
Copyright 2006-2015 Texas Instruments, Inc. All rights reserved.

Z-Stack
 Developer’s Guide

Document Number: SWRA176

Texas Instruments, Inc.

San Diego, California USA

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. i

Revision Description Date

1.0 Initial release 12/13/2006

1.1 Added section on ZDO Message Request 09/29/2007

1.2 Updates for ZigBee 2007 and ZigBee PRO features 02/24/2008

1.3 Updated location of zgPreConfigKeys 01/06/2009

1.4 Updated for 2.2.0 Release 03/30/2009

1.5 Replaced references to ZDNwkManager with ZDNwkMgr 04/14/2009

1.6 Updated section 4.1.1.1 08/03/2009

1.7 Updated section 10.5 for multiple preconfigured trust center link keys 01/15/2010

1.8

 Updated section 4

 Updated section 9.6.3. NV range for application use

 Fixed misspelling of zgPreConfigKeys variable

 Added section 10.6 on Security key data management

 Added section 13 on ZMAC LQI Adjustment 08/11/2010

1.9 Added Extended PAN IDs section 11/20/2010

1.10 Editorial changes to sections 2.1 and 2.1.1 03/23/2011

1.11 Added section 5.6 for Router Off-Network Association Cleanup 03/14/2012

1.12

Updated reference to ZigBee Specification (053474r20)

Added description of zgNwkLeaveRequestAllowed variable to section 9.4

Added section 9.11 to pre-commission a device with a network address

Updated section 10.6 with Unique and Global Link Key Type configuration

Added section 10.8 to describe backwards interoperability

Clean up the documents by removing references to specific Z-Stack applications

Editorial clean up of the entire document.

Added section 14: Heap Memory Management.

Added section 15: Compile Options. 12/31/2012

1.13

Updated Section 7. Portable Devices to include a Rejoin State Diagram. Also

made a few edits. 2/19/2015

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. ii

TABLE OF CONTENTS

1. INTRODUCTION .. 1
1.1 PURPOSE .. 1
1.2 SCOPE .. 1
1.3 ACRONYMS .. 1
1.4 REFERENCE DOCUMENTS .. 1

2. ZIGBEE .. 2
2.1 DEVICE TYPES .. 2

2.1.1 Coordinator .. 2
2.1.2 Router ... 2
2.1.3 End-device .. 2

2.2 STACK PROFILE .. 3

3. ADDRESSING ... 4
3.1 ADDRESS TYPES .. 4
3.2 NETWORK ADDRESS ASSIGNMENT ... 4

3.2.1 Tree Addressing .. 4
3.2.2 Stochastic Addressing ... 5

3.3 ADDRESSING IN Z-STACK ... 5
3.3.1 Unicast .. 6
3.3.2 Indirect.. 6
3.3.3 Broadcast .. 6
3.3.4 Group Addressing ... 6

3.4 IMPORTANT DEVICE ADDRESSES ... 6

4. BINDING .. 8
4.1 BUILDING A BINDING TABLE... 8

4.1.1 ZigBee Device Object Bind Request ... 8
4.1.1.1 The Commissioning Application ... 8
4.1.1.2 ZigBee Device Object End Device Bind Request .. 8

4.1.2 Device Application Binding Manager ... 9
4.2 CONFIGURING SOURCE BINDING ... 9

5. ROUTING .. 10
5.1 OVERVIEW ... 10
5.2 ROUTING PROTOCOL ... 10

5.2.1 Route Discovery and Selection ... 11
5.2.2 Route maintenance .. 11
5.2.3 Route expiry .. 11

5.3 TABLE STORAGE ... 11
5.3.1 Routing table ... 11
5.3.2 Route discovery table .. 12

5.4 MANY-TO-ONE ROUTING PROTOCOL .. 12
5.4.1 Many-to-One Routing Overview ... 12
5.4.2 Many-to-One Route Discovery.. 12
5.4.3 Route Record Command ... 13
5.4.4 Many-to-One Route Maintenance ... 14

5.5 ROUTING SETTINGS QUICK REFERENCE .. 14
5.6 ROUTER OFF-NETWORK ASSOCIATION CLEANUP .. 15

6. ZDO MESSAGE REQUESTS .. 16

7. PORTABLE DEVICES ... 18

8. END-TO-END ACKNOWLEDGEMENTS ... 19

9. MISCELLANEOUS .. 20
9.1 CONFIGURING CHANNEL ... 20
9.2 CONFIGURING THE PAN ID AND NETWORK TO JOIN... 20
9.3 MAXIMUM PAYLOAD SIZE ... 20
9.4 LEAVE NETWORK ... 20
9.5 DESCRIPTORS ... 21
9.6 NON-VOLATILE MEMORY ITEMS .. 21

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. iii

9.6.1 Global Configuration Non-Volatile Memory .. 21
9.6.2 Network Layer Non-Volatile Memory ... 21
9.6.3 Application Non-Volatile Memory .. 21

9.7 ASYNCHRONOUS LINKS .. 22
9.8 MULTICAST MESSAGES .. 22
9.9 FRAGMENTATION ... 22

9.9.1 Quick Reference .. 24
9.10 EXTENDED PAN IDS .. 24
9.11 REJOINING WITH PRE-COMMISSIONED NETWORK ADDRESS ... 25

10. SECURITY ... 26
10.1 OVERVIEW ... 26
10.2 CONFIGURATION ... 26
10.3 NETWORK ACCESS CONTROL ... 26
10.4 KEY UPDATES .. 26
10.5 TRUST CENTER LINK KEY... 26
10.6 JOINING A NETWORK WITH TCLK .. 27

10.6.1 Multi-hop .. 27
10.6.2 Single-hop... 28

10.7 SECURITY KEY DATA MANAGEMENT .. 30
10.8 BACKWARDS INTEROPERABILITY .. 30
10.9 QUICK REFERENCE ... 30

11. NETWORK MANAGER .. 32
11.1 OVERVIEW ... 32
11.2 CHANNEL INTERFERENCE ... 32

11.2.1 Channel Interference Detection .. 32
11.2.2 Channel Interference Resolution .. 32
11.2.3 Quick Reference ... 33

11.3 PAN ID CONFLICT ... 33
11.3.1 PAN ID Conflict Detection ... 34
11.3.2 PAN ID Conflict Resolution ... 34

12. INTER-PAN TRANSMISSION .. 35
12.1 OVERVIEW ... 35
12.2 DATA EXCHANGE ... 35

12.2.1 Quick Reference ... 36

13. ZMAC LQI ADJUSTMENT ... 37
13.1 OVERVIEW ... 37
13.2 LQI ADJUSTMENT MODES .. 37
13.3 USING LQI ADJUSTMENT.. 37

14. HEAP MEMORY MANAGEMENT.. 38
14.1 OVERVIEW ... 38
14.2 API .. 38

14.2.1 osal_mem_alloc() ... 38
14.2.1.1 Prototype .. 38
14.2.1.2 Parameters .. 38
14.2.1.3 Return .. 38

14.2.2 osal_mem_free() ... 38
14.2.2.1 Prototype .. 38
14.2.2.2 Parameters .. 38
14.2.2.3 Return .. 39

14.3 STRATEGY .. 39
14.4 DISCUSSION .. 39
14.5 CONFIGURATION ... 40

14.5.1 MAXMEMHEAP .. 40
14.5.2 OSALMEM_PROFILER ... 40

14.5.2.1 OSALMEM_INIT ... 40
14.5.2.2 OSALMEM_ALOC ... 40
14.5.2.3 OSALMEM_REIN .. 40
14.5.2.4 OSALMEM_PROMAX .. 40

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. iv

14.5.3 OSALMEM_MIN_BLKSZ ... 41
14.5.4 OSALMEM_SMALL_BLKSZ .. 41
14.5.5 OSALMEM_SMALLBLK_BUCKET ... 41
14.5.6 OSALMEM_NODEBUG .. 41
14.5.7 OSALMEM_PROFILER_LL .. 41

15. COMPILE OPTIONS.. 43
15.1 OVERVIEW ... 43
15.2 REQUIREMENTS .. 43

15.2.1 Target Development System Requirements ... 43
15.3 USING Z-STACK COMPILE OPTIONS .. 43

15.3.1 Selecting the Logical Device Type .. 43
15.3.2 Locating Compile Options .. 43

15.3.2.1 Compile Options In Linker Control Files .. 44
15.3.2.2 Compile Options In IAR Project Files ... 47

15.3.3 Using Compile Options .. 48
15.4 SUPPORTED COMPILE OPTIONS AND DEFINITIONS ... 49

15.4.1 General Compile Options ... 49
15.4.2 Non-changeable Compile Options .. 51
15.4.3 Monitor-Test (MT) Compile Options .. 51
15.4.4 ZigBee Device Object (ZDO) Compile Options .. 51

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 1

1. Introduction

1.1 Purpose
This document explains some of the components of the Texas Instruments ZigBee stack and their functioning. It

explains the configurable parameters in the ZigBee stack and how they may be changed by the application developer

to suit the application requirements.

1.2 Scope
This document describes concepts and settings for the Texas Instruments Z-Stack™ Release. This is a ZigBee-2012

compliant stack for the ZigBee and ZigBee PRO stack profiles.

1.3 Acronyms
AF Application Framework

AES Advanced Encryption Standard

AIB APS Information Base

API Application Programming Interface

APS Application Support Sub-Layer

APSDE APS Date Entity

APSME APS Management Entity

ASDU APS Service Datagram Unit

BSP Board Support Package – taken together, HAL & OSAL comprise a rudimentary operating system

commonly referred to as a BSP

CCM* Enhanced counter with CBC-MAC mode of operation

EPID Extended PAN ID

HAL Hardware (H/W) Abstraction Layer

MSG Message

NHLE Next Higher Layer Entity

NIB Network Information Base

NWK Network

OSAL Operating System (OS) Abstraction Layer

OTA Over-The-Air

PAN Personal Area Network

SE Smart Energy

ZDO ZigBee Device Object

1.4 Reference Documents
[1] ZigBee Specification, R20, ZigBee Alliance document number 053474r20.

[2] Z-Stack API (SWRA195)

[3] Z-Stack OSAL API (SWRA194)

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 2

2. ZigBee

A ZigBee network is a multi-hop network with battery-powered devices. This means that two devices that wish to

exchange data in a ZigBee network may have to depend on other intermediate devices to be able to successfully do

so. Because of this cooperative nature of the network, proper functioning requires that each device (i) perform

specific networking functions and (ii) configure certain parameters to specific values. The set of networking

functions that a device performs determines the role of the device in the network and is called a device type. The set

of parameters that need to be configured to specific values, along with those values, is called a stack profile.

2.1 Device Types
There are three logical device types in a ZigBee network – (i) Coordinator (ii) Router and (iii) End-device. A

ZigBee network consists of a Coordinator node and multiple Router and End-device nodes. Note that the device type

does not in any way restrict the type of application that may run on the particular device.

An example network is shown in the diagram above, with the ZigBee Coordinator (black), the Routers (red), and the

End Devices (white).

2.1.1 Coordinator

This is the device that “starts” a ZigBee network. It is the first device on the network. The coordinator node scans

the RF environment for existing networks, chooses a channel and a network identifier (also called PAN ID) and then

starts the network.

The coordinator node can also be used, optionally, to assist in setting up security and application-level bindings in

the network.

Note that the role of the Coordinator is mainly related to starting up and configuring the network. Once that is

accomplished, the Coordinator behaves like a Router node (or may even go away). The continued operation of the

network does not depend on the presence of the Coordinator due to the distributed nature of the ZigBee network.

2.1.2 Router

A Router performs functions for (i) allowing other devices to join the network (ii) multi-hop routing (iii) assisting in

communication for its child battery-powered end devices.

In general, Routers are expected to be active all the time and thus have to be mains-powered.

2.1.3 End-device

An end device has no specific responsibility for maintaining the network infrastructure, so it can sleep and wake up

as it chooses. Thus it can be a battery-powered node.

Generally, the memory requirements (especially RAM requirements) are lower for an end device.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 3

Notes:

In Z-Stack, the device type is usually determined at compile-time via compile options (ZDO_COORDINATOR and

RTR_NWK). All sample applications are provided with separate project files to build each device type.

2.2 Stack Profile
The set of stack parameters that need to be configured to specific values, along with the above device type values, is

called a stack profile. The parameters that comprise the stack profile are defined by the ZigBee Alliance.

All devices in a network must conform to the same stack profile (i.e., all devices must have the stack profile

parameters configured to the same values).

The ZigBee Alliance has defined two different stack profiles for the ZigBee-2007 specification, Zigbee and Zigbee

PRO, with the goal of promoting interoperability. All devices that conform to this stack profile will be able to work

in a network with devices from other vendors that also conform to it.

If application developers choose to change the settings for any of these parameters, they can do so with the caveat

that those devices will no longer be able to interoperate with devices from other vendors that choose to follow the

ZigBee specified stack profile. Thus, developers of “closed networks” may choose to change the settings of the stack

profile variables. These stack profiles are called “network-specific” stack profile.

The stack profile identifier that a device conforms to is present in the beacon transmitted by that device. This

enables a device to determine the stack profile of a network before joining to it. The “network-specific” stack profile

has an ID of 0 while the ZigBee stack profile has ID of 1, and a ZigBee PRO stack profile has ID of 2. The stack

profile is configured by the STACK_PROFILE_ID parameter in nwk_globals.h file.

Normally, a device of 1 profile (ex. ZigBee PRO) joins a network with the same profile. If a router of 1 profile (ex.

ZigBee PRO) joins a network with a different profile (ex. ZigBee-2007), it will join as a non-sleeping end device.

An end device of 1 profile (ex. ZigBee PRO) will always be an end device in a network with a different profile.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 4

3. Addressing

3.1 Address types
ZigBee devices have two types of addresses. A 64-bit IEEE address (also called MAC address or Extended address)

and a 16-bit network address (also called logical address or short address).

The 64-bit address is a globally unique address and is assigned to the device for its lifetime. It is usually set by the

manufacturer or during installation. These addresses are maintained and allocated by the IEEE. More information on

how to acquire a block of these addresses is available at http://standards.ieee.org/regauth/oui/index.shtml. The 16-bit

address is assigned to a device when it joins a network and is intended for use while it is on the network. It is only

unique within that network. It is used for identifying devices and sending data within the network.

3.2 Network address assignment

3.2.1 Tree Addressing

ZigBee 2007 uses a distributed addressing scheme for assigning the network addresses. This scheme ensures that all

assigned network addresses are unique throughout the whole network. This is necessary so that there is no ambiguity

about which device a particular packet should be routed to. Also, the distributed nature of the addressing algorithm

ensures that a device only has to communicate with its parent device to receive a unique network-wide address.

There is no need for network-wide communication for address assignment and this helps in scalability of the

network.

