*L‘ TEXAS
INSTRUMENTS

Serial Boot Loader
For CC253x SoC

Document Number: SWRA327

Version 1.0

TABLE OF CONTENTS

O = U 1= 4 o 1] TR 4
2. FUNCTIONAL OVERVIEW. ...ttt ettt sttt s eat e s s s aba e e s e bt e s s s baa e e s sabae s 4
T AN 11 611V, [= B 10 1N S TR 4
4. DEFINITIONS, ABBREVIATIONS, ACRONYMS ...ttt st 4
B REFERENCESottt ettt et e et e e et e e sttt e e e et b e e e saa ittt e s s beeesebbeeesarateesirbeees 4
(S = YA T [0 1\ o 1 ST IO 2 20 4
7. DESIGN CONST RAINTS ..ottt ettt e e et e s et e e st e e st b e e e sabeteessabeeessbaesssaraneesirrenes 5
7.1 EXTERNAL CONSTRAINTS / FEATURES ...cciitiiie ittt ettt ettt ettt et e seata s st s e s s b e e e sentan s sares 5
7.2 INTERNAL CONSTRAINTS / REQUIREMENTS .. veiitiiiitieietie s iteeestes s steesstes s sbesssbesssbasssvasssbasssvasssrasssnasssres 5
ST B 1 Y €\ TR 5
8.1] =] I 000] N =T [T TS 5
8.2 FUNCTIONAL DESCRIPTION L.uuuttttiiiieiiiiititteiteeesieistbeeessssssiistssssssssssiassssssssesssasssssssssesssssssrsssesssssisnns 5
8.2.1 200 0o Yo [5
8.2.2 SBL-COMPALIDIE Z-STACKcviiiiieiiitiiesee e 6

9. PRODUCING SBL BOOT CODE TO BE PROGRAMMED. ..o 6
9.1 SEPARATE BUILD & DEBUG OF BOOT CODE......ciiitiiiiiieieeietieeeeetie e e steeeesstveesssteessssaeeessrbensssseneeanns 6
10. PRODUCING SBL-COMPATIBLE APPLICATION CODE TO DEBUG/LOAD BY SBL. ...7
10.1 CONFIGURE LINKER OPTIONS FOR THE SBL FUNCTIONALITY ...cciitittiiiiieiiiiiitiiee e seiirieee e e s sesnnsvenns 7
10.1.1 Configure the linker to generate extra OULPUL.ccocviveiereerere e se s ene 7
10.1.2 Configure the linker extra output file FOrmMat...........cooviiiiiiiniii 8
10.1.3 Configure the linker command file for SBL-compatible mapping.c.cccceveiiiiiiiniinnnnns 9

10.2 CONFIGURE BUILD ACTIONS TO INVOKE THE POST-PROCESSING TOOL.ccoviiuvririieeiiiiiinneieeeessnnnnns 10
10.3 ADD THE CRC SHADOW TO THE BUILD.icuveeeeiviieeeetteeesiseeesesttessssssesessssesessssessssssssssssensssssseseanns 10
10.4 BUILDING THE APPLICATION CODE FOR SBL. .. .cuviiiiiiiiiiciiiiiece ettt 11
10.5 DEBUGGING THE APPLICATION CODE WITH SBL. wuviiiiiiiiiiiiiiiiic ettt 11
10.5.1 PreSErVE the SBL. w.eoiceeiiiii ettt ettt b et b e st e s b e s st e s st e s snre e e 11
10.5.2 FOrce the CRC SNAOW.cc.eiiiviiiciii ittt sttt sttt sb e ebe e sb e e ebe e s sbaesebe e s sreeeree e sres 12

