‘Q?]EXAS
INSTRUMENTS

Serial Boot Loader
For CC2530 SoC

Document Number: SWRA-TBD

Version 1.1

TABLE OF CONTENTS

1. PURPOSE 4
2. FUNCTIONAL OVERVIEW 4
3. ASSUMPTIONS 4
4. DEFINITIONS, ABBREVIATIONS, ACRONYMS 4
5. REFERENCES 4
6. REVISION HISTORY 4
7. DESIGN CONSTRAINTS 5
7.1 EXTERNAL CONSTRAINTS / FEATURES ... uuiiieeeieeeeeeeeeeeeeee e ssnsnnnnnnnns 5
7.2 INTERNAL CONSTRAINTS / REQUIREMENTScuuviiiiieiiiiirrieeeeeeeeeittreeeeeeeeeeitnrseeeeeeeeesinsseeeeeseeesnssseens 5

8. DESIGN 5
8.1 N33 B 60) N1 125 ¢ PO P PR 5
8.2 FUNCTIONAL DESCRIPTION.......coiiiiiiiiutiereeeeeeeietiereeeeeeeesstseeeeeeeseesssasseeseessenssssesssessemssssssseessemnssssssees 5
8.2.1 BOOE COAO ...ttt ass st aas s sassssssssssssmsssanannns 5
8.2.2 SBL-COMPALIDIE Z-STACK «...voeeeeeeeeiieeiie et eiee ettt s teeate s taesveesbaessbeesnbaessbeesnsaesnseennne 6

9. PRODUCING SBL BOOT CODE TO BE PROGRAMMED. 6
9.1 SEPARATE BUILD & DEBUG OF BOOT CODEcuuuuuuiuiuieiueeeeeeeeeseesesseesessssesssesssssssssssssesssssssssssesseaes 6
10. PRODUCING SBL-COMPATIBLE APPLICATION CODE TO DEBUG OR LOAD BY SBL.

7

10.1 CONFIGURE LINKER OPTIONS FOR THE SBL FUNCTIONALITY.cceetttiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeee e 7
10.1.1 Configure the linker to generate extra OUIPUL.cceecueecuercueneereeneenieeeeeeeseeseeseeneenens 7
10.1.2 Configure the linker extra output file fOrmat...............ccccccoecervenieniienieniienieieneseeeeecreenens 8
10.1.3 Configure the linker command file for SBL-compatible mapping.cccoceeveeeeecuennnen. 9

10.2 CONFIGURE BUILD ACTIONS TO INVOKE THE POST-PROCESSING TOOL.ccceeveviiiiiiiiiieiieieeeeeeneen, 10
10.3 ADD THE CRC SHADOW TO THE BUILD.........ccceitiiiiiiiiiieeeeeeeeeeeeeeeee e 10
10.4 BUILDING THE APPLICATION CODE FOR SBL.......cooooiiiiiiiii 11
10.5 DEBUGGING THE APPLICATION CODE WITH SBL.cooiiiiiiiiii 11
10.5.1 PreServe the SBL.ceeeeeeeeeeeeee et ettt e e e e e e e ettt e e e e e e et e e e e e e et s 11
10.5.2 FOrce the CRC SRHAAOW.ccouuueeeeeeeeeeeeeeee et e e ettt ee e e e e e e et ee e e e e eeeaaaaenes 12

11. FORCING BOOT-MODE OR EARLY JUMP TO APPLICATION CODE.cccccovvrveueeeneeen 13

12. PRODUCING SBL APPLICATION CODE WITH BOOT CODE TO BE PROGRAMMED.14

12.1 BUILD THE APPLICATION CODE HEX IMAGE.cccoeiiiiiiiiiiiiniiicciccceeie e 14
12.1.1 Configure the linker to generate Intel-hex OUIPUL.c..coceevuieceinceinieeniecieieieneeeene 14
12.1.2 Generate output compatible for the SmartRF Programmer tool...................ccccccceceveucnnenne. 15
12.1.3 Re-build the Application Code to generate the .hex file.c..cccocueveiviecincinicnicnnenne. 15

