemented on TI’s standard Bluetooth Low Energy radios
in the CC26xx series.
These techniques provide raw data that can be utilized for
developing localization
algorithms and secure range bounding other Bluetooth Low
Energy nodes. The two main
techniques included in the RTLS toolbox are
RSSI and Bluetooth Core Specifications
Version 5.2 Angle of Arrival.

RSSI details the Received Signal Strength Indication of an incoming
signal and is commonly
leveraged for deriving the distance between a receiver
and a transmitter through the
process of trilateration in localization
algorithms. The Bluetooth Low Energy stack enables
developers to receive the
RSSI of an incoming Bluetooth packet.

Bluetooth Core Specifications Version 5.2 Angle of Arrival is a technique for finding the
direction that an
incoming Bluetooth packet is coming from, creating a basis for
triangulation.
The device samples an incoming constant tone and as I/Q data. This raw I/Q
data
represents the amplitude and phase data of a signal and this data can be used
to
derive the angle the device transmitting the constant tone.

For detailed information on the specific example, see the relevant README.html
file in the
simplelink_cc13x2_26x2_sdk_x_xx_xx_xx/examples/rtos/CC26X2R1_LAUNCHXL/ble5stack/PROJECT
folder.

Using the raw data provided by the RTLS Toolbox, TI is enabling developers to
improve
localization algorithms based on Bluetooth technology by delivering more
data that can be
leveraged for trilateration and triangulation.

The inherent flexibility of the CC13x2 or CC26x2 RF Core is what enables this
significant
extension of functionality. The main advantages using the CC13x2 or CC26x2
are that
customers can start adding RTLS features and security with little extra
cost, very little extra
energy consumption and no increase in peak power.

There are two fundamentally different approaches for localization:

Trilateration

https://www.ti.com/
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x-guide/index-cc13x2_26x2.html
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications

Trilateration is where you know the distance between a reference node and a
target node

RSSI Based Localization gives you the distance from the receiver to the
transmitter.

 Note

Existing examples with no external control interface are discontinued.
All RTLS
examples now have an external control interface.

General RTLS Software Architecture

The diagram below shows the RTLS software architecture.

With multiple nodes that collect localization data, it is important to have an
architecture
that supports control of these nodes. It must be possible to
configure and trigger
localization and it must be possible to retrieve
localization data. We achieve this by reuse
of our Network Processor Interface
(NPI). It is basically a means to support Remote
Procedure Calls (RPC) over a
serial interface. Note that the architecture is such that it is
possible to
replace NPI with your own preferred serial protocol.

In our example we use UART as the serial transport layer. This is because it
is readily
available on host PC as UART over USB, and our LaunchPads include a
UART to USB bridge.
Along with the embedded examples we provide PC software to
act as host, to control,
retrieve and present localization data. This also
allows much quicker customer
performance characterization, as well as
configuration of important parameters, not to
mention the ability to develop
and test higher level post-processing algorithms.

RTLS Toolbox

The RTLS toolbox is a collection of software that is purposed for the
localization use case.
A table below summarizes each software component in the
toolbox as well as its
applications for localization. The software components
below will run on the embedded
nodes.

Software Component Usage

Software Component Usage

BLE-Stack Advertising, scanning, connection, exchanging RTL

Connection Monitor Follows a BLE connection using Micro BLE-Stack

Angle of Arrival Radio patches and driver to read AoA data embed

Unified Network Processor
Interface (UNPI) A serial protocol including packet format and
hand

RTLS Control Module Implements the command and event set used to
c

The software components in the following table run on a PC. TI has setup
a PC based
environment to facilitate in evaluating and prototyping various
RTLS algorithms. Once the
algorithms are complete, the various PC components
above can be migrated to an
embedded device.

Software Component Usage

RTLS Util Event handling and distribution across nodes. Implements
results queu

RTLS Node Manager Framework for sending and receiving RTLS commands and
events from

Websocket Server Implements the server side of a TCP socket. Intended to
bridge serial co

RTLS UI GUI A GUI for aggregating and logging RTLS
communication and graphing Ao

RTLS Utility

The RTLSUtil module is a convenience layer that is built on top of the node
manager that
implements event handling and blocking as required by the RTLS
network (e.g. seed
distribution). Additionally the RTLSUtil module is able to
setup worker threads for data
processing of results from the device as well as
creating queues to store the incoming
data.

RTLS Node Manager

The RTLS Node Manager provides the following functionality:

A bridge between RTLS US GUI and CC13x2 or CC26x2
Holds the state of each device and takes care of configuration
Enables the simplicity of RTLS Control Module and RTLS UI GUI
Minimizes amount of the transactions between RTLS UI GUI and the rest of the
system

Due to the above functionality, the Node Manager can operate on user’s CPU and
help
with slow bus (LIN/CAN).

RTLS Control Module

The RTLS Control Module is an on-chip module which runs as a RTOS Task
and it provides
the following functionality:

Parsing commands coming from Node Manager
RTLS Driver configuration and operation
RF and NPI message queue

RTLS Roles and Topology

Each node in an RTLS network utilizes the software components listed above in a
different
way to perform a specific task related to localization. These
capabilities map to a role
within the RTLS network and ultimately are implemented
by sample applications within
the SDK. There are three examples: rtls_master ,
 rtls_slave , and rtls_passive . The
capabilities of these examples are
explained below. All embedded nodes implement UNPI
and act as slaves in the UNPI
protocol. Additionally all embedded nodes have the RTLS
Control module implemented
for processing RTLS commands from the UNPI interface.

 Note

The following subsections aim to describe what localization roles are
implemented by
the sample applications in the SDK. This is not a comprehensive
list of what is possible
on each node, but rather an explanation of what the
examples will do out of the box.
For a list of potential combinations, please
see Role Combinations.

Master

The RTLS master runs a full BLE-Stack and acts as a central device.
It will scan and connect
to the RTLS slave over BLE. Once a connection is
established the RTLS Master will do the
following:

Share the connection parameters (access address, master sleep clock accuracy,
and
CRC init) with the PC.
Use the BLE link to share AoA parameters with the peripheral device.
Implements the AoA master role
Does not send out AoA packets, but configures the slave to do so (in the case of
connection AoA)
Synchronizes with periodic advertisements sent by the slave (in the case of
connectionless AoA)
Receives packets with CTE and performs in-phase and quadrature component (IQ)
sampling

Slave

The RTLS slave runs a full BLE-Stack and acts as a peripheral device. This is
the device that
is to be located. In the case of connected Aoa, the slave device
will advertise and enter a
connection with the RTLS Master. In the case of
connectionless AoA, the slave sends out
periodic advertisements the master can
synchronize with.