The addressing scheme requires that some parameters are known ahead of time and are configured in each router

that joins the network. These are the MAX_DEPTH, MAX_ROUTERS and MAX_CHILDREN parameters. These are

part of the stack profile and the ZigBee-2007 stack profile has defined values for these parameters (MAX_DEPTH =

5, MAX_CHILDREN = 20, MAX_ROUTERS = 6).

The MAX_DEPTH determines the maximum depth of the network. The coordinator is at depth 0 and its child nodes

are at depth 1 and their child nodes are at depth 2 and so on. Thus the MAX_DEPTH parameter limits how “long” the

network can be physically.

The MAX_CHILDREN parameter determines the maximum number of child nodes that a router (or coordinator) node

can possess.

The MAX_ROUTERS parameter determines the maximum number of router-capable child nodes that a router (or

coordinator) node can possess. This parameter is a subset of the MAX_CHILDREN parameter and the remaining

(MAX_CHILDREN – MAX_ROUTERS) entries are for end devices.

If developers wish to change these values, they need to follow the following steps:

 First it must be ensured that the new values for these parameters are legal. Since the total address space is

limited to about 2
16

, there are limits on how large these parameters can be set to.

 After choosing legal values, the developer needs to ensure not to use the standard stack profile and instead

set it to network-specific (i.e. change the STACK_PROFILE_ID in nwk_globals.h to

NETWORK_SPECIFIC) because the values are different from the values defined for the ZigBee profile.

Then the MAX_DEPTH parameter in nwk_globals.h may be set to the appropriate value.

 In addition, the array’s CskipChldrn and CskipRtrs must be set in the nwk_globals.c file. These

arrays are populated with the values for MAX_CHILDREN and MAX_ROUTERS value for the first

MAX_DEPTH indices followed by a zero value.

http://standards.ieee.org/regauth/oui/index.shtml

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 5

3.2.2 Stochastic Addressing

ZigBee PRO uses a stochastic (random) addressing scheme for assigning the network addresses. This addressing

scheme randomly assigns short addresses to new devices, and then uses the rest of the devices in the network to

ensure that there are no duplicate addresses. When a device joins, it receives its randomly generated address from

its parent. The new network node then generates a “Device Announce” (which contains its new short address and its

extended address) to the rest of the network. If there is another device with the same short address, a node (router)

in the network will send out a broadcast “Network Status – Address Conflict” to the entire network and all devices

with the conflicting short address will change its short address. When the conflicted devices change their address

they issue their own “Device Announce” to check their new address for conflicts within the network.

End devices do not participate in the “Address Conflict”. Their parents do that for them. If an “Address Conflict”

occurs for an end device, its parent will issue the end device a “Rejoin Response” message to change the end

device’s short address and the end device issues a “Device Announce” to check their new address for conflicts

within the network.

When a “Device Announce” is received, the association and binding tables are updated with the new short address,

routing table information is not updated (new routes must be established). If a parent determines that the “Device

Announce” pertains to one of its end device children, but it didn’t come directly from the child, the parent will

assume that the child moved to another parent.

3.3 Addressing in Z-Stack
In order to send data to a device on the ZigBee network, the application generally uses the AF_DataRequest()

function. The destination device to which the packet is to be sent is of type afAddrType_t (defined in

ZComDef.h).

typedef struct

{

 union

 {

 uint16 shortAddr;

 ZLongAddr_t extAddr;

 } addr;

 afAddrMode_t addrMode;

 byte endPoint;

} afAddrType_t;

Note that in addition to the network address, the address mode parameter also needs to be specified. The destination

address mode can take one of the following values (AF address modes are defined in AF.h)

typedef enum

{

 afAddrNotPresent = AddrNotPresent,

 afAddr16Bit = Addr16Bit,

 afAddr64Bit = Addr64Bit,

 afAddrGroup = AddrGroup,

 afAddrBroadcast = AddrBroadcast

} afAddrMode_t;

The address mode parameter is necessary because, in ZigBee, packets can be unicast, multicast or broadcast. A

unicast packet is sent to a single device, a multicast packet is destined to a group of devices and a broadcast packet is

generally sent to all devices in the network. This is explained in more detail below.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 6

3.3.1 Unicast

This is the normal addressing mode and is used to send a packet to a single device whose network address is known.

The addrMode is set to Addr16Bit and the destination network address is carried in the packet.

3.3.2 Indirect

This is when the application is not aware of the final destination of the packet. The mode is set to

AddrNotPresent and the destination address is not specified. Instead, the destination is looked up from a

“binding table” that resides in the stack of the sending device. This feature is called Source binding (see later section

for details on binding).

When the packet is sent down to the stack, the destination address and end point is looked up from the binding table

and used. The packet is then treated as a regular unicast packet. If more than one destination device is found in the

binding table, a copy of the packet is sent to each of them. If no binding entry is found, the packet will not be sent.

3.3.3 Broadcast

This address mode is used when the application wants to send a packet to all devices in the network. The address

mode is set to AddrBroadcast and the destination address can be set to one of the following broadcast addresses:

NWK_BROADCAST_SHORTADDR_DEVALL (0xFFFF) – the message will be sent to all devices in the network

(includes sleeping devices). For sleeping devices, the message is held at its parent until the sleeping device polls for

it or the message is timed out (NWK_INDIRECT_MSG_TIMEOUT in f8wConfig.cfg).

NWK_BROADCAST_SHORTADDR_DEVRXON (0xFFFD) – the message will be sent to all devices that have the

receiver on when idle (RXONWHENIDLE). That is, all devices except sleeping devices.

NWK_BROADCAST_SHORTADDR_DEVZCZR (0xFFFC) – the message is sent to all routers (including the

coordinator).

3.3.4 Group Addressing

This address mode is used when the application wants to send a packet to a group of devices. The address mode is

set to afAddrGroup and the addr.shortAddr is set to the group identifier.

Before using this feature, groups must be defined in the network, see aps_AddGroup() in the Z-Stack API [2]

document.

Note that groups can also be used in conjunction with indirect addressing. The destination address found in the

binding table can be either a unicast or a group address. Also note that broadcast addressing is simply a special case

of group addressing where the groups are setup ahead of time.

Sample code for a device to add itself to a group with identifier 1:

 aps_Group_t group;

 // Assign yourself to group 1

 group.ID = 0x0001;

 group.name[0] = 6; // First byte is string length

 osal_memcpy(&(group.name[1]), “Group1”, 6);

 aps_AddGroup(SAMPLEAPP_ENDPOINT, &group);

3.4 Important Device Addresses
An application may want to know the address of its device and that of its parent. Use the following functions to get

this device’s address, defined in Z-Stack API [2] document:

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 7

 NLME_GetShortAddr() – returns this device’s 16 bit network address.

 NLME_GetExtAddr() – returns this device’s 64 bit extended address.

 Use the following functions to get this device’s parent’s addresses, defined in Z-Stack API [2] document.

Note that the term “Coord” in these functions does not refer to the ZigBee Coordinator, but instead to the

device’s parent (MAC Coordinator):

 NLME_GetCoordShortAddr() – returns this device’s parent’s 16 bit short address.

 NLME_GetCoordExtAddr() – returns this device’s parent’s 64 bit extended address.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 8

4. Binding

Binding is a mechanism to control the flow of messages from one application to another application (or multiple

applications). The binding mechanism is implemented in all devices and is called source binding.

Binding allows an application to send a packet without knowing the destination address, the APS layer determines

the destination address from its binding table, and then forwards the message on to the destination application (or

multiple applications) or group.

4.1 Building a Binding Table
There are 3 ways to build a binding table:

 ZigBee Device Object Bind Request – a commissioning tool can tell the device to make a binding record.

 ZigBee Device Object End Device Bind Request – 2 devices can tell the coordinator that they would like to

setup a binding table record. The coordinator will make the match up and create the binding table entries in

the 2 devices.

 Device Application – An application on the device can build or manage a binding table.

4.1.1 ZigBee Device Object Bind Request

Any device or application can send a ZDO message to another device (over the air) to build a binding record for that

other device in the network. This is called Assisted Binding and it will create a binding entry for the sending device.

4.1.1.1 The Commissioning Application

An application can do this by calling ZDP_BindReq() [defined in ZDProfile.h] with 2 applications

(addresses and endpoints) and the cluster ID wanted in the binding record. The first parameter (target dstAddr) is

the short address of the binding’s source address (where the binding record will be stored). Calling

ZDP_UnbindReq()can be used, with the same parameters, to remove the binding record.

The target device will send back a ZigBee Device Object Bind or Unbind Response message which the ZDO code

on the coordinator will parse and notify ZDApp.c by calling ZDApp_ProcessMsgCBs() with the status of the

action.

For the Bind Response, the status returned from the coordinator will be ZDP_SUCCESS, ZDP_TABLE_FULL,

ZDP_INVALID_EP, or ZDP_NOT_SUPPORTED.

For the Unbind Response, the status returned from the coordinator will be ZDP_SUCCESS, ZDP_NO_ENTRY,

ZDP_INVALID_EP, or ZDP_NOT_SUPPORTED.

4.1.1.2 ZigBee Device Object End Device Bind Request
This mechanism uses a button press or other similar action at the selected devices to bind within a specific timeout

period. The End Device Bind Request messages are collected at the coordinator within the timeout period and a

resulting Binding Table entry is created based on the agreement of profile ID and cluster ID. The default end device

binding timeout (APS_DEFAULT_MAXBINDING_TIME) is 16 seconds (defined in nwk_globals.h), but can be

changed if added to f8wConfig.cfg or as a compile flag.

For the Coordinator End Device Binding process, the coordinator registered ZD_RegisterForZDOMsg() to

receive End Device Bind Request, Bind Response and Unbind Response ZDO messages in

ZDApp_RegisterCBs() defined in ZDApp.c. When these message are received they are sent to

ZDApp_ProcessMsgCBs(), where they are parsed and processed.

Coordinator end device binding is a toggle process. Meaning that the first time you go through the process, it will

create a binding entry in the requesting devices. Then, when you go through the process again, it will remove the

bindings in the requesting devices. That’s why, in the following process, it will send an unbind, and wait to see if

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 9

the unbind was successful. If the unbind was successful, the binding entry must have existed and been removed,

otherwise it sends a binding request to make the entry.

When the coordinator receives 2 matching End Device Bind Requests, it will start the process of creating source

binding entries in the requesting devices. The coordinator follows the following process, assuming matches were

found in the ZDO End Device Bind Requests:

1. Send a ZDO Unbind Request to the first device. The End Device Bind is toggle process, so the unbind

is sent first to remove an existing bind entry.

2. Wait for the ZDO Unbind Response, if the response status is ZDP_NO_ENTRY, send a ZDO Bind

Request to make the binding entry in the source device. If the response status is ZDP_SUCCESS,

move on to the cluster ID for the first device (the unbind removed the entry – toggle).

3. Wait for the ZDO Bind Response. When received, move on to the next cluster ID for the first device.

4. When the first device is done, do the same process with the second device.

5. When the second device is done, send the ZDO End Device Bind Response messages to both the first

and second device.

4.1.2 Device Application Binding Manager

Another way to enter binding entries on the device is for the application to manage the binding table for itself.

Meaning that the application will enter and remove binding table entries locally by calling the following binding

table management functions, see Z-Stack API [2] Document – Binding Table Management section:

 bindAddEntry() – Add entry to binding table

 bindRemoveEntry() – Remove entry from binding table

 bindRemoveClusterIdFromList() – Remove a cluster ID from an existing binding table entry

 bindAddClusterIdToList() – Add a cluster ID to an existing binding table entry

 bindRemoveDev() – Remove all entries with an address reference

 bindRemoveSrcDev() – Remove all entries with a referenced source address

 bindUpdateAddr () – Update entries to another address

 bindFindExisting () – Find a binding table entry

 bindIsClusterIDinList() – Check for an existing cluster ID in a table entry

 bindNumBoundTo() – Number of entries with the same address (source or destination)

 bindNumOfEntries() – Number of table entries

 bindCapacity() – Maximum entries allowed

 BindWriteNV() – Update table in NV.

4.2 Configuring Source Binding
To enable source binding in your device include the REFLECTOR compile flag in f8wConfig.cfg. Also in

f8wConfig.cfg, look at the 2 binding configuration items (NWK_MAX_BINDING_ENTRIES &

MAX_BINDING_CLUSTER_IDS). NWK_MAX_BINDING_ENTRIES is the maximum number of entries in the

binding table and MAX_BINDING_CLUSTER_IDS is the maximum number of cluster IDs in each binding entry.

The binding table is maintained in static RAM (not allocated), so the number of entries and the number of cluster

IDs for each entry really affect the amount of RAM used. Each binding table entry is 6 bytes plus

(MAX_BINDING_CLUSTER_IDS * 2 bytes). Besides the amount of static RAM used by the binding table, the

binding configuration items also affect the number of entries in the address manager.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 10

5. Routing

5.1 Overview
A mesh network is described as a network in which the routing of messages is performed as a decentralized,

cooperative process involving many peer devices routing on each others’ behalf.

The routing is completely transparent to the application layer. The application simply sends data destined to any

device down to the stack which is then responsible for finding a route. This way, the application is unaware of the

fact that it is operating in a multi-hop network.

Routing also enables the “self healing” nature of ZigBee networks. If a particular wireless link is down, the routing

functions will eventually find a new route that avoids that particular broken link. This greatly enhances the

reliability of the wireless network and is one of the key features of ZigBee.

Many-to-one routing is a special routing scheme that handles the scenario where centralized traffic is involved. It is

part of the ZigBee PRO feature set to help minimize traffic particularly when all the devices in the network are

sending packets to a gateway or data concentrator. Many-to-one route discovery is described in details in Section

5.4.

5.2 Routing protocol
ZigBee uses a routing protocol that is based on the AODV (Ad-hoc On-demand Distance Vector) routing protocol

for ad-hoc networks. Simplified for use in sensor networks, the ZigBee routing protocol facilitates an environment

capable of supporting mobile nodes, link failures and packet losses.

Neighbor routers are routers that are within radio range of each other. Each router keeps track of their neighbors in

a “neighbor table”, and the “neighbor table” is updated when the router receives any message from a neighbor router

(unicast, broadcast or beacon).

When a router receives a unicast packet, from its application or from another device, the NWK layer forwards it

according to the following procedure. If the destination is one of the neighbors of the router (including its child

devices) the packet will be transmitted directly to the destination device. Otherwise, the router will check its routing

table for an entry corresponding to the routing destination of the packet. If there is an active routing table entry for

the destination address, the packet will be relayed to the next hop address stored in the routing entry. If a single

transmission attempt fails, the NWK layer will repeat the process of transmitting the packet and waiting for the

acknowledgement, up to a maximum of NWK_MAX_DATA_RETRIES times. The maximum data retries in the NWK

layer can be configured in f8wconfig.cfg. If an active entry cannot be found in the routing table or using an

entry failed after the maximum number of retries, a route discovery is initiated and the packet is buffered until that

process is completed.

