
 

 

 

 

Serial Boot Loader 

For CC2530 SoC 

 

 

 

 

 

 

 

 

 
Document Number: SWRA-TBD 

 

Version 1.1 



3/18/2010  Page 2 of 15 

 Serial Boot Loader for CC2530 SoC 

TABLE OF CONTENTS 

1. PURPOSE ..............................................................................................................................................4 

2. FUNCTIONAL OVERVIEW...............................................................................................................4 

3. ASSUMPTIONS ....................................................................................................................................4 

4. DEFINITIONS, ABBREVIATIONS, ACRONYMS ..........................................................................4 

5. REFERENCES ......................................................................................................................................4 

6. REVISION HISTORY ..........................................................................................................................4 

7. DESIGN CONSTRAINTS ....................................................................................................................5 

7.1 EXTERNAL CONSTRAINTS / FEATURES..............................................................................................5 
7.2 INTERNAL CONSTRAINTS / REQUIREMENTS ......................................................................................5 

8. DESIGN..................................................................................................................................................5 

8.1 SBL CONTEXT..................................................................................................................................5 
8.2 FUNCTIONAL DESCRIPTION...............................................................................................................5 

8.2.1 Boot Code ................................................................................................................................5 
8.2.2 SBL-compatible Z-Stack ..........................................................................................................6 

9. PRODUCING SBL BOOT CODE TO BE PROGRAMMED...........................................................6 

9.1 SEPARATE BUILD & DEBUG OF BOOT CODE .....................................................................................6 

10. PRODUCING SBL-COMPATIBLE APPLICATION CODE TO DEBUG OR LOAD BY SBL.

 7 

10.1 CONFIGURE LINKER OPTIONS FOR THE SBL FUNCTIONALITY. ...........................................................7 
10.1.1 Configure the linker to generate extra output. ........................................................................7 
10.1.2 Configure the linker extra output file format. ..........................................................................8 
10.1.3 Configure the linker command file for SBL-compatible mapping. ..........................................9 

10.2 CONFIGURE BUILD ACTIONS TO INVOKE THE POST-PROCESSING TOOL.............................................10 
10.3 ADD THE CRC SHADOW TO THE BUILD...........................................................................................10 
10.4 BUILDING THE APPLICATION CODE FOR SBL..................................................................................11 
10.5 DEBUGGING THE APPLICATION CODE WITH SBL. ...........................................................................11 

10.5.1 Preserve the SBL. ..................................................................................................................11 
10.5.2 Force the CRC Shadow. ........................................................................................................12 

11. FORCING BOOT-MODE OR EARLY JUMP TO APPLICATION CODE. ...........................13 

12. PRODUCING SBL APPLICATION CODE WITH BOOT CODE TO BE PROGRAMMED.14 

12.1 BUILD THE APPLICATION CODE HEX IMAGE. ...................................................................................14 
12.1.1 Configure the linker to generate Intel-hex output. ................................................................14 
12.1.2 Generate output compatible for the SmartRF Programmer tool. ..........................................15 
12.1.3 Re-build the Application Code to generate the .hex file. .......................................................15 

12.2 PRE-PEND THE BOOT CODE HEX IMAGE TO THE APPLICATION CODE HEX IMAGE............................15 

 

 

 



3/18/2010 Serial Boot Loader for CC2530.doc Page 3 of 15 

SWRA-TBD Version 1.1 

 

 

TABLE OF FIGURES 

Figure 1: Architectural Placement of the SBL & SBL-compatible Z-Stack image..........................................6 

Figure 2: Configuring the linker to generate an extra output file.....................................................................7 

Figure 3: Configuring the linker extra output file format.................................................................................8 

Figure 4: Changing the linker command file to implement SBL-compatible mapping....................................9 

Figure 5: Configuring the build actions to invoke the post-processing tool. .................................................10 

Figure 6: Preserving boot code while debugging...........................................................................................11 

Figure 7: Configuring the linker to generate Intel-hex output. ......................................................................14 

Figure 8: Enabling –M option for SmartRF Programmer tool.......................................................................15 

 



3/18/2010  Page 4 of 15 

 Serial Boot Loader for CC2530 SoC 

1.  Purpose 

The purpose is to provide a developer’s guide to implement SBL compatibility in any 
sample or proprietary Z-Stack Application for the CC2530 SoC. 