12.2 PRE-PEND THE BOOT CODE HEX IMAGE TO THE APPLICATION CODE HEX IMAGE..........cccccccevurnnene. 15

3/18/2010 Page 2 of 15

Serial Boot Loader for CC2530 SoC

TABLE OF FIGURES

Figure 1: Architectural Placement of the SBL & SBL-compatible Z-Stack image..........cccceveevernuerieneeneene 6
Figure 2: Configuring the linker to generate an extra output file.coceveeriiiiiniiiniiiniinieneeecee e 7
Figure 3: Configuring the linker extra output file format...........ccocooviriiriiiniiiniiniiieeeee e 8
Figure 4: Changing the linker command file to implement SBL-compatible mapping...........ccoccevervuerveeneene 9
Figure 5: Configuring the build actions to invoke the post-processing tool.c..cccceevervirieneeneeneeniennen. 10
Figure 6: Preserving boot code while debug@ing...........cooevvuiriiriiniiniiiiiiienieteieeeeee e 11
Figure 7: Configuring the linker to generate Intel-heX OULPUL.c..cooeeviiriiiriiniiniieie e 14
Figure 8: Enabling —M option for SmartRF Programmer toOL.c..coceevueriinieniinenneniciieneenicenieeeeeene 15
3/18/2010 Serial Boot Loader for CC2530.doc Page 3 of 15

SWRA-TBD Version 1.1

1. Purpose

The purpose is to provide a developer’'s guide to implement SBL compatibility in any
sample or proprietary Z-Stack Application for the CC2530 SoC.

2. Functional Overview

SBL is provided as a value-enhancing sample solution that enables the updating of code
in devices without the cost of maintaining any download-related code in the user
application other than ensuring a compatible flash memory mapping of the final output.
SBL is effected as a managed client-server mechanism which requires a serial master to
drive the process (i.e. a PC GUI application with access to the serial connection to the
CC2530.)

3. Assumptions

1.

SBL is a generic feature that should deviate as little as possible from one
implementation to another by only supporting the idiosyncrasies of the specific
medium (e.g. USB) crucial to the level of service necessary to complete a code image
download in a reasonable amount of time. For the sake of example only, the USB
SBL specific references will be made in this document, although merely changing the
medium-specific verbiage and paths should allow this document to sufficiently
describe any Z-Stack SBL.

4. Definitions, Abbreviations, Acronyms

Term Definition

PC Personal Computer

NV Non-volatile (e.g. memory that persists through power cycles.)
SBL Serial Boot Load(er)

5. References

[1] Z-Stack Developer’'s Guide (SWRA176)

6. Revision History

Date Writer’'s name Document | Description of changes
Version
05/20/09 S Lohr 1.0 New document — used “OAD for CC2430” as a template.
03/18/2010 S Lohr 1.1 Update according to latest SBL behavior from Bug 3204.
3/18/2010 Page 4 of 15

Serial Boot Loader for CC2530 SoC

7. Design Constraints

7.1 External Constraints / Features

1. A serial bus master must drive the download across the serial bus to the CC2530 -
the means by which to design or implement such an application is beyond the scope
of this document.

2. The Boot Code requires at least the first flash page so that it can intercept the startup
vector.

7.2 Internal Constraints / Requirements

1. The image to be loaded via SBL must conform to a flash memory mapping
compatible with the serial boot loader. Compatibility includes flash memory usage and
ISR vector relocation (see Figure 1.)

2. The SBL must allow the bus master to force boot-load mode or an immediate jump to
valid Application code after a powerup.

3. When not in boot-load mode, the SBL must immediately forward any ISR vectors that
it consumes to the known relocation in the Application code (note that the Application
code may not even enable such an ISR vector (e.g. USB ISR) in which case, it
wouldn’t need to define an ISR for it either.)

