
CC3120, CC3220 SimpleLink™ Wi-Fi® and
Internet of Things Network Processor

Programmer's Guide

Literature Number: SWRU455E
February 2017–Revised February 2018



2 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

Contents

Preface....................................................................................................................................... 12
1 Networking Application ....................................................................................................... 20

1.1 Introduction.................................................................................................................. 21
1.1.1 Wi-Fi Connectivity ................................................................................................. 21
1.1.2 Traffic Types ....................................................................................................... 22
1.1.3 Security ............................................................................................................. 23
1.1.4 User Experience................................................................................................... 23
1.1.5 Power Consumption .............................................................................................. 23
1.1.6 Provisioning ........................................................................................................ 24

1.2 Basic Examples ............................................................................................................ 24
1.2.1 Wi-Fi Doorbell ..................................................................................................... 24
1.2.2 Power Socket ..................................................................................................... 24
1.2.3 Wi-Fi Tag ........................................................................................................... 25

2 Device............................................................................................................................... 26
2.1 Introduction.................................................................................................................. 27
2.2 Key Features................................................................................................................ 27
2.3 Start and Stop .............................................................................................................. 27

2.3.1 Start ................................................................................................................. 27
2.3.2 Stop ................................................................................................................. 27
2.3.3 Hibernate and Shutdown ......................................................................................... 28
2.3.4 Lock State .......................................................................................................... 28
2.3.5 Initialization Sequence............................................................................................ 28

2.4 Host Interface ............................................................................................................... 29
2.4.1 SPI Interface ....................................................................................................... 29
2.4.2 UART Interface .................................................................................................... 30

2.5 Version....................................................................................................................... 32
2.6 Event Mask.................................................................................................................. 32
2.7 Time and Date .............................................................................................................. 32
2.8 MAC Address ............................................................................................................... 33
2.9 Device Name................................................................................................................ 33
2.10 Domain Name .............................................................................................................. 34
2.11 Device Status ............................................................................................................... 34
2.12 Persistent Configuration ................................................................................................... 35
2.13 Errors ........................................................................................................................ 35

3 WLAN ............................................................................................................................... 37
3.1 Introduction.................................................................................................................. 38
3.2 Key Features................................................................................................................ 38
3.3 Station (STA)................................................................................................................ 38

3.3.1 General Description ............................................................................................... 38
3.3.2 Configurations and Settings...................................................................................... 38
3.3.3 Connection ......................................................................................................... 41
3.3.4 Events and Errors ................................................................................................. 44

3.4 Access Point ................................................................................................................ 45
3.4.1 General Description ............................................................................................... 45
3.4.2 Configurations and Settings...................................................................................... 45

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

3SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

3.4.3 Set Network Configuration ....................................................................................... 50
3.4.4 Station Management.............................................................................................. 51
3.4.5 Events and Errors ................................................................................................. 52
3.4.6 Limitations .......................................................................................................... 52

3.5 Wi-Fi Direct.................................................................................................................. 53
3.5.1 General Description ............................................................................................... 53
3.5.2 Supported Features ............................................................................................... 53
3.5.3 Configurations and Settings...................................................................................... 53
3.5.4 Connection ......................................................................................................... 57
3.5.5 Events and Errors ................................................................................................. 60
3.5.6 Limitations .......................................................................................................... 62

3.6 WLAN Security ............................................................................................................. 62
3.6.1 Personal Security.................................................................................................. 62
3.6.2 Enterprise Security ................................................................................................ 63
3.6.3 WPS................................................................................................................. 65

3.7 Scan.......................................................................................................................... 66
3.7.1 General Description ............................................................................................... 66
3.7.2 Configuration (AP/STA)........................................................................................... 66
3.7.3 Usage ............................................................................................................... 67
3.7.4 Miscellaneous...................................................................................................... 67

3.8 Calibrations.................................................................................................................. 67

4 Network Addresses ............................................................................................................ 69
4.1 Introduction.................................................................................................................. 70
4.2 Key Features................................................................................................................ 70
4.3 Addressing .................................................................................................................. 70

4.3.1 IPv4 Addresses .................................................................................................... 71
4.3.2 IPv6 Addresses .................................................................................................... 72
4.3.3 DNS Addresses.................................................................................................... 73

4.4 DHCPv4 client .............................................................................................................. 73
4.4.1 Modes............................................................................................................... 73
4.4.2 Address Release .................................................................................................. 74

4.5 DHCPv4 Server............................................................................................................. 75
4.5.1 Enable and Disable the DHCP Server ......................................................................... 75
4.5.2 Set DHCP Server Parameters .................................................................................. 75

4.6 DNS Server ................................................................................................................. 76
4.7 Errors and Asynchronous Events ....................................................................................... 76

5 Socket............................................................................................................................... 79
5.1 Introduction.................................................................................................................. 80
5.2 Key Features................................................................................................................ 80
5.3 Socket Types ............................................................................................................... 80
5.4 BSD API ..................................................................................................................... 81
5.5 Socket Working Flow ...................................................................................................... 82

5.5.1 TCP ................................................................................................................. 82
5.5.2 UDP ................................................................................................................. 86
5.5.3 RAW ................................................................................................................ 88

5.6 DNS .......................................................................................................................... 90
5.7 Operation Modes ........................................................................................................... 91

5.7.1 Nonblocking Mode ................................................................................................ 91
5.7.2 Trigger Mode....................................................................................................... 92

5.8 IP Fragmentation ........................................................................................................... 95
5.9 Errors ........................................................................................................................ 95

6 Secure Socket.................................................................................................................... 97

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

4 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

6.1 Introduction.................................................................................................................. 98
6.2 Key Features................................................................................................................ 98
6.3 Opening a Secure Socket ................................................................................................. 98
6.4 Trusted Root-Certificate Catalog ......................................................................................... 99
6.5 Options and Features Use ................................................................................................ 99

6.5.1 Set SSL Version ................................................................................................... 99
6.5.2 Set Cipher Suites ................................................................................................ 100
6.5.3 Set Certificates, Root CA, Private Key, and DH Files ...................................................... 100
6.5.4 Disable the Use of the Trusted Root-Certificate Catalog ................................................... 101
6.5.5 Set ALPN List .................................................................................................... 102
6.5.6 Set Domain Name for Verification and SNI .................................................................. 102
6.5.7 Upgrade Nonsecured Socket to Secured..................................................................... 102
6.5.8 Get Connection Parameters.................................................................................... 104

6.6 Supported Cryptographic Algorithms................................................................................... 105
6.7 Common Errors and Asynchronous Events ........................................................................... 105

6.7.1 Using Socket Asynchronous Events in SSL.................................................................. 105
6.7.2 Common Errors .................................................................................................. 106

7 File System ...................................................................................................................... 108
7.1 Introduction ................................................................................................................ 110
7.2 Key Features .............................................................................................................. 110
7.3 File System Characteristics ............................................................................................. 111
7.4 Write a File................................................................................................................. 111

7.4.1 Introduction ....................................................................................................... 111
7.4.2 Create a File versus Open for Write .......................................................................... 112
7.4.3 Create a File...................................................................................................... 112
7.4.4 Open a File for Write ............................................................................................ 115
7.4.5 Write an Opened File............................................................................................ 115
7.4.6 Close an Opened (for Write) File .............................................................................. 116
7.4.7 Close an Opened (for Write) Secure-Signed File ........................................................... 117

7.5 Read a File ................................................................................................................ 118
7.5.1 Open a File for Read ............................................................................................ 118
7.5.2 Read an Opened File ........................................................................................... 118
7.5.3 Close an Opened (for Read) File .............................................................................. 119

7.6 Delete a File ............................................................................................................... 119
7.7 Rename a File............................................................................................................. 120
7.8 File System Helper Functions ........................................................................................... 120

7.8.1 Get File Information ............................................................................................. 120
7.8.2 Get Storage Information ........................................................................................ 121
7.8.3 Get List of Files .................................................................................................. 121

7.9 Bundle Protection ......................................................................................................... 121
7.9.1 Bundle File States ............................................................................................... 122
7.9.2 Bundle States .................................................................................................... 123
7.9.3 Commit a Bundle ................................................................................................ 124
7.9.4 Rollback a Bundle ............................................................................................... 124
7.9.5 Retrieve the Bundle and Files State........................................................................... 124
7.9.6 CC3220 Bundle Aspects........................................................................................ 124

7.10 File Commit Feature...................................................................................................... 125
7.10.1 File Commit Process ........................................................................................... 125

7.11 File Rollback Process .................................................................................................... 126
7.12 Programming .............................................................................................................. 126

7.12.1 Creation of the Programming Image ......................................................................... 126
7.13 Restore to Factory ........................................................................................................ 128

7.13.1 Restore to Factory by the Host ............................................................................... 129

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

5SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

7.13.2 Restore to Factory by Using the SOP ....................................................................... 130
7.14 Security Alerts ............................................................................................................. 131
7.15 Design Consideration .................................................................................................... 131

7.15.1 Choosing SFLASH Type....................................................................................... 131
7.15.2 Software Design Consideration ............................................................................... 131
7.15.3 Retrieving Info Regarding SFLASH Usage.................................................................. 132
7.15.4 SFLASH Size.................................................................................................... 132
7.15.5 Storage Usage Information ................................................................................... 133

8 HTTP Server..................................................................................................................... 134
8.1 Introduction ................................................................................................................ 136

8.1.1 Built-in Configuration Pages.................................................................................... 136
8.1.2 RESTful APIs..................................................................................................... 136
8.1.3 Custom Static Pages ............................................................................................ 137
8.1.4 Host Application Interface ...................................................................................... 139

8.2 Key Features .............................................................................................................. 139
8.3 Configurations and Settings ............................................................................................. 140
8.4 RESTful API Processing ................................................................................................. 141

8.4.1 Ping ................................................................................................................ 141
8.4.2 IP Configuration .................................................................................................. 141
8.4.3 URN Configuration............................................................................................... 142
8.4.4 WLAN Profiles.................................................................................................... 142
8.4.5 WLAN Scan....................................................................................................... 143
8.4.6 Provisioning Confirmation ...................................................................................... 144
8.4.7 Connection Policy................................................................................................ 144
8.4.8 Station Action..................................................................................................... 144
8.4.9 AP Black List ..................................................................................................... 144
8.4.10 Date and Time .................................................................................................. 145

8.5 Device Parameter Querying Through HTTP (Device Tokens)...................................................... 145
8.5.1 Retrieving Tokens Through GET Request ................................................................... 146
8.5.2 Embedded Tokens............................................................................................... 146
8.5.3 System Information .............................................................................................. 146
8.5.4 Version Information .............................................................................................. 147
8.5.5 Network Information ............................................................................................. 147
8.5.6 Ping Results ...................................................................................................... 149
8.5.7 Connection Policy Status ....................................................................................... 149
8.5.8 Provisioning....................................................................................................... 150
8.5.9 Display Profile Information...................................................................................... 150
8.5.10 P2P Information................................................................................................. 150
8.5.11 Host Tokens ..................................................................................................... 152

8.6 Resource Search Order.................................................................................................. 152
8.6.1 GET Request Search Order.................................................................................... 152
8.6.2 POST Request Search Order .................................................................................. 153
8.6.3 PUT and DELETE Request Search Order ................................................................... 153

8.7 Host HTTP Requests Processing....................................................................................... 153
8.7.1 Metadata (TLVs) Description ................................................................................... 154
8.7.2 GET Processing.................................................................................................. 156
8.7.3 POST Processing................................................................................................ 159
8.7.4 PUT Processing.................................................................................................. 163
8.7.5 DELETE Processing............................................................................................. 163

8.8 Security..................................................................................................................... 163
8.8.1 Authentication .................................................................................................... 163
8.8.2 Secure Connection .............................................................................................. 163

8.9 Other........................................................................................................................ 164

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

6 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

8.9.1 Processing of Parallel Requests ............................................................................... 164

9 mDNS.............................................................................................................................. 165
9.1 Introduction ................................................................................................................ 166
9.2 Key Features .............................................................................................................. 166
9.3 Configurations and Settings ............................................................................................. 166
9.4 Query ....................................................................................................................... 167

9.4.1 One Shot Query.................................................................................................. 167
9.4.2 Continuous Query ............................................................................................... 167
9.4.3 Mask Services.................................................................................................... 167

9.5 Get Service List ........................................................................................................... 168
9.6 Advertisement ............................................................................................................. 169

9.6.1 Registering mDNS Services.................................................................................... 169
9.6.2 Unregistering mDNS Services ................................................................................. 169
9.6.3 Advertisement Settings ......................................................................................... 170

9.7 Limitations ................................................................................................................. 171

10 Rx Filters ......................................................................................................................... 172
10.1 Introduction ................................................................................................................ 173
10.2 Matching Process......................................................................................................... 174

10.2.1 Filter Matching .................................................................................................. 174
10.2.2 Tree Traversal................................................................................................... 176

10.3 Examples of Filter Use ................................................................................................... 177
10.3.1 Example 1 ....................................................................................................... 177
10.3.2 Example 2 ....................................................................................................... 177

10.4 Filter Creation ............................................................................................................. 178
10.4.1 Filter Type ....................................................................................................... 178
10.4.2 Filter Flags....................................................................................................... 178
10.4.3 Rule Structure for Header Filters ............................................................................. 179
10.4.4 Rule Structure for Combined Filters.......................................................................... 183
10.4.5 Filter Trigger ..................................................................................................... 183
10.4.6 Rx Filter Action.................................................................................................. 186

10.5 Managing Filters .......................................................................................................... 188
10.5.1 Enable and Disable Filters..................................................................................... 188
10.5.2 Get Filter Status................................................................................................. 188
10.5.3 Removing a Filter ............................................................................................... 189
10.5.4 Storing Filters into the SFLASH .............................................................................. 189
10.5.5 Update Filter Arguments ....................................................................................... 189

11 Ping ................................................................................................................................ 190
11.1 General Description ...................................................................................................... 191
11.2 Start and Stop Ping....................................................................................................... 191
11.3 Limitations ................................................................................................................. 192

12 Transceiver ...................................................................................................................... 193
12.1 Introduction ................................................................................................................ 194
12.2 Key Features .............................................................................................................. 194
12.3 Configurations and Setting .............................................................................................. 194

12.3.1 Open Transceiver Socket...................................................................................... 194
12.3.2 Close Transceiver Socket ..................................................................................... 195
12.3.3 Send Data ....................................................................................................... 195
12.3.4 Receive Data .................................................................................................... 196

12.4 Internal Packet Generator ............................................................................................... 196
12.5 CW.......................................................................................................................... 197
12.6 Changing Socket Properties............................................................................................. 197

12.6.1 Change Operating Channel ................................................................................... 197

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

7SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

12.6.2 Change Default PHY Data Rate .............................................................................. 198
12.6.3 Change Tx Power .............................................................................................. 199
12.6.4 Change Number of Frames to Transmit (Internal Packet Generator) ................................... 199
12.6.5 Change 802.11b Preamble .................................................................................... 199
12.6.6 Set CCA Threshold ............................................................................................. 199
12.6.7 Set Tx Frames Time-out ....................................................................................... 200
12.6.8 Enable or Disable Sending ACKs ............................................................................ 200

12.7 Limitations ................................................................................................................. 200

13 Power Managment ............................................................................................................ 201
13.1 Introduction ................................................................................................................ 202

13.1.1 LPDS ............................................................................................................. 202
13.1.2 802.11 Power Save............................................................................................. 202
13.1.3 Low Power versus Latency.................................................................................... 202
13.1.4 Power Modes versus Device Modes ......................................................................... 202

13.2 Key Features .............................................................................................................. 202
13.3 Configurations and Settings ............................................................................................. 203

13.3.1 Changing Power Policy ........................................................................................ 203
13.3.2 Enabling Fast Connect......................................................................................... 203

13.4 Network Applications and Power Consumption....................................................................... 203
13.4.1 mDNS ............................................................................................................ 203
13.4.2 HTTP Server .................................................................................................... 203

13.5 Design Guidelines ........................................................................................................ 204
13.5.1 LSI and Packet Loss ........................................................................................... 204
13.5.2 PHY Calibration Mode ......................................................................................... 204

14 Provisioning..................................................................................................................... 205
14.1 Introduction ................................................................................................................ 206
14.2 Key Features .............................................................................................................. 206
14.3 Provisioning Process Overview ......................................................................................... 206

14.3.1 Configuring a Profile............................................................................................ 206
14.3.2 Confirming a Profile ............................................................................................ 206

14.4 Host Provisioning Application Flow..................................................................................... 207
14.5 Configuration Modes ..................................................................................................... 209

14.5.1 AP Provisioning ................................................................................................. 209
14.5.2 SC Provisioning ................................................................................................. 209
14.5.3 AP and SC Provisioning ....................................................................................... 209
14.5.4 AP and SC and External Configuration Provisioning ...................................................... 209

14.6 Starting and Stopping the Provisioning Process...................................................................... 209
14.7 Auto-Provisioning ......................................................................................................... 210
14.8 Delivering Feedback to the User ....................................................................................... 210

14.8.1 External Confirmation .......................................................................................... 211
14.9 External Configuration.................................................................................................... 211
14.10 Common Events and Errors ............................................................................................ 212

14.10.1 Provisioning Status Event .................................................................................... 212
14.10.2 Provisioning Profile-Added Event ........................................................................... 213
14.10.3 Reset Request Event ......................................................................................... 213
14.10.4 Errors ........................................................................................................... 213
14.10.5 Host Commands During Provisioning ...................................................................... 213

14.11 Usage Examples ......................................................................................................... 215
14.11.1 Successful SmartConfig Provisioning ...................................................................... 215
14.11.2 Unsuccessful SmartConfig Provisioning ................................................................... 216
14.11.3 Successful SmartConfig Provisioning With AP Fallback ................................................. 217
14.11.4 Successful AP Provisioning.................................................................................. 218
14.11.5 Successful AP Provisioning With Cloud Confirmation.................................................... 219

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

8 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Contents

14.11.6 Using External Configuration Method: WAC............................................................... 220
14.11.7 Successful SmartConfig Provisioning While External Configuration Enabled......................... 221

15 Crypto Utilities ................................................................................................................. 222
15.1 Introduction ................................................................................................................ 223

15.1.1 API and Usage .................................................................................................. 223
15.1.2 Limitations and Constraints.................................................................................... 226
15.1.3 Errors ............................................................................................................. 226

15.2 Secured Content Delivery ............................................................................................... 227
15.2.1 Process Flow .................................................................................................... 227
15.2.2 Encrypted File Format.......................................................................................... 229

16 Porting the Host Driver...................................................................................................... 231
16.1 Introduction ................................................................................................................ 232
16.2 Create Platform Porting File ............................................................................................. 233
16.3 Select Capabilities Set ................................................................................................... 233
16.4 Bind the Device Enable/Disable Line .................................................................................. 235
16.5 Implement the Interface Communication Abstract Layer ............................................................ 235
16.6 Choose Memory-Management Model.................................................................................. 237
16.7 Implement OS Adaptation Layer........................................................................................ 237

16.7.1 Sync Objects .................................................................................................... 237
16.7.2 Locking Objects ................................................................................................. 238

16.8 Implement Timestamp Services ........................................................................................ 238
16.9 Set Asynchronous Event Handler Routines ........................................................................... 238

A ....................................................................................................................................... 240
A.1 Host APIs .................................................................................................................. 240

B ....................................................................................................................................... 242
B.1 Persistency ................................................................................................................ 242

Revision History ........................................................................................................................ 246

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

9SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

List of Figures

List of Figures
1. SimpleLink Wi-Fi Solution Block Diagram .............................................................................. 13
2. Networking Subsystem Block Diagram ................................................................................. 14
3. Quick Host APIs Reference .............................................................................................. 18
4. Host Driver Adaptation Modules (Platform-Dependent) .............................................................. 19
1-1. Wi-Fi Connectivity .......................................................................................................... 22
2-1. Typical CC3120 Setup (SPI).............................................................................................. 30
2-2. Typical CC3120 Setup (UART)........................................................................................... 31
3-1. Tx Output Power vs Tx Power Settings ................................................................................. 40
4-1. DHCPv4 IP Acquisition Modes ........................................................................................... 74
5-1. TCP Socket Flow ........................................................................................................... 83
5-2. UDP Socket Flow........................................................................................................... 86
5-3. Trigger Mode Flow ......................................................................................................... 93
7-1. Image Creator Log........................................................................................................ 133
8-1. Configuration Pages...................................................................................................... 136
8-2. Changing Configuration .................................................................................................. 137
8-3. Reading Configuration ................................................................................................... 137
8-4. Static Pages ............................................................................................................... 138
8-5. Custom Pages With Device Tokens.................................................................................... 138
8-6. Static Pages With Host Tokens ......................................................................................... 139
8-7. Host Application Interface ............................................................................................... 139
8-8. GET Request Flow ....................................................................................................... 152
8-9. POST Request Flow...................................................................................................... 153
8-10. PUT and DELETE Request Flow ....................................................................................... 153
8-11. GET Request With and Without Fragmentation ...................................................................... 156
8-12. POST Processing Flow .................................................................................................. 159
8-13. Delayed Response ....................................................................................................... 161
10-1. Rx Filters ................................................................................................................... 174
10-2. Rx Filter Match Flow...................................................................................................... 175
10-3. Example 1 ................................................................................................................. 177
10-4. Example 2 ................................................................................................................. 178
14-1. The Provisioning Environment .......................................................................................... 207
14-2. The Provisioning Process................................................................................................ 208
14-3. Successful SmartConfig Provisioning .................................................................................. 215
14-4. Unsuccessful SmartConfig Provisioning ............................................................................... 216
14-5. Successful SmartConfig Provisioning With AP Fallback ............................................................ 217
14-6. Successful AP Provisioning ............................................................................................. 218
14-7. Successful AP Provisioning With Cloud Confirmation ............................................................... 219
14-8. External Configuration Method: WAC .................................................................................. 220
14-9. Successful SmartConfig Provisioning While External Configuration Enabled .................................... 221
15-1. Secure Content Delivery ................................................................................................. 228
15-2. AES Key Diagram ........................................................................................................ 229
15-3. File Format................................................................................................................. 230
16-1. User.h Location ........................................................................................................... 233

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

10 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

List of Tables

List of Tables
0-1. Acronyms and Terminologies............................................................................................. 15
0-2. Key Features................................................................................................................ 15
0-3. Software Modules of the Host Driver .................................................................................... 16
1-1. Design Considerations for Doorbell Applications ...................................................................... 24
1-2. Design Considerations for Power Socket Application ................................................................. 25
1-3. Design Considerations for Tag Applications............................................................................ 25
2-1. Key Features................................................................................................................ 27
2-2. SPI Configuration........................................................................................................... 29
2-3. UART Settings .............................................................................................................. 30
2-4. Common Asynchronous Error Events ................................................................................... 35
2-5. Common Error Codes ..................................................................................................... 36
3-1. Key Features................................................................................................................ 38
3-2. Default Parameters in Station Mode..................................................................................... 39
3-3. Common Errors............................................................................................................. 44
3-4. AP Default Parameters .................................................................................................... 45
3-5. Common Errors............................................................................................................. 52
3-6. Wi-Fi Direct Default Parameters.......................................................................................... 53
3-7. Common Errors............................................................................................................. 61
3-8. Supported Personal Security Types ..................................................................................... 62
3-9. Calibration Modes .......................................................................................................... 68
4-1. Key Features................................................................................................................ 70
4-2. Addressing .................................................................................................................. 70
4-3. DHCP Server Defaults..................................................................................................... 75
4-4. Major Asynchronous Events in NetApp Silo ............................................................................ 76
4-5. Major Asynchronous Events in NetCfg Silo............................................................................. 77
4-6. Major Errors While Calling sl_NetCfgSet................................................................................ 77
5-1. Key Features................................................................................................................ 80
5-2. BSD APIs.................................................................................................................... 81
5-3. Multicast ..................................................................................................................... 88
5-4. Operational Modes ......................................................................................................... 91
5-5. Asynchronous Error Events............................................................................................... 96
5-6. Common Error Status Codes ............................................................................................. 96
6-1. Key Features................................................................................................................ 98
6-2. Related Files .............................................................................................................. 101
6-3. Cryptographic Algorithms ................................................................................................ 105
6-4. Common Errors ........................................................................................................... 106
7-1. Key Features .............................................................................................................. 110
7-2. Secure Files ............................................................................................................... 111
7-3. Creation Flags............................................................................................................. 114
7-4. Bundle Protection ......................................................................................................... 121
7-5. Bundle States ............................................................................................................. 123
8-1. Key Features .............................................................................................................. 139
8-2. Configuration Options .................................................................................................... 140
8-3. Ping Options............................................................................................................... 141
8-4. IP Configurations.......................................................................................................... 141
8-5. URN Configurations ...................................................................................................... 142
8-6. WLAN Profiles............................................................................................................. 142

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

11SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

List of Tables

8-7. WLAN EAP Profiles ...................................................................................................... 143
8-8. Erase Profiles ............................................................................................................. 143
8-9. WLAN Scan................................................................................................................ 143
8-10. Connection Policies....................................................................................................... 144
8-11. Station Action.............................................................................................................. 144
8-12. AP Control ................................................................................................................. 145
8-13. Date and Time ............................................................................................................ 145
8-14. System Information Tokens ............................................................................................. 146
8-15. Version Information Tokens ............................................................................................. 147
8-16. Network Information Tokens ............................................................................................ 147
8-17. Ping Results Tokens ..................................................................................................... 149
8-18. Connection Policies Status Tokens .................................................................................... 149
8-19. Provisioning Tokens ...................................................................................................... 150
8-20. Display Profile Information Tokens ..................................................................................... 150
8-21. P2P Information Tokens ................................................................................................. 151
8-22. TLV Structure.............................................................................................................. 154
8-23. HTTP Metadata Types ................................................................................................... 154
8-24. Internal Metadata Types ................................................................................................. 154
8-25. Metadata Breakout Examples........................................................................................... 155
9-1. Key Features .............................................................................................................. 166
10-1. Possible Triggers ......................................................................................................... 175
10-2. Possible Rules ............................................................................................................ 176
10-3. Possible Actions .......................................................................................................... 176
10-4. Possible Compare Functions............................................................................................ 180
10-5. Rule Types................................................................................................................. 181
10-6. Rule Types Layers........................................................................................................ 184
12-1. Key Features .............................................................................................................. 194
13-1. Power and Latency ....................................................................................................... 202
13-2. Key Features .............................................................................................................. 202
13-3. Power Policy............................................................................................................... 203
14-1. Key Features .............................................................................................................. 206
14-2. Provisioning Status ....................................................................................................... 212
14-3. Errors ....................................................................................................................... 213
15-1. Key Features .............................................................................................................. 223
15-2. Common Errors ........................................................................................................... 226
16-1. : Selecting Capabilities ................................................................................................... 234
A-1. Host APIs .................................................................................................................. 240
B-1. Persistency Settings...................................................................................................... 242

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


12 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Preface
SWRU455E–February 2017–Revised February 2018

Overview

The CC3120 and CC3220 devices are part of the SimpleLink™ microcontroller (MCU) platform which
consists of Wi-Fi®, Bluetooth® low energy, Sub-1 GHz and host MCUs, which all share a common, easy-
to-use development environment with a single core software development kit (SDK) and rich tool set. A
one-time integration of the SimpleLink platform enables you to add any combination of the portfolio’s
devices into your design, allowing 100 percent code reuse when your design requirements change. For
more information, visit www.ti.com/simplelink.

The SimpleLink Wi-Fi Internet-on-a chip™ family of devices from Texas Instruments™ provides a suite of
integrated protocols for Wi-Fi and Internet connectivity, to dramatically simplify the implementation of
Internet-enabled devices and applications.

This document provides software (SW) programmers with all of the required knowledge for working with
the networking subsystem of the SimpleLink Wi-Fi devices. This guide provides basic guidelines for writing
robust, optimized networking host applications, and describes the capabilities of the networking
subsystem. The guide contains some example code snapshots, to give users an idea of how to work with
the host driver. More comprehensive code examples can be found in the formal software development kit
(SDK). This guide does not provide a detailed description of the host driver APIs.

This chapter gives a brief introduction to the networking subsystem, lists the key features of the device,
and provides an overview of the host driver.

Trademarks
SimpleLink, Internet-on-a chip, Texas Instruments, SmartConfig are trademarks of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Limited.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
Google is a registered trademark of Google, Inc.
Wi-Fi, Wi-Fi Direct are registered trademarks of Wi-Fi Alliance.
All other trademarks are the property of their respective owners.

Introduction
The SimpleLink Wi-Fi CC3120 wireless network processor allows the connection of any low-cost, low-
power microcontroller (MCU) to the Internet of Things (IoT), using standard communication interfaces
such as SPI or UART.

The SimpleLink Wi-Fi CC3220x is a wireless MCU with an integrated high-performance ARM® Cortex®-M4
MCU, built-in Wi-Fi, and a networking subsystem, allowing developers to write an entire application with a
single-chip solution.

The CC3120 and CC3220 devices are the second generation of TI’s Internet-on-a chip solutions. This
generation introduces new features and capabilities that further simplify connectivity of devices to the
Internet. The new capabilities include:
• Support for IPv6
• Improved Wi-Fi provisioning
• Improved power consumption
• More concurrent opened BSD and SSL/TLS sockets
• HTTPS – Integrated secure http server
• File system security capabilities
• Image programming
• Wi-Fi access point (AP) with support of up to four stations

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E
http://www.ti.com/simplelink


WLAN

Networking Subsystem

      Host Interface

Network Stack

Network Applications

Services

Host

6LPSOH/LQN��+RVW�'ULYHU

SPI/UART

Device Wlan NetApp NetCfg NetUtil FSSocket

www.ti.com

13SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Figure 1 shows a block diagram of the SimpleLink Wi-Fi solution at a high level.

Figure 1. SimpleLink Wi-Fi Solution Block Diagram

In the CC3220 wireless MCU the host is a Cortex-M4 core, the networking subsystem is built into the
device as an additional peripheral, and the interface between the Cortex-M4 Core and the networking
subsystem is internal.

The host driver is the same for the CC3120 and CC3220, and the networking capabilities are similar for
both devices. The network stack is fully implemented in the networking subsystem, thereby offloading the
networking activities from the host MCU.

A simple application that only sends a UDP datagram on the local network requires minimum APIs as
follows:
sl_Start Start the SimpleLink device in Wi-Fi Station mode
sl_WlanConnect Connect to a Wi-Fi network
sl_Socket Create a socket
sl_SendTo Sends UDP data
sl_Close Close the socket
sl_Stop Stops the SimpleLink device

NOTE: The target application can choose to use the preferred networks option (profiles), instead of
using the sl_WlanConnect command. This option allows the host application to completely
offload the entire management of the WLAN connection.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


WLAN

Networking Subsystem
      Host Interface

Secure FS

STA APP2P

IPv6

Network Stack

Network ApplicationsServices

Scan Policy

Programming

Secure Content Delivery

DHCP Client/Server

MDNS

HTTP Server

Transceiver / NS 
Bypass

IPv4
ICMP IGMP

IPv6
ICMP/NDP MLD

Ping

DNS

TCP UDP

Rx Filter

RAW

BSD SSL

ARP

PM Policy

Provisioning

Host

SPI/UART

Secure FS

Time and Date
(RTC)

Crypto Util

6LPSOH/LQN��+RVW�'ULYHU

Interface(SPI/UART) Driver OS Adaptation Layer

Device Wlan NetApp NetCfg NetUtil FSSocket

www.ti.com

14 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Figure 2 shows a more detailed block diagram of the networking subsystem.

Figure 2. Networking Subsystem Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

15SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Acronyms and Terminologies
Table 0-1 lists the acronyms and terms used in this document.

Table 0-1. Acronyms and Terminologies

Acronym/Terminology Description
Host Host refers to an embedded MCU running the SimpleLink software driver and uses the SimpleLink

device as a networking peripheral
AP Wi-Fi access point
STA Wi-Fi station
FW Firmware software
LAN Local area network
WLAN Wireless local area network
IE Information element
OUI Organization unique identifier
P2P Wi-Fi Direct® or peer-to-peer (P2P)
GO Wi-Fi Direct group owner
OS Operating system

Key Features
Table 0-2 lists the key features of the CC3120 and CC3220 devices.

Table 0-2. Key Features

Feature Description
Wi-Fi standards 802.11b/g/n station

802.11b/g access point with support for up to four stations
Wi-Fi Direct client / group owner

Wi-Fi channels 1–13
Personal and Enterprise
Wi-Fi security

WEP, WPA/WPA2 PSK, WPA2 Enterprise (802.1x)

Wi-Fi provisioning SmartConfig™ technology, Wi-Fi Protected Setup (WPS2), access point mode with internal HTTP
web server

IP protocols IPv4/IPv6
IP addressing Static IP, LLA, DHCPv4, DHCPv6 with DAD
Cross layer ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP
Transport UDP, TCP

SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2
RAW

Network applications and
utilities

Ping
HTTP/HTTPS web server (including dynamic user call backs and RESTful API support)
mDNS
DNS-SD
DHCP server

Host interface UART/SPI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

16 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Table 0-2. Key Features (continued)
Feature Description

Security Secure key storage
Trusted root-certificate catalog
TI root-of-trust public key
File system security
Secure boot
Secure content delivery
Initial secure programming
Debug security
Software tamper detection
Cloning protection

Power management Enhanced power policy management uses 802.11 power save, and deep-sleep power modes
Other Transceiver

Programmable Rx filters with events trigger mechanism

Host Driver Overview
The SimpleLink Wi-Fi Internet-on-a chip devices provide comprehensive networking functionality that
offloads networking activities from the host MCU. TI provides a user-friendly host-software driver to
simplify the integration and development of networking applications using the SimpleLink Wi-Fi devices.
This host driver can easily be ported to most platforms and operating systems (OSs). The host driver is
written in strict ANSI-C (C89) and requires a minimal platform adaptation layer (porting layer).

The driver has a small memory footprint, and can run on 8-, 16-, or 32-bit MCUs with any clock speed (no
performance or real-time dependency). Using SPI, both big- and little-endian MCUs are seamlessly
supported. With UART, only little endian is supported.

The APIs of the SimpleLink host driver are arranged in several logical and simple modules (silos).

Table 0-3 provides a high-level description of these silos.

Table 0-3. Software Modules of the Host Driver

Silo Description
Device Provides interface to hardware and general functionality, such as start/stop or set, and get configurations in the device

level
WLAN Provides interface to WLAN 802.11 protocol-related functionality, such as mode (station, access point, or Wi-Fi

Direct), provisioning, connection profiles, and connection policy
Socket Provides interface to sockets and adheres to BSD sockets. BSD sockets are the most common interface today for

internet connectivity.
NetApp Provides interface to several networking services including the HTTP server service, DHCP server service, and

MDNS client\server service
NetCfg Provides interface to configure different networking parameters, such as setting the MAC address and IP address

settings (DHCP/Static)
NetUtil Provides interface to several network utilities, such as crypto utility, which provides a method for authenticating the

device
FS Provides interface for storing and reading files through a secure file system managed on the serial flash component

Host Interface
The SimpleLink device supports two physical host interfaces: SPI and UART. The same host driver can
work with each of these interfaces by using an interface driver adaptation layer.

More information on the adaptation layer is in the host interface section, see Chapter 2 and Chapter 16.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

17SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

OS versus Non-OS
The same driver can work on platforms running an OS, and platforms without an operating system (non-
OS).

An OS adaptation layer is used for binding the host driver and the target OS. The driver already comes
with a built-in adaptation layer for platforms running without an OS. Other platforms require a simple OS
adaptation layer.

This adaptation layer must wrap two major objects:
• Sync object – Object intended to synchronize between different contexts and interrupt routines
• Lock object – Object intended to protect a shared resource

The driver pre-allocates all the required OS resources (dynamic or static according to the setting) on
calling sl_Start. The number of allocated objects is calculated according to the maximum concurrent
actions required by the user.

The SimpleLink host driver does not use its own processing context. To bind a context to the driver, the
user can implement a spawn mechanism, or use the built-in spawn mechanism provided by the driver. If
the built-in mechanism is used, the host application must create dedicated context to the driver and call
sl_Task from this context. For platforms without an OS, the application must call to the sl_Task function
repeatedly from its main loop.

Quick Reference
Figure 3 shows a quick reference to the entire set of APIs provided by the host driver.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Host Driver Quick APIs Reference

sl_Start

sl_Stop

sl_DeviceGet

sl_DeviceSet

sl_DeviceEventMaskGet

sl_DeviceEventMaskSet

sl_Task

sl_DeviceUartSetMode

sl_RegisterEventHandler

sl_WlanConnect

sl_WlanDisconnect

sl_WlanProfileAdd

sl_WlanProfileGet

sl_WlanProfileDel

sl_WlanSet

sl_WlanGet

sl_WlanPolicySet

sl_WlanPolicyGet

sl_WlanGetNetworkList

sl_WlanRxStatStart

sl_WlanRxStatStop

sl_WlanRxStatGet

sl_WlanSetMode

sl_WlanProvisioning

sl_WlanRxFilterAdd

sl_Socket

sl_Listen

sl_Accept

sl_Bind

sl_Close

sl_Connect

sl_Select

sl_Send

sl_SendTo

sl_Recv

sl_RecvFrom

sl_GetSockOpt

sl_SetSockOpt

sl_NetCfgSet

sl_NetCfgGet

sl_NetUtilSet

sl_NetUtilGet

sl_NetUtilCmd

sl_FsOpen

sl_FsClose

sl_FsRead

sl_FsWrite

sl_FsGetInfo

sl_FsDel

sl_FsCtl

sl_FsProgram

sl_FsGetFileList

Device Wlan Socket

NetCfg NetUtil FS

DeviceFatalErrorEventHandler

DeviceGeneralEventHandler

WlanEventHandler SocketEventHandler

NetCfgEventHandler NetUtilEventHandler

sl_NetAppStart

sl_NetAppStop

sl_NetAppDnsGetHostByName

sl_NetAppDnsGetHostByService

sl_NetAppGetServiceList

sl_NetAppMDNSUnRegisterService

sl_NetAppMDNSRegisterService

sl_NetAppPingStart

sl_NetAppSet

sl_NetAppGet

NetApp

NetAppEventHandler

Legend

- API function

- Application Event Handler

www.ti.com

18 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Figure 3. Quick Host APIs Reference

For more information on these APIs, refer Appendix A.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Platform Dependent

OS Adaptation Interface Driver

sl_SyncObjCreate

sl_SyncObjDelete

sl_SyncObjSignal

sl_SyncObjSignalFromIRQ

sl_SyncObjWait

sl_LockObjCreate

sl_LockObjDelete

sl_LockObjLock

sl_LockObjUnlock

sl_IfOpen

sl_IfClose

sl_IfRead

sl_IfWrite

sl_IfRegIntHdlr

Platform General

sl_DeviceEnable

sl_DeviceDisable

Optional

sl_Spawn

slcb_SetErrno

Optional

sl_IfMaskIntHdlr

sl_IfUnMaskIntHdlr

Optional

slcb_GetTimestamp

sl_Malloc

sl_Free

www.ti.com

19SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Overview

Porting to Different Platforms
To use the driver on different platforms, the host must implement a few adaptation modules.

Figure 4 shows these adaptation modules.

Figure 4. Host Driver Adaptation Modules (Platform-Dependent)

For more information about porting the driver to new platforms, see Chapter 16.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


20 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Networking Application

Chapter 1
SWRU455E–February 2017–Revised February 2018

Networking Application

Topic ........................................................................................................................... Page

1.1 Introduction....................................................................................................... 21
1.1.1 Wi-Fi Connectivity ...................................................................................... 21
1.1.2 Traffic Types ............................................................................................ 22
1.1.3 Security .................................................................................................. 23
1.1.4 User Experience ........................................................................................ 23
1.1.5 Power Consumption.................................................................................... 23
1.1.6 Provisioning ............................................................................................. 24

1.2 Basic Examples ................................................................................................ 24
1.2.1 Wi-Fi Doorbell .......................................................................................... 24
1.2.2 Power Socket .......................................................................................... 24
1.2.3 Wi-Fi Tag ................................................................................................ 25

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

21SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Networking Application

1.1 Introduction
This chapter explains the software blocks needed to build robust networking applications, and provides
basic guidelines and considerations while designing these applications. Programmers have complete
flexibility for using the various software blocks, and should design their own application according to their
needs. A robust network application should consider the following aspects during the design:
• Wi-Fi connectivity – What is the connectivity model of the system? Is it always connected or connected

on-demand? Wi-Fi connectivity can be used in a wide range of products with different use cases.
Some products may be connected through the local Wi-Fi network to the Internet, some may just be
connected to the local network or may function as access points, and some products may not be
connected to a Wi-Fi network at all (uses Wi-Fi as a radio transceiver).

• Wi-Fi provisioning – What are the possible methods to connect a new device to a Wi-Fi network in the
specific target application? Are there any graphical or other interfaces to the system?

• Traffic type – What kind of traffic is expected from the target system? Is it connection-oriented traffic or
connectionless-oriented traffic?

• Security – What are the major assets of the system? What kind of protection is needed?
• User experience – What are the major experience factors for the target users? Is it response time?

Availability? Or perhaps functionality?
• Power management – Is the system powered by batteries? What is the power budget?
• Data – What kind of data is kept on the system? What is the update frequency?

NOTE: TI highly recommends applying all needed configurations and settings by using the Image
Creator tool instead of using host application commands. For more information, refer to the
Image Creator user guide (SWRU469).

This chapter discusses the considerations and trade-offs.

1.1.1 Wi-Fi Connectivity
Wi-Fi connectivity can be used in a wide range of products with different use cases and requirements.
Figure 1-1 shows some of the available connectivity options and their considerations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E
http://www.ti.com/lit/pdf/SWRU469


x� Provisioning

x� Preferred networks

x� Always connected vs Connect on demand

x� Local connectivity vs Internet connectivity

x� Connection time

x� Power

x� Number of stations

x� Use for configuration vs. target 

application

x� Group Owner vs Client

x� Preferred networks

x� Connect on demand

x� Transceiver

x� Promiscuous

x� Rx filters

x� Rates

x� Channels

����������;���-Fi®

Device

STA

W
iF

i D
ir

e
c

t

Disconnect mode

A
c

c
e

s
s

 P
o

in
t

Introduction www.ti.com

22 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Networking Application

Figure 1-1. Wi-Fi Connectivity

The SimpleLink Wi-Fi device supports different Wi-Fi modes, and the application can move from one
mode to another on demand. Moving from mode to mode requires the user to reset the SimpleLink Wi-Fi
device. Trade-offs to be considered follow:
• Power consumption
• Response time
• Availability

1.1.2 Traffic Types
Communication protocols are typically divided into two types: connection oriented and connectionless.
Connection-oriented protocols require establishing a connection between two entities before any data
exchange. The connection is maintained during the connection lifetime, and ensures data is delivered
correctly and in order. Connectionless protocols allow data exchanges between any entities, without the
need for establishing a connection; however, data integrity and order are not ensured. From a power
consumption perspective, connection-oriented protocols may consume more power due to the connection-
establishing overhead and connection maintenance.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

23SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Networking Application

The SimpleLink Wi-Fi devices support the following communication protocol types:
• Connection oriented –TCP and SSL/TLS
• Connectionless – UDP or RAW

When application designers choose the protocol, the power consumption, reliability, and latency should
also be considered. Connectionless protocols are less reliable by nature. However they are more efficient
from a power consumption and latency perspective.

Generally, the connection type derives from the services used. For example, many cloud services are
based on HTTP or MQTT, which are running over a TCP connection.

1.1.3 Security
The importance of security for IoT devices is crucial due to the sensitive and private nature of the data.
This data might include passwords, keys credentials, configuration, and personal information.

The SimpleLink Wi-Fi devices handle the following security aspects:
• Wi-Fi: Secured local network is the first protection layer for the IoT device. SimpleLink Wi-Fi devices

support several Wi-Fi security methods, both personal and enterprise. When a SimpleLink device
connects to an AP through the profile method, the network encrypted password is stored in the
SFLASH, and there is no access to the password, which raises the protection of the local network and
the device. More details are in the WLAN chapters.

• Data: Data layer security is a basic requirement for secured local networks, especially when the device
is connected to the cloud. SimpleLink devices support the SSL (secured socket layer) standard for
data encryption and server verification. More details are in the secure-socket chapter.

• Files: Passwords, configurations, keys, and credentials are private information on the device which
must be secured. SimpleLink Wi-Fi devices support secure file systems on an external serial flash,
providing a simple API to organize and access the data. More details are in the secure-file system
chapters.

1.1.4 User Experience
The IoT refers to a wide range of products with different characterizations. Some of these products must
always be available from the cloud with minimal delay (such as smart plugs or security cameras). Other
products may connect to a cloud server only on a state change (such as doorbell or fire alarm), and
require fast connection with minimal delay. An additional type of product which is not sensitive to delay
(such as air conditioning) notifies the time for treatment. The SimpleLink Wi-Fi devices are designed to
allow IoT devices to support those characterizations by optimizing power consumption, Wi-Fi connection
time, IP acquired time, and more.

1.1.5 Power Consumption
Different applications have different power consumption requirements. Applications which are battery
powered are very sensitive to power consumption, because almost every design decision has an impact
on total power consumption. The following design decisions have major impacts on power consumption.
• Wi-Fi mode (STA or AP)
• On-demand connection or constant connection
• Traffic type (connection oriented or connectionless)
• Secured socket or not
• Regular socket operation or trigger mode (lets the host enter a deep sleep and is awakened by the

SimpleLink Wi-Fi device when data arrives)

More details are in Chapter 13.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

24 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Networking Application

1.1.6 Provisioning
Provisioning is the process of providing an IoT device with the information needed to connect to a wireless
network for the first time (network name, password, and so on). The provisioning process should be fast,
easy to use, and not require technical support. More details are in Chapter 14.

1.2 Basic Examples

1.2.1 Wi-Fi Doorbell

1.2.1.1 Description
Wireless doorbells may have not only a push-button, but also a microphone or a camera, therefore
requiring advanced connectivity options which can be supported by Wi-Fi technology. By using a button
push, a smartphone application lets users monitor visitors through video and voice, from any location
using internet connectivity. In addition, from time to time the doorbell connects to a server for software
updates. The doorbell is usually battery powered.

1.2.1.2 Design Considerations
Table 1-1 lists the design considerations for doorbell applications.

Table 1-1. Design Considerations for Doorbell Applications

Topic Consideration or Constraint Recommendations
Wi-Fi
connectivity

Wi-Fi connection with home access point, to
allow internet access

STA role
Configure profile with network name and password during the
provisioning process.

