
Application Note AN118

 SWRA410 Page 1 of 19

Flash Programming of CC253x/4x devices
By Åsmund B. Bø

Keywords
• CC253x
• CC254x
• On-chip flash
• Flash programming

• Write flash
• Read flash
• Erase flash
• Debug interface

1 Introduction
This application note demonstrates how to
use the debug interface to perform various
flash related tasks on a CC253x / CC254x
System-on-Chip (SoC). This document is
intended to help understanding the example
code it is distributed along with [1]. The
device being programmed is in this
document referred to as DUP (Device Under
Programming). The device programming the
DUP is referred to as the “programmer”.
The example code is written for CC2530 as a

programmer, but can easily be ported to
other Low Power RF 8051 architecture
SoCs. It covers how to enter debug mode
and how to read/write/erase the flash
memory. It does not show all the capabilities
of the CC debug interface.

The example code is built using IAR
Embedded Workbench for 8051, version
8.11.2.

Programmer

DUP

Application Note AN118

 SWRA410 Page 2 of 19

Table of Contents
1 INTRODUCTION ... 1
2 ABBREVIATIONS .. 3
3 DEBUG INTERFACE .. 4
4 HARDWARE SETUP .. 5
5 ENTERING DEBUG MODE – DEBUG_INIT() ... 6
6 READING CHIP ID – READ_CHIP_ID() .. 7
7 ERASING FLASH MEMORY – CHIP_ERASE() .. 8
8 WRITING TO FLASH MEMORY – WRITE_FLASH_MEMORY_BLOCK() 9

8.1 ENABLE USE OF DMA IN DEBUG CONFIGURATION .. 9
8.2 DMA CONFIGURATIONS ... 10

8.2.1 DMA channel 0: Debug interface to Internal SRAM buffer 10
8.2.2 DMA channel 1: Internal SRAM buffer to Flash Controller 11

8.3 POINT DMA CONTROLLER TO DMA CONFIGURATIONS ... 11
8.4 ARM DMA CHANNEL 0 ... 11
8.5 POINT FLASH CONTROLLER TO START ADDRESS .. 12
8.6 TRANSFER DATA USING BURST_WRITE ... 13
8.7 ARM DMA CHANNEL 1 ... 14
8.8 TRIGGER FLASH CONTROLLER .. 15

9 READING FROM FLASH MEMORY – READ_FLASH_MEMORY_BLOCK() 16
10 REFERENCES .. 19
11 DOCUMENT HISTORY .. 19

Table of Figures
Figure 1 – Hardware connection between programmer and DUP .. 5
Figure 2 – SmartRF05EB P1/P10 jumper configuration for Programmer and DUP 5
Figure 3 – Sequence on RESET_N and DC lines to enter debug mode .. 6
Figure 4 – Two negative flanks on DC line .. 6
Figure 5 – GET_CHIP_ID() debug instruction ... 7
Figure 6 – CHIP_ERASE() debug instruction .. 8
Figure 7 – Debug instruction WR_CONFIG() writing 0x22 to DUP ... 9
Figure 8 – Writing 8 MSb [17:10] of 18-bit flash start address to FADDRH 12
Figure 9 – Writing bit [9:2] of flash start address to FADDRL ... 12
Figure 10 – BURST_WRITE() 4 bytes over the debug interface .. 13
Figure 11 – Writing 0x02 to DUP's DMAARM register to arm DMA channel 1 14
Figure 12 – Set FCTL.WRITE bit to 1 to initiate flash programming ... 15
Figure 13 – Function example for reading flash memory via debug interface 16
Figure 14 – Step 1: Map flash memory bank to XDATA memory space....................................... 17
Figure 15 – Step 2: Move data pointer to start address (XDATA 0x8100 in this case,

corresponding to flash memory address 0x0100) .. 17
Figure 16 – Step 3: Move value at DPTR to accumulator (value of ACC is returned on the debug

interface). Returned value is 0x55 (value of flash memory address 0x0100) 18
Figure 17 – Step 4: Increment DPTR .. 18