 

2. Functional Overview 

SBL is provided as a value-enhancing sample solution that enables the updating of code 
in devices without the cost of maintaining any download-related code in the user 
application other than ensuring a compatible flash memory mapping of the final output. 
SBL is effected as a managed client-server mechanism which requires a serial master to 
drive the process (i.e. a PC GUI application with access to the serial connection to the 
CC2530.) 

 

3. Assumptions 

1. SBL is a generic feature that should deviate as little as possible from one 
implementation to another by only supporting the idiosyncrasies of the specific 
medium (e.g. USB) crucial to the level of service necessary to complete a code image 
download in a reasonable amount of time. For the sake of example only, the USB 
SBL specific references will be made in this document, although merely changing the 
medium-specific verbiage and paths should allow this document to sufficiently 
describe any Z-Stack SBL. 

 

4. Definitions, Abbreviations, Acronyms 

 

Term Definition 

PC Personal Computer 

NV Non-volatile (e.g. memory that persists through power cycles.) 

SBL Serial Boot Load(er) 

 

 

5. References 

[1] Z-Stack Developer’s Guide (SWRA176) 

 

6. Revision History 

 

Date Writer’s name Document 

Version 

Description of changes 

05/20/09 S Löhr 1.0 New document – used “OAD for CC2430” as a template. 

03/18/2010 S Löhr 1.1 Update according to latest SBL behavior from Bug 3204. 

    

    

 



3/18/2010 Serial Boot Loader for CC2530.doc Page 5 of 15 

SWRA-TBD Version 1.1 

 

7. Design Constraints 

7.1 External Constraints / Features 

1. A serial bus master must drive the download across the serial bus to the CC2530 - 
the means by which to design or implement such an application is beyond the scope 
of this document. 

2. The Boot Code requires at least the first flash page so that it can intercept the startup 
vector. 

 

7.2 Internal Constraints / Requirements 

1. The image to be loaded via SBL must conform to a flash memory mapping 
compatible with the serial boot loader. Compatibility includes flash memory usage and 
ISR vector relocation (see Figure 1.) 

2. The SBL must allow the bus master to force boot-load mode or an immediate jump to 
valid Application code after a powerup. 

3. When not in boot-load mode, the SBL must immediately forward any ISR vectors that 
it consumes to the known relocation in the Application code (note that the Application 
code may not even enable such an ISR vector (e.g. USB ISR) in which case, it 
wouldn’t need to define an ISR for it either.) 

 

8. Design 

8.1 SBL Context 

The SBL system is comprised of two images: the ‘boot loader code’ and the Z-Stack with 
its Application(s) built with a compatible flash mapping – the ‘Application Code’. The 
placement of each of the two images into the internal flash is handled by the unique IAR 
linker command file used by each. 

8.2 Functional Description 

8.2.1 Boot Code  

The SBL solution requires the use of boot code to check the integrity of the active code 
image before jumping to it. This check guards against an incomplete or incorrect 
programming of the active image area. The SBL boot code provides the following 
functionality: 

1. Boot Code will be the target of the reset vector (as well as any vector necessary for 
communicating on the chosen serial bus), and therefore contains startup and ISR code. 

2. When the serial bus connection is detected and the master application commands it, Boot 
Code will program the SBL image into the active image area and will thusly complete the 
final step of the SBL process: code instantiation. 

3. (Optional) Boot Code will guard against interrupted, incomplete or incorrect 
programming of the active image area by checking the validity of the active application 
code image via CRC. If the image is not valid then the boot code will not allow it to run. 



3/18/2010  Page 6 of 15 

 Serial Boot Loader for CC2530 SoC 

 

8.2.2 SBL-compatible Z-Stack  

An SBL-compatible Z-Stack is implemented as a standard ZigBee Application build with 
the exception of the linker command file and some ancillary settings. 