11. FORCING BOOT-MODE OR EARLY JUMP TO APPLICATION CODE............cocoeveernnen.. 13
12. DOWNLOADING THE SBL IMAGE USING THE SBDEMO PC TOOLccocoveevcveeeenee. 14
13. CREATING A CC2531 USB DONGLE SBL COMPATIBLE TARGETocoooeeiviee e 14
14, INSTALLING THE CDC USB CLASS DRIVERS FOR THE CC2531 USB DONGLE......... 16
15. PRODUCING SBL APPLICATION CODE WITH BOOT CODE TO BE PROGRAMMED16
15.1 BUILD THE APPLICATION CODE HEX IMAGE. ...cccutvviiieiiiiiiititiieese e ieitiaieessesssssissresssesssssssbssssesssssnnes 16
15.1.1 Configure the linker to generate Intel-hexX OULPUL.ccocoveriierecii s 16
15.1.2 Generate output compatible for the SmartRF Programmer tool..........cc.ccoovvvveieniieiennnnenn 18
15.1.3 Re-build the Application Code to generate the .hex file. ... 18

15.2 PRE-PEND THE BOOT CODE HEX IMAGE TO THE APPLICATION CODE HEX IMAGE.cccovvvieeeeiiiinnns 18
8/2/2010 Page 2 of 18

Serial Boot Loader for CC253x SoC

TABLE OF FIGURES

Figure 1: Architectural Placement of the SBL & SBL-compatible Z-Stack image..........ccccceevevvevercniercninnnn, 6
Figure 2: Configuring the linker to generate an extra OUtPUL file.cccoovrireiiiineiie e 7
Figure 3: Configuring the linker extra output file fOrmMat.............ccooi i 8
Figure 4: Changing the linker command file to implement SBL-compatible mapping.......c..cccccceeevvvienenrnnne. 9
Figure 5: Configuring the build actions to invoke the post-processing tool.ccccvevviveievinieice s 10
Figure 6: Preserving boot code While debugging.ocooveiiiriiiiieee e 11
Figure 7: SBDEMO PC TOOI ...ttt ettt bbbt bt et et en et sbenbe b 14
Figure 8: Add the CC2530USB HAL target group and filesSccceoviiieciiiiiic e 15
Figure 9: CC2531 USB Dongle enumerates as USB CDC Device (Virtual COM Port)cccccooevvivrvinanns 16
Figure 10: Configuring the linker to generate INtel-NexX OULPUL..........cccoiririirenicieecee e 17
Figure 11: Enabling —M option for SmartRF Programmer tool.cccoiiiiiiiiiiiiiiieeee e 18
8/2/2010 Serial Boot Loader for CC253x.doc Page 3 of 18

SWRA327 Version 1.0

1. Purpose

The purpose is to provide a developer's guide to implement serial boot loader (SBL)
compatibility in any sample or proprietary Z-Stack Application for the CC253x SoC.

2. Functional Overview

SBL is provided as a value-enhancing sample solution that enables the updating of code
in devices without the cost of maintaining any download-related code in the user
application other than ensuring a compatible flash memory mapping of the final output.
SBL is effected as a managed client-server mechanism which requires a serial master to
drive the process (i.e. a PC GUI application with access to the serial connection to the
CC253x.)

3. Assumptions

1. SBL is a generic feature that should deviate as little as possible from one
implementation to another by only supporting the idiosyncrasies of the specific
medium (e.g. USB) crucial to the level of service necessary to complete a code
image download in a reasonable amount of time. For the sake of example only, the
USB SBL specific references will be made in this document, although merely
changing the medium-specific verbiage and paths should allow this document to
sufficiently describe any Z-Stack SBL.

4. Definitions, Abbreviations, Acronyms

Term Definition

PC Personal Computer

NV Non-volatile (e.g. memory that persists through power cycles.)
SBL Serial Boot Load(er)

5. References

[1] Zz-Stack Developer’s Guide (SWRA176)

6. Revision History

Date Document | Description of changes
Version
08/02/10 1.0 Initial Release with Z-stack 2.3.1-1.4.0
8/2/2010 Page 4 of 18

Serial Boot Loader for CC253x SoC

7. Design Constraints

7.1 External Constraints / Features

1.