Traffic types Reliable SSL/TLS
Security Must secure data:

Secure Wi-Fi password
Secure credentials
Secure user password of the up layer (connect
to the server)

Wi-Fi – profile and password are configured during the
provisioning process. The password is encrypted and cannot be
accessed by the application.
Data – encrypt and decrypt data using SSL
Credentials and server password – use the SimpleLink secured-
file system

Power
management

Sensitive, battery powered, or power
harvesting

Operation mode – hibernate mode, wakes up the SimpleLink
device by pressing a button, returns to hibernate mode quickly
Wi-Fi – profile with automatic and fast policies
IP – Decrease the number of DNS requests, resolve once and
keep the address, if TCP connection fails resolve again

User
experience

Connectivity must be fast, with minimal delay

Provisioning Easy setup Easy setup – Use the Smartphone app to perform the
provisioning and create the connection profile

1.2.2 Power Socket

1.2.2.1 Description
A power socket connects to the cloud, which lets users control products like air conditioners and boilers.
The power socket must be available for smartphone apps at any time with no delay, and are occasionally
connected to the server for software updates.

1.2.2.2 Design Constraints
Table 1-2 lists the design constraints for power socket applications.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Basic Examples

25SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Networking Application

Table 1-2. Design Considerations for Power Socket Application

Topic Consideration or Constraint Recommendations
Wi-Fi
connectivity

Wi-Fi connection with home access point, to
allow internet access at any time

STA role
Configure profile with network name and password by the
provisioning process.

Traffic types Reliable TCP, also data must be secured
Security Data must be secured

Secure Wi-Fi password
Secure credentials
Secure user password of up layer (connected
to server)

Wi-Fi – profile and password are configured by the provisioning
process, the password is encrypted and cannot be accessed by
the application.
Data – encrypt and decrypt data by SSL
Credentials and server password – use SimpleLink secured-file
system

Power
management

Connected to the power supply None

User
experience

Must be available on smartphone app at any
time with no delay

SimpleLink is always on, client TCP secured socket is always
connected to the server

Provisioning Easy setup, without the need of technical
support

The provisioning process allows for easy and fast wireless
network configuration (network name and password)

1.2.3 Wi-Fi Tag

1.2.3.1 Description
A tag is a tiny device which attaches to expensive assets (such as hospital medical equipment or
expensive lab equipment). The tag device occasionally transmits, without being connected to the local
network. The transmission allows the central equipment to find the device using a smart-signal algorithm.
A tag device can also connect to an AP occasionally to get software updates or send statistical
information.

1.2.3.2 Design Consideration

Table 1-3. Design Considerations for Tag Applications

Topic Consideration or Constrain Recommendations
Wi-Fi connectivity Mostly transmitted without being

connected, occasionally connect AP for
SW updates

Regular: transceiver mode – not connected
SW update: STA role

Traffic types SW update must be reliable Regular: Propriety data over Wi-Fi frame
SW updates: TCP with SSL

Security Data must be secured:
Secure Wi-Fi password
Secure credentials
Secure user password of up layer
(connect to server)

Regular: None
For SW update:

Wi-Fi – profile and password are configured during the
provisioning process. The password is encrypted and cannot
be accessed by the application
Data – encrypt and decrypt data using SSL
Credentials and server password – use the SimpleLink
secured-file system

Power management Sensitive, battery powered Hibernate or shutdown mode, wakes up the SimpleLink when it
is time for tag transmitting or SW updates arrived, returns to
hibernate or shutdown quickly.
SW update:

Wi-Fi: profile with auto and fast policies
IP: Decrease the number of DNS requests, resolve once and
keep the address, only as a result of TCP connection failure,
resolve again

User experience None None
Provisioning None None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


26 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

Chapter 2
SWRU455E–February 2017–Revised February 2018

Device

Topic ........................................................................................................................... Page

2.1 Introduction....................................................................................................... 27
2.2 Key Features ..................................................................................................... 27
2.3 Start and Stop.................................................................................................... 27

2.3.1 Start ...................................................................................................... 27
2.3.2 Stop ...................................................................................................... 27
2.3.3 Hibernate and Shutdown .............................................................................. 28
2.3.4 Lock State ............................................................................................... 28
2.3.5 Initialization Sequence ................................................................................. 28

2.4 Host Interface .................................................................................................... 29
2.4.1 SPI Interface ............................................................................................ 29
2.4.2 UART Interface ......................................................................................... 30

2.5 Version ............................................................................................................. 32
2.6 Event Mask........................................................................................................ 32
2.7 Time and Date.................................................................................................... 32
2.8 MAC Address..................................................................................................... 33
2.9 Device Name...................................................................................................... 33
2.10 Domain Name .................................................................................................... 34
2.11 Device Status..................................................................................................... 34
2.12 Persistent Configuration ..................................................................................... 35
2.13 Errors ............................................................................................................... 35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

27SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

2.1 Introduction
SimpleLink Wi-Fi devices support multiple internal-device configurations and settings such as device
initialization, communication interface settings, time and date settings, and more, using simple host-driver
commands.

In the following chapters, the word device describes the network subsystem.

2.2 Key Features
Table 2-1 lists the key features of the device.

Table 2-1. Key Features

Key Features Description
Calibration modes Different types of RF calibration modes to save power
SPI and UART SPI and UART communication interfaces support
Little- and big-endian auto-detect Automatic detection of the MCU endian state
Time and date Support time and date setting, and getting information
Stop time-out Stop the device with time-out, to allow TX completion
Get device version Get PHY\FW\NWP\Host versions
Mask asynchronous event Mask asynchronous events from the device
System-persistent configuration Set the entire system-persistent configuration

2.3 Start and Stop

2.3.1 Start
From a host perspective, steps to starting the SimpleLink Wi-Fi device include setting the enable pin,
opening the communication interface, and waiting for the complete indication of the device initialization.
Depending on the hardware design, the enable pin of the CC3120 device can be connected to the nReset
or nHibernate pins of the device. The major difference between these modes is that in hibernate mode,
the device maintains the value of the real-time clock (RTC), and exiting from this state is faster (more
information follows). In both modes when the device completes the initialization (INIT) process, it sends an
internal asynchronous event (INIT COMPLETE) to the host.

During the initialization process the host interface (UART or SPI) is determined, and RF calibrations may
be performed. A few types of calibration modes are available, and the target application must choose the
most compatible mode for its requirements. The mode of the calibration can be changed only by using the
Image Creator tool, during the creation of the image. More information about calibrations is in Chapter 3,
and more information about the Image Creator tool is in the CC3120, CC3220 SimpleLink Wi-Fi and
Internet of Things Image Creator User's Guide.

The sl_Start API of the host driver can provide a callback function. If the callback function is provided,
then the function returns immediately, and the callback is called when the initialization process completes.
In this mode, any other APIs should not be called until the initialization completes. If the callback is not
provided, sl_Start is blocked until the device initialization completes. This API must be called before any
other SimpleLink API is used, or after sl_Stop is called to reinitialize the device and the driver.

This function return value specifies the mode the device is currently running: ROLE_STA, ROLE_AP, or
ROLE_P2P. Any other value indicates an error during the initialization process.

2.3.2 Stop
This function clears the enable pin of the device, and closes the communication interface. This function
can receive time-out (in milliseconds) as a parameter. This parameter defines the amount of time the
device allows for finishing any packet ongoing transmission, reception, or disconnection gracefully before
shutting down. This time-out value determines the maximum time the device waits. The function returns
when all the activities are performed even before the time-out expires.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E
http://www.ti.com/lit/pdf/SWRU469
http://www.ti.com/lit/pdf/SWRU469


Start and Stop www.ti.com

28 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

Example:
_i16 Status, Role;

Role = sl_Start(NULL, NULL, NULL);
if (ROLE_STA == Role)
{

/* Main application */
}
Status = sl_Stop(100); /* 100 ms Timeout */
if( Status )
{

/* error */
}

2.3.3 Hibernate and Shutdown
Hibernate is the lowest-device power mode which keeps the RTC running. In this mode, the device is
powered off, except for the hibernate logic. In this state the volatile memory of the SimpleLink Wi-Fi device
is not maintained, but the RTC is maintained, which provides faster boot time and maintains the system
date and time. The SimpleLink Wi-Fi device goes into the hibernate state when the correct hardware (HW)
lines are set (RESET / HIB) on a call to sl_Stop.

Full shutdown is the lowest power state of the device. In this state both the volatile memory and the RTC
are not maintained. The initialization process from full shutdown takes longer compared to initializing from
hibernate. The SimpleLink device goes into full shutdown state when the correct HW lines are set on a call
to sl_Stop.

2.3.4 Lock State
The device enters a lock state due to one of the following conditions:
• The restore to factory defaults is currently in process, and the device unlocks when the process is

finished.
• The device INIT failed and an inaccurate error is sent with the INIT-complete error asynchronous

event. The device INIT-complete may then fail due to calibration failure or integrity failure of the file-
system data structure

• The security alerts threshold was exceeded. The SimpleLink Wi-Fi device provides a software
tampering detection mechanism with a security-alert counter. This procedure detects integrity violation
of the following: file-system data, secure-authentication files, or system files. When the device reaches
the security alerts threshold (three by default or predefined with Image Creator), it locks.

• A critical security alert occurs.

In the lock state only a few commands are allowed. The list of the enabled commands follows:
• Program a new image
• Restore to factory defaults
• Get current version
• Get storage information (retrieves the number of security alerts and the storage properties)

Any other API issued in locked state returns one of the following error codes:

SL_RET_CODE_DEV_LOCKED (-2011L) //Device was found locked during its init, commands are
blocked by the driver

SL_ERROR_NOT_ALLOWED_NWP_LOCKED (-14343L) //Device is currently lock

Recovery from the lock state depends on the reason for the lock. If the lock is due to processing the
restore to factory function, then the device automatically unlocks when finished. In all other cases, to
recover from the lock state the device can be programed or restored to factory image.

2.3.5 Initialization Sequence
During the INIT sequence, the host driver runs the following key steps:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host Interface

29SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

• Enables communication interface (SPI or UART) with the device
• Registers the asynchronous events handler
• Enables the SimpleLink Wi-Fi device
• Waits for a host IRQ
• Reads the INIT-complete event

The SimpleLink Wi-Fi device determines one active host interface during this phase (SPI or UART) and
disables the other.

2.4 Host Interface
The SimpleLink Wi-Fi device provides comprehensive networking functionality. To simplify the integration
and development of networking applications a simple, a user-friendly host driver is provided. The
SimpleLink Wi-Fi host driver is responsible for the following:
• Provide a simple API to the user application
• Handle communication with the device
• Build and parse commands
• Handle asynchronous events
• Handle flow control for the data path
• Provide serialization of concurrent commands
• Work with the existing UART or SPI physical communication interface drivers
• Provide the ability to work with or without an OS
• Enable porting to any platform

The SimpleLink Wi-Fi host driver is written in strict ANSI C89 for full compatibility with most embedded
platforms and development environments.

The following information is relevant for the SimpleLink Wi-Fi CC3120 wireless network processor, which
must implement a communication interface with a selected MCU.

The device supports the SPI and UART standard communication interfaces. Binding the communication
interface to the host driver is done by defining the interface functions through the following defines in
user.h:
• sl_IfOpen
• sl_IfClose
• sl_IfRead
• sl_IfWrite
• sl_IfRegIntHdlr

More information regarding these functions is in Chapter 16.

2.4.1 SPI Interface
The SimpleLink Wi-Fi device runs as a SPI slave and supports a 4-wire SPI interface.

Table 2-2 lists the required SPI settings.

Table 2-2. SPI Configuration

Attribute Value
Clock rate Up to 20 MHz
Word length 8-bit, 16-bit, 32-bit
Mode 0 (CPOL=0, CPHA=0)
Other CS required, and cannot be tight to active state

Additional IRQ line required for indicating asynchronous events
from the device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


SPI
(Master)

CS

CLK

MOSI

MISO

H.IRQ
GPO

nHib

MCU
SimpleLinkTM

CC3120

Copyright © 2017, Texas Instruments Incorporated

Host Interface www.ti.com

30 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

In SPI, all communications on the bus are initiated by the SPI master (the host in this case). There is
always a single master on the bus. To allow the SimpleLink Wi-Fi device to trigger asynchronous events to
the host, an additional I/O must be connected (H.IRQ) between them. This line triggers the host to read a
message from the device.

Figure 2-1 shows a typical host setup of the CC3120 wireless network processor using SPI interface.

Figure 2-1. Typical CC3120 Setup (SPI)

2.4.2 UART Interface
The SimpleLink Wi-Fi device supports a standard UART interface with a hardware flow control (RTS/CTS).
The default baud rate is 115,200 bps and can be increased to 3 Mbps.

Table 2-3 lists the required UART settings.

Table 2-3. UART Settings

Attribute Value
Baud rate 115,200 bps

(can be increased to 3 Mbps)
Flow control CTS/RTS
Parity None
Data bits 8
Stop bit 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


       UART

GPIO
nHib

Tx

Rx

CTS

RTS

Tx

Rx

CTS

RTS

MCU
SimpleLinkTM

CC3120

Copyright © 2017, Texas Instruments Incorporated

www.ti.com Host Interface

31SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

Figure 2-2 shows a typical host setup of the SimpleLink Wi-Fi device using UART interface.

Figure 2-2. Typical CC3120 Setup (UART)

Working with the UART interface requires the use of hardware flow control to avoid data loss. UART
hardware flow control works in a way that an entity that is ready to accept data, keeps its RTS line
asserted. Before the transmission, the UART peripheral of the second side will read its CTS line, which is
connected to the RTS of the first side, to verify if it is allowed to send data over the line. The SimpleLink
Wi-Fi device may request to stop transmissions in some scenarios; and therefore, its RTS line must be
respected. If the host is fast enough and does not need to stop transmissions from the SimpleLink device
at any time, the CTS line of the SimpleLink Wi-Fi device might be tied to a pullup instead.

For UART mode only, the following define should be added in user.h: #define SL_IF_TYPE_UART

2.4.2.1 Change UART Baud Rate
The SimpleLink device does not support automatic baud rate detection; therefore this parameter should be
set after every reset. When calling to sl_start, the default baud rate (115,200) must be set as part of the
API parameters. If a different baud rate is needed, the host can set it after the initialization process
completes by using the API sl_DeviceUartSetMode. This setting is not persistent and must be repeated
every time sl_Start is called.

Supported baud rates:
• SL_DEVICE_BAUD_9600
• SL_DEVICE_BAUD_14400
• SL_DEVICE_BAUD_19200
• SL_DEVICE_BAUD_38400
• SL_DEVICE_BAUD_57600
• SL_DEVICE_BAUD_115200
• SL_DEVICE_BAUD_230400
• SL_DEVICE_BAUD_460800
• SL_DEVICE_BAUD_921600

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Version www.ti.com

32 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

Example:
_i16 Status;
_i16 Role;
SlDeviceUartIfParams_t params;
#define COMM_PORT_NUM 24 /* uart com port number */
params.BaudRate = SL_DEVICE_BAUD_115200; /*set default baud rate */
params.FlowControlEnable = 1;
params.CommPort = COMM_PORT_NUM;
Role = sl_Start(NULL, (signed char*)&params, NULL)
params.BaudRate = SL_DEVICE_BAUD_921600; /* set default baud rate 921600 */
Status = sl_DeviceUartSetMode((signed char*)&params);
if( Status )
{

/* error */
}

2.5 Version
The SimpleLink Wi-Fi device offers users the ability to read the internal device firmware version number.

Example:
_i16 Status;
SlDeviceVersion_t ver;

pConfigLen = sizeof(ver);
pConfigOpt = SL_DEVICE_GENERAL_VERSION;
Status = sl_DeviceGet(SL_DEVICE_GENERAL,&pConfigOpt,&pConfigLen,(_u8 *)(&ver));
if( Status )
{

/* error */
}

2.6 Event Mask
The SimpleLink Wi-Fi device lets users mask some of the asynchronous events. Masked events do not
arrive to the host driver. This setting should apply for each API silo separately and include only the events
needed to be masked. By default, none of the events are masked. This configuration is persistent
according to the system-persistent configuration.

Example:
_i16 Status;

/* Mask WLAN connect and disconnect events */
Status = sl_DeviceEventMaskSet(SL_DEVICE_EVENT_CLASS_WLAN,
(SL_DEVICE_EVENT_BIT(SL_WLAN_EVENT_CONNECT) | SL_DEVICE_EVENT_BIT(SL_WLAN_EVENT_DISCONNECT) ) );
if( Status )
{

/* error */
}

2.7 Time and Date
The SimpleLink Wi-Fi device gives users the option to set, and get time and date configuration from the
RTC on the device. The RTC is a continuous counter which is active even during hibernation and resets
only after shutdown.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com MAC Address

33SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

Example:
_i16 Status;
SlDateTime_t dateTime= {0};

dateTime.tm_day = (_u32)23; /* Day of month (DD format) range 1-31 */
dateTime.tm_mon = (_u32)6; /* Month (MM format) in the range of 1-12 */
dateTime.tm_year = (_u32)2014; /* Year (YYYY format) */
dateTime.tm_hour = (_u32)17; /* Hours in the range of 0-23 */
dateTime.tm_min = (_u32)55; /* Minutes in the range of 0-59 */
dateTime.tm_sec = (_u32)22; /* Seconds in the range of 0-59 */
Status = sl_DeviceSet(SL_DEVICE_GENERAL, SL_DEVICE_GENERAL_DATE_TIME, sizeof(SlDateTime_t),
(_u8*)(&dateTime));
if( Status )
{

/* error */
}

2.8 MAC Address
Each SimpleLink Wi-Fi device is manufactured with a unique MAC address. The user can overwrite this
default MAC address. The configuration is persistent with no dependency on the system-persistent
configuration. Setting a MAC address takes effect only after reset, and can be set by the Image Creator.

NOTE: When configuring a new MAC address, the original MAC address is still used for Image
Creator development mode. For more information, refer to the CC3120/CC3220 SimpleLink
Wi-Fi and Internet of Things Image Creator User's Guide (SWRU469).

Example:
_i16 Status;
_u8 MAC_Address[6];
_i16 Role;

MAC_Address[0] = 0x8;
MAC_Address[1] = 0x0;
MAC_Address[2] = 0x28;
MAC_Address[3] = 0x22;
MAC_Address[4] = 0x69;
MAC_Address[5] = 0x31;

Status = sl_NetCfgSet(SL_NETCFG_MAC_ADDRESS_SET,1,SL_MAC_ADDR_LEN,(_u8 *)MAC_Address);
if( Status )
{

/* error */
}
Status = sl_Stop(0);
if( Status )
{

/* error */
}
Role = sl_Start(NULL,NULL,NULL);

2.9 Device Name
The device name is used as the common URN name at the WPS, Wi-Fi Direct, MDNS, and DHCPv4
client. The maximum length of the device name is 32 characters, and the following characters are allowed:
• a through z
• A through Z
• 0 through 9
• –

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E
http://www.ti.com/lit/pdf/SWRU469


Domain Name www.ti.com

34 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

If no device URN name is set, the default name is mysimplelink. If setting the device name with length 0,
the device returns to the default name mysimplelink. This configuration is persistent according to the
system-persistent configuration.

Example:
/* set new device name */
_i16 Status;
_u8 *device_name = "MY-SIMPLELINK-DEV";

Status = sl_NetAppSet (SL_NETAPP_DEVICE_ID,SL_NETAPP_DEVICE_URN, strlen(device_name), (_u8 *)
device_name);
if( Status )
{

/* error */
}

2.10 Domain Name
The domain name is used to access the SimpleLink Wi-Fi device by name, for example accessing the
HTTP server in AP mode. If no domain name is set, the default domain name is www.mysimplelink.net or
mysimplelink.net. This configuration is persistent according to system-persistent configuration.

Example:
/* set new domain name */
_i16 Status;
_u8 *domain_name = "www.myDomain.net";

Status = sl_NetAppSet(SL_NETAPP_DEVICE_ID,SL_NETAPP_DEVICE_DOMAIN,strlen(domain_name),(_u8 *)
domain_name);
if( Status )
{

/* error */
}

2.11 Device Status
The SimpleLink Wi-Fi device provides an option to read the device status according to the last event
recorded in the SimpleLink device per API silo. The status is clear on read.

This option has two main return values:
• Device status
• Asynchronous events

Example:
_i16 Status;
_u32 statusWlan;
_u8 pConfigOpt;
_u16 pConfigLen;

pConfigOpt = SL_DEVICE_EVENT_CLASS_WLAN;
pConfigLen = sizeof(_u32);
Status = sl_DeviceGet(SL_DEVICE_STATUS,&pConfigOpt,&pConfigLen,(_u8 *)(&statusWlan));
if (SL_DEVICE_STATUS_WLAN_STA_CONNECTED & statusWlan )
{

/* The device is connected */
}
if (SL_DEVICE_EVENT_DROPPED_WLAN_RX_FILTERS & statusWlan )
{

/* RX filer event dropped */
}

The full list of possible values for possible device status or asynchronous events can be found in the host
driver.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Persistent Configuration

35SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

2.12 Persistent Configuration
The SimpleLink Wi-Fi device lets users set the system-persistent configuration. By default, the mode of
the system-wide configuration persistence is set to true, and all APIs that follow the system configured
persistence maintain their configured settings after reset. If false, all calls to the APIs that follow the
system-configured persistence are volatile, and the configurations revert to default after reset.

Example:
_i16 Status;
_u8 persistent = 1;

Status = sl_DeviceSet(SL_DEVICE_GENERAL, SL_DEVICE_GENERAL_PERSISTENT, sizeof(_u8),
(_u8*)(&persistent));
if( Status )
{

/* error */
}

For a full list of parameters and their persistent configuration, refer to Appendix B.

NOTE: If system-persistent configuration is enabled, any change in the system settings may result in
a serial-flash write operation, and its write endurance must be considered.

2.13 Errors
Errors are indicated by the return value of the API or by an asynchronous event. Asynchronous events
can be sent to the host at any time with a specific error indication, and may also include specific data for
each event. To listen to these events and conclude the needed information, a handler should be
implemented in the user application, and registered under the user.h header file. Each error code is
unique. The following errors are common and require user action (a full possible error list is under the file
error.h in the host driver):

Table 2-4 lists common errors indicated by asynchronous events.

Table 2-4. Common Asynchronous Error Events

Error Handler Comments
SL_DEVICE_EVENT_ERROR slcb_DeviceGeneralEvtHdlr General error. Includes the parameters status

(specified in the following table and sender, see
SlDeviceSource_e).

SL_DEVICE_EVENT_FATAL_DEVICE_ABORT slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The SimpleLink device is
asserted. User must perform device restart (call
sl_Stop followed by sl_Start).

SL_DEVICE_EVENT_FATAL_DRIVER_ABORT slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The host driver is asserted.
User must perform device reset.

SL_DEVICE_EVENT_FATAL_NO_CMD_ACK slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The host driver did not
receive the ACK command from the device.
User must perform device restart (call sl_Stop
followed by sl_Start).

SL_DEVICE_EVENT_FATAL_SYNC_LOSS slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The host driver and
SimpleLink device are out of sync. User must
perform device restart (call sl_Stop followed by
sl_Start).

SL_DEVICE_EVENT_FATAL_CMD_TIMEOUT slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The command time-out has
expired. User must perform device restart (call
sl_Stop followed by sl_Start).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Errors www.ti.com

36 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Device

Table 2-5 lists common errors statuses.

Table 2-5. Common Error Codes

Error Value Comments
SL_ERROR_ROLE_STA_ERR –4107 Initialization failure in the specified mode (sl_Start)
SL_ERROR_ROLE_AP_ERR –4108
SL_ERROR_ROLE_P2P_ERR –4108
SL_ERROR_CALIB_FAIL –4110 Calibrations failed
SL_ERROR_FS_CORRUPTED_ERR –4111 File system is corrupted, restore to factory image or

program new image should be invoked (see sl_FsCtl,
sl_FsProgram)

SL_ERROR_FS_ALERT_ERR –4112 Initialization failure due to exceeded number of security
alerts (sl_Start); device is locked, restore to factory image
or program new image should be invoked (see sl_FsCtl,
sl_FsProgram)

SL_ERROR_RET_TO_IMAGE_COMLETE –4113 Restore to factory image completed, perform reset
SL_ERROR_INCOMPLETE_PROGRAMMING –4117 Error during programming. Program new image should be

invoked (see sl_FsProgram).
SL_ERROR_DEVICE_LOCKED_SECURITY_ALLERT –28674 Number of security alerts exceeded or system file integrity

error; device is locked.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


37SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Chapter 3
SWRU455E–February 2017–Revised February 2018

WLAN

Topic ........................................................................................................................... Page

3.1 Introduction....................................................................................................... 38
3.2 Key Features ..................................................................................................... 38
3.3 Station (STA) ..................................................................................................... 38

3.3.1 General Description .................................................................................... 38
3.3.2 Configurations and Settings........................................................................... 38
3.3.3 Connection .............................................................................................. 41
3.3.4 Events and Errors ...................................................................................... 44

3.4 Access Point ..................................................................................................... 45
3.4.1 General Description .................................................................................... 45
3.4.2 Configurations and Settings........................................................................... 45
3.4.3 Set Network Configuration ............................................................................ 50
3.4.4 Station Management ................................................................................... 51
3.4.5 Events and Errors ...................................................................................... 52
3.4.6 Limitations ............................................................................................... 52

3.5 Wi-Fi Direct........................................................................................................ 53
3.5.1 General Description .................................................................................... 53
3.5.2 Supported Features .................................................................................... 53
3.5.3 Configurations and Settings........................................................................... 53
3.5.4 Connection .............................................................................................. 57
3.5.5 Events and Errors ...................................................................................... 60
3.5.6 Limitations ............................................................................................... 62

3.6 WLAN Security................................................................................................... 62
3.6.1 Personal Security....................................................................................... 62
3.6.2 Enterprise Security ..................................................................................... 63
3.6.3 WPS ...................................................................................................... 65

3.7 Scan ................................................................................................................. 66
3.7.1 General Description .................................................................................... 66
3.7.2 Configuration (AP/STA)................................................................................ 66
3.7.3 Usage .................................................................................................... 67
3.7.4 Miscellaneous ........................................................................................... 67

3.8 Calibrations ....................................................................................................... 67

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

38 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

3.1 Introduction
The SimpleLink Wi-Fi device supports three WLAN modes: STA, AP, and Wi-Fi-Direct. The device can run
one mode at a time. Each mode has specific settings and capabilities which are detailed in the following
sections. Using the WLAN modes, connection, scanning networks, and data transmissions are possible.
This chapter describes the full set of capabilities of the WLAN system.

3.2 Key Features
Table 3-1 lists the key features and their descriptions.

Table 3-1. Key Features

Key Features Description
802.11 b/g/n STA Supports 802.11 b/g/n standards in STA mode
STA power save Supports STA power save capability
802.11 b/g AP Supports 802.11 b/g standards in AP mode with up to 4

simultaneously connected stations, built-in DHCP server and
DNS server

Manual connection Supports manual connection to a network by SSID and
SSID+BSSID

Preferred networks Supports up to 7 persistent preferred networks (profiles)
Secured connection WEP, WPA, WPA2, and WPS security connection types are

supported.
Enterprise connection Multiple EAP methods are supported for enterprise connection.
Connection policy Connection policy that allows automatic connection to a

preferred network in different cases
Wi-Fi Direct Wi-Fi Direct connection with remote device acting as GO or

CLIENT
Scanning Support scan parameter configuration. Keep up to 30 networks,

and the ability to read the results.
WLAN modes Station, AP (default), and Wi-Fi Direct

3.3 Station (STA)

3.3.1 General Description
Station (STA) is the primary mode of the SimpleLink Wi-Fi device operation. Operating the device in this
mode allows the a connection to an AP, obtaining an IP address, transmitting and receiving data over the
network, and scanning other network devices. The following sections specify the major settings and
modes of operation that are unique to STA mode.

3.3.2 Configurations and Settings
STA configuration is done by using a host driver API while the SimpleLink Wi-Fi device is in STA mode.
Some of the configurations are also available through the internal ROM HTTP server (see Chapter 8 for
details and the configuration table).

There are several configurations for each specific use. Some of the configurations are persistent
according to the system-persistent configuration, some are persistent and nonpersistent as specified in
each configuration specification (more information is in Appendix B).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Station (STA)

39SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Table 3-2 lists the default parameters in station mode. Not all configurations are mandatory, because the
default values of the device are listed in Table 3-2.

Table 3-2. Default Parameters in Station Mode

Configuration Default Value
Interface IPv4
Address DHCP
STA TX power 0 (no back-off, maximum TX power)
Country code EU (channels 1–13)
Connection policy Auto and Auto Provisioning
Calibration mode Normal
Server enterprise authentication Enabled
Applications HTTP server and MDNS

3.3.2.1 Set Mode
STA mode is not the initialization mode by default, therefore it must be set by the application or during the
image creation. The following API should be called to set the device in STA mode. STA configuration
requires a reset and is persistent with no dependency on the system-persistent configuration.

Example:
_i16 Role;
_i16 Status;

/* Set the device in STA mode */
Status = sl_WlanSetMode(ROLE_STA);
if( Status )
{

/* Error setting mode */
}
/* Reset the device */
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);
if (ROLE_STA != Role)
{

/* Role Error */
}

3.3.2.2 Set General STA Parameters
STA mode is activated with default configurations. Reconfiguring these settings is possible, but not
mandatory. The following configurations are available. These configurations require reset, and are always
persistent with no dependency on the system-persistent configuration.
• STA Transmit (TX) Power

Sets the TX power which controls the transmission power level, and can increase or decrease the
value, relative to the maximum TX power. The value represents steps from 0 to 15 which reflect as
dBm offsets from maximum power (0 means maximum power) according to Figure 3-1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Station (STA) www.ti.com

40 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Figure 3-1. Tx Output Power vs Tx Power Settings

Example:
_i16 Status;
_u8 StaPower = 3;

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_STA_TX_POWER,1,(_u8
*)& StaPower);
if( Status )
{

/* error */
}

• Set Country Code/Regulatory Domain
Sets the country code for STA mode. This setting enables scanning, and connection only to the AP
which operates on the chosen channel set. Possible values are US, EU, or JP. Other values are
considered an error. Each country code sets different channel ranges:
– US: Channels 1–11
– JP, EU: Channels 1–13

Example:
_i16 Status;
_u8 Str[] = "US";

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2, Str);
if( Status )
{

/* error */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Station (STA)

41SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

3.3.3 Connection
Connection to a WLAN network is one of the basic capabilities of the SimpleLink Wi-Fi device, and it is the
first step required before initializing socket communication. The SimpleLink Wi-Fi device supports two
methods of establishing a connection: manual connection and preferred networks.

Each of the following methods is combined with a predefined connection policy which instructs the
SimpleLink Wi-Fi device on how to act in different states. Indication of connection completion is performed
by an asynchronous event (see Section 3.3.4)

3.3.3.1 Connection Policies
There are different ways to define the connection policy behavior of the device. These policies define how
the device initiates the connection, and helps to maintain a specific connection configuration after reset,
which is appropriate for the desired use case. The WLAN connection policy defines up to four options for
connecting the SimpleLink Wi-Fi device to a given AP.

The four options for the connection policy follow:
• Auto – The device tries to connect to an AP from the stored profiles based on priority. Up to seven

profiles are supported. On the connection attempt, the device selects the highest priority profile. If
several profiles are within the same priority, the decision is made based on the security type (WPA \
WPA2 > WEP > OPEN). If the security type is also the same, the selection is based on the received
signal strength.
Set the Auto policy with the following macro: SL_WLAN_CONNECTION_POLICY(1,0,0,0)

• Fast – The device tries to connect to the last connected AP. In this mode, the probe request is not
transmitted before the authentication request, as both the SSID and channel are known from previous
successful connection.
– If the Auto policy is also enabled (Auto and Fast), then a profile exists and previous successful

connection was performed to this profile. After reset, the device tries to connect to the same profile
with no scan (no probe request transmission). If this connection fails, the device starts scanning
according to stored profile priority.

– If the Fast policy is enabled independently and a previous successful connection exists, after reset
the device tries to connect to the same AP with no scan (no probe request transmission). If this
connection fails, no further scan is performed.
Set the Auto and Fast policy with the following macro: SL_WLAN_CONNECTION_POLICY(1,1,0,0)

• AnyP2P – Relevant for Wi-Fi-Direct mode only. The device immediately tries to connect to the first Wi-
Fi direct device available, supporting push-button only.
Set the Auto and AnyP2P with the following macro: SL_WLAN_CONNECTION_POLICY(1,0,1,0)

• Auto Provisioning – The device automatically starts the provisioning process if 2 seconds have passed
since reset without receiving any command from the host, while no saved profiles exist. Or the device
automatically starts the provisioning process after 2 minutes of disconnection, while saved profiles
exist (for more information, refer to Section 8.4.6).
Set the Auto and Auto Provisioning with the following macro:
SL_WLAN_CONNECTION_POLICY(1,0,0,1)
More than one connection policy can be set, for example Auto and Fast and Auto provisioning. The
connection policy enabled by default is Auto and Auto Provisioning. Setting the connection policy takes
effect immediately. For example, if setting the Auto policy and profiles exists, a connection attempt to
the highest priority profile is immediately triggered. This configuration is persistent according to the
system-persistent configuration.
An example of an Auto and Fast and Auto provisioning connection policy follows:

_i16 Status;

Status = sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_WLAN_CONNECTION_POLICY(1,1,0,1),NULL,0);
if( Status )
{

/* error */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Station (STA) www.ti.com

42 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

3.3.3.2 Preferred Networks (Profiles)
The SimpleLink Wi-Fi device provides users the ability to predefine up to seven preferred networks. These
preferred networks, or profiles, can be used to establish connection automatically according to the
connection policy settings. The profiles are stored in the file system (nonvolatile memory), and therefore
are preserved during device reset. Profiles can be added, removed, or modified by using the host driver
API or internal web browser. Each profile has a priority which defines how connection order occurs. This
means the SimpleLink Wi-Fi device tries to connect to the highest priority profile stored first (see
Section 3.3.3.1).

Each profile includes the following information:
• SSID
• BSSID
• Security type
• Password
• EAP parameters (enterprise security type)
• Priority

On successful completion of the provisioning process or the WPS process, a new profile is added. Profiles
can be added, removed, edited, viewed, or temporarily suspended by using the following APIs:
• Add Profile

Add a profile to the next available index. The return value is the profile index with a value from 0 to 6.
Negative values indicate an error. This index identifies the profile, and should be used when deleting or
editing the profile.
The following are examples of adding a WPA2 secured profile with SSID and BSSID:

_u8 MacAddr[] = {0xAA,0xBB,0xCC,0xDD,0xEE,0xFF};
SlWlanSecParams_t SecParams;
_i16 Index;

SecParams.Type = SL_WLAN_SEC_TYPE_WPA_WPA2;
SecParams.Key = "123456789";
SecParams.KeyLen = strlen (SecParams.Key);

Index = sl_WlanProfileAdd("Test_AP", strlen("Test_AP"), MacAddr, &SecParams, NULL, 7 /*
Priority*/, 0);

• Delete Profile
A specific profile can be deleted by its index. In addition, all profiles can be deleted at once by using
the following value as an index: WLAN_DEL_ALL_PROFILES.
An example for deleting all profiles:

_i16 Status;

Status = sl_WlanProfileDel(SL_WLAN_DEL_ALL_PROFILES);
if( Status )
{

/* error */
}

• Get Profile
The driver also lets the user read the information of a stored profile by its index. For security reasons,
this information includes only the public information of the profile. The password is not accessible from
the host.
An example for getting the information on a profile at index 2 follows:

_i16 index, Status;
signed char Name[32];
_i16 NameLength;
unsigned char MacAddr[6];
SlWlanSecParams_t SecParams;
SlWlanGetSecParamsExt_t SecExtParams;
_u32 Priority;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Station (STA)

43SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Index = 2;
Status = sl_WlanProfileGet(Index, Name, &NameLength, MacAddr, &SecParams, &SecExtParams,
&Priority);
if( Status )
{

/* error */
}

• Edit Profile
Adding a profile with an existing SSID, BSSID (if applicable), and security type updates the existing
entry. If one of these values is different, it is considered a new profile and is saved as a new entry.

• Suspend Profiles
Specific profiles can be suspended without deletion. This setting is not persistent, and it is deleted after
reset.
An example of suspending a profile with index 1, 4, 6 follows:

_u32 SuspendedProfilesMask;
_i16 Status;

SuspendedProfilesMask = INDEX1 | INDEX4 | INDEX 6 ; /* 0x29 */
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_SUSPEND_PROFILES,
sizeof(suspendedProfilesMask),(_u8*)&suspendedProfilesMask);
if( Status )
{

/* error */
}

• Enterprise Profile
Only one enterprise profile is supported. Before adding the profile, write certificate files to the following
system files:
– /sys/cert/ca.der - CA for the server authentication
– /sys/cert/client.der - Optional, if server requests client authentication
– /sys/cert/private.key - Optional, if server requests client authentication
An example of adding an enterprise profile follows:

SlWlanSecParams_t SecParams;
SlWlanSecParamsExt_t SecExtParams;
_i16 Index;

SecParams.Type = SL_WLAN_SEC_TYPE_WPA_ENT;
SecParams.Key = "123456789";
SecParams.KeyLen = strlen(SecParams.Key);

SecExtParams.User = "Ent_user";
SecExtParams.UserLen = strlen("Ent_user");
SecExtParams.EapMethod = SL_WLAN_ENT_EAP_METHOD_TTLS_TLS;

Index = sl_WlanProfileAdd("Test_Ent_AP",strlen("Test_Ent_AP"),0, &SecParams ,& SecExtParams,7 /*
Priority*/,0);

3.3.3.3 Manual Connection
Manual connection triggers an immediate connection scan, and tries to establish connection to a specific
AP. The connection scan continues until a connection completes or a disconnect command is issued.
Manual connection is in higher priority than any other connection type. The connection can be established
according to SSID, or SSID and BSSID. The connection command can be applied only by the host driver
and returns immediately, before the connection is established. The host application should wait for the
connection asynchronous events as in all other connection methods.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Station (STA) www.ti.com

44 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Example:
SlWlanSecParams_t SecParams;
_i16 Status;

SecParams.Type = SL_WLAN_SEC_TYPE_WPA_WPA2;
SecParams.Key = "123456789";
SecParams.KeyLen = strlen(SecParams.Key);

Status = sl_WlanConnect("Test_Ent_AP",strlen("Test_Ent_AP"),0 ,&SecParams ,0,);
if( Status )
{

/* error */
}

3.3.4 Events and Errors
The host can receive an indication of specific states through events or errors.

Asynchronous events can be sent to the host at any given time with an indication of specific states and
specific data for each event. To listen to these events and determine the needed information, a handler
must be implemented in the user application and registered under the user.h header file. The following
event may be received in relation to a WLAN connection:
• SL_WLAN_EVENT_CONNECT

Indicates the connection is successful and includes the following information:
– SSID
– SSID length
– BSSID

• SL_WLAN_EVENT_DISCONNECT
Indicates the disconnection is successful and includes the following information:
– SSID
– SSID length
– BSSID
– Disconnect reason code

Errors are indicated by the return value of the API. Each error code is unique. Table 3-3 lists common
errors that require user action (a complete list of errors is under the error.h file in the host driver).

Table 3-3. Common Errors

Error Value Comments
SL_ERROR_ROLE_STA_ERR –4107 Initialization failure in STA mode
SL_ERROR_WLAN_INVALID_ROLE –2050 Action applied does not match the current mode.
SL_ERROR_WLAN_KEY_ERROR –2049 One of the security parameters or SSID supplied is

wrong (invalid length or not supported).SL_ERROR_WLAN_INVALID_SECURITY_TYPE –2054
SL_ERROR_WLAN_PASSPHRASE_TOO_LONG –2055
SL_ERROR_WLAN_PASSWORD_ERROR –2058
SL_ERROR_WLAN_SSID_LEN_ERROR –2060
SL_ERROR_WLAN_ILLEGAL_WEP_KEY_INDEX –2064
SL_ERROR_WLAN_EAP_WRONG_METHOD –2057 One of the EAP security parameters supplied is wrong

(invalid length or not supported).SL_ERROR_WLAN_EAP_ANONYMOUS_LEN_ERROR –2059
SL_ERROR_WLAN_USER_ID_LEN_ERROR –2061
SL_ERROR_WLAN_PREFERRED_NETWORK_LIST_FULL –2062 No free profile
SL_ERROR_WLAN_INVALID_POLICY_TYPE –2066 Invalid policy type. Value is not supported.
SL_ERROR_WLAN_WIFI_ALREADY_DISCONNECTED –2071 Applying disconnect command when disconnected

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Access Point

45SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Table 3-3. Common Errors (continued)
Error Value Comments

SL_ERROR_WLAN_GET_NETWORK_LIST_EAGAIN –2073 Scan was not enabled, one-shot scan is immediately
triggered and the user should fetch the scan results
again

SL_ERROR_WLAN_GET_PROFILE_INVALID_INDEX –2074 Profile index is too high or does not exist

3.4 Access Point

3.4.1 General Description
Access point (AP) is supported by the SimpleLink Wi-Fi device. This mode is used mostly to set the
device network configuration. In AP mode, the unprovisioned SimpleLink Wi-Fi device wakes up initially as
an AP with an SSID defined by the equipment manufacturer. Before trying to connect to the home network
for the first time, the unprovisioned device creates a network of its own, allowing a PC or a smartphone to
connect to it directly and facilitate its initial configuration. AP mode supports up to four connected stations
and offers a secured connection. Managing the station connection can be done by using host commands
(distributes IP address, see connected stations, disconnect stations, add or remove stations from the black
list, and so on). Specific settings and modes of operation are unique for AP mode.

3.4.2 Configurations and Settings
The SimpleLink Wi-Fi device AP configuration is done by using the host driver API. Several configurations
exist for each specific use case. Some of the configurations are persistent according to the system-
persistent configuration, and some are persistent and nonpersistent, as specified in each configuration
specification (more information is in annex 2 Persistency). Not all configurations are mandatory because
the device has default values, according to Table 3-4.