8. Design

8.1 SBL Context

The SBL system is comprised of two images: the ‘boot loader code’ and the Z-Stack with
its Application(s) built with a compatible flash mapping — the ‘Application Code’. The
placement of each of the two images into the internal flash is handled by the unique IAR
linker command file used by each.

8.2 Functional Description

8.2.1 Boot Code

The SBL solution requires the use of boot code to check the integrity of the active code
image before jumping to it. This check guards against an incomplete or incorrect
programming of the active image area. The SBL boot code provides the following
functionality:

1. Boot Code will be the target of the reset vector (as well as any vector necessary for
communicating on the chosen serial bus), and therefore contains startup and ISR code.

2. When the serial bus connection is detected and the master application commands it, Boot
Code will program the SBL image into the active image area and will thusly complete the
final step of the SBL process: code instantiation.

3. (Optional) Boot Code will guard against interrupted, incomplete or incorrect
programming of the active image area by checking the validity of the active application
code image via CRC. If the image is not valid then the boot code will not allow it to run.

3/18/2010 Serial Boot Loader for CC2530.doc Page 5 of 15

SWRA-TBD Version 1.1

8.2.2 SBL-compatible Z-Stack

An SBL-compatible Z-Stack is implemented as a standard ZigBee Application build with
the exception of the linker command file and some ancillary settings.

I5R's needed by SEL
1,# 00000 - Q00

I5R's and LTF's

ISR's not used
No 00090 - O] 7FF b SEL

Mok boot-load mode SEL Root Code
& Application valid
7 02000 - Q2089
Re-located ISR's
02090 - 0x3FFFF
0x2090 - 0x3CFFF Application Code
Application Code

Q=3300 - OxsF7RE
058 MY pages

Ox3FE00 - Ox3FFFF
Lock, Bits page

Figure 1: Architectural Placement of the SBL. & SBL-compatible Z-Stack image.

9. Producing SBL Boot Code to be programmed.

9.1 Separate Build & Debug of Boot Code

The Boot Code is separately built and debugged or programmed via the IAR IDE
by opening the SBL Boot Project here:

SINSTALL_DIRS$\Projects\zstack\Utilities\BootLoad\CC2530USB\Boot.eww

The default configuration is with the download option to erase flash in order to
start a CC2530 SoC with clean flash (and thus clean NV). Before debugging or
physically programming the SBL-compatible Application code produced in the
next section, this SBL Boot code must first be programmed into the flash (but
only this once, since, as the following section mentions, the default option for
application code is to preserve this SBL Boot code on successive debugging or
programming.)

3/18/2010 Page 6 of 15
Serial Boot Loader for CC2530 SoC

10. Producing SBL-compatible Application Code to debug or load by SBL.

The “RouterEB” build of the Z-Stack sample application known as GenericApp is used
below for demonstration purposes only - the Customer would apply the following steps in
her own, proprietary Z-Stack application and make the corresponding changes to all of
the paths below that are specific to GenericApp. The CC2530USB is also used below for
demonstration only — these same steps apply to any of the CC2530 targets supported by
the Z-Stack release and a conforming SBL. It is only requisite that the paths specific to
the CC2530USB target be changed accordingly.

10.1 Configure linker options for the SBL functionality.

10.1.1 Configure the linker to generate extra output.

Check the checkbox to “Allow C-SPY-specific extra output file” as shown below.

Options for node “"GenericApp™

Cateqony:

General Options
CJC++ compiler
Assembler
Custom Build
Build Actions

Debugger
FET Debugger
Simulatar

Output | Extia Dutputl ﬂdefinel Diagnnsticsl List I Ennfigl Proce 4 I "I

Factomy Settings |

¥ [ebug information for C-5FY
I 'with runtime control modules
v wiith |0 erulation modules
™| Buffered terminal output
v Allow C-5F-specific extra output file

~ Outp
d Secondary output file:
IGeneric.-’-'-.pp.dalS [Maone for the zelected format]
— Format

£ Other

[Hutput format: Isimple

Farmat wariant: INDnE

Module-lozal spmbals: IInu:Iude all

Lef Lef L

Ok

| Cancel |

Figure 2: Configuring the linker to generate an extra output file.