Sends data packets with AoA tone embedded using Constant Tone Extension (CTE)
Advertises special string to be detected by rtls_master (in the case of connection
AoA)
Advertises periodic advertisements (in the case of connectionless AoA)
Implements AoA slave role
BLE-Stack peripheral role
Wireless/battery operated, not connected to PC

Passive

The RTLS passive does not actively participate in the BLE connection between
the RTLS
master and slave. Instead, it uses the Micro BLE Stack in
connection monitoring mode to
follow the connection. To do this, the passive
device relies on the Master to distribute the
connection parameters once a
connection is formed. The passive node does the following:

Implement AoA passive role
Receives packets with CTE and performs in-phase and quadrature component (IQ)
sampling
Implements the Micro BLE-Stack connection monitoring application layer.
See
Connection Monitor (CM) Application for more information on the connection
monitor.

 Note

The rtls_passive device is not used for Connectionless AoA.

PC/Central Processing Node

The PC node is responsible for controlling the embedded RTLS nodes by sending
commands and processing events. In the SDK, this is realized by a combination
of a Python
layer that implements the UNPI master role and a websocket server
that translates UNPI
commands to a socket interface that is used by the GUI
Composer application running in
the browser.

This software is intended to use as a framework for extracting data from the
embedded
nodes and using it to prototype high level RTLS algorithms on the PC.

 Note

https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x-guide/u-stack-index-cc13x2_26x2.html#sec-index-micro-ble-stack
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/u-stack/functional-description.html#sec-cm-app

In a final product, these algorithms may be implemented on an embedded
device or
even perhaps the RTLS master node. TI has provided PC software
to aid in data plotting
and prototyping various algorithms.

The PC implements the following roles in Python:

UNPI master
COM port interface
Implementation of RTLS UNPI subsystem/command set
Websocket server

The PC implements the following roles in RTLS UI GUI/JavaScript:

Websocket client on localhost
Graphing and logging data from websocket
Parsing JSON objects to extract RTLS data
Issue commands to RTLS nodes via websocket to UNPI conversion
Enumerate devices
Distribute connection parameters to passives

Role Combinations

 Note

In all of the tables following (BLE, AoA) features listed as optional are
not implemented
by the sample applications included in the SDK, but are
valid and possible
configurations that can be implemented by the user.

For example: rtls_master could be a multi-role device or rtls_passive could
operate as
AoA master.

BLE-Stack

The Bluetooth Core Specifications Version 5.2 allows for devices to operate in various roles
as well as
combinations of roles. The table below shows the required and optional
features
for each example.

Example Name Central Peripheral Broadcaster Observer

RTLS Master R O O R

RTLS Slave O R R O

RTLS Passive No No O R*

Legend:

https://www.bluetooth.com/specifications/adopted-specifications

R: Required
O: Optional
No: Not supported

 Note

The R* above denotes that while the connection monitor is capable of scanning
for
beacons, it is also required that the connection monitor follow a connection.
The
monitoring role is not officially defined by the Bluetooth Spec, but it is
a critical
functionality in the rtls_passive .

AoA

The Bluetooth Core Specifications Version 5.2 defines multiple roles for both connected
and connection-less AoA.
The following configurations are supported by the examples in
the SimpleLink CC13x2 / 26x2 SDK.

Example Name Send CTE Perform IQ Sampling

RTLS Master No R

RTLS Slave R No

RTLS Passive N/A O

Legend:

R: Required
O: Optional
No: Not supported
N/A: Not applicable

For connection AoA, an AoA Master / Passive is capable of connecting to / monitoring
up
to and including eight AoA slaves simultaneously.

For connectionless AoA, an AoA Master is capable to synchronize with up to 40 slaves.
When the number of slave synchronized with the master is big, some of the periodic
adervtisements may not be received. In addition, the number of buffers allocated to
CTE
sampling has to be big enough (see MAX_NUM_CTE_BUFS)

RTLS Driver

The purpose of RTLS Driver is to handle the Direct Call implementation of the
RTLS
module.

For more detail please take a look at AoA Driver section.

https://www.bluetooth.com/specifications/adopted-specifications
https://www.ti.com/tool/simplelink-cc13x2-26x2-sdk

Physical Considerations

Before evaluating the RTLS solution, it is important to consider the
environment. All radio
communication protocols can be susceptible to
multi-path fading, and RTLS based
systems are
not exempt. It is important to control the environment when evaluating or at
least be aware of the potential effects of multi-path on the results.

It is recommended to evaluate the RTLS solution in an area that optimizes
RF conditions.
This includes:

An open space with no large metal or concrete obstructions (pillars, poles, etc.)
Relatively few interference sources (i.e. Wi-Fi access points, etc.)
Raised platforms for the nodes made out of cardboard ~1 m off the ground.

A desk environment generally has sub-optimal RF conditions and should be avoided.

See the image below for a recommended layout of the nodes during evaluation,
this is a
2D image where all devices are laying on a flat surface “pointing”
as shown in the picture.
In this case each node should be placed on a box
so that it does not sit directly on the
ground.

 Note

The rtls_master device can be set to sample the CTEs too - the default example
enables
this possibility. In that case, an antenna board needs to be set on the
 rtls_master

device and the rtls_passive can be omitted.

For angle of arrival application, we have created
Bluetooth Angle of Arrival Antenna Design
to further explain what users should look for when making their own
AoA board.

https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x-guide/reference-cc13x2_26x2.html#term-multi-path-fading
https://www.ti.com/lit/pdf/tida029
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x-guide/reference-cc13x2_26x2.html#term-aoa

Test mode

Test mode is used for Bluetooth certification.
RTLS test mode can be enabled in the
host_test example by adding the
pre-defined symbols USE_RTLS, RTLS_CTE, and
RTLS_CTE_TEST.
For further description of the above preprocessor defines, please see
Table 18..

RSSI Based Localization

RSSI details the Received Signal Strength Indication of an incoming
signal and is the most
commonly used method of trilateration localization in
Bluetooth. TI Bluetooth low energy
stack enables developers to receive the
RSSI of an incoming Bluetooth packet with can be
used to enable RTLS algorithms.

RSSI localization is based on the the Frii’s Transmission Equation.
The core concept is that
received signal strength is proportional to the
distance of the transmitting node. The
graphic below describes how RSSI
can be used to estimate distance.

Figure 121. Frii’s Equation Relationship between received power and distance.