 

Figure 1: Architectural Placement of the SBL & SBL-compatible Z-Stack image. 

 

9. Producing SBL Boot Code to be programmed. 

9.1 Separate Build & Debug of Boot Code 

The Boot Code is separately built and debugged or programmed via the IAR IDE 
by opening the SBL Boot Project here: 

$INSTALL_DIR$\Projects\zstack\Utilities\BootLoad\CC2530USB\Boot.eww 

The default configuration is with the download option to erase flash in order to 
start a CC2530 SoC with clean flash (and thus clean NV). Before debugging or 
physically programming the SBL-compatible Application code produced in the 
next section, this SBL Boot code must first be programmed into the flash (but 
only this once, since, as the following section mentions, the default option for 
application code is to preserve this SBL Boot code on successive debugging or 
programming.) 

 



3/18/2010 Serial Boot Loader for CC2530.doc Page 7 of 15 

SWRA-TBD Version 1.1 

10. Producing SBL-compatible Application Code to debug or load by SBL.  

The “RouterEB” build of the Z-Stack sample application known as GenericApp is used 
below for demonstration purposes only - the Customer would apply the following steps in 
her own, proprietary Z-Stack application and make the corresponding changes to all of 
the paths below that are specific to GenericApp. The CC2530USB is also used below for 
demonstration only – these same steps apply to any of the CC2530 targets supported by 
the Z-Stack release and a conforming SBL. It is only requisite that the paths specific to 
the CC2530USB target be changed accordingly. 

10.1 Configure linker options for the SBL functionality. 

10.1.1 Configure the linker to generate extra output. 

Check the checkbox to “Allow C-SPY-specific extra output file” as shown below. 

 

Figure 2: Configuring the linker to generate an extra output file. 



3/18/2010  Page 8 of 15 

 Serial Boot Loader for CC2530 SoC 

10.1.2 Configure the linker extra output file format. 

Check the checkbox to “Generate extra output file” and choose the “Output format:” as 
simple-code as shown below. 

 

Figure 3: Configuring the linker extra output file format. 



3/18/2010 Serial Boot Loader for CC2530.doc Page 9 of 15 

SWRA-TBD Version 1.1 

10.1.3 Configure the linker command file for SBL-compatible mapping. 

Use the following line for the “Override default” command string: 

$PROJ_DIR$\..\..\..\Tools\CC2530DB\cc2530-sb.xcl 

 

Figure 4: Changing the linker command file to implement SBL-compatible mapping. 



3/18/2010  Page 10 of 15 

 Serial Boot Loader for CC2530 SoC 

10.2 Configure build actions to invoke the post-processing tool. 

Use the following line for the “Post-build command line:” 

"$PROJ_DIR$\..\..\..\Tools\CC2530DB\oad.exe" 

"$PROJ_DIR$\RouterEB\Exe\GenericApp.sim" 

"$PROJ_DIR$\RouterEB\Exe\GenericApp.bin" 

The above lines must be pasted as a single line into the dialog box with one space 
separating each block in parenthesis. 

 

Figure 5: Configuring the build actions to invoke the post-processing tool. 

10.3  Add the CRC Shadow to the build. 

The CRC-shadow in OnBoard.c must be enabled by defining MAKE_CRC_SHDW 
somewhere (e.g. in OnBoard.c, hal_board_cfg.h, f8wConfig.cfg, or IAR project options to 
name a few possible locations.)



3/18/2010 Serial Boot Loader for CC2530.doc Page 11 of 15 

SWRA-TBD Version 1.1 

 

10.4 Building the Application Code for SBL. 

Simply build from the IAR IDE as you normally would. The binary file produced, which is to be 
loaded by SBL, is found here: 

$PROJ_DIR$\RouterEB\Exe\GenericApp.bin 

10.5 Debugging the Application Code with SBL. 

10.5.1 Preserve the SBL. 

In order to run or debug the Application Code, a Boot Code image must have already been 
downloaded to the CC2530 SoC (see the previous section.) So as not to destroy the Boot  
Code image, preserve the space by checking the “Retain unchanged memory” option as follows: 

 

Figure 6: Preserving boot code while debugging. 