3/18/2010

Serial Boot Loader for CC2530.doc
SWRA-TBD Version 1.1

Page 7 of 15

10.1.2 Configure the linker extra output file format.

Check the checkbox to “Generate extra output file” and choose the “Output format:” as

simple-code as shown below.

Options for node “"GenericApp™

Cateqony:

General Options

Factomy Settings |

CMC++ compiler Output - Extra Output | ﬂdefinel Diagnnsticsl List I E-:unfigl Proce 4 I "I
Assembler . e
Custar Build Iv iGenerate extra outout file
Build Actions — Dutput file
I Oyeride defaul
Debuager IGeneric.-'l‘-.pp.sim
FET Debugger
Simulatar I —

Clutput Farmat: Isimple-cnde

Format wariant: INI:II"IE

L Lo

o]

Cancel

Figure 3: Configuring the linker extra output file format.

3/18/2010
Serial Boot Loader for CC2530 SoC

Page 8 of 15

10.1.3 Configure the linker command file for SBL-compatible mapping.

Use the following line for the “Override default” command string:

$PROJ_DIRS$\..\.\.\Tools\CC2530DB\cc2530-sb.xcl

Options for node “SerialApp* 5[

Cateqgary:

General Options
CJC++ Compiler
Bssembler

Factary Setting= |

Third-Party Driver
Texas Instrument:

Cuskorn Build Elutputl Extra Elutputl #definel Diagnusticsl Lizt Config | F'ru:u:eﬂ_"l
Build Actions

Linker command file
Debugger ¥ Overide default

FPROJ DIBS,. 55 AT ool CC25300 B ec2530-2h. v

N

Search paths: [one per ling)

Infineon

RoM-Manikar

Analog Devices [Overide default program ety
Silabs % Entry label I_pru:ugram_start
Simulatar ! Defined by application

FTOOLKIT_DIR$SLIBS

-
L

— B aw binary image
FEile:

Symbal; Segment: Align:

| | |

k. I Cancel |

Figure 4: Changing the linker command file to implement SBL-compatible mapping.

3/18/2010 Serial Boot Loader for CC2530.doc

SWRA-TBD Version 1.1

Page 9 of 15

10.2 Configure build actions to invoke the post-processing tool.

10.3

3/18/2010

Category:

Use the following line for the “Post-build command line:”

"SPROJ_DIRS\..\..\..\Tools\CC2530DB\oad.exe"
"SPROJ_DIRS$\RouterEB\Exe\GenericApp.sim"
"SPROJ_DIRS$\RouterEB\Exe\GenericApp.bin"

The above lines must be pasted as a single line into the dialog box with one space
separating each block in parenthesis.

Options for node "GenericApp™ x|

General Options
C/C++ Compiler
Assembler

Custom Build

Build Actions

Linker

Cebugger
Third-Party Driver
Texas Instrument:
Infineon
R.2M-Maonitar
Analog Devices
Silabs
Simulator

Build Actions Configuration

Pre-build command line:

| .|

Pozt-build carmmand line:
Ir'$PHDJ_D|H$"'..."'...'\...'\TDD|S"-.EE253DDB'\DEE|.EHE" "$PROJ_DIR$ANE . |

] I Cancel

Figure 5: Configuring the build actions to invoke the post-processing tool.

Add the CRC Shadow to the build.

The CRC-shadow in OnBoard.c must be enabled by defining MAKE_CRC_SHDW
somewhere (e.g. in OnBoard.c, hal_board_cfg.h, f8wConfig.cfg, or IAR project options to
name a few possible locations.)