ZigBee End Devices do not perform any routing functions. An end device wishing to send a packet to any device

simply forwards it to its parent device which will perform the routing on its behalf. Similarly, when any device

wishes to send a packet to an end device and initiate route discovery, the parent of the end device responds on its

behalf.

Note that the ZigBee Tree Addressing (non-PRO) assignment scheme makes it possible to derive a route to any

destination based on its address. In Z-Stack, this mechanism is used as an automatic fallback in case the regular

routing procedure cannot be initiated (usually, due to lack of routing table space).

Also in Z-Stack, the routing implementation has optimized the routing table storage. In general, a routing table

entry is needed for each destination device. But by combining all the entries for end devices of a particular parent

with the entry for that parent device, storage is optimized without loss of any functionality.

ZigBee routers, including the coordinator, perform the following routing functions (i) route discovery and selection

(ii) route maintenance (iii) route expiry.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 11

5.2.1 Route Discovery and Selection

Route discovery is the procedure whereby network devices cooperate to find and establish routes through the

network. A route discovery can be initiated by any router device and is always performed in regard to a particular

destination device. The route discovery mechanism searches all possible routes between the source and destination

devices and tries to select the best possible route.

Route selection is performed by choosing the route with the least possible cost. Each node constantly keeps track of

"link costs" to all of its neighbors. The link cost is typically a function of the strength of the received signal. By

adding up the link costs for all the links along a route, a “route cost” is derived for the whole route. The routing

algorithm tries to choose the route with the least “route cost”.

Routes are discovered by using request/response packets. A source device requests a route for a destination address

by broadcasting a Route Request (RREQ) packet to its neighbors. When a node receives an RREQ packet it in turn

rebroadcasts the RREQ packet. But before doing that, it updates the cost field in the RREQ packet by adding the

link cost for the latest link and makes an entry in its Route Discovery Table (5.3.2). This way, the RREQ packet

carries the sum of the link costs along all the links that it traverses. This process repeats until the RREQ reaches the

destination device. Many copies of the RREQ will reach the destination device traveling via different possible

routes. Each of these RREQ packets will contain the total route cost along the route that it traveled. The destination

device selects the best RREQ packet and sends back a Route Reply (RREP) back to the source.

The RREP is unicast along the reverse routes of the intermediate nodes until it reaches the original requesting node.

As the RREP packet travels back to the source, the intermediate nodes update their routing tables to indicate the

route to the destination. The Route Discovery Table, at each intermediate node, is used to determine the next hop

of the RREP traveling back to the source of the RREQ and to make the entry in to the Routing Table.

Once a route is created, data packets can be sent. When a node loses connectivity to its next hop (it doesn’t receive

a MAC ACK when sending data packets), the node invalidates its route by sending an RERR to all nodes that

potentially received its RREP and marks the link as bad in its Neighbor Table. Upon receiving a RREQ, RREP or

RERR, the nodes update their routing tables.

5.2.2 Route maintenance

Mesh networks provide route maintenance and self healing. Intermediate nodes keep track of transmission failures

along a link. If a link (between neighbors) is determined as bad, the upstream node will initiate route repair for all

routes that use that link. This is done by initiating a rediscovery of the route the next time a data packet arrives for

that route. If the route rediscovery cannot be initiated, or it fails for some reason, a route error (RERR) packet is

sent back to source of the data packet, which is then responsible for initiating the new route discovery. Either way

the route gets re-established automatically.

5.2.3 Route expiry

The routing table maintains entries for established routes. If no data packets are sent along a route for a period of

time, the route will be marked as expired. Expired routes are not deleted until space is needed. Thus routes are not

deleted until it is absolutely necessary. The automatic route expiry time can be configured in f8wconfig.cfg.

Set ROUTE_EXPIRY_TIME to expiry time in seconds. Set to 0 in order to turn off route expiry feature.

5.3 Table storage
The routing functions require the routers to maintain some tables.

5.3.1 Routing table

Each ZigBee router, including the ZigBee coordinator, contains a routing table in which the device stores

information required to participate in the routing of packets. Each routing table entry contains the destination

address, the next hop node, and the link status. All packets sent to the destination address are routed through the next

hop node. Also entries in the routing table can expire in order to reclaim table space from entries that are no longer

in use.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 12

Routing table capacity indicates that a device routing table has a free routing table entry or it already has a routing

table entry corresponding to the destination address. The routing table size is configured in f8wconfig.cfg.

Set MAX_RTG_ENTRIES to the number of entries in the (default is 40). See the section on Route Maintenance for

route expiration details.

5.3.2 Route discovery table

Router devices involved in route discovery, maintain a route discovery table. This table is used to store temporary

information while a route discovery is in progress. These entries only last for the duration of the route discovery

operation. Once an entry expires it can be used for another route discovery operation. Thus this value determines the

maximum number of route discoveries that can be simultaneously performed in the network. This value is

configured by setting the MAX_RREQ_ENTRIES in f8wconfig.cfg.

5.4 Many-to-One Routing Protocol
The following explains many-to-one and source routing procedure for users’ better understanding of ZigBee routing

protocol. In reality, all routings are taken care in the network layer and transparent to the application. Issuing many-

to-one route discovery and route maintenance are application decisions.

5.4.1 Many-to-One Routing Overview

Many-to-one routing is adopted in ZigBee PRO to help minimize traffic particularly when centralized nodes are

involved. It is common for low power wireless networks to have a device acting as a gateway or data concentrator.

All nodes in the networks shall maintain at least one valid route to the central node. To achieve this, all nodes have

to initiate route discovery for the concentrator, relying on the existing ZigBee AODV based routing solution. The

route request broadcasts will add up and produce huge network traffic overhead. To better optimize the routing

solution, many-to-one routing is adopted to allow a data concentrator to establish routes from all nodes in the

network with one single route discovery and minimize the route discovery broadcast storm.

Source routing is part of the many-to-one routing that provides an efficient way for concentrator to send response or

acknowledgement back to the destination. The concentrator places the complete route information from the

concentrator to the destination into the data frame which needs to be transmitted. It minimizes the routing table size

and route discovery traffic in the network.

5.4.2 Many-to-One Route Discovery

The following figure shows an example of the many-to-one route discovery procedure. To initiate many-to-one

route discovery, the concentrator broadcast a many-to-one route request to the entire network. Upon receipt of the

route request, every device adds a route table entry for the concentrator and stores the one hop neighbor that relays

the request as the next hop address. No route reply will be generated.

C

RREQ

RREQ

RREQ

RREQ

RREQ
RREQ

RREQ
RREQ

Concentrator

Router

C

RREQ - Route Request

Figure 1: Many-to-one route discovery illustration

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 13

Many-to-one route request command is similar to unicast route request command with same command ID and

payload frame format. The option field in route request is many-to-one and the destination address is 0xFFFC. The

following Z-Stack API can be used for the concentrator to send out many-to-one route request. Please refer to the Z-

Stack API [2] documentation for detailed usage about this API.

 ZStatus_t NLME_RouteDiscoveryRequest(uint16 DstAddress,

 byte options, uint8 radius)

The option field is a bitmask to specify options for the route request. It can have the following values:

Value Description

0x00 Unicast route discovery

0x01 Many-to-one route discovery with route cache (the

concentrator does not have memory constraints).

0x03 Many-to-one route discovery with no route cache (the

concentrator has memory constraints)

When the option field has value 0x01 or 0x03, the DstAddress field will be overwritten with the many-to-one

destination address 0xFFFC. Therefore, user can pass any value to DstAddress in the case of many-to-one route

request.

5.4.3 Route Record Command

The above many-to-one route discovery procedure establishes routes from all devices to the concentrator. The

reverse routing (from concentrator to other devices) is done by route record command (source routing scheme). The

procedure of source routing is illustrated in Figure 2. R1 sends data packet DATA to the concentrator using the

previously established many-to-one route and expects an acknowledgement back. To provide a route for the

concentrator to send the ACK back, R1 sends route record command along with the data packet which records the

routing path the data packet goes through and offers the concentrator a reverse path to send the ACK back.

C

DATA

DATA

DATA

Concentrator

Router

C

RREC[Relay list] – Route Record Command

DATA – Data sent from R1 to the concentrator

ACK[Source route, Ack payload] – Ack packet from the Concentrator to

R1.

R1

R2

R3

RREC[]

ACK[ack]
RREC[R2]

ACK[(R2,R3), ack]

RREC[R2,R3]

ACK[(R2,R3), ack]

Figure 2: Route record command (source routing) illustration

Upon receipt of the route record command, devices on the relay path will append their own network addresses to the

relay list in the route record command payload. By the time the route record command reaches the concentrator, it

includes the complete routing path through which the data packet is relayed to the concentrator. When the

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 14

concentrator sends ACK back to R1, it shall include the source route (relay list) in the network layer header of the

packet. All devices receiving the packet shall relay the packet to the next hop device according to the source route.

For concentrator with no memory constraints, it can store all route record entries it receives and use them to send

packets to the source devices in the future. Therefore, devices only need to send route record command once.

However, for concentrator without source route caching capability, devices always need to send route record

commands along with data packets. The concentrator will store the source route temporarily in the memory and then

discard it after usage.

In brief, many-to-one routing is an efficient enhancement to the regular ZigBee unicast routing when most devices

in the network are funneling traffic to a single device. As part of the many-to-one routing, source routing is only

utilized under certain circumstances. First, it is used when the concentrator is responding to a request initiated by the

source device. Second, the concentrator should store the source route information for all devices if it has sufficient

memory. If not, whenever devices issue request to the concentrator, they should also send route record along with it.

5.4.4 Many-to-One Route Maintenance

If a link failure is encountered while a device is forwarding a many-to-one routed frame (notice that a many-to-one

routed frame itself has no difference from a regular unicast data packet, however, the routing table entry has a field

to specify that the destination is a concentrator), the device will generate a network status command with code

“Many-to-one route failure”. The network status command will be relayed to the concentrator through a random

neighbor and hopefully that neighbor still has a valid route to the concentrator. When the concentrator receives the

route failure, the application will decide whether or not to re-issue a many-to-one route request.

When the concentrator receives network status command indicating many-to-one route failure, it passes the

indication to the ZDO layer and the following ZDO callback function in ZDApp.c is called:

void ZDO_ManytoOneFailureIndicationCB()

By default, this function will redo a many-to-one route discovery to recover the routes. You can modify this function

if you want a more complicated process other than the default.

5.5 Routing Settings Quick Reference

Setting Routing Table Size

Set MAX_RTG_ENTRIES

Note: the value must be greater than 4. (See

f8wConfig.cfg)

Setting Route Expiry Time
Set ROUTE_EXPIRY_TIME to expiry time in seconds. Set to

0 in order to turn off route expiry. (See f8wConfig.cfg)

Setting Route Discovery Table Size

Set MAX_RREQ_ENTRIES to the maximum number of

simultaneous route discoveries enabled in the network. (See

f8wConfig.cfg)

Enable Concentrator Set CONCENTRATOR_ENABLE (See ZGlobals.h)

Setting Concentrator Property – With Route

Cache
Set CONCENTRATOR_ROUTE_CACHE (See ZGlobals.h)

Setting Source Routing Table Size Set MAX_RTG_SRC_ENTRIES (See ZGlobals.h)

Setting Default Concentrator Broadcast Radius Set CONCENTRATOR_RADIUS (See ZGlobals.h)

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 15

5.6 Router Off-Network Association Cleanup

In case a ZigBee Router gets off network for a long period of time, its children will try to join an alternative parent.

When the router is back online, the children will still appear in its child table, preventing proper routing of egress

traffic to them.

In order to avoid this, it is recommended that routers prone to get off and on the network will have

zgRouterOffAssocCleanup flag set to TRUE (mapped to NV item:

ZCD_NV_ROUTER_OFF_ASSOC_CLEANUP):

 uint8 cleanupChildTable = TRUE;

 zgSetItem(ZCD_NV_ROUTER_OFF_ASSOC_CLEANUP, sizeof(cleanupChildTable),

 &cleanupChildTable);

When enabled, deprecated end device entries will be removed from the child table if traffic received from them was

routed by another parent.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 16

6. ZDO Message Requests

The ZDO module provides functions to send ZDO service discovery request messages and receive ZDO service

discovery response messages. The following flow diagram illustrates the function calls need to issue an IEEE

Address Request and receive the IEEE Address Response for an application.

Other Devices ZDO Layer
Application Layer

ZDO_RegisterForZDOMsg(taskID,

IEEE_addr_rsp);

Register with ZDO that you want the

ZDO IEEE Address Response

Request a ZDO IEEE Address RequestZDP_IEEEAddrReq(devAddr, ...);

Over the air Request

Over the air Response

Osal Message (ZDO_CB_MSG) for the ZDO

IEEE Address Response (IEEE_addr_rsp)

This message is delivered to the

application’s event processor as an

OSAL message.

ZDO_ParseAddrRsp(inMsg);

Parse the incoming message. The

function returns an allocated structure

that contains the IEEE Address

Response fields.

ZDO_RemoveRegisteredCB(taskID,

IEEE_addr_rsp);

Remove the registration for all incoming

IEEE Address Response messages.

Figure 3: ZDO IEEE Address Request and Response

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 17

In the following example, an application would like to know when any new devices join the network. The

application would like to receive all ZDO Device Announce (Device_annce) messages.

Other Devices ZDO Layer
Application Layer

ZDO_RegisterForZDOMsg(taskID,

Device_annce);

Register with ZDO that you want all ZDO

Device Announce Messages

Over the Air Device Announce

Osal Message (ZDO_CB_MSG) for the ZDO

Device Annouce (Device_annce)

This message is delivered to the

application’s event processor as an

OSAL message.

ZDO_ParseDeviceAnnce(inMsg, pAnnce);

Parse the incoming message. The

application passes into the function a

pointer to the Device Annouce structure.

The parsing function will parse the

incoming message into that structure.

Figure 4: ZDO Device Announce delivered to an application

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 18

7. Portable Devices

End devices are automatically portable. Meaning that when an end device detects that its parent isn’t responding

(out of range or incapacitated) it will try to rejoin the network (joining a new parent). There are no setup or

compile flags to setup this option.

The end device detects that a parent isn’t responding either through polling (MAC data requests) failures and/or

through data message failures. The sensitivity to the failures (amount of consecutive errors) is controlled by by

setting has_pollFailureRetries = true and pollFailureRetries to number of failures (the higher

the number – the less sensitive and the longer it will take to rejoin), in zstack_sysConfigWriteReq_t in the

call to Zstackapi_sysConfigWriteReq().