3/18/2010  Page 12 of 15 

 Serial Boot Loader for CC2530 SoC 

10.5.2 Force the CRC Shadow. 

In order for the SBL to jump to the Application code after intercepting the reset vector, it must be 
able to verify that the Application code is valid. This validation takes over a minute and can be 
short-circuited by forcing the CRC-shadow to match the calculated CRC. NOTE that it is crucial 
that the CRC shadow be restored to its default value of 0xFFFF after debugging is complete. After 
each and every compile it is necessary to inspect the .map file to learn the new CRC: 

 

 

Then copy the CRC into the CRC Shadow and only now can you run the IAR debugger with this 
build: 

 



3/18/2010 Serial Boot Loader for CC2530.doc Page 13 of 15 

SWRA-TBD Version 1.1 

11. Forcing boot-mode or early jump to Application code.  

The SBL receives control from the reset vector and verifies whether valid Application code 
is present. If so, then the SBL gives the bus master a window in which to force boot mode 
or an immediate jump to Application code. 

1. If the CRC is not 0x0000 or 0xFFFF and the CRC-shadow is identical, then the 
Application code is valid. 

2. If the CRC is not 0x0000 of 0xFFFF and the CRC-shadow is 0xFFFF, then the 
CRC is calculated over the Application code image area (this will take over a 
minute.) 

a. If the calculated CRC matches the read CRC, program the CRC-shadow 
to this identical value to speed-up future power-ups. 

3. If the Application code is valid, wait for the bus master to send a 0xF8 to force 
boot-mode or an 0x07 to force an immediate jump to the Application code. 

a. The default wait for UART and USB transport is 1 minute. 

b. The default wait for SPI is 50 milliseconds. 

4. If the Application code is valid and the wait expires, jump to the Application code. 

5. If the Application code is not valid, immediately jump to the boot-code without 
waiting as described above. 

 



3/18/2010  Page 14 of 15 

 Serial Boot Loader for CC2530 SoC 

12. Producing SBL Application Code with Boot Code to be programmed.  

For mass-production programming, it will be important to have a single image containing 
both the SBL Boot and Application code so that the part must only be programmed once. 
The following example assumes that the SmartRF04/05 Programming Tools will be used 
for programming an Intel-hex formatted file into the CC2530 SoC. 

12.1 Build the Application Code hex image. 

12.1.1 Configure the linker to generate Intel-hex output. 

Check the checkbox to “Override default” and make the suffix “.hex” Also check the radio 
button for “Other” Output file Format and choose the Output format drop-down selection 
for ‘intel-extended’ as shown below. 

 

Figure 7: Configuring the linker to generate Intel-hex output. 



3/18/2010 Serial Boot Loader for CC2530.doc Page 15 of 15 

SWRA-TBD Version 1.1 

12.1.2 Generate output compatible for the SmartRF Programmer tool. 

Remove the comments from the –M option in cc2530-sb.xcl as shown in hi-light. 

 

Figure 8: Enabling –M option for SmartRF Programmer tool. 

12.1.3 Re-build the Application Code to generate the .hex file. 

Having already been built, just pressing the ‘F7’ key and linking will be sufficient 

 

12.2 Pre-pend the Boot Code hex image to the Application Code hex image. 

1) Use any text editor to open the Application Code file produced here: 

$PROJ_DIR$\RouterEB\Exe\GenericApp.hex 

2) Delete this first line from the file: 

:020000040000FA 

3) Use any text editor to open the SBL Boot Code file. 

4) Delete these last two lines from the file: 

:040000050000079E52 

:00000001FF 

5) Copy the edited contents of the SBL Boot Code file to the top of the Application 
Code file and save it. 

6) Use the SmartRF Programmer to install the edited Application Code hex image 
into the CC2530 SoC. 

 

 