Table 3-4. AP Default Parameters

Configuration Default Value
Interface IPv4
Address Static with the following parameters:

IP 10.123.45.1, Subnet mask: 255.255.255.0
Default gateway: 10.123.45.1, DNS: 10.123.45.1

AP TX power 0 (no back-off, maximum TX power)
Country code EU (channels 1–13), default channel is 6
Connection policy N/A
Calibration mode Normal
Applications DHCP server and HTTP server and MDNS and DNS server

3.4.2.1 Set Mode
AP mode is the default initial mode of the device. AP configuration is not effective until the device enters
into AP mode. This configuration requires a reset, and is persistent with no dependency on the system-
persistent configuration. If the device gets set to a different mode, and the AP mode is required again, the
following API should be called.
_i16 Role;
_i16 Status;

Status = sl_WlanSetMode(ROLE_AP);
if( Status )
{

/* error */
}
sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Access Point www.ti.com

46 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

if (ROLE_AP != Role)
{

/* Role Error */
}

3.4.2.2 Set General AP Parameters
AP mode is activated with default configuration, and reconfiguration is not mandatory, although this option
exists. The following settings are available, require reset, and are persistent with no dependency on the
system-persistent configuration.
• SSID

The SimpleLink Wi-Fi device default SSID is ‘mysimplelink-xxyyzz’ where ‘xxyyzz’ are the last six digits
of the device MAC address. Because the MAC address is unique, the SSID is also unique. Still, the
SSID configuration exists with maximum length of 32 characters.
Example:

_i16 Status;
_u8 Ssid[] = "Test_AP";

Status=sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_SSID, strlen(Ssid), Ssid);
if( Status )
{

/* error */
}

• Hidden SSID
The device can be configured and not broadcast the SSID inside the Beacon frame. This configuration
is disabled by default.
Example:

_i16 Status;
_u8 hidden = TRUE;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_HIDDEN_SSID, 1, (_u8 *)& hidden);
if( Status )
{

/* error */
}

• Set Country Code / Regulatory Domain
Set the country code for AP mode. Possible values are US, EU, JP, and all others are considered an
error. Each country code sets different channel ranges:
– US: 1–11
– EU, JP: 1–13
Example:

_i16 Status;
_u8 Str[] = "US";

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2,
Str);
if( Status )
{

/* error */
}

• Channel
Set the SimpleLink Wi-Fi device AP Operational Channel. Possible values from 1 to 13. Any other
value is considered as error. The default channel in AP mode is 6.
Example:

_i16 Status;
_u8 channel = 1;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Access Point

47SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_CHANNEL, 1, (_u8 *)& channel);
if( Status )
{

/* error */
}

• Security Type
Set the SimpleLink Wi-Fi device AP network security mode configuration. Possible security types are
OPEN, WEP and WPA\WPA2. The default value is Open security.
Example:

_i16 Status;
_u8 val = SL_WLAN_SEC_TYPE_WPA_WPA2;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_SECURITY_TYPE, 1, (_u8 *)&val);
if( Status )
{

/* error */
}

• Password
The SimpleLink Wi-Fi device configured as secured AP includes a security password. This password is
used for all secured networks except OPEN. Setting the SimpleLink Wi-Fi device with a WEP security
includes a password length of 5 or 10 characters in HEX format, and 13 or 26 characters in ASCII
format. For the WPA \ WPA2 security type, set the password length from 8 to 64 characters. The
default value is not supplied, and when using a secured network the password must be set.
Example:

_i16 Status;
_u8 password[] = {"123456789"};
_u16 len = strlen(password);

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_PASSWORD, len, (_u8 *)password);
if( Status )
{

/* error */
}

• Maximum Stations Connected
The SimpleLink Wi-Fi device lets users configure the value of the maximum connected stations
allowed. The available range is from one to four stations. The default value is four stations.
Example:

_i16 Status;
_u8 max_ap_stations = 3;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_MAX_STATIONS, sizeof(max_ap_stations), (_u8
*)&max_ap_stations);
if( Status )
{

/* error */
}

• Station Aging Time
The SimpleLink Wi-Fi device lets users set the value of the maximum time before a station is
considered inactive. After this time expires, a null data frame is sent to the station. If this frame is not
acknowledged and no other frames are received, the station is disassociated. The default value is 60
seconds.
Example:

_i16 Status;
_u16 max_ap_sta_aging = 50;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_MAX_STA_AGING, sizeof(max_ap_sta_aging),

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Access Point www.ti.com

48 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

(_u8 *)&max_ap_sta_aging);
if( Status )
{

/* error */
}

• AP TX Power
The SimpleLink Wi-Fi device lets users set the TX power level in AP mode. The value is from 0 to 15,
as dB offset from maximum power (0 is MAX power).
Example:

_i16 Status;
_u8 ApPower = 3;

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_AP_TX_POWER,1,(_u8
*)& ApPower);
if( Status )
{

/* error */
}

• Set Info Elements
The SimpleLink Wi-Fi device lets users set up to four custom information (info) elements per mode,
AP, or Wi-Fi Direct GO. For AP mode, no more than 300 bytes
(SL_INFO_ELEMENT_MAX_TOTAL_LENGTH_AP) can be stored for all info elements (for example, 4
info elements of 75 bytes each). For Wi-Fi Direct GO mode, no more than 160 byes
(SL_INFO_ELEMENT_MAX_TOTAL_LENGTH_P2P_GO) can be stored for all info elements (for
example, 4 info elements of 40 bytes each). To delete an info element, use the relevant index with
length 0.
Example:

_i16 Status;
SlWlanSetInfoElement_t InfoEle;

InfoEle.Index = Index; /* Index of the info element. range: 0 -
SL_WLAN_MAX_PRIVATE_INFO_ELEMENTS_SUPPROTED */

InfoEle.Role = Role; /* SL_WLAN_INFO_ELEMENT_AP_ROLE (0) or
SL_WLAN_INFO_ELEMENT_P2P_GO_ROLE (1) */
InfoEle.IE.Id = Id; /* Info element ID. if
SL_WLAN_INFO_ELEMENT_DEFAULT_ID (0) is set, ID will be set to 221 */
/* Organization unique ID. If all 3 bytes are zero - it will be replaced with 08,00,28 */
InfoEle.IE.Oui[0] = Oui0; /* Organization unique ID first Byte */
InfoEle.IE.Oui[1] = Oui1; /* Organization unique ID second Byte */
InfoEle.IE.Oui[2] = Oui2; /* Organization unique ID third Byte */
InfoEle.IE.Length = Len; /* Length of the info element. must be smaller than 253
bytes */
InfoEle (infoele.IE.Data, 0, SL_WLAN_INFO_ELEMENT_MAX_SIZE);

if ( Len < = SL_WLAN_INFO_ELEMENT_MAX_SIZE )
{

memcpy(InfoEle.IE.Data, IE, Len);
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_INFO_ELEMENT,
sizeof(SlWlanSetInfoElement_t),(_u8* )&InfoEle);
if( Status )
{

/* error */
}

}

3.4.2.3 Get General AP Parameters
AP mode configuration can be retrieved by host commands. Each set parameter (discussed in the
previous section) can be retrieved with the following API, and the same configuration ID and configuration
option.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Access Point

49SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Example:
_i16 Status;
_i8 Ssid[33];
_u16 Len = 33;
_u16 Config_opt;

memset(ssid,0,33);
Config_opt = SL_WLAN_AP_OPT_SSID;
Status = sl_WlanGet(SL_WLAN_CFG_AP_ID, &config_opt , &len, (_u8* )ssid);
if( Status )
{

/* error */
}

3.4.2.4 Black List
The black list lets users filter the stations which can connect to the AP according to their MAC address.
The list contains up to eight entries and is persistent. Adding or removing a station to and from the list
includes file write. Adding a station to the black list, which is currently connected to the AP, does not
disconnect this station from the AP. The host application can enable and disable the black list without
erasing the list of stations. By default, the black list is enabled. Removing a station from a list can be done
by the MAC address or by the index of the entry.
• Set Black List Mode

The SimpleLink Wi-Fi device allows enabling or disabling the black list mode.
Example:

_i16 Status;
_u8 access_list_mode = SL_WLAN_AP_ACCESS_LIST_MODE_DENY_LIST;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_MODE, sizeof(access_list_mode),
(_u8 *)&access_list_mode);
if( Status )
{

/* error */
}

• Add MAC to the Black List
Add a station to the black list. Adding a station to the black list will not disconnect it.
Example:

_i16 Status;
_u8 sta_mac[6] = { 0x00, 0x22, 0x33, 0x44, 0x55, 0x66 };

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_ADD_MAC, sizeof(sta_mac), (_u8 *)
&sta_mac);
if( Status )
{

/* error */
}

• Remove MAC from the Black List
Removing a station from the black list can be done using the MAC address or entry index (retrieve the
entry index with Get Black option, which is specified as follows).
Examples of removing entry according to the MAC address:

_i16 Status;
_u8 sta_mac[6] = { 0x00, 0x22, 0x33, 0x44, 0x55, 0x66 };

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_DEL_MAC, sizeof(sta_mac), (_u8 *)
&sta_mac);
if( Status )
{

/* error */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Access Point www.ti.com

50 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

}

Examples of removing entry according to the entry index:
_i16 Status;
_u8 sta_index = 0;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_DEL_IDX, sizeof(sta_index), (_u8
*)&sta_index);
if( Status )
{

/* error */
}

• Get Number of Entries in the Black List
Get the number of denied stations in the current black list.
Example:

_i16 Status;
_u8 aclist_num_entries;
_u16 config_opt = SL_WLAN_AP_ACCESS_LIST_NUM_ENTRIES;
_u16 len = sizeof(aclist_num_entries);

Status = sl_WlanGet(SL_WLAN_CFG_AP_ID, &config_opt, &len, (_u8 *)&aclist_num_entries);
if( Status )
{

/* error */
}

• Get the Black List
Get the AP black list from a specific index. The number of entries in the list is extracted from the
returned total length, divided by the address size.
Example:

_i16 Status;
_u8 aclist_mac[SL_WLAN_MAX_ACCESS_LIST_STATIONS][MAC_LEN];
unsigned char aclist_num_entries;
unsigned short config_opt;
unsigned short len;
int actual_aclist_num_entries;
unsigned short start_aclist_index;
unsigned short aclist_info_len;
int i;

start_aclist_index = 0;
aclist_info_len = 2*MAC_LEN;
Status = sl_WlanGet(SL_WLAN_CFG_AP_ACCESS_LIST_ID, &start_aclist_index, &aclist_info_len,
(_u8*)&aclist_mac[start_aclist_index]);
if( Status )
{

/* error */
}
actual_aclist_num_entries = aclist_info_len / MAC_LEN; /* number of stations in the list */

3.4.3 Set Network Configuration

3.4.3.1 Set AP IP Parameters
The SimpleLink Wi-Fi device lets users set the AP static IPv4 parameters (IPv6 is not supported in AP
mode). This configuration is persistent, and reset is required for changes to apply. The following
parameters can be configured:
• IP – IPv4 static address
• Subnet mask – IPv4 network mask address

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Access Point

51SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

• Default gateway – IPv4 default gateway address
• DNS server – IPv4 DNS server address

Example:
_i16 Status;
_i16 Role;
SlNetCfgIpV4Args_t ipV4;

ipV4.Ip = (_u32)SL_IPV4_VAL(10,1,1,201); /* IP address */
ipV4.IpMask = (_u32)SL_IPV4_VAL(255,255,255,0); /* Subnet mask */
ipV4.IpGateway = (_u32)SL_IPV4_VAL(10,1,1,1); /* Default gateway address */
ipV4.IpDnsServer = (_u32)SL_IPV4_VAL(8,16,32,64); /* _u32 DNS server address */

Status =
sl_NetCfgSet(SL_NETCFG_IPV4_AP_ADDR_MODE,SL_NETCFG_ADDR_STATIC,sizeof(SlNetCfgIpV4Args_t),(_u8
*)&ipV4);
if( Status )
{

/* error */
}
/* restart the device */
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);

3.4.4 Station Management
The SimpleLink Wi-Fi device lets users manage the connected stations by using host commands. Users
can enable the device to view the connected stations and disconnect stations according to their MAC
address.

3.4.4.1 Get Connected Stations
The SimpleLink Wi-Fi device lets users get the current number of connected stations and get the full list of
connected stations.

Example:
_i16 Status;
_u8 NumConnectedStations;
_u16 ValueLen = sizeof(_u8);
_u32 i;
SlNetCfgStaInfo_t ApStaList[4];
_u16 sta_info_len;
_u16 start_sta_index = 0;
_u16 actual_num_sta;

Status = sl_NetCfgGet(SL_NETCFG_AP_STATIONS_NUM_CONNECTED, NULL, &ValueLen,
&NumConnectedStations);
if( Status )
{

/* error */
}

/* get list of connected stations */
start_sta_index = 0; /* from index */
sta_info_len = sizeof(ApStaList); /* 4 stations to get */
Status = sl_NetCfgGet(SL_NETCFG_AP_STATIONS_INFO_LIST, &start_sta_index, &sta_info_len, (_u8
*)ApStaList);
if( Status )
{

/* error */
}

/* extract actual stations in the response */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Access Point www.ti.com

52 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

actual_num_sta = sta_info_len / sizeof(SlNetCfgStaInfo_t);

3.4.4.2 Disconnect a Station
In AP mode, the SimpleLink Wi-Fi device lets users force disconnect a station by using its MAC address.
Disconnecting a station does not add it to the black list, and the station can immediately connect again.

Example:
_i16 Status;
_u8 ap_sta_mac[6] = { 0x00, 0x22, 0x33, 0x44, 0x55, 0x66 };

Status = sl_NetCfgSet(SL_NETCFG_AP_STATION_DISCONNECT,1,SL_MAC_ADDR_LEN,(_u8 *)ap_sta_mac);
if( Status )
{

/* error */
}

3.4.5 Events and Errors
The host can receive indication of specific states through events or errors. Asynchronous events can be
sent to the host at any time, with indication of a specific state and specific data for each event. To listen to
these events and determine the needed information, a handler should be implemented in the user
application, and registered under the user.h to catch the following possible events:
• SL_WLAN_EVENT_STA_ADDED

Indicates connection is successfully completed and includes the following information: MAC address
• SL_WLAN_EVENT_STA_REMOVED

Indicates connection is successfully completed and includes the following information: MAC address
• SL_NETAPP_EVENT_IPV4_ACQUIRED

Indicates connection is successfully completed and includes the following information:
– IPv4 address
– Default Gateway address
– DNS address

Errors are indicated by the return value of the API. Each error code is unique.Table 3-5 lists common
errors that require user action (a complete list of possible errors is under the file error.h in the host driver).

Table 3-5. Common Errors

Error Value Comments
SL_ERROR_ROLE_AP_ERR –4108 Initialization failure in AP mode.
SL_ERROR_WLAN_TX_POWER_OUT_OF_RANGE –2167 Configured TX power is out of range.
SL_ERROR_WLAN_INVALID_ROLE –2050 Action applied does not match the current mode.
SL_ERROR_WLAN_CANNOT_CONFIG_SCAN_DU
RING_PROVISIONING

–2052 Illegal action occurred during provisioning.

SL_ERROR_WLAN_INVALID_COUNTRY_CODE –2464 Invalid country code
SL_ERROR_WLAN_INVALID_AP_PASSWORD_LE
NGTH

–2168 Configured AP password has invalid length.

SL_ERROR_WLAN_AP_SCAN_INTERVAL_TOO_S
HORT

–2176 Scan in AP mode has a minimum interval of 10 seconds.

3.4.6 Limitations
A list of device limitations follows:
• A maximum of four stations can connect to the SimpleLink Wi-Fi device in AP mode.
• Only 802.11bg is supported.
• No power save support in AP mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Wi-Fi Direct

53SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

3.5 Wi-Fi Direct

3.5.1 General Description
The SimpleLink Wi-Fi device supports the Wi-Fi Direct standard, which enables the device to connect
directly to other devices without an AP. In this mode, one device functions as a GROUP OWNER (AP-like
mode) and the other functions as a CLIENT (STA-like mode) by inheriting the entire STA and AP
attributes. This mode makes it simple and convenient to establish a connection without joining a traditional
home, office, or hotspot network.

3.5.2 Supported Features
A list of supported features follows:
• CLIENT and GROUP OWNER (GO) roles
• Configuring device name, type, listen and operation channels
• Device discovery (FULL/SOCIAL)
• Negotiation with all intents (0 to 15)
• Negotiation initiator policy – Active, Passive, Random Backoff
• WPS method Push-Button, Pin code (keypad and display)
• Join an existing Wi-Fi Direct group
• Device invites to reconnect persistent group (fast-connect)
• Group owner accepts join request
• Persistent group owner, responds to invite requests
• P2P Connect-Disconnect-Connect transition, also between different modes (for example, GO-CL-GO)
• P2P Client Legacy PS and NoA support
• Separate IP Configuration for P2P mode
• Separate Net Applications configuration on top of Wi-Fi Direct CL/GO mode

3.5.3 Configurations and Settings
The SimpleLink Wi-Fi device Wi-Fi Direct settings are configured by using the host driver API which
controls the device. Several configurations for each specific use case exist. Some of the configurations
are persistent according to the system-persistent configuration, some are persistent and some are
nonpersistent, as specified in each configuration specification (more information is at annex 2
Persistency). Not all configurations are mandatory because the device has default values according to
Table 3-6, which lists the Wi-Fi Direct default parameters.

Table 3-6. Wi-Fi Direct Default Parameters

Configuration Default Value
Interface IPv4
STA Tx power 0 (no backoff, maximum Tx power)
Country code EU (channels 1 to 13)
Connection policy Auto and Auto Provisioning
Calibration mode Normal
Applications HTTP server
Intent 3
Negotiator 2
CL address DHCP
GO address Static with the following parameters:

IP 10.123.45.1, Subnet mask: 255.255.255.0
Default gateway: 10.123.45.1, DNS: 10.123.45.1

Device name mysimplelink_XX (xx = Random 2 characters)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Wi-Fi Direct www.ti.com

54 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Table 3-6. Wi-Fi Direct Default Parameters (continued)
Configuration Default Value

Device type 1-0050F204-1
listen channel Random channel between 1, 6, or 11
Operational channel Random channel between 1, 6, or 11

3.5.3.1 Configuring Wi-Fi Direct General Parameters
• Set Mode

Wi-Fi Direct mode is not the initialization mode by default, therefore it must be set by the application.
The following API should be called to set the device in Wi-Fi Direct mode. Wi-Fi Direct configuration is
not effective until the device enters Wi-Fi Direct mode. This configuration requires a reset and
persistent with no dependency on the system-persistent configuration.
Example:

_i16 Role;
_i16 Status;

Status = sl_WlanSetMode(ROLE_P2P);
if( Status )
{

/* error */
}
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);
if (ROLE_P2P != Role)
{

/* error */
}

• Set Network Configuration
The network configuration for Wi-Fi Direct mode is similar to the STA and AP modes. For CLIENT use
STA network configuration parameters, and for GO use AP network configuration parameters.
Persistent:
– CL – This configuration is persistent according to the system-persistent configuration
– GO – This configuration is persistent regardless of the system-persistent configuration

To change the default configuration, the following settings are available:
• CLIENT – same network confirmation as the STA mode (static or DHCP address)
• GO – same network confirmation as the AP mode (static address)

An example of setting CLIENT static IPv4 address:
SlNetCfgIpV4Args_t ipV4;

_i16 Status;

ipV4.Ip = (_u32)SL_IPV4_VAL(192,168,0,108); /* IP address */
ipV4.IpMask = (_u32)SL_IPV4_VAL(255,255,255,0); /* Subnet mask for this STA/P2P */
ipV4.IpGateway = (_u32)SL_IPV4_VAL(192,168,0,1); /* Default gateway address */
ipV4.IpDnsServer = (_u32)SL_IPV4_VAL(192,168,0,1); /* DNS server address */

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,
SL_NETCFG_ADDR_STATIC,sizeof(SlNetCfgIpV4Args_t) ,(_u8 *)&ipV4);
if( Status )
{

/* error */
}

• Set Device Name
The device name must be unique because the Wi-Fi Direct connection is device-name based. The

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Wi-Fi Direct

55SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

device name is compound of the URN and two random characters. Users can set only the URN; the
random characters are internally generated. Default = mysimplelink_XX (xx = random two characters).
This configuration is persistent according to the system-persistent configuration.
Example:

_u8 device_name[] = "Simple_WiFi_Direct";
_i16 Status;

Status = sl_NetAppSet (SL_NETAPP_DEVICE_ID,SL_NETAPP_DEVICE_URN, strlen(device_name), (_u8 *)
device_name);
if( Status )
{

/* error */
}

• Set Device Type
The following macro is used to set the Wi-Fi Direct device type. The device type is published under
P2P I.E. The device type is part of the Wi-Fi Direct discovery parameters, and is used to better
recognize the device. The maximum length is 17 characters. Default = 1-0050F204-1. This
configuration is persistent according to the system-persistent configuration.
Example:

_i16 Status;
_u8 str[17];
_u16 len = strlen(device_type);

memset(str, 0, 17);
memcpy(str, device_type, len);
Status = sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID, SL_WLAN_P2P_OPT_DEV_TYPE, len, str);
if( Status )
{

/* error */
}

• Set Listen and Operational Channels
The listen channel is used for the discovery state and the value can be 1, 6, or 11. The device stays in
this channel when waiting for Wi-Fi Direct probes requests. The operation channel is only used by the
GO device. The GO device moves to this channel after the negotiation phase. The default listen
channel is randomly assigned between channels 1, 6, or 11. This configuration is persistent according
to the system-persistent configuration. The regulatory domain class should be 81 in 2.4 G.
An example for setting the listen channel to 11 and the operational channel to 6 follows:

_u8 channels [4];
_i16 Status;

channels [0] = (unsigned char)11; /* listen channel */
channels [1] = (unsigned char)81; /* listen regulatory class */
channels [2] = (unsigned char)6; /* operational channel */
channels [3] = (unsigned char)81; /* operational regulatory class */
Status = sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID, SL_WLAN_P2P_OPT_CHANNEL_N_REGS,4,channels);
if( Status )
{

/* error */
}

3.5.3.2 Set Wi-Fi Direct Policy
The Wi-Fi Direct connection policy divides into two major configurations:
• Wi-Fi Direct Intent Value

This value indicates in which Wi-Fi Direct mode the device acts (CLIENT, GO, or other). This
configuration is done by using the macro SL_WLAN_P2P_POLICY. Three defines can be used when
setting the intent:
1. SL_WLAN_P2P_ROLE_CLIENT (intent 0): Indicates that the device is forced to be CLIENT.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Wi-Fi Direct www.ti.com

56 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

2. SL_WLAN_P2P_ROLE_NEGOTIATE (intent 7): Indicates that the device can be either CLIENT or
GO, depending on the Wi-Fi Direct negotiation tie-breaker. This tie-breaker is the system default.

3. SL_WLAN_P2P_ROLE_GROUP_OWNER (intent 15): Indicates that the device is forced to be P2P
GO.

NOTE: This configuration is persistent according to the system-persistent configuration.

• Negotiation Initiator
This value determines whether the SimpleLink Wi-Fi device first initiates the negotiation, or passively
waits for the remote side to initiate the negotiation. This configuration must be used when working with
two SimpleLink Wi-Fi devices. In general, the user does not have a GUI to start the negotiation by
pressing a button or by entering a pin key. Therefore, this option is given to avoid starting the
negotiation at the same time by both devices after the discovery process.

1. SL_WLAN_P2P_NEG_INITIATOR_ACTIVE: When the remote peer is found after the discovery
process, the device immediately sends the negotiation request to the peer device.

2. SL_WLAN_P2P_NEG_INITIATOR_PASSIVE: When the remote peer is found after the discovery
process, the device passively waits for the peer to start the negotiation, and only responds after.

3. SL_WLAN_P2P_NEG_INITIATOR_RAND_BACKOFF: When the remote peer is found after the
discovery process, the device triggers a random timer (1 to 6 seconds). During this period, the device
passively waits for the peer to start the negotiation. If the timer expires without negotiation, the device
immediately sends the negotiation request to the peer device. This is the system default, and also the
recommendation for working with two SimpleLink Wi-Fi devices out-of-the box, because no negotiation
synchronization must be done.

NOTE: This configuration is persistent according to the system-persistent configuration.

Example:
_i16 Status;

Status = sl_WlanPolicySet(SL_WLAN_POLICY_P2P, SL_WLAN_P2P_POLICY( SL_WLAN_P2P_ROLE_NEGOTIATE,

SL_WLAN_P2P_NEG_INITIATOR_RAND_BACKOFF) , NULL,0);
if( Status )
{

/* error */
}

3.5.3.3 Configure Connection Policy
This policy is used for automatic connection. The system tries to connect to a peer automatically after
reset, or after disconnect operation by the remote peer. There is a general mechanism for the peer profile
and peer profile configuration which is not described in this section, though an example of how to add a
profile is explained in a later section. The mechanism described here explains how the device uses these
profiles in relation to the Wi-Fi Direct automatic connection. The same connection policy can also be
configured in STA mode, use the same setting parameters, and be applied in both modes, but it has slight
differences.

The four connection policy options follow:
• Auto – This policy is similar to Auto Start in STA mode. The device starts the Wi-Fi Direct find process,

and searches for all Wi-Fi Direct profiles stored on the device, then tries to find the best candidate to
start negotiating. If at least one candidate is found, the connection attempt is triggered. If more than
one device is found, the best candidate according to profiles parameter is chosen.

• Fast – In Wi-Fi Direct mode, this policy is the equivalent to the Wi-Fi Direct persistent group, but it has
a different meaning between GO and CLIENT. This option is very useful for making fast connection
after reset, but it is dependent on the last connection state. This option is active only if there was a
successful connection before the device was reset, because the last connection parameters are saved
and used by the fast connection option. If the device was CLIENT in its last connection (before reset or
remote disconnect) then following the reset, users must send the p2p_invite to the previously

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Wi-Fi Direct

57SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

connected GO, to perform fast reconnecting. If the device was GO in its last connection (before reset
or remote disconnect) then following reset, users must reinvoke the p2p_group_owner, and wait for the
previously connected peer to reconnect to the device.

• AnyP2P policy – This policy creates a connection to any Wi-Fi Direct peer device found during
discovery. This option does not use any stored profiles and is relevant for negotiation with push-button
only.

• Auto Provisioning – This policy is not relevant in Wi-Fi Direct mode. Each option in this macro should
be sent or set as true or false. Multiple options can be used. This configuration is persistent according
to the system-persistent configuration.

Example:
_i16 Status;

Status = sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION,SL_WLAN_CONNECTION_POLICY(1,1,0,1),NULL,0);
if( Status )
{

/* error */
}

3.5.4 Connection
• Discovering Remote Wi-Fi Direct Peers

This section describes how to start a Wi-Fi Direct search or discovery, and how to view the discovered
remote Wi-Fi Direct devices. The scan policy must be set to start the Wi-Fi Direct find process, and to
discover remote Wi-Fi Direct peers. This process is done by setting a scan policy for Wi-Fi Direct
mode.

NOTE:
• Setting the scan policy should be done while the device is in Wi-Fi Direct mode.
• Wi-Fi Direct discovery is performed as a part of any connection, but it can be activated

using SCAN_POLICY as well.
• This configuration is not persistent.

Example:
_u32 intervalInSeconds = 20;
_i16 Status;

Status = sl_WlanPolicySet(SL_WLAN_POLICY_SCAN, SL_WLAN_SCAN_POLICY(1,1),
(_u8*)&intervalInSeconds,sizeof(intervalInSeconds));
if( Status )
{

/* error */
}

• Retrieve Remote Wi-Fi Direct Peers
There are two ways to see and get Wi-Fi Direct remote devices that were discovered during the Wi-Fi
Direct find and search operation:
– Listening to the event SL_WLAN_EVENT_P2P_DEVFOUND:

This event is sent asynchronously to the host when a remote Wi-Fi Direct is found, and contains the
MAC address, device name, and length of the device name. By listening to this event, the user can
immediately find each remote Wi-Fi Direct device that exists in their neighborhood, and issue a
connect or add profile command.

– Calling to API sl_WlanGetNetworkList:
By calling to this API the user receives a list of remote peers that were found during the scan and
are saved in the device cache memory. By receiving the network list, the user can immediately find
any remote Wi-Fi Direct device and issue a manual connection or add profile command.

Example:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Wi-Fi Direct www.ti.com

58 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

SlWlanNetworkEntry_t netEntries[30];

_i16 resultsCount = sl_WlanGetNetworkList(0,30,&netEntries[0]);

• Wi-Fi Direct Remote Connection
Enabling the scan policy sets the device to be discoverable for other devices. The two following
options are available to complete the connection:
– Combine the scan policy first with the connection policy AnyP2P, and allow the remote device to

find and complete the connection without any action from the user side (PBC only).
– Listen to the SL_WLAN_EVENT_P2P_REQUEST event. This event holds information about the

remote device that initiated the connection such as the device name, name length, MAC address,
and WPS method. To complete the connection issue, connect or add profile command with the
correct parameters.

• Negotiation Method
The following are two different Wi-Fi Direct negotiation methods which indicate the WPS phase that
follows to the negotiation:
– Push-button

Both sides negotiate with PBC method. Define: SL_WLAN_SEC_TYPE_P2P_PBC.
– Pin Code Connection

Divided to two options:
• PIN_DISPLAY – this side looks for this pin to be written by its remote peer. Define:

SL_WLAN_SEC_TYPE_P2P_PIN_DISPLAY
• PIN_KEYPAD – this side sends a pin code to its remote peer. Define:

SL_WLAN_SEC_TYPE_P2P_PIN_KEYPAD

These parameters influence the negotiation method and are supplied during the manual connection API
command that comes from the host or by setting the profile for automatic connection. The negotiation
method is performed by the device without user interference.

NOTE: If no pin code is entered in the display side, the NWP auto-generates the pin code from the
device MAC using the following method:
1. Take the 7 LSB decimal digits in the device MAC address.
2. Add the checksum of the 7 LSB decimal digits to the LSB (8 digits total).

For example, if the MAC address is 03:4A:22:3B:FA:42, convert to it decimals (059:250:066);
7 LSB decimal digits are: 9250066, and the WPS pin checksum digit is 2. The default pin
code for this MAC is 92500662.

Configure the negotiation method by setting the security type in the security structure when issuing a
connect or add profile command.
• Push Button: secParams.Type = SL_WLAN_SEC_TYPE_P2P_PBC
• Pin Code Keypad:

– secParams.Type = SL_WLAN_SEC_TYPE_PIN_KEYPAD
– secParams.Key = “12345670”

• Pin Code Display:
– secParams.Type = SL_WLAN_SEC_TYPE_PIN_ DISPLAY
– secParams.Key = “12345670”

• Manual Connection
After finding a remote Wi-Fi Direct device, the host can instruct the device to connect to it by issuing a
simple connect command. This command performs immediate Wi-Fi Direct discovery, and once the
remote device is found, the negotiation phase is started according to the negotiation initiator policy,
method, and intent selected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Wi-Fi Direct

59SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

NOTE:
• The connection parameters are not saved to flash memory so in case of disconnection

or reset no reconnection will be done, unless fast-connect policy is on.
• This connection is in higher priority than connection through profiles. It means that if

there is already an existing Wi-Fi Direct connection in the system, the current connection
will be disconnected and the manual connection is operated.

• At the beginning of the discovery phase, full scan cycle on all channels is performed to
find Autonomous GO which can operate on every channel.

Example:
_i16 Status;
SlWlanSecParams_t SecParams;

Status = sl_WlanConnect("my-tv-p2p-device", 16, NULL, &SecParams ,0);
if( Status )
{

/* error */
}

• Manual Disconnection
The manual disconnect option lets the user disconnect from the remote peer by a host command. This
command performs Wi-Fi Direct group.
Example:

_i16 Status;

Status = sl_WlanDisconnect();
if( Status )
{

/* error */
}

• Wi-Fi Direct Profiles
The purpose of profile configuration is to make an automatic Wi-Fi Direct connection after reset, or
after disconnection from the remote peer device. The add profile command stores the Wi-Fi Direct
remote device parameters in flash as a new profile, along with profile priority. These profiles are similar
to the STA mode profiles and have the same automatic connection behavior. The connection is
dependent on the profile policy configuration (see the connection policy section). If the Auto policy is
on, a Wi-Fi Direct discovery is performed, and if one or more of the found remote devices matches one
of the profiles, a negotiation phase is started according to the negotiation initiator policy, method, and
intent selected. The chosen profile is the one with the highest-priority profile.

NOTE: If a manual connection is sent during a profile connection, the profile connection is stopped,
and the manual connection is started.

Example:
_u8 val = 1;
_u8 policyVal;
_i16 Role, Status;
_u8 my_p2p_device[33];
_u8 remote_p2p_device[33];
_u8 bssidEmpty[6] = {0,0,0,0,0,0};
SlWlanSecParams_t SecParams;

Role = sl_Start(NULL, NULL, NULL);
if( Role != ROLE_P2P)
{

/* Set P2P as active mode */
Status = sl_WlanSetMode(ROLE_P2P);

}

/* Set Wi-Fi Direct client dhcp enable (assuming remote GO running DHCP server) */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Wi-Fi Direct www.ti.com

60 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE, SL_NETCFG_ADDR_DHCP,0,0);
if( Status )
{

/* error */
}
/* Set Device Name */
strcpy(my_p2p_device,"sl_p2p_device");

Status = sl_NetAppSet (SL_NETAPP_DEVICE_ID, SL_NETAPP_DEVICE_URN, strlen(my_p2p_device), (_u8 *)
my_p2p_device);
if( Status )
{

/* error */
}
/* set connection policy Auto-Connect and Fast*/
Status = sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION, SL_WLAN_CONNECTION_POLICY
(1/*Auto*/,1/*Fast*/, 0/*OpenAP*/,0/*AnyP2P*/,0/*auto provisioning*/), NULL, 0 );

/* set P2P Policy - intent 0, random backoff */
Status = sl_WlanPolicySet( SL_WLAN_POLICY_P2P, SL_WLAN_P2P_POLICY(SL_WLAN_P2P_ROLE_CLIENT/*Intent
0 - Client*/,

SL_WLAN_P2P_NEG_INITIATOR_RAND_BACKOFF/*Negotiation initiator – random backoff*/),NULL,0);
SecParams.Type = SL_WLAN_SEC_TYPE_P2P_PBC;
SecParams.Key = "";
SecParams.KeyLen = 0;
strcpy(remote_p2p_device,"Remote_GO_Device_XX");
Status = sl_WlanProfileAdd(remote_p2p_device, strlen(remote_p2p_device),bssidEmpty,&SecParams
,NULL ,7,0);
if( Status )
{

/* error */
}
//restart the device
Status = sl_Stop(100);
if( Status )
{

/* error */
}

Role = sl_Start(NULL, NULL, NULL);

3.5.5 Events and Errors
The host can receive indication of specific states through events or errors. Asynchronous events can be
sent to the host at any given time with indication of the specific state and specific data for each event. To
listen to these events and determine the needed information, a handler should be implemented in the user
application, and registered under the user.h file. The following events may be received:
• SL_WLAN_EVENT_P2P_CONNECT

Indicates that a Wi-Fi Direct connection was successfully completed. The device is Wi-Fi Direct
CLIENT and contains the remote device parameters:
– SSID
– SSID length
– BSSID
– Go device name
– Go device name length

• SL_WLAN_EVENT_P2P_DISCONNECT
Indicates that Wi-Fi Direct disconnect is successfully completed. The device is Wi-Fi Direct CLIENT
and contains the remote device parameters:
– SSID

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Wi-Fi Direct

61SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

– SSID length
– BSSID
– Go device name
– Go device name length

• SL_WLAN_EVENT_P2P_CLIENT_ADDED
Indicates that Wi-Fi Direct connection was successfully completed. The device is Wi-Fi Direct GO and
contains the remote device parameters:
– Client MAC address
– Client device name
– Client device name length
– Own device name
– Own device name length

• SL_WLAN_EVENT_P2P_CLIENT_REMOVED
Indicates that a Wi-Fi Direct client was disconnected successfully. The device is P2P GO and contains
the remote device parameters:
– Client MAC address
– Client device name
– Client device name length
– Own device name
– Own device name length

• SL_WLAN_EVENT_P2P_DEVFOUND
Indicates that a Wi-Fi Direct device was found during the scan and it contains the remote device
parameters:
– Device name
– Device name length
– Device MAC address
– WPS Method

• SL_WLAN_EVENT_P2P_REQUEST
Indicates that a negotiation request was received from a Wi-Fi Direct remote device and it contains the
remote device parameters:
– Device name
– Device name length
– Device MAC address
– WPS Method

• SL_WLAN_EVENT_P2P_CONNECTFAIL
This event is sent if the connection failed with the failure reason.

Errors are indicated by the return value of the API. Each error code is unique. Table 3-7 lists common
errors that require user action (a complete list of possible errors is under the file error.h in the host driver).

Table 3-7. Common Errors

Error Value Comments
SL_ERROR_ROLE_P2P_ERR -4109 Initialization failure in Wi-Fi Direct mode
SL_ERROR_NET_APP_P2P_ROLE_IS_
NOT_CONFIGURED

-6210 Wi-Fi Direct mode is not configured yet, and should be CL or GO to
execute the command.

SL_ERROR_WLAN_INVALID_ROLE -2050 Action applied does not match the current mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Wi-Fi Direct www.ti.com

62 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Table 3-7. Common Errors (continued)
Error Value Comments

SL_ERROR_WLAN_KEY_ERROR -2049 One of the security parameters or SSID supplied is wrong (invalid length
or not supported).SL_ERROR_WLAN_INVALID_SECURITY

_TYPE
-2054

SL_ERROR_WLAN_PASSPHRASE_TOO
_LONG

-2055

SL_ERROR_WLAN_PASSWORD_ERRO
R

-2058

SL_ERROR_WLAN_SSID_LEN_ERROR -2060
SL_ERROR_WLAN_PREFERRED_NET
WORK_LIST_FULL

-2062 No free profile

SL_ERROR_WLAN_INVALID_POLICY_T
YPE

-2066 Invalid policy type. Value is not supported.

SL_ERROR_WLAN_WIFI_ALREADY_DIS
CONNECTED

-2071 Applying disconnect command when disconnected

SL_ERROR_WLAN_GET_NETWORK_LI
ST_EAGAIN

-2073 Scan was not enabled, one-shot scan is immediately triggered, and user
should fetch the scan results again.

SL_ERROR_WLAN_GET_PROFILE_INV
ALID_INDEX

-2074 Profile index is too high or does not exist

3.5.6 Limitations
• Service discovery is not supported.
• GO-NOA is not supported.
• No provisioning support for Wi-Fi Direct mode
• Autonomous group is not supported.
• P2P Group Owner mode supports single peer (client) connected.
• Connection search is infinite, meaning if the remote device is not found the device keeps searching for

it.

3.6 WLAN Security
The SimpleLink Wi-Fi device supports a secured connection to the AP. A secured connection can be used
when establishing the connection manually or by profiles, and depends on the settings of the AP.

3.6.1 Personal Security
The SimpleLink Wi-Fi device supports all Wi-Fi security types, commonly known as AES, TKIP, and WEP.
The personal security type and personal security key are set both in manual connection API or profiles
connection API. Table 3-8 lists the supported security types.

Table 3-8. Supported Personal Security Types

Value Description Password Length Supported
Mode

SL_WLAN_SEC_TYPE_OPEN No security STA, AP
SL_WLAN_SEC_TYPE_WEP WEP open security 5 or 10 characters in

HEX format
13 or 26 characters
in ASCII format

STA, AP

SL_WLAN_SEC_TYPE_WEP_SHARED WEP shared security 5 or 10 characters in
HEX format
13 or 26 characters
in ASCII format

STA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com WLAN Security

63SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

Table 3-8. Supported Personal Security Types (continued)
Value Description Password Length Supported

Mode
SL_WLAN_SEC_TYPE_WPA_WPA2 WPA \ PSK and WPA2 \ PSK security types,

or a mixed mode of WPA \ WPA2 PSK
security type (TKIP, AES, mixed mode)

8 to 63 characters STA, AP

SL_WLAN_SEC_TYPE_WPS_PBC WPS push-button security (for more
information refer to the WPS section)

STA

SL_WLAN_SEC_TYPE_WPS_PIN WPS pin code security (for more information
refer to the WPS section)

STA

SL_WLAN_SEC_TYPE_WPA_ENT Enterprise security (for more information refer
to the enterprise security section)

STA

SL_WLAN_SEC_TYPE_P2P_PBC Relevant for Wi-Fi Direct mode, push button
security (for more information refer to the Wi-
Fi Direct section)

Wi-Fi Direct

SL_WLAN_SEC_TYPE_P2P_PIN_KEYPA
D

Relevant for Wi-Fi Direct mode, pin code
keypad security (for more information refer to
the Wi-Fi Direct section)

Wi-Fi Direct

SL_WLAN_SEC_TYPE_P2P_PIN_DISPL
AY

Relevant for Wi-Fi Direct mode, pin code
display security (for more information refer to
the Wi-Fi Direct section)

Wi-Fi Direct

An example of adding a WPA2 secured profile:
SlWlanSecParams_t SecParams;
_i16 Index;

SecParams.Type = SL_WLAN_SEC_TYPE_WPA_WPA2;
SecParams.Key = SEC_SSID_KEY;
SecParams.KeyLen = strlen(SEC_SSID_KEY);

Index = sl_WlanProfileAdd((_i8*)SEC_SSID_NAME, strlen(SEC_SSID_NAME), 0, &secParams, 0, 7, 0);

3.6.2 Enterprise Security
The SimpleLink Wi-Fi device supports Wi-Fi enterprise connection according to 802.1x authentication
process. Enterprise connection requires an authentication of the STA by the radius server behind the AP.
Enterprise connection can be invoked from manual connection or a profile. Only one enterprise profile is
supported. The following authentication methods are supported:
• EAP-TLS
• EAP-TTLS with MSCHAP
• EAP-TTLS with TLS
• EAP-TTLS with PSK
• EAP-PEAP0 with TLS
• EAP-PEAP0 with MSCHAP
• EAP-PEAP0 with PSK
• EAP-PEAP1 with TLS
• EAP-PEAP1 with PSK
• EAP-FAST AUTH PROVISIONING
• EAP-FAST UNAUTH PROVISIONING
• EAP-FAST NO PROVISIONING)

When the station has been authenticated, the AP and the station negotiate with the WPA/WPA2 security.
The enterprise connection can require up to three files to complete the process (to authenticate the radius
server and client according to the device and server authentication settings).
• Client Authentication

If the server requires client authentication, the following files are required:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


WLAN Security www.ti.com

64 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

– Private Key – Station (client) RSA private key file in PEM format
– Client Certificate – Certificate of the client, given by the authenticating network (has the public key

matches to the private key) in PEM format
• Server Authentication

The SimpleLink Wi-Fi device requires server authentication by default and the following file is required:
Server Root CA file – This file must be in PEM format. The demand for server authentication can
be canceled through the WLAN setting. Canceling this authentication is valid for a single manual
connection only.

Example:
_i16 Status;
_u8 param;

_u8 param = 1; /* 1 means disable the server authentication */
Status =
sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID,SL_WLAN_GENERAL_PARAM_DISABLE_ENT_SERVER_AUTH,1,&param);
if( Status )
{

/* error */
}

Those files must be programmed with the following names:
• Root CA – sys/cert/ca.der
• Client certificate – sys/cert/client.der
• Private key – sys/cert/private.key

Manual enterprise connection and preferred network enterprise connection both include the same security
information needed to complete enterprise connection.

The following information is required according to the server demands:
• User – Enterprise identity name. Maximum length is 64 bytes.
• Anonymous user – Anonymous EAP identity. Maximum length is 64 bytes.
• EAP method – defines the EAP methods.

Configure to one of the following values according to the target authentication method:
• SL_WLAN_ENT_EAP_METHOD_TLS
• SL_WLAN_ENT_EAP_METHOD_TTLS_TLS
• SL_WLAN_ENT_EAP_METHOD_TTLS_MSCHAPv2
• SL_WLAN_ENT_EAP_METHOD_TTLS_PSK
• SL_WLAN_ENT_EAP_METHOD_PEAP0_TLS
• SL_WLAN_ENT_EAP_METHOD_PEAP0_MSCHAPv2
• SL_WLAN_ENT_EAP_METHOD_PEAP0_PSK
• SL_WLAN_ENT_EAP_METHOD_PEAP1_TLS
• SL_WLAN_ENT_EAP_METHOD_PEAP1_PSK
• SL_WLAN_ENT_EAP_METHOD_FAST_AUTH_PROVISIONING
• SL_WLAN_ENT_EAP_METHOD_FAST_UNAUTH_PROVISIONING
• SL_WLAN_ENT_EAP_METHOD_FAST_NO_PROVISIONING

The SimpleLink Wi-Fi supports only one enterprise profile and requires using the above-specified file
names.

An example of manual connection to an enterprise network:
SlWlanSecParams_t SecParams;
SlWlanSecParamsExt_t SecExtParams;
_i16 Status;

SecParams.Type = SL_WLAN_SEC_TYPE_WPA_ENT;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com WLAN Security

65SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

SecParams.Key = KEY;
SecParams.KeyLen = strlen(KEY);

SecExtParams.User = IDENTITY;
SecExtParams.UserLen = strlen(IDENTITY);
SecExtParams.AnonUser = ANONYMOUS;
SecExtParams.AnonUserLen = strlen(ANONYMOUS);
SecExtParams.EapMethod = SL_WLAN_ENT_EAP_METHOD_PEAP0_MSCHAPv2;

Status = sl_WlanConnect((_i8*)SSID,strlen(SSID),0,&SecParams ,&SecExtParams);
if( Status )
{

/* error */
}

3.6.3 WPS
The SimpleLink Wi-Fi device provides users the ability to create a secure connection by using Wi-Fi
Protected Setup (WPS). WPS is one of the provisioning ways to connect the device to the network (for
more information on provisioning, see Chapter 14). WPS allows an easy and secure method to provision
devices without knowing the network name and without typing long passwords. The standard defines two
mandatory methods for WPS-enabled APs. The SimpleLink device support both methods:
• Push-Button Connect (PBC) – Push the physical WPS button in the AP, or if the button is unavailable

start the WPS process using the GUI of the AP. The AP enters the WPS provisioning process for 2
minutes. During this period, the SimpleLink device also enters the provisioning process by calling the
sl_WlanConnect API with WPS parameters. If the connection successfully completes, a profile with the
network name and security parameters is automatically added.

• Personal Identification Number (PIN) – Enter the PIN code generated by the host using the GUI of the
AP. The AP enters the WPS provisioning process for 2 minutes. During this period, the SimpleLink
device also enters the WPS provisioning process by calling the sl_WlanConnect API with WPS
parameters. If the connection successfully completes, a profile with the network name and security
parameters is automatically added.

When the WPS process successfully completes, a connection with the AP is established in the correct
security setting according to the configuration of the AP (WPA/WPA2). The connection parameters are
saved as a profile. According to the connection policy, allow a reconnection after a reset.

An example of initiating WPS with the PBC method:
_i16 Status;
SlWlanSecParams_t SecParams;

SecParams.Type = SL_WLAN_SEC_TYPE_WPS_PBC;
SecParams.KeyLen = 0;
SecParams.Key = "";
Status = sl_WlanConnect("WPS_AP",strlen("WPS_AP"),NULL,&SecParams ,NULL);
if( Status )
{

/* error */
}

An example of initiating WPS with the PIN Code:
_i16 Status;
SlWlanSecParams_t SecParams;

SecParams.Type = SL_WLAN_SEC_TYPE_WPS_PIN;
SecParams.KeyLen = strlen("11361435");
SecParams.Key = "11361435":
Status = sl_WlanConnect("WPS_AP",strlen("WPS_AP"),NULL, &SecParams ,NULL);
if( Status )
{

/* error */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Scan www.ti.com

66 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

3.7 Scan

3.7.1 General Description
The SimpleLink device can be enabled to perform scans and discover remote devices. The device returns
up to 30 scan results. The device performs three types of scan:
• Connection scan – This scan is performed when the device tries to connect to an AP by issuing a

manual connection command, or using stored profiles with the Auto connection policy enabled. The
scan is an active scan (sends broadcast probe requests).

• Scan policy – Setting the scan policy triggers an immediate active scan (with no connection purpose),
and the scan is performed on the enabled channels with a desired interval between scan cycles.

• One-shot scan – This single scan is performed on the enabled channels.

All of the previously mentioned scan types update the scan result and are supported in STA, AP, and P2P
modes. This section describes the scan policy and one-shot scan. The connection scan is not a user task,
it is activated internally when the connection attempt is performed.

3.7.2 Configuration (AP/STA)
• Start Scan Policy

To enable or disable the scan policy, sl_WlanPolicySet should be called with enable or disable
parameter and a desired scan interval. The interval value is in seconds.
An example of setting a scan policy with a hidden SSID scan and an interval of 20 seconds:

_u32 intervalInSeconds = 20;
_i16 Status;

Status = sl_WlanPolicySet(SL_WLAN_POLICY_SCAN, SL_WLAN_SCAN_POLICY(1,1),
(_u8*)&intervalInSeconds,sizeof(intervalInSeconds));
if( Status )
{

/* error */
}

• Setting Scan Parameters
The SimpleLink device lets users set the scan parameters. Two parameters must be configured before
activating the scan policy:
– RSSI threshold – Set the minimum RSSI threshold. Results with RSSI below this value are not

presented. The default value is –95 dBm
– Channel mask – Scan specific channels. Scans performed only on the desired channels and

networks that operate on this specific channel are presented. The default value is 0x1FFF (channel
1 to 13)

An example of setting the minimum RSSI to –70 dBm and scan channels to 1, 6, and 11:
_i16 Status;
SlWlanScanParamCommand_t ScanParamConfig;

ScanParamConfig.RssiThershold = -70;
ScanParamConfig.ChannelsMask = 0x421; /* channels 1,6,11 */

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_SCAN_PARAMS,
sizeof(ScanParamConfig), (_u8* )& ScanParamConfig);
if( Status )
{

/* error */
}

• Getting Scan Results
Scan results can be retrieved after setting the scan policy. Each scan cycle updates the results (added,

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Scan

67SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

updated, or removed in case of aging). Scan results can include up to 30 entries. Each entry includes
the following parameters:
– SSID
– BSSID RSSI
– Security type and cipher (hidden is part of the type)
– Channel
sl_WlanGetNetworkList triggers a one-shot scan if there are no scan results in the system, or if the
scan results which exist are old (aging is defined as 20 seconds if the scan policy is disabled, or twice
the scan interval if the policy is enabled).
An example of getting scan results from index 0 to 29:

SlWlanNetworkEntry_t netEntries[30];

_i16 resultsCount = sl_WlanGetNetworkList(0,30,&netEntries[0]);

3.7.3 Usage
Scan can be used to find nearby networks before issuing a connection command.

3.7.4 Miscellaneous
• Scan policy configuration is persistent according to the system-persistent configuration, except for Wi-

Fi Direct mode, where the scan policy cannot be persistent.
• In Wi-Fi Direct mode, setting the scan policy scans only Wi-Fi Direct devices.
• Scan runs regardless of the connection state (runs in disconnect mode as well).
• Scan results are being updated while reading them, so when trying to retrieve specific indexes,

duplicates and other problems may occur.
• The scan results are not used by the system, but they can be changed by some activities (for example,

the connect activity does not use existing results in the table before it starts a new scan, but the table
is changed during the connection process).

• If more than one network has the same SSID, but different BSSID, each BSSID is stored in a different
entry.

• When the scan policy is enabled during the connection scan, the scan policy is activated only after the
connection scan is done (after a successful connection, disconnect command, connection policy
change, or profile deletion), because the connection scan has a higher priority.