A serial bus master must drive the download across the serial bus to the CC253x -
the means by which to design or implement such an application is beyond the scope
of this document.

The Boot Code requires at least the first flash page so that it can intercept the startup
vector.

7.2 Internal Constraints / Requirements

1.

The image to be loaded via SBL must conform to a flash memory mapping
compatible with the serial boot loader. Compatibility includes flash memory usage
and ISR vector relocation (see Figure 1.)

The SBL must allow the bus master to force boot-load mode or an immediate jump to
valid Application code after a powerup.

When not in boot-load mode, the SBL must immediately forward any ISR vectors that
it consumes to the known relocation in the Application code (note that the Application
code may not even enable such an ISR vector (e.g. USB ISR) in which case, it
wouldn’t need to define an ISR for it either.)

8. Design

8.1 SBL Context

The SBL system is comprised of two images: the ‘boot loader code’ and the Z-Stack with
its Application(s) built with a compatible flash mapping — the ‘Application Code’. The
placement of each of the two images into the internal flash is handled by the unique IAR
linker command file used by each.

8.2 Functional Description

8.2.1 Boot Code

The SBL solution requires the use of boot code to check the integrity of the active code
image before jumping to it. This check guards against an incomplete or incorrect
programming of the active image area. The SBL boot code provides the following
functionality:

1. Boot Code will be the target of the reset vector (as well as any vector necessary for
communicating on the chosen serial bus), and therefore contains startup and ISR code.

2. When the serial bus connection is detected and the master application commands it,
Boot Code will program the SBL image into the active image area and will thusly
complete the final step of the SBL process: code instantiation.

3. (Optional) Boot Code will guard against interrupted, incomplete or incorrect programming
of the active image area by checking the validity of the active application code image via
CRC. If the image is not valid then the boot code will not allow it to run.

8/2/2010

Serial Boot Loader for CC253x.doc Page 5 of 18
SWRA327 Version 1.0

8.2.2 SBL-compatible Z-Stack

An SBL-compatible Z-Stack is implemented as a standard ZigBee Application build with
the exception of the linker command file and some ancillary settings.

I5R's needed by SEL
1,# 00000 - 0x0059

ISR's and LTMF's

I5R's niok used

Mol 00090 - 0x17FF by SEL
Mok boot-load mode SEL Root Code
& Application valid
v 02000 - Dx2059
Fe-locaked ISR's
02090 - 0x3FFFF
0x2090 - 0x3CFFF Application Code
Application Code

Q30800 - OxEF7RE
058 MY pages

Ox3FE00 - Ox3FFFF
Lock Bits page

Figure 1: Architectural Placement of the SBL & SBL-compatible Z-Stack image.

9. Producing SBL Boot Code to be programmed.

9.1 Separate Build & Debug of Boot Code

The Boot Code is separately built and debugged or programmed via the IAR IDE by
opening the SBL Boot Project here:

$INSTALL_DIR$\Projects\zstack\Utilities\BootLoad\CC253x\Boot.eww

Where ‘X’ is the specific CC253x SoC target device. The default configuration is with the
download option to erase flash in order to start a CC253x SoC with clean flash (and thus
clean NV). Before debugging or physically programming the SBL-compatible Application
code produced in the next section, this SBL Boot code must first be programmed into the
flash (but only this once, since, as the following section mentions, the default option for
application code is to preserve this SBL Boot code on successive debugging or
programming.)

8/2/2010 Page 6 of 18

Serial Boot Loader for CC253x SoC

10. Producing SBL-compatible Application Code to debug/load by SBL.

The “RouterEB” build of the Z-Stack sample application known as GenericApp is used
below for demonstration purposes only - the customer would apply the following steps in
their own, proprietary Z-Stack application and make the corresponding changes to all of
the paths below that are specific to GenericApp. References to the CC2530 target below
are provided as an example — these same steps apply to any of the CC253x targets
supported by the Z-Stack release and a conforming SBL. It is only requisite that the paths
specific to the CC253x target be changed accordingly.