When the network layer detects that its parent isn’t responding, it will initiate a “rejoin”. The rejoin process will

first orphan-scan for an existing parent (the parent responds with a coordinator realignment if it recognizes the end

device. If no parent is found during the orphan scan, the device will perform a network scan for a potential parent

and rejoin (network rejoin command) the network with the potential parent. When searching for its parent (network

discovery), the device will perform the scan on the last known active channel first, then switch to a scan on all

channels.

In a secure network, it is assumed that the device already has a key and a new key isn’t issued to the device.

The end device’s short address is retained when it moves from parent to parent; routes to the moved end device have

to be re-established automatically.

If the end device loses its parent while polling, it scans the currently active channel and attempts a secure rejoin, if it

can’t find its network it will attempt a scan of all channels. If attempts fail for a secure rejoin (current and all

channels), the network key is removed and the device will attempt a trust center rejoin (unsecure).

When an end device is aged out, it will attempt to rejoin the network. Rejoin does not depend on state of Associate

Permit flag. When the end device is in rejoin state (scan and rejoin attempts), it will be in the rejoin state for a

defined period of time (15 minutes default) and then goes into a back off period(silent state) (15 minutes default),

then cycle back to the rejoin state. These durations can be configured by using the API functions -

ZDApp_SetRejoinScanDuration() and ZDApp_SetRejoinBackoffDuration().

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 19

DEV_INIT

DEV_NWK_
DISC

DEV_NWK_
REJOIN

(devStartMode == MODE_JOIN ||
devStartMode == MODE_REJOIN)

&&
ZDApp_NetworkInit()

devStartMode == MODE_REJOIN
&& found a parent to rejoin

DEV_END_
DEVICE

(SECURE == 1 &&
secure rejoined)

|| (SECURED == 0 &&
unsecure rejoined)

DEV_END_
DEVICE_
UNAUTH

SECURE == 1 &&
unsecure rejoined

Authenticated

DEV_NWK_
JOIN

devStartMode == MODE_JOIN
&& found a parent to join

SECURE == 1
&& joined

SECURED == 0
&& joined

Failed to rejoin

Failed to join

Authentication failed

DEV_NWK_
ORPHAN

devStartMode == MODE_RESUME

SECURE == 1 &&
rejoined &&

Nwk key not available

(SECURE == 1 &&
rejoined &&

Nwk key available)
|| SECURE == 0

Orphan scan failed

Left the Nwk
with rejoin=0

Orphaned

DEV_NWK_
BACKOFF

ZDO_REJOIN_BACKOFF
event

ZDO_REJOIN_BACKOFF
event

Left the Nwk
with rejoin=1

Figure 5. Rejoin State Diagram

8. End-to-end acknowledgements

For non-broadcast messages, there are basically 2 types of message retry: end-to-end acknowledgement (APS

ACK) and single-hop acknowledgement (MAC ACK). MAC ACKs are always on by default and are usually

sufficient to guarantee a high degree of reliability in the network. To provide additional reliability, as well as to

enable the sending device get confirmation that a packet has been delivered to its destination, APS

acknowledgements may be used.

APS acknowledgement is done at the APS layer and is an acknowledgement system from the destination device to

the source device. The sending device will hold the message until the destination device sends an APS ACK

message indicating that it received the message. This feature can be enabled/disabled for each message sent with the

options field of the call to AF_DataRequest(). The options field is a bit map of options, so OR in

AF_ACK_REQUEST to enable APS ACK for the message that you are sending. The number of times that the

message is retried (if APS ACK message isn’t received) and the timeout between retries are configuration items in

f8wConfig.cfg. APSC_MAX_FRAME_RETRIES is the number of retries the APS layer will send the

message if it doesn’t receive an APS ACK before giving up. APSC_ACK_WAIT_DURATION_POLLED is the time

between retries.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 20

9. Miscellaneous

9.1 Configuring channel
Every device must have a DEFAULT_CHANLIST (in f8wConfig.cfg) that controls the channel selection. For a

ZigBee Coordinator, this list will be used to scan for a channel with the least amount of noise. For ZigBee Routers

and End Devices, this list will be used to scan for existing networks to join.

9.2 Configuring the PAN ID and network to join
This is an optional configuration item to control which network a ZigBee Router or End Device will join. The

ZDO_CONFIG_PAN_ID parameter in f8wConfig.cfg can be set to a value (between 0 and 0xFFFE). A

coordinator will use this value as the PAN ID of the network that it starts. A router or end device will only join a

network that has a PAN ID configured in this parameter. To turn this feature off, set the parameter to a value of

0xFFFF.

For further control of the joining procedure, the ZDO_NetworkDiscoveryConfirmCB function in the

ZDApp.c should be modified. ZDO_NetworkDiscoveryConfirmCB() is called when the network layer has

finished with the Network Discovery process, started by calling NLME_NetworkDiscoveryRequest()

defined in the Z-Stack API [2] document.

9.3 Maximum payload size
The maximum payload size for an application is based on several factors. The MAC layer provides a constant

payload length of 116 (can be changed in f8wConfig.cfg – MAC_MAX_FRAME_SIZE). The NWK layer

requires a fixed header size, one size with security and one without security. The APS layer has a required, but

variable, header size based on a variety of settings, including the ZigBee Protocol Version, APS frame control

settings, etc. Ultimately, the user does not have to calculate the maximum payload size using the aforementioned

factors. The AF module provides an API that allows the user to query the stack for the maximum payload size, or

the maximum transport unit (MTU). The user can call the function, afDataReqMTU() (see AF.h) which will

return the MTU, or maximum payload size.

typedef struct

{

 uint8 kvp;

 APSDE_DataReqMTU_t aps;

} afDataReqMTU_t;

uint8 afDataReqMTU(afDataReqMTU_t* fields)

Currently the only field that should be set in the afDataReqMTU_t structure is kvp, which indicates whether

KVP is being used and this field should be set to FALSE. The aps field is reserved for future use.

9.4 Leave Network
The ZDO Management implements the function, ZDO_ProcessMgmtLeaveReq(), which offers access to the

“NLME-LEAVE.request” primitive. The “NLME-LEAVE.request” allows a device to remove itself or remove a

child device. The ZDO_ProcessMgmtLeaveReq() removes the device based on the provided IEEE address.

If a device removes itself, it will wait for approximately 5 seconds and then reset. If a device removes a child device

it will remove the device from the local “association table”. The NWK address will only be reused in the case

where a child device is a ZigBee End Device. In the case of a child ZigBee Router, the NWK address will not be

reused.

If the parent of a child device leaves the network, the child will stay on the network.

In version R20 of the ZigBee PRO specification [1], processing of “NWK Leave Request” is configurable for

Routers. The application controls this feature by setting the zgNwkLeaveRequestAllowed variable to TRUE

(default value) or FALSE, to allow/disallow a Router to leave the network when a “NWK Leave Request” is

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 21

received. zgNwkLeaveRequestAllowed is defined and initialized in ZGlobals.c, and the corresponding

NV item, ZCD_NV_NWK_LEAVE_REQ_ALLOWED, is defined in ZComDef.h.

9.5 Descriptors
All devices in a ZigBee network have descriptors that describe the type of device and its applications. This

information is available to be discovered by other devices in the network.

Configuration items are setup and defined in ZDConfig.c and ZDConfig.h. These 2 files also contain the

Node, Power Descriptors and default User Descriptor. Make sure to change these descriptors to define your device.

9.6 Non-Volatile Memory Items

9.6.1 Global Configuration Non-Volatile Memory

Global device configuration items are stored in ZGlobal.c, things like PAN ID, key information, network

settings. The default values for most of these items are stored in f8wConfig.cfg. These items are stored in

RAM and accessed throughout Z-Stack. To initialize the non-volatile memory area to store these items, include the

NV_INIT compile flag in your project.

9.6.2 Network Layer Non-Volatile Memory

A ZigBee device has lots of state information that needs to be stored in non-volatile memory so that it can be

recovered in case of an accidental reset or power loss. Otherwise, it will not be able to rejoin the network or function

effectively.

To enable this feature include the NV_RESTORE compile option. Note that this feature must usually be always

enabled in a real ZigBee network. The ability to turn it off is only intended to be used in the development stage.

The ZDO layer is responsible for the saving and restoring of the Network Layer’s vital information. This includes

the Network Information Base (NIB - Attributes required to manage the network layer of the device); the list of

child and parent devices, and the table containing the application bindings. Also, if security is used, some

information like the frame counters will be stored.

This information is used to restore the device in the network if the device is reset. In ZDApp_Init(), a call to

NLME_RestoreFromNV() instructs the network layer to restore its network state from values stored in NV. This

function call will also initialize the NV space needed for the network layer if the space isn’t already established.

9.6.3 Application Non-Volatile Memory

NV can also be used to save information specific to the application and the User Descriptor is a good example. The

NV item ID for the User Descriptor is ZDO_NV_USERDESC (defined in ZComDef.h).

In ZDApp_InitUserDesc(), which is called from ZDApp_Init(), osal_nv_item_init() is called to

initialize the NV space needed for the User Descriptor. If this is the first time that this function is called for this NV

item, the init function will reserve the space for the User Descriptor and set the default value to

ZDO_DefaultUserDescriptor.

Then when the NV stored User Descriptor is needed, as in ZDO_ProcessUserDescReq(), in ZDObject.c, it

calls osal_nv_read() to get the User Descriptor from NV.

To update the User Descriptor in NV, as in ZDO_ProcessUserDescSet(), in ZDObject.c, it calls

osal_nv_write() to set the updated User Descriptor in NV.

Remember: the NV items are each unique and if your application creates its own NV item is must select an ID from

the application value range (0x0401 – 0x0FFF).

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 22

9.7 Asynchronous Links
An asynchronous link occurs when a node can receive packets from another node but it can’t send packets to that

node. Whenever this happens, this link is not a good link to route packets.

In ZigBee PRO, this problem is overcome by the use of the Network Link Status message. Every router in a ZigBee

PRO network sends a periodic Link Status message. This message is a one hop broadcast message that contains the

sending device’s neighbor list. The idea is this – if you receive your neighbor’s Link Status and you are either

missing from the neighbor list or your receive cost is too low (in the list), you can assume that the link between you

and this neighbor is an asynchronous link and you should not use it for routing.

To change the time between Link Status messages you can change the compile flag

NWK_LINK_STATUS_PERIOD, which is used to initialize _NIB.nwkLinkStatusPeriod. You can also

change _NIB.nwkLinkStatusPeriod directly. Remember that only PRO routers send the link status message

and that every router in the network must have the same Link Status time period.

_NIB.nwkLinkStatusPeriod contains the number of seconds between Link Status messages.

Another parameter that affects the Link Status message is _NIB.nwkRouterAgeLimit (defaulted to

NWK_ROUTE_AGE_LIMIT). This represents the number of Link Status periods that a router can remain in a

device’s neighbor list, without receiving a Link Status from that device, before it becomes aged out of the list. If we

haven’t received a Link Status message from a neighbor within (_NIB.nwkRouterAgeLimit *

_NIB.nwkLinkStatusPeriod), we will age the neighbor out and assume that this device is missing or that it’s

an asynchronous link and not use it.

9.8 Multicast Messages
This feature is a ZigBee PRO only feature (must have ZIGBEEPRO as a compile flag). This feature is similar to

sending to an APS Group, but at the network layer.

 A multicast message is sent from a device to a group as a MAC broadcast message. The receiving device will

determine if it is part of that group: if it isn’t part of the group, it will decrement the non-member radius and

rebroadcast; if it is part of the group it will first restore the group radius and then rebroadcast the message. If the

radius is decremented to 0, the message isn’t rebroadcast.

The difference between multicast and APS group messages can only be seen in very large networks where the non-

member radius will limit the number of hops away from the group.

_NIB.nwkUseMultiCast is used by the network layer to enable multicast (default is TRUE if ZIGBEEPRO

defined) for all Group messages, and if this field is FALSE the APS Group message is sent as a normal broadcast

network message.

zgApsNonMemberRadius is the value of the group radius and the non-member radius. This variable should be

controlled by the application to control the broadcast distribution. If this number is too high, the effect will be the

same as an APS group message. This variable is defined in ZGlobals.c and

ZCD_NV_APS_NONMEMBER_RADIUS (defined in ZComDef.h) is the NV item.

9.9 Fragmentation
Message Fragmentation is a process where a large message – too large to send in one APS packet – is broken down

and transmitted as smaller fragments. The fragments of the larger message are then reassembled by the receiving

device.

To turn on the APS Fragmentation feature in your Z-Stack project include the ZIGBEE_FRAGMENTATION

compile flag. By default, all projects where ZIGBEEPRO is defined include fragmentation and there is no need to

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 23

add the ZIGBEE_FRAGMENTATION compile flag. All applications using fragmentation will include the APS

Fragmentation task APSF_Init() and APSF_ProcessEvent(). If you have an existing application, make

sure the code in the OSAL_xxx.c of your application has included the header file:

#if defined (ZIGBEE_FRAGMENTATION)

 #include "aps_frag.h"

#endif

And in tasksArr[] there is an entry for APSF_ProcessEvent(), like in the example below:

const pTaskEventHandlerFn tasksArr[] = {

 macEventLoop,

 nwk_event_loop,

 Hal_ProcessEvent,

#if defined(MT_TASK)

 MT_ProcessEvent,

#endif

 APS_event_loop,

#if defined (ZIGBEE_FRAGMENTATION)

 APSF_ProcessEvent,

#endif

 ZDApp_event_loop,

#if defined (ZIGBEE_FREQ_AGILITY) || defined (ZIGBEE_PANID_CONFLICT)

 ZDNwkMgr_event_loop,

#endif

 xxx_ProcessEvent /* Where xxx is your application’s name */

};

And osalInitTasks() function calls APSF_Init(), like in the code below;

void osalInitTasks(void)

{

 uint8 taskID = 0;

 tasksEvents = (uint16 *)osal_mem_alloc(sizeof(uint16) * tasksCnt);

 osal_memset(tasksEvents, 0, (sizeof(uint16) * tasksCnt));

 macTaskInit(taskID++);

 nwk_init(taskID++);

 Hal_Init(taskID++);

#if defined(MT_TASK)

 MT_TaskInit(taskID++);

#endif

 APS_Init(taskID++);

#if defined (ZIGBEE_FRAGMENTATION)

 APSF_Init(taskID++);

#endif

 ZDApp_Init(taskID++);

#if defined (ZIGBEE_FREQ_AGILITY) || defined (ZIGBEE_PANID_CONFLICT)

 ZDNwkMgr_Init(taskID++);

#endif

 xxx_Init(taskID); /* Where xxx is your application’s name */

}

When APS Fragmentation is turned on, sending a data request with a payload larger than a normal data request

payload will automatically trigger fragmentation.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 24

Fragmentation parameters are in the structure afAPSF_Config_t, which is part of the Endpoint Descriptor list

epList_t defined in AF.h, default values for these parametes are used when calling afRegister(), to register

the Application’s Endpoint Descriptor, which in turn calls afRegisterExtended(), the default values

APSF_DEFAULT_WINDOW_SIZE and APSF_DEFAULT_INTERFRAME_DELAY are defined in ZGlobals.h:

 APSF_DEFAULT_WINDOW_SIZE - The size of a Tx window when using fragmentation. This is the

number of fragments that are sent before an APS Fragmentation ACK is expected. So, if the message is

broken up into 10 fragments and the max window size is 5, then an ACK will be sent by the receiving

device after 5 fragments are received. If one packet of the window size isn’t received, the ACK is not sent

and all the packets (within that window) are resent.