3.8 Calibrations
The SimpleLink device performs calibration of the Wi-Fi physical layer. The system supports three
different calibration modes to optimize this process with the required use case. The default calibration
mode is triggered. Setting the calibration mode can be done only by the Image Creator tool during the
creation of the image.
• Normal calibration mode is used to achieve the best RF performance, or when the environment of the

device is prone to changes (temperature changes).
• Triggered calibration mode is used for lowest power consumption. Calibrations are done once on the

first boot, and kept for consecutive boots. Recalibration is done on TX power change, or during the
restore-to-factory process. Triggered mode can issue calibrations when updating to a new service pack
that includes radio changes, after any TX power level change, or if the calibration file in the serial flash
is corrupted.

• One-time calibration mode is similar to Triggered mode, but recalibration is never done under any
circumstances. One-time is used when the system power source is not able to handle the peak
calibration current. In this mode, user actions that trigger recalibration in Triggered mode are blocked.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Calibrations www.ti.com

68 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

WLAN

NOTE: For low power applications, TI recommends choosing Triggered mode over One-Time
calibration mode, unless current peak limit is an absolute constraint. Triggered mode does
not issue calibrations unless absolutely necessary, or manually triggered.

Calibration failure:

When the device fails to calibrate, the device INIT complete fails and the INIT complete async event has
the error: SL_ERROR_CALIB_FAIL.
• For a calibration error of Normal or Triggered calibration, power/hibernate cycle invokes recalibration.
• For One-Time calibration mode, the calibration is made once on the first power/hibernate cycle after

the device programming; the user should verify that on the first power/hibernate cycle of the network
subsystem, the INIT-complete succeeded. During a calibration failure the device should be
reprogrammed.

Table 3-9 describes the differences between these modes.

Table 3-9. Calibration Modes

First
Time INIT

Exit from Reset Exit from
Hibernate

TX Power Change Calibration
Assessment

Restore to
Factory

Defaults and
Image

Normal Calibrate Calibrate No calibration Calibrate on next
power/hibernate cycle.
Until the next power cycle,
the power change is
ignored.

Calibrate if
needed (subset
calibration, no
peak current)

Calibration data
is deleted.
Calibrate on
next
power/hibernate
cycle.

Triggered Calibrate No calibration No calibration Calibrate on next
power/hibernate cycle.
Until the next power cycle,
the power change is
ignored.

No runtime
calibration

Calibration data
is deleted.
Calibrate on
next
power/hibernate
cycle.

One Time Calibrate No calibration.
Corrupted or
missing data
leads to INIT
failure (lock state)
but no re-
calibration.

No calibration.
Corrupted or
missing data leads
to INIT failure (lock
state) but no re-
calibration.

Invalid operation. In this
mode, setting the TX
power is allowed only by
the Image Creator tool.

No runtime
calibration

Calibration data
is kept – no re-
calibration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


69SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

Chapter 4
SWRU455E–February 2017–Revised February 2018

Network Addresses

Topic ........................................................................................................................... Page

4.1 Introduction....................................................................................................... 70
4.2 Key Features ..................................................................................................... 70
4.3 Addressing........................................................................................................ 70

4.3.1 IPv4 Addresses ......................................................................................... 71
4.3.2 IPv6 Addresses ......................................................................................... 72
4.3.3 DNS Addresses......................................................................................... 73

4.4 DHCPv4 client.................................................................................................... 73
4.4.1 Modes .................................................................................................... 73
4.4.2 Address Release ....................................................................................... 74

4.5 DHCPv4 Server .................................................................................................. 75
4.5.1 Enable and Disable the DHCP Server .............................................................. 75
4.5.2 Set DHCP Server Parameters ....................................................................... 75

4.6 DNS Server........................................................................................................ 76
4.7 Errors and Asynchronous Events ....................................................................... 76

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

70 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

4.1 Introduction
The SimpleLink Wi-Fi device has a built-in integrated network stack that offloads network activities from
the host MCU, and decreases its code size and memory consumption. The network stack supports IPv4,
IPv6, TCP, UDP, SSL, TLS, and a suite of network applications that are required by IoT and internet-
enabled devices. This chapter provides the basic information and feature list of this network stack.

The host requires integrating only a small software driver, which provides a simple and slim API set for the
networking activities. The traffic APIs performed by the socket layer adhere to the Linux variant of the
Berkeley Sockets (BSD). Chapter 5 describes this layer in more detail.

The SimpleLink device implements a dual network stack, which allows access to IPv4 and IPv6 networks
simultaneously. IPv4 is enabled by default in all Wi-Fi modes: STA, AP, and Wi-Fi Direct. IPv6 is
supported only in STA mode, disabled by default, and can be enabled if needed.

4.2 Key Features
Table 4-1 describes the major features of this network stack.

Table 4-1. Key Features

Key Features Description
IP protocols IPv4, IPv6
IP addressing LLA, DHCPv4, DHCPv6, static, stateless
Cross layer DAD, NDP, ARP, ICMPv4, ICMPv6
Application DNS server, DNS client, DHCP server

4.3 Addressing
The SimpleLink Wi-Fi device supports multiple IP address-acquiring methods. For Wi-Fi station and Wi-Fi
Direct client modes, IP acquiring processes start after successful Wi-Fi connection. For AP and Wi-Fi
Direct GO, the IP address is static and predefined. Changing addressing configuration requires device
reset, as shown in Table 4-2.

Table 4-2. Addressing

Wi-Fi Station Wi-Fi AP Wi-Fi Direct
IPv4 Always enabled Static Client – like station

Group Owner – Like APOne IP address:
• DHCP
• LLA
• Static

IPv6 Disabled (default) Not supported Not supported
Up to two IP addresses:

• Local (mandatory):
o Stateless – Link-Local
Address (FE80::/64)
o Statefull (DHCPv6)
o Static

• Global (optionally):
o Stateless
o Statefull (DHCPv6)
o Static

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Addressing

71SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

NOTE:
• Ipv4 is always enabled. IPv6 can also be enabled, but it cannot work without IPv4.
• During a DHCP IPv4 failure, the SimpleLink device acquires the IPv4 address by using

Local-Link Address protocol (LLA)
• For power-sensitive systems, TI recommends disabling IPv6.
• All addressing configurations are persistent and available through the host interface.

4.3.1 IPv4 Addresses
The SimpleLink device allows the following IPv4 acquisition methods:
• Stateful (DHCPv4) with Stateless (LLA) Fallback – In this mode, the device starts by trying to

acquire the IPv4 address from a DHCP server. LLA is acquired only after a DHCPv4 client time-out
expires. The default time-out is 25 seconds, and this time can be configured.

NOTE:
• LLA allows communicating with devices on the local network only.
• The LLA IP address range is from 169.254.1.0 to 169.254.254.255. The default gateway

and DNS address are not configured.

Example:
_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_DHCP_LLA,0,0);
if( Status )
{

// error
}

• Stateful (DHCPv4) Only – In this mode, the device tries to acquire the IPv4 address from a DHCP
server with no time-out.
Example:

_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_DHCP,0,0);
if( Status )
{

// error
}

• Static – In this mode the IPv4 address of the device is preconfigured.
Example:

_i16 Status;
SlNetCfgIpV4Args_t ipV4;

ipV4.Ip = (_u32)SL_IPV4_VAL(10,1,1,201); // _u32 IP address
ipV4.IpMask = (_u32)SL_IPV4_VAL(255,255,255,0); // _u32 Subnet mask for this STA/P2P
ipV4.IpGateway = (_u32)SL_IPV4_VAL(10,1,1,1); // _u32 Default gateway address
ipV4.IpDnsServer = (_u32)SL_IPV4_VAL(8,8,8,8); // _u32 DNS server address

Status =
sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_STATIC,sizeof(ipV4),(_u8*)&ipV4);
if( Status )
{

// error
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Addressing www.ti.com

72 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

4.3.2 IPv6 Addresses
To enable IPv6, the host application must configure an IPv6 LLA. Configuration of an IPv6 global address
is optional.

Example:
_u32 IfBitmap = 0;
_i16 Status;

IfBitmap = SL_NETCFG_IF_IPV6_STA_LOCAL | SL_NETCFG_IF_IPV6_STA_GLOBAL;
Status = sl_NetCfgSet(SL_NETCFG_IF,SL_NETCFG_IF_STATE,sizeof(IfBitmap),&IfBitmap);
if( Status )
{

// error
}

4.3.2.1 Local Link
IPv6 local link must consist of the following prefix: Fe80::/64. The following IPv6 link-local acquisition
methods are allowed:
• Stateless Auto Configuration – The least significant 64 bits are filled with the device MAC address in

EUI-64 format. The Duplicate Address Detection (DAD) algorithm is used to verify that the address is
unique on the local link. When DAD failure occurs, this procedure continues with random numbers on
the least significant 64 bits.
Example:

_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV6_ADDR_LOCAL,SL_NETCFG_ADDR_STATELESS,0,0);
if( Status )
{

// error
}

• Stateful (DHCPv6) – IPv6 LLA is acquired from the DHCPv6 server. The DAD algorithm is used to
verify that the address is unique on the local link. When DAD failure occurs, stateless auto-
configuration is used instead.
Example:

_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV6_ADDR_LOCAL,SL_NETCFG_ADDR_STATEFUL,0,0);
if( Status )
{

// error
}

• Static – In this mode the IPv6 address of the device is preconfigured. The DAD algorithm is used to
verify that the address is unique on the local link. When DAD failure occurs the address is not valid,
and notification is sent to the host.
Example:

_i16 Status;
SlNetCfgIpV6Args_t ipV6;

memset(&ipV6, 0, sizeof(ipV6));
ipV6.Ip[0] = 0xfe800000;
ipV6.Ip[1] = 0x00000000;
ipV6.Ip[2] = 0x00004040;
ipV6.Ip[3] = 0x0000ce65;

Status = sl_NetCfgSet(SL_NETCFG_IPV6_ADDR_LOCAL,SL_NETCFG_ADDR_STATIC,sizeof(ipV6),(_u8*)&ipV6);
if( Status )
{

// error

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Addressing

73SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

}

4.3.2.2 Link-Global
The SimpleLink device allows the following IPv6 global address which must consist of the prefix 2000::/3.
The following acquisition methods are allowed:
• Stateless: The most significant 64 bits acquired from the RA messages (router advertisement

message that is sent periodically by an IPv6 router). The least significant 64 bits are filled with a MAC
address in EUI-64 format. The DAD algorithm is used to verify that the address is unique on the link.
When DAD failure occurs, the global address is invalid and the device cannot communicate outside the
local network.

• Stateful (DHCPv6): The IPv6 global address is learned from the DHCPv6 server. The DAD algorithm
is used to verify that the address is unique on the link. When DAD failure occurs, the global address is
invalid and the device cannot communicate outside the local network.

• Static: The user configures the IPv6 global address and single IPv6 DNS server address. The DAD
algorithm is used to verify that the address is unique on the link. When DAD failure occurs, the global
address is invalid and the device cannot communicate outside the local network.

4.3.3 DNS Addresses
The SimpleLink device supports IPv4 and IPv6 protocols. Each interface can support up to two DNS
servers:
• In DHCP mode, the SimpleLink device can receive up to two DNS server addresses. The host

application can temporarily overwrite the second address. However, this address is effective until the
next IP acquire.

• In static address mode, the host application can configure two DNS server addresses. The first
address is persistent, and the second address is effective until the next IP acquire

One DNS request is supported at a time, the default time-out is 18 seconds per DNS server, and it can be
configured by the host.

4.4 DHCPv4 client

4.4.1 Modes
The SimpleLink device supports some enhanced DHCP modes for IP acquisition after connection to a Wi-
Fi network:
• Full Renew Process – If the lease time of the acquired IP address has not expired, the device starts

by trying to renew this address. Failure to renew the last address invokes a full DHCP process. This
mode is enabled by default and occurs only if the lease time is greater than 1 hour (otherwise the full
DHCP process occurs).
Example:

_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_FAST_RENEW_MODE_WAIT_ACK,0,0);
if( Status )
{

// error
}

• Opportunistic Renew Process – This mode is similar to the full renew process mode but the host is
notified on IP acquired immedicably and the traffic enabled even before the ACK has been received
from the DHCP server. In case of renew failure, an IP loss event is triggered and the traffic is blocked
until a new IP address is acquired by a full DHCP process. This mode allows the host to communicate
with devices faster than other DHCP modes.
Example:

_i16 Status;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


DHCPv4
Server

DHCP DISCOVER

DHCP OFFER

DHCPv4
Client

DHCP REQUEST

DHCP ACK

Multiple servers can 
reply to DHCP 
discover message.

The client accepts 
only one offer by 
requesting this 
address.

DHCP REQUEST

DHCP ACK

The renew 
performed by 
requests to continue 
using the IP 
address.

Wlan
Connect

IP Acquire

Full DHCP 
process

IP Acquire

IP Acquire

Opportunistic 
renew process

Full renew 
process

DHCPv4 client www.ti.com

74 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

Status =
sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_FAST_RENEW_MODE_NO_WAIT_ACK,0,0);
if( Status )
{

// error
}

• Full DHCP Process – The entire DHCP sequence is processed with every connection to the network.
Example:

_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE, SL_NETCFG_ADDR_DISABLE_FAST_RENEW,0,0);
if( Status )
{

// error
}

Figure 4-1 shows the differences between the modes.

Figure 4-1. DHCPv4 IP Acquisition Modes

4.4.2 Address Release
By default the SimpleLink device does not release the DHCP address when Wi-Fi disconnect is
requested. However, in some use cases the release is required, even if the lease time is short due to
limited address range at the DHCP server. The SimpleLink device enables a special mode that releases
the IP address on requested WiFi disconnect commands from the host application. This mode is not
enabled by default.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com DHCPv4 Server

75SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

Example:
_i16 Status;

Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_IF_ENABLE_DHCP_RELEASE,0,0);
if( Status )
{

// error
}

4.5 DHCPv4 Server
The SimpleLink device includes an internal DHCPv4 server which is supported in AP mode and Wi-Fi
Direct mode (group owner). The DHCPv4 server allocates IP addresses for connected stations. The range
and lease time of the IP address can be configured by the host driver APIs. The AP/GO IP and DHCP
server addresses range should have the same class C subnet. Station-leased IP address information is
not persistent, and all addresses are considered as available for lease after the SimpleLink device reset.
Table 4-3 shows the DHCP server defaults.

Table 4-3. DHCP Server Defaults

DHCP Server Default
Mode Enabled
Gateway IP address 10.123.45.1
IP range 10.123.45.2 to 10.123.45.254
Lease time 86,400 seconds
32 Address Maximum lease addresses

4.5.1 Enable and Disable the DHCP Server
The SimpleLink device lets users enable or disable the DHCP server. In AP mode, the DHCP server is
enabled by default. This configuration is persistent according to the system-persistent configuration.

An example of enabling the DHCP server:
_i16 Status;

Status = sl_NetAppStart(SL_NETAPP_DHCP_SERVER_ID); //enable the DHCP server
if( Status )
{

// error
}

An example of disabling the DHCP server:
_i16 Status;

Status = sl_NetAppStop(SL_NETAPP_DHCP_SERVER_ID); //disable the DHCP server
if( Status )
{

// error
}

4.5.2 Set DHCP Server Parameters
The SimpleLink device lets users set the DHCP server parameters. The following parameters can be set:
• Address range – First and last IP address for addressed allocation. The following macro can be used:

SL_IPV4_VAL(192,168,1,10)
• Lease time – Lease time (in seconds) of the IP address.

The range of the DHCP server addresses must be in the subnet of the AP IP address. This configuration
is persistent. The configuration should be performed when the DHCP server is down.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


DNS Server www.ti.com

76 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

Example:
_i16 Status;
SlNetAppDhcpServerBasicOpt_t dhcpParams;
_u8 outLen = sizeof(SlNetAppDhcpServerBasicOpt_t);

dhcpParams.lease_time = 4096; // lease time (in seconds) of the IP
Address
dhcpParams.ipv4_addr_start = SL_IPV4_VAL(192,168,1,10); // first IP Address for allocation
dhcpParams.ipv4_addr_last = SL_IPV4_VAL(192,168,1,16); // last IP Address for allocation.

Status = sl_NetAppStop(SL_NETAPP_DHCP_SERVER_ID); // Stop DHCP server before
settings
if( Status )
{

// error
}
Status = sl_NetAppSet(SL_NETAPP_DHCP_SERVER_ID, SL_NETAPP_DHCP_SRV_BASIC_OPT, outLen, (_u8*
)&dhcpParams);
if( Status )
{

// error
}
Status = sl_NetAppStart(SL_NETAPP_DHCP_SERVER_ID); // Start DHCP server with new
settings

if( Status )
{

// error
}

4.6 DNS Server
The SimpleLink device has an internal DNS server which runs in AP mode and Wi-Fi Direct mode (GO).
The DNS server is enabled by default and can be disabled. The DNS server resolves the SimpleLink
device IPv4 address. The default domain name is mysimplelink and it can be configured.

Example:
_i16 Status;
Status = sl_NetAppStop(SL_NETAPP_DNS_SERVER_ID); // Stop DNS server
if( Status )
{

// error
}

4.7 Errors and Asynchronous Events
Table 4-4 summarizes the major asynchronous events which are part of the NetApp silo event handler
(slcb_NetAppEvtHdlr).

Table 4-4. Major Asynchronous Events in NetApp Silo

Event Description STA Role AP Role
SL_NETAPP_EVENT_IPV4_A
CQUIRED

IPv4 interface is available for
traffic. The event includes IPv4
parameters such as gateway
mask and DNS server address.

After Wi-Fi connection, two
options:

• Immediate event: static
configuration or DHCPv4
opportunistic renew
configuration.

• Delay between the
connection and the event:
DHCPv4, DHCPv4, fast
renew or LLA.

Immediate

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Errors and Asynchronous Events

77SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

Table 4-4. Major Asynchronous Events in NetApp Silo (continued)
Event Description STA Role AP Role
SL_NETAPP_EVENT_IPV6_A
CQUIRED

IPv6 local address or global
interface is available for traffic.
The event includes IPv6
parameters such as IP address
and DNS server address.

After Wi-Fi connection and
DAD successfully complete

IPv6 is not supported.

SL_NETAPP_EVENT_DHCPV
4_LEASED

IPv4 DHCP client acquired
IPv4 address from the internal
DHCP server. Event includes
IPv4 address, lease time, and
client MAC address.

DHCPv4 server is not
supported.

DHCPv4 server must be
enabled (default).

SL_NETAPP_EVENT_DHCPV
4_RELEASED

Client IPv4 address released.
Event includes IPv4 address,
client MAC address, and
reason.

DHCPv4 server is not
supported.

DHCPv4 server is enabled
(default).

SL_NETAPP_EVENT_IPV4_L
OST

The acquired IPv4 address is
no longer available.

Supported Not supported

SL_NETAPP_EVENT_DHCP_I
PV4_ACQUIRE_TIMEOUT

Acquiring the IPv4 address by
DHCP is too long and not
completed yet, acquiring by
DHCP still continues.

After Wi-Fi connection and
DHCP configuration

Not supported

SL_NETAPP_EVENT_IP_COL
LISION

IPv4 address conflict, two
stations connected, one station
acquired IPv4 address by the
SimpleLink DHCP server and
the second station has static
IPv4 address with the same IP
address. Event includes IPv4
address and two MAC
addresses.

DHCPv4 server is not
supported.

DHCPv4 server is enabled
(default)

SL_NETAPP_EVENT_IPV6_L
OST

Global or Local acquired IPv6
address is no longer available.
Event includes IPv6 address.

Supported IPv6 is not supported

Table 4-5 summarizes the major asynchronous events that are part of the NetCfg silo event handler
(slcb_DeviceGeneralEvtHdlr).

Table 4-5. Major Asynchronous Events in NetCfg Silo

Event Description STA Role AP Role
SL_ERROR_STSTIC_ADDR_
SUBNET_ERROR

Ipv4 static configuration. IPv4
address is not in the same
subnet of the gateway.

Supported Supported

Table 4-6 describes the major error codes that may be returned while calling sl_NetCfgSet.

Table 4-6. Major Errors While Calling sl_NetCfgSet

Event Description STA Role AP Role
SL_ERROR_INCORRECT_IPV
6_STATIC_LOCAL_ADDR

IPv6 local address static
configuration, address prefix is not
the local address prefix.

Supported IPv6 is not supported

SL_ERROR_INCORRECT_IPV
6_STATIC_GLOBAL_ADDR

IPv6 global address static
configuration, address prefix is not
the global address prefix.

Supported IPv6 is not supported

SL_ERROR_IPV6_LOCAL_AD
DR_SHOULD_BE_SET_FIRST

The local IPv6 address must be
enabled when the global IPv6
address is enabled.

Supported IPv6 is not supported

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Errors and Asynchronous Events www.ti.com

78 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Network Addresses

NOTE:
• On the SL_NETAPP_EVENT_IPV4_LOST and SL_NETAPP_EVENT_IPV6_LOST

events, TI highly recommends closing the relevant sockets.
• On the SL_NETAPP_EVENT_IPV4_ACQUIRED or

SL_NETAPP_EVENT_IPV4_ACQUIRED events, if the new IP is different from the
previous IP, TI highly recommends closing the relevant sockets, and opening new
sockets before any transmit and receive occurs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


79SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

Chapter 5
SWRU455E–February 2017–Revised February 2018

Socket

Topic ........................................................................................................................... Page

5.1 Introduction....................................................................................................... 80
5.2 Key Features ..................................................................................................... 80
5.3 Socket Types ..................................................................................................... 80
5.4 BSD API ............................................................................................................ 81
5.5 Socket Working Flow ......................................................................................... 82

5.5.1 TCP....................................................................................................... 82
5.5.2 UDP ...................................................................................................... 86
5.5.3 RAW...................................................................................................... 88

5.6 DNS .................................................................................................................. 90
5.7 Operation Modes................................................................................................ 91

5.7.1 Nonblocking Mode...................................................................................... 91
5.7.2 Trigger Mode ............................................................................................ 92

5.8 IP Fragmentation................................................................................................ 95
5.9 Errors ............................................................................................................... 95

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

80 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

5.1 Introduction
Sockets allow the communication between two or more peers in the network. The SimpleLink device
complies with the BSD, which is a common IP connection interface in the industry. This chapter describes
the socket layer of the SimpleLink device. The socket layer provides a set of simple API for sending and
receiving data. The SimpleLink device implements a subset of the BSD API which complies with the Linux
variant.

5.2 Key Features
Table 5-1 lists the key features of the socket.

Table 5-1. Key Features

Key Features Description
Max Sockets 16 sockets including up to 6 connected secured sockets
Socket Types SL_SOCK_STREAM (TCP)

SL_SOCK_DGRAM (UDP)
SL_SOCK_RAW
SL_IPPROTO_TCP (TCP RAW socket)
SL_IPPROTO_UDP (UDP RAW socket)
SL_IPPROTO_RAW (IP RAW socket)
SL_SEC_SOCKET (secure socket – SSL/TLS)

Address Families SL_AF_INET (IPv4)
SL_AF_INET6 (IPv6)
SL_AF_RF (transceiver)
SL_AF_PACKET

Connection Types Client
Server

Modes Blocking
Non-blocking
Trigger

Dual Stack Mode IPv6 server allows IPv4 client connections.
UDP Packet Boundary Enable and disable (disable by default)
Select Select on receive, accept, and connect
GetHostByName Retrieve the IPv4/IPv6 address according to the host name.
Multicast Up to eight Multicast sockets

5.3 Socket Types
The socket layer of the SimpleLink device supports the following socket types:
• UDP sockets provide users a basic transport service, with no guarantee of delivery and packet

ordering. UDP also allows more than two hosts to exchange data through a multicast group.
• TCP sockets enable two hosts to establish a connection and exchange streams of data with a

guarantee of delivery and packet ordering.
• RAW sockets provide users access to the underlying communication protocols with socket

abstractions. RAW sockets are datagram oriented (packet boundary). The SimpleLink device allows
RAW sockets to the following layers:
– Layer 1: Physical (available only if the device is not connected to a wireless network).
– Layer 2: Data Link (MAC)
– Layer 3: Network
– Layer 4: Transport

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com BSD API

81SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

• Secure sockets provide users the ability to establish encrypted data transport (SSL and TLS). For
more information, see Chapter 6.

5.4 BSD API
The SimpleLink driver provide two sets of socket API: the SimpleLink API and a BSD-compliant API. The
major differences are:
• The SimpleLink APIs return informative error codes instead of using the errno method
• The BSD-compliant API is an additional socket layer which allows the user to use an errno mechanism

implemented by the operating system. If this mechanism is not available in the target operating
system, the host driver offers an internal errno mechanism.

Table 5-2 describes a list of BSD socket APIs and their corresponding SimpleLink API.

Table 5-2. BSD APIs

BSD SimpleLink Server or
Client

TCP or UDP Description

socket() sl_Socket() Both Both Creates an endpoint for communication.
bind() sl_Bind() Both Both Assigns an IP address and a port to a socket. If the

socket is not bound, a port is chosen automatically.
listen() sl_Listen() Server TCP Listens for connections on a socket.
connect() sl_Connect() Client Both Initiates a connection on a socket.
accept() sl_Accept() Server TCP Accepts an incoming connection on a socket.
send(), recv() sl_Send(),

sl_Recv()
Both Both Writes and reads data. (On UDP, connect API which sets

the default address must be called before sl_Send).
write(), read() Not supported
sendto(), recvfrom() sl_SendTo(),

sl_RecvFrom()
Both UDP Writes/reads data to/from a UDP socket.

close() sl_Close() Both Both Causes the system to release resources allocated to a
socket. In case of TCP, the connection is terminated.

select() sl_Select() Both Both Select allows a program to monitor multiple sockets,
waiting until one or more sockets become ready. Only a
single select is supported at a time.
SimpleLink supports:

• Readfds: On data socket: data arrived. On listen
socket: indicating new client connected

• Writefds: only on TCP connect, must configure
nonblocking socket

• Exceptfds: not supported
gethostbyname() sl_NetAppDnsGetH

ostByName()
None None This is not a socket operation. It is preliminary to a socket

operation, to retrieve host IP information corresponding to
a host name.

poll() Not supported
getsockopt() sl_SockOpt() Both Both Retrieves the current value of a particular socket option

for the specified socket.
setsockopt() sl_SetSockOpt() Both Both Sets a particular socket option for the specified socket.
htons(), ntohs() sl_Htons(),

sl_Ntohs()
Both Both Reorders the bytes of a 16-bit unsigned value from

processor order to network order.
htonl(), ntohl() sl_Htonl(),

sl_Ntohl()
Both Both Reorders the bytes of a 32-bit unsigned value from

processor order to network order.

The following examples demonstrate the differences between these APIs:
/* Send using BSD API and checking errno value */
if (send(sock , pBuff, sizeof(pBuff), 0) == -1)
{

int errsv = errno;
printf("send() failed\n");
if (errsv == ...) { ... }

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Socket Working Flow www.ti.com

82 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

}

/* Send using SimpleLink API and checking the return value */
Status = sl_Send(sock , pBuff, sizeof(pBuff), 0);
if ( Status < 0)
{

printf("send() failed\n");
if (Status == ...) { ... }

}

5.5 Socket Working Flow
Two main categories of sockets exist: datagram sockets (connectionless) and stream sockets (connection
oriented). Datagram sockets or connectionless sockets allow for data exchange between entities without
establishing a connection before any data delivery. In this category the data integrity and packet order are
not ensured.

Stream sockets or connection-oriented sockets require establishing a connection between the two entities
before any data exchange. While the connection is maintained, data integrity and the order are ensured.
Programmers should choose between connection-oriented transport protocol and connectionless transport
protocol according to the requirements of their applications. For example, VoIP applications, which are
sensitive to delays, may require the connectionless transport protocols. File transfer applications may
require connection-oriented transport protocol due to the guaranty of data integrity and packet ordering.

5.5.1 TCP
TCP is a connection-oriented transport protocol. The TCP client initiates the connection to a TCP server,
and after establishing the connection successfully, the socket provides a bidirectional tunnel between the
client and the server.

Figure 5-1 describes the general flow of TCP between a server and a client.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


TCP Client

TCP 

Server

4. Data Exchange

sl_Socket

sl_Bind

sl_Listen

sl_Accept

sl_Recv

sl_Send

sl_Recv

sl_Socket

sl_Connect

sl_Send

sl_Recv

sl_Close

Connection Establishment

sl_Close

exit with error

Connection Termination

1. Open a socket

3. Initiate connection

5. Initiate close

1. Open a socket

2. Bind port for 

accepting new 

connections

3. Listen on the server 

socket

4. Accept a client 

connection on the 

server socket

5. Data Exchange on 

the client socket

6. Close the client 

socket

xxxxsl_Bind

2. Bind the source 

port � bind is 

optionally in client 

socket and not used in 

most applications

www.ti.com Socket Working Flow

83SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

Figure 5-1. TCP Socket Flow

5.5.1.1 Client Side
1. Open the TCP socket. Use family type: SL_AF_INET for IPv4, and SL_AF_INET6 for IPv6.
2. Bind the source port. This step is optional for the client socket. If the sl_Bind API is not called, the

SimpleLink device internally binds a random source port. Binding the port is performed in the same
way a server socket binds a port (see the following example).

3. Initiate a connection to the server. The TCP IPv6 client can also connect to the IPv4 server. In this
case, when the IPv6 socket is connecting to the IPv4 server, the IPv4 destination address is mapped
to IPv6 format (for example, ::00:ffff:ipv4).

4. Send and receive the data.
5. Close the socket. By default the sl_Close API returns immediately and the close process is done

internally. There are two ways to confirm that all the data was transmitted and the socket closed
gracefully:
• By default: the sl_Close API returns immediately, while the close process is done internally. The

socket is closed only after all queued packets successfully transmit. If the device failed to transmit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Socket Working Flow www.ti.com

84 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

all queued packets, the host application is notified through an asynchronous error event
(SL_SOCKET_TX_FAILED_EVENT).

• The common option in BSD: use the SO_LINGER option. When a socket is set as linger, the
sl_Close API does not return until all queued packets successfully transmit, or earlier if the linger
configured time-out expires with an appropriate error indication.

Example:
_i16 Status;
_i16 Sd;
SlSockAddrIn_t Addr;
_i8 SendBuf[] = "Hello World !!!";
_i8 RecvBuf[1460];

Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));

Sd = sl_Socket(SL_AF_INET, SL_SOCK_STREAM, 0);
if( 0 > Sd )
{

// error
}
Status = sl_Connect(Sd, ( SlSockAddr_t *)&Addr, sizeof(SlSockAddrIn_t));
if( Status )
{

// error
}
Status = sl_Send(Sd, SendBuf, strlen(SendBuf), 0 );
if( strlen(SendBuf) != Status )
{
// error
}
Status = sl_Recv(Sd, RecvBuf, 1460, 0);
if( 0 > Status )
{
// error
}
Status = sl_Close(Sd);
if( Status )
{

// error
}

5.5.1.2 Server Side
1. Open the TCP socket. Use family type: SL_AF_INET for IPv4, and SL_AF_INET6 for IPv6. The socket

is the public socket of the server.
2. Bind the public port of the server. The host application must set a specific port for the server to allow

clients to connect.
3. Listen. This stage marks the socket as a server socket. Here an additional socket is allocated for this

specific server socket to reserve a socket for the next client connection (from this point the server
socket is ready to accept new connections even if the host still did not call to sl_Accept).

4. Accept a client connection. This step extracts a connection request from the queue of pending
connections on the server socket, and creates a new connected socket for data exchange between the
server and the client side. The original public socket is not affected by this call, and an additional
accept could be called on the public socket to accept additional clients. Each newly created client
decreases the number of available sockets in the system by one. IPv6 server sockets bound to any
interface, can accept IPv6 and IPv4 clients. When accepting IPv4 clients, the returned client IP
address is IPv4 mapped to IPv6 format (for example, :00:ffff:ipv4).

5. Send and receive the data. Use the client socket descriptor to send and receive data. This step is done
in the same way as in a client socket.

6. Close the data socket. To close a connection with a specific client, the close operation should be called

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Socket Working Flow

85SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

with the client socket. The close is performed in a similar way to closing a client socket. For more
information regarding linger, see the close section of client socket.

7. Close the server socket. When there is no need to accept any new client connections, call the close
API on the server socket. The client sockets are not affected by closing the public socket, and only
new connections cannot be accepted. If the host application is required to close the clients and the
server, TI recommends closing the client socket first.

5.5.1.3 TCP Keep Alive
The keep-alive option is relevant for TCP connection only and is enabled by default. If there were no
messages between the client and the server in the time-out period, a keep-alive message is sent. This
option can be disabled by calling sl_SetSockOpt with the option SL_SO_KEEPALIVE. The keep-alive
time-out is also configurable using the option SL_SO_KEEPALIVETIME. The default keep-alive time-out of
a new socket is 5 minutes. The value is set in seconds.

An example of disabling the keep-alive command:
_i16 Status;
SlSockKeepalive_t enableOption;
enableOption.KeepaliveEnabled = 0;

Status = sl_SetSockOpt(Sd,SL_SOL_SOCKET,SL_SO_KEEPALIVE, (_u8
*)&enableOption,sizeof(enableOption));

if( Status )
{

// error
}

An example of setting the keep-alive time-out:
_i16 Status;
_u32 TimeOut = 120;

Status = sl_SetSockOpt(Sd, SL_SOL_SOCKET, SL_SO_KEEPALIVETIME,( _u8*) &TimeOut, sizeof(TimeOut));
if( Status )

{
// error

}

Example:
_i16 Status;
SlSockAddrIn_t Addr;
_i16 ClientSd;
SlSockAddrIn_t Addr;
_i16 AddrSize = sizeof(SlSockAddrIn_t);

Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(6000);
Addr.sin_addr.s_addr = SL_INADDR_ANY;

Status = sl_Bind(Sd, ( SlSockAddr_t *)&Addr, sizeof(SlSockAddrIn_t));
if( Status )
{
// error
}
Status = sl_Listen(Sd, 1);
if( Status )
{

// error
}
ClientSd = sl_Accept( Sd, ( SlSockAddr_t *)&Addr, &AddrSize);
if(0 > ClientSd)
{
// error
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


UDP 
Server

sl_Socket

sl_Bind

sl_RecvFrom

sl_SendTo

sl_SendTo

sl_RecvFrom

sl_Closesl_Close

1. Open a socket

2. Bind port 

3. Data Exchange

4. Close the socket

UDP 
Client

3. Connection-like 
Data Exchange

sl_Socket

sl_Send

sl_Recv

1. Open a socket

4. Close the socket

Sl_Connect

sl_Bind

2. Bind the source 
port ± bind is 
optionally in client 
socket and not used 
in most applications

3. Connectionless 
Data Exchange

Socket Working Flow www.ti.com

86 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

5.5.2 UDP
UDP is a connectionless transport protocol. It does not require establishing a connection with a peer
socket, and each packet is individually managed. However, the SimpleLink device lets the host application
use UDP either as a connectionless or a connection-oriented protocol. In the connection-oriented mode,
received packets with a different source than the connect source are dropped. In UDP there are no client
and server sides. Both sides can initiate data exchange or wait for reception of data. In most applications
one side waits for data reception and one side initiates the data exchange. The side that waits for data
reception is related as a server and the side that initiates the data exchange is related as a client.

Figure 5-2 shows these two methods:

Figure 5-2. UDP Socket Flow

1. Open the UDP socket. Use family type: SL_AF_INET for IPv4, use SL_AF_INET6 for IPv6.
2. Bind the source port. This step is optional. If sl_Bind is not called, the SimpleLink device automatically

binds a random source port. In practice, the server side must bind the port to define the destination
port to the other side.

3. Data Exchange
• Connectionless

– Send Data – The host application must provide the destination address and port. To send data
from the IPv6 socket to an IPv4 socket, the IPV4 destination address in sl_SendTo must be
mapped to IPv6 format (for example, ::00:ffff:ipv4).

– Receive Data – The host application must provide the source address and port. The IPv6
socket can receive data from the IPv4 socket, by mapping the source address to IPv6 format
(for example, ::00:ffff:ipv4).

• Connection-Oriented
– Connect – Calling the API sl_Connect for UDP sockets defines the destination address. By

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Socket Working Flow

87SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

calling to sl_Send (in connection-oriented mode the host application calls sl_Send instead of
sl_SendTo), the address of the remote peer is defined and datagrams from other addresses
are dropped.

– Send Data – Send a datagram to the address that was defined during the connect process.
– Receive Data – Receive a datagram from the address that was defined during the connect

process.
4. Close the socket. The close API returns immediately. LINGER has no meaning for connectionless

socket.

Example:
_i16 Sd;
_i16 Status;
SlSockAddrIn_t Addr;
_i8 SendBuf[] = "Hello World !!!";
_i8 RecvBuf[1460];

Sd = sl_Socket(SL_AF_INET, SL_SOCK_DGRAM, 0);
if( 0 > Sd )
{

// error
}
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = SL_INADDR_ANY;

Status = sl_Bind(Sd, ( SlSockAddr_t *)&Addr, sizeof(SlSockAddrIn_t));
if( Status )
{

// error
}
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));

Status = sl_SendTo(Sd, SendBuf, strlen(SendBuf), 0, (SlSockAddr_t*)&Addr,sizeof(SlSockAddr_t));
if( strlen(SendBuf) != Status )
{

// error
}
AddrSize = sizeof(SlSockAddrIn_t);
Status = sl_RecvFrom(Sd, RecvBuf, 1460, 0, ( SlSockAddr_t *)&Addr, &AddrSize);
if( 0 > Status )
{

// error
}
Status = sl_Close(Sd);
if( Status )
{

// error
}

5.5.2.1 Multicast
IPv4 and IPv6 multicasts allow for one-to-many communication over an IP network. If a device is
interested in receiving multicasts which are sent to a specific group of devices, it may join or leave the
group by sending join or leave messages. The UDP socket that joined a group receives group multicast
packets in addition to the regular unicast packets. Television is a good example of multicasting, where
each channel is transmitted on a different multicast group. When a user changes a channel, the UDP
socket leaves the multicast group and joins another multicast group.

The SimpleLink device supports IPv4 IGMPv2 and IPv6 MLDv1 protocols for joining and leaving groups.
Users can support up to eight IPv4 multicast groups and up to eight IPv6 multicast groups. Two UDP
sockets which join the same group decrease the available multicast group only by one.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Socket Working Flow www.ti.com

88 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

To join or leave a group, use sl_SetSockOpt with the options listed in Table 5-3.

Table 5-3. Multicast

SL_IP_ADD_MEMBERSHIP Join IPv4 group
SL_IP_DROP_MEMBERSHIP Leave IPv4 group
SL_IPV6_ADD_MEMBERSHIP Join IPv6 group
SL_IPV6_DROP_MEMBERSHIP Leave IPv6 group

An example of joining the IPv4 multicast group:
_i16 Status;
SlSockIpMreq_t MulticastIp;

MulticastIp.imr_multiaddr.s_addr = sl_Htonl(SL_IPV4_VAL(224,0,1,200));
MulticastIp.imr_interface.s_addr = SL_INADDR_ANY;
Status = sl_SetSockOpt(Sd, SL_IPPROTO_IP, SL_IP_ADD_MEMBERSHIP,(char*) &MulticastIp,
sizeof(MulticastIp));
if( Status )
{

// error
}

An example of leaving the IPv4 multicast group:
_i16 Status;
SlSockIpMreq_t MulticastIp;

MulticastIp.imr_multiaddr.s_addr = sl_Htonl(SL_IPV4_VAL(224,0,1,200));
MulticastIp.imr_interface.s_addr = SL_INADDR_ANY;
Status = sl_SetSockOpt(Sd, SL_IPPROTO_IP, SL_IP_DROP_MEMBERSHIP,(char*) &MulticastIp,
sizeof(MulticastIp));
if( Status )
{

// error
}

5.5.2.2 Packet Boundary
By default the Rx boundary is kept. When the host application reads only a part of the data, the rest is
dropped. The host application can disable the Rx boundary by using sl_SetSockOpt with
SL_SO_RX_NO_IP_BOUNDARY. Here reading only a part of the data does not drop the rest of the data.
This is a propriety option for UDP sockets only, which enables the host with limited buffering resources to
read data in small chunks.
_i16 Status;
SlSockRxNoIpBoundary_t enableOption;

enableOption.RxIpNoBoundaryEnabled = 1;
Status = sl_SetSockOpt(Sd,SL_SOL_SOCKET,SL_SO_RX_NO_IP_BOUNDARY, (_u8*)&enableOption
,sizeof(enableOption));

if( Status )
{

// error
}

5.5.3 RAW
RAW sockets provide access to the underlying communication protocols with socket abstractions. The
working flow is very similar to a connectionless socket (UDP).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Socket Working Flow

89SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

5.5.3.1 Layer 4: Transport
RAW sockets in layer 4 let the host application send and receive packets, which include the IP header.
Opening a RAW socket with TCP/UDP protocol means that all packets are forwarded directly to the RAW
socket, and if any other TCP/UDP socket is open, it does not receive any of these packets. RAW sockets
can work with any desired protocol, which should be specified when opening the socket.

By default all received packets include the IP header. If the IP header of the packet is not needed, it can
be removed by calling the API sl_SetSockOpt with the option SL_IP_RAW_RX_NO_HEADER.

Example:
#define MY_PROTOCOL 90
_i16 Sd, Protocol = MY_PROTOCOL;

Sd = sl_Socket(SL_AF_INET /* SL_AF_INET6 */, SL_SOCK_RAW, Protocol);
if( 0 > Sd )
{

// error
}

5.5.3.2 Layer 3: Network
RAW sockets in layer 3 let the host application send and receive packets, which include the network
header. When opening a RAW socket with UDP/TCP protocol, TCP/UDP packets are forwarded directly to
the RAW socket, and any other UDP/TCP sockets are useless. Calling sl_SetSockOpt with the option
SL_IP_HDRINCL must contain an IP header. IPv4 checksum is calculated and set by the SimpleLink
device. The received packet includes the IP header. This socket type is not supported for IPv6.
#define MY_PROTOCOL 90
_i16 Sd, protocol = MY_PROTOCOL , Status;
_u32 IncludeIpHeader = 1;

Sd = sl_Socket(SL_AF_INET, SL_SOCK_RAW, protocol);
if( 0 > Sd )
{

// error
}
Status = sl_SetSockOpt(Sd, SL_IPPROTO_IP, SL_IP_HDRINCL, & IncludeIpHeader,
sizeof(IncludeIpHeader));
if( Status )
{

// error
}

5.5.3.3 Layer 2: Data Link (Transceiver Mode, Not Connected)
The SimpleLink transceiver mode lets the host transmit Wi-Fi frames in disconnected mode only. The
SimpleLink network stack can be bypassed by using the layer 2 RAW socket. Layer 2 lets hosts
implement their own network stack and applications. For more information, see Chapter 11.
i16 Sd;

Sd = sl_Socket(SL_AF_RF, SL_SOCK_DGRAM, Channel);
if( 0 > Sd )
{

// error
}

The SimpleLink transceiver mode lets the host transmit Wi-Fi frames in disconnected mode only. For more
detailed information, see Chapter 12.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


DNS www.ti.com

90 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

Example:
_i16 Sd, Channel = 11;

Sd = sl_Socket(SL_AF_RF, SL_SOCK_RAW, Channel);
if( 0 > Sd )
{

// error
}

5.6 DNS
Hosts are mostly identified by their name and not their IP address, because the IP address might change,
but the host name remains the same. Even in cases where the IP address is reserved permanently, it is
common to remember names, and not IP addresses. For example, the IP address of Google® is not
familiar to users even though it is reserved permanently. On the contrary, socket APIs use IP addresses
not names, and sl_gethostbyName APIs are designed to bridge that gap. If successful, sl_gethostbyName
resolves the IP address. To resolve an IP address, sl_gethostbyName sends the UDP DNS request
several times, and with every retry the time-out increases. The number of retries and time-out parameters
are configurable. The command sl_gethostbyName is a blocking command so if failure occurs it may take
some time to return.

An example of the host application setting sl_gethostbyName parameters:
_i16 Status;
SlNetAppDnsClientTime_t Time;

Time.MaxResponseTime = 2000; // Max DNS retry timeout, DNS request timeout changed every retry,
start with 100Ms up to MaxResponseTime Ms
Time.NumOfRetries = 30; // number DNS retries before sl_NetAppDnsGetHostByName failed
Status = sl_NetAppSet(SL_NETAPP_DNS_CLIENT_ID, SL_NETAPP_DNS_CLIENT_TIME, sizeof(Time), (_u8
*)&Time);
if( Status )
{

// error
}

An example of resolving the IPv4 address:
_i16 Status;
_u32 Ipv4Addr = 0;

Status =
sl_NetAppDnsGetHostByName("www.google.com",strlen("www.google.com"),&Ipv4Addr,SL_AF_INET);
if( Status )
{

// error
}

An example of resolving the IPv6 address:
_i16 Status;

_u32 Ipv6Addr[4] = {0};

Status =
sl_NetAppDnsGetHostByName("www.facebook.com",strlen("www.facebook.com"),Ipv6Addr,SL_AF_INET6);
if( Status )
{

// error
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Operation Modes

91SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

5.7 Operation Modes
By default network bound APIs are blocking (network-bound APIs are APIs that trigger networking
transactions and waits for their completion). For some implementations, especially on non-OS platforms,
nonblocking operations are essential to allow other activities during these periods. For use cases, the
SimpleLink device supports the standard nonblocking method of BSD sockets, and also a proprietary
mode (trigger mode). In non-blocking mode, it is the responsibility of the application to poll the relevant
API until the operation is completed. However, in trigger mode, instead of polling the API, the host
receives an event when the operation is completed, and only then should call the API again.

Table 5-4 describes the different modes of the relevant APIs.

Table 5-4. Operational Modes

API TCP,
UDP,
RAW

Blocking Mode Non-Blocking Mode Trigger Mode

sl_Connect TCP Blocked until connect
success, or connect time-out.

Supported.
SL_ERROR_BSD_EALREADY error code
means not connected yet; poll again.

Not supported

sl_Recv/sl_
RecvFrom

TCP Blocked until data arrives.
Recv Time-out can be set by
sl_SetSockOpt.

Supported. SL_ERROR_BSD_EAGAIN
error code means data has not arrived;
poll again.

Not supported
UDP
RAW

sl_Send/sl_
SendTo

TCP Blocked until the internal
buffer is available.

Supported. SL_ERROR_BSD_EAGAIN
error code means no internal buffer
available; try to send again.

Not supported
UDP
RAW

sl_Accept TCP Blocked until client connects. Supported. SL_ERROR_BSD_EAGAIN
error code means no client connection; try
to accept again.

Not supported

sl_Select TCP Blocked until one or more
registered sockets become
ready.