10.1 Configure linker options for the SBL functionality.

10.1.1 Configure the linker to generate extra output.

Check the checkbox to “Allow C-SPY-specific extra output file” as shown below.

Options for node “GenericApp™

Categony:

General Cptions
C/C++ compiler
Assembler
Custom Build
Build Actions

Cebugger
FET Debugger
Sirnulakor

Factary Settings |

Ouitput I Extra Elutputl ﬂdefinel Diagnn:nstin:sl List I En:nnfigl Froce 4 I "I

{ ; Secandary autput fils:
IEeneric.ﬁ.pp.dalS [Mone for the selected format)

— Format
" Debug information for C-5P
I with runtime control modules
I wiith |0 emulation modules
™| Buffered terminal output
v fllow C-5P-specific extra output file

£ Oty
i [0 bpat Farrmat: Isimple

Format variant: I MHane

Module-lozal syrbals: IInu:qu:Ie all

L L L

Ok

| Cancel |

Figure 2: Configuring the linker to generate an extra output file.

8/2/2010

Serial Boot Loader for CC253x.doc
SWRA327 Version 1.0

Page 7 of 18

10.1.2 Configure the linker extra output file format.

Check the checkbox to “Generate extra output file” and choose the “Output format:” as

simple-code as shown below.

Options for node “GenericApp™

Cateqgary:

General Options

Bssembler
Cuskom Build

v Generate extra output file

Factary Setting= |

CJC++ compiler Output Extra Output | ﬂdefinel Diagnusticsl List I Eu:unfigl Proce 4 I 'I

Build Ackions — Dutput file

[Owvenide default

Debugoger

Genenctpp.zim
FET Debugger I o

Simulator

— Format

Clutput farmat; Isimple-u:u:ude

Format wariant: I Maone

Led Lo

o |

Cancel

Figure 3: Configuring the linker extra output file format.

8/2/2010
Serial Boot Loader for CC253x SoC

Page 8 of 18

10.1.3 Configure the linker command file for SBL-compatible mapping.

Use the following line for the “Override default” command string:
$PROJ_DIRS$\..\..\..\Tools\CC2530DB\cc2530-sb.xcl

Options for node “SerialApp" 5[

Category: Factary Settings |

General Options
CJC++ Compiler
Bssembler

Cuskomn Build Elutputl Extra Elutputl #definel Diagnusticsl Lizt Canfig | F'ru:u:eﬂ_"l
Build Actions
Linker command file
Deb.ugger) ¥ Overide default
12';:;;?; uDr;'::t: $PROJ_DIRS..\. b\ o0ls\CC2530DB c2530-sb.ac -
Infineon
ROM-Monikor
Analog Devices [Overide default program entry
Silabs % Entrylabel I_prn:ngram_start
Sirnulakor £ Defined by application

Search paths: [one per ling]

FTOOLEIT_DIR$SLIB

-
L

— Baw binary image
Eile: Symbol: Segment: Align:

] | |
] I Cancel |

Figure 4: Changing the linker command file to implement SBL-compatible mapping.

8/2/2010 Serial Boot Loader for CC253x.doc Page 9 of 18
SWRAZ327 Version 1.0

10.2 Configure build actions to invoke the post-processing tool.

Use the following line for the “Post-build command line:”

"“$PROJ_DIR$\. .\..\. .\Tools\CC2530DB\oad.exe""
"$PROJ_DIR$\RouterEB\Exe\GenericApp.sim"
""$PROJ_DIR$\RouterEB\Exe\GenericApp.bin"

The above lines must be pasted as a single line into the dialog box with one space
separating each block in parenthesis.