While RSSI based localization is the most commonly used method in today’s RTLS
systems,
it also faces challenges that need to be overcome:

Accuracy can be influenced by the presence of reflections and obstructions
No Relay Attack protection

Some of these challenges with RSSI can be overcome through smart system design.
TI’s
RTLS Toolbox enables developers to monitor the connection between a master
and slave
and get independent RSSI measurements from the same packet via the
Connection
Monitor. This approach gives more data and reference points that can
be used to help
improve the resolution of an RTLS application.

https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x/stack-configuration-cc13x2_26x2.html#stackconfigurablefeatures
http://www.antenna-theory.com/basics/friis.php

For future RTLS applications, it is recommended to combine RSSI with the other
localization techniques such as AoA to help improve the accuracy and
security.

Reading RSSI

The Micro BLE Stack. (foundation of the Connection Monitor (CM) Application) and the full
BLE5-Stack
provide APIs to read RSSI information of the received packet. The following
sections will describe how to extract RSSI information from the received
packet.

Connection Monitor

The connection monitor will keep an array of connection information
for each connection
it is tracking. This includes master and slave RSSI
from the last scan. These fields can be
found in the ubCM_ConnInfo_t
structure. The fields are rssiMaster and rssiSlave respectively.

RSSI information is valid after the monitor complete callback is invoked
(when the
monitoring scan is complete for a connection event).

The rtls_passive sample application shows an example of extracting
slave RSSI in
RTLSPassive_monitorCompleteEvt .

Keyless entry with TI connection monitor

This video
explains the concept of using TI Connection Monitor to monitor Bluetooth Low
Energy
communications to estimate the distance between the connection monitor and
Bluetooth LE enabled devices. This can be used in applications such as car access
or
remote keyless entry.

BLE(5)-Stack

When using the BLE5-Stack, the Gap_RegisterConnEventCb (Generic Access Profile (GAP)) will
provide
RSSI from the last connection event. It can be used in the central or peripheral
configuration. The connection event callback is already the synchronization
method used
by the RTLSCtrl module for reporting data to the PC/Node
Manager. See
Gap_ConnEventRpt_t for information on how to extract
the RSSI from connection event
callbacks.

In the case of communication that consists of multiple packets, only the RSSI of the
last
received packet is reported. There is no averaging over channels. In general, the
received
signal strength will vary across channels due to varying channel conditions and
antenna
gains. This has the following consequences in regards to BLE:

Advertising: The RSSI will only be reported on the last advertisement channel that data
is received on.

https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x-guide/u-stack-index-cc13x2_26x2.html#sec-index-micro-ble-stack
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/u-stack/functional-description.html#sec-cm-app
https://training.ti.com/car-access-ti-connection-monitor
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x/gap-cc13x2_26x2.html#gap
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/doxygen/ble/html/struct_gap___conn_event_rpt__t.html

Connection Events with multiple data packets: These occur on the same channel but
the
RSSI will still only be reported for the last data packet that was received.

 Note

The algorithm that calculates RSSI is the same algorithm for all BLE channels.

Calculation Detail

The RSSI value is a measurement of the actual power level delivered to the input of the
reference design RF matching and balun. A valid range for RSSI signals is approximately
-90dbm to -30dBm. Note that it is not easy to directly correlate RSSI to distance as it is
highly dependent on the antenna design and polarization of both the transmitter and the
receiver antenna.

The RSSI can have negative tolerance which means that if you are receiving on the
sensitivity limit, reported RSSI can potentially be lower than this.
The sensitivity can be
found in the device datasheet and is in accordance with Bluetooth
requirements.

The RSSI performance will be the same between both single ended and differential
configurations and the expected accuracy is +/-4 dbm as stated in the datasheet.

Advantages of a connection based RSSI system

A connection based RSSI system relies on a Bluetooth Low Energy connection.
The RSSI of
the signal received during the connection event is measured.
The advantages of this
technique against connectionless based RSSI system are:

1. The Bluetooth Low Energy connection ensures the identity of the target device.
2. The number of possible RF channels used is increased from 3 to 37. This increases the

system’s robustness to interferences.
3. The energy consumption of the passive devices is smaller as they are not continuously

scanning.

Advantages of a connectionless based RSSI system

A connectionless based RSSI system locates beacons without forming a Bluetooth Low
Energy connection. The RSSI of the advertisements is measured.
The advantages of this
technique against connection based RSSI system are:

1. The complexity of the system is reduced as there is no need for sharing the
connection
parameters between the passive-nodes.

2. The number of targets that can be tracked simultaneously is slightly bigger
(fewer
resources are required to keep track of a non-connected device than a
connected
device).

Angle of Arrival

Angle-of-Arrival (AoA) is a technique for finding the direction that an incoming
Bluetooth
packet is coming from, creating a basis for triangulation.

An array of antennas with well-defined properties is used, and the receiver will
switch
quickly between the individual antennas while measuring the phase shift
resulting from
the small differences in path length to the different antenna.

These path length differences will depend on the direction of the incoming RF
waves
relative to the antennas in the array. In order to facilitate the phase
measurement, the
packet must contain a section of constant tone
(CT) where there are no phase shifts
caused by modulation.

Packet Format

In order to get a good estimate of ϕ (phase), all other intentional phase shifts
in the signal
should be removed.

Bluetooth Core Specifications Version 5.2 introduces AoA/AoD which are
covered under
Direction Finding Using Bluetooth Low Energy Device section
and it also specifies the following

states can support sending direction finding packets:

1. Periodic advertising; also called Connectionless CTE

2. Connection; also called Connection CTE

The theory behind AoA/AoD and Connectionless/Connection CTE(Constant Tone
Extension)
is the same, therefore, we will only focus on Connection CTE AoA. Both
Connection CTE
and Connectionless CTE are provided in BLE5-Stack.

First let’s take a look at the payload.
By adding a section of consecutive 1’s at the end of
connection packet, effectively
transmitting a single tone at the carrier frequency + 250 kHz.

https://www.bluetooth.com/specifications/adopted-specifications

In the header, the CP bit (CTE Present) determines whether header
contains CTEInfo or
not.

The CTEType field of CTEInfo further specifies which type of direction finding
packet this is
and the CTETime field specifies the duration of the CTE.

Table 21. CTEType value

Value Description

0 AoA CTE packet.

1 AoD CTE with 1 µs slots.

2 AoD CTE with 2 µs slots.

The value of CTETime should be within 2~20 and it’s interpreted as
in 8us unit. That means
when CTETime is set to 20, there will be
CTE at the end of connection packet which lasts
8*20 = 160(us).

This gives the receiver time to synchronize the demodulator first, and then
store I and Q
samples from the single tone 250 kHz section at the end into a
buffer and the buffer can
then be post-processed by an AoA application

 Note

The I/Q Data Sample is the coordinates of your signal as seen down the time
axis. In
fact, I/Q data is merely a translation of amplitude and phase data
from a polar
coordinate system to a Cartesian (X,Y) coordinate system and
using trigonometry,
you can convert the polar coordinate sine wave
information into Cartesian I/Q sine
wave data.