 APSF_DEFAULT_INTERFRAME_DELAY – The delay between fragments within a window. This is used

by the sending device.

These values can be read and set by the application by calling afAPSF_ConfigGet() and

afAPSF_ConfigSet() respectively.

It is recommended that the application/profile update the MaxInTransferSize and MaxOutTransferSize

of the ZDO Node Descriptor for the device, ZDConfig_UpdateNodeDescriptor() in ZDConfig.c. These

fields are initialized with MAX_TRANSFER_SIZE (defined in ZDConfig.h). These values are not used in the

APS layer as maximums, they are information only.

9.9.1 Quick Reference

Compile flag to activate the feature ZIGBEE_FRAGMENTATION

Maximum fragments in a window default value APSF_DEFAULT_WINDOW_SIZE (defined in

ZGlobals.h)

Interframe delay default value APSF_DEFAULT_INTERFRAME_DELAY (defined in

ZGlobals.h)

Application/Profile maximum buffer size MAX_TRANSFER_SIZE (defined in ZDConfig.h)

9.10 Extended PAN IDs
There are two Extended PAN IDs used in the Z-Stack:

 zgApsUseExtendedPANID: This is the 64-bit PAN identifier of the network to join or form. This

corresponds to the ZCD_NV_APS_USE_EXT_PANID NV item.

 zgExtendedPANID: This is the 64-bit extended PAN ID of the network to which the device is joined. If

it has a value of 0x0000000000000000, then the device is not connected to a network. This corresponds to

the ZCD_NV_EXTENDED_PAN_ID NV item.

When a device starts up, it checks the value of zgExtendedPANID. If zgExtendedPANID has a non-zero

value, then the device assumes it has all the network parameters required to operate on a network.

If the device finds it is not connected to a network, then it checks to see if it’s configured to become a ZigBee

Coordinator. If it’s configured as a coordinator, then it will form a network using zgApsUseExtendedPANID if

zgApsUseExtendedPANID has a non-zero value. If zgApsUseExtendedPANID is 0x0000000000000000,

then the device will use its 64-bit Extended Address to form the network.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 25

When the device is not the designated coordinator and zgApsUseExtendedPANID has a non-zero value, then it

will attempt to rejoin the network specified in zgApsUseExtendedPANID. The device will join only the

specified network and the procedure will fail if that network is found to be inaccessible. If

zgApsUseExtendedPANID is equal to 0x0000000000000000, then the device will join the best available

network.

9.11 Rejoining with Pre-Commissioned Network address
During network rejoining process a device that needs to be deployed with a predefined network address shall have

configured the zgApsUseExtendedPANID and the zgNwkCommissionedNwkAddr, this corresponds to the

ZCD_NV_COMMISSIONED_NWK_ADDR NV item.

If configuration element zgNwkCommissionedNwkAddr has a valid short address value during the rejoin

process, the device will put it in the _NIB.nwkDevAddress and use that in the Rejoin Request, otherwise it will

randomly generate the short address and use it in the Rejoin Request.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 26

10. Security

10.1 Overview
ZigBee security is built with the AES block cipher and the CCM* mode of operation as the underlying security

primitive. AES/CCM* security algorithms were developed by external researchers outside of ZigBee Alliance and

are also used widely in other communication protocols.

ZigBee offers the following security features:

 Infrastructure security

 Network access control

 Application data security

10.2 Configuration
In order to have a secure network, first all device images must be built with the preprocessor flag SECURE set equal

to 1. This can be found in the f8wConfig.cfg file.

The default key (defaultKey in nwk_globals.c) can be preconfigured on each device in the network or it can

be configured only on the coordinator and distributed to each device over-the-air as it joins the network. This is

chosen via the zgPreConfigKeys option in ZGlobals.c file. If it is set to TRUE, then the value of default key

must be preconfigured on each device (to the exact same value). If it is set to FALSE, then the default key parameter

needs to be set only on the coordinator device. Note that in the latter case, the key will be distributed to each joining

device over-air. So there is a “moment of vulnerability” during the joining process during which an adversary can

determine the key by listening to the on-air traffic and compromise the network security.

10.3 Network access control
In a secure network, the Trust Center (coordinator) is informed when a device joins the network. The coordinator

has the option of allowing that device to remain on the network or denying network access to that device.

The Trust Center may use any logic to determine if the device should be allowed into the network or not. One option

is for the Trust Center to only allow devices to join during a brief time window. This may be possible, for example,

if the Trust Center has a “push” button. When the button is pressed, it could allow any device to join the network for

a brief time window. Otherwise all join requests would be rejected. A second possible scenario would be to

configure the trust center to accept (or reject) devices based on their IEEE addresses.

This type of policy can be realized by modifying the ZDSecMgrDeviceValidate() function found in the

ZDSecMgr.c module.

10.4 Key Updates
The Trust Center can update the common Network key at its discretion. Application developers have to modify the

Network key update policy. The default Trust Center implementation can be used to suit the developer's specific

policy. An example policy would be to update the Network key at regular periodic intervals. Another would be to

update the NWK key upon user input (like a button-press). The ZDO Security Manager ZDSecMgr.c API provides

this functionality via ZDSecMgrUpdateNwkKey() and ZDSecMgrSwitchNwkKey().

ZDSecMgrUpdateNwkKey() allows the Trust Center to send a new Network key to the dstAddr on the

network. At this point the new Network key is stored as an alternate key in the destination device or devices if

dstAddr was a broadcast address. Once the Trust Center calls ZDSecMgrSwitchNwkKey(), with the

dstAddr of the device or devices, if broadcast, all destination devices will use their alternate key.

10.5 Trust Center Link Key
The ZigBee Alliance defines a default link key ZigBeeAlliance09 in [1]. Its value is defined as

DEFAULT_TC_LINK_KEY in nwk_globals.h. A different value could be used if required by the application

and/or profile.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 27

There are two types of Link Keys that can be used in a network: UNIQUE and GLOBAL. The type of Link Key

used by the local device will determine how APS commands are handled as well the encryption used for those

messages.

To enable all TCLK processing code, either the TC_LINKKEY_JOIN or the SE_PROFILE compiler flag shall be

defined in the project. The application can control the type of Link Key by setting zgApsLinkKeyType, in

ZGlobals.h, to value ZG_GLOBAL_LINK_KEY or ZG_UNIQUE_LINK_KEY. The corresponding NV item for

zgApsLinkKeyType is ZCD_NV_APS_LINK_KEY_TYPE.

10.6 Joining a Network with TCLK
For devices that want to join a network that is using Trust Center Link Key, it is required that all devices have a pre-

configured Trust Center Link Key (TCLK) and that the network key is delivered to joining devices secured with that

link key. There are basically 2 joining scenarios for a joining device:

10.6.1 Multi-hop

When a device joins the network, but its parent isn’t the Trust Center, the transport key command is tunneled from

the Trust Center, through the parent of the joining device, to the joining device. The joining procedure is illustrated

in the following figures. Notice that the APS Update Device command sent from the parent to the trust center will be

encrypted according to the zgApsLinkKeyType configuration and using the highest APS security level. The APS

Tunnel Command with APS Transport Key command as the payload is network layer encrypted but the payload is

APS layer encrypted with the trust center link key between the trust center and the joining device. Finally, The APS

Transport Key command forwarded from the parent to the joining device is APS encrypted with the trust center link

key between the trust center and the joining device.

Parent (Router) Joining Device

Join Request (Assoc Request)

Join Response (Assoc Resp)

APS Transport Key Command

(delivers the network key)

- APS secure

Trust Center

APS Update Device

(Joining Device’s Addresses)

- APS Secure

APS Tunnel Command – Network Secure

Payload: APS Transport Key Command

-APS Secure

Figure 6: Unique Link Key Type – Joining when parent is not the Trust Center

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 28

Parent (Router) Joining Device

Join Request (Assoc Request)

Join Response (Assoc Resp)

APS Transport Key Command

(delivers the network key)

- APS secure

Trust Center

APS Update Device

(Joining Device’s Addresses)

- NWK Secure

APS Tunnel Command – Network Secure

Payload: APS Transport Key Command

-APS Secure

APS Update Device

(Joining Device’s Addresses)

- APS Secure

APS Tunnel Command – Network Secure

Payload: APS Transport Key Command

-APS Secure

APS Transport Key Command

(delivers the network key)

- APS secure

Figure 7: Global Link Key Type – Joining when parent is not the Trust Center

10.6.2 Single-hop

When a device joins the network, and its parent is the Trust Center, the transport key command is encrypted with the

pre-configured Trust Center Link key.

Trust Center Joining Device

Join Request (Assoc Request)

Join Response (Assoc Resp)

APS Transport Key Command (delivers the network key)

- APS secure (key: Trust Center Link Key)

Figure 8: Global/Unique Link Key Type – Joining when parent is the Trust Center

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 29

To enable the TCLK Joining feature, set SECURE=1 in f8wConfig.cfg and include the TC_LINKKEY_JOIN

or the SE_PROFILE compile flag. There are other associated compiler flags, global variables (ZGlobals) and NV

Items.

If zgApsLinkKeyType is set to ZG_UNIQUE_LINK_KEY, unique pre-configured trust center link keys are used

between the Trust Center and each individual device joining the network. If zgApsLinkKeyType is set to

ZG_GLOBAL_LINK_KEY, all devices are using the same pre-configured trust center link key to join the network.

The Global Link Key Type provides a simplified alternative procedure to set up the network.

To start the network using Unique Link Key Type:

 Set zgApsLinkKeyType = ZG_UNIQUE_LINK_KEY (defined in ZGlobals.c), variable

zgUseDefaultTCLK is set internally depending of this value. The NV item for these global variables are

ZCD_NV_APS_LINK_KEY_TYPE and ZCD_NV_USE_DEFAULT_TCLK (defined in ZComDef.h).

 Set compile time option ZDSECMGR_TC_DEVICE_MAX to the maximum number of devices joining the

network. Notice that it has to be no more than 255, as only 255 continuous NV ID space is reserved for

preconfigured trust center link keys.

 All preconfigured trust center links keys are stored as separate NV items. The NV item ids range from

ZCD_NV_TCLK_TABLE_START to ZCD_NV_TCLK_TABLE_START+

ZDSECMGR_TC_DEVICE_MAX-1. Preconfigured trust center link keys are set by configuring the NV

items using SYS_OSAL_NV_WRITE for the attributes listed below:

Attribute Description Value

Id NV ID for the trust center link key. ZCD_NV_TCLK_TABLE_START plus an offset.

Len Length in bytes of the item. 0x20

Offset The memory offset into the NV item. 0x0

Value The data array to be written to the

NV item.

Its byte format is listed in the following table. All

fields follow little endian first.

 Table for byte format of NV item value:

Length 8 Octets 16 Octets 4 Octets 4 Octets

Attribute Field Extended Address Key Data Tx Frame Counter Rx Frame Counter

Description Extended Address of

the peer devices

which shares the

preconfigured tclk

The

preconfigured

trust center link

key data

The Tx frame

counter of the trust

center link key

The Rx frame

counter of the trust

center link key

 To remove a preconfigured trust center link key, simply write all zeros to the NV item.

 It is highly recommended to erase the entire flash before using Unique Link Keys to make sure there is no

existing NV item for the preconfigured trust center link keys.

To start the network using Global Link Key Type:

 Set zgApsLinkKeyType = ZG_GLOBAL_LINK_KEY (defined in ZGlobals.c), variable

zgUseDefaultTCLK is set internally depending of this value. The NV item for these global variables are

ZCD_NV_APS_LINK_KEY_TYPE and ZCD_NV_USE_DEFAULT_TCLK (defined in ZComDef.h).

 The default preconfigured trust center link key is written to NV item ZCD_NV_TCLK_TABLE_START if it

has not been initialized yet. To differentiate the default preconfigured trust center link key, the extended

address for default preconfigured trust center link key is all 0xFFs. The key data is initialized with

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 30

defaultTCLinkKey (defined in nwk_globals.c). The Rx and Tx frame counters are initialized to

all zeros.

 The default preconfigured TCLK can be changed by changing the key data, Rx and Tx frame counter fields

in the NV item directly.

 It is highly recommended to erase the entire flash before using the Global Link Key Type to make sure

there is no existing NV item for the default preconfigured trust center link key.

 To remove the default preconfigured trust center link key, simply write all zeros to that NV item.

Please note that the Unique Link Key and Global Link Key shall be used exclusively.

10.7 Security key data management
Management and access of security keys in NV through MT commands is disabled by default. In order to have

access to security key data, the compiler flag MT_SYS_KEY_MANAGEMENT must be included in the project. It is

highly recommended to disable this compiler flag for production devices, to prevent any potential vulnerability that

comes from having direct access to security key data in NV.

NV IDs for security keys are defined in ZComDef.h and summarized in the table below. Active and Alternate

Network keys are defined as individual items, while Trust Center, Application and Master keys each reserve a range

of NV IDs, allowing up to 255 keys of each type.

Value NV ID Description

ZCD_NV_NWK_ACTIVE_KEY_INFO 0x003A Active Network key

ZCD_NV_NWK_ALTERN_KEY_INFO 0x003B Alternate Network Key

ZCD_NV_TCLK_TABLE_START 0x0101 First element of TCLK table

ZCD_NV_TCLK_TABLE_END 0x01FF Last element of TCLK table

ZCD_NV_APS_LINK_KEY_DATA_START 0x0201 First element of APS Link Key table

ZCD_NV_APS_LINK_KEY_DATA_END 0x02FF Last element of APS Link Key table

ZCD_NV_MASTER_KEY_DATA_START 0x0301 First element of Master Key table

ZCD_NV_MASTER_KEY_DATA_END 0x03FF Last element of Master Key table

10.8 Backwards Interoperability
There is a known interoperability issue when Unique Link Key Type is used and the Trust Center, running R20 Z-

Stack, is in a network with older devices (R19). In version 20 of the ZigBee Specification [1] it is required that the

Trust Center only allow APS command messages APS encrypted, but ZigBee Routers running older versions of Z-

Stack send APS command messages (like Update Device) NWK encrypted only. To overcome that issue, there is a

configuration control item. zgApsAllowR19Sec defined in ZGlobals.c, that the application can set to allow

R19 devices to join the network. The corresponding NV item is ZCD_NV_APS_ALLOW_R19_SECURITY defined

in ZComDef.h.