Options for node "GenericApp™ 5'

Categony:

General Cptions
C/C4++ Compiler

Assembler
ustam Build Build Actions Configuration

Build &ctions . .
Linker Pre-build command line;

Cebugger I _I

Third-Party Driver
Texas Instrumenk:
Infineon
RCM-Monitar
Analog Devices
Silabs

Sirnulakor

Pozt-build cormmand line:
Ir'$PH|:|J_D|H$"'..."-..."-..."-.TDD|S"-.EE253DDB"-.DEE|.EHE" "$PROJ_DIR$NE . |

] I Cancel

Figure 5: Configuring the build actions to invoke the post-processing tool.

10.3 Add the CRC Shadow to the build.

The CRC-shadow in OnBoard.c must be enabled by defining MAKE_CRC_SHDW
somewhere (e.g. in OnBoard.c, hal_board_cfg.h, f8wConfig.cfg, or IAR project options to
name a few possible locations.)

8/2/2010 Page 10 of 18
Serial Boot Loader for CC253x SoC

10.4 Building the Application Code for SBL.

Simply build from the IAR IDE as you normally would. The binary file produced, which is to be
loaded by SBL, is found here:

$PROJ_DIR$\RouterEB\Exe\GenericApp.bin

10.5 Debugging the Application Code with SBL.

10.5.1 Preserve the SBL.

In order to run or debug the Application Code, a Boot Code image must have already been
downloaded to the CC253x SoC (see the previous section.) So as not to destroy the Boot
Code image, preserve the space by checking the “Retain unchanged memory” option as follows:

Options for node “GenericApp™

Categony:

General Cptions
C/C4++ Compiler
Assembler
Custom Build
Build Actions
Linker
Cebugger

Third-Party Driver

Texas Instrument

X

D owrload I Targetl
[Erase flash
[+ Retain unchanged memaory

™| Suppress download

Factary Settings |

— Flazh Lock Protection

[~ Boot block lock

[~ Debug interface lock
™ Lock flash memory

Infineon ;
RCM-Monikor ¥ ierify dovinload IL::u:k bitz 000b [all pagesz] j
fnalog Devices * CAC1 [¢page size info. missing>
Silabs ™ Read back memaory
Sirnulakor
[" Retain flash pages
] I Cancel
Figure 6: Preserving boot code while debugging.
8/2/2010 Serial Boot Loader for CC253x.doc

SWRA327 Version 1.0

Page 11 of 18

10.5.2 Force the CRC Shadow.

In order for the SBL to jump to the Application code after intercepting the reset vector, it must be
able to verify that the Application code is valid. This validation takes over a minute and can be
short-circuited by forcing the CRC-shadow to match the calculated CRC. NOTE that it is crucial
that the CRC shadow be restored to its default value of OXFFFF after debugging is complete.
After each and every compile it is necessary to inspect the .map file to learn the new CRC:

#7 1AR Embedded Workbench IDE

File Edit ‘iew Project

Texas Instruments Emulator Tools Window Help

B IE R YRl
cerialApp. |

133158 Symbol Checksum Memory Start End Initial walue

-1 e

ESSlED__checksum COLE 00001500 - 00001889 Ox0000 (#0x0000)

133161 CODE 0o0ools94 - OOOO7FFF

533162 CODE 00015000 - COOLFFFF

533163 CODE 000=5000 - COOOZFFFF

133164 CODE 00035000 - OOO3FFFF

533165 COLE 00045000 - OO04FFFF

533165 COLE no058000 - OOOSFFFF

133167 CODE 00058000 - OOORFFFF

533168 COLE aoo0Y8000 - 0007CT7FF

533169

:331':.‘0 o o el ol il ol ol o o

33171 * *

5331?2 * END OF CRO5% FEFERENCE *

133173 * *

5331?4 o i o e i ol e

5331?5

133176 112 325 bytes of CODE memory [+ 141 635 range £ill)

5331?? 25 bytes of DATA mewmory (+ 61 absolute)