Integration

The I and Q samples from the
transmitted carrier frequency + 250 kHz tone can be
captured, pre-processed, and
buffered by the RF Core without any load on the main MCU.

Due to the pre-processing, the application can determine the phase shift without
having to
remove DC offset or IF first, significantly simplifying the estimation
process and leaving the
application MCU free to do more on top.

For rtls_passive , the I/Q sampling rate is currently not configurable and
it is 4 MHz. Each
I/Q pair occupies 32 bits space in radio RAM and the
radio RAM can store up to 512
samples (i.e. 2048 bytes - 2 kB).
This limitation is only due to the micro-stack which limits
the amount
of data read in the Radio RAM. The radio RAM length is 4 kB.

With sampling rate 4MHz, there will be 16 I/Q pairs every 4us, which
equals to 16 * 4 (one
I/Q pair takes up 4 bytes space) = 64 bytes per 4us.

That means even if the CTE is 160us long with 4MHz sampling rate,
the radio RAM for
rtls_passive can only store I/Q data for 128us duration.
There is currently no workaround

for it unless we shorten the CTE
length. This is not an issue for rtls_master.

 Note

For rtls_passive , I and Q samples only have 13 bits resolution even though
they occupy
16 bits space in RF Core RAM.
Since they only have 13 bits resolution, the maximum
and
minimum value you will observe as signed integers are [4095, -4096].

For rtls_master, the I/Q sampleRate Setting is configurable and it’s
from 1MHz up to 4MHz.
Each I/Q pair occupies 32 bits space in radio RAM and
the radio RAM can store up to 624
samples (2496 bytes - around 2.5kB).
When the sampling frequency is maximum (4 MHz),
exactly 624 samples are stored
during each CTE. (The CTE lasts 160 us, minus 4 us of guard
period.
When sampling frequency is 4 MHz, in 156 us, 156*4 = 624 samples are stored.
More details are provided in Valid I/Q Samples For Angle Calculation.)

 Note

For rtls_master, I and Q samples resolution is configurable, please
see sampleSize
Setting.
You can either choose 16 bits which only have 13 bits resolution or
8 bit
resolution which is Bluetooth Core Specifications Version 5.2 standard.
It does not
matter which resolution is chosen, each I/Q pair
will always take 32 bits space in radio
RAM.

The application layer passes in the antenna toggling table into RF Core,
RF Core then does
the antenna switching while collecting I/Q samples.

In the slave device, the RF Core ensures that the CTE is inserted at the
end of the
connection event packet without being distorted by the whitening filter.

In the passive and master devices, the RF Core analyzes the packet and starts capturing
samples at the
right time while synchronizing antenna switching. The samples are left in
the
RF Core RAM for analysis by the main MCU

AoA Driver

For rtls_passive , an example that uses Micro BLE Stack,
the AoA driver is responsible for
pin initialization, AoA enabling, data extraction
and angle estimation.

AoA functionality in rtls_master is implemented as Bluetooth Core Specifications Version
5.2 compliant, therefore,
the initialization, AoA enabling and data extraction are moved to
host module.
However, users can still use RTLS Control Module to setup the wanted
parameters.

https://www.bluetooth.com/specifications/adopted-specifications
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x-guide/u-stack-index-cc13x2_26x2.html#sec-index-micro-ble-stack
https://www.bluetooth.com/specifications/adopted-specifications

Configurations Supported

Sampling frequency supported: 1 Mhz (Bluetooth Core Specifications Version 5.2), 2
Mhz, 3 Mhz or 4 Mhz
Sampling slot length supported: 1 us* or 2 us (both are authorized by
Bluetooth Core
Specifications Version 5.2). Note: Per BLE spec, the sampling slot and the switching
slots must have the same duration.
Sample size supported: 8bit (Bluetooth Core Specifications Version 5.2) or 16bit

* Sampling slot of 1us is supported by the AoA driver but some limitations
exist when
using the BOOSTXL-AOA hardware. The antennas of the BOOSTXL-AOA
require 1.6 us to
switch and settle (leaving 0.4 us in the sampling period to
collect data). Other designs with
faster RF switches can support 1us switching.

Data Collection Flow

When RF Core detects AoA packets, it will start sampling the I/Q on the tone
while toggling
the antenna according to a user defined period.

For rtls_passive, IQ samples will be extracted after RTLSPassive_monitorCompleteEvt()
has
triggered the next sync event.
During sync event processing RTLSCtrl_postProcessAoa will
enable the radio RAM,
and read out the IQ samples using AOA_postProcess()

For rtls_master, IQ samples will be sent to application from RTLS Service host module
with
event type RTLSSRV_CONNECTION_CTE_IQ_REPORT_EVT .

According to the AoA result mode set by python, different sets of functions will
be called
and will return the corresponding data set as illustrated below:

 Note

For rtls_master, when using the AOA_MODE_RAW, the BLE5-Stack will filter out
the I/Q
data from switching period if bit[0] in sampleCtrl is set to 0. To obtain
the full set of I/Q
data, you will need to set bit[0] in sampleCtrl to 1.
Please see sampleCtrl I/Q data Filter

https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications

Setting for the overview.

Warning

For rtls_master, when bit[0] for sampleCtrl= 1 , AOA_MODE_PAIR_ANGLE and
 AOA_MODE_ANGLE are
not supported.

Result mode is set in the python as part of RTLS_CMD_AOA_SET_PARAMS.

Listing 118. AoaSetParamsReq

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

 class AoaSetParamsReq(NpiRequest, SyncReq, FromAp):

 command = Commands.RTLS_CMD_AOA_SET_PARAMS

 struct = Struct(

 "aoaRole" / Enum(Int8ul, AoaRole), # AOA_MASTER, AOA_SLAVE, AOA_PASSIVE

 "aoaResultMode" / Enum(Int8ul, AoaResultMode), # AOA_MODE_ANGLE,
AOA_MODE_PAIR_ANGLES, AOA_MODE_RAW

 "connHandle" / Int16ul,

 "slotDurations" / Int8ul, # 1us/2us sampling slots

 "sampleRate" / Int8ul, # 1Mhz (BT5.1 spec), 2Mhz, 3Mhz or 4Mhz - this enables
oversampling

 "sampleSize" / Int8ul, # 8 bit sample (as defined by BT5.1 spec), 16 bit sample
(higher accuracy)

 "sampleCtrl" / Int8ul, # sample control flags bit[0] = 0-default filtering,
bit[0]= 1-RAW_RF no filtering

 # bit 4,5 - 0x10 - ONLY_ANT_1, 0x20 - ONLY_ANT_2

 # 0x00 is not a valid option.

 "samplingEnable" / Int8ul,

 # 0 = mask CTE even if enabled, 1 = don't mask CTE, even if disabled (support
Unrequested CTE)

 "numAnt" / Int8ul, # Number of antennas in antenna array

 "antArray" / Int8ul[this.numAnt], # GPIO's of antennas

)

Table 22. aoaResultMode Setting

Value Description

AOA_MODE_ANGLE See before

AOA_MODE_PAIR_ANGLES See before

AOA_MODE_RAW See before

 Note

When using AOA_MODE_ANGLE the antenna pattern field must be 0,1,2 for when antenna
array 1 is used or 3,4,5 when antenna array 2 is used.