Application Note AN118

 SWRA410 Page 3 of 19

2 Abbreviations

DC Debug Clock

DD Debug Data

DUP Device Under Programming

EB Evaluation Board

EM Evaluation Module

LSB Least Significant Byte

LSb Least Siginficant bit

LPRF Low Power RF

MSB Most Significant Byte

MSb Most Significant bit

SoC System-on-Chip

Application Note AN118

 SWRA410 Page 4 of 19

3 Debug interface
The debug interface implements a proprietary two-wire serial interface that is used for in-circuit
debugging. The interface allows programming of the on-chip flash, and it provides access to
memory and register contents, in addition to features such as breakpoints, single-stepping, and
register modification. The debug interface uses I/O pins P2.1 and P2.2 on the DUP, as debug
data (DD) and debug clock (DC), respectively, during debug mode.

The DD pin is bi-directional, while DC is always controlled by the external host controller. Data is
driven on the DD pin at the positive edge of the debug clock, and sampled on the negative edge
of this clock. The idle state of the DC signal is logic 0. Please refer to the respective DUP’s
datasheet for debug interface timing requirements.

Debug commands are sent by an external host and consist of 1 to 4 output bytes from the host,
and an optional input byte read by the host. The first byte of the debug command is a command
byte. For more details about the debug interface, please refer to the CC253x / CC254x User’s
Guide [2]. A detailed description of the debug interface, also useful for CC253x / CC254x devices, is
found in [3].

Application Note AN118

 SWRA410 Page 5 of 19

4 Hardware setup
The hardware assumed for the code example is what is found as a part of the CC2530
development kit [4], but the code example supports any CC253x / CC254x LPRF 8051 device as a
DUP:

• 2x SmartRF05 Evaluation Boards (SmartRF05EB)
• 2x CC2530 Evaluation Modules (CC2530EM)

The necessary data lines for programming an LPRF 8051 architecture SoC, in addition to power
and a common ground with the programmer, are shown in Figure 1. The jumper configuration and
signal strapping between the programmer’s and DUP’s SmartRF05EB is shown in Figure 2.

SmartRF05 EB
w/ CC2530 EM

SmartRF05 EB
w/ CC2530 EM

P0_0 P2_1
P0_1 P2_2

P0_7 RESET_N

DD
DC

RESET_N

Programmer DUP

 USB

Figure 1 – Hardware connection between programmer and DUP

P1
P10

RESET_N DC DD

Programmer
05EB

3711151923273135

3711151923273135

Open

Mounted
P1

P10

DUP
05EB

3711151923273133

37111523273135

RESET_N

DCDD

Figure 2 – SmartRF05EB P1/P10 jumper configuration for Programmer and DUP

The coloring in figures containing signalling in this document is as follows; the top signal (orange)
is RESET_N, the middle signal (green) is Debug Clock (DC) and the bottom signal (purple) is
Debug Data (DD).

Application Note AN118

 SWRA410 Page 6 of 19

5 Entering debug mode – debug_init()
Entering debug mode on CC devices is done by performing the following sequence on the DUT’s
RESET_N and DC line (P2.2).

1) Pull RESET_N low
2) Toggle two negative flanks on the DC line
3) Pull RESET_N high

The DUP is now in debug mode. The above sequence is shown in Figure 3 and Figure 4.

Figure 3 – Sequence on RESET_N and DC lines to enter debug mode

Figure 4 – Two negative flanks on DC line

Application Note AN118

 SWRA410 Page 7 of 19

6 Reading chip ID – read_chip_id()
After resetting a device into debug mode, one should first read its chip ID. Reading the device’s
chip ID can be done using the GET_CHIP_ID() debug instruction which returns the chip ID and
chip revision (8+8 bits). The signalling sequence is shown in Figure 5.

An overview of some of the CC device chip IDs is found in Table 1. The chip ID value returned by
a device can also be found in the device datasheet.