Supported Supported
UDP
RAW

5.7.1 Nonblocking Mode
In nonblocking mode, operations return immediately even if the data does not exist, or a connection is not
established yet. It is the responsibility of the application to poll the operation until completion. When a
server socket is configured as nonblocking, the accepted private socket inherits the nonblocking attribute.
If there are several nonblocking sockets, TI recommends using sl_Select with time-out 0, instead of polling
each socket separately.

The commands sl_Recv/ and sl_RecvFrom are unique, and allow nonblocking operation although the
socket is in blocking mode. Two options are available for this mode.
• A single call to sl_Recv or sl_RecvFrom in nonblocking mode by using the SL_MSG_DONTWAIT flag.

The API returns immediately with data if it exists or with the error SL_ERROR_BSD_EAGAIN. This
action does not affect any socket settings or the following calls to sl_Recv/ and sl_RecvFrom.

• Setting receives a time-out. This setting applies for all the following calls to sl_Recv/ and sl_RecvFrom.
When time-out expires, sl_Recv and sl_RecvFrom returns with SL_ERROR_BSD_EAGAIN, or earlier if
the data arrives.

An example of setting the socket as non-blocking:
_i16 Status;
SlSockNonblocking_t BlockingOption;
BlockingOption.NonBlockingEnabled = 1;

// Enable or disable non-blocking mode
Status =
sl_SetSockOpt(Sd,SL_SOL_SOCKET,SL_SO_NONBLOCKING,(_u8*)&BlockingOption,sizeof(BlockingOption));
if( Status )
if( Status )

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Operation Modes www.ti.com

92 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

{
// error

}

An example of a non-blocking TCP connect:
_i16 Status;
SlSockAddrIn_t Addr;

Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));

Status = SL_ERROR_BSD_EALREADY;
while( 0 > Status )
{

Status = sl_Connect(Sd, ( SlSockAddr_t *)&Addr, sizeof(SlSockAddr_t));
if( 0 > Status )

{
if( SL_ERROR_BSD_EALREADY != Status )
{

// error
break;

}
}

}

An example of receiving data with no wait flag:
_i16 Status;
_i8 RecvBuf[1460];

Status = sl_Recv(Sd, RecvBuf, 1460, SL_MSG_DONTWAIT);
if( (0 > Status) && (SL_ERROR_BSD_EAGAIN != Status) )
{

// error
}

An example of setting the receive data timeout:
_i16 Status;
struct SlTimeval_t TimeVal;

TimeVal.tv_sec = 5; // Seconds
TimeVal.tv_usec = 0; // Microseconds. 10000 microseconds resolution
Status = sl_SetSockOpt(Sd,SL_SOL_SOCKET,SL_SO_RCVTIMEO, (_u8 *)&TimeVal, sizeof(TimeVal)); //
Enable receive timeout
if( Status )
{

// error
}

5.7.2 Trigger Mode
The trigger mode enables host applications to be triggered by the SimpleLink device when network activity
is detected, without using the blocking mode or polling the socket. This mode is useful when the power
consumption is extremely sensitive and the host processor is able to enter a deep sleep, recover fast, and
retain memory. The trigger mode is implemented by calling sl_Select. The host enters a deep sleep and
wakes up due to an event, when one or more sockets become ready. After the host wakes up, sl_Select
must be called again to identify the network activity. All blocking socket operations can be monitored by
sl_Select, called with time-out values set to 0 (sec and µs), which allow application flexibility to implement
many communication use cases. Only one select operation is supported simultaneously.

To define the host application in trigger mode follow these steps:
• Define host IRQ as the host wake up source.
• Ensure slcb_SocketTriggerEventHandler is registered under user.h and handle the trigger

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Operation Modes

93SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

asynchronous event SL_SOCKET_TRIGGER_EVENT_SELECT.
• Detecting select events should notify the main task trigger event of arrival, call select again.

Figure 5-3 describes a general flow of using trigger mode for accept on a server socket.

Figure 5-3. Trigger Mode Flow

An example of select trigger event handle:
void SimpleLinkSocketTriggerEventHandler(SlSockTriggerEvent_t *pSlTriggerEvent)
{

switch (pSlTriggerEvent ->Id)
{

case SL_SOCKET_TRIGGER_EVENT_SELECT:
{

//Notify main task trigger event arrive, wake up and call select again
break;

}
default:

break;
}

}

5.7.2.1 Trigger Mode for Accept
1. Open the TCP Server Socket and call sl_Select on the following socket.

_i16 Status,Sd,LocalSd;
_u16 nfds;
SlSockAddrIn_t LocalAddr,Addr;
SlTimeval_t timeVal;
SlFdSet_t rxSet;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Operation Modes www.ti.com

94 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

LocalAddr.sin_family = SL_AF_INET;
LocalAddr.sin_port = sl_Htons(5001);
LocalAddr.sin_addr.s_addr = 0;

timeVal.tv_sec = 0;
timeVal.tv_usec = 0;

//Open TCP server socket
Sd = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);
if( Status )
{

// error
}
//Bind the server socket
Status = sl_Bind(Sd, (SlSockAddr_t *)&LocalAddr, sizeof(SlSockAddrIn_t));
if( Status )
{

// error
}
//Listen
Status = sl_Listen(Sd, 0);
if( Status )
{

// error
}
nfds = Sd + 1;
SL_SOCKET_FD_ZERO( &rxSet );
SL_SOCKET_FD_SET( Sd, &rxSet );
Status = sl_Select( nfds, &rxSet, NULL, NULL, &timeVal );
if( Status )
{

// error
}

2. The host now can enter deep sleep until triggered by the select event.
3. After the SL_SOCKET_TRIGGER_EVENT_SELECT event is received, the host wakes up and calls

sl_Select to identify which socket has network activity.
//Call select again since the trigger event has arrived (see handler example above)
SL_SOCKET_FD_ZERO( &rxSet );
SL_SOCKET_FD_SET( Sd,& rxSet );
Status = sl_Select( nfds, &rxSet, NULL, NULL, &timeVal );
if (SL_SOCKET_FD_ISSET(Sd, &rxSet))
{

//socket is marked, call accept
LocalSd = sl_Accept(Sd, (SlSockAddr_t*)&Addr, (SlSocklen_t*) (sizeof(SlSockAddrIn_t)));

}

5.7.2.2 Trigger Mode for Data Reception
1. Open the TCP client socket and call sl_Select on the following socket.

_i16 Status, Sd;
_u16 nfds;
SlSockAddrIn_t Addr;
SlTimeval_t timeVal;
SlFdSet_t rxSet;
_i8 RecvBuf[1460];

timeVal.tv_sec = 0;
timeVal.tv_usec = 0;

//Open TCP client socket
Sd = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);
if( Status )

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com IP Fragmentation

95SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

{
// error

}
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));;
Status = sl_Connect(Sd, ( SlSockAddr_t *)&Addr, sizeof(SlSockAddr_t));
if( Status )
{

// error
}
Status = sl_Select( nfds, NULL, &rxSet, NULL, &timeVal );
//Sleep until triggered by the select event

2. The host can now enter deep sleep until triggered by the select event
3. After the SL_SOCKET_TRIGGER_EVENT_SELECT event is received, the host wakes up and calls

sl_Select to identify which socket has network activity.
//Call select again since the trigger event has arrived
SL_SOCKET_FD_ZERO( &rxSet );
SL_SOCKET_FD_SET( Sd, &rxSet );
Status = sl_Select( nfds, NULL, &rxSet, NULL, &timeVal );
if (SL_SOCKET_FD_ISSET(Sd, &rxSet))
{
//socket is marked, call receive
Status = sl_Recv(Sd, RecvBuf, 1460, 0);
if( Status )
{

// error
}
}

5.8 IP Fragmentation
IP fragmentation is a method of breaking the IP packet into smaller messages compatible with the
Maximum Transmission Unit (MTU) size, and reassembling them on the receive side. IPv4 routers
fragment packets according to the MTU of the link. IPv6 routers do not fragment, and it is the
responsibility of the device to fragment the packets. When receiving data, the SimpleLink device supports
reassembling of the received IP fragmented packets for both IPv4 and IPv6. When the host application
sends data which is bigger than the MTU size, the SimpleLink device splits this data into packets
compliant with the MTU size without using IP fragmentation. For TCP, the size has no effect because TCP
ensures byte ordering. However, for UDP the size may cause packet reordering, therefore, TI
recommends that host application sends UDP data up to the MTU size (1472 bytes for IPv4 and 1452
bytes for IPv6), or verify data integrity in higher layers.

The SimpleLink device response to a fragmented ping, the maximum ping packet payload is 19,232 bytes
for Ipv4 and 27,976 bytes for IPv6.

5.9 Errors
One of the main differences between BSD sockets and SimpleLink sockets implementation is that error
codes are returned directly, and not through the errno method (as in Linux). Errors are indicated by the
return value of the API, or by asynchronous events. Asynchronous events can be sent to the host at any
given time with a specific error indication and include specific data for each event. To listen to these
events and conclude the needed information, a handler should be implemented in the user application and
registered under the user.h header file. Each error code is unique. The following errors are common and
require user action (full possible error list is under the file error.h in the host driver).

Table 5-5 lists errors indicated by asynchronous events.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Errors www.ti.com

96 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Socket

Table 5-5. Asynchronous Error Events

Error Handler Comments
SL_SOCKET_TX_FAILED_EVENT slcb_SockEvtHdlr Socket error – include the parameters

status (specified in Table 5-6and socket
ID)

Table 5-6 lists common errors status codes.

Table 5-6. Common Error Status Codes

Error Value Comments
SL_ERROR_BSD_SOC_ERROR –1 General socket error
SL_ERROR_BSD_INEXE –8 Socket command in execution
SL_ERROR_BSD_EBADF –9 Bad file number
SL_ERROR_BSD_ENSOCK –10 The system limit on the total number of open sockets has been reached.
SL_ERROR_BSD_EAGAIN –11 Try again
SL_ERROR_BSD_ECLOSE –15 Close socket operation failed to transmit all queued packets.
SL_ERROR_BSD_EINVAL –22 Invalid argument
SL_ERROR_BSD_EPROTOTYPE –91 Protocol wrong type for socket
SL_ERROR_BSD_EADDRINUSE –98 Address is already in use
SL_ERROR_BSD_ENETUNREACH –101 Network is unreachable
SL_ERROR_BSD_ETIMEDOUT –110 Connection timed out
SL_ERROR_BSD_ECONNREFUSED –111 Connection refused
SL_ERROR_BSD_EALREADY –114 Nonblocking connect in progress, try again

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


97SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

Chapter 6
SWRU455E–February 2017–Revised February 2018

Secure Socket

Topic ........................................................................................................................... Page

6.1 Introduction....................................................................................................... 98
6.2 Key Features ..................................................................................................... 98
6.3 Opening a Secure Socket .................................................................................... 98
6.4 Trusted Root-Certificate Catalog .......................................................................... 99
6.5 Options and Features Use ................................................................................... 99

6.5.1 Set SSL Version ........................................................................................ 99
6.5.2 Set Cipher Suites ..................................................................................... 100
6.5.3 Set Certificates, Root CA, Private Key, and DH Files............................................ 100
6.5.4 Disable the Use of the Trusted Root-Certificate Catalog ........................................ 101
6.5.5 Set ALPN List.......................................................................................... 102
6.5.6 Set Domain Name for Verification and SNI........................................................ 102
6.5.7 Upgrade Nonsecured Socket to Secured .......................................................... 102
6.5.8 Get Connection Parameters ......................................................................... 104

6.6 Supported Cryptographic Algorithms ................................................................. 105
6.7 Common Errors and Asynchronous Events ......................................................... 105

6.7.1 Using Socket Asynchronous Events in SSL....................................................... 105
6.7.2 Common Errors ....................................................................................... 106

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

98 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

6.1 Introduction
The SimpleLink device provides a secured socket layer using the SSL and TLS protocols (both referenced
as SSL in this document), which are cryptographic protocols designed to provide communications security
over a TCP connection. For common systems, the SSL is a layer on top of the transport layer. To simplify
the use, the SSL is embedded into the BSD layer in the SimpleLink device. SSL operations are easily
done by using the BSD commands with unique parameters and options. The SimpleLink device supports
up to six SSL sockets connected at a time. The SSL uses separate execution environment by design, to
better secure the keys and flows in the SimpleLink device. Hardware accelerators are used to offload the
MCU in arithmetic calculation of cryptography algorithms.

6.2 Key Features
Table 6-1 lists the key features of the secure socket.

Table 6-1. Key Features

Key Features Description Client Server
SSL server Open SSL servers and accept up to six peers (six is the

maximum SSL connections, it depends on how many clients are
connected).

SSL client Open SSL client and connect up to six peers (six is the
maximum SSL connections, it depends on how many servers
are connected).

Certificates Support certificates and root CAs according to x509 standard. √ √
BSD commands The SSL layer is embedded into the BSD commands to ease the

usage. √ √

Server verification Support full chain of trust verification while the SimpleLink
device is in client mode. √ N/A

Domain verification Support domain verification in client mode, to help against MITM
attack. √ X

Client verification Support client authentication, both in server mode to
authenticate a client that is trying to connect to the server, and in
client mode, when a remote server is asking for client certificate.

N/A √

Time and Date verification Support time and date verification of server/client cert according
to the time and date configured in the SimpleLink device. √ X

Cryptography Support the following cryptographic algorithms –
RC4,AES|GCM|CBC,CHACHA20,SHA1|256|384|512,MD5,POLY
1305,RSA,DHE,ECDSA,ECDHE.

√ √

STARTTLS Start SSL handshake on a regular TCP socket. Usually used for
SMTP on port 587. √ √

ALPN Support Application Layer Protocol Names List; this is a limited
list with HTTP1.1 and H2 drafts. √ X

DER/PEM file formats Certificate files and keys can be programmed to the file system
in either DER or PEM formats. Certificate chain must be in PEM
format. Certificate chain is only available in server mode.

√ √

Trusted root-certificate catalog Mechanism to determine if a root CA is known and trusted by TI
or if a certificate is revoked. √ X

Server name indication (SNI) Setting a domain name verification enables the SNI extension in
the client hello message, according to RFC 6066 √ X

6.3 Opening a Secure Socket
This section provides information on how to establish secured socket session with BSD API. A secured
socket is a TCP socket, which encrypts and decrypts data. The BSD flow is the same as regular TCP
socket BSD, excluding specific secured socket options.

There are two ways to open secured socket:
• sl_Socket(SL_AF_INET, SL_SOCK_STREAM, SL_SEC_SOCKET) – This command opens a secured

socket. The first two parameters are typical TCP socket parameters, and the last parameter enables
the security. After the socket has been created, it is possible to use the standard *BSD commands

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Trusted Root-Certificate Catalog

99SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

(sl_Close, sl_Listen, sl_Accept, sl_Bind, sl_SetSockOpt, and so forth).
• Use STARTTLS to upgrade a regular connected TCP socket to a secured one (used mainly for SMTP

port 587), according to the following flow:
1. sl_Socket(SL_AF_INET, SL_SOCK_STREAM,0) – Opens a regular TCP socket.
2. Use sl_Accept (in server mode) or sl_Connect to establish a connection.
3. May transfer unsecured data using sl_Send and sl_Recv.
4. Upgrade a socket to STARTTLS using sl_SetSockOpt with the SL_SO_STARTTLS option.

When the connection is established, it is possible to use sl_Recv and sl_Send to transact data between
the peers, exactly like in an unsecured TCP socket.

NOTE: Some dedicated SSL configurations (performed by calling sl_SetSockOpt) must be applied
after opening the socket, and not after sl_Connect in client mode or sl_Listen in server mode,
as described in Section 6.5.

6.4 Trusted Root-Certificate Catalog
The trusted root-certificate catalog is a file, provided by TI, containing a list of known and trusted root CAs
by TI. The certificate store holds the common trusted root CAs in the market, such as VeriSign, GoDaddy,
GeoTrust, and so forth.

The trusted root-certificate catalog also holds a list of revoked certificates known to TI. The trusted root-
certificate catalog is used only in client mode. Servers use a proprietary root CA to authenticate clients,
and therefore cannot use the certificate store. The trusted root-certificate catalog gives the user the
confidence that the CA is trusted and known. When a root CA does not exist in the catalog, the
sl_Connect command returns the error SL_ERROR_BSD_ESECUNKNOWNROOTCA, which means the
connection is successfully done, but the root CA used to verify the server chain of trust is unknown. When
a revoked certificate is received during the SSL connection (all of the certificate chain is checked) or if the
root CA set by the user is revoked, the handshake fails, and the error
SL_ERROR_BSD_ESECCERTIFICATEREVOKED returns from the sl_Connect command.

6.5 Options and Features Use
Options are used to enable or disable features, or to set some configurations to the SSL socket. To
change the options, use the BSD sl_SetSockOpt with unique options.

If no options were set, the following defaults take effect:
• All SSL versions are enabled (handshake starts with the highest – TLS1.2, but the server could peek

lower versions).
• All cipher suites are enabled.
• Files which are required for the SSL connection (in server mode, some of the files are mandatory to

complete the handshake) remain blank.
• Trusted root-certificate catalog is used by default.

The socket settings (specified in Section 6.5.1) must be called before the sl_Connect or sl_Listen
commands to take effect. In server mode, those settings are inherited to the child socket, and cannot be
applied directly on the child socket.

NOTE: Setting the server certificate and private key are mandatory when opening an SSL server.

6.5.1 Set SSL Version
Set specific SSL versions for the socket. This should be called before sl_Connect or sl_Listen.
• SL_SO_SEC_METHOD_SSLV3
• SL_SO_SEC_METHOD_TLSV1
• SL_SO_SEC_METHOD_TLSV1_1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Options and Features Use www.ti.com

100 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

• SL_SO_SEC_METHOD_TLSV1_2
• SL_SO_SEC_METHOD_SSLv3_TLSV1_2 – all enabled

Example:
SlSockSecureMethod_t method;
_i6 status;

method.SecureMethod = SL_SO_SEC_METHOD_TLSV1 | SL_SO_SEC_METHOD_TLSV1_2;
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECMETHOD,&method,sizeof(SlSockSecureMethod_t));

6.5.2 Set Cipher Suites
Set the socket to use specific cipher suites. This should be called before sl_Connect, or sl_Listen.
• SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA
• SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5
• SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA
• SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256
• SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_RSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
• SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

Example:
SlSockSecureMask_t mask;
_i16 status;

mask.SecureMask = SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA |
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA;
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_MASK,&mask,sizeof(SlSockSecureMask_t));

6.5.3 Set Certificates, Root CA, Private Key, and DH Files
Set filenames to be used during the SSL handshake. The files must be programmed to the NWP file
system. The files should be in PEM or DER format. The client can successfully connect to a server that
does not require client authentication, without any files (the server would not be verified, because no root
CA is programmed). The server must provide a server certificate during the SSL handshake, and therefore
must use this sl_SetSockOpt command to provide the certificate and private key of the server.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Options and Features Use

101SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

DH files are Diffie Hellman parameters files. These parameter files contain parameters for generating a
DH key when using DHE cipher suites in server mode.

In server mode; if there is no DH file, the DH cipher suites are not available, even if a secured mask is
used to peek certain cipher suites with DH. If an ECDSA signature is used in the server certificate, the
RSA ciphers are not available, and vice versa.

Table 6-2. Related Files

File Client Server
Root CA file
Format: PEM/DER.
The self-signed certificate that signed the
other peer chain

Validates the remote peer (the remote
server)
If file does not exist, connection success
with error
SL_ERROR_BSD_ESECSNOVERIFY

Enables client verification when
programmed (not mandatory).
If programmed and peer did not send its
certificate, a socket asynchronous event is
raised with error
SL_ERROR_BSD_ESEC_NO_PEER_CE
RT.

Cert
Format: PEM/DER.
A certificate issued to this peer side.

Client Cert or certificate chain if server
requires client authentication. Chain can
only be programmed in a PEM format,
where the client certificate is the first,
followed by all the intermediate CAs.
If file does not exist, and the server
requires client authentication, the server
returns ALERT of peer verify error in the
sl_Connect command.
The user must program private key with
this file, or else connection fails with
SL_ERROR_BSD_ESECBADPRIVATEFI
LE.

Server certificate or certificate chain.
Chain could only be programmed in PEM
format. The server cert should be the first
in the list.
The file must be configured. If not
configured, error
SL_ERROR_BSD_ESECBADCERTFILE
occurs.

Private Key
Format: PEM/DER.
RSA or ECDSA key.

Client private key if server requires client
auth.
The user must program cert with this file,
or else connection fails with
SL_ERROR_BSD_ESECBADCERTFILE.

The private key of the server.
Must be configured. If not configured,
error
SL_ERROR_BSD_ESECBADPRIVATEFI
LE is raised.

DH (server) or PEER Cert (client)
Format: PEM/DER.
Other side certificate or DH parameters.

Configuring this file enables the domain
verification by full server cert comparison.
This file is the server expected cert. This
is being compared to the server certificate
that was received from the server during
the handshake phase, to validate that this
is truly the domain to connect to (stronger
than the domain name verification).

DH file –Diffie Hellman parameters file.
Contains parameters for generating DH
key when using DHE cipher suites in
server mode.
Enables the DH ciphers.

Binding a file to a socket is done using sl_SetSockOpt, before the sl_Connect or sl_Listen commands.
• SL_SO_SECURE_FILES_PRIVATE_KEY_FILE_NAME
• SL_SO_SECURE_FILES_CERTIFICATE_FILE_NAME
• SL_SO_SECURE_FILES_CA_FILE_NAME
• SL_SO_SECURE_FILES_PEER_CERT_OR_DH_KEY_FILE_NAME

Example:
_i16 status;

status =
sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_FILES_CA_FILE_NAME,"ca.der",strlen("ca.der"));

6.5.4 Disable the Use of the Trusted Root-Certificate Catalog
The user can disable the use of the trusted root-certificate catalog if a personal unknown root CA is used.
This is done by using this sl_SetSockOpt, before the sl_Connect or sl_Listen commands.

Example:
_u32 dummyVal;
_i16 status;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Options and Features Use www.ti.com

102 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

status = sl_SetSockOpt(SockID,SL_SOL_SOCKET, SL_SO_SECURE_DISABLE_CERTIFICATE_STORE,

&dummyVal,sizeof(dummyVal));

6.5.5 Set ALPN List
ALPN is a list of application protocols negotiated in the handshake. The client sends the desired ALPN list,
and the server picks one and notifies the client.

The supported protocols are:
• SL_SECURE_ALPN_H1 – http 1.1
• SL_SECURE_ALPN_H2 – http 2
• SL_SECURE_ALPN_H2C – http 2 draft c
• SL_SECURE_ALPN_H2_14 – http 2 draft 14
• SL_SECURE_ALPN_H2_16 – http 2 draft 16
• SL_SECURE_ALPN_FULL_LIST

This list is only available in client mode. The list is not set by default if this option is not used. To retrieve
the selected protocol after the handshake, use sl_GetSockOpt with the
SL_SO_SSL_CONNECTION_PARAMS option. This option should be called before sl_Connect or
sl_Listen.

Example:
SlSockSecureALPN_t alpn;
_i16 status;

alpn.SecureALPN = SL_SECURE_ALPN_H1 | SL_SECURE_ALPN_H2_16;
status = sl_SetSockOpt(SockID,SL_SOL_SOCKET,SL_SO_SECURE_ALPN,&alpn,sizeof(SlSockSecureALPN_t));

6.5.6 Set Domain Name for Verification and SNI
Set the domain name to verify the desired domain during the SSL handshake. The domain verification is
used to help against “man in the middle attack,” where a third party could buy a fake certificate from the
same root CA that signed the certificate of the server, and redirect the traffic to their server. Besides the
full chain verification, TI recommends checking the domain name as well. This option is only available for
client mode. This option should be called before sl_Connect or sl_Listen. Setting a domain name also
enables the SNI extension in the client hello message, according to RFC 6066.

Example:
_i16 status;

Status = sl_SetSockOpt(SockID, SL_SOL_SOCKET,_SO_SECURE_DOMAIN_NAME_VERIFICATION,
"www.google.com",strlen("www.google.com"));

6.5.7 Upgrade Nonsecured Socket to Secured
When connecting a regular TCP socket to a peer, the TCP socket can be upgraded to an SSL socket by
using the STARTTLS option, depending on the application layer of the other peer. The other peer also
must support such an upgrade. The upgrade is basically the initialization of an SSL handshake between
the peers, while in a connected session.

The most common use case is the SMTP protocol, on port 587. The client connects to an SMTP server,
several packets may transact unencrypted, and then the client initiates a STARTTLS request to the server
(each application protocol has its own STARTTLS byte string, and therefore should be sent by the host
application). At this point the handshake starts with a GO AHEAD message sent by the server, responded
to by a HELLO message from the client.

Calling sl_SetSockOpt with the STARTTLS option triggers the NWP, in client mode, to send the client
HELLO message, and in server mode to wait until the client HELLO message is received. When the
handshake is finished, the user gets a socket asynchronous event which indicates success or failure, and
in case of failure, a specific error code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Options and Features Use

103SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

Example:
void slcbSockEvtHdlr(SlSockEvent_t* pSlSockEvent)
{

char *CAname;
if(SL_SOCKET_ASYNC_EVENT == pSlSockEvent->Event)
{

/* debug print "an event received on socket %d\n",
pSlSockEvent->SocketAsyncEvent.SockAsyncData.Sd */

switch(pSlSockEvent->SocketAsyncEvent.SockAsyncData.Type)
{
case SL_SSL_NOTIFICATION_CONNECTED_SECURED:

/* indicate handshake successful ok */
break;

case SL_SSL_NOTIFICATION_HANDSHAKE_FAILED:
/* retrieve an error from pSlSockEvent->SocketAsyncEvent.SockAsyncData.Val; */
break;

default:
break;

}
}

}

void ClientSTARTTLSExample()
{

SlSockAddrIn_t Addr;
SlSockSecureMethod_t method;
_i32 sd,len,dummyVar;
_i16 status;
_u32 DestinationIP = SL_IPV4_VAL(192,168,1,31); /* An SMTP server's IP */
_i16 AddrSize;
_i8 buf[100];

Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(587);
Addr.sin_addr.s_addr = sl_Htonl(DestinationIP);
AddrSize = sizeof(SlSockAddrIn_t);

/* Open SSL socket */
sd = sl_Socket(SL_AF_INET,SL_SOCK_STREAM,0);
if(sd < 0)
{

/* error... */
}

method.SecureMethod = SL_SO_SEC_METHOD_SSLv3_TLSV1_2;
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECMETHOD,&method,sizeof(SlSockSecureMethod_t));
if(status < 0)
{

/* error... */
}

/* set a CA filename to be used to verify the SMTP server
certificate when the handshake will take place */

status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_FILES_CA_FILE_NAME,
"smtpCa.der",strlen("smtpCa.der"));

if(status < 0)
{

/* error... */
}

status = sl_Connect(sd, ( SlSockAddr_t *)&Addr, AddrSize);
if(status < 0)
{

/* error... */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Options and Features Use www.ti.com

104 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

/* unsecured transaction */
len = sl_Recv(sd,buf,100,0);
if(len < 0)
{

/* error... */
}

len = sl_Send(sd,"HELO server",strlen("HELO server"),0);
if(len < 0)
{

/* error... */
}

/*...
...
... */

len = sl_Send(sd,"STARTTLS",strlen("STARTTLS"),0);
if(len < 0)
{

/* error... */
}

len = sl_Recv(sd,buf,100,0);
if(len < 0)
{

/* error... */
}

if(strcmp(buf,"GO AHEAD") == 0)
{

/* we got a green light, we can start the SSL handshake */
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_STARTTLS,&dummyVar,sizeof(dummyVar));
if(status < 0)
{

/* error... */
}

/* wait for the flag to update from slcbSockEvtHdlr async event
and handle it, if an error occurs
...
...
... */

}

/*...
...
... */

status = sl_Close(sd);
if(status < 0)
{

/* error... */
}

}

6.5.8 Get Connection Parameters
Get the connection parameters after a successful handshake completes. The received parameters include
server certificate parameters, chosen SSL version and cipher suite, and more.

Due to a large amount of data, only 16 bytes of the issuer and subject common name are kept. The
XORed hash of those names, plus the 16-byte name strings, are helpful in verifying a wanted name.

Example:
SlSockSSLConnectionParams_t conPa;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Supported Cryptographic Algorithms

105SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

_i16 status;

SlSocklen_t len = sizeof(SlSockSSLConnectionParams_t);
status = sl_GetSockOpt(SockID,SL_SOL_SOCKET,SL_SO_SSL_CONNECTION_PARAMS,&conPa,&len);

6.6 Supported Cryptographic Algorithms
Table 6-3 lists the supported cryptographic algorithms.

Table 6-3. Cryptographic Algorithms

Algorithm Hardware or Software Usage Key Length
ECDSA Software Signature algorithm Dynamically generated

Named curves – secp160r1
secp192r1
secp224r1
secp256r1
secp384r1
secp521r1

ECDHE Software Key exchange Dynamically generated
Named curves as ECDSA

DH Software Key exchange Dynamically generated
RSA Key < 4096 Hardware Signature algorithm/Key

exchange
128, 256

RSA Key > 4096 Software Signature algorithm/Key
exchange

512,1024

SHA1 Hardware Signature algorithm/Message
authentication code

20

SHA256 Hardware Signature algorithm/Message
authentication code

32

SHA384 Software Signature algorithm 48
SHA512 Software Signature algorithm 64
MD5 Hardware Signature algorithm/Message

authentication code
16

POLY1305 Software Message authentication code 16
AES CBC Hardware Data encryption 16, 32
AES GCM Hardware Data encryption/Message

authentication code
16, 32

RC4 Software Data encryption 16
CHACHA20 Software Data encryption 16
TRNG Hardware Random numbers

6.7 Common Errors and Asynchronous Events
In most cases, the socket API returns the error code as a return value of the API. In other cases, where
the error occurs during a live process, the error or notification returns in a socket asynchronous event.

6.7.1 Using Socket Asynchronous Events in SSL
SSL asynchronous events which provide information about the connection:
• SL_OTHER_SIDE_CLOSE_SSL_DATA_NOT_ENCRYPTED – The remote side closed the SSL layer,

and the socket is not secured anymore; data can still transfer but is not encrypted.
• SL_SSL_ACCEPT – An error occurred during an SSL accepting, but the socket is ready to accept

again with no need to call accept again. A good example of that is a time-out during the handshake.
• SL_SSL_NOTIFICATION_WRONG_ROOT_CA – This event is only available in client mode, and it

goes along with the SL_ERROR_BSD_ESEC_ASN_NO_SIGNER_E error received during the
sl_Connect command. This event indicates that a certificate in the certificate chain could not be
verified because the CA programmed to the file system is not the right CA that signed the chain. This

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Common Errors and Asynchronous Events www.ti.com

106 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

event gives the CommonName of the CA root expected to verify the certificate.

Example:
void slcbSockEvtHdlr(SlSockEvent_t* pSlSockEvent)
{
char *CAname;
if(SL_SOCKET_ASYNC_EVENT == pSlSockEvent->Event)

{
/* debug print "an event received on socket %d\n",pSlSockEvent-
>SocketAsyncEvent.SockAsyncData.Sd */

switch(pSlSockEvent->SocketAsyncEvent.SockAsyncData.Type)
{

case SL_SSL_NOTIFICATION_CONNECTED_SECURED:
break;

case SL_SSL_NOTIFICATION_HANDSHAKE_FAILED:
break;

case SL_SSL_ACCEPT:
break;

case SL_OTHER_SIDE_CLOSE_SSL_DATA_NOT_ENCRYPTED:
break;

case SL_SSL_NOTIFICATION_WRONG_ROOT_CA:
break;

default:
break;
}

}
}

6.7.2 Common Errors
Table 6-4 lists the common errors.

Table 6-4. Common Errors

Error Client Server
SL_ERROR_BSD_ESECSNOVERIFY Connected without verifying the peer.

Use sl_SetSockOpt to set the CA to verify
the peer.

N/A

SL_ERROR_BSD_ESECNOCAFILE The CA filename used in the
sl_SetSockOpt is not in the file system.
Use the correct filename, or program the
file in the name desired.

The CA filename used in the
sl_SetSockOpt is not in the file system.
Use the correct filename, or program the
file in the name desired.

SL_ERROR_BSD_ESECBADCAFILE
SL_ERROR_BSD_ESECBADCERTFILE
SL_ERROR_BSD_ESECBADPRIVATEFI
LE
SL_ERROR_BSD_ESECBADDHFILE

The file is not valid.
Check if it is a valid DER/PEM CA file.

The file is not valid.
Check if it is a valid DER/PEM CA file.

SL_ERROR_BSD_ESECT00MANYSSLO
PENED

Exceed maximum SSL connections.
The SimpleLink supports only six SSL
connected sockets.

Exceed maximum SSL connections.
The SimpleLink supports only 6 SSL
connected sockets.

SL_ERROR_BSD_ESECDATEERROR Connected but with error verifying time
and date on the certificates error of the
server.
Set the time and date on the device or
check the certificate date of the other side.

N/A

SL_ERROR_BSD_ESEC_SOCKET_ERR
OR

TCP socket was disconnected during the
SSL handshake.
This usually occurs when the other side
closed the connection. Investigate the
peer.

TCP socket was disconnected during the
SSL handshake.
This usualyl occurs when the other side
closed the connection. Investigate the
peer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Common Errors and Asynchronous Events

107SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Secure Socket

Table 6-4. Common Errors (continued)
Error Client Server

SL_ERROR_BSD_ESEC_ASN_NO_SIGN
ER

Could not verify one of the certificates in
the peer’s cert.
This usually occurs when using a wrong
CA to verify the peer. Use the
SL_SSL_NOTIFICATION_WRONG_ROO
T_CA to get the desired CA
CommonName.

Could not verify one of the certificates in
the peer’s cert.

SL_ERROR_BSD_ESECUNKNOWNROO
TCA

Connected but the root CA used to verify
the peer is unknown to TI. That means it
does not appear in the trusted root-
certificate catalog.

N/A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


108 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

Chapter 7
SWRU455E–February 2017–Revised February 2018

File System

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

109SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

Topic ........................................................................................................................... Page

7.1 Introduction ..................................................................................................... 110
7.2 Key Features.................................................................................................... 110
7.3 File System Characteristics ............................................................................... 111
7.4 Write a File ...................................................................................................... 111

7.4.1 Introduction ............................................................................................ 111
7.4.2 Create a File versus Open for Write................................................................ 112
7.4.3 Create a File ........................................................................................... 112
7.4.4 Open a File for Write ................................................................................. 115
7.4.5 Write an Opened File ................................................................................. 115
7.4.6 Close an Opened (for Write) File ................................................................... 116
7.4.7 Close an Opened (for Write) Secure-Signed File................................................. 117

7.5 Read a File....................................................................................................... 118
7.5.1 Open a File for Read ................................................................................. 118
7.5.2 Read an Opened File................................................................................. 118
7.5.3 Close an Opened (for Read) File ................................................................... 119

7.6 Delete a File ..................................................................................................... 119
7.7 Rename a File .................................................................................................. 120
7.8 File System Helper Functions ............................................................................ 120

7.8.1 Get File Information................................................................................... 120
7.8.2 Get Storage Information.............................................................................. 121
7.8.3 Get List of Files........................................................................................ 121

7.9 Bundle Protection............................................................................................. 121
7.9.1 Bundle File States .................................................................................... 122
7.9.2 Bundle States.......................................................................................... 123
7.9.3 Commit a Bundle...................................................................................... 124
7.9.4 Rollback a Bundle..................................................................................... 124
7.9.5 Retrieve the Bundle and Files State................................................................ 124
7.9.6 CC3220 Bundle Aspects ............................................................................. 124

7.10 File Commit Feature.......................................................................................... 125
7.10.1 File Commit Process ................................................................................ 125

7.11 File Rollback Process ....................................................................................... 126
7.12 Programming ................................................................................................... 126

7.12.1 Creation of the Programming Image .............................................................. 126
7.13 Restore to Factory ............................................................................................ 128

7.13.1 Restore to Factory by the Host..................................................................... 129
7.13.2 Restore to Factory by Using the SOP ............................................................ 130

7.14 Security Alerts ................................................................................................. 131
7.15 Design Consideration ....................................................................................... 131

7.15.1 Choosing SFLASH Type ............................................................................ 131
7.15.2 Software Design Consideration .................................................................... 131
7.15.3 Retrieving Info Regarding SFLASH Usage....................................................... 132
7.15.4 SFLASH Size ......................................................................................... 132
7.15.5 Storage Usage Information ........................................................................ 133

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

110 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.1 Introduction
This chapter describes the capabilities of the file system and the host interface, and provides usage
recommendation.

The SimpleLink Wi-Fi device maintains a nonvolatile file system which stores the data on an external
serial flash (through SPI). The file system provides the ability to organize data and access resources using
a simple host interface. In addition, the file system is used to store the networking subsystem
configuration. The need for secure storage is a major factor in the IoT world, where devices are more
vulnerable to security attacks. The SimpleLink Wi-Fi device provides a file system with security features
that protects the device from cloning. Secure files are kept encrypted on the external storage device
(external SFLASH). File authentication is also supported.

The SimpleLink Wi-Fi networking subsystem uses the file system to store the system configuration files
and for storing the service pack. The CC3220 device uses the storage to store the host application.

The file system provides features to protect the stored files from manipulation by unknown or malicious
users, such that the files cannot be read or modified freely by third parties.

In addition, the SimpleLink Wi-Fi device supports cloning protection; moving or cloning a SFLASH that
was written by one device to other does not work . One device cannot use a file system or read secure
files created by another device.

File integrity monitoring is an internal process that performs the act of validating the integrity of the file
system and stored files, using a verification method between the current file state and the known, good
baseline. This comparison method involves calculating a known cryptographic checksum of the original
baseline of the file, and comparing it with the calculated checksum of the current state of the file.

The SimpleLink internal process for software tamper detection monitors the use of the file and detects
attempts to tamper the file system; it detects operations such as accessing a file without the correct
credentials, or writing a file by an unauthenticated user.

The SimpleLink Wi-Fi device also provides a recovery mechanism; it enables to rollback the system
configuration to the factory settings.

7.2 Key Features
Table 7-1 lists the key security features.

Table 7-1. Key Features

Feature Description
Maximum number of files 240 (50 files should be reserved for system files)
Maximum file size Unlimited
Maximum file name length 180 bytes
Maximum SFLASH size 16 MB
Type of files Regular, secure, secure + authenticate
File functions Create, open for write, open for read, rename a file, get file information
Get a files list Retrieves the file list and attributes
Get storage usage Retrieve general information regarding the storage status: free space, allocated space,

number of security alerts.
File commit/rollback Methods for downloading a single file and in case of failure rollback to the former file

image
Bundle commit/rollback Methods for downloading a group of files and in case of failure rollback all the files (as

single transaction) to the former files image
Programming The method to first install the device with the required configuration and files.
Programming by third party Program the SFLASH and assemble it to the device
Restore to factory image/defaults Return to the programmed image
Security alerts
Development/production format Option to create a development image which can run on specific MAC.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com File System Characteristics

111SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.3 File System Characteristics
The following list describes the file system characteristics:
• Supported number of files is 240, including system files.
• The maximum number of system files is 50 files; however, most of the system files are created only if

they are required by the application.
• File size is unlimited.
• Filename can be up to 180 bytes. Choose short names due to the limited allocated size for filenames.

Filenames are kept on a best-effort basis; the size allocated for filenames is 3136 bytes. If the total
length of the filenames (calculated without the null terminator) exceeds the allocated size, the file name
is not kept, that is, the name is displayed in the file list as “name not kept”. Files where names were
not kept have all of file system functions working correctly, can open files, read and write, close, and
so forth.

• File can be opened for either a read or a write; file cannot be read and written, correspondingly.
• During the programming or restore to factory process, no file operation can be executed; when trying

to read or write a file, an error of SL_ERROR_FS_PROGRAMMING_IN_PROCESS is received. In this
case, the file system function can be re-invoked after the programming process is finished.

• Trying to invoke a file system function when the file system is not yet formatted results in the error
SL_ERROR_FS_NO_DEVICE_IS_LOADED.

• Some of the file system functionality is only available for secure devices; Table 7-2 describes the
different functionality between secure and nonsecure devices.

Table 7-2. Secure Files

CC3220S, CC3220SF, CC3120 CC3220R
Create encrypt programming image + –
Setting alarms threshold + –
Store the CC3220 host app as secure + –
Write secure user files + Only certificate files and private keys can

be created secure. These files could not
be read by the host.

Read secure user files + –
Secure programming + –

• The common way to create the service pack and the trusted root-certificate catalog is by the UniFlash
Image Creator tool. The Image Creator tool supports the functionality of setting the correct creation
attributes for the system files. If the following files are first created by the host, the described creation
attributes should be used:
– Trusted root-certificate catalog, name: /sys/certstore.lst ,maxsize : 7000 bytes. Creation flags:

SL_FS_CREATE_SECURE |SL_FS_CREATE_PUBLIC_WRITE| SL_FS_CREATE_FAILSAFE
– Service pack, name: /sys/servicepack.ucf ,maxsize : 131072 bytes. Creation flags:

SL_FS_CREATE_SECURE |SL_FS_CREATE_PUBLIC_WRITE| SL_FS_CREATE_FAILSAFE

NOTE: When closing (after open for write) the service pack file or the trusted root-certificate
catalog file, a signature must be supplied with a null certificate.

7.4 Write a File

7.4.1 Introduction
To write a file, the file must first be opened for write; at the end it should be closed. The following is a
description of the writing procedure:
1. Open the file for create or write, function sl_FsOpen().
2. Write the file, function sl_FsWrite (); can be called several times.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Write a File www.ti.com

112 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

3. Close the file, function sl_FsClose().

The next subsections provide detailed descriptions of the functions involved in the write file process.

7.4.2 Create a File versus Open for Write
The host provides different functions for creating a new file, or open for write an existing file. The following
is a list of open file methods.
1. Open-Create-Write: By default, if the file does not exist, the device creates a new file and opens it for

write; otherwise the device opens the file for write.
Example:
&_i32 FileHdl;
unsigned char DeviceFileName[180];
_u32 MaxSize, MasterToken;

FileHdl = sl_FsOpen(unsigned char *)DeviceFileName,
SL_FS_CREATE|SL_FS_CREATE_SECURE |SL_FS_OVERWRITE |
SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_MAX_SIZE( MaxSize ),
&MasterToken);
if(FileHdl < 0 )
{

/*error */
}

2. Open-Create: Creates a new file; the open function returns an error if a file with the same name
already exists.
Example:
_i32 FileHdl;
unsigned char DeviceFileName[180];
_u32 MaxSize, MasterToken;

FileHdl = sl_FsOpen(unsigned char *)DeviceFileName,
SL_FS_CREATE|SL_FS_CREATE_SECURE |
SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_MAX_SIZE( MaxSize ),
&MasterToken);

if(FileHdl < 0 )
{

/*error */
}

3. Open-Write: Opens an existing file for write; the open function returns an error if the file does not exist.
Example:
_i32 FileHdl;
unsigned char DeviceFileName[180];
_u32 MaxSize, MasterToken;

FileHdl = sl_FsOpen(unsigned char *)DeviceFileName,
SL_FS_OVERWRITE | SL_FS_CREATE_SECURE |
SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_MAX_SIZE( MaxSize ),
&MasterToken);

if(FileHdl < 0 )
{

/* error */
}

7.4.3 Create a File
The open-create or open-create-write creates a new file, and as part of the function the device allocates
the storage for the file. The size of the allocated storage is determined by the maximum size parameter.
The close function makes the opened file valid.

A file created but not closed has allocated storage (according its maximum size), but does not have a
valid copy.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Write a File

113SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

Because the process of creating a file involves updating the file allocation table on the SFLASH, TI
recommends minimizing the creation of files. If it is required to update the file content, open the file for
write rather than to delete and create it.

For a secure file, the default behavior of the file creation function is to generate the file tokens (including
the master): the master token is returned as the function output, and all other tokens can be retrieved
using the sl_FsGetInfo() function. Further information regarding the file tokens can be find in
CC3120/CC3220 SimpleLink Wi-Fi Devices Built-In Security Features (SWRA509).

The sl_FsOpen() function tests that the file storage can be allocated, that the file does not exist, and that
the creation flags are valid. If in error, the function returns a negative value and represents the error
number; the following is a partial list of errors that might be returned by the creation function:
• SL_ERROR_FS_NOT_ENOUGH_STORAGE_SPACE, no available storage for the file
• SL_ERROR_FS_FILE_ALREADY_EXISTS, file with the same name already exists
• SL_ERROR_FS_NO_AVAILABLE_NV_INDEX, number of opened files exceeded
• SL_ERROR_FS_FILE_INVALID_FILE_SIZE, the maximum file size is set to 0

The create file input parameters are:
• Filename: The filename is a string of up to 180 bytes; TI recommends using short filenames (explained

in Section 7.3); the file name is not case-sensitive.
• Maximum file size

– When creating a file, the storage for the file is allocated according the requested maximum file size.
For an existing file, the maximum file size cannot be changed; thus, when defining the maximum
size of a file, the future growth of the file should be considered.

– Creating a file with the FAILSAFE flag creates the file with a copy, thus the allocated storage size
for the file is doubled.

– Because the smallest erase unit of a SFLASH is 4096 bytes, the file system allocates storage size,
which is aligned to 4096 bytes.

• File tokens: The token is the key for accessing a secure file; for a nonsecure file, it is set to zero. The
file creation function returns the file token. By default, the device generates the file master token and
returns it to the host. The default behavior of the token creation can be overridden by special creation
flags.

• Creation flags: The creation flags are set during the file creation and cannot be changed afterward.
The following is a list of creation flags:
– SL_FS_CREATE_FAILSAFE: A file opened with failsafe has double copies, but only one copy is

considered to be active at a time. Each time file is opened for write, the file storage is erased. If the
system is powered off while writing a file with no failsafe, the file content is lost. If the system is
powered off while writing a file with failsafe, the old content becomes the active one. Using the
FAILSAFE doubles the file allocated storage. If the bundle feature (used for OTA) is used with the
file, this flag is mandatory.

– SL_FS_CREATE_SECURE: A file created as secure has its content encrypted on the SFLASH.
Access to the file is limited, and requires a file token. See the security application notes file for
more information about secure files.

– SL_FS_CREATE_NOSIGNATURE: The flag is relevant only for secure files. By default, a secure
file has a signature, which authenticates the file creator. See the security application notes for more
information about how to create file signature.

– SL_FS_CREATE_STATIC_TOKEN: Relevant only for secure files. This flag changes the default
behavior of the file tokens creation: with this flag, the file tokens are not changed each time a file is
opened for write.