Warning

When using AOA_MODE_RAW mode, the sampling rate is fixed at
4MHz.

Antenna Switching

Antennas toggle pattern is set in the python as part of RTLS_CMD_AOA_SET_PARAMS.

Listing 119. AoaSetParamsReq

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

 class AoaSetParamsReq(NpiRequest, SyncReq, FromAp):

 command = Commands.RTLS_CMD_AOA_SET_PARAMS

 struct = Struct(

 "aoaRole" / Enum(Int8ul, AoaRole), # AOA_MASTER, AOA_SLAVE, AOA_PASSIVE

 "aoaResultMode" / Enum(Int8ul, AoaResultMode), # AOA_MODE_ANGLE,
AOA_MODE_PAIR_ANGLES, AOA_MODE_RAW

 "connHandle" / Int16ul,

 "slotDurations" / Int8ul, # 1us/2us sampling slots

 "sampleRate" / Int8ul, # 1Mhz (BT5.1 spec), 2Mhz, 3Mhz or 4Mhz - this enables
oversampling

 "sampleSize" / Int8ul, # 8 bit sample (as defined by BT5.1 spec), 16 bit sample
(higher accuracy)

 "sampleCtrl" / Int8ul, # sample control flags bit[0] = 0-default filtering,
bit[0]= 1-RAW_RF no filtering

 # bit 4,5 - 0x10 - ONLY_ANT_1, 0x20 - ONLY_ANT_2

 # 0x00 is not a valid option.

 "samplingEnable" / Int8ul,

 # 0 = mask CTE even if enabled, 1 = don't mask CTE, even if disabled (support
Unrequested CTE)

 "numAnt" / Int8ul, # Number of antennas in antenna array

 "antArray" / Int8ul[this.numAnt], # GPIO's of antennas

)

Table 23. Antenna Pattern

Variable Definition

numAnt Number of IOs RF Core should toggle during I/Q sampling

antArray The IOs should be toggled during I/Q sampling.

 Note

For rtls_passive, the slotDuration, sampleRate, sampleSize, samplingEnable, numAnt
and antArray are
hardcoded in the embedded software. The only configurable
parameter is the aoaResultMode.

Following is an example provided in our rtls_agent toolbox.

Listing 120. IO control pattern setup example

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

 if aoa:

 if rtlsUtil.is_aoa_supported(all_nodes):

 aoa_params = {

 "aoa_run_mode": "AOA_MODE_ANGLE", ## AOA_MODE_ANGLE,
AOA_MODE_PAIR_ANGLES, AOA_MODE_RAW

 "aoa_cc26x2": {

 "aoa_slot_durations": 1,

 "aoa_sample_rate": 1,

 "aoa_sample_size": 1,

 "aoa_sampling_control": int('0x10', 16),

 ## bit 0 - 0x00 - default filtering, 0x01 - RAW_RF no filtering,

 ## bit 4,5 - 0x10 - ONLY_ANT_1, 0x20 - ONLY_ANT_2

 "aoa_sampling_enable": 1,

 "aoa_pattern_len": 3,

 "aoa_ant_pattern": [0, 1, 2]

 }

 }

The example shows that 3 IOs(aoa_pattern_len) should be toggled during the I/Q sampling
and the order for toggling is
set to 0, 1 and 2 which is mapped to the antennaTbl[] array
element 0, 1 and 2 in ble_user_config.c .
Bit[4:5] for aoa_sampling_control is set to 1 which
corresponds to use only antenna array 1.
For more information regarding antenna array
selection, Please see sampleCtrl Antenna Array Setting for the overview.

The RF Core will then repeat the pattern until the end of the CTE. Afterwards,
the IOs will
be restored to their original state.

Even though RF Core takes care of the toggling, it does not initialize the pin state.
The
application should initialize the pin state by calling either AOA_initAntArray for rtls_passive
or
calling RTLSSrv_initAntArray for rtls_master.
This is taken care when host sends
RTLS_CMD_AOA_SET_PARAMS.

For users that want to use different IOs and patterns,
please visit SimpleLink Academy –>
RTLS Toolbox –> Angle of Arrival –>Task 3.

The RTLS API does not provide a direct way to determine which antenna
has been used to
sample a given piece of data.
However, knowing the antenna switch sequence and the
number of samples
recorded per slot, it is possible to deduce the antenna used. Please
see details in Valid I/Q Samples For Angle Calculation.

Convert I/Q Data to Angle Difference

When the radio frequency wave incident on to an antenna array (assuming there are
only
2 antennas on the board, 4MHz sampling rate and 2us slot)
and arrives at different
antennas at different time,
there will be a phase difference between the antennas. So we
extract the phase
difference between ant1_sample[8 to 15] and ant2_sample[8 to 15]. The
switch
among antennas will cause measurement error, therefore I/Q samples
from 0 to 7
are discarded when calculating angles.

When using a custom HW with different antenna switch than what TI has on
BOOSTXL-
AOA board,
you might be able to use more I/Q samples if the antenna switch
settling time
is shorter than 1 us. The method for determining how many I/Q
samples can be used is
explained in Valid I/Q Samples For Angle Calculation

The I/Q data can be presented into a X-Y domain with real number I and imaginary
number Q (90 degree difference). As mentioned before, for each period of 250 kHz
signal,
we sample 16 I and Q data. If there is no difference, that means that
the I/Q data is the
same, therefore the phase between ant_1 sample1 will be the
same to ant_2 sample1.

Here is the code putting I/Q data into 2 dimensions and then the I/Q
pairs were passed
into function AOA_AngleComplexProductComp() to get final angle.

Listing 121. Get the phase differences.