Figure 5 – GET_CHIP_ID() debug instruction

Chip Chip ID Page erase size SRAM size
CC2530 0xA5 2 KB 8 KB
CC2531 0xB5 2 KB 8 KB
CC2533 0x95 1 KB 4 KB / 6 KB
CC2543 0x43 1 KB 1 KB
CC2544 0x44 1 KB 2 KB
CC2545 0x45 1 KB 1 KB

Table 1 – Chip ID and page erase size for a selection of CC devices

Returned chip ID
(0xA5)

Returned chip
revision (0x21)

GET_CHIP_ID()
(0x68)

Application Note AN118

 SWRA410 Page 8 of 19

7 Erasing FLASH memory – chip_erase()
All debug interface activity must be performed after resetting the chip in debug mode. When the
DUP is in debug mode, the DUP’s entire flash memory can be erased by using the
CHIP_ERASE() debug instruction, as seen in Figure 6. More details can be found in [2] and [3].

If a CHIP_ERASE() is performed prior to e.g. programming a device, one should wait until the
chip erase has completed. Bit 7 of the returned data after the READ_STATUS() debug instruction
is used to check this.

It is also possible to erase a single page by using the DEBUG_INSTR() debug instruction. The
page erase size for different DUPs are given in Table 1 on page 7. The sequence for erasing a
single flash page is given below. More details about erasing a single flash page can be found in
section 6.3 of [2].

1. Point Flash controller to page’s start address (FADDRH[6:0] or FADDRH[7:1], see [2])
2. Trigger flash controller to start (set FCTL.ERASE = 1)
3. Wait for page erase to complete (poll FCTL.BUSY)

Figure 6 – CHIP_ERASE() debug instruction

CHIP_ERASE()
(0x10)

Interface not ready
(DD high). Clock 8
bits before sampling
DD value again.

Interface ready, clock
out status byte from
DUP.
(CHIP_ERASE_BUSY,
bit 7, is high)

Application Note AN118

 SWRA410 Page 9 of 19

8 Writing to FLASH memory – write_flash_memory_block()
There are two ways to write the flash memory on CC253x / CC254x devices, either by using DMA
transfer (preferred), or by using the CPU, running code from SRAM. There is no debug interface
instruction to write data directly to the DUP’s flash.

The preferred way to write flash is to configure two DMA channels on the DUP that a) read from
the debug interface and b) feeds the DUP’s Flash controller. To do this, we utilize the DUP’s
SRAM to store the DMA channel configurations (2 x 8 B) and an internal buffer. The size of the
internal buffer is in the example code set to 512 B due to the CC2543 and CC2545 SRAM size
(1 KB). A bigger internal buffer increases performance due to the reduced command overhead.

The sequence for writing flash memory using DMA channels on the DUP is as follows:

1. Enable use of DMA in debug configuration
2. Transfer DMA configuration to SRAM
3. Point DMA controller to DMA configuration
4. Point Flash controller to start address
5. Arm DMA channel that triggers on debug interface data (ch. 1)
6. Transfer data over debug interface (using BURST_WRITE())
7. Arm DMA channel that feeds Flash controller (ch. 2)
8. Trigger flash controller to start

Details on each of the above steps are given in the following sections.

8.1 Enable use of DMA in debug configuration
To enable use of DMA, the PAUSE_DMA bit in the DUP’s debug configuration is cleared using
the WR_CONFIG() debug instruction. Figure 7 shows the corresponding debug interface traffic.

Figure 7 – Debug instruction WR_CONFIG() writing 0x22 to DUP

WR_CONFIG()
(0x18)

Value
(0x22)

Returned
status byte

Application Note AN118

 SWRA410 Page 10 of 19

8.2 DMA configurations
One DMA channel is configured to transfer data from the debug interface to a buffer in SRAM,
while the second transfers data from the internal buffer to the Flash controller. In this example, we
make a 512 B SRAM buffer at address 0x0000, and place the DMA configurations at address
0x0200. Each DMA configuration consists of 8 B.