5331?8 6 617 bytes of XDATA memory

133179 192 bytes of IDATA memory

' 33180 & bits of BIT memory

533181 102 bytes of CONST memory

133182

533183Errnrs: none

533184Uarnings: none

1221 or

Then copy the CRC into the CRC Shadow and only now can you run the IAR debugger with this

build:

#7 TAR Embedded Workbench IDE

Texas Inskruments Emulakor

File Edit

View Project

Tools ‘indow Hel

DESEE@ SBR[o |[hd

g6

Q>

8/2/2010

G5 uints OrnboardEeyIntEnable;

87 //H#LE defined MAKE CRC SHDW
88 #pragma location="CRC_SHDW™
3% const CODE uintles croihdw = [
90 #pragma redquired=_crcihdw
91 /Afendif

Serial Boot Loader for CC253x SoC

Page 12 of 18

11. Forcing boot-mode or early jump to Application code.

The SBL receives control from the reset vector and verifies whether valid Application
code is present. If so, then the SBL gives the bus master a window in which to force boot
mode or an immediate jump to Application code.

1.

8/2/2010

If the CRC is not 0x0000 or OxFFFF and the CRC-shadow is identical, then the
Application code is valid.

If the CRC is not 0x0000 of OXFFFF and the CRC-shadow is OxFFFF, then the
CRC is calculated over the Application code image area (this will take over a
minute.)

a. If the calculated CRC matches the read CRC, program the CRC-shadow
to this identical value to speed-up future power-ups.

If the Application code is valid, wait for the bus master to send a 0xF8 to force
boot-mode or an 0x07 to force an immediate jump to the Application code.

a. The default wait for UART and USB transport is 1 minute.
b. The default wait for SPI is 50 milliseconds.
If the Application code is valid and the wait expires, jump to the Application code.

If the Application code is not valid, immediately jump to the boot-code without
waiting as described above.

Serial Boot Loader for CC253x.doc Page 13 of 18
SWRA327 Version 1.0

12. Downloading the SBL Image using the SBDemo PC Tool

As mentioned above, upon reset, the SBL will give the bus master a window of
opportunity to force boot mode or jump to the application code. In this mode, the
SmartRFO5EB board’s LED1 and LED2 will start flashing. Sending a 0x07 at this time will
force boot mode.

When the SBL is in boot mode, the SmartRFO5EB board’s LED1 will start blinking. At this
time, the SBDemo.exe PC Tool can be used to download the .bin file by setting the COM
port as appropriate as shown in the figure below. The PC Tool can be found at:

C:\Texas Instruments\ZStack-CC2530-2.3.1-1.4.0\Tools\SBL Tool

“ Serial Bootloader Demo - ¥1.0

Imange File: N Pork;
|tan:k'l,Generiu:.ﬁ.pp'l,CCESSDDB'I,RnuterEB'l,Exe'l,Generic.ﬁ.pp.I:uin| J | 1

Load Image

[v Mo Reset Yeckor Yerification (3051 anly)

Figure 7: SBDemo PC Tool

13. Creating a CC2531 USB Dongle SBL compatible target

Up to this point, the example that has been used is the CC2530. The following steps
should be followed to create a Z-Stack project that is compatible with the CC2531 USB
Dongle.

In the C/C++ Pre-processor options for the project, replace:
$PROJ_DIR$\.\..\.\. . \COMPONENTS\HAL\TARGET\CC2530EB

with:

$PROJ_DIR$\..\.\.\.\.A\COMPONENTS\HAL\TARGET\CC2530USB
$PROJ_DIR$\..\.\.\.\.A\COMPONENTS\HAL\TARGET\CC2530USB\usb\library\cc2531
$PROJ_DIR$\..\.\.\.\.A\COMPONENTS\HAL\TARGET\CC2530USB\usb\class_cdc
$PROJ_DIR$\..\.\.\.\.\COMPONENTS\HAL\TARGET\CC2530USB\usb\library

Add a CC2530USB HAL target group/files and exclude the CC2530EB HAL target
group/files as shown. To exclude the CC2530EB HAL target from the build, right click on
it, go to Options, and check the “Exclude from Build” checkbox.