– SL_FS_CREATE_VENDOR_TOKEN: Relevant only for secure files. This flag changes the default
behavior of the file tokens creation: with this flag, the file master tokens are set by the host.

– SL_FS_CREATE_PUBLIC_WRITE: Relevant only for secure files. This flag changes the default
behavior of the file tokens creation: with this flag, the file can be written without a token, but for a
read operation a token is required.

– SL_FS_CREATE_PUBLIC_READ: Relevant only for secure files. This flag changes the default
behavior of the file tokens creation; with this flag, the file can be read without a token, but for a

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E
http://www.ti.com/lit/pdf/SWRA509


Write a File www.ti.com

114 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

write operation a token is required.
• Flags: The following flags are not creation flags, and can be set when creating or opening an existing

file for write.
– SL_FS_WRITE_BUNDLE_FILE: Used for the bundle commit feature; for new files, the FAILSAFE

flag is not a precondition for this flag.
– SL_FS_WRITE_ENCRYPTED: Used for secure content download.

If the application creates a file once, it can then be created by the Image Creator tool with the default
content. The application can then update the file when required.

7.4.3.1 Secure File Creation Notes
When creating a secure file, the file resides encrypted on the SFLASH, and any access to the secure file
requires a token. The default behavior is that the open for create function returns the master token of the
file, the token is kept by the host application, and is then used for the file operation (read/write/delete).

To prevent a situation in which the host application was powered off before the received token is kept, use
one of the following methods:
• Create the file with the SL_FS_CREATE_VENDOR_TOKEN flag and set the required token; in this

way, the token is kept in the host application code.
• Create the file with the SL_FS_CREATE_PUBLIC_WRITE and SL_FS_CREATE_PUBLIC_READ

flags; in this way, the secure file can be write/read without a token. To delete the file, a token is
required, so this method is ideal for a file which is created once and never deleted.

• Combine both methods mentioned in the previous bullets; create a secure file with the vendor and
public write and public read flags. In this case, no token is required for read and write, and deleting the
file requires the vendor token.

7.4.3.2 Forced Creation Flags
For security reasons, some of the system files must be created with specific flag. Table 7-3 lists the files
and their required creation flags.

Table 7-3. Creation Flags

Filename CC3120, CC3220S,
CC3220SF

CC3220R Remark

/sys/servicepack.ucf
/sys/certstore.lst

Secure signed by TI
+ public write
+ Fail-safe

Secure signed by
TI

Those files are delivered by TI.
The service pack contains fixes to the
device code; the trusted root-certificate
catalog contains the root CAs supported by
TI and a revoked certificate list.
TI might deliver a new version for those files
when required.
TI highly recommends designing the host to
support future updates of these files.

/sys/mcuimg.bin
//CC3220R/CC3220S
/sys/mcuflashimg.bin
//CC3220SF

Secure signed Not secure The file contains the host program.

/sys/cert/private.key
/sys/cert/client.der
/sys/cert/ca.der

Secure Secure, blocked for
read

The files contain the key and certificate for
SSL connection.

NOTE: Downgrading the trusted root-certificate catalog is not possible.

NOTE: The service pack is a special file which already contains the signature. When writing the
service pack by the host, the sl_FsClose() function should receive a NULL certificate name
and a NULL signature.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Write a File

115SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.4.4 Open a File for Write
Opening an existing file for write is the preferred way to update the file content (rather than to delete it and
recreate it). A file which was not closed or aborted cannot be opened for write.

Appending content to an existing file is not supported; when the file is opened for write, the storage of the
file is erased.

If the file was created with a FAILSAFE flag, the storage of the nonactive content is erased; thus, if the
device was powered off before the file closure, the file contains the last valid content.

If the file was created without a FAILSAFE flag, powering off the device before the file is closed results in
no valid copy.

The operation of opening a file for write does not involve updating the file allocation table, unlike the
create file function.

For a secure file, the default behavior is that when opening a file for write, all the tokens except the master
are regenerated. The new tokens can be retrieved by the sl_FsGetInfo function.

If the file is already open (for write or read) or does not exist, sl_FsOpen() returns an error.

The following is a partial list of errors that might be returned by the creation function:
• SL_ERROR_FS_FILE_IS_ALREADY_OPENED: The file is already opened for read or write.
• SL_ERROR_FS_INVALID_TOKEN_SECURITY_ALERT: For a secure file, the input token is not valid;

this triggers security alerts if the device is secured.
• SL_ERROR_FS_FILE_NOT_EXISTS: The file does not exist.

The following parameters are required to create a file:
• Filename: The filename is not case-sensitive.
• File tokens: The token is the key for accessing a secure file; for nonsecure files it is set to zero. For a

secure file with no public write permission, the host should supply a token with write permission
(master token, write token, or read-write token).

• The function returns a token on the same permission level as the input one.
• Flags: The noncreation flags that can be set:

– SL_FS_WRITE_MUST_COMMIT – used for the file commit feature, and can be used only if the file
was created with a FAILSAFE flag.

– SL_FS_WRITE_BUNDLE_FILE – used for the bundle commit feature, and can be used only if the
file was created with a FAILSAFE flag.

– SL_FS_WRITE_ENCRYPTED – used for secure content delivery.

7.4.5 Write an Opened File
The host can invoke the write command for each file opened for write. For nonsecure files, the write
command can be done to random offsets. For secure files, the write operation also encrypts the file, thus
writing secure files requires writing to sequential offsets, or writing to a 16-byte-aligned offsets buffer,
which is also 16-byte-aligned in size.

The file system sets the actual file size as the higher offset that was written; the actual file size can be
retrieved by the sl_FsGetInfo() function.

The return value of the write function is the number of bytes written, and a negative value is an error
number.

The following is a partial list of errors that might be returned by the write function:
• SL_ERROR_FS_OFFSET_OUT_OF_RANGE: The file can be written to offsets which are less than the

maximum file size, and trying to write a file to an offset which exceeded the maximum file size results
in an error.

• SL_ERROR_FS_INVALID_HANDLE: The input file handle is illegal.
• SL_ERROR_FS_OFFSET_NOT_16_BYTE_ALIGN: For a secure file, when trying to write to an offset,

this is not sequential.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Write a File www.ti.com

116 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

• SL_ERROR_FS_FILE_ACCESS_IS_DIFFERENT: Trying to read a file which was opened for read.

Example:
_i32 FileHdl;
_i32 Status;
_u32 Offset = 0;
unsigned char pData[100];
_u32 Len = 0;

Status = sl_FsWrite( FileHdl, Offset, pData, Len );
if( Status < 0 )
{

/* error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);

}

7.4.6 Close an Opened (for Write) File
Closing or aborting an opened file is mandatory. Closing the file frees the file resources from the device
memory and sets the last file copy (if one exists) as the active one.

If the host application decides not to write an opened file due to an error, use abort instead of close.

The abort function requires the file handle. How to abort a file without using the file handle is described in
the file commit-rollback function.

A file that was not closed or aborted appears in the file system; its storage is allocated, but it might have
no valid copy. Such files can be observed by the SL_FS_INFO_NOT_VALID flag, and the file flags can be
retrieved by the sl_FsGetFileList () or sl_FsGetInfo () functions.

For a file opened with the FAILSAFE flag that has a valid copy (from a previous write operation), invoking
the abort function sets the nonactive copy as the active one, so that the next read operation reads the
valid copy and not the one that has been aborted.

In the case of an unexpected or sudden shutdown, each file opened for write that has not been closed is
treated as if abort has been called for this file.

The function returns 0 for success, and a negative number for an error.

The following is a partial list of errors that might be returned by the close after write function:
• SL_ERROR_FS_INVALID_HANDLE: The input file handle is illegal.
• SL_ERROR_FS_CERT_CHAIN_ERROR_SECURITY_ALERT: For a secure signed file, testing the

certificate chain of trust failed, and a security alert is triggered.
• SL_ERROR_FS_CERT_IN_THE_CHAIN_REVOKED_SECURITY_ALERT: For a secure signed file,

the certificate chain of trust exists in the revoked list, and a security alert is triggered.
• SL_ERROR_FS_WRONG_SIGNATURE_SECURITY_ALERT: For a secure signed file, the signature

test failed, and a security alert is triggered.
• SL_ERROR_FS_WRONG_CERTIFICATE_FILE_NAME: For a secure signed file, if one of the

certificates in the chain of trust is missing, it does not trigger security alerts.

Close nonsigned file example:
_i32 FileHdl;
_i16 Status;
const _u32 SignatureLen;
_u8* pSignature, pCeritificateFileName;

pCeritificateFileName = 0;
pSignature = 0;
SignatureLen = 0;
Status = sl_FsClose(FileHdl,pCeritificateFileName,pSignature,SignatureLen);
if( Status < 0 )
{

/* error */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Write a File

117SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

/* abort */
sl_FsClose(FileHdl,0,'A',1);

}

Abort file example:
_i32 FileHdl;
_i16 Status;
const _u8 Signature;
const _u32 SignatureLen;
_u8* pCeritificateFileName;

pCeritificateFileName = 0;
Signature = 'A';
SignatureLen = 1;
Status = sl_FsClose(FileHdl,pCeritificateFileName,Signature,SignatureLen);
if( Status < 0 )
{

/*error */
}

7.4.7 Close an Opened (for Write) Secure-Signed File
To create a file signature:
1. The vendor generates a public and private RSA key pair, supported: RSA 128 or 256 bytes, the

generated files are of public.pem and private.pem.
2. A known CA creates a signed certificate which contains the public key.
3. Using the private key, the file digital signature is generated. The signature is a standard digital

signature; the algorithm first calculates the SHA of the file content and then the SHA result is encrypted
using the private key. The supported signature types are: PKCS#1, RSA 256 or 128 bytes, SHA_1 (the
signature length is 256 or 128 bytes). The signature for the file can be created by standard tools, or by
the UniFlash Image Creator tool (using the private key).

4. The close function receives the file signature as an input, and the signed certificate (in DER encoding).

Notes:
• All the chained certificates should exist in the SFLASH when the close function is called.
• The supported encoding for the certificate files is DER.
• The supported certificates are:

– RSA 1024 to 4096
– SHA 1-512

• The signed certificates filename should be created in the device with the name as it appears under the
“issued to” property of the certificate (the exact name should be given).

• The trusted root-certificate catalog delivered by TI contains the list of supported and revoked
certificates. For a list of supported CAs, see the security application document.

Example for secure-signed files close function:
_i32 FileHdl;
_i16 Status;
const _u8 CeritificateFileName[180];
const _u8 Signature[256];
const _u32 SignatureLen;

SignatureLen = sizeof(Signature);
Status = sl_FsClose(FileHdl, CeritificateFileName, Signature, SignatureLen);
if( Status < 0 )
{

/* error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Read a File www.ti.com

118 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.5 Read a File
To read a file, it should first be opened for read. The following functions are involved in the read file
procedure:
• Open-read a file, function sl_FsOpen()
• Read the file, function sl_FsRead()
• Close the file, function sl_FsClose()

7.5.1 Open a File for Read
Open a file for read only succeeds if the file has been closed or aborted. The open-for-read function does
not involve any SFLASH updates, and it has no effect on the SFLASH endurance.

The open-for-read function returns a negative value in case of an error.

The following is a partial list of errors that might be returned by the open-for-read function:
• SL_ERROR_FS_FILE_IS_ALREADY_OPENED: The file is already opened for read or write.
• SL_ERROR_FS_INVALID_TOKEN_SECURITY_ALERT: For a secure file, the input token is not valid;

this triggers security alerts if the device is secured.
• SL_ERROR_FS_FILE_NOT_EXISTS: The file does not exist.
• SL_ERROR_FS_DEVICE_NOT_SECURED: Reading the secure file can only be done in a secure

device type.
• SL_ERROR_FS_WRONG_SIGNATURE_SECURITY_ALERT: For secure-signed files, each time the

file is opened for read, the file integrity is tested. If the test is failed, an error and a security alert is
raised.

Example:
_i32 FileHdl;
_u8 DeviceFileName[180];
_u32 MasterToken;

FileHdl = sl_FsOpen(unsigned char *)DeviceFileName, SL_FS_READ, &MasterToken);
if( FileHdl < 0 )
{

/*error */
}

7.5.2 Read an Opened File
To read a file, the host requires the file handle, the offset to read, and the output buffer. A file can be read
from random offsets.

The sl_FsRead returns the actual bytes read, or a negative value which represents an error.

The following is a partial list of errors that might be returned by the open-for-read function:
• SL_ERROR_FS_OFFSET_OUT_OF_RANGE: The file system set the actual file size as a higher offset

than was written. Trying to read a file from an offset which is higher than the actual file size results in
an error.

• SL_ERROR_FS_NO_MEMORY: The read operation requires a system resource (RX-socket). The
system may return that if there are not available resources (sockets) for the operation; in this case, the
host can repeat the read operation after a while (or reduce the traffic overload while reading a file).

Example:
_i32 FileHdl;
_i32 Status;
_u32 Offset = 0;
unsigned char pData[100];
_u32 Len = 0;

Status = sl_FsRead( FileHdl, Offset, pData, Len );
if( Status < 0 )

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Read a File

119SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

{
/*error */
/* abort */
Status = sl_FsClose(FileHdl,0,'A',1);

}

7.5.3 Close an Opened (for Read) File
When the read is completed, the host must close the file. Closing the file releases the file resources from
the device memory.

An abort file command can be invoked without using the file handle; the reference can be found in the file
commit-rollback function.

An abort file command open for read has the same functionality as the close function. In case of an
unexpected or sudden shutdown, each file opened for read that is not closed is treated as if it is aborted.

The following is a partial list of errors that might be returned by the close after read function:
• SL_ERROR_FS_INVALID_HANDLE: The input file handle is illegal.

Close file example:
_i32 FileHdl;
_i16 Status;
const _u32 SignatureLen;
_u8* pSignature, pCeritificateFileName;

pCeritificateFileName = 0;
pSignature = 0;
SignatureLen = 0;
Status = sl_FsClose(FileHdl,pCeritificateFileName,pSignature,SignatureLen);
if( Status < 0 )
{

/* error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);

}

Abort file example:
i32 FileHdl;
_i16 Status;
const _u8 Signature;
const _u32 SignatureLen;
_u8* pCeritificateFileName;

pCeritificateFileName = 0;
Signature = 'A';
SignatureLen = 1;
Status = sl_FsClose(FileHdl,pCeritificateFileName,Signature,SignatureLen);
if( Status < 0 )
{

/*error */
}

7.6 Delete a File
Deleting of a file removes its storage from the file system and updates the files allocation table. Deleting is
done by the host function sl_FsDel().

On successful delete, the file allocation storage on the SFLASH is removed, and can be used by other
files. For secure files, the delete requires the file master token.

TI recommends reducing the delete file operations to the minimum, because it involves updating the
allocation table.

The following is a partial list of errors that might be returned by the delete function:
• SL_ERROR_FS_FILE_IS_ALREADY_OPENED: File that is opened cannot be deleted. The file is

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Rename a File www.ti.com

120 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

expected to be closed or aborted to be deleted; trying to delete a file opened for write/read results in
this error.

• SL_ERROR_FS_FILE_NOT_EXISTS: Trying to delete a file which does not exist results in this error.

Example:
_i16 Status;
_u8 DeviceFileName[180];
_u32 MasterToken;

Status = sl_FsDel( DeviceFileName, MasterToken );
if( Status < 0 )
{

/*error */
}

7.7 Rename a File
This function renames an existing file; for secure files, the rename requires the master token.

The following is a partial list of errors that might be returned by the rename function:
• SL_ERROR_FS_FILE_IS_ALREADY_OPENED: File that is opened cannot be renamed. The file is

expected to be closed or aborted to be renamed.
• SL_ERROR_FS_FILE_NAME_RESERVED: System file cannot be renamed, and file cannot be

renamed to a system filename.
• SL_ERROR_FS_FILE_NAME_EXIST: Renaming a file to a filename that already exists results in an

error.

Example:
_i32 Status;
_u8 DeviceFileName[180], NewDeviceFileName[180];
_u32 Token;

Status = sl_FsCtl(SL_FS_CTL_RENAME, Token, DeviceFileName, NewDeviceFileName, 0, NULL, 0, NULL );
if( Status < 0 )
{

/*error */
}

7.8 File System Helper Functions
Some functions are used for observing the file system state. This section describes those functions.

7.8.1 Get File Information
The function retrieves information regarding a specific file. For secure files, the file requires a token. For
secure files where the input token is zero, only a part of the information of the file is retrieved, because the
tokens and the creation token flags are hidden.

Trying to request information for a file that does not exist results in an error (FILE_NOT_EXISTS). Trying
to request information for a file which has no valid copy results in retrieving the file information, but the
return value will be an error (SL_FS_INFO_NOT_VALID_EXISTS).

Example:
_i16 Status;
_u8 DeviceFileName[180];
_u32 Token;
SlFsFileInfo_t FsFileInfo;

Status = sl_FsGetInfo( DeviceFileName, Token, &FsFileInfo);
if( Status < 0 )
{

/*error */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com File System Helper Functions

121SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.8.2 Get Storage Information
This function retrieves information about the storage usage and the file system state. The function output
contains information regarding the number of security alerts, the number of allocated files user/system, the
configured storage size, the format type, and so forth.

Example:
_i32 Status;
SlFsControlGetStorageInfoResponse_t GetStorageInfoResponse;

Status = sl_FsCtl( ( SlFsCtl_e)SL_FS_CTL_GET_STORAGE_INFO, 0, NULL , NULL , 0, (_u8
*)&GetStorageInfoResponse, sizeof(SlFsControlGetStorageInfoResponse_t), NULL );
if( Status < 0 )
{

/*error */
}

7.8.3 Get List of Files
Retrieves the file list, names, and their main attributes, and observes how many blocks (= subsector, 4096
bytes) each file occupies on the SFLASH.

This function is an iterative function; the host retrieves an iterator that can be used to retrieve the next bulk
of files.

Example:
_i32 NumOfEntriesOrError = 1;
_i32 Index = -1;
slGetfileList_t File[COUNT];
_i32 i;
_i32 Status = 0;

while( NumOfEntriesOrError > 0 )
{

NumOfEntriesOrError = sl_FsGetFileList( &Index, COUNT, (_u8)(SL_FS_MAX_FILE_NAME_LENGTH +
sizeof(SlFileAttributes_t)), (unsigned char*)File, SL_FS_GET_FILE_ATTRIBUTES);

if (NumOfEntriesOrError < 0)
{

Status = NumOfEntriesOrError;//error
break;

}
for (i = 0; i < NumOfEntriesOrError; i++)
{

/* print
File[i].fileName
File[i].attribute.FileAllocatedBlocks
File[i].attribute.FileMaxSize,(_u16)File[i].attribute.Properties

*/
}

}
return Status;//0 means O.K

7.9 Bundle Protection
Bundling changes content to a group of files and then accepts or rejects the changes for all the files in the
group simultaneously. The bundle is used by the OTA process, which downloads a group of files and
needs the ability to first test the files and then to accept or reject the downloaded content.

Table 7-4 shows a common work flow of using the bundle.

Table 7-4. Bundle Protection

Step Operation System State After Operation
1 Create (with failsafe flag), write, close n

files
Bundle STOPPED

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Bundle Protection www.ti.com

122 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

Table 7-4. Bundle Protection (continued)
Step Operation System State After Operation

2 For each of the n files, open the file for
write with the bundle flag, write the file
and close it.

Bundle STARTED, reading the files
results in their old copy.
Before the files closure they are on state
OPEN_BUNDLE_COMMIT.
After the file closure they are in state
PENDING_BUNDLE_COMMIT.

3 Call Sl_Stop(X>0) and Sl_Start().
On this step, the host tests the system, to
make sure that the downloaded content is
functioning as expected.

Bundle state is PENDING_COMMIT,
Reading the files results in their new copy.
Each n file is in
PENDING_BUNDLE_COMMIT state.

4 In case the system test passed
successfully, the host approves the bundle
(=call to bundle commit), else initiate
rollback of the files (=call the bundle
rollback).

Bundle state is STOPPED.
Rollback of the bundle files makes their
old copy the valid one.
Commit of the bundle files makes their
new copy the valid one.

In case of power failure before the content
approval (= failure during Step 2 or 3), the
device automatically calls the bundle
rollback.

Bundle state is STOPPED.
Reading the files results in their old copy.

7.9.1 Bundle File States
To update a file as part of a bundle, the file should be opened for write with the bundle flag
(SL_FS_WRITE_BUNDLE_FILE). Open a new file as part of a bundle that has no pre-conditions.

To open an existing file as part of a bundle, the file should fulfill the following conditions:
• The file was created with the FAILSAFE flag.
• The file has a valid copy (meaning that the file was successfully written at least once).

The device manages the state of a file. The file state can be viewed by retrieving the file flags, and the file
flags can be retrieved by the FsGetFileList() function and the sl_FsGetInfo() function.

The following is a list of the possible file states.
• Standard: A file which is not part of a bundle.

– If a bundle is committed or rolled back, the bundle files state is changed to standard file.
– A file opened as a bundle file, but was aborted instead of being closed, changes its state to

standard file.
• SL_FS_INFO_BUNDLE_FILE

– The file is currently open with the bundle flag, but has not been closed yet.
– If the host invokes abort instead of close, the file state changes to standard file.

• SL_FS_INFO_PENDING_BUNDLE_COMMIT
– The file is currently open with the bundle flag, but has been closed.
– The file in this state cannot be opened for write until the bundle is committed or rolled back. Trying

to open this file for write results with the error: SL_ERROR_FS_FILE_IS_PENDING_COMMIT.
– The file on this state can be opened for read; the file copy that will be read is depended on the

bundle state.

Table 7-5 is a summary of the possible file states related to the bundle state (the bundle states are
described in the following section).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Bundle Protection

123SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

Table 7-5. Bundle States

Bundle State Possible Files State
STOPPED All files are in normal state
STARTED • Normal

• BUNDLE_FILE
• PENDING_BUNDLE_COMMIT

PENDING_COMMIT • Normal
• PENDING_BUNDLE_COMMIT

7.9.2 Bundle States
The bundle can be in one of three states:
• STOPPED
• STARTED
• PENDING_COMMIT

The following subsections describe the various bundle states.

7.9.2.1 STOPPED
No bundle exists.

7.9.2.2 STARTED
The bundle changes its state to STARTED when the first bundle file is opened for write.

In this state, the host is writing the bundle files and keeps the order of the files updated (a certificate
should be written before the file that uses it is closed). Opening the files that belong to a bundle in the
STARTED state for read results in the content of the old file copy.

Transition from this state to the PENDING_COMMIT state is executed if all the following conditions are
fulfilled:
• sl_Stop (x > 0) and sl_Start() is called.
• All the bundle files are in the PENDING_BUNDLE_COMMIT state.

Transition from this state to the STOPPED state is executed if the following condition is fulfilled:
• sl_Start() is called without calling sl_Stop (x > 0). In this scenario, the bundle is automatically rolled

back by the device, or the rollback function was invoked by the host.

7.9.2.3 PENDING_COMMIT
This state is used to enable the host to run test code to decide if the downloaded bundle files are working
as expected.

While in this state, open files for read returns the content of the new files copy.

While in this state, files cannot be opened for write with the bundle flags; in such cases, the device returns
an error: SL_ERROR_FS_BUNDLE_NOT_IN_CORRECT_STATE.

Transition from this state to the STOPPED state is executed if one of the following scenarios is fulfilled:
• On a successful host test, the host invokes the commit bundle function: sl_FsCtl

(SL_FS_CTL_COMMIT...).
• On a failed host test, the host resets the device (hibernate or POR) or invokes the rollback bundle:

sl_FsCtl (SL_FS_CTL_ROLLBACK...), after calling the command reboot is required.
• The sl_Start() function is called; automatic rollback is triggered by the device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Bundle Protection www.ti.com

124 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.9.3 Commit a Bundle
Committing the bundle approves all the files which belong to the bundle. At the end of the process, all the
bundle files are in the standard file state, and the bundle state is in STOPPED state. In addition, the newly
downloaded content of the files becomes the active one.

The commit process is fail-safe; that is, if the device has been shut down during the bundle commit
procedure, on power-up the device automatically continues the bundle commit process.

7.9.4 Rollback a Bundle
Rolling back the bundle rejects all the new bundle file content. At the end of the process, all the bundle
files are in the standard file state, and the bundle state is in STOPPED state. In addition, the newly
downloaded content of the files is ignored, and the old copy becomes the active one.

The rollback process is fail-safe; that is, if the device has been shut down during the bundle rollback
procedure, on powerup the device automatically continues the bundle rollback process.

7.9.5 Retrieve the Bundle and Files State
To view the current state of the bundle, use the function sl_FsCtl (SL_FS_CTL_GET_STORAGE_INFO...).

To retrieve the bundle state of a specific file, use the sl_FsGetFileList() function or the sl_FsGetInfo()
function.

7.9.6 CC3220 Bundle Aspects
The M4 program can be created as a bundle file.

When the bundle is in the PENDING_COMMIT state, hardware WDT is automatically activated (if
configured in the mcubootinfo.bin). If the WDT expires, automatic reboot is triggered and the bundle files
are automatically rolled back.

When invoking the commit function, there are two options:
• Continue the session as it is. In this case, there is no need to stop the WDT. Use

PRCMPeripheralReset(PRCM_WDT).
• Do a clean reboot. In this case, the recommended way is to use PRCMHibernateCycleTrigger(). This

also stops the WDT (this method should be also used after rollback).

When invoking rollback (when the bundle is in the pending commit state), a clean reboot is required
(PRCMHibernateCycleTrigger()).

NOTE: To configure the WDT, set the mcubootinfo file.

The WDT resets (hibernate-reset) the system after two time-out events.

BootInfo.ulStartWdtTime is a 32-bit field that contains the number of clock ticks; because the
WDT runs at 80 MHz, the maximum time-out possible is approximately (53 sec × 2)

Example of how to set the WDT for the CC3220 device:
#define APPS_WDT_START_KEY 0xAE42DB15

typedef struct sBootInfo
{

_u8 ucActiveImg;
_u32 ulImgStatus;
_u32 ulStartWdtKey;
_u32 ulStartWdtTime;

}sBootInfo_t;

_sBootInfo_t sBootInfo;
_u32 MasterToken = 1234;
i32 FileHdl;
_i32 Status;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com File Commit Feature

125SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

_i16 StatusClose;

//Open file "/sys/mcubootinfo.bin" for write
FileHdl = sl_FsOpen((unsigned char *)("/sys/mcubootinfo.bin",

SL_FS_CREATE|SL_FS_OVERWRITE |
SL_FS_CREATE_SECURE | SL_FS_CREATE_PUBLIC_WRITE |
SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_VENDOR_TOKEN
SL_FS_CREATE_MAX_SIZE(sizeof(sBootInfo)), &MasterToken);

if(FileHdl < 0 )
{

/*error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);

}
memset(&sBootInfo,0,sizeof(sBootInfo_t));
sBootInfo.ulStartWdtKey = APPS_WDT_START_KEY;
sBootInfo.ulStartWdtTime = 80000000;
Status = sl_FsWrite(FileHdl,0,(_u8*)&sBootInfo, sizeof(sBootInfo_t));
if( Status < 0 )
{

/*error */
}
StatusClose = sl_FsClose(FileHdl,0,0,0);
if( StatusClose < 0 )
{

/*error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);

}

7.10 File Commit Feature
The file commit feature updates a single file and then commits it or rolls it back. A file opened with the
commit flag that was closed is blocked for write operations.

The file is blocked until it is committed or rolled back.

File rollback can also be invoked on files opened without the commit flag.

To open a file with the commit flag, the file should fulfill the following requirements:
• The file was created with the FAILSAFE flag.
• The file has a valid copy (meaning that the file was successfully written at least once).

The following is a common file-commit work flow:
1. Create a file, write, and close.
2. Open the file for write with the commit flag (SL_FS_WRITE_MUST_COMMIT), write the file, and close.
3. The host tests the system: if the test passed successfully, the host commits the file, else rolls it back.

The following is a description of the file-commit states:
• Standard file
• SL_FS_INFO_MUST_COMMIT: The file was opened for write with the commit flag, and has not been

closed.
• SL_FS_INFO_PENDING_COMMIT: The file was opened with the commit flag and has been closed.

The file is waiting for the host to invoke the file commit or rollback operation. A file in this state cannot
be opened for write. A file in this state can be opened for read; the file image that is read is the latest
image. If the file is committed or rolled back, the file state is changed to standard file.

7.10.1 File Commit Process
Committing a secure file requires a file token with at least write permission.

Committing a file approves the new content of the file; at the end of the process, the file state is changed
to standard file.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


File Rollback Process www.ti.com

126 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

The function interface for committing a file is sl_FsCtl (SL_FS_CTL_COMMIT).

7.11 File Rollback Process
Rolling back a secure file requires a file token with write permission.

Rolling back the file makes the old file copy the active one; at the end of the process, the file state is
changed to standard file.

The function interface for rolling back a file is sl_FsCtl (SL_FS_CTL_ROLLBACK..). For secure files, the
rollback also rolls back the file tokens.

Rolling back files that are currently in the standard file state acts as file abort, but with the filename as
input rather than the file handle.

7.12 Programming
For a fast and smooth production line, the SimpleLink Wi-Fi device offers a programming interface. This
process involves two major steps:
• Creation of the programming image
• Programming the device with the image

The same image can be used to program many devices. At the end of the programming process, the
device is configured and contains the packed files.

7.12.1 Creation of the Programming Image
The programming image is a packed file which contains the service pack, the system configuration files,
the user files, and the host program (for the CC3220 device).

The process of creating the programming image is an offline process.

For creating the programming image, the SimpleLink Wi-Fi package contains the Image Creator tool, a
web application (it also has CLI interface) which lets the user easily create the programming image and
supports programming the device.

The UniFlash Image Creator tool creates three types of files:
• .sli, the file format is TI proprietary structure and is used for the Image Creator tool and host

programming.
• .ucf, same as the s.li, used for the host programming
• .bin, the standard binary file for external flash programming
• .hex, the standard Intel Hex file for external flash programming

The programming image can be created as encrypted (AES-CTR 128); the key used for the encryption is
supplied during the image programming.

7.12.1.1 Programming Image Types
The programming image can be defined (by the Image Creator) as one of the following types:
• Production
• Development

The development image is intended for development and debugging; the development image can be
created only for a specific device (by using its MAC address). For a device programmed with the
development image, the Image Creator tool can retrieve the file list from the device and edit the files
(online). For the CC3220S/CC3220SF device, the development mode also enables the JTAG interface.

7.12.1.2 Program the Device
The image can be programmed to the device using one of the following methods:
• Image Creator tool (by UART lines)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Programming

127SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

• Host (not relevant to the CC3220 device)
• External (third party) flash programmer

The programming time depends on the image size and the SFLASH type. During the programming, no file
operation can be executed; trying to read or write a file results in an error of
SL_ERROR_FS_PROGRAMMING_IN_PROCESS.

The programming involves two internal steps:
1. Download the image.
2. Extract the image packed file.

7.12.1.2.1 Image Creator Tool (UART) Programming
The UniFlash Image Creator tool is a method of programming that uses the device UART interface. The
tool is the common programming method.

The device starts the extraction procedure when the last portion of the image file is received.

At the end of the programming method, a success status is returned to the caller, and the device is
operational.

7.12.1.2.2 Host Programming
The host has an interface function for programming the device. For the CC3220/R/F/S devices, the host
programming method is not applicable (because the host application is part of the programming image).

The programming file used by the host interface is created by the UniFlash Image Creator tool.

For non-secure programming, use the file programming.ucf. For secure programming, use the file
programming.encrypt.ucf.
_i32 Status
_u8 DataBuf[1000];
_u16 Len;
_u8 Key[16];

Status = sl_FsProgram ((const _u8*)DataBuf , Len , &Key , 0 );
if( Status < 0 )
{

/*error */
}

For programming, the function receives the .ucf file and the image key (or null key). The device starts the
extraction procedure when the last portion of the file is received. The function returns after the extraction is
complete.

When the function completes, a hibernate-reset is required (sl_Stop, sl_Start).

7.12.1.2.3 External Tool Programming
Programming the SFLASH by an external tool requires using the .bin or .hex programming files. The
programming files used by the external tool are created by the UniFlash Image Creator tool.

For non-secure programming, use the programming.bin/.hex. For secure programming, use the
programming.encrypt.bin/.hex.

The .bin and .hex (Intel Hex) files are standard file formats.

At the end of the programming process, the device is operational and configured.

The external programming steps are:
1. Program the SFLASH with the third-party programming tool.

• Important: The entire SFLASH should be erased before programming the image. The extraction
process considers that the SFLASH is erased, except to the programming image storage.

2. Assemble the SFLASH to the device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Restore to Factory www.ti.com

128 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

3. For a nonsecure image:
a. For the CC3220/R/S/F devices: set the SOP to 000.
b. POR the device.
c. The image-extracting process is started automatically by the device.

4. For a secure image (secure image can be created for the CC3120, CC3220S, CC3220F) :
a. Set the SOP to UART-programming mode (010).
b. Set the encryption key using the Image Creator tool (after setting the key, it resets the device). The

device extracting process starts automatically. Setting the encryption key is done by the Image
Creator tool using the UART interface.

c. For the CC3220/S/F device: set the SOP to 000
d. POR the device.

NOTE: If the device was POR during the extracting process (after setting the SOP to 000 in Step
3.a. or 4.c.), the process continues and the device automatically triggers an additional
hibernate-reset.

7.13 Restore to Factory
The SimpleLink Wi-Fi device has an internal recovery mechanism, in which the level of recovery can be
set by the Image Creator tool; it is kept as part of the programming image.

Three levels of recovery are supported:
• None – no recovery level is supported.
• Restore-to-factory default
• Restore-to-factory image
• Restore-to-factory image using SOP, but only if the restored-to-factory image is enabled

If one of the recovery methods is enabled, the programming image is kept on the SFLASH, and the
recovery process uses the kept programming image.

Restore to factory image procedure:
• All the files are rolled back to the image configuration; files that do not exist in the image are deleted.
• Can be invoked by the host, or by SOP

Restore-to-factory default:
• All the files are rolled back to the image configuration, except the service pack and the host program

(CC3220 host).
• Can be invoked by the host

The process of restore-to-factory is fail-safe: the process has two stages:
• Preparation, which takes about 0.3 seconds.

If the device is being reset during this stage, the file system will not change.
• Extraction depends on the vendor programming image size and the SFLASH type.

If the device was reset during the extraction, the extracting process continues when the device is
powered up.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Restore to Factory

129SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

NOTE: If the Wi-Fi calibration mode is configured as one time, the Wi-Fi calibration is not
regenerated when invoking the restore-to-factory-default method (the current calibration is
used).

While the restore-to-factory operation is in process, the networking subsystem is in lock
state. Most of the functions are blocked and will return an error
SL_ERROR_INCOMPLETE_PROGRAMMING.

The only procedure requiring a SOP setting of 010 is the UART-programming.

For the CC3220/R/S/F device, after the programming stage the SOP setting should be 000,
because it has implication on the restore-to-factory function.

For the CC3220/R/S/F device, if the SOP is configured as UART-programming mode, which
is 010(SOP2=1, SOP1=0, SOP0=0), the following scenario may occur:
1. Restore to factory is called.
2. Device-reset occurs during the restore-to-factory extraction stage.
3. The device is halted.

• The following steps overcome the halt situation:
a. Set the SOP to 000.
b. POR the device, and the restore to factory is completed successfully.

7.13.1 Restore to Factory by the Host
To trigger the restore-the-factory image by SOP, the following steps are required:
1. From the host, invoke the restore function as in the following example. The function is synchronous; it

returns when the process is finished.
2. Hibernate-reset the device:

• CC3120: sl_Stop, sl_Start
• CC3220/R/S/F: sl_Stop, PRCMHibernateCycleTrigger()

Examples:
_i32 slRetVal;
SlFsRetToFactoryCommand_t RetToFactoryCommand;
_i32 Status, ExtendedStatus;

RetToFactoryCommand.Operation = SL_FS_FACTORY_RET_TO_IMAGE;
Status = sl_FsCtl( (SlFsCtl_e)SL_FS_CTL_RESTORE, 0, NULL , (_u8 *)&RetToFactoryCommand ,

sizeof(SlFsRetToFactoryCommand_t), NULL, 0 , NULL );
if ((_i32)Status < 0)
{

/*error*/
//Status is composed from Signed error number & extended status
Status = (_i16)Status>> 16;
ExtendedStatus = (_u16)slRetVal& 0xFFFF;
break;

}
//Reset
sl_Stop(10);
sl_Start(NULL, NULL, NULL);

_i32 slRetVal;
SlFsRetToFactoryCommand_t RetToFactoryCommand;
_i32 Status, ExtendedStatus;

RetToFactoryCommand.Operation = SL_FS_FACTORY_RET_TO_DEFAULT;
Status = sl_FsCtl( (SlFsCtl_e)SL_FS_CTL_RESTORE, 0, NULL , (_u8 *)&RetToFactoryCommand ,

sizeof(SlFsRetToFactoryCommand_t), NULL, 0 , NULL );
if ((_i32)Status < 0)
{

/*error*/

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Restore to Factory www.ti.com

130 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

//Status is composed from Signed error number & extended status
Status = (_i16)Status>> 16;
ExtendedStatus = (_u16)slRetVal& 0xFFFF;
break;

}
//Reset
sl_Stop(10);
sl_Start(NULL, NULL, NULL);

7.13.2 Restore to Factory by Using the SOP
To trigger the restore the factory image by SOP, follow the methods outlined in the following sections.

7.13.2.1 CC3120
The recommended method for the CC3120 device is to invoke the restore to factory by the host, because
restore to factory by the SOP requires POR (see Step 1) and it is not a good practice to reset the device
while the host is still running.

The following steps are required:
1. Set the SOP to 011(SOP2=0, SOP1=1, SOP0=1) and perform POR (power on reset). This initiates the

restore to factory operation.
2. Revert the SOP to 000.
3. When the restore-to-factory operation is done, the device sends Init complete event with a LOCKED +

Factory restored indication.
4. Perform a POR to clear the SOP indication in the host.

If the user pressed the POR during Step 3, the restore process continues and the device automatically
triggers an additional hibernate-reset when finished.

5. The device sends an Init complete event to the host.

7.13.2.2 CC3220/R/S/F
The recommended method for the CC3220 device is to invoke the restore to factory by the host, because
restore to factory by the SOP requires POR (see Step 1) and it is not a good practice to reset the device
while the host is still running.

The following steps are required:
1. Set the SOP to 011(SOP2=0, SOP1=1, SOP0=1) and perform POR. This initiates the restore to factory

operation (the LaunchPad has a button for it).
2. Revert the SOP to 000 (the host SOP indication is not yet cleared).
3. When the restore to factory operation is done, the device initiates a hibernate-cycle and the host

application starts.
4. When the host program detects the SOP indication, the host program requests the user to POR (it

must not call sl_Start beforehand).
5. Perform a POR to clear the SOP indication in the host.

If the user pressed the POR during Step 3, the restore process continues and the device automatically
triggers an additional hibernate-reset when finished.

NOTE: While the restore to factory function is in process, the networking subsystem is in lock state.

CC3220: On Step 4, detection of the SOP indication(011) : (HWREG(0x4402FC18) & 0x80)

CC3220: If the user sets the SOP to 010 in Step 2, the scenario described in Step 5 will not
work.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Security Alerts

131SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

7.14 Security Alerts
The SimpleLink Wi-Fi device provides a software tamper detection procedure with a security-alert counter.
This procedure detects an integrity violation of file system data, the content of a secure-authenticate file,
and system files. This procedure also detects unauthorized operations, such as trying to read a secure file
with an invalid token.

When detecting data tampering, the device data-tampering procedure increases the system security-alert
counter, and when the system reaches the security-alert (configured) threshold, the device is locked. In
addition, the host receives a lock asynchronous event
(SL_ERROR_DEVICE_LOCKED_SECURITY_ALERT), and each call from the host to a file system
interface results in SL_ERROR_FS_FILE_SYSTEM_IS_LOCKED or SL_RET_CODE_DEV_LOCKED.

A locked device has a limited access; to recover from a locked device (if the reason is a security alert), the
device can reprogram or recover using the restore to factory method. The security-alert counter is a
persistent counter, and can be set to zero only by the programming or recovery functions.

The default security alerts threshold is set by the UniFlash Image Creator. The host can retrieve the
current number of security alerts and the defined threshold using the function
sl_FsCtl(SL_FS_CTL_GET_STORAGE_INFO..). This function is also enabled when the device is locked.

There are two kinds of security alerts:
• Explicit Alerts – Critical: the device is locked immediately regardless the alert counters. Explicit alerts

are created when detecting the following tamper events:
– File system data integrity violation
– System configuration files integrity violation

• Implicit Alerts – The device is locked when the alert counter crosses the alerts threshold. Implicit alerts
are created when detecting the following tamper events:
– Trying to make an operation on a secure file without a valid token
– Detecting an integrity violation when a secure-authenticate file is opened for read
– Setting an invalid signature or invalid certificate when changing a secure-authenticate file

7.15 Design Consideration

7.15.1 Choosing SFLASH Type
Choosing the correct SFLASH for the application is an important step. The section describes the factors to
consider when choosing the SFLASH. A list of recommended SFLASH types is published on the TI
website.

In general, SFLASH types are varied in the following factors:
• The operating voltage: the Wi-Fi subsystem operating voltage should never be dropped to a level lower

than the SFLASH-required operating voltage. See the TI wiki for further explanation regarding the
required design.

• Power removal: all systems using serial flash are vulnerable to the effects of sudden power removal.
The TI wiki describes how to minimize the potential for serial flash corruption due to power removal.

• Access time: the time for erases, reads, and writes is different among types of SFLASH. Faster
SFLASH results in faster access of the SimpleLink Wi-Fi device to the file system.

• SFLASH write endurance: a typical serial flash ensures a data endurance of 100K write cycles per
sector, and 20 years data retention.

• Size of the SFLASH: the SimpleLink Wi-Fi device supports SFLASH up to 16MB.

7.15.2 Software Design Consideration
Writing to the system with SFLASH requires consideration in the software design to maximize the
SFLASH capabilities and expand the SFLASH life-time.

The following is a list of design recommendations:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E
http://www.ti.com
http://www.ti.com


Design Consideration www.ti.com

132 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

• Minimum file updates: invoking of file system functions, which triggers erase or write storage
commands, should be minimized. Such commands are triggered with each update of a file, and each
system function has documentation about whether it triggers a file update.

• File allocation table: the file system allocation table resides on the SFLASH. New file creation and the
deletion of existing files involves updating the allocation table. TI recommends rewriting a file rather
than recreating (that is, deleting and creating) the file.

• System configuration and user file creation: the system configuration is stored on the SFLASH, and
setting the system configuration triggers a file update operation. TI recommends setting the system
configuration and user file creation as part of the programming image, and then programming the
image. The programming method is working in an efficient way, to keep the number of SFLASH
accesses to the minimum. During the programming procedure, regardless the number of the
programmed files, the file system is written only twice.

• The SFLASH storage type that the SimpleLink Wi-Fi device supports has a minimal block (=subsector)
size of 4096 bytes; this is the minimal unit with which the file system can work. Thus, the file system
software rounds the files sizes to a multiple of 4096 bytes. For example, creating a file with maximum
size of 20 bytes results in a file of 4096 bytes. For optimal consumption of the SFLASH, create files
where their maximum size is a multiple of 4096 minus 500 bytes (for each file the file system allocates
a header of 500 bytes).

• The file system does not handle fragmentation; sometimes changing the order in which the files are
created may result in more space. Also, changing the order of user file creation in the programming
image may affect the SFLASH usage.

• To reduce the SFLASH endurance, create a file which requires frequent updates with the FAILSAFE
flag; the number SFLASH writes is reduced in half because the system switches between the file
images.

7.15.3 Retrieving Info Regarding SFLASH Usage
The SimpleLink Wi-Fi device provides counters of the number of SFLASH write operations. The counters
can be obtained by:
• Getting the storage info command returns the file allocation table writes counter. Though the file

allocation write counter is increased during the programming process, the actual count during the
programming is only two SFLASH write operations.

• Getting the file info command returns the file write counter. For files created with the fail-safe flag, the
retrieved count should be divided in 2.

7.15.4 SFLASH Size
The SimpleLink Wi-Fi device file system supports an SFLASH size from 1MB up to 16MB.

The required storage size depends on the size of the vendor files, and the requirements of the target
system.

The minimum sizes recommended for the CC3220/R/S device is 2MB to 4MB, 4MB for the CC3220F, and
1MB to 2MB for the CC3120.

The following subsections describe the usage and the sizes that should be considered when determining
the required size of the SFLASH.

7.15.4.1 Restore to Factory is Disabled
If the implementation disables the restore-to-factory feature, the following storage units are allocated:
• 5 blocks, file system allocation table
• 32 blocks, reserved for system files
• 7 blocks, TI information file
• 66 blocks, service pack
• Host size blocks, for the CC3220 device: storage for the host program.
• Blocks for the vendor files

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Design Consideration

133SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

File System

• Temporary storage for the image, depending on the image size

NOTE: The size of the programming image depends on the size of the stored files.

During the programming, temporary storage for keeping the programming image is required;
at the end of the programming, the temporary storage can be used for vendor files.

The term block is related to subsector(4096 bytes), which is the smallest erase unit of the
SFLASH.

7.15.4.2 Restore to Factory is Enabled
If the implementation enables the restore-to-factory feature, the following storage units are allocated:
• 4 blocks, file system allocation table
• 32 blocks reserved for system files
• 7 blocks, TI information file
• 66 blocks, service pack
• Host size blocks, for the CC3220 device: storage for the host program.
• Blocks for the vendor files
• Temporary storage for the image, depending on the image size, rounded to 32 blocks

NOTE: The size of the image depends on the size of the stored files.

7.15.5 Storage Usage Information
The required size for the programming image can be observed in the UniFlash Image Creator log. The
Image Creator tool operates a log which is displayed during the image creation; the log displays how
many blocks are allocated for each file, and an estimation of the total required storage size.

After the SFLASH is programmed, the file list function (host driver) retrieves information about the existing
files and the number of allocated blocks per file.

The get storage info function contains information about the device usage, information about the device
capacity, the largest available gap, and so forth.

Figure 7-1 is an example of the Image Creator log, which is displayed during the image generation.