- 0x0000 (SRAM) 512 byte buffer for data sequence (BUF0)
- 0x0200 (SRAM) 8 byte DMA descriptor
- 0x0208 (SRAM) 8 byte DMA descriptor

The minimum amount of data to be written by the Flash controller is 32 bit (4 B). Note that caution
should be made related to multiple writes to flash memory without prior CHIP_ERASE(). This is
described in section 6.2.2 of [2]. In the same document, you’ll find more details on the DMA
configuration structure for CC253x / CC254x devices. Any DMA channel on the DUP can be used,
the example code uses DMA channel 0 and 1.

The DMA configurations (8+8 B) are transferred to the DUP’s SRAM by using the
DEBUG_INSTR() instruction.

8.2.1 DMA channel 0: Debug interface to Internal SRAM buffer

Byte
offset Bit Name Value Description

0 7:0 SRCADDR[15:8] 0x62 DBGDATA register address (MSB)
1 7:0 SRCADDR[7:0] 0x60 DBGDATA register address (LSB)
2 7:0 DESTADDR[15:8] 0x00 BUF0 start address, 0x0000 (MSB)
3 7:0 DESTADDR[7:0] 0x00 BUF0 start address, 0x0000 (LSB)
4 7:5 VLEN[2:0] 000b Use LEN for transfer count
4 4:0 LEN[12:8] – DMA channel transfer count (MSB)
5 7:0 LEN[7:0] – DMA channel transfer count (LSB)
6 7 WORDSIZE 0 Each DMA transfer is 8 bit
6 6:5 TMODE[1:0] 00b Single mode DMA transfer
6 4:0 TRIG[4:0] 0x1F DBG_BW trigger
7 7:6 SRCINC[1:0] 00b Do not increment source address
7 5:4 DESTINC[1:0] 01b Increment destination 1 B/word.
7 3 IRQMASK 0 Disable interrupt generation
7 2 M8 0 Use all 8 bits for transfer count
7 1:0 PRIORITY[1:0] 01b Assured, DMA at least every second try

Table 2 – Configuration for DMA channel 0

Application Note AN118

 SWRA410 Page 11 of 19

8.2.2 DMA channel 1: Internal SRAM buffer to Flash Controller

Byte
offset Bit Name Value Description

0 7:0 SRCADDR[15:8] 0x00 BUF0 start address, 0x0000 (MSB)
1 7:0 SRCADDR[7:0] 0x00 BUF0 start address, 0x0000 (LSB)
2 7:0 DESTADDR[15:8] 0x62 Flash controller’s FWDATA address (MSB)
3 7:0 DESTADDR[7:0] 0x73 Flash controller’s FWDATA address (MSB)
4 7:5 VLEN[2:0] 000b Use LEN for transfer count
4 4:0 LEN[12:8] – DMA channel transfer count (MSB)
5 7:0 LEN[7:0] – DMA channel transfer count (LSB)
6 7 WORDSIZE 0 Each DMA transfer is 8 bit
6 6:5 TMODE[1:0] 00b Single mode DMA transfer
6 4:0 TRIG[4:0] 0x12 FLASH trigger
7 7:6 SRCINC[1:0] 01b Increment source address 1 B/word
7 5:4 DESTINC[1:0] 01b No not increment destination address
7 3 IRQMASK 0 Disable interrupt generation
7 2 M8 0 Use all 8 bits for transfer count
7 1:0 PRIORITY[1:0] 10b High, DMA has priority

Table 3 – Configuration for DMA channel 1

The DMA channel writing data to the DUP’s Flash controller should have the highest priority to
avoid data underflow to the flash controller.

8.3 Point DMA controller to DMA configurations
By using the DEBUG_INSTR() instruction, the SRAM start address of the DMA configurations are
written to the DMAxCFGH:DMAxCFGL registers (x=0,1). By writing DMA0CFGy registers (y=H,L),
we configure DMA channel 0 and by writing DMA1CFGy registers, we configure DMA channel 1.
See [2] for details.