8/2/2010 Page 14 of 18
Serial Boot Loader for CC253x SoC

W8] CCoR30ER
L@ (1 CC2830USE
—E (1 Config
L— B hal_board_cfg.h
—=1 (0 Drrivers
[hal_adc.c
[hal_dma.c
[hal_flash.c
[hal_kev.c
[hal_lcd o
[hal_led.c
[hal_sleep.c
hal_startup.c
[hal_timer.c
[hal_uart.c
= L Includes
— [hal_aes h
— [hal_dmach
— [hal_mcu.h
L— [hal_types.h
11 USE
—E (Jclass_cdc
— [ush_cdch
[ush_cdc_descriptor.shl
[ush_cdc_hooks.c
— [ush_cde_hoaoks h
ush_firmware_library_config.c
— [ush_firmware_library_configh
— [ush_firmware_library_headers h
=1 (O library
|51 (0 2531
F— B ush_board_cfg.h
[ush_interrupt.c
B ush_suspend.c
— [ush_descriptorh
[ush_descriptar_parser.c
— [ush_descriptor_parserh
ush_frarmewark.c
—— [ush_framework. h
— [ush_framework_structs b
— [ush_interrupth
— [usk_req.h
ush_standard_requests.c
— [ush_standard_requests h
L [ush_suspend.h

Figure 8: Add the CC2530USB HAL target group and files

Other than these few modifications, the other steps for producing an SBL compatible
image are the same.

8/2/2010 Serial Boot Loader for CC253x.doc Page 15 of 18
SWRA327 Version 1.0

14. Installing the CDC USB Class Drivers for the CC2531 USB Dongle

If this is the first time the CC2531 USB Dongle has been programmed with the
appropriate SBL and plugged into the PC, it will attempt to enumerate as a CDC USB
Class Device. The user should point windows to the “usb_cdc_driver_cc2531.inf" file
available from the .zip file at this URL.: http://www.ti.com/litv/zip/swrcO88c.

The CC2531 USB Dongle will then expose a USB to Serial Virtual Com Port interface as
shown:

= Ports (COM & LPT)
BT Port {COMLO)
A BT Port {COMLL)
o BT Port (COM1Z)
BT Port (COML3)
BT Port (COM14)
BT Port (COM2)
BT Port (COMZ1)
BT Port (COM22)
o Communications Part (COMLY

ECF Printer Port (LPT1}
TI CC2531 Low-Power RF ko USE CDiC Serial Pork (COMG

Figure 9: CC2531 USB Dongle enumerates as USB CDC Device (Virtual COM Port)

olalalelalala

15. Producing SBL Application Code with Boot Code to be programmed

For mass-production programming, it will be important to have a single image containing
both the SBL Boot and Application code so that the part must only be programmed once.
The following example assumes that the SmartRF Flash Programmer tool will be used for
programming an Intel-hex formatted file into the CC253x SoC.

15.1 Build the Application Code hex image.

15.1.1 Configure the linker to generate Intel-hex output.

Check the checkbox to “Override default” and make the suffix “.hex” Also check the radio
button for “Other” Output file Format and choose the Output format drop-down selection
for ‘intel-extended’ as shown below.

8/2/2010 Page 16 of 18
Serial Boot Loader for CC253x SoC

http://www.ti.com/litv/zip/swrc088c

Options for node “GenericApp™ 5[

Cateqgary:

General Options
CJC++ Compiler
Bssembler
Custom Build
Build Actions

Debugoger
Third-Party Driver
Texas Instrumenk:
Infineon
RaM-Monitar
Analog Devices
Silabs
Sirnulator

Factary Setting= |

Cutput I Extra Elutputl #definel Diagnusticsl List I Eu:unfigl Froce 4 I "I

— Dutput file
v Overide default Secondary output file:

3 enenchpp. hey [Mone for the zelected format]

— Format
¢~ Debug information for C-5PY
¥ | with runtime. contral modules
¥ with 1400 emulation modules
™| Buffered terminal output
¥ | &l C-5F-speciiic extra output file
0 [Oiher

Clutput farmat; Iintel-e:-:tended

Format variant: I MHone

RIJERIEN

Module-lozal symbals: IIr-u:qu:Ie 4l

] I Cancel |

Figure 10: Configuring the linker to generate Intel-hex output.