 1

2

for (uint16_t r = 1; r < (numIqSamples -
(AOA OFFSET FIRST VALID SAMPLE*sampleRate))/(numAnt*sampleRate) ; ++r) // Sample Slot

https://dev.ti.com/tirex/explore/node?node=AHckEvhg0Y3xs5rlangU2w__FUz-xrs__LATEST&search=BOOSTXL-AOA

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

(AOA_OFFSET_FIRST_VALID_SAMPLE sampleRate))/(numAnt sampleRate) ; r) // Sample Slot

{

 for (uint16_t i = 0; i < sampleRate; ++i) // Sample inside Sample Slot

 {

 // Loop through antenna pairs and calculate phase difference

 for (uint8_t pair = 0; pair < numPairs; ++pair)

 {

 const AoA_AntennaPair *p = &gAoaReport.antConfig->pairs[pair];

 uint8_t a = p->a; // First antenna in pair

 uint8_t b = p->b; // Second antenna in pair

 // Calculate the phase drift across one antenna repetition (X * complex conjugate
(Y))

 int16_t Paa_rel =
AOA_AngleComplexProductComp(pI[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate +
r*numAnt*sampleRate + a*sampleRate + i],

pQ[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate + r*numAnt*sampleRate + a*sampleRate + i],

pI[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate + (r-1)*numAnt*sampleRate + a*sampleRate +
i],

pQ[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate + (r-1)*numAnt*sampleRate + a*sampleRate +
i]);

 // Calculate phase difference between antenna a vs. antenna b

 int16_t Pab_rel =
AOA_AngleComplexProductComp(pI[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate +
r*numAnt*sampleRate + a*sampleRate + i],

pQ[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate + r*numAnt*sampleRate + a*sampleRate + i],

pI[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate + r*numAnt*sampleRate + b*sampleRate + i],

pQ[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate + r*numAnt*sampleRate + b*sampleRate + i]);

 // Add to averages

 // v-- Correct for angle drift / ADC sampling frequency error

 antenna_versus_avg[a][b] += Pab_rel + ((Paa_rel * abs(a-b)) / numAnt);

 antenna_versus_cnt[a][b] ++;

 }

 }

}

int32_t AOA_AngleComplexProductComp(int32_t Xre, int32_t Xim, int32_t Yre, int32_t Yim)

{

 int32_t Zre, Zim;

 int16_t angle;

 // X*conj(Y)

 Zre = Xre*Yre + Xim*Yim;

 Zim = Xim*Yre - Xre*Yim;

 // Angle. The angle is returned in 256/2*pi format [-128,127] values

 angle = AOA_iatan2sc((int32_t) Zim, (int32_t) Zre);

 return (angle * angleconst);

}

Something to highlight is that in reality the 250 kHz might not be perfect (for
example,
could be 255kHz or 245kHZ), therefore, there is slightly phase
difference between ant_1
sample_n and ant_1 sample_(n + 16*1). Therefore
run time compensation is also applied:

Listing 122. Compensation method.

1

2

3

4

5

// Calculate the phase drift across one antenna repetition (X * complex conjugate (Y))

int16_t Paa_rel = AOA_AngleComplexProductComp(pI[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate +
r*numAnt*sampleRate + a*sampleRate + i],

 pQ[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate +
r*numAnt*sampleRate + a*sampleRate + i],

 pI[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate +
(r-1)*numAnt*sampleRate + a*sampleRate + i],

 pQ[AOA_OFFSET_FIRST_VALID_SAMPLE*sampleRate +
(r-1)*numAnt*sampleRate + a*sampleRate + i]);

Because of the non-perfect 250 kHz tone, the phase difference is aggregated.
Let’s say that
every period will have 45 degree of delay. Then when comparing
ant_1 sample_n and
ant_1 sample_(n+16*1), the aggregated phase difference is 90
degree. But the real phase
difference between every period is only 45 degree. Therefore
the calculated phase
difference must be divided by the number of antennas used,
in this case 2.

Listing 123. Final phase difference

1 antenna_versus_avg[a][b] += Pab_rel + ((Paa_rel * abs(a-b)) / numAnt);

Valid I/Q Samples For Angle Calculation

The BLE spec defines two terms “Switch slot” and “Sample slot”.
The length of the switch
slot and sample slot must be equal, and only
two values (1us or 2us) are allowed.

At the beginning of a CTE, the number of elements to discard depends on the
length of the
switch and sample slots and of the sampling frequency.

The following figure presents the way the CTE is sampled.
The image is copied from the
BLUETOOTH CORE SPECIFICATION Version 5.1 | Vol 6, Part B | 2.5.1.

Figure 122. Constant tone sampling structure

When using 1us slots:

the guard period is 4us (no sampling is done during the
guard period / no
sample has to be discarded)
the reference period is 8us. All the samples acquired during
the reference
period has to be discarded (e.g. if the
sampling frequency is 4MHz, it means
that 32 samples have
to be discarded - 8 samples have to be discarded if
sampling
frequency is 1Mhz)
the first switch slot (and all the others) lasts 1us. The data
sampled during a
switch slot has to be discarded (e.g. if the
sampling frequency is 4MHz, it
means that 4 samples have
to be discarded during each switch slot - 1
sample per switch
slot has to be discarded if sampling frequency is 1MHz).

As a result, when sampling frequency is 4MHz, the first sample to
consider is the
37th. When sampling frequency is 1MHz, the first
sample to consider is the 10th.

When using 2us slots:

the guard period is still 4us (no sampling is done during the
guard period / no
sample has to be discarded)
the reference period is still 8us. All the samples acquired during
the reference
period have to be discarded (e.g. if the
sampling frequency is 4MHz, it means
that 32 samples have
to be discarded - 8 samples have to be discarded if
sampling
frequency is 1Mhz)
the first switch slot (and all the others) lasts 2us. The data
sampled during a
switch slot has to be discarded (e.g. if the
sampling frequency is 4MHz, it
means that 8 samples have
to be discarded during each switch slot - 2
samples per switch
slot have to be discarded if sampling frequency is 1MHz).
the sampling slots are divided in two

one idle slot of 1us (which allows the antenna to settle).
The data
sampled during the idle slot has to be discarded
(e.g. if the sampling
frequency is 4MHz, it means that
4 samples have to be discarded
during each idle slot -
1 sample per idle slot has to be discarded if
sampling
frequency is 1MHz).
one sample slot of 1us (e.g. if the sampling frequency
is 4MHz, 4
samples are recorded per sample slot -
1 sample is recorded per
sample slot if the sampling frequency
is 1MHz)

As a result, when sampling frequency is 4MHz, the first sample to
consider is the
45th. When sampling frequency is 1MHz, the first
sample to consider is the 12th.