8.4 Arm DMA channel 0
The configured DMA channels (0 and 1) are armed by writing the corresponding bit in the DUP’s
DMAARM register. The DEBUG_INSTR() instruction is used for this. See Figure 11 on page 14 for
screenshot of the sequence for arming DMA channel 1.

Application Note AN118

 SWRA410 Page 12 of 19

8.5 Point Flash controller to start address
By using the DEBUG_INSTR() instruction, the flash controller start address is set by writing
DUP’s registers FADDRH:FADDRL. These registers hold the 16 MSb of the 18 bit address. Figure
8 and Figure 9 show the corresponding debug interface traffic.

Figure 8 – Writing 8 MSb [17:10] of 18-bit flash start address to FADDRH

Figure 9 – Writing bit [9:2] of flash start address to FADDRL

Move DPTR to
FADDRH
register address

Put value in
accumulator

Move value of
accumulator to
address pointed to
by DPTR.

Move DPTR to
FADDRL
register address

Put value in
accumulator

Move value of
accumulator to
address pointed to
by DPTR.

Application Note AN118

 SWRA410 Page 13 of 19

8.6 Transfer data using BURST_WRITE
The BURST_WRITE() instruction enables us to transfer 1-2048 B over the debug interface. DMA
channel 0 on the DUP is now configured to transfer data from the DUP’s DBGDATA register and
place it in SRAM. It is therefore important that DMA transfers are enabled (section 8.1) and that
the configured DMA channel is armed (section 8.4). Figure 10 shows the corresponding debug
interface traffic.

Figure 10 – BURST_WRITE() 4 bytes over the debug interface

0x55 0xAA 0x55 0xAA Status Len.

Dbg.
Instr.
+
Len.

Application Note AN118

 SWRA410 Page 14 of 19

8.7 Arm DMA channel 1
Now the data we want to transfer is stored in SRAM. DMA channel 1 is armed by setting the
corresponding bit in the DUP’s DMAARM register. The DEBUG_INSTR() instruction is used for this.
Figure 11 shows the corresponding debug interface traffic.

Figure 11 – Writing 0x02 to DUP's DMAARM register to arm DMA channel 1

Move DPTR to
DMAARM
register address

Put value 0x02
in accumulator

Move value of
accumulator to
address pointed to
by DPTR.

Application Note AN118

 SWRA410 Page 15 of 19

8.8 Trigger flash controller
The flash controller flash write procedure is started by setting the WRITE bit in the DUP’s FCTL
register. This triggers the Flash controller, which in turn triggers the DMA channel that feeds the
Flash controller. The WRITE bit is set by using the DEBUG_INSTR() debug instruction. Figure 12
shows the corresponding debug interface traffic.

The programming is completed when the Flash controller’s status bit (FCTL.BUSY) returns to 0.

Figure 12 – Set FCTL.WRITE bit to 1 to initiate flash programming

Move DPTR to
FCTL register
address

Put value in
accumulator

Move value of
accumulator to
address pointed to
by DPTR.

Application Note AN118

 SWRA410 Page 16 of 19

9 Reading from FLASH memory – read_flash_memory_block()
To read data from the DUP’s flash memory, the DEBUG_INSTR() instruction is used. It performs
the CPU instructions given, and returns the value of the DUP’s accumulator register after the
issued instruction.

The sequence to read from flash memory is as follows:

1. Map flash memory bank to XDATA address 0x8000 – 0xFFFF
2. Move data pointer (DPTR) to 0x8000 + <flash memory block start address>
3. Move value pointed to by DPTR to accumulator register
4. Increment data pointer (DPTR)

Steps 3-4 are repeated for up to 32 KB, until a new flash memory bank must be mapped to
XDATA memory space. Figure 13 shows an example of how to implement the above sequence.
For more details on the used functions, see the source files of the code example. The DD and DC
line activity corresponding to step 1-4 is shown in Figure 14 through Figure 17.