Figure 7-1. Image Creator Log

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


134 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Chapter 8
SWRU455E–February 2017–Revised February 2018

HTTP Server

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com

135SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Topic ........................................................................................................................... Page

8.1 Introduction ..................................................................................................... 136
8.1.1 Built-in Configuration Pages ......................................................................... 136
8.1.2 RESTful APIs .......................................................................................... 136
8.1.3 Custom Static Pages ................................................................................. 137
8.1.4 Host Application Interface............................................................................ 139

8.2 Key Features.................................................................................................... 139
8.3 Configurations and Settings .............................................................................. 140
8.4 RESTful API Processing .................................................................................... 141

8.4.1 Ping ..................................................................................................... 141
8.4.2 IP Configuration ....................................................................................... 141
8.4.3 URN Configuration.................................................................................... 142
8.4.4 WLAN Profiles ......................................................................................... 142
8.4.5 WLAN Scan............................................................................................ 143
8.4.6 Provisioning Confirmation............................................................................ 144
8.4.7 Connection Policy ..................................................................................... 144
8.4.8 Station Action.......................................................................................... 144
8.4.9 AP Black List .......................................................................................... 144
8.4.10 Date and Time........................................................................................ 145

8.5 Device Parameter Querying Through HTTP (Device Tokens).................................. 145
8.5.1 Retrieving Tokens Through GET Request......................................................... 146
8.5.2 Embedded Tokens.................................................................................... 146
8.5.3 System Information ................................................................................... 146
8.5.4 Version Information ................................................................................... 147
8.5.5 Network Information .................................................................................. 147
8.5.6 Ping Results ........................................................................................... 149
8.5.7 Connection Policy Status ............................................................................ 149
8.5.8 Provisioning............................................................................................ 150
8.5.9 Display Profile Information ........................................................................... 150
8.5.10 P2P Information ...................................................................................... 150
8.5.11 Host Tokens .......................................................................................... 152

8.6 Resource Search Order ..................................................................................... 152
8.6.1 GET Request Search Order ......................................................................... 152
8.6.2 POST Request Search Order ....................................................................... 153
8.6.3 PUT and DELETE Request Search Order......................................................... 153

8.7 Host HTTP Requests Processing........................................................................ 153
8.7.1 Metadata (TLVs) Description ........................................................................ 154
8.7.2 GET Processing....................................................................................... 156
8.7.3 POST Processing ..................................................................................... 159
8.7.4 PUT Processing ....................................................................................... 163
8.7.5 DELETE Processing .................................................................................. 163

8.8 Security........................................................................................................... 163
8.8.1 Authentication ......................................................................................... 163
8.8.2 Secure Connection ................................................................................... 163

8.9 Other............................................................................................................... 164
8.9.1 Processing of Parallel Requests .................................................................... 164

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


HTTP Response

HTTP Request

Host 6LPSOH/LQN��

Device Client

x

AP

Product

Read ROM 
File

GET /index.html

HTTP Request
POST /API1

Process API

HTTP Response

Introduction www.ti.com

136 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.1 Introduction
The SimpleLink Wi-Fi device includes a built-in HTTP server that lets the end-user remotely communicate
with the device. This chapter describes the internal HTTP server capabilities and the relevant API. The
SimpleLink HTTP server consists of the following:
• HTML pages stored on the file system
• Content generated on the fly by the host
• Hard coded configuration pages permanently stored in the ROM of the device

8.1.1 Built-in Configuration Pages
These web pages are stored in the SimpleLink device ROM, and allow for changing and reading many of
its setting through a web interface commonly used in many routers and access points, as shown in
Figure 8-1. The pages are completely self-contained, and no host involvement is necessary for their
function.

Figure 8-1. Configuration Pages

8.1.2 RESTful APIs
A reserved set of resource names may be used to configure various parameters in the SimpleLink Wi-Fi
device directly, through HTTP requests with no host application involvement.

8.1.2.1 Changing Configuration
Settings are changed through HTTP POST requests to hard coded resource names. This is handled by
the device and transparent to the host, as shown in Figure 8-2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

137SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Figure 8-2. Changing Configuration

For details, see Section 8.4.

8.1.2.2 Reading Configuration
Settings can be read through HTTP GET requests to various token names. This is handled by the device
and is transparent to the host, as shown in Figure 8-3.

Figure 8-3. Reading Configuration

For details, see Section 8.5.

8.1.3 Custom Static Pages
User pages are any content stored under the /www/ or /www/safe/ path on the file system. The content is
placed by the application, either as part of the programming process or using the host application file
system API.

NOTE: The previously mentioned paths are used only to organize files on the file system, and must
not be part of a URL when linking to resources. For example, the URL of a file named
example.html which is placed at /www/user_directory/example.html will be
http://deviceIP/user_directory/example.html.

Placing any file under the /www/ path of the file system makes it a resource which the HTTP server can
serve to its clients. These resources are static, as their content remains constant. Serving these resources
is handled completely by the HTTP server and is transparent to the host as seen in Figure 8-4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

138 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Figure 8-4. Static Pages

8.1.3.1 Custom Pages With Device Tokens
Device Tokens are special text strings inside a resource, which the HTTP server substitutes with values
just before serving the resource to the requesting client (see Section 8.5 for details). These tokens are
updated by the SimpleLink device every time a resource is served, which lets users create pages with
some dynamic content (various parameters of the SimpleLink device) without any involvement from the
host, as shown in Figure 8-5.

Figure 8-5. Custom Pages With Device Tokens

8.1.3.2 Static Pages With Host Tokens
Host tokens are similar to device tokens, except that the substitution of each token is deferred to the host
through an asynchronous event. This lets users create pages containing dynamic content with minimal
host involvement, because the major and static part of the web page is stored on the file system and only
small dynamic parts are handled by the host. This can be seen in Figure 8-6.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

139SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Figure 8-6. Static Pages With Host Tokens

8.1.4 Host Application Interface
If the served content is highly dynamic, defer the request completely to the host using the mechanism
described in Section 8.7.2. In this case, the entire content of the response must be generated by the host
on each request, as seen in Figure 8-7.

Figure 8-7. Host Application Interface

8.2 Key Features
Table 8-1 lists the key features of the HTTP server.

Table 8-1. Key Features

Feature Description
HTTP Support version 1.0, single client, GET&POST requests
HTTPS SSL connections to the server are supported.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Configurations and Settings www.ti.com

140 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Table 8-1. Key Features (continued)
Feature Description

Serve HTML pages from file system Serve any resource that can be placed on the file system.
RESTful APIs Execute various APIs through simple POST requests.
Built-in configuration pages Built-in default page that provides device configuration, status, and analyzing tools
Host callbacks HTTP requests can be handled by the host through a simple callback mechanism.
HTTP port configuration Default is port 80.

HTTP web server authentication Includes authentication name, password, and realm, which are configurable. Can
be enabled or disabled (disabled by default).

Domain name configuration Supported in AP mode.
Redirect mechanism Redirect a nonsecure connection to secured .
Host-controlled resource transfer size Host is able to select desired packet size for sending and receiving resources.

8.3 Configurations and Settings
The HTTP server is active by default on all device modes (STA, AP, and Wi-Fi Direct). It can be disabled
or enabled per specific device mode using the sl_NetAppStart / sl_NetAppStop API. Domain names can
be set by using the HTTP server options, and are configured through the sl_NetAppSet API with
SL_NETAPP_HTTP_SERVER_ID as the App ID. For the configuration to take effect, the server must be
restarted (either by stopping and restarting the service or by restarting the entire network subsystem).

Table 8-2 describes the available configuration options.

Table 8-2. Configuration Options

Option Name Function Notes Default Value
SL_NETAPP_HTTP_PRIMARY_PORT_NUMB
ER

Port on which the server accepts
new connections

80

SL_NETAPP_HTTP_PRIMARY_PORT_SECU
RITY_MODE

Enables the secure socket
connection (SSL) on the primary
server port

Disabled

SL_NETAPP_HTTP_AUTH_CHECK Enable or disable the client
authentication.

Disabled

SL_NETAPP_HTTP_AUTH_NAME Authentication username Maximum length is 20
characters

Admin

SL_NETAPP_HTTP_AUTH_PASSWORD Authentication password Maximum length is 20
characters

Admin

SL_NETAPP_HTTP_AUTH_REALM Authentication realm Only one realm is
supported. Maximum
length is 20
characters

SimpleLink CC31xx

SL_NETAPP_HTTP_ROM_PAGES_ACCESS Enable access to the
configuration pages stored in the
ROM of the device and
processing of the RESTful APIs.

Enabled

SL_NETAPP_HTTP_SECONDARY_PORT_NU
MBER

Secondary port on the HTTP
server accepts connections.

80

SL_NETAPP_HTTP_SECONDARY_PORT_EN
ABLE

Enable or disable secondary port. Disabled

SL_NETAPP_HTTP_PRIVATE_KEY_FILENA
ME

Public or private pair used for key
exchange when secure socket is
enabled

N/A

SL_NETAPP_HTTP_DEVICE_CERTIFICATE_
FILENAME

Public or private pair used for key
exchange when secure socket is
enabled

N/A

SL_NETAPP_HTTP_CA_CERTIFICATE_FILE
_NAME

Certificate file name which will be
used for client authentication (if
present).

N/A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com RESTful API Processing

141SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.4 RESTful API Processing
The SimpleLink HTTP server recognizes dedicated resource names and treats them as APIs. A POST
request to these names executes the API without any involvement from the host application. All HTTP API
requests must have the encoding of application/x-www-form-urlencoded. Most APIs require one or more
parameters. These parameters are passed as part of the message body and have a rigid structure. They
begin with the prefix “__SL_P_”, followed by three characters for the parameter ID, followed by an equal
sign, and then by the parameter value (such as __SL_P_T.A=192.168.10.10).

Several parameters can be chained together with the ampersand operator (such as
__SL_P_T.A=192.168.10.10& postPingSetPktSize=64). Blank spaces that are not part of the parameter
value are not allowed. All parameters relevant to an API should be provided in the body of the same
request. However, if a parameter was omitted, its previously known value is used. This feature is enabled
by default (see Section 8.3 for details).

8.4.1 Ping
The device has a built-in ping utility for testing and troubleshooting network connectivity issues. Ping is
started by posting the following parameters to /api/1/netapp/ping, as shown in Table 8-3.

Table 8-3. Ping Options

Name (code) Description Example
Target IP (__SL_P_T.A) IPv4 target address of ping requests. (__SL_P_T.A=192.168.10.10)
Ping packet size (__SL_P_T.B) Size of the ping payload in bytes (from 1

to 1472).
(__SL_P_T.B=1024)

Packets to send (__SL_P_T.C) Number of packets to send (from 1 to
255).

(__SL_P_T.C=4)

For example, the following request will send 4 ping packets, each of size 1024 bytes, to IP 10.123.45.2:
POST /api/1/netapp/ping HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_T.C=4&__SL_P_T.B=1024&__SL_P_T.A=10.123.45.2

The ping process stops automatically when the requested number of packets is sent. To manually stop it
beforehand, a post request should be sent to /api/1/netapp/ping_stop (no parameters are necessary). The
results can be retrieved by requesting the token __SL_G_T.D (see Appendix A for details).

8.4.2 IP Configuration
Many IP settings can be configured from the HTTP interface by sending a POST request to either
/api/1/netapp/netcfg_sta, /api/1/netapp/netcfg_sta_ipv6, or /api/1/netapp/netcfg_ap URLs with some (or all)
of the parameters listed in Table 8-4.

Table 8-4. IP Configurations

Name (code) Description Example
STA mode IP (__SL_P_N.A) Device IP in station mode (__SL_P_N.A=192.168.10.10)
AP mode IP (__SL_P_N.P) Device IP in AP mode (__SL_P_N.P=192.168.10.10)
STA mode netmask (__SL_P_N.B) Device subnet mask in station mode (__SL_P_N.B=255.255.255.0)
AP mode netmask (__SL_P_N.Q) Device subnet mask in access point mode (__SL_P_N.Q=255.255.255.0)
STA Gateway (__SL_P_N.C) Network gateway IP in station mode (__SL_P_N.C=192.168.10.1)
AP Gateway (__SL_P_N.T) Network gateway IP in AP mode (__SL_P_N.T=192.168.10.1)
Address of primary STA DNS server
(__SL_P_N.H)

Address of primary DNS server in station
mode

(__SL_P_N.H=8.8.8.8)

Address of primary AP DNS server
(__SL_P_N.U)

Address of primary DNS server in AP
mode

(__SL_P_N.U=8.8.8.8)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


RESTful API Processing www.ti.com

142 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Table 8-4. IP Configurations (continued)
Name (code) Description Example

IPv4 mode (__SL_P_N.D) IP acquisition mode for IPv4 address.
Options are: LLA DHCP, DHCP, and
Static

(__SL_P_N.D=DHCP)

IPv6 Local mode (__SL_P_I.S) IP acquisition mode for local IPv6 local
address. Options are: Stateless, Static,
and Statefull

(__SL_P_I.S=Disable, __SL_P_I.S
=Stateless, __SL_P_I.S =Static,
__SL_P_I.S =Statefull)

IPv6 Local address (__SL_P_I.L) Set the IPv6 link-local address (if local
mode is set to Static)

(__SL_P_I.S=fe80::ccaf:9519:0002:a5fd)

IPv6 Global mode (__SL_P_I.G) IP acquisition mode for global IPv6 local
address. Options are: Stateless, Static,
and Statefull

(__SL_P_I.G=Disable, __SL_P_I.G
=Stateless, __SL_P_I.G =Static,
__SL_P_I.G =Statefull)

IPv6 Global address (__SL_P_I.B) Set the IPv6 global address (if global
mode is set to Static)

(__SL_P_I.B==2001:0db8:3c4d:0015:000
0:0000:1a2f:1a2b)

IPv6 DNS address (__SL_P_I.K) Set IPv6 primary DNS server (__SL_P_I.K= 2001:4860:4860::8888)

For example, the following request sets the AP mode IP address to 10.10.10.10 without DHCP (Static):
POST /api/1/netapp/netcfg_ap HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_N.P=10.10.10.10&__SL_P_N.D=Static

8.4.3 URN Configuration
The device URN (uniform resource name) can be set by posting to /api/1/netapp/set_urn the parameters
listed in Table 8-5. The maximum size of the URN is 33 characters (not including the null terminator).

Table 8-5. URN Configurations

Name (code) Description Example
Device URN (__SL_P_S.B) Must not exceed 33 characters. __SL_P_S.B=mysimplelink1.net

For example, the following request changes the device URN to my-urn:
POST /api/1/netapp/set_urn HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_S.B=my-urn

8.4.4 WLAN Profiles
WLAN connection profiles can be added by posting to either /api/1/wlan/profile_add or
/api/1/wlan/profile_p2p the parameters listed in Table 8-6 (all are case sensitive).

Table 8-6. WLAN Profiles

Name (code) Description Example
SSID (__SL_P_P.A) The SSID of the desired AP. Must not

exceed 32 characters.
__SL_P_P.A=TargetSSID

Security (__SL_P_P.B) Security type for the connection.
0-Open, 1-WEP, 2-WPA1, 3-WPA2, 6-
WPS/Push-button, 7-WPS/Pin Keypad, 8-
WPS/Pin Display.

__SL_P_P.B=3

Security key (__SL_P_P.C) Security key or PIN code. Must not
exceed 64 characters.

__SL_P_P.C=MySecurePassword

Priority (__SL_P_P.D) Priority of the profile. Must be from 0 to
15.

__SL_P_P.D=1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com RESTful API Processing

143SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

For EAP connections, the URL for posting is /api/1/wlan/profile_eap, and the parameters are listed in
Table 8-7 (all are case sensitive).

Table 8-7. WLAN EAP Profiles

Name (code) Description Example
SSID (__SL_P_P.H) The SSID of the desired AP. Must not

exceed 32 characters.
__SL_P_P.H=TargetSSID

Identity (__SL_P_P.I) User identity. Must not exceed 64
characters.

__SL_P_P.I=MyIdentity

Anonymous Identity (__SL_P_P.J) Anonymous user identity. Must not exceed
64 characters.

__SL_P_P.J=MyAnonymousIdentity

Password (__SL_P_P.K) Connection password. Must not exceed
63 characters.

__SL_P_P.K=MySecurePassword

Priority (__SL_P_P.L) Priority of the profile. Must be from 0 to
15.

__SL_P_P.L=1

EAP Method (__SL_P_P.M) Can be TLS / TTLS / PEAP0 / PEAP1 /
FAST.

__SL_P_P.M=TLS

Pahse2 Authentication (__SL_P_P.N) Can be None / TLS / MSCHAPV2 / PSK __SL_P_P.N=None
EAP Provisioning Type (__SL_P_P.O) Can be None / 0 / 1 / 2 __SL_P_P.O=0

A post to /api/1/wlan/profile_del with the parameters listed in Table 8-8 erases it from the file system.

Table 8-8. Erase Profiles

Name (code) Description Example
Delete profile (__SL_P_PRR) Delete the profile with the specified index

such that 0 < Index < 9.
__SL_P_PRR=2

A post to /api/1/wlan/profile_del_all deletes all profiles stored on the file system (this includes all profiles
and is not limited to those created through the HTTP interface). Information on the existing profiles can be
accessed using the __SL_G_PN1 to __SL_G_PP7 tokens (see Section 8.5).

For example, the following request adds a profile for connecting to a secure (3) network with SSID
mySSID, password 0123456789, and priority 5:
POST /api/1/wlan/profile_add HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_P.B=3&__SL_P_P.A=mySSID&__SL_P_P.C=0123456789&__SL_P_P.D=5

8.4.5 WLAN Scan
A WLAN scan for nearby access points may be triggered by posting to /api/1/wlan/en_ap_scan using the
parameters listed in Table 8-9.

Table 8-9. WLAN Scan

Name (code) Description Example
Number Of Scan Cycles (__SL_P_SC2) Number of scan cycles to execute. Must

be greater than zero and smaller than
2^32.

__SL_P_SC2=64

Time Between Scan Cycles
(__SL_P_SC1)

Time (in seconds) to wait between each
two cycles.

__SL_P_SC1=10

For example, the following request triggers 3 scan cycles with 10-second intervals between them:
POST /api/1/wlan/en_ap_scan HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


RESTful API Processing www.ti.com

144 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

__SL_P_SC2=3&__SL_P_SC1=10

The scan results can be accessed with the __SL_G_NW0 and __SL_G_NW1 tokens (see Section 8.5).

8.4.6 Provisioning Confirmation
Posts to /api/1/wlan/en_ap_scan/confirm_req are handled as described in Chapter 14.

8.4.7 Connection Policy
The connection policy of the device can be set by posting to /api/1/wlan/policy_set. Any combination of the
parameters listed in Table 8-10 and present in the request turns on their associated option. Options with
parameters that are not preset are turned off. No values are provided after the equal sign; the options are
chained together with the ampersand operator. See Section 3.3.3 for details on each option.

Table 8-10. Connection Policies

Name (code) Description Example
Enable Auto Connect (__SL_P_P.E) Auto connect policy __SL_P_P.E=
Enable Fast Connect (__SL_P_P.F) Fast connect policy __SL_P_P.F=
Enable P2P Any Connect (__SL_P_P.G) AnyP2P connect policy – relevant for Wi-

Fi Direct only
__SL_P_P.G=

Enable Auto Provisioning (__SL_P_P.Q) Auto provisioning policy __SL_P_P.Q=

For example, the following request enables auto-connect and fast-connect policies:
POST /api/1/wlan/policy_set HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_P.E=&__SL_P_P.F=

8.4.8 Station Action
When the device is in AP mode, posts to /api/1/wlan/en_ap_scan/station_action can be performed to
disconnect stations from the device. The station to disconnect is given by the parameters listed in Table 8-
11.

Table 8-11. Station Action

Name (code) Description Example
Station number to disconnect
(__SL_P_CRR)

The number of the station to disconnect.
Must be from 1 to the maximum number
of station as set by the user.

__SL_P_CRR=1

For example, the following request disconnects station 1:
POST /api/1/wlan/en_ap_scan/station_action HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_CRR=1

8.4.9 AP Black List
When the device is in AP mode, posts to /api/1/wlan/en_ap_scan/ap_aclist can be made to control the
black list, which indicates stations are not allowed to connect to the device. Table 8-12 lists these
parameters.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com RESTful API Processing

145SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Table 8-12. AP Control

Name (code) Description Example
Blacklist Filter Enable (__SL_P_C.M) Enables the station MAC address

blacklist filter:
0-Filter disabled
1-Filter enabled

__SL_P_C.M=1

Add station to the blacklist filter
(__SL_P_CRL)

Adds the station of the specified index to
the blacklist filter (if filter is enabled it will
not be allowed to connect again).

__SL_P_CRL=1

Remove station from the blacklist filter
(__SL_P_CRS)

Removes the station of the specified index
from the blacklist filter (station can
connect).

(__SL_P_CRS=1)

Remove station from the blacklist filter
(__SL_P_C.B)

Sets the maximum number of
simultaneousl -connected stations. Must
be smaller than 5.

(__SL_P_C.B=3)

For example, the following request enables the filter and adds a station at index 1, preventing it from
connecting to the device:
POST /api/1/wlan/en_ap_scan/ap_aclist HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_C.M=1&__SL_P_CRL=1

AP black list information can be accessed using the __SL_G_SR1 to __SL_G_CL8 tokens (see
Section 8.5).

8.4.10 Date and Time
The device time and date can be set by posting to /api/1/wlan/en_ap_scan/set_time the parameters listed
in Table 8-13.

Table 8-13. Date and Time

Name (code) Description Example
Set date and time (__SL_P_S.J) This parameter sets the time and date

according to the following format:
yyyy,mm,dd,hh,mm,ss
(year,month,day,hours,minutes,seconds)
Each number must not contain more than
four characters.

__SL_P_S.J=2016,01,01,12,45,30

For example, the following request sets the date to 30/5/2016 and the time to 13:45:00:
POST /api/1/wlan/en_ap_scan/set_time HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded

__SL_P_S.J=2016,05,30,13,45,00

8.5 Device Parameter Querying Through HTTP (Device Tokens)
The SimpleLink HTTP server supports querying various device parameters through a mechanism called
device tokens. These tokens can be requested directly through an HTTP GET request, or embedded
inside any serveable resource where they are replaced by their value when it is served. The token name
has a rigid convention of “__SL_G_” followed by three characters of the parameter ID (for example,
__SL_G_T.A).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Device Parameter Querying Through HTTP (Device Tokens) www.ti.com

146 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.5.1 Retrieving Tokens Through GET Request
A token value may be retrieved by an HTTP GET request whose target is the token name. These requests
must have the encoding of application/x-www-form-urlencoded. Only one parameter can be queried in
each HTTP GET request.

8.5.2 Embedded Tokens
The HTTP server automatically replaces token names with their values when it serves files from the file
system or ROM. For example, if a text file is created on the file system under the path /www/example.txt
with the content:
Device hardware version: __SL_G_V.D
Device network version: __SL_G_V.A

Then a GET request to mysimplelink.net /example.txt returns the following text:
Device hardware version: 20000000
Device network version: 3.92.1.1

The tables in the following sections specify all supported tokens.

8.5.3 System Information
Table 8-14 lists the system information tokens.

Table 8-14. System Information Tokens

Token Name Value and Usage
__SL_G_S.A System Up Time Returns the system up time since the last

reset in the following format:
000 days 00:00:00

__SL_G_S.B Device Name (URN) Returns device name
__SL_G_DNP Device Name Returns device name + MAC address (as

string) if the default device name is set.
__SL_G_S.C Domain Name Returns domain name
__SL_G_S.D Device Mode (role) Returns device role.

Values: Station, Access Point, P2P
__SL_G_S.E Device Role Station Drop-down menu select/not select

Returns selected if device is station, else it
returns not_selected.

__SL_G_S.F Device Role AP Drop-down menu select/not select
Returns selected if device is AP, else it
returns not_selected.

__SL_G_S.G Device Role P2P Drop-down menu select/not select
Returns selected if device is in P2P, else
it returns not_selected.

__SL_G_S.H Device Name URN (truncated to 16 bytes) Returns the URN string name with up to
16 bytes length. Longer names will be
truncated.

__SL_G_S.I System requires reset (after parameters
change)

If system requires reset, return value will
be the following string: "-- Some
parameters were changed, System may
require reset --" else it returns an empty
string.
(Every internal post that was handled will
cause this token to return TRUE.)

__SL_G_S.J Get System Time and Date Returned value is a string with the
following format:
year, month, day, hours, minutes, seconds

__SL_G_S.K Safe Mode Status If device is in safe mode – return Safe
Mode, if not return empty string.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Device Parameter Querying Through HTTP (Device Tokens)

147SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.5.4 Version Information
Table 8-15 lists the version information tokens.

Table 8-15. Version Information Tokens

Token Name Value and Usage
__SL_G_V.A NWP version Returns string with the version information
__SL_G_V.B MAC version Returns string with the version information
__SL_G_V.C PHY version Returns string with the version information
__SL_G_V.D HW version Returns string with the version information
__SL_G_REV Revision R2.0

8.5.5 Network Information
Table 8-16 lists the network information tokens.

Table 8-16. Network Information Tokens

Token Name Value and Usage
Station (and P2P Client)

__SL_G_N.A STA IPv4 Address String format: xxx.yyy.zzz.ttt
__SL_G_N.B STA IPv4 Subnet Mask
__SL_G_N.C STA IPv4 Default Gateway
__SL_G_N.D MAC Address String format: 00:11:22:33:44:55
__SL_G_N.E STA IPv4 DHCP State Returned value: Enabled / Disabled
__SL_G_N.F STA IPv4 DHCP Disable State If DHCP is disabled, returns Checked,

else returns Not_Checked.
Used in the DHCP radio button

__SL_G_N.G STA IPv4 DHCP Enable State If DHCP is enabled, returns Checked, else
returns Not_Checked.
Used in the DHCP radio button

__SL_G_N.L STA IPv4 LLA Enable State If LLA option is enabled, returns Checked,
else returns Not_Checked.

__SL_G_N.H STA IPv4 DNS Server String format: xxx.yyy.zzz.ttt
__SL_G_LV6 STA IPv6 Enable If IPv6 interface is enabled, returns

Checked, else returns Not_Checked.
__SL_G_LSC STA IPv6 Local Address Type Returns Checked if IPv6 local address

mode is static.
__SL_G_LSS Returns Checked if IPv6 local address

mode is stateless.
__SL_G_LSF Returns Checked if IPv6 local address

mode is statefull.
__SL_G_N.Z STA IPv6 Global Address Type Returns Checked if IPv6 global address is

disabled.
__SL_G_N.R Returns Checked if IPv6 global address

mode is static
__SL_G_N.O Returns Checked if IPv6 global address

mode is statefull
__SL_G_N.S Returns Checked if IPv6 global address

mode is stateless
__SL_G_LSK STA Current IPv6 Local Address Returns the address in the format

xxxx:xxxx:xxxx:xxxx: xxxx:xxxx:xxxx:xxxx__SL_G_LSG STA Current IPv6 Global Address
__SL_G_LSP STA IPv6 DNS Server
__SL_G_LSO STA IPv6 Local Address Mode Returns Disabled / Static / Stateless /

Statefull according to the configured local
address mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Device Parameter Querying Through HTTP (Device Tokens) www.ti.com

148 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Table 8-16. Network Information Tokens (continued)
Token Name Value and Usage

__SL_G_LSD STA IPv6 Global Address Mode Returns Disabled / Static / Stateless /
Statefull according to the configured
global address mode.

DHCP server
__SL_G_N.I DHCP Start Address String format: xxx.yyy.zzz.ttt
__SL_G_N.J DHCP Last Address
__SL_G_N.K DHCP Lease Time String of the lease time in seconds

AP (and P2P Go)
__SL_G_N.P AP IP Address String format: xxx.yyy.zzz.ttt
__SL_G_N.Q AP Subnet Mask
__SL_G_N.T AP Gateway Address
__SL_G_N.U AP DNS Address
__SL_G_W.A Channel # in AP mode
__SL_G_W.B SSID
__SL_G_W.I Is SSID Public If SSID is public (visible), returns

Checked, else returns Not_Checked.
Used in the security type radio button
check/not checked.

__SL_G_W.J Is SSID Hidden If SSID is hidden (invisible), returns
Checked, else returns Not_Checked.
Used in the security type radio button
check/not checked.

__SL_G_W.C Security Type Returned values: Open, WEP, WPA.
__SL_G_W.D Security Type Open If security type is open, returns Checked,

else returns Not_Checked.
Used in the security type radio button
check/not checked.

__SL_G_W.E Security Type WEP If security type is WEP, returns Checked,
else returns Not_Checked.
Used in the security type radio button
check/not checked.

__SL_G_W.F Security Type WPA If security type is WPA, returns Checked,
else returns Not_Checked.
Used in the security type radio button
check/not checked.

__SL_G_SR1 The configured max number of connected
stations.

The token representing the max number
of connected stations returns Checked.
Others return Not Checked.__SL_G_SR2

__SL_G_SR3
__SL_G_SR4
__SL_G_CN1 Name of the connected station (string) in

the given index.
Each token returns the host name of the
station in the specified index. “ - “ is
returned if the client does not exist.__SL_G_CN2

__SL_G_CN3
__SL_G_CN4
__SL_G_CM1 MAC address (string in the format

AA:BB:CC:DD:EE:FF) of the connected
station in the given index.

Each token returns the MAC address of
the station in the specified index. “ - “ is
returned if no station is connected.__SL_G_CM2

__SL_G_CM3
__SL_G_CM4
__SL_G_CI1 IP address (string in the format W.X.Y.Z)

of the connected station in the given
index.

Each token returns the IP address of the
station in the specified index. “ - “ is
returned if no station is connected.__SL_G_CI2

__SL_G_CI3
__SL_G_CI4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Device Parameter Querying Through HTTP (Device Tokens)

149SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Table 8-16. Network Information Tokens (continued)
Token Name Value and Usage

__SL_G_SM1 Access control filter is enabled If AP access control filter is enabled,
returns Checked, else returns
Not_Checked.

__SL_G_SM0 Access control filter is disabled If AP access control filter is disabled,
returns Checked, else returns
Not_Checked.

__SL_G_CLS Number of filtered MAC addresses.
__SL_G_CL1 The MAC filter of the given index (string in

the format AA:BB:CC:DD:EE:FF).
Return the configured MAC address to
filter. “ - “ is returned if no filter is
configured.__SL_G_CL2

__SL_G_CL3
__SL_G_CL4
__SL_G_CL5
__SL_G_CL6
__SL_G_CL7
__SL_G_CL8
__SL_G_NW1 Tokens for retrieving the scan results.

Each result is in the format Nssid; where
N is the security indicator (0=open,
1=WEP, 2=WPA/WPA2).

Incrementally returns scan results (one for
each get request).

__SL_G_NW0 Always returns the first scan result and
resets the internal pointer.

8.5.6 Ping Results
Table 8-17 lists the ping results tokens.

Table 8-17. Ping Results Tokens

Token Name Value and Usage
__SL_G_T.A IP Address String format: xxx.yyy.zzz.ttt
__SL_G_T.B Packet Size
__SL_G_T.C Number of Pings
__SL_G_T.D Ping Results – total sent Number of total pings sent
__SL_G_T.E Ping Results – successful sent Number of successful pings sent
__SL_G_T.F Ping Test Duration In seconds

8.5.7 Connection Policy Status
Table 8-18 lists the connection policies status tokens.

Table 8-18. Connection Policies Status Tokens

Token Name Value and Usage
__SL_G_P.E Auto Connect If auto connect is enabled, returns

Checked, else returns Not_Checked.
Used in the auto connect checkbox.

__SL_G_P.F Fast Connect If fast connect is enabled, returns
Checked, else returns Not_Checked.
Used in the fast connect checkbox.

__SL_G_P.G Any P2P If any P2P is enabled, returns Checked,
else returns Not_Checked.
Used in the Any P2P checkbox.

__SL_G_P.P Auto Smart Config If auto smart config is enabled, returns
Checked, else returns Not_Checked.
Used in the Auto Smart Config checkbox.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Device Parameter Querying Through HTTP (Device Tokens) www.ti.com

150 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.5.8 Provisioning
Table 8-19 lists the provisioning tokens.

Table 8-19. Provisioning Tokens

Token Name Value and Usage
__SL_G_P.Q Auto Provisioning If auto provisioning is enabled, returns

Checked, else returns Not_Checked.
__SL_G_MCH Returns a human-readable text

representing the status of the provisioning
process

__SL_G_MCR Returns a number code of the provisioning
status

__SL_G_PST Provisioning Active Indication Simple text indication returning 1 if
provisioning is active; 0 otherwise.

__SL_G_PIP Provisioned IP Address IP address obtained in the provisioning
process

8.5.9 Display Profile Information
Table 8-20 lists the display profile information tokens.

Table 8-20. Display Profile Information Tokens

Token Name Value and Usage
__SL_G_PN1 Return profile 1 SSID SSID string
__SL_G_PN2 Return profile 2 SSID
__SL_G_PN3 Return profile 3 SSID
__SL_G_PN4 Return profile 4 SSID
__SL_G_PN5 Return profile 5 SSID
__SL_G_PN6 Return profile 6 SSID
__SL_G_PN7 Return profile 7 SSID
__SL_G_PS1 Return profile 1 Security Status Returned values: Open, WEP, WPA,

WPS, ENT, P2P_PBC, P2P_PIN or “ – “
for empty profile.__SL_G_PS2 Return profile 2 Security Status

__SL_G_PS3 Return profile 3 Security Status
__SL_G_PS4 Return profile 4 Security Status
__SL_G_PS5 Return profile 5 Security Status
__SL_G_PS6 Return profile 6 Security Status
__SL_G_PS7 Return profile 7 Security Status
__SL_G_PP1 Return profile 1 Priority Profile priority: 0–7
__SL_G_PP2 Return profile 2 Priority
__SL_G_PP3 Return profile 3 Priority
__SL_G_PP4 Return profile 4 Priority
__SL_G_PP5 Return profile 5 Priority
__SL_G_PP6 Return profile 6 Priority
__SL_G_PP7 Return profile 7 Priority

8.5.10 P2P Information
Table 8-21 lists the P2P information tokens.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Device Parameter Querying Through HTTP (Device Tokens)

151SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Table 8-21. P2P Information Tokens

Token Name Value and Usage
__SL_G_R.A P2P Device Name String
__SL_G_R.B P2P Device Type String
__SL_G_R.C P2P Listen Channel Returns string of the listen channel

number
__SL_G_R.T Listen Channel #1 If current listen channel is #1, returns

selected, else returns not_selected.
Used for the drop down menu of the listen
channel.

__SL_G_R.U Listen Channel #6 If current listen channel is #6, returns
selected, else returns not_selected.
Used for the drop down menu of the listen
channel.

__SL_G_R.V Listen Channel #11 If current listen channel is #11, returns
selected, else returns not_selected.
Used for the drop down menu of the listen
channel.

__SL_G_R.E P2P Operation Channel Returns string of the operational channel
number

__SL_G_R.W Operational Channel #1 If current operational channel is #1,
returns selected, else returns
not_selected.
Used for the drop down menu of the
operational channel.

__SL_G_R.X Operational Channel #6 If current operational channel is #6,
returns selected, else returns
not_selected.
Used for the drop down menu of the
operational channel.

__SL_G_R.Y Operational Channel #11 If current operational channel is #11,
returns selected, else returns
not_selected.
Used for the drop down menu of the
operational channel.

__SL_G_R.L Negotiation Intent Value Returned values: Group Owner,
Negotiate, Client

__SL_G_R.M Role Group Owner If intent is Group Owner, returns Checked,
else returns Not_Checked.
Used for negotiation intent radio button.

__SL_G_R.N Role Negotiate If intent is Negotiate, returns Checked,
else returns Not_Checked.
Used for negotiation intent radio button.

__SL_G_R.O Role Client If intent is Client, returns Checked, else
returns Not_Checked.
Used for negotiation intent radio button.

__SL_G_R.P Negotiation Initiator Policy Returned Values: Active, Passive,
Random Backoff

__SL_G_R.Q Neg Initiator Active If negotiation initiator policy is Active,
returns Checked, else returns
Not_Checked.
Used for negotiation initiator policy radio
button.

__SL_G_R.R Neg Initiator Passive If negotiation initiator policy is Passive,
returns Checked, else returns
Not_Checked.
Used for negotiation initiator policy radio
button.

__SL_G_R.S Neg Initiator Rand Backoff If negotiation initiator policy is Random
Backoff, returns Checked, else returns
Not_Checked.
Used for negotiation initiator policy radio
button.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Device Parameter Querying Through HTTP (Device Tokens) www.ti.com

152 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.5.11 Host Tokens
All tokens not defined in the previous sections are transferred to the host for conversion.

8.6 Resource Search Order
This section describes the way in which the HTTP server handles each HTTP request according to its type
and resource name.

8.6.1 GET Request Search Order
A GET request is processed according to the flow in Figure 8-8.

Figure 8-8. GET Request Flow

If a file is not found in the file system, it is searched in the device ROM, where the following files always
exist:
• index.html
• netlist.txt
• param_product_version.txt
• param_device_name.txt
• param_ip_address.txt
• param_cfg_result.txt
Any request other than GET is not associated with these resources, and is transferred directly to the host.
Additionally, to use the built-in configuration page, do not override any of the built-in pages, because this
breaks functionality.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Resource Search Order

153SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.6.2 POST Request Search Order
A POST request is processed according to the flow in Figure 8-9.

Figure 8-9. POST Request Flow

8.6.3 PUT and DELETE Request Search Order
PUT and DELETE requests are always deferred to host regardless of resource name, as shown in
Figure 8-10.

Figure 8-10. PUT and DELETE Request Flow

8.7 Host HTTP Requests Processing
All HTTP requests transferred to the host are processed through the macro slcb_NetAppRequestHdlr,
which should be mapped to a user function by user.h. The function receives two parameters (and returns
void): A pointer to the request structure containing the parameters and type of the HTTP request, and a
pointer to the response structure which should be populated with the desired HTTP response.

The HTTP headers are transferred to the host as TLVs (type length value) in the metadata section of the
request. The HTTP message (if present) transferred as is, and should be parsed and processed by the
user function. The HTTP user handler is invoked from the SimpleLink driver context, and must therefore
return quickly and without calling any other SimpleLink APIs. If the response cannot be determined
immediately by the handler, it should set the response status to pending and return. The application must
then generate and send a response from its own context.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Host HTTP Requests Processing www.ti.com

154 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.7.1 Metadata (TLVs) Description
Each HTTP request consists of two parts: the HTTP headers, and HTTP body (which is optional). The
headers are standard fields defined by the HTTP RFCs and set various parameters of the HTTP
transaction. To allow easy parsing of the headers, they are converted to TLV representation. Each TLV
has the structure listed in Table 8-22.

(1) The only exception is the HTTP Content Length field, which is automatically converted to an integer.

Table 8-22. TLV Structure

Size 1 Byte 2 Bytes n Bytes
Name Metadata Type Length Value
Description A unique number identifying

the HTTP header, see Table 8-
23.

Size in bytes of the entire TLV
including the Length and Type
fields.

Raw value of the HTTP header
copied directly from the HTTP
request without line termination
(\r or \n characters). (1)

Table 8-23 lists the metadata types.

Table 8-23. HTTP Metadata Types

Metadata Type HTTP Header Name
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_TYPE Content-Type
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN Content-Length
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_LOCATION Location
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_SERVER Server
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_USER_AGENT User-Agent
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_COOKIE Cookie
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_SET_COOKIE Set-Cookie
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_UPGRADE Upgrade
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_REFERER Referer
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_ACCEPT Accept
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_ENCODING Content-Encoding
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_DISPOSITION Content-Disposition
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONNECTION Connection
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_ETAG Etag
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_DATE Date
SL_NETAPP_REQUEST_METADATA_TYPE_HEADER_HOST Host
SL_NETAPP_REQUEST_METADATA_TYPE_ACCEPT_ENCODING Accept-Encoding
SL_NETAPP_REQUEST_METADATA_TYPE_ACCEPT_LANGUAGE Accept-Language
SL_NETAPP_REQUEST_METADATA_TYPE_CONTENT_LANGUAGE Content-Language
SL_NETAPP_REQUEST_METADATA_TYPE_ORIGIN Origin
SL_NETAPP_REQUEST_METADATA_TYPE_ORIGIN_CONTROL_ACCESS Access-Control-Allow-Origin

All HTTP headers not present in Table 8-23 are skipped. Additionally, the metadata types listed in
Table 8-24 are generated internally by the HTTP server to provide more information on the HTTP request.

Table 8-24. Internal Metadata Types

Metadata Type Description
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_VERSION Version field of the HTTP request
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_REQUEST_URI URI string of the HTTP request
SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_QUERY_STRING Query string of the HTTP request

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host HTTP Requests Processing

155SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

The TLVs are packed continuously in the metadata section of the request. The user’s code should begin
parsing from byte 0, which is always the type field of the first TLV, and finish when metadata-length bytes
are processed (which should point to the last byte of the value field of the last TLV). The TLVs are packed
in no particular order. Table 8-25 is an example metadata breakout containing two TLVs

Table 8-25. Metadata Breakout Examples

Metadata Offset
/ Content 0 (TLV1 Type) 1–2 (TLV1

Length)
3–10 (TLV1

Value) 11 (TLV2 Type) 12–13 (TLV2
Length)

14–24 (TLV2
Value)

Data 1 (HTTP
Version) 11 “HTTP/1.0” 19 (Header Host) 14 10.123.45.1

An example of how to find and extract the content of a specific TLV from the metadata buffer follows:
_i32 ExtractLengthFromMetaData(_u8 *pMetaDataStart, _u16 MetaDataLen)
{

_u8 *pTlv;
_u8 *pEnd;
_u8 Type;
_u16 TlvLen;

pTlv = pMetaDataStart;
pEnd = pMetaDataStart + MetaDataLen;

while (pTlv < pEnd)
{

Type = *pTlv; /* Type is one byte */
pTlv++;
TlvLen = *(_u16 *)pTlv; /* Length is two bytes */
pTlv+=2;

if (Type == SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN)
{

_i32 LengthFieldValue=0;

/* Found the right type, extract its value and return. */
memcpy(&LengthFieldValue, pTlv, TlvLen);
return LengthFieldValue;

}
else
{

/* Not the type we are looking for. Skip over the
value field to the next type. */
pTlv += TlvLen;

}
}

return -1;
}

/* NetApp request handler*/
void NetAppRequestHandler( SlNetAppRequest_t *pNetAppRequest,

SlNetAppResponse_t *pNetAppResponse)
{

_u32 HttpContentLength;

if (pNetAppRequest->requestData.MetadataLen > 0)
{

HttpContentLength = ExtractLengthFromMetaData(
pNetAppRequest->requestData.pMetadata,
pNetAppRequest->requestData.MetadataLen);

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Host HTTP Requests Processing www.ti.com

156 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

8.7.2 GET Processing
When the HTTP server receives an HTTP GET request for a resource which is not a ROM or user page,
the HTTP handler (as shown in the preceeding example) is invoked with
SL_NETAPP_REQUEST_HTTP_GET as the request type. The handler function must parse the HTTP
metadata, extract the resource name and any other fields of interest, and generate a response. The host
may choose to respond immediately by filling all response fields in the handler function. Alternatively, the
host can fill the status field to “pending”, and return, which means another part of the user application
must complete the response using the sl_NetAppSend API (as shown in the examples that follow).

8.7.2.1 Fragmentation
The host may choose to send the resource as a single chunk as part of the response from the handler
(the payload fields in the ResponseData structure), or split it across multiple fragments. Fragmentation
must be used to transfer resources larger than 1500 bytes (this is also the maximal size of a single
fragment). Without fragmentation, the entire resource data is sent as part of the response from the
handler. With fragmentation, the handler does not return anything but the pending status, while the
fragments of the response are sent using the sl_NetAppSend API. Each fragment may be a different size
(but smaller than 1500 bytes). While there are more fragments to send, the
SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION bit must be set in the flags parameter of
the API. On the last fragment, this bit must be zero. The first call to sl_NetAppSend API must carry the
metadata (HTTP headers) of the response. For that, the
SL_NETAPP_REQUEST_RESPONSE_FLAGS_METADATA bit must be set in the flags parameter of the
API. Figure 8-11 demonstrates the handling of a GET request without (1) and with (2) fragmentation.