Page 10 of 15
Serial Boot Loader for CC2530 SoC

10.4 Building the Application Code for SBL.

Simply build from the IAR IDE as you normally would. The binary file produced, which is to be
loaded by SBL, is found here:

$PROJ_DIR$\RouterEB\Exe\GenericApp.bin

10.5 Debugging the Application Code with SBL.

10.5.1 Preserve the SBL.

In order to run or debug the Application Code, a Boot Code image must have already been
downloaded to the CC2530 SoC (see the previous section.) So as not to destroy the Boot
Code image, preserve the space by checking the “Retain unchanged memory” option as follows:

Options for node “GenericApp™ 5[

Category: Factary Settings |

General Options
CJC++ Compiler
Bssembler

Custam Build Download I Targetl
Build Ackions ;
Linkar [” Erase flash — Flazh Lock Protection
Deb.ugger _ [+ Betain unchanged memany I Boot block lock
Third-Party Driver [Debug interface lock
Texas Inskrument I™ | Suppres: downlzad
Tnfinean [Lock flazh memory
ROM-Monikor IV Weiify dovninad ILn:n::k bitz 000b [all pages] j
finalog Devices * CRC18 [<page size info. missing>
Silabs " Fead back memory
Sirnulator
[Fetain flash pages
k. I Cancel
Figure 6: Preserving boot code while debugging.
3/18/2010 Serial Boot Loader for CC2530.doc Page 11 of 15

SWRA-TBD Version 1.1

10.5.2 Force the CRC Shadow.

In order for the SBL to jump to the Application code after intercepting the reset vector, it must be
able to verify that the Application code is valid. This validation takes over a minute and can be
short-circuited by forcing the CRC-shadow to match the calculated CRC. NOTE that it is crucial
that the CRC shadow be restored to its default value of OxFFFF after debugging is complete. After
each and every compile it is necessary to inspect the .map file to learn the new CRC:

2 1AR Embedded Workbench IDE

File Edit Miew Project Texas Instruments Emolakor Tools Window Help

DEHE@ & % BRI o |[hw Y uE
SerialApp. |

133158 Symbol Checksun Memory Start End Initial walue

i 17 N

EBSlED__checksum % COLE 00001500 - 000018539 0x0000 (#0x0000)

133161 COLE 0o0o0lg94 - OOO0Q7FFF

533162 COLE 00015000 - CO01lFFFF

533163 CODE 00028000 - OOOZFFFF

133164 CODE 00035000 - OO03FFFF

533165 CODE 00045000 - 0O04FFFF

533166 COCE 00055000 - COOSFFFF

133167 COCE 00055000 - COOGFFFF

533168 CODE 0oovys000 - 0O07CUFF

533169

: 331?0 i i e i e i e ol i

133171 * *

5331?2 * END OF CRO535 FEFERENCE *

133173 * -

E 353174 okl o o ol ol ol ol ol o ol ol ol ol ol e ol ol ol ol e o o ol o

5331?5

133176 112 325 bytes of CODE memory [+ 141 635 range £ill)

5331?? 25 bytes of DATA memory (+ 61 absolute)

5331?8 6 617 bytes of XDATA memory

133178 192 bytes of IDATA memory

‘33180 & bits of BIT memory

533181 102 bytez of CONST memory

133182

533183 Errors: none

133184 Warnings: none

121 or

Then copy the CRC into the CRC Shadow and only now can you run the IAR debugger with this
build:

7 IAR Embedded Workbench IDE

File Edit Miew Projeck Texas Instruments Ernulator Tools Window Hel

DESEHE &S| & BRE o o[t

|

G5 uints OnboardEeyIntEnable;
g6

87 //H#LF defined MAKE CRC SHDW
g3 #pragma location="CRC_3HDW™
3% const CODE uintld _croihdw =
90 #pragma recquired=_crcihdw

a1l Sifendif
az

3/18/2010 Page 12 of 15
Serial Boot Loader for CC2530 SoC

11. Forcing boot-mode or early jump to Application code.

The SBL receives control from the reset vector and verifies whether valid Application code
is present. If so, then the SBL gives the bus master a window in which to force boot mode
or an immediate jump to Application code.

1.

3/18/2010

If the CRC is not 0x0000 or OxFFFF and the CRC-shadow is identical, then the
Application code is valid.