Figure 13 – Function example for reading flash memory via debug interface

void read_flash_memory_block(unsigned char bank,
 unsigned short flash_addr,
 unsigned short num_bytes,
 unsigned char *values)
{
 unsigned char instr[3];
 unsigned short i;
 unsigned short xdata_addr = (0x8000 + flash_addr);

 // 1. Map flash memory bank to XDATA address 0x8000-0xFFFF
 write_xdata_memory(DUP_MEMCTR, bank);

 // 2. Move data pointer to XDATA address (MOV DPTR, xdata_addr)
 instr[0] = 0x90;
 instr[1] = HIBYTE(xdata_addr);
 instr[2] = LOBYTE(xdata_addr);
 debug_command(CMD_DEBUG_INSTR_3B, instr, 3);

 for (i = 0; i < num_bytes; i++)
 {
 // 3. Move value pointed to by DPTR to accumulator
 // (MOVX A, @DPTR)
 instr[0] = 0xE0;
 values[i] = debug_command(CMD_DEBUG_INSTR_1B, instr, 1);

 // 4. Increment data pointer (INC DPTR)
 instr[0] = 0xA3;
 debug_command(CMD_DEBUG_INSTR_1B, instr, 1);
 }
}

Application Note AN118

 SWRA410 Page 17 of 19

Figure 14 – Step 1: Map flash memory bank to XDATA memory space

The peaks seen on the DD line in e.g. Figure 14 are a result of the DD line direction transition, i.e.
the direction is changed from being output (driven by programmer) to input (driven by DUP).

Figure 15 – Step 2: Move data pointer to start address (XDATA 0x8100 in this case,

corresponding to flash memory address 0x0100)

Move DPTR to
MEMCTR register
address

Put value in
accumulator

Move value of
accumulator to
address pointed to
by DPTR.

0x81 0x00
Returned ACC
value (don’t care) Wait

CPU
instr.

Dbg.
Instr.

Application Note AN118

 SWRA410 Page 18 of 19

Figure 16 – Step 3: Move value at DPTR to accumulator (value of ACC is returned on the

debug interface). Returned value is 0x55 (value of flash memory address 0x0100)

Figure 17 – Step 4: Increment DPTR

Debug
Instr.

CPU
instr.

Wait for
interface

Returned
ACC value
(0x55)

Debug
Instr.

CPU
instr.

Wait for
interface

Returned ACC value
(don’t care)

Application Note AN118

 SWRA410 Page 19 of 19

10 References

[1] Flash programming of CC253x/4x devices code example
http://www.ti.com/lit/zip/swra410

[2] CC253x/4x User’s Guide
http://www.ti.com/lit/swru191

[3] CC1110/CC2430/CC2510 Debug and Programming Interface Specification
http://www.ti.com/lit/swra124

[4] CC2530DK User’s Guide
http://www.ti.com/lit/swru208

11 Document history

Version Date Description/Changes
SWRA410 2012-09-04 Initial version.

http://www.ti.com/lit/zip/swra410
http://www.ti.com/lit/swru191
http://www.ti.com/lit/swra124
http://www.ti.com/lit/swru208

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Keywords
	1 Introduction
	Table of Contents
	Table of Figures
	2 Abbreviations
	3 Debug interface
	4 Hardware setup
	5 Entering debug mode – debug_init()
	6 Reading chip ID – read_chip_id()
	7 Erasing FLASH memory – chip_erase()
	8 Writing to FLASH memory – write_flash_memory_block()
	8.1 Enable use of DMA in debug configuration
	8.2 DMA configurations
	8.2.1 DMA channel 0: Debug interface to Internal SRAM buffer
	8.2.2 DMA channel 1: Internal SRAM buffer to Flash Controller

	8.3 Point DMA controller to DMA configurations
	8.4 Arm DMA channel 0
	8.5 Point Flash controller to start address
	8.6 Transfer data using BURST_WRITE
	8.7 Arm DMA channel 1
	8.8 Trigger flash controller

	9 Reading from FLASH memory – read_flash_memory_block()
	10 References
	11 Document history