10.9 Quick Reference

Enabling security Set SECURE = 1 (in f8wConfig.cfg)

Enabling preconfigured Network key Set zgPreConfigKeys = TRUE (in ZGlobals.c)

Setting preconfigured Network key Set defaultKey = {KEY} (in nwk_globals.c)

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 31

Enabling/disabling joining permissions on the

Trust Center
Call ZDSecMgrPermitJoining() (in ZDSecMgr.c)

Specific device validation during joining Modify ZDSecMgrDeviceValidate (in

ZDSecMgr.c)

Network key updates Call ZDSecMgrUpdateNwkKey() and

ZDSecMgrSwitchNwkKey() (in ZDSecMgr.c)

Enabling Pre-Configured Trust Center Link

Keys
Set SECURE = 1 (in f8wConfig.cfg) and include

TC_LINKKEY_JOIN or SE_PROFILE as a compile flag.

Use Global Trust Center Link Key Set zgApsLinkKeyType = ZG_GLOBAL_LINK_KEY

(in ZGlobals.c). The NV item for this global is

ZCD_NV_APS_LINK_KEY_TYPE (defined in

ZComDef.h).

Use Unique Trust Center Link Keys Set zgApsLinkKeyType = ZG_UNIQUE_LINK_KEY

(in ZGlobals.c). The NV item for this global is

ZCD_NV_APS_LINK_KEY_TYPE (in ZComDef.h).

Configure a preconfigured trust center link key for each

device joining the network via SYS_OSAL_NV_WRITE.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 32

11. Network Manager

11.1 Overview
A single device can become the Network Manager. This device acts as the central mechanism for reception of

network:

 Channel Interference reports and changing the channel of the network if interference is detected, and

 PAN ID Conflict reports and changing the PAN ID of the network if conflict is detected.

The default address of the Network Manager is the coordinator. However, this can be updated by sending a

Mgmt_NWK_Update_req command with a different short address for the Network Manager. The device that is the

Network Manager sets the network manager bit in the server mask in the node descriptor and responds to

System_Server_Discovery_req commands.

The Network Manager implementation resides in ZDNwkMgr.c and ZDNwkMgr.h files.

11.2 Channel Interference
The Network Manager implements frequency agility measures in the face of interference. This section explains how,

through the use of the Mgmt_NWK_Update_req and Mgmt_NWK_Update_notify commands, the channel of a

network can be changed.

11.2.1 Channel Interference Detection

Each router or coordinator tracks transmit failures using the Transmit Failure field in the neighbor table and also

keeping a NIB counter for Total Transmissions attempted. Once the total transmissions attempted is over

ZDNWKMGR_MIN_TRANSMISSIONS (20), if the transmit failures exceeds ZDNWKMGR_CI_TX_FAILURE (25)

percent of the messages sent, the device may have detected interference on the channel in use.

The device then takes the following steps:

1. Conduct an energy scan on all channels. If this energy scan does not indicate higher energy on the current

channel than other channels, no action is taken. The device should continue to operate as normal and the

message counters are not reset.

2. If the energy scan does indicate increased energy on the channel in use, a Mgmt_NWK_Update_notify

should be sent to the Network Manager to indicate interference is present. This report is sent as an APS

unicast with acknowledgement and once the acknowledgment is received the total transmit and transmit

failure counters are reset to zero.

3. To avoid a device with communication problems from constantly sending reports to the Network Manager,

the device does not send a Mgmt_NWK_Update_notify more than 4 times per hour.

11.2.2 Channel Interference Resolution

Upon receipt of an unsolicited Mgmt_NWK_Update_notify, the Network Manager applies different methods to best

determine when a channel change is required and how to select the most appropriate channel.

The Network Manger does the following:
1. Upon receipt of the Mgmt_NWK_Update_notify, the Network Manager determines if a channel change is

required using the following criteria:
a. If any single device has more than ZDNWKMGR_CC_TX_FAILURE (50) percent transmission

failures a channel change should be considered.

b. The Network Manager compares the failure rate reported on the current channel against the

stored failure rate from the last channel change. If the current failure rate is higher than the

last failure rate then the channel change is considered.

2. If the above data indicate a channel change should be considered, the Network Manager completes the

following:

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 33

a. Select a single channel based on the Mgmt_NWK_Update_notify based on the lowest energy.

This is the proposed new channel. If this new channel does not have an energy level below an

acceptable threshold ZDNWKMGR_ACCEPTABLE_ENERGY_LEVEL, a channel change

should not be done.

3. Prior to changing channels, the Network Manager stores the energy scan value as the last energy scan

value and the failure rate from the existing channel as the last failure rate.

4. The Network Manager broadcasts (to all routers and coordinator) a Mgmt_NWK_Update_req notifying

devices of the new channel. It then increments the nwkUpdateId parameter in the NIB and beacon

payload, and includes it in the Mgmt_NWK_Update_req. The Network Manager sets a timer based on

the value of ZDNWKMGR_UPDATE_REQUEST_TIMER (i.e., apsChannelTimer) upon issue of a

Mgmt_NWK_Update_req that changes channels and will not issue another such command until this

timer expires.

5. Upon issue of a Mgmt_NWK_Update_req with a change of channels, the local Network Manager sets a

timer equal to the nwkNetworkBroadcastDeliveryTime and switches channels upon expiration of this

timer.

Upon receipt of a Mgmt_NWK_Update_req with a change of channels from the Network Manager, a device sets a

timer equal to the nwkNetworkBroadcastDeliveryTime and switches channels upon expiration of this timer. Each

node stores the received nwkUpdateId in the NIB and beacon payload, and also resets the total transmit count and

the transmit failure counters.

For devices with RxOnWhenIdle equals FALSE, any network channel change will not be received. On these devices

or routers that have lost the network, an active scan is conducted on the channelList in the NIB (i.e.,

apsChannelMask) using the extended PAN ID (EPID) to find the network. If the extended PAN ID is found on

different channels, the device selects the channel with the higher value in the nwkUpdateId parameter. If the

extended PAN ID is not found using the apsChannelMask list, a scan is completed using all channels.

11.2.3 Quick Reference

Setting minimum transmissions attempted for Channel

Interference detection
Set ZDNWKMGR_MIN_TRANSMISSIONS

(in ZDNwkMgr.h)

Setting minimum transmit failure rate for Channel

Interference detection
Set ZDNWKMGR_CI_TX_FAILURE

(in ZDNwkMgr.h)

Setting minimum transmit failure rate for Channel

Change
Set ZDNWKMGR_CC_TX_FAILURE

(in ZDNwkMgr.h)

Setting acceptable energy level threshold for Channel

Change
Set ZDNWKMGR_ACCEPTABLE_ENERGY_LEVEL

(in ZDNwkMgr.h)

Setting APS channel timer for issuing Channel

Changes
Set ZDNWKMGR_UPDATE_REQUEST_TIMER

(in ZDNwkMgr.h)

11.3 PAN ID Conflict
Since the 16-bit PAN ID is not a unique number there is a possibility of a PAN ID conflict in the local

neighborhood. The Network Manager implements PAN ID conflict resolution. This section explains how, through

the use of the Network Report and Update commands, the PAN ID of a network can be updated.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 34

11.3.1 PAN ID Conflict Detection

Any device that is operational on a network and receives a beacon in which the PAN ID of the beacon matches its

own PAN ID but the EPID value contained in the beacon payload is either not present or not equal to

nwkExtendedPANID, is considered to have detected a PAN ID conflict.

A node that has detected a PAN ID conflict sends a Network Report command of type PAN ID conflict to the

designated Network Manager identified by the nwkManagerAddr in the NIB. The Report Information field will

contain a list of all the 16-bit PAN identifiers that are being used in the local neighborhood. The list is constructed

from the results of an ACTIVE scan.

11.3.2 PAN ID Conflict Resolution

On receipt of the Network Report command, the Network Manager selects a new 16-bit PAN ID for the network.

The new PAN ID is chosen at random, but a check is performed to ensure that the chosen PAN ID is not contained

within the Report Information field of the network report command.

Once a new PAN ID has been selected, the Network Manager first increments the NIB attribute nwkUpdateID and

then constructs a Network Update command of type PAN identifier update. The Update Information field is set to

the value of the new PAN ID. After it sends out this command, the Network Manager starts a timer with a value

equal to nwkNetworkBroadcastDeliveryTime seconds. When the timer expires, it changes its current PAN ID to the

newly selected one.

On receipt of a Network Update command of type PAN ID update from the Network Manager, a device (in the same

network) starts a timer with a value equal to nwkNetworkBroadcastDeliveryTime seconds. When the timer expires,

the device changes its current PAN ID to the value contained within the Update Information field. It also stores the

new received nwkUpdateID in the NIB and beacon payload.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 35

12. Inter-PAN Transmission

12.1 Overview
Inter-PAN transmission enables ZigBee devices to perform limited, insecure, and possibly anonymous exchange of

information with devices in their local neighborhood without having to form or join the same ZigBee network.

The Inter-PAN feature is implemented by the Stub APS layer, which can be included in a project by defining the

INTER_PAN compile option and including stub_aps.c and stub_aps.h files in the project.

12.2 Data Exchange
Inter-PAN data exchanges are handled by the Stub APS layer, which is accessible through INTERP-SAP, parallel to

the normal APSDE-SAP:

 The INTERP_DataReq() and APSDE_DataReq() are invoked from AF_DataRequest() to send

Inter-PAN and Intra-PAN messages respectively.

 The INTERP_DataIndication() invokes APSDE_DataIndication() to indicate the transfer of

Inter-PAN data to the local application layer entity. The application then receives Inter-PAN data as a

normal incoming data message (APS_INCOMING_MSG) from the APS sub-layer with the source address

belonging to an external PAN (verifiable by StubAPS_InterPan() API) .

 The INTERP_DataConfirm() invokes afDataConfirm() to send an Inter-PAN data confirm back

to the application. The application receives a normal data confirm (AF_DATA_CONFIRM_CMD) from the

AF sub-layer.

The Stub APS layer also provides interfaces to switch channel for Inter-PAN communication and check for Inter-

PAN messages. Please refer to the Z-Stack API [2] document for detailed description of the Inter-PAN APIs.

The StubAPS_InterPan() API is used to check for Inter-PAN messages. A message is considered as an Inter-

PAN message if it meets one the following criteria:

 The current communication channel is different that the device’s NIB channel, or

 The current communication channel is the same as the device’s NIB channel but the message is destined for

a PAN different than the device’s NIB PAN ID, or

 The current communication channel is the same as the device’s NIB channel and the message is destined

for the same PAN as device’s NIB PAN ID but the destination application endpoint is an Inter-PAN

endpoint (0xFE). This case is true for an Inter-PAN response message that’s being sent back to a requestor.

A typical usage scenario for Inter-PAN communication is as follows. The initiator device:-

 Calls StubAPS_AppRegister() API to register itself with the Stub APS layer

 Calls StubAPS_SetInterPanChannel() API to switch its communication channel to the channel in

use by the remote device

 Specifies the destination PAN ID and address for the Inter-PAN message about to be transmitted

 Calls AF_DataRequest() API to send the message to the remote device through Inter-PAN channel

 Receives back (if required) a message from the remote device that implements the Stub APS layer and is

able to respond

 Calls StubAPS_SetIntraPanChannel() API to switch its communication channel back to its

original channel

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 36

12.2.1 Quick Reference

Setup application as InterPAN application. Call StubAPS_RegisterApp(app_endpoint)

Set InterPAN channel. Call StubAPS_SetInterPanChannel(channel)

Send InterPAN Message. Call AF_DataRequest() with:

 dstPanID different from _NIB.nwkPanId

 dst address endpoint == STUBAPS_INTER_PAN_EP

Receive an InterPAN message. Receive an OSAL AF_INCOMING_MSG_CMD message with an

incoming DstEndPoint == STUBAPS_INTER_PAN_EP

End the InterPAN session by putting back the

IntraPAN channel.
Call StubAPS_SetIntraPanChannel()

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 37

13. ZMAC LQI Adjustment

13.1 Overview
The IEEE 802.15.4 specification provides some general statements on the subject of LQI. From section 6.7.8: "The

minimum and maximum LQI values (0x00 and 0xFF) should be associated with the lowest and highest IEEE

802.15.4 signals detectable by the receiver, and LQI values should be uniformly distributed between these two

limits." From section E.2.3: "The LQI (see 6.7.8) measures the received energy and/or SNR for each received

packet. When energy level and SNR information are combined, they can indicate whether a corrupt packet resulted

from low signal strength or from high signal strength plus interference."

The TI MAC computes an 8-bit “link quality index” (LQI) for each received packet from the 2.4 GHz radio. The

LQI is computed from the raw “received signal strength index” (RSSI) by linearly scaling it between the minimum

and maximum defined RF power levels for the radio. This provides an LQI value that is based entirely on the

strength of the received signal. This can be misleading in the case of a narrowband interferer that is within the

channel bandwidth – the RSSI may be increased even though the true link quality decreases.

The TI radios also provide a “correlation value” that is a measure of the received frame quality. Although not

considered by the TI MAC in LQI calculation, the frame correlation is passed to the ZMAC layer (along with LQI

and RSSI) in MCPS data confirm and data indication callbacks. The ZMacLqiAdjust() function in

zmac_cb.c provides capability to adjust the default TI MAC value of LQI by taking the correlation into account.

13.2 LQI Adjustment Modes
LQI adjustment functionality for received frames processed in zmac_cb.c has three defined modes of operation -

OFF, MODE1, and MODE2. To maintain compatibility with previous versions of Z-Stack which do not provide for

LQI adjustment, this feature defaults to OFF, as defined by an initializer (lqiAdjMode = LQI_ADJ_OFF;) in

zmac_cb.c – developers can select a different default state by changing this statement.

MODE1 provides a simple algorithm to use the packet correlation value (related to SNR) to scale incoming LQI

value (related to signal strength) to 'de-rate' noisy packets. The incoming LQI value is linearly scaled with a

"correlation percentage" that is computed from the raw correlation value between theoretical minimum/maximum

values (LQI_CORR_MIN and LQI_CORR_MAX are defined in ZMAC.h).

MODE2 provides a “stub” for developers to implement their own proprietary algorithm. Code can be added after the

“else if (lqiAdjMode == LQI_ADJ_MODE2)” statement in ZMacLqiAdjust().