The following figure presents how each sample slot is divided.
This image is copied from
the
BLUETOOTH CORE SPECIFICATION Version 5.1 | Vol 6, Part B | 2.5.4

Figure 123. “Zoom” on a sampling slot

 Note

It’s important to note that 1us switch slot can only be used if the
antennas are able to
switch and settle in less than 1us.
If the antennas are not able to switch and settle in
less than 1us
a part of the data sampled during the sampling slot won’t be correct
and
will have to be discarded.

An other good way to determine what I/Q samples to use is to plot
all the I/Q samples.

The picture below shows the I/Q samples which were collected using the rtls_passive

example together with rtls_master and rtls_slave examples using 4MHz sampling rate
and 2us slot.

Table 24. Axis description

Axis Description

X top Angle between a rtls_slave device and rtls_passive.

X bottom Index number of I/Q data.

Y I/Q values.

The first 32(index 0~31) samples are taken in reference period which there is no antenna
switching.
Therefore the I/Q plot looks like sinusoid wave.

After that at index 32, you can see when switching happened there comes discontinuity of
I/Q samples.

 Note

It’s easier to see the phase discontinuity when there is indeed phase difference.
Therefore, before collecting I/Q data, make sure the angle between rtls_passive and
rtls_slave is not 0 degree.

Angle Compensation

Under AoA_getPairAngles(), the phase differences based on I and Q data were acquired.
After that, angle compensation is added. Please see the code below.
This is because angle
estimation is affected by antenna pairs and frequency.
The values p->gain, p->offset,
channelOffset_A1 and channelOffset_A2 are based on
lab measurements. Different
antenna board design and frequency will
give you different p->gain, p->offset,
channelOffset_A1 and channelOffset_A2.

The following code can be found in AOA.c AoA_getPairAngles() , this is antenna pairs
compensation.

Listing 124. Antenna pair compensation

1

2

3

4

5

6

// Write back result for antenna pairs

for (int pair = 0; pair < numPairs; ++pair)

{

 const AoA_AntennaPair *p = &gAoaReport.antConfig->pairs[pair];

 gAoaReport.antResult->pairAngle[pair] = (int)((p->sign * antenna_versus_avg[p->a][p->b]
+ p->offset) * p->gain);

}

As you can see from the image above, the offset is applied to make sure the data
received
at 0 degree will derive 0 degree after the calculation and then the
slope is changed to
make it fit better with all the rest of the angles.

The compensation values for antenna array 1 can be found in
ant_array1_config_boostxl_rev1v1.c AoA_AntennaPair pair_A1[]

Listing 125. Values used for compensation

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

AoA_AntennaPair pair_A1[] =

{

 {// v12

 .a = 0, // First antenna in pair

 .b = 1, // Second antenna in pair

 .sign = 1, // Sign for the result

 .offset = -5, // Measurement offset compensation

 .gain = 0.95, // Measurement gain compensation

 },

 {// v23

 .a = 1,

 .b = 2,

 .sign = 1,

 .offset = -20,

 .gain = 0.9,

 },

 {// v13

 .a = 0,

 .b = 2,

 .sign = 1,

 .offset = -20,

 .gain = 0.50,

 },

};

Followed by antenna pair compensation, we added frequency compensation.
For antenna
array 1, the values used for frequency compensation can be found in
ant_array1_config_boostxl_rev1v1.c int8_t channelOffset_A1[40] .

Listing 126. Values used for compensation

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

int8_t channelOffset_A1[40] = {2, // Channel 0

 2, // Channel 1

 1, // Channel 2

 1, // Channel 3

 1, // Channel 4

 1, // Channel 5

 1, // Channel 6

 1, // Channel 7

 0, // Channel 8

 0, // Channel 9

 0, // Channel 10

 3, // Channel 11

 3, // Channel 12

 2, // Channel 13

 3, // Channel 14

 3, // Channel 15

 3, // Channel 16

 3, // Channel 17

 3, // Channel 17

 3, // Channel 18

 3, // Channel 20

 3, // Channel 21

 2, // Channel 22

 3, // Channel 23

 3, // Channel 24

 3, // Channel 25

 3, // Channel 26

 3, // Channel 27

 3, // Channel 28

 2, // Channel 29

 2, // Channel 30

 2, // Channel 31

 2, // Channel 32

 2, // Channel 33

 2, // Channel 34

 2, // Channel 35

 1, // Channel 36

 0, // Channel 37

 0, // Channel 38

 0, // Channel 39

 };

AoA Functions Overview

Here is the list of the most important functions for AoA users.

Python

1. aoa_set_params :

Listing 127. AoA Set Parameter

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

class AoaSetParamsReq(NpiRequest, SyncReq, FromAp):

 command = Commands.RTLS_CMD_AOA_SET_PARAMS

 struct = Struct(

 "aoaRole" / Enum(Int8ul, AoaRole), # AOA_MASTER, AOA_SLAVE, AOA_PASSIVE

 "aoaResultMode" / Enum(Int8ul, AoaResultMode), # AOA_MODE_ANGLE,
AOA_MODE_PAIR_ANGLES, AOA_MODE_RAW

 "connHandle" / Int16ul,

 "slotDurations" / Int8ul, # 1us/2us sampling slots

 "sampleRate" / Int8ul, # 1Mhz (BT5.1 spec), 2Mhz, 3Mhz or 4Mhz - this enables
oversampling

 "sampleSize" / Int8ul, # 8 bit sample (as defined by BT5.1 spec), 16 bit sample
(higher accuracy)

 "sampleCtrl" / Int8ul, # sample control flags 0x0-default filtering, 0x1-RAW_RF
no filtering

 "samplingEnable" / Int8ul,

 # 0 = mask CTE even if enabled, 1 = don't mask CTE, even if disabled (support
Unrequested CTE)

 "numAnt" / Int8ul, # Number of antennas in antenna array

 "antArray" / Int8ul[this.numAnt], # GPIO's of antennas

)

Table 25. slotDurations Setting

Value Description

2 2us for antenna switching and 2us for I/Q sampling.

1 1us for antenna switching and 1us for I/Q sampling.

 Note

For users that choose to have slotDuration = 1 needs to make sure that the RF
switches on the custom
board can settle down within 1 us.

Table 26. sampleRate Setting

Value Description

4 Process packets with AoA present in the header and sample CTE at 4 MHz.

3 Process packets with AoA present in the header and sample CTE at 3 MHz.

2 Process packets with AoA present in the header and sample CTE at 2 MHz.

1 Process packets with AoA present in the header and sample CTE at 1 MHz.

Table 27. sampleSize Setting

Value Description

Value Description

2 I/Q samples returned with 13 bits resolution.

1 I/Q samples returned with 8 bits resolution.

Table 28. sampleCtrl I/Q data Filter Setting

bit[0] Description

1 BLE5-Stack returns whole I/Q data to the application.

0 BLE5-Stack filters out the I/Q data from switching period and returns the rest to appl

Table 29. sampleCtrl Antenna Array Setting

bit[4:5] Description

0b01 Application use only antenna array 1.