8/2/2010

Serial Boot Loader for CC253x.doc Page 17 of 18
SWRAZ327 Version 1.0

15.1.2 Generate output compatible for the SmartRF Programmer tool.
Remove the comments from the —M option in cc2530-sb.xcl as shown in hi-light.

#7 1AR Embedded Workbench IDE

File Edit “iew Projeck Tools ‘Window Help

EEIEREE IR MEA A A1 2]
 oadxclf]
v E1E G
213 /4 Include these two lines when generating a .hex file for banked code model:

A Y11 (CODE) [[CODEBANE 3TART+ . 3T _BANE ADDR)-(_ CODEEANE END+ FIRIT BANE ALDDE)]%%
E paRy NE OF BANES+ FIRST BANE ADDE=0x30

216 //-wwe8=1

217 47

| 218//

Figure 11: Enabling —M option for SmartRF Programmer tool.

15.1.3 Re-build the Application Code to generate the .hex file.

Having already been built, just pressing the ‘F7’ key and linking will be sufficient

15.2 Pre-pend the Boot Code hex image to the Application Code hex image.

1) Use any text editor to open the Application Code file produced here:
$PROJ_DIR$\RouterEB\Exe\GenericApp.hex
2) Delete this first line from the file;
:020000040000FA
3) Use any text editor to open the SBL Boot Code file.
4) Delete these last two lines from the file:
:040000050000079E52
:00000001FF

5) Copy the edited contents of the SBL Boot Code file to the top of the Application
Code file and save it.

6) Use the SmartRF Programmer to install the edited Application Code hex image
into the CC253x SoC.

8/2/2010 Page 18 of 18
Serial Boot Loader for CC253x SoC

	1. Purpose
	2. Functional Overview
	3. Assumptions
	4. Definitions, Abbreviations, Acronyms
	5. References
	6. Revision History
	7. Design Constraints
	7.1 External Constraints / Features
	7.2 Internal Constraints / Requirements

	8. Design
	8.1 SBL Context
	8.2 Functional Description
	8.2.1 Boot Code
	8.2.2 SBL-compatible Z-Stack

	9. Producing SBL Boot Code to be programmed.
	9.1 Separate Build & Debug of Boot Code

	10. Producing SBL-compatible Application Code to debug/load by SBL.
	10.1 Configure linker options for the SBL functionality.
	10.1.1 Configure the linker to generate extra output.
	10.1.2 Configure the linker extra output file format.
	10.1.3 Configure the linker command file for SBL-compatible mapping.

	10.2 Configure build actions to invoke the post-processing tool.
	10.3 Add the CRC Shadow to the build.
	10.4 Building the Application Code for SBL.
	10.5 Debugging the Application Code with SBL.
	10.5.1 Preserve the SBL.
	10.5.2 Force the CRC Shadow.

	11. Forcing boot-mode or early jump to Application code.
	12. Downloading the SBL Image using the SBDemo PC Tool
	13. Creating a CC2531 USB Dongle SBL compatible target
	14. Installing the CDC USB Class Drivers for the CC2531 USB Dongle
	15. Producing SBL Application Code with Boot Code to be programmed
	15.1 Build the Application Code hex image.
	15.1.1 Configure the linker to generate Intel-hex output.
	15.1.2 Generate output compatible for the SmartRF Programmer tool.
	15.1.3 Re-build the Application Code to generate the .hex file.

	15.2 Pre-pend the Boot Code hex image to the Application Code hex image.