13.3 Using LQI Adjustment
There are two ways to enable the LQI adjustment functionality:

(1) Alter the initialization of the lqiAdjMode variable as described in the previous section

(2) Call the function ZMacLqiAdjustMode() from somewhere within the Z-Stack application, most likely

from the application’s task initialization function. See the Z-Stack API [2] document on details of this

function.

The ZMacLqiAdjustMode() function can be used to change the LQI adjustment mode as needed by the

application. For example, a developer might want to evaluate device/network operation using a proprietary MODE2

compared to the default MODE1 or OFF.

Tuning of MODE1 operation can be achieved by altering the values of LQI_CORR_MIN and/or LQI_CORR_MAX.

When using IAR development tools, alternate values for these parameters can be provided as compiler directives in

the IDE project file or in one of Z-Stack’s .cfg files (f8wConfig.cfg, f8wCoord.cfg, etc.). Refer to the

radio’s data sheet for information on the normal minimum/maximum correlation values.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 38

14. Heap Memory Management

14.1 Overview

The OSAL heap memory manager provides a POSIX-like API for allocating and re-cycling dynamic heap memory.

Two important considerations in a low-cost, resource-constrained embedded system, size and speed, have been duly

addressed in the implementation of the heap memory manager.

 Overhead memory cost to manage each allocated block has been minimized – as little as 2 bytes on CPU’s

with one- or two-byte-aligned memory access (e.g. 8051 SOC and MSP430).

 Interrupt latency for the allocation and free operations has been minimized – freeing is immediate with no

computational load other than bounds checks and clearing a bit; allocating is very much sped-up with a

packed long-lived memory block and a dynamically updated first-free pointer for high-frequency small-

block allocations (e.g. OSAL Timers).

14.2 API

14.2.1 osal_mem_alloc()

The osal_mem_alloc() function is a request to the memory manager to reserve a block of the heap.

14.2.1.1 Prototype

void *osal_mem_alloc(uint16 size);

14.2.1.2 Parameters

size – the number of bytes of dynamic memory requested.

14.2.1.3 Return

If a big enough free block is found, the function returns a void pointer to the RAM location of the heap memory

reserved for use. A NULL pointer is returned if there isn’t enough memory to allocate. Any non-NULL pointer

returned must be freed for re-use by invoking osal_mem_free().

14.2.2 osal_mem_free()

The osal_mem_free() function is a request to the memory manager to release a previously reserved block of the

heap so that the memory can be re-used.

14.2.2.1 Prototype

void osal_mem_free(void *ptr);

14.2.2.2 Parameters

ptr – a pointer to the buffer to release for re-use – this pointer must be the non-NULL pointer that was returned by

a previous call to osal_mem_alloc().

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 39

14.2.2.3 Return

None.

14.3 Strategy

Memory management should strive to maintain contiguous free space in the heap, in as few blocks as possible, with

each block as big as possible. Such a general strategy helps to ensure that requests for large memory blocks always

succeed if the total heap size has been set properly for the application’s use pattern.

The following specific strategies have been implemented:

 Memory allocation is not penalized by having to traverse long-lived heap allocations if the system

initialization is implemented as recommended within this guide.

 Memory allocation for small-blocks almost always begins searching at the first free block in the heap.

 Memory allocation attempts to coalesce all contiguous free blocks traversed in an attempt to form a single

free block large enough for an allocation request.

 Memory allocation uses the first free block encountered (or created by coalescing) that is big enough to

meet the request; the memory block is split if it is usefully bigger than the requested allocation.

14.4 Discussion

It is immediately after system task initialization that the effective “start of the heap” mark is set to be the first free

block. Since the memory manager always starts a “walk”, looking for a large enough free block, from the

aforementioned mark, it will greatly reduce the run-time overhead of the walk if all long-lived heap allocations are

packed at the start of the heap so that they will not have to be traversed on every memory allocation. Therefore, any

application should make all long-lived dynamic memory allocations in its respective system initialization routine

(e.g. XXX_Init(), where XXX is the Application Name). Within said system initialization routines, the long-lived

items must be allocated before any short-lived items. Any short-lived items allocated must be freed before returning,

otherwise the long-lived bucket may be fragmented and the run-time throughput adversely affected proportionally to

the number of long-lived items that the OSAL_Memory module is forced to iterate over for every allocation for the

rest of the life of the system. As an example, if the system initialization function starts an OSAL Timer

(osal_start_timerEx()), this may fragment the long-lived bucket because the memory allocated for the timer

will be freed and re-used throughout the life of the system (even if coincidence happens that every free and re-use is

simply for resetting the same timer.) The recommended solution in this case would be to set the event corresponding

to the timer (osal_set_event ()) and then continue to restart the timer as appropriate in the application’s

event handle for the corresponding event (refer to the behavior of the hal_key polling timer and corresponding

event, HAL_KEY_EVENT). On the other hand, a reload timer (osal_start_reload_timer()) is a long-lived

allocation and is recommended to be started during system initialization of all other long-lived items.

The application implementer must ensure that their use of dynamic memory does not adversely affect the operation

of the underlying layers of the Z-Stack. The Z-Stack is tested and qualified with sample applications that make

minimal use of heap memory. Thus, the user application that uses significantly more heap than the sample

applications, or the user application that is built with a smaller value set for MAXMEMHEAP than is set in the sample

applications, may inadvertently starve the lower layers of the Z-Stack to the point that they cannot function

effectively or at all. For example, an application could allocate so much dynamic memory that the underlying layers

of the stack would be unable to allocate enough memory to send and/or receive any OTA messages – the device

would not be seen to be participating OTA.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 40

14.5 Configuration

14.5.1 MAXMEMHEAP

The MAXMEMHEAP constant is usually defined in OnBoard.h. It must be defined to be less than 32768.

MAXMEMHEAP is the number of bytes of RAM that the memory manager will reserve for the heap – it cannot be

changed dynamically at runtime – it must be defined at compile-time. If MAXMEMHEAP is defined to be greater than

or equal to 32768, a compiler error in OSAL_Memory.c will trigger. MAXMEMHEAP does not reflect the total

amount of dynamic memory that the user can expect to be usable because of the overhead cost per memory

allocation.

14.5.2 OSALMEM_PROFILER

The OSALMEM_PROFILER constant is defined locally in OSAL_Memory.c to be FALSE by default.

After the implementation of a user application is mature, the OSAL memory manager may need to be re-tuned in

order to achieve optimal run-time performance with regard to the MAXMEMHEAP and OSALMEM_SMALL_BLKSZ

constants defined. The code enabled by defining the OSALMEM_PROFILER constant to TRUE allows the user to

gather the empirical, run-time results required to tune the memory manager for the application. The profiling code

does the following.

14.5.2.1 OSALMEM_INIT

The OSALMEM_INIT constant is defined locally in OSAL_Memory.c to be ascii ‘X’.

The memory manager initialization sets all of the bytes in the heap to the value of OSALMEM_INIT.

14.5.2.2 OSALMEM_ALOC

The OSALMEM_ALOC constant is defined locally in OSAL_Memory.c to be ascii ‘A’.

The user available bytes of any block allocated are set to the value of OSALMEM_ALOC.

14.5.2.3 OSALMEM_REIN

The OSALMEM_REIN constant is defined locally in OSAL_Memory.c to be ascii ‘F’.

Whenever a block is freed, what had been the user available bytes are set to the value of OSALMEM_REIN.

14.5.2.4 OSALMEM_PROMAX

The OSALMEM_PROMAX constant is defined locally in OSAL_Memory.c to be 8.

OSALMEM_PROMAX is the number of different bucket sizes to profile. The bucket sizes are defined by an array:

 static uint16 proCnt[OSALMEM_PROMAX] = { OSALMEM_SMALL_BLKSZ,

 48, 112, 176, 192, 224, 256, 65535 };

The bucket sizes profiled should be set according to the application being tuned, but the last bucket must always be

65535 as a catch-all. There are 3 metrics kept for each bucket.

 proCur – the current number of allocated blocks that fit in the corresponding bucket size.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 41

 proMax – the maximum number of allocated blocks that corresponded to the bucket size at once.

 proTot – the total number of times that a block was allocated that corresponded to the bucket size.

In addition, there is a count kept of the total number of times that the part of heap reserved for “small blocks” was

too full to allow a requested small-block allocation: proSmallBlkMiss.

14.5.3 OSALMEM_MIN_BLKSZ

The OSALMEM_MIN_BLKSZ constant is defined locally in OSAL_Memory.c.

OSALMEM_MIN_BLKSZ is the minimum size in bytes of a block that is created by splitting a free block into two

new blocks. The 1
st
 new block is the size that is being requested in a memory allocation and it will be marked as in

use. The 2
nd

 block is whatever size is leftover and it will be marked as free. A larger number may result in

significantly faster overall runtime of an application without necessitating any more or not very much more overall

heap size. For example, if an application made a very large number of inter-mixed, short-lived memory allocations

of 2 & 4 bytes each, the corresponding blocks would be 4 & 6 bytes each with overhead. The memory manager

could spend a lot of time thrashing, as it were, repeatedly splitting and coalescing the same general area of the heap

in order to accommodate the inter-mixed size requests.

14.5.4 OSALMEM_SMALL_BLKSZ

The OSALMEM_SMALL_BLKSZ constant is defined locally in OSAL_Memory.c.

The heap memory use of the Z-Stack was profiled using the GenericApp Sample Application and it was empirically

determined that the best worst-case average combined time for a memory allocation and free, during a heavy OTA

load, can be achieved by splitting the free heap into two sections. The first section is reserved for allocations of

smaller-sized blocks and the second section is used for larger-sized allocations as well as for smaller-sized

allocations if and when the first section is full. OSALMEM_SMALL_BLKSZ is the maximum block size in bytes that

can be allocated from the first section.

14.5.5 OSALMEM_SMALLBLK_BUCKET

The OSALMEM_SMALLBLK_BUCKET constant is locally defined in OSAL_Memory.c.

OSALMEM_SMALLBLK_BUCKET is the number of bytes dedicated to the previously described first section of the

heap which is reserved for smaller-sized blocks.

14.5.6 OSALMEM_NODEBUG

The OSALMEM_NODEBUG constant is locally defined in OSAL_Memory.c to be TRUE by default.

The Z-Stack and Sample Applications do not misuse the heap memory API. The onus to be equally correct is on the

user application: in order to provide the minimum throughput latency possible, there are no run-time checks for

correct use of the API. An application can be shown to be correct by defining the OSALMEM_NODEBUG constant to

FALSE. Such a setting will enable code that traps on the following misuse scenario.

 Invoking osal_mem_alloc() with size equal to zero.

Warning: invoking osal_mem_free() with a dangling or invalid pointer cannot be detected.

14.5.7 OSALMEM_PROFILER_LL

The OSALMEM_PROFILER_LL constant is defined locally in OSAL_Memory.c to be FALSE by default.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 42

Normally, the allocations that are packed into the Long-Lived bucket by all of the system initialization should not be

counted during “profiling” because they are not iterated over during run-time. But, in order to properly tune the size

of the Long-Lived bucket for any given Application, this constant should be used for one run on the debugger with a

mature implementation. The numbers used in the following example are for the 8051 SOC, GenericApp, with out-

of-the-box settings and thus using this default:

#define OSALMEM_LL_BLKSZ (OSALMEM_ROUND(417) + (19 * OSALMEM_HDRSZ))

1. Define OSALMEM_PROFILER and OSALMEM_PROFILER_LL to TRUE

2. Set a break point in osal_mem_kick() after this operation:

a. ff1 = tmp – 1;

3. Inspect the variable proCur in an IAR ‘Watch’ window and sum the counts of all of the buckets (19 in

this example) and plug it into the formula above – this is the count of long-lived items.

4. Subtract the value of ff1 (0x1095 in one particular run) from the location of theHeap (0x0ECE in that same

run) and then subtract the sub-total of the count of long-lived items multiplied by the OSALMEM_HDRSZ

(19 * 2 = 38 for this example.)

Further memory profiling should now be done with OSALMEM_PROFILER_LL set back to FALSE so as not to

count the long-lived allocations in the statistics.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 43

15. Compile Options

15.1 Overview
This section provides information and procedures for using compiler options with Texas Instruments Z-Stack™, and

it's recommend that you don't change compile flags that aren't listed in this section.

15.2 Requirements

15.2.1 Target Development System Requirements

Z-Stack is built on top of the IAR Embedded Workbench suite of software development tools (www.iar.com). These

tools support project management, compiling, assembling, linking, downloading, and debugging for various

development platforms. The following are required support for the Z-Stack target development system:

Platform/Target Compiler/Tool

EXP5438 + CC2520 IAR EW430

SmartRF05EB + CC2530 IAR EW8051

SmartRF06EB + CC2538 IAR EWARM

15.3 Using Z-Stack Compile Options

15.3.1 Selecting the Logical Device Type

ZigBee devices can be configured in one of three ways (each of these device types are explained in the Z-Stack

Developer’s Guide), and your application will be hosted on one (or more) of these device types:

 ZigBee Coordinator – This device is configured to start the IEEE 802.15.4 network and will serve as the

PAN Coordinator in that network.

 ZigBee Router – This device is configured to associate with a ZigBee Coordinator, then allow other routers

or end devices to associate with it. It will route data packets in the network.

 ZigBee End Device – This device is configured to join a pre-existing network and will associate with a

ZigBee Coordinator or ZigBee Router.

15.3.2 Locating Compile Options

Compile options for a specific project are located in two places. Options that are rarely, if ever, changed are located

in linker control files, one for each logical device type discussed above. User-defined options and ones that change

to enable/disable features are located in the IAR project file. For demonstration purposes, these two files for the

GenericApp Coordinator project will be examined. Access to all other Z-Stack projects will be similar.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 44

15.3.2.1 Compile Options In Linker Control Files

GenericApp project files are found in the ..\Projects\zstack\Samples\GenericApp\(Platform) folder:

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 45

Open the project by double-clicking on the GenericApp.eww file, select the CoordinatorEB configuration from the

pull-down list below Workspace, and then open the Tools folder. Several linker control files are located in the

Tools folder. This folder contains various configuration files and executable tools used in Z-Stack projects. Generic

compile options are defined in the f8wConfig.cfg file. This file, for example, specifies the channel(s) and the

PAN ID that will be used when a device starts up. This is the recommended location for a user to establish specific

channel settings for their projects. This allows developers set up “personal” channels to avoid conflict with others.

Device specific compile options are located in the f8wCoord.cfg, f8wEndev.cfg, and f8wRouter.cfg

files:

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 46

The GenericApp Coordinator project uses the f8wCoord.cfg file. As shown below, compile options that are

specific to Coordinator devices and options that provide “generic” Z-Stack functions are included in this file:

The f8wCoord.cfg file is used by all projects that build Coordinator devices. Therefore, any change made to this

file will affect all Coordinators. In a similar manner, the f8wRouter.cfg and f8wEnd.cfg files affect all

Router and End-Device projects, respectively.