If the CRC is not 0x0000 of OXFFFF and the CRC-shadow is OxFFFF, then the
CRC is calculated over the Application code image area (this will take over a
minute.)

a. If the calculated CRC matches the read CRC, program the CRC-shadow
to this identical value to speed-up future power-ups.

If the Application code is valid, wait for the bus master to send a 0xF8 to force
boot-mode or an 0x07 to force an immediate jump to the Application code.

a. The default wait for UART and USB transport is 1 minute.
b. The default wait for SPI is 50 milliseconds.
If the Application code is valid and the wait expires, jump to the Application code.

If the Application code is not valid, immediately jump to the boot-code without
waiting as described above.

Serial Boot Loader for CC2530.doc Page 13 of 15
SWRA-TBD Version 1.1

12. Producing SBL Application Code with Boot Code to be programmed.

For mass-production programming, it will be important to have a single image containing
both the SBL Boot and Application code so that the part must only be programmed once.
The following example assumes that the SmartRF04/05 Programming Tools will be used
for programming an Intel-hex formatted file into the CC2530 SoC.

12.1 Build the Application Code hex image.

12.1.1 Configure the linker to generate Intel-hex output.

Check the checkbox to “Override default” and make the suffix “.hex” Also check the radio
button for “Other” Output file Format and choose the Output format drop-down selection
for ‘intel-extended’ as shown below.

Options for node “GenericApp™ 5[

Category: Factary Settings |

General Options
CJC++ Compiler

Bssembler
Custom Build Dutput I Extra Elutputl #definel Diagnusticsl List I Eu:unfigl Proce 4 I "I
Build Ackions
Linker .
— Dutput file
v Overide default 5 d towt file:
Third-Party Driver — econdany output e
Tewxas Instruments [Mone for the selected format)
Infinean . — Format
ROM_MDmt?r " Debug information for C-5P
.ﬂ..naln:-g Devices ¥ | it runtime contiol modules
Silabs ¥ | wdith |00 emulation modules
Sirmulakar

™| Buffered terminal output
¥ | &l C-5F Y -speciiic extra output file
" [Other

Clutput farmat; Iintel-e:-:tended

Format variant: I Maone

L L e

Module-lozal syrbals: IInu:qu:Ie all

k. I Cancel |

Figure 7: Configuring the linker to generate Intel-hex output.

3/18/2010 Page 14 of 15
Serial Boot Loader for CC2530 SoC

12.1.2 Generate output compatible for the SmartRF Programmer tool.
Remove the comments from the —M option in cc2530-sb.xcl as shown in hi-light.

#1 1aR Embedded Workbench IDE

File Edit “Wiew Project Tools Window Help

IDEEE@ & §arloo||n MR AR A=l X1
oadxdi]
o212 4/
213 /¢ Include these two lines when generating a hex file for banked code model:
Y- (CODE) [(_CODEBANE_ START+ FIRST BANKE ADDR)-(_ CODEBANE END+ FIRST BANE ADDER)]1*\
E ik NE_OF BANFS+ FIRST BANE ADDR 5000

216 J/-te8=1
LELT A
POZ1B S/

Figure 8: Enabling -M option for SmartRF Programmer tool.

12.1.3 Re-build the Application Code to generate the .hex file.

Having already been built, just pressing the ‘F7’ key and linking will be sufficient

12.2 Pre-pend the Boot Code hex image to the Application Code hex image.

1) Use any text editor to open the Application Code file produced here:
$PROJ_DIR$\RouterEB\Exe\GenericApp.hex
2) Delete this first line from the file:
:020000040000FA
3) Use any text editor to open the SBL Boot Code file.
4) Delete these last two lines from the file:
:040000050000079E52
:00000001FF

5) Copy the edited contents of the SBL Boot Code file to the top of the Application
Code file and save it.

6) Use the SmartRF Programmer to install the edited Application Code hex image
into the CC2530 SoC.

3/18/2010 Serial Boot Loader for CC2530.doc Page 15 of 15
SWRA-TBD Version 1.1