0b10 Application use only antenna array 2.

 Note

rtls_passive only supports the following configuration:
 slotDuration = 2, sampleRate = 4
and sampleSize = 2.

RTLS_Passive

The functions covered under this section are all in AOA.c.

1. AOA_init :

This function takes care of the IO initialization.

AoA Applications Overview

 Note

The out of the box examples (rtls_master and rtls_slave)
enable both connection and
connectionless AoA. rtls_passive
only enables connection AoA (connectionless AoA
cannot be used
on rtls_passive).

Connection AoA

Available tools for Connection AoA

Some Python scripts are provided in <SDK>\tools\ble5stack\rtls_agent\examples .
The following
Python scripts can be used with connection AoA:

[Recommended to get started] rtls_example_with_rtls_util.py

rtls_aoa_iq_with_rtls_util_export_into_csv.py

rtls_aoa_multi_conn_example.py

The RTLS UI, provided in <SDK>\tools\ble5stack\rtls_agent\rtls_ui can be used
with
connection AoA.

All these tools require to attach to the computer one rtls_master and optionally
one or
several rtls_passive devices. The rtls_slave device(s) are not necessarily
attached to the
computer.

Applications Overview

In the out of box software, the rtls_master and rtls_slave
will form a BLE connection. After
establishing the connection, rtls_master will send connection information
through UART to
PC and then the node manager will pass this piece of
information to rtls_passive which
can then track the connection.

Next, the node manager sets up AoA parameters for master and passive
and then master

will send a packet over the air to slave
to setup the CTETime.

After that, the rtls_master will send a start AoA request over the air to
the rtls_slave and
to rtls_passive over wire, then rtls_slave will
append CTE at the end of every connection
packet.

rtls_passive and rtls_master can then do I/Q sampling and calculate angles base on the
ConnectionCTE packets.

The sequence diagram below illustrates the whole process of how out of box
examples
work.

Figure 124. Setting up RTLS AoA network and enable AoA

Connectionless AoA

In order to not flood the advertising channel, connectionless AoA is only
allowed as
Auxiliary packets (i.e. on secondary channels - see Bluetooth Core Specifications Version
5.2
Vol 6, Part B, §2.3 for details on the PDUs allowed to be appended with a CTE).
In our
BLE5-Stack, we support connectionless AoA with periodic advertisement

packets. For more information regarding periodic advertisement, please
see Periodic
Advertising.

 Note

In connectionless AoA there are no master/slave roles. There is the
transmitter who
sends the CTE over periodic advertisement packets and
the receiver who synchronized
with the advertiser and receives the CTE
packets. The transmitter role is implemented
by the device running
the rtls_slave example. The receiver role is implemented by the
device running the rtls_master example.

Add / Remove Connectionless AoA support in rtls_master and rtls_slave

In the rtls_master project, support for reception and sampling of
connectionless CTEs is
enabled by defining the symbols USE_PERIODIC_RTLS
and USE_PERIODIC_SCAN .
These symbols
are defined in the file Tools\Defines\rtls_master_app.opt .

In the rtls_slave project, support of sending of connectionless CTEs is
enabled by defining
the symbol USE_PERIODIC_ADV . This symbol is defined
in the file
Tools\Defines\rtls_slave_app.opt .

Enable connectionless CTE transmission

The rtls_slave example project shows how to send periodic
advertisements and append a
CTE to them.
First, the periodic advertisement has to be created and enabled
(details are
provided in Periodic Advertising).
Once the periodic advertisement is enabled (i.e. the
event
 GAP_ADV_SET_PERIODIC_ADV_ENABLE_EVENT is received with status
 SUCCESS), the CTE can be
enabled using the function
 RTLSSrv_SetCLCteTransmitParams . Using this function, the length
of
each CTE and the number of CTEs to send per advertisement interval
can be selected.

Enable connectionless CTE reception

The rtls_master shows how to synchronize with a periodic advertisement
and how to
enable the reception of the CTE appended.
The way to synchronize with a periodic
advertisement is detailed in the
GAP scanner section.
After this, the function

https://www.bluetooth.com/specifications/adopted-specifications
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x/gap-cc13x2_26x2.html#gap-periodic-advertising
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.10.00.48/exports/docs/ble5stack/ble_user_guide/html/ble-stack-5.x/gap-cc13x2_26x2.html#gap-periodic-advertising

RTLSSrv_setCLCteSamplingEnableCmd is used
to sart sampling the CTEs. The parameter
maxSampleCte of this function
determines how many CTEs the scanner can receive from a

specific transmitter
in each periodic advertisement interval.

 Note

The predefined symbol MAX_NUM_CTE_BUFS sets the maximum value that
can be defined
for maxSampleCte . By default, MAX_NUM_CTE_BUFS is
set to 1 and is defined in the file
Tools\Defines\rtls_slave_app.opt .
The amount of memory allocated to connectionless CTE

sampling is given
by MAX_NUM_CTE_BUFS * 2500 bytes.

Available tools for Connectionless AoA

The Python script rtls_connectionless_aoa_example_with_rtls_util.py
provided in
<SDK>\tools\ble5stack\rtls_agent\examples can be used with
connectionless AoA.

The RTLS UI, provided in <SDK>\tools\ble5stack\rtls_agent\rtls_ui can
be used with
connectionless AoA.

All these tools require attaching to the computer one rtls_master .
The rtls_slave device(s)
is (are) not required to be attached to
the computer.

Applications Overview

In the out of box software, the rtls_slave sends both legacy
and periodic advertisements.
Legacy advertisements are used by the rtls_master in the case
of connection AoA to
establish a connection (this point is not
discussed in this section).
In the case of
connectionless AoA, only the periodic advertisements
are used. These periodic
advertisements are appended with a CTE.

The rtls_master device scans to find advertisements. The
 rtls_master forwards the
advertisements found to the host MCU.
Both legacy and periodic advertisements are
reported back to the
host MCU. The host MCU selects the type of advertisements to
consider, hence the AoA type to perform.

In the case of connectionless AoA, the host MCU selects the
periodic advertisement the
rtls_master has to synchronize with.

The rtls_master synchronizes with the periodic advertisements
sent by the rtls_slave . The
rtls_master can then do I/Q
sampling and calculate angles base on the CTE appended to

the periodic advertisements.

As a reminder, the rtls_passive is not involved for
connectionless AoA.

The sequence diagram below illustrates the whole process of how out of box
examples
work.

Figure 125. Setting up RTLS Connectionless AoA and enable AoA