To add a compile option to all projects of a certain device type, simply add a new line to the appropriate linker

control file. To disable a compile option, comment that option out by placing // at the left edge of the line. You could

also delete the line but this is not recommended since the option might need to be re-enabled at a later time.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 47

15.3.2.2 Compile Options In IAR Project Files

The compile options for each of the supported configurations are stored in the GenericApp.ewp file. To modify these

compile options, first select GenericApp – CoordinatorEB. Then select the Options… item from the Project pull-

down menu:

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 48

Select the C/C++ Compiler item and click on the Preprocessor tab. The compile options for this configuration are

located in the box labeled Defined symbols: (one per line):

To add a compile option to this configuration, simply add the item on a new line within this box. To disable a

compile option, place an ‘x’ at the left edge of the line. Note that the ZTOOL_P1 option has been disabled in the

example shown above. This option could have been deleted but this is not recommended since it might need to be

re-enabled at a later time.

15.3.3 Using Compile Options

Compile options are used to select features that are provided in the source files. Most compile options act as on/off

switches for specific sections within source programs. Some options are used to provide a user-defined numerical

value, such as DEFAULT_CHANLIST, to the compiler to override default values.

Each of the Z-Stack sample applications (ex. GenericApp) provide an IAR project file which specifies the compile

options to be used for that specific project. The programmer can add or remove options as needed to include or

exclude portions of the available software functions. Note that changing compile options may require other changes

to the project file (see 15.3.2). For example, adding the MT_NWK_FUNC option requires MT_NWK.c to be in the list

of source files in the configuration of the device you are building.

The next sections of this document provide lists of the supported compile options with a brief description of what

feature they enable or disable. Options that are listed as “do not change” are required for proper operation of the

compiled programs. Options that are listed as “do not use” are not appropriate for use with the board.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 49

15.4 Supported Compile Options and Definitions

15.4.1 General Compile Options

The compile options in the following table can be changed or set to select desired features, a lot of these compile

options are set and described in f8wConfig.cfg.

APS_DEFAULT_INTERFRAME_DELAY Delay between Tx packets when using fragmentation

APS_DEFAULT_MAXBINDING_TIME
Maximum time in seconds that a Coordinator will wait between receiving

match descriptor bind requests to perform binding

APS_DEFAULT_WINDOW_SIZE Size of a Tx window when using fragmentation

APS_MAX_GROUPS Maximum number of entries allowed in the groups table

APSC_ACK_WAIT_DURATION_POLLED
Number of 2 milliseconds periods a polling End Device will wait for an APS

acknowledgement from the destination device

APSC_MAX_FRAME_RETRIES
Maximum number of retries allowed (at APS layer) after a transmission

failure

ASSERT_RESET
Specifies that the device should reset when there’s an assertion. When not

defined, all LEDs will flash when an assertion occurs.

BEACON_REQUEST_DELAY
Minimum number of milliseconds to delay between each beacon request in a

joining cycle

BLINK_LEDS Enable extended LED blinking functions

DEFAULT_CHANLIST Change this list in f8wConfig.cfg

EXTENDED_JOINING_RANDOM_MASK Mask for the random joining delay

HOLD_AUTO_START Disable automatic start-up of ZDApp event processing loop

LCD_SUPPORTED Enable LCD emulation – text sent to ZTool serial port

MANAGED_SCAN Enable delays between channel scans

MAX_BCAST
Maximum number of simultaneous broadcasts supported by a device at any

given time

MAX_BINDING_CLUSTER_IDS Maximum number of cluster IDs in a binding record

MAX_POLL_FAILURE_RETRIES

Number of times retry to poll parent before indicating loss of synchronization

with parent. Note that larger value will cause longer delay for the child to

rejoin the network

MAX_RREQ_ENTRIES Number of simultaneous route discoveries in network

MAX_RTG_ENTRIES
Number of entries in the regular routing table plus additional entries for route

repair

MAXMEMHEAP

Determines the total memory available for dynamic memory. Every request

for an amount of dynamic memory requires dynamic memory space for

overhead used in managing the allocated memory. So MAXMEMHEAP

does not reflect the total amount of dynamic memory that the user can expect

to be usable. As a rule of thumb, each memory allocation requires at least

2+N bytes, where N represents the word-alignment block size of the target

CPU (e.g., N=1 on the AVR and CC2430 but N=2 on the MSP430).

MAXMEMHEAP must be defined to be less that 32768

NONWK Disable NWK, APS, and ZDO functionality

NV_INIT Enable loading of “basic” NV items at device reset

NV_RESTORE Enables device to save/restore network state information to/from NV

NWK_AUTO_POLL Enable End Device to poll from the parents automatically

NWK_INDIRECT_MSG_TIMEOUT
Number of milliseconds the parent of a polling End Device will hold a

message

NWK_MAX_BINDING_ENTRIES Maximum number of entries in the binding table

NWK_MAX_DATA_RETRIES
The maximum number of times retry looking for the next hop address of a

message

NWK_MAX_DEVICE_LIST Maximum number of devices in the Association/Device list

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 50

NWK_MAX_DEVICES Maximum number of devices in the network

NWK_START_DELAY
Minimum number of milliseconds to hold off the start of the device in the

network and the minimum delay between joining cycles

OSAL_TOTAL_MEM Track OSAL memory heap usage (display if LCD_SUPPORTED)

POLL_RATE

For end devices only: number of milliseconds to wait between data request

polls to its parent. Example POLL_RATE=1000 is a data request every

second. This is changed in f8wConfig.cfg.

POWER_SAVING Enable power saving functions for battery-powered devices

QUEUED_POLL_RATE
This is used after receiving a data indication to poll immediately for queued

messages (in milliseconds)

REFLECTOR Enable binding

REJOIN_POLL_RATE

This is used as an alternate response poll rate only for rejoin request. This

rate is determined by the response time of the parent that the device is trying

to join

RESPONSE_POLL_RATE
This is used after receiving a data confirmation to poll immediately for

response messages (in milliseconds)

ROUTE_EXPIRY_TIME
Number of seconds before an entry expires in the routing table; set to 0 to

turn off route expiry

RTR_NWK Enable Router networking

SECURE Enable ZigBee security (SECURE=0 to disable, SECURE=1 to enable)

ZAPP_Px Enable ZApp messages via serial port Px where x is the port (1 or 2)

ZDAPP_CONFIG_PAN_ID
Coordinator’s PAN ID; used by Routers and End Devices to join PAN with

this ID

ZDO_COORDINATOR Enable the device as a Coordinator

ZIGBEEPRO Enable usage of ZigBee Pro features

ZTOOL_Px Enable ZTool messages via serial port Px where x is the port (1 or 2)

OSC32K_CRYSTAL_INSTALLED

This compilation flag defines whether to use the internal 32 Khz RC OSC (if

set to false) or an external 32 Khz crystal when mounted on board.

Important note: If this compilation flag is not defined, the SW select the

32 Khz external OSC configuration by default (as 253x EM have an

external 32 Khz populated). If your design doesn’t have an external 32 Khz

on board, please make sure you set OSC32K_CRYSTAL_INSTALLED =

FALSE in your compiler project settings.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 51

15.4.2 Non-changeable Compile Options

These compile options in the following table should not be changed or used. Not all of them are available in every

platform:

CPU32MHZ Clock rate of the CPU – 32 MHZ (do not change)

MACSIM Enable MAC simulation (do not use)

NWK_TEST Enable Network test functions (do not use)

15.4.3 Monitor-Test (MT) Compile Options

Please read the Z-Stack Monitor and Test API document before changing any of these compile options. You can

enable the following APIs and function associated with the MT_TASK option, but you must include the MT_TASK

option.

MT_TASK Enable Monitor-Test task

MT_AF_FUNC Enable Monitor-Test processing of AF commands issued from ZTool or ZTrace

MT_AF_CB_FUNC Enable Monitor-Test processing of AF callbacks registered by ZTool or ZTrace

MT_APP_FUNC Enable Monitor-Test processing of APP commands issued from ZTool or ZTrace

MT_DEBUG_FUNC Enable Monitor-Test processing of DEBUG commands issued from ZTool or ZTrace

MT_MAC_FUNC Enable Monitor-Test processing of MAC commands issued from ZTool or ZTrace

MT_NWK_FUNC Enable Monitor-Test processing of NWK commands issued from ZTool or ZTrace

MT_NWK_CB_FUNC Enable Monitor-Test processing of NWK callbacks registered by ZTool or ZTrace

MT_SAPI_FUNC Enable Monitor-Test processing of SAPI commands issued from ZTool or ZTrace

MT_SAPI_CB_FUNC Enable Monitor-Test processing of SAPI callbacks registered by ZTool or ZTrace

MT_SYS_FUNC Enable Monitor-Test processing of SYS commands issued from ZTool or ZTrace

MT_SYS_OSAL_NV_READ_CERTIFICATE_DATA

Default define to FALSE in MT_SYS.c and only applicable if ZCL_KEY_ESTABLISH is

defined. If ZCL_KEY_ESTABLISH is defined and

MT_SYS_OSAL_NV_READ_CERTIFICATE_DATA is defined to TRUE, then the three

NV items containing Certicom certificate data can be read via MT:
ZCD_NV_IMPLICIT_CERTIFICATE 0x0069

ZCD_NV_DEVICE_PRIVATE_KEY 0x006A

ZCD_NV_CA_PUBLIC_KEY 0x006B

Otherwise, the certificate data cannot be read via MT.

MT_UTIL_FUNC Enable Monitor-Test processing of UTIL commands issued from ZTool or ZTrace

MT_ZDO_CB_FUNC Enable Monitor-Test processing of ZDO commands issued from ZTool or ZTrace

MT_ZDO_FUNC Enable Monitor-Test processing of ZDO commands issued from ZTool or ZTrace

MT_ZDO_MGMT Enable Monitor-Test processing of ZDO MGMT commands from ZTool or ZTrace

15.4.4 ZigBee Device Object (ZDO) Compile Options

By default, the mandatory messages (as defined by the ZigBee spec) are enabled in the ZDO. All other message

processing is controlled by compile flags. You can enable/disable the options by commenting/un-commenting the

compile flags in ZDConfig.h or include/exclude them like other compile flags. There’s an easy way to enable all

the ZDO Function and Management options: You can use MT_ZDO_FUNC to enable all the ZDO Function options,

and MT_ZDO_FUNC and MT_ZDO_MGMT to enable all the ZDO Function plus Management options. Information

about the use of these messages is provided in this guide and Z-Stack API document.

Z-Stack Developer's Guide SWRA176 Version 1.13

Copyright 2006-2015 Texas Instruments, Inc. All rights reserved. 52

ZDO_NWKADDR_REQUEST Enable Network Address Request function and response processing

ZDO_IEEEADDR_REQUEST Enable IEEE Address Request function and response processing

ZDO_MATCH_REQUEST Enable Match Descriptor Request function and response processing

ZDO_NODEDESC_REQUEST Enable Node Descriptor Request function and response processing

ZDO_POWERDESC_REQUEST Enable Power Descriptor Request function and response processing

ZDO_SIMPLEDESC_REQUEST Enable Simple Descriptor Request function and response processing

ZDO_ACTIVEEP_REQUEST Enable Active Endpoint Request function and response processing

ZDO_COMPLEXDESC_REQUEST Enable Complex Descriptor Request function and response processing

ZDO_USERDESC_REQUEST Enable User Descriptor Request function and response processing

ZDO_USERDESCSET_REQUEST Enable User Descriptor Set Request function and response processing

ZDO_ENDDEVICEBIND_REQUEST Enable End Device Bind Request function and response processing

ZDO_BIND_UNBIND_REQUEST Enable Bind and Unbind Request function and response processing

ZDO_SERVERDISC_REQUEST Enable Server Discovery Request function and response processing

ZDO_MGMT_NWKDISC_REQUEST Enable Mgmt Nwk Discovery Request function and response processing

ZDO_MGMT_LQI_REQUEST Enable Mgmt LQI Request function and response processing

ZDO_MGMT_RTG_REQUEST Enable Mgmt Routing Table Request function and response processing

ZDO_MGMT_BIND_REQUEST Enable Mgmt Binding Table Request function and response processing

ZDO_MGMT_LEAVE_REQUEST Enable Mgmt Leave Request function and response processing

ZDO_MGMT_JOINDIRECT_REQUEST Enable Mgmt Join Direct Request function and response processing

ZDO_MGMT_PERMIT_JOIN_REQUEST Enable device to respond to Mgmt Permit Join Request function

ZDO_USERDESC_RESPONSE Enable device to respond to User Descriptor Request function

ZDO_USERDESCSET_RESPONSE Enable device to respond to User Descriptor Set Request function

ZDO_SERVERDISC_RESPONSE Enable device to respond to Server Discovery Request function

ZDO_MGMT_NWKDISC_RESPONSE Enable device to respond to Mgmt Network Discovery Request function

ZDO_MGMT_LQI_RESPONSE Enable device to respond to Mgmt LQI Request function

ZDO_MGMT_RTG_RESPONSE Enable device to respond to Mgmt Routing Table Request function

ZDO_MGMT_BIND_RESPONSE Enable device to respond to Mgmt Binding Table Request function

ZDO_MGMT_LEAVE_RESPONSE Enable device to respond to Mgmt Leave Request function

ZDO_MGMT_JOINDIRECT_RESPONSE Enable device to respond to Mgmt Join Direct Request function

ZDO_MGMT_PERMIT_JOIN_RESPONSE Enable device to respond to Mgmt Permit Join Request function

ZDO_ENDDEVICE_ANNCE Enable device to respond to End Device Annce Message function

ZDO_NV_SAVE_RFDs

Default define to TRUE in ZDApp.c and only applicable if NV_RESTORE is defined. If

NV_RESTORE is defined and ZDO_NV_SAVE_RFDs is defined to FALSE, then RFD joins will

not trigger a call to NLME_UpdateNV() and the delay time between receiving a trigger event and

actually invoking NLME_UpdateNV() is extended to the OSAL timer maximum of 65 seconds (see

ZDAPP_UPDATE_NWK_NV_TIME). This compile option is intended to be used to greatly extend

the life of the NV pages of the RFD’s in a network with mobile or purged RFD’s. When this flag is

defined to FALSE, any RFD children that exist at the time an FFD is reset will not be restored and

the FFD can re-issue their network addresses to other joining RFD’s.

ZDAPP_UPDATE_NWK_NV_TIME

Default define to 700 msecs and only applicable if NV_RESTORE is defined. The delay time

between receiving a network save state trigger event and actually invoking NLME_UpdateNV().

The longer this delay is, the longer the life of the NV pages since this data is very large and in a busy

network (especially one with mobile RFD’s) the frequency of trigger events could be high.