Figure 8-11. GET Request With and Without Fragmentation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host HTTP Requests Processing

157SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

The following code demonstrates how to implement an HTTP GET handler that sends a response (a short
text string) immediately. The code assumes that the macro slcb_NetAppRequestHdlr is mapped to
NetAppRequestHandler in file user.h.
#define RESPONSE_TEXT "Example text to be displayed in browser"

void NetAppRequestHandler( SlNetAppRequest_t *pNetAppRequest,
SlNetAppResponse_t *pNetAppResponse)

{
char *contentType = "text/html";
unsigned char *pMetadata;
unsigned char *pResponseText;

pMetadata = (unsigned char*)malloc(128);
pResponseText = (unsigned char*)malloc(sizeof(RESPONSE_TEXT));
if ((NULL == pMetadata) || (NULL == pResponseText))
{

/* Allocation error */
}
memcpy(pResponseText, RESPONSE_TEXT, sizeof(RESPONSE_TEXT));

switch(pNetAppRequest->Type)
{

case SL_NETAPP_REQUEST_HTTP_GET:
{

pNetAppResponse->Status = SL_NETAPP_HTTP_RESPONSE_200_OK;
/* Write the content type TLV to buffer */
pNetAppResponse->ResponseData.pMetadata = pMetadata;
*pMetadata =

(_u8) SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_TYPE;
pMetadata++;
*(_u16 *)pMetadata = (_u16) strlen (contentType);
pMetadata+=2;
memcpy (pMetadata, contentType, strlen(contentType));
pMetadata+=strlen(contentType);
/* Write the content length TLV to buffer */
*pMetadata = SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN;
pMetadata++;
*(_u16 *)pMetadata = 2;
pMetadata+=2;
*(_u16 *) pMetadata = (_u16) sizeof(RESPONSE_TEXT);
pMetadata+=2;
/* Calculate and write the total length of meta data */
pNetAppResponse->ResponseData.MetadataLen =

pMetadata - pNetAppResponse->ResponseData.pMetadata;
/* Write the text of the response */
pNetAppResponse->ResponseData.PayloadLen = sizeof(RESPONSE_TEXT);
pNetAppResponse->ResponseData.pPayload = pResponseText;
pNetAppResponse->ResponseData.Flags = 0;

}
break;
default:

/* POST/PUT/DELETE requests will reach here. */
break;

}
}

The following code demonstrates how to implement HTTP GET handler that delegates the request to
some other application. The user must extract any relevant information from the request and save it as the
data buffers are freed when the handler returns.
void NetAppRequestHandler( SlNetAppRequest_t *pNetAppRequest,

SlNetAppResponse_t *pNetAppResponse)
{

switch(pNetAppRequest->Type)
{

case SL_NETAPP_REQUEST_HTTP_GET:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Host HTTP Requests Processing www.ti.com

158 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

{
/* Prepare pending response */
pNetAppResponse->Status = SL_NETAPP_RESPONSE_PENDING;
pNetAppResponse->ResponseData.pMetadata = NULL;
pNetAppResponse->ResponseData.MetadataLen = 0;
pNetAppResponse->ResponseData.pPayload = NULL;
pNetAppResponse->ResponseData.PayloadLen = 0;
pNetAppResponse->ResponseData.Flags = 0;

/* Copy to some global buffer any relevant info from pNetAppRequest (the handle
In particular) and signal the user application that a new HTTP request has arrived. */

}
break;

default:
/* POST/PUT/DELETE requests will reach here. */

break;
}

}

When signaled, the user application can then send this suggested response:
#define RESPONSE_TEXT "Example text part 1 --- "
#define RESPONSE_TEXT2 "Example text part 2"

_u8 *metadataBuff;
_u8 *pResponseText;
_u8 *pMetadata;
_u16 MetadataLen = 0;
const _u8 *contentType = "text/html";
_u8 Flags = 0;
_u16 TextLength;

metadataBuff = (_u8 *) malloc (128);
pMetadata = metadataBuff;

/* HTTP status is sent as part of the meta-data*/
*pMetadata = (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_STATUS;
pMetadata++;
*(_u16 *)pMetadata = (_u16) 2;
pMetadata+=2;
*(_u16 *)pMetadata = (_u16) SL_NETAPP_HTTP_RESPONSE_200_OK;
pMetadata+=2;

/* Write the content type TLV to buffer */
*pMetadata = (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_TYPE;
pMetadata++;
*(_u16 *)pMetadata = (_u16) strlen((char*)contentType);
pMetadata+=2;
memcpy (pMetadata, contentType, strlen((char*)contentType));
pMetadata+=strlen((char*)contentType);

/* Write the content length TLV to buffer */
*pMetadata = SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN;
pMetadata++;
*(_u16 *)pMetadata = 2;
pMetadata+=2;
TextLength = sizeof(RESPONSE_TEXT) + sizeof(RESPONSE_TEXT2);
*(_u16 *) pMetadata = TextLength;
pMetadata+=2;

MetadataLen = pMetadata - metadataBuff;

/* First send the meta-data (note the METADATA flag).
Continuation flag indicates there are more fragments to follow.
gHandle is assumed to be populated by the handler. */
Flags |= SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host HTTP Requests Processing

159SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Flags |= SL_NETAPP_REQUEST_RESPONSE_FLAGS_METADATA;
sl_NetAppSend (gHandle, MetadataLen, metadataBuff, Flags);

/* Send first data fragment. Continuation flag still
indicates there are more fragments to follow, */
Flags = SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION;
pResponseText = (_u8 *) malloc (sizeof(RESPONSE_TEXT));
memcpy(pResponseText, RESPONSE_TEXT, sizeof(RESPONSE_TEXT));
sl_NetAppSend (gHandle, sizeof(RESPONSE_TEXT), pResponseText, Flags);

/* Last data fragment - continuation flag is cleared. */
Flags = 0;
pResponseText = (_u8 *) malloc (sizeof(RESPONSE_TEXT2));
memcpy(pResponseText, RESPONSE_TEXT2, sizeof(RESPONSE_TEXT2));
sl_NetAppSend (gHandle, sizeof(RESPONSE_TEXT2), pResponseText, Flags);

8.7.3 POST Processing
POST requests that were not recognized as RESTFul APIs are transferred to the host with
SL_NETAPP_REQUEST_HTTP_POST as the request type. The user handler must parse the HTTP
metadata, extract the resource name and any other fields of interest, and generate a response. The host
may choose to respond immediately by filling all response fields in the handler. Alternatively, the host can
fill the status field to pending and return, which means another part of the user application must complete
the reception of the request using the sl_NetAppRecv API. Then it must use the sl_NetAppSend API to
send a response. Figure 8-12 shows the data flow when the response is sent immediately.

Figure 8-12. POST Processing Flow

Similarly to Figure 8-12, the following code receives acknowledgments for every POST request to the host
with an HTTP 200 OK response:
void NetAppRequestHandler( SlNetAppRequest_t *pNetAppRequest,

SlNetAppResponse_t *pNetAppResponse)
{

extern _u16 gHandle;

switch(pNetAppRequest->Type)
{

case SL_NETAPP_REQUEST_HTTP_POST:
{

pNetAppResponse->Status = SL_NETAPP_HTTP_RESPONSE_200_OK;
pNetAppResponse->ResponseData.pMetadata = NULL;
pNetAppResponse->ResponseData.MetadataLen = 0;
pNetAppResponse->ResponseData.pPayload = NULL;
pNetAppResponse->ResponseData.PayloadLen = 0;
pNetAppResponse->ResponseData.Flags = 0;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Host HTTP Requests Processing www.ti.com

160 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

}
break;

default:
/* GET/PUT/DELETE requests will reach here. */

break;
}

}

8.7.3.1 Long Requests and Delayed Responses
Only the first 1364 bytes of the request are passed to the handler (this includes the meta-data). The reset
(if present) should be requested using the sl_NetAppRecv API outside the handler. The user may choose
at what fragment size to pull the remaining payload from the device. The last fragment indicates when the
flags returned by the sl_NetAppRecv API no longer contain the continuation flag. The same flow can be
used if the response cannot be determined by the NetApp handler and must be delegated to another
process. In this case, the handler must fill the response filed as pending and return. The process must
then be invoked to retrieve the reset of the request (if present) and actually send the response. Figure 8-
13 demonstrates the data flow with delayed response.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host HTTP Requests Processing

161SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

Figure 8-13. Delayed Response

The following code implements a handler for a POST request. It sends an HTTP 200 OK response
immediately if the entire request was received, or sets the pending status and signals the user application
to handle the remaining of the request. It also parses the metadata in search for the content length field,
which represents the expected size of the payload, and extracts it. This field (similar to all other metadata)
is not generated by the SimpleLink device, but transferred as is, and must be validated by the user.
void NetAppRequestHandler( SlNetAppRequest_t *pNetAppRequest,

SlNetAppResponse_t *pNetAppResponse)
{

extern _u16 gHandle;

switch(pNetAppRequest->Type)
{

case SL_NETAPP_REQUEST_HTTP_POST:
{

_u32 RequestFlags;
_u32 ContentLength;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Host HTTP Requests Processing www.ti.com

162 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

RequestFlags = pNetAppRequest->requestData.Flags;

/* Prepare pending response */
pNetAppResponse->ResponseData.pMetadata = NULL;
pNetAppResponse->ResponseData.MetadataLen = 0;
pNetAppResponse->ResponseData.pPayload = NULL;
pNetAppResponse->ResponseData.PayloadLen = 0;
pNetAppResponse->ResponseData.Flags = 0;

if (pNetAppRequest->requestData.MetadataLen > 0)
{

/* Process the meta data in
pNetAppRequest->requestData.pMetadata */
ContentLength = ExtractLengthFromMetaData(

pNetAppRequest->requestData.pMetadata,
pNetAppRequest->requestData.MetadataLen);

/* Allocate buffer to receive the entire content if needed */
}

if (pNetAppRequest->requestData.PayloadLen > 0)
{

/* First fragment of the payload is @
pNetAppRequest->requestData.pPayload */

}

if (RequestFlags & SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION)
{

/* More fragments to follow. */
pNetAppResponse->Status = SL_NETAPP_RESPONSE_PENDING;
/* Signal the user application to receive the rest.*/
SetEvent(g_netAppRequestSyncObj);
/* The handle will be used to receive the rest + send response*/
gHandle = pNetAppRequest->Handle;

}
else
{

pNetAppResponse->Status = SL_NETAPP_HTTP_RESPONSE_200_OK;
}

break;
}

default:
/* GET/PUT/DELETE requests will reach here. */
break;

}
}

The following code can be placed in the user application, to retrieve the remaining fragments and send a
response in the end when signaled from the preceeding handler.
_u8 *MetadataBuff;
_u8 *pMetadata;
_u16 MetadataLen = 0;
_u8 Fragment[100]; /* Fragment buffer of arbitrary size */
_u16 FragmentLen;
_SlReturnVal_t RetVal;
_u32 Flags;

do
{

FragmentLen = sizeof(Fragment); /* Indicates max buffer size */
RetVal = sl_NetAppRecv(gHandle, &FragmentLen, Fragment, &Flags);
if ((RetVal < 0) | (Flags & SL_NETAPP_REQUEST_RESPONSE_FLAGS_ERROR))
{

// API error, abort. Error code can be extracted as follows:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host HTTP Requests Processing

163SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

// ErrorCode = (short)(0x0000ffff & Flags);
}

/* Process the received fragment here.
FragmentLen contains the actual fragment size. */

} while (Flags & NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION);

/* Send response OK */
MetadataBuff = (_u8*) malloc(128);
pMetadata = MetadataBuff;
*pMetadata = (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_STATUS;
pMetadata++;
*(_u16 *)pMetadata = (_u16) 2;
pMetadata+=2;
*(_u16 *)pMetadata = (_u16) SL_NETAPP_HTTP_RESPONSE_200_OK;
pMetadata+=2;
MetadataLen = 5;

Flags = SL_NETAPP_REQUEST_RESPONSE_FLAGS_METADATA;
sl_NetAppSend (gHandle, MetadataLen, MetadataBuff, Flags);

There is no way to return payload data as part of the response, only HTTP headers as part of the meta-
data.

8.7.4 PUT Processing
PUT requests are similar to POST requests. The only difference (aside from the command type received)
is that there is no processing of RESTful APIs; all requests are transferred directly to the host. As in
POST, the response cannot contain any payload, only HTTP headers.

8.7.5 DELETE Processing
DELETE requests are similar to POST requests. The only difference (aside from the command type
received) is that there is no processing of RESTful APIs; all requests are transferred directly to the host.
As in POST, the response cannot contain any payload, only HTTP headers.

8.8 Security

8.8.1 Authentication
When authentication is enabled (see Section 8.3), the client must provide a username and password
before the HTTP server processes any requests. Both user name and password are limited to 20
characters, and both are case sensitive.

8.8.1.1 HTTP Realm
A realm in HTTP context is a group of resources protected by the same username and password.
Therefore, it is relevant only when authentication is enabled. All resources served by the SimpleLink HTTP
server (including those residing in the host) belong to one realm. The name of this realm can be set as
described in Section 8.3. The realm name is presented in the client browser when it prompts for username
and password.

8.8.2 Secure Connection
The HTTP server can accept connections over a secure socket (SSL). When enabled, the primary server
port accepts only secure connections, and unsecure connection requests are rejected. The secondary port
can be enabled to redirect nonsecure connection attempts to the primary (secure) port. This scheme is
commonly used to redirect browsers, which by default initiate a nonsecure connection on port 80. When
the secure connection is enabled, a server certificate and a private key must be placed on the file system
in PEM or DER format, and their names must be configured in the HTTP server. The following example
shows how to enable the secure socket and use the secondary socket for redirection.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Other www.ti.com

164 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

HTTP Server

unsigned char ServerCertificateFileName[] = "server-cert.der";
unsigned char ServerKeyFileName[] = "server-key.der";
unsigned char SecurityMode[] = {0x1};
unsigned char HttpsPort[] = {0xBB, 0x01}; // 0x1BB = 443
unsigned char SecondaryPort[] = {0x50, 0x00}; // 0x050 = 80
unsigned char SecondaryPortEnable[] = {0x1};

// Set the file names used for SSL key exchange.
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,

SL_NETAPP_HTTP_DEVICE_CERTIFICATE_FILENAME,
sizeof(ServerCertificateFileName),
ServerCertificateFileName);

sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
SL_NETAPP_HTTP_PRIVATE_KEY_FILENAME,
sizeof(ServerKeyFileName),
ServerKeyFileName);

// Activate SSL security on primary HTTP port and change it to
// 443 (standard HTTPS port)
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,

SL_NETAPP_HTTP_PRIMARY_PORT_SECURITY_MODE,
sizeof(SecurityMode),
SecurityMode);

sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
SL_NETAPP_HTTP_PRIMARY_PORT_NUMBER,
sizeof(HttpsPort),
HttpsPort);

// Enable secondary HTTP port (can only be used for redirecting
// connections to the secure primary port).
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,

SL_NETAPP_HTTP_SECONDARY_PORT_NUMBER,
sizeof(SecondaryPort),
SecondaryPort);

sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
SL_NETAPP_HTTP_SECONDARY_PORT_ENABLE,
sizeof(SecondaryPortEnable),
SecondaryPortEnable);

// Restart HTTP server for new configuration to take effect.
sl_NetAppStop(SL_NETAPP_HTTP_SERVER_ID);
sl_NetAppStart(SL_NETAPP_HTTP_SERVER_ID);

It is also possible to require client authentication by providing a Root CA file using the
SL_NETAPP_HTTP_CA_CERTIFICATE_FILE_NAME option. If provided, all client connections are
verified, and those failing the test are not accepted. SSL client verification is described in more detail in
Section 4.3.

NOTE: Currently internal HTTPs server supports only RSA cipher suite due to performance
optimization.

8.9 Other

8.9.1 Processing of Parallel Requests
Each HTTP request is handled over a single TCP connection. The client initiates a connection, and sends
the request. The server processes the request and sends the response over the same connection, closing
it once sent. The server then waits to accept a new connection. Even though only one request can be
processed at any given time, many clients can initiate TCP connections to the server simultaneously, and
each request is handled in order.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


165SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

Chapter 9
SWRU455E–February 2017–Revised February 2018

mDNS

Topic ........................................................................................................................... Page

9.1 Introduction ..................................................................................................... 166
9.2 Key Features.................................................................................................... 166
9.3 Configurations and Settings .............................................................................. 166
9.4 Query .............................................................................................................. 167

9.4.1 One Shot Query ....................................................................................... 167
9.4.2 Continuous Query..................................................................................... 167
9.4.3 Mask Services ......................................................................................... 167

9.5 Get Service List................................................................................................ 168
9.6 Advertisement.................................................................................................. 169

9.6.1 Registering mDNS Services ......................................................................... 169
9.6.2 Unregistering mDNS Services....................................................................... 169
9.6.3 Advertisement Settings............................................................................... 170

9.7 Limitations....................................................................................................... 171

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

166 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

9.1 Introduction
The mDNS/DNS-SD protocol enables the automatic discovery of computers, devices, and services by
resolving IP addresses and ports on the local IP network. mDNS is based on the DNS protocol. In contrast
to DNS, which uses a DNS server, mDNS protocol is distributed, where each device can advertise and
discover services. Each mDNS device on the local IP network can join an mDNS IP multicast group, and
advertises its services. mDNS protocol supports IPv4 and IPv6 local networks. IPv4 multicast address
224.0.0.251, IPv6 multicast address FF02::FB, and UDP port 5353 are all reserved to mDNS messages.

The SimpleLink host application can register up to five services. The services can be advertised and
discovered on IPv4 network, IPv6 network, or both networks, depending on service interface registration
and interface status.

The mDNS service must be enabled to allow query and advertisement operations. By default, the mDNS
service is enabled and the internal HTTP server and host name are advertised on the enabled interfaces,
IPv4, IPv6, or both. The mDNS service can be disabled.

The host application can trigger one-shot or continuous discovery. The results are cached by the
SimpleLink Wi-Fi device, and the application can retrieve the list of discovered devices and services.

The mDNS service is not power-wise-optimized; therefore, TI recommends turning this service off in
power-constrained systems. This service is turned off automatically if the configured power mode is LSI
with a sleep time greater than 2000 ms.

9.2 Key Features
Table 9-1 lists the key features of the mDNS.

Table 9-1. Key Features

Key Features Description
Advertise IPv4/IPv6 services Advertise up to five registered services IPv4, IPv6, or both. If internal HTTP

server is disabled, six services can be registered.
Discover IPv4/IPv6 services Discover services IPv4, IPv6, or both
One-shot discovery Support IPv4\IPv6 single query
Continuous discovery Support IPv4\IPv6 continuous query
Mask services Support masking specific services types in the discovery process
Set advertisement timing Set advertisement timing parameters
Update Service text Update existing services text field

9.3 Configurations and Settings
Starting or stopping mDNS service: mDNS service is enabled by default. mDNS can be stopped and
started by the host application by using the host APIs sl_NetAppStart and sl_NetAppStop. This action
takes effect immediately and reset is not required. This configuration is persistent according to system-
persistent configuration.

Example:
_i16 Status;

/* Start mDNS */
Status = sl_NetAppStart(SL_NET_APP_MDNS_ID);
if( Status )
{

/* Error */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Query

167SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

9.4 Query
The SimpleLink Wi-Fi device can discover remote services on the local network. The discovery is
performed by sending one-shot or continuous queries. The queries are transmitted on IPv4 or IPv6
interfaces, according to the host request and configuration.

9.4.1 One Shot Query
The SimpleLink Wi-Fi device can issue one-shot queries in which the device triggers only a single mDNS
query to the network by calling the API sl_NetAppDnsGetHostByService. The query can be set as IPv4 or
IPv6 (If enabled) format, or both. A discovery result returns the first response received with information
regarding the remote service: IP address, port, and service text description.

Example:
_i16 Status;
_i8 query[] = "_http._tcp.local";
_u32 addr;
_u32 Port = 0;
_u16 TextLen = 800;
_i8 pText[800];

Status = sl_NetAppDnsGetHostByService(query, (unsigned char)strlen(&query[0]), SL_AF_INET,
&addr, &Port, &TextLen,pText);
if( Status )
{

/* Error */
}

9.4.2 Continuous Query
In a continuous mDNS query mode, the device keeps sending queries to the network according to a
specific service name. The queries are sent in IPv4 and IPv6 (if enabled) formats or both. To see the
complete list of responding services, sl_NetAppGetServiceList must be called. To stop the continuous
query, call the same API with length 0.

Continuous query configuration is persistent by default, and can be set according to a system-persistent
configuration.

Example:
_i16 Status;
_i8 query[] = "_http._tcp.local";

/* Start continues query */
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID, SL_NETAPP_MDNS_CONT_QUERY_OPT, (unsigned
char)strlen(&query[0]), query);
if( Status )
{

/* Error */
}
/* Stop continues query */
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID, SL_NETAPP_MDNS_CONT_QUERY_OPT,0 , 0); /* Set length to
zero to stop continuous query */
if( Status )
{

/* Error */
}

9.4.3 Mask Services
The SimpleLink Wi-Fi device offers the ability to predefine specific services types to monitor. If the host
application decides not to get responses from certain types of services (not stored in the cache), the adapt
bit can be set in the event mask related to according to the following list:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Get Service List www.ti.com

168 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

• _ipp – bit 0
• _divice-info – bit 1
• _http – bit 2
• _https – bit 3
• _workstation – bit 4
• _guid – bit 5
• _h323 – bit 6
• _ntp – bit 7
• _objective – bit 8
• _rdp – bit 9
• _remote – bit 10
• _rtsp – bit 11
• _sip – bit 12
• _smb – bit 13
• _soap – bit 14
• _ssh – bit 15
• _telnet – bit 16
• _tftp – bit 17
• _xmpp-client – bit 18
• _raop – bit 19

Example:
_i16 Status;
_u32 EventMask;

EventMask = BIT0 | BIT1 | BIT18;
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID,
SL_NETAPP_MDNS_QEVETN_MASK_OPT,sizeof(EventMask),&EventMask);
if( Status )
{

/* Error */
}

9.5 Get Service List
The SimpleLink device can return a list of peer services, which are stored in the device, without issuing
any queries (relying on previously collected data stored in the cache). The list is in a form of a service
structure, which can include full-service parameters with text, full-service parameters, or short-service
parameters (port and IP only), dedicated for hosts with memory limitations (for different size of buffers).
The list size can store up to eight services, and when a new service is discovered, the oldest service entry
is replaced. The list is cleared when mDNS service is disabled or if Wi-Fi disconnects.

The host can retrieve or return different levels of details to support memory reduction in the host
application:
• IPv4/IPv6 full-service parameters – IP address, port, service name, service host, and service text
• IPv4/IPv6 partial-service parameters – IP address, port, service name, and service host
• IPv4/IPv6 minimal-service parameters – IP address and port only

Example:
_i16 Status;
SlNetAppGetShortServiceIpv4List_t listMdns[6];

/* Get a list of discovered services */
Status = sl_NetAppGetServiceList(0, 6, /* Maximum number of services to receive */

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Advertisement

169SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

SL_NETAPP_FULL_SERVICE_WITH_TEXT_IPV6_TYPE, /* receive full ipv6 services with text */
(_i8*) &listMdns6[0], sizeof(listMdns));

if( Status )
{

/* Error */
}

9.6 Advertisement

9.6.1 Registering mDNS Services
Registration of a new service should be performed only if the mDNS service is enabled (it is enabled by
default). Services can be registered as IPv4 or IPv6 services, or both. All registered services are
advertised at once. Each service includes a name, text description, port number, and TTL (time to live)
value. The registered service is persistent by default, unless set otherwise by using the flag
SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT.

The maximum number of registered services is five (or six if the internal web server is not running). The
following flags can be set when registering the service:
• SL_NETAPP_MDNS_OPTIONS_IS_UNIQUE_BIT – Set service as unique.
• SL_NETAPP_MDNS_IPV6_IPV4_SERVICE – Service is set for IPV4 and IPV6 interfaces (IPV6 should

be enabled).
• SL_NETAPP_MDNS_IPV4_ONLY_SERVICE – Service is set for IPV4 interface only (default mode).
• SL_NETAPP_MDNS_IPV6_ONLY_SERVICE – Service is set for IPV6 interface only (IPV6 should be

enabled).
• SL_NETAPP_MDNS_OPTION_UPDATE_TEXT – Update text fields (without reregistering the service).
• SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT – Set a nonpersistent service.

Example:
_i16 Status;
_u32 Options;
const signed char AddService[40] = "printer._ipp._tcp.local";

Options = SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT | SL_NETAPP_MDNS_IPV4_ONLY_SERVICE;
Status = sl_NetAppMDNSRegisterService(AddService, strlen(AddService),
"Service 5;payper=A4;size=10",strlen("Service 5;payper=A4;size=10"),4578,120,Options);
if( Status )
{

/* Error */
}

9.6.2 Unregistering mDNS Services
A registered service can be unregistered according to its registered name. Setting the length variable to
zero deletes all services at once.

If the service was originally created as persistent, it is optional to unregister it as persistent or as
nonpersistent:
• Unregister the service with the nonpersistent flag to cause the service to be currently deleted (send

advertisement with TTL set to 0) until the device resets, which then returns to advertise the service
with the original configured TTL.

• Unregister the service as persistent, to cause the service to be permanently deleted (send
advertisement with TTL set to 0); also after reset.

If the service was originally created as nonpersistent, unregister should apply with the nonpersistent flag
accordingly, otherwise an error returns.

Example:
_i16 Status;
_u32 Options;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Advertisement www.ti.com

170 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

const signed char AddService[40] = "printer._ipp._tcp.local";

Options = SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT;
Status = sl_NetAppMDNSUnRegisterService(AddService,strlen(AddService),Options);
if( Status )
{

/* Error */
}

9.6.3 Advertisement Settings

9.6.3.1 Timing
This option allows the control and reconfiguration of the timing parameters for all services advertisements.
The API includes a unique structure for this specific configuration, with the following parameters:
• T – Number of ticks for the initial period. Default is 100 ticks for 1 second.
• P – Number of repetitions. Default value is 1.
• K – Increasing interval factor. Default value is 2.
• Retransmission interval – Number of ticks to wait before sending out repeated announcement

message. Default value is 0.
• Max interval – Period interval. Number of ticks between two announcement periods. Default value is

0xFFFFFFFF.
• Max time – Maximum time of an announcing period, default value is 3 seconds.

For example, if period is set to T, repetitions are set to P, – increasing interval factor is K = 2, the
transmission shall be: advertise P times, wait T, advertise P times, wait 4 × T, advertise P time, wait 16 ×
T ... (until max time reached / configuration changed /query issued).

Example:
_i16 Status;
SlNetAppServiceAdvertiseTimingParameters_t Timing;

Timing.t = 200; /* 2 seconds */
Timing.p = 2; /* 2 repetitions */
Timing.k = 2; /* Telescopic factor 2 */
Timing.RetransInterval = 0;
Timing.Maxinterval = 0xFFFFFFFF;
Timing.max_time = 5;

Status = sl_NetAppSet(SL_NETAPP_MDNS_ID, SL_NETAPP_MDNS_TIMING_PARAMS_OPT,sizeof(Timing),&Timing);
if( Status )
{

/* Error */
}

9.6.3.2 Update Text
The SimpleLink device offers the ability to update the text field for registered services. The update can be
performed for the text field only. The API must be applied with the previous registered service name. If the
service was originally created as persistent, it is optional to update the text field as persistent or as
nonpersistent:
• Updating the text with the nonpersistent flag causes the service to hold the updated text until the

device resets, which then returns to the original text.
• Updating the text as persistent causes the service to store the updated text, even after a device reset.

If the service was originally created as nonpersistent, updating the text should apply with the nonpersistent
flag accordingly, otherwise an error returns.

Example:
_i16 Status;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Limitations

171SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

mDNS

_u32 Options;
const signed char AddService[40] = "printer._ipp._tcp.local";

/* Update Service text (as persistent)*/
Options = SL_NETAPP_MDNS_OPTIONS_IS_UNIQUE_BIT | SL_NETAPP_MDNS_IPV4_ONLY_SERVICE |
SL_NETAPP_MDNS_OPTION_UPDATE_TEXT;
Status = sl_NetAppMDNSRegisterService(AddService, sizeof(AddService),"Printer=2;Size=A3;size=8",
strlen("Printer=2;Size=A3;size=8"),4578,120,Options);
if( Status )
{

/* Error */
}

9.7 Limitations
• The maximum number of registered services is five (or six, if the internal web server is not running).
• The size of the service total length should be smaller than 255 bytes.
• The size of the discovered services text length should be smaller than 120 bytes.
• This discovered service list is limited to eight services.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


172 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Chapter 10
SWRU455E–February 2017–Revised February 2018

Rx Filters

Topic ........................................................................................................................... Page

10.1 Introduction ..................................................................................................... 173
10.2 Matching Process ............................................................................................. 174

10.2.1 Filter Matching........................................................................................ 174
10.2.2 Tree Traversal........................................................................................ 176

10.3 Examples of Filter Use ...................................................................................... 177
10.3.1 Example 1............................................................................................. 177
10.3.2 Example 2............................................................................................. 177

10.4 Filter Creation .................................................................................................. 178
10.4.1 Filter Type............................................................................................. 178
10.4.2 Filter Flags ............................................................................................ 178
10.4.3 Rule Structure for Header Filters .................................................................. 179
10.4.4 Rule Structure for Combined Filters ............................................................... 183
10.4.5 Filter Trigger .......................................................................................... 183
10.4.6 Rx Filter Action ....................................................................................... 186

10.5 Managing Filters............................................................................................... 188
10.5.1 Enable and Disable Filters.......................................................................... 188
10.5.2 Get Filter Status...................................................................................... 188
10.5.3 Removing a Filter .................................................................................... 189
10.5.4 Storing Filters into the SFLASH.................................................................... 189
10.5.5 Update Filter Arguments ............................................................................ 189

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

173SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

10.1 Introduction
The Rx filter is a powerful feature which enables the host to save power consumption and reduce
application code.

The host can define reception filters that have been processed by the device. Each frame is tested against
the filters; if there is a match, the filter actions are executed. Filter actions can be set to drop the frame or
send an event to the host.

The Rx filters can be used for implementing features such as Wake on LAN, in which the host can enter
deep sleep until a specific frame is detected by the device, then wake up the host by sending the
programmed event.

The Rx filter feature can filter frames by standard protocol fields of a frame (MAC, frame type, IP, and so
forth), or by pattern on the frame payload.

The Rx filters are rule-based systems embedded in the SimpleLink Wi-Fi device. They let the user simply
define a set of filters that determine which of the received frames will be dropped by the SimpleLink Wi-Fi
device. They also let the user configure filters that trigger asynchronous events to the host.

Operating the Rx filter with the event mechanism can reduce the power consumption and code size of the
host MCU. Using filters can also reduce the processing efforts of the SimpleLink Wi-Fi device itself,
because frames can be dropped before their processing is finished.

The filters are organized in a tree structure, and the tree traversal is from the root to the leaf. The
maximum number of supported filters is 64; 15 filters are used by the SimpleLink Wi-Fi device and have
no access from the host, and 49 filters are available for the host to use.

The host interface includes the following operations:
• Create filter
• Update filter arguments
• Enable filters; the function enables several filters at once
• Disable filters; the function disables several filters at once
• Remove filters; the function deletes several filters at once
• Store filters; the function stores all the filters on the FS

Figure 10-1 describes the processing of the Rx filters in high level.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Networking Subsystem

Data Path Frame Processing

Rx Filters Drop

Event

Host

F
ram

es

Rx Filters

1

2

3 Filters 
Database

Search for match

Match 
Found

No
Match

Execute actions

Drop?

21

3

Yes

No

Matching Process www.ti.com

174 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Figure 10-1. Rx Filters

The Rx filter module includes a database of filters, an interface for defining the filters from the host, a
match process, and actions execution.
• Database – The filter database is created by the host application and contains the filters definitions and

the relation between the filters. By default, the database is not persistent; when the device resets, the
host application must redefine the filters. There is an option to store the filters database to the FS. If a
database file exists, it automatically loads when the device is powered up.

• Host interface – The host has a simple interface which lets the user define, delete, enable, disable, or
store existing filters. This interface is part of the WLAN silo.

• Matching process – The process verifies if a match exists between the received frame and a set of
filters. For each filter, if a match is found, the filter actions are executed. If the actions do not include
dropping the frame, the processing of the frame continues normally. If there is no match between the
frame and any filter, the processing of the frame continues normally.

• Action execution – If a match is found, all the actions of the matched filter are executed. These actions
are defined as part of the filter definition.

10.2 Matching Process
The filters database is organized as a series of decision trees, according to the network stack layers.
During a reception of a frame, the networking subsystem passes through the filters and checks for
matching between the filters and the received frame. The filters tree traversal is the process of passing
through the filters, and is done such that any filter is visited a maximum of once per frame, and only the
relevant filters are visited. The traversing is done layer by layer among all the trees, and the process stops
when the frame reaches a drop action in one of the trees.

10.2.1 Filter Matching
The basic Rx filter contains three major attributes:
• Trigger is the precondition which should be fulfilled before the rule is checked, such as the system

state. For example, the rule can be defined to be active only on promiscuous mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Trigger 
Condition 

Valid?

Rule Condition 
Passed?

Yes

Execute Actions

Yes

No 
Match

No

No

Drop

Drop?

Yes

Pass

No

www.ti.com Matching Process

175SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

• Rule is the match criteria. It contains the compare filed name, the expected value, and the compare
function. For example, the rule can be: source port is equal to 23.

• Actions are the operations that execute if the rule is matched.

The outcome of the filter matching could be: No Match, Pass, and Drop. Figure 10-2 shows the Rx filter
matching flow.

Figure 10-2. Rx Filter Match Flow

Table 10-1 lists the possible triggers of a filter.

Table 10-1. Possible Triggers

Trigger Type Possible Values
Wi-Fi Mode Station (Station Connected / Wi-Fi Direct client)

AP (Access Point / Wi-Fi Direct GO)
Promiscuous

Wi-Fi Connection State Connected
Disconnected

Counter Value Numeric value

Table 10-2 lists the possible rules of a filter.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Matching Process www.ti.com

176 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Table 10-2. Possible Rules

Rule Layer Field Name
MAC Frame type

Frame subtype
BSSID
Source MAC address
Destination MAC address
Frame length
Payload value

LLC Protocol type
IP IP version

IP protocol
Source IP address
Destination IP address
ARP operation
ARP target IP address
Source port number
Destination port number
Payload value

Table 10-3 lists all possible actions of a filter.

Table 10-3. Possible Actions

Action Possible Values
Drop Drop the frame and abort and processing on this frame.
Event Send an asynchronous event to the host.
Counter Increase or decrease counter value.

To perform a logical operation on filters such as logical OR or logical AND, create a special filter. This
combined filter node has two parent nodes (unlike a regular node, which has one parent node), and is
checked only if one or both (user-defined) of its parent nodes passed the match.

10.2.2 Tree Traversal
The filters are organized as a decision tree in layers. This structure enables the user to combine several
filters to identify a specific frame; the division to filter layers optimizes the traversal processing. For
example, three filters are required to detect a specific IP frame from a specific source MAC and a specific
word in the payload:
• Filter 1: Specific source of the MAC address
• Filter 2: The packet protocol type is IP.
• Filter 3: The payload of the IP layer contains a specific word.

Filter 1 is the root, Filter 2 is a child of Filter 1, and Filter 3 is a child of Filter 2.

In this example, all of the filters are part of the same tree, but each filter is of a different layer. For every
received frame the device traverses through a series of decision trees that determine how the frame is
treated. The decision trees are composed of filter nodes. The tree traversal process starts with the root
nodes of the trees:
• If a filter node passes the match, its actions are performed.
• For drop action, the packet is dropped and the matching process for this frame stops. For any other

action, the frame matching process continues to its child nodes.
• If the filter node does not pass the match, the match does not proceed to the child nodes; however, the

match process for this frame continues for other filter trees.
• In any case, packets that were not dropped during the matching process continue with the other

(regular) network stack processing.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


FRAME_TYPE == µ0$1$*(0(17¶

FRAME_SUBTYPE != µ%($&21�(0x80)¶

DROP

FRAME_TYPE != µ0$1$*(0(17¶

DROP

www.ti.com Examples of Filter Use

177SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

10.3 Examples of Filter Use
This section provides some basic examples of filters. The examples do not represent a real use case
scenario, and their purpose is only to demonstrate and explain the structure of the Rx filters.

10.3.1 Example 1
The system has the following requirements:
• Receive only WLAN management beacon frames from all MAC addresses.

The following trees should be created:

Figure 10-3. Example 1

10.3.2 Example 2
The system has the following requirements:
• Receive WLAN data broadcast frames only from two specific MAC addresses.
• Do not receive WLAN unicast frames from a certain SRC_IP address range.
• If a unicast frame is received from MAC address AA.BB.CC.DD.EE.FF, increase counter_1.
• If a unicast frame is received from MAC address CC.HH.II.JJ.KK.LL, increase counter_2.
• If a unicast UDP frame is received from MAC address AA.BB.CC.DD.EE.FF or CC.HH.II.JJ.KK.LL,

pass only packets from port 5001.

The following filters should be created:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


DST_MAC_ADDR != µ%52$'&$67¶

SRC_IP_ADDR == 192.168.x.x

DROP

SRC_MAC_ADDR == µ$$:BB:CC:DD:EE:))¶

Counter1++

SRC_MAC_ADDR == µ**:HH:II:JJ:KK://¶

Counter2++

PROTOCOL == µ8'3¶

PORT != µ5001¶

DROP

DST_MAC_ADDR == µ%52$'&$67¶

FRAME_TYPE == µ'$7$¶

SRC_MAC_ADDR != µ$$:BB:CC:DD:EE:))¶

SRC_MAC_ADDR != µ**:HH:II:JJ:KK://¶

DROP

Combined OR

Filter Creation www.ti.com

178 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Figure 10-4. Example 2

10.4 Filter Creation
Application filters are created by the host application, and defined in a hierarchical way. The maximal
number of application filters is 50. Application filters can be created, removed, enabled, disabled, and
stored by the host application. During these operations, there are some transactional periods in which the
filters might behave differently than the final behavior (it is possible that some of the filters are disabled
and some enabled during these transactions). Therefore, TI recommends first creating each filter as
disabled, and then enabling all of them at once (one enable command).

Stored filters are created once, stored on the SFLASH, and then loaded by the device as part of the
device start-up.

Creating a basic Rx filter requires a definition for three attributes: trigger, rule, and actions. This
subsection describes these attributes and the additional parameters that are required by the creation
function (sl_WlanRxFilterAdd). The creation function requires the following parameters:
• FilterType
• Flags
• pRule
• pTrigger
• pAction
• pFilterId, return value of the function

10.4.1 Filter Type
There are two kinds of filters: the basic filter (header), and the combination filter.
• For the basic filter, the field should be set to SL_WLAN_RX_FILTER_HEADER.
• The SL_WLAN_RX_FILTER_COMBINATION filter type creates a combined filter, which defines the

compare function on one or two filters.

10.4.2 Filter Flags
The filter flag dictates the filter behavior, by a bit field, and the following flags are supported:
• SL_WLAN_RX_FILTER_BINARY – For creating a basic filter, usually the binary flag is set; a nonbinary

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Filter Creation

179SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

filter is supported for few filter types, and the nonbinary filter lets the user set the rule argument as a
string instead of binary values. See Section 10.4.4 for the filters that support the nonbinary filter.

• SL_WLAN_RX_FILTER_ENABLE – A filter can be enabled or disabled. A disabled filter is skipped
during the matcher process; for better performance for the filter creation, first create the set of the
required filters with the disable flag, and then, when all the filters have been created, enable all of them
with a single function call.

• SL_WLAN_RX_FILTER_PERSISTENT – A filter set with a persistent flag is saved to the SFLASH and
loads on each device reset. The act of saving the persistent filters to the flash is executed by calling
the sl_WlanSet function with the store command SL_WLAN_RX_FILTER_STORE.

10.4.3 Rule Structure for Header Filters
The rule structure describes the match criteria. The rule is a combination of:
• Field
• Argument
• Compare function

During the packet processing, the value of the frame field is compared with the value of the rule
arguments. For example:
• Destination IP is equal to 123.44.55.66 means:

– Field is destination IP.
– Argument is 123.44.55.66.
– Compare function is equal.

• Source MAC is different from 0x34567899 means:
– Field is source MAC.
– Argument is 0x34567899.
– Compare function is not equal.

• Frame length is higher than 500 and lower than 900 means:
– Field is frame length.
– Arguments is 500, 900.
– Compare function is in between.

The structure of the rule is a union which serves two type of rules: the header rule type and the
combination rule type. For rule of type SL_WLAN_RX_FILTER_HEADER, the structure used is
SlWlanRxFilterRuleHeader_t.

10.4.3.1 Field
The field value defines the field that is checked during the processing. The list of supported fields follows:
• SL_WLAN_RX_FILTER_HFIELD_FRAME_TYPE
• SL_WLAN_RX_FILTER_HFIELD_FRAME_SUBTYPE
• SL_WLAN_RX_FILTER_HFIELD_BSSID
• SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ ADDR
• SL_WLAN_RX_FILTER_HFIELD_MAC_DST_ADDR
• SL_WLAN_RX_FILTER_HFIELD_FRAME_LENGTH
• SL_WLAN_RX_FILTER_HFIELD_ETHER_TYPE
• SL_WLAN_RX_FILTER_HFIELD_IP_VERSION
• SL_WLAN_RX_FILTER_HFIELD_IP_PROTOCOL
• SL_WLAN_RX_FILTER_HFIELD_IPV4_SRC_ADDR
• SL_WLAN_RX_FILTER_HFIELD_IPV4_DST_ADDR
• SL_WLAN_RX_FILTER_HFIELD_IPV6_SRC_ADRR

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Filter Creation www.ti.com

180 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

• SL_WLAN_RX_FILTER_HFIELD_IPV6_DST_ADDR
• SL_WLAN_RX_FILTER_HFIELD_PORT_SRC
• SL_WLAN_RX_FILTER_HFIELD_PORT_DST
• SL_WLAN_RX_FILTER_HFIELD_L1_PAYLOAD_PATTERN
• SL_WLAN_RX_FILTER_HFIELD_L4_PAYLOAD_PATTERN

10.4.3.2 Compare Functions
A list of the supported compare functions follows:
• Equal – SL_WLAN_RX_FILTER_CMP_FUNC_EQUAL
• Not equal – SL_WLAN_RX_FILTER_CMP_FUNC_NOT_EQUAL_TO
• In between – SL_WLAN_RX_FILTER_CMP_FUNC_IN_BETWEEN; in this case, two arguments are

required.
• Not in between – SL_WLAN_RX_FILTER_CMP_FUNC_NOT_IN_BETWEEN; in this case, two

arguments are required.

Table 10-4 lists the possible compare function for per filter type.

Table 10-4. Possible Compare Functions

Header Rule Supported functions
== != <> !<>

SL_WLAN_RX_FILTER_HFIELD_FRAME_TYPE + + – –
SL_WLAN_RX_FILTER_HFIELD_FRAME_SUBTYPE + + + +
SL_WLAN_RX_FILTER_HFIELD_BSSID + + + +
SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ ADDR + + + +
SL_WLAN_RX_FILTER_HFIELD_MAC_DST_ADDR + + + +
SL_WLAN_RX_FILTER_HFIELD_FRAME_LENGTH + + + +
SL_WLAN_RX_FILTER_HFIELD_ETHER_TYPE + + + +
SL_WLAN_RX_FILTER_HFIELD_IP_VERSION + + + +
SL_WLAN_RX_FILTER_HFIELD_IP_PROTOCOL + + + +
SL_WLAN_RX_FILTER_HFIELD_IPV4_SRC_ADDR + + + +
SL_WLAN_RX_FILTER_HFIELD_IPV4_DST_ADDR + + + +
SL_WLAN_RX_FILTER_HFIELD_IPV6_SRC_ADRR + + + +
SL_WLAN_RX_FILTER_HFIELD_IPV6_DST_ADDR + + + +
SL_WLAN_RX_FILTER_HFIELD_PORT_SRC + + + +
SL_WLAN_RX_FILTER_HFIELD_PORT_DST + + + +
SL_WLAN_RX_FILTER_HFIELD_L1_PAYLOAD_PATTERN + – – –
SL_WLAN_RX_FILTER_HFIELD_L4_PAYLOAD_PATTERN + – – –

10.4.3.3 Rule Fields
A list of the header rule fields follows. Each field is described with its possible values, and in which system
state it is available (for system states, see Section 10.4.5).
• In Table 10-5, whenever ASCII parameters are used, the host code must set the filter flags as follows:

FilterFlags |= ~SL_WLAN_RX_FILTER_BINARY
• In Table 10-5, whenever byte stream parameters are used, the host code must set the filter flags as

follows: FilterFlags |= RX_FILTER_BINARY

Table 10-5 describes the rules types and their possible values.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Filter Creation

181SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Table 10-5. Rule Types

Field Argument Size Values
SL_WLAN_RX_FILTER_HFIELD_FRA
ME_TYPE

Rule.Args.Value.Frametype 1 0 for mgmt
1 for ctrl
2 for data
3 for reserved

Rule.Args.Value.FrametypeAscii 4 “MGMT”
“CTRL”
“DATA”

SL_WLAN_RX_FILTER_HFIELD_FRA
ME_SUBTYPE

Rule.Args.Value.FrameSubtype 1 0x00 ASSOCIATION REQ
0x10 ASSOCIATION
RESPONSE
0x20 REASSOCIATION REQ
0x30 REASSOCIATION
RESPONSE
0x40 PROBE REQ
0x50 PROBE RESPONSE
0x80 BEACON
0x90 ATIM
0xA0 DISASSOCIATION
0xB0 AUTHENTICATION
0xC0 DEAUTHENTICATION
0xD0 ACTION CTRL FRAMES
0x74 CONTROL WRAPPER
0x84 BLOCK ACK REQ
0x94 BLOCK ACK
0xA4 PS POLL
0xB4 RTS
0xC4 CTS
0xD4 ACK
0xE4 CF END
0xF4 CF END ACK
DATA FRAMES
0x08 DATA
0x18 DATA CF ACK
0x28 DATA CF POLL
0x38 DATA CF ACK POLL
0x48 NO DATA FRAME
0x58 CF ACK
0x68 CF POLL
0x78 CF ACK POLL
0x88 QOS DATA
0x98 QOS DATA CF ACK
0xA8 QOS DATA CF POLL
0xB8 QOS DATA CF ACK POLL
0xC8 QOS NO DATA FRAME
0xD8 QOS CF ACK
0xE8 QOS CF POLL
0xF8 QOS CF ACK POLL

SL_WLAN_RX_FILTER_HFIELD_BSS
ID

Rule.Args.Value.Bssid 6

SL_WLAN_RX_FILTER_HFIELD_MA
C_SRC_ ADDR

Rule.Args.Value.Mac 6

SL_WLAN_RX_FILTER_HFIELD_MA
C_DST_ADDR

Rule.Args.Value.Mac 6

SL_WLAN_RX_FILTER_HFIELD_FRA
ME_LENGTH

Rule.Args.Value.FrameLength 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Filter Creation www.ti.com

182 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Table 10-5. Rule Types (continued)
Field Argument Size Values

SL_WLAN_RX_FILTER_HFIELD_ETH
ER_TYPE

Rule.Args.Value.EtherType 4

SL_WLAN_RX_FILTER_HFIELD_IP_
VERSION

Rule.Args.Value.IpVersion 1

Rule.Args.Value.IpVersionAscii 4 “IPV4”
“IPV6”

SL_WLAN_RX_FILTER_HFIELD_IP_
PROTOCOL

Rule.Args.Value.IpProtocol 1 1 – ICMP (IPV4 Only)
2 - IGMP (IPV4 only)
6 – TCP
17 – UDP
58 – ICMPV6

Rule.Args.Value.IpProtocolAscii 5 “ICMP”
“ICMP6”
“IGMP”
“TCP”
“UDP

SL_WLAN_RX_FILTER_HFIELD_IPV
4_SRC_ADDR

Rule.Args.Value.Ipv4 4

SL_WLAN_RX_FILTER_HFIELD_IPV
4_DST_ADDR

Rule.Args.Value.Ipv4 4

SL_WLAN_RX_FILTER_HFIELD_IPV
6_SRC_ADRR

Rule.Args.Value.Ipv6 16

SL_WLAN_RX_FILTER_HFIELD_IPV
6_DST_ADDR

Rule.Args.Value.Ipv6 16

SL_WLAN_RX_FILTER_HFIELD_PO
RT_SRC

Rule.Args.Value.Port 4 1–65535

SL_WLAN_RX_FILTER_HFIELD_PO
RT_DST

Rule.Args.Value.Port 4 1–65535

SL_WLAN_RX_FILTER_HFIELD_L1_
PAYLOAD_PATTERN

Rule.Args.Value.Pattern.Offset 2

Rule.Args.Value.Pattern.Length 1
Rule.Args.Value.Pattern.Value 16

SL_WLAN_RX_FILTER_HFIELD_L4_
PAYLOAD_PATTERN

Rule.Args.Value.Pattern.Offset 2

Rule.Args.Value.Pattern.Length 1
Rule.Args.Value.Pattern.Value 16

10.4.3.4 Pattern-Matching Rule Fields
Pattern matching can be used to look for a specific payload on the frame. The SimpleLink Wi-Fi device
currently supports two types of pattern matching:
• L1 payload matching (L1_PAYLOAD_EXACT_PATTERN_FIELD). The offset is counted from the

beginning of the 802.11 MAC headers (that is, the frame control field). This is useful in transceiver
mode, but can also be used while connected.

• L4 payload matching (L4_PAYLOAD_EXACT_PATTERN_FIELD). The offset is counted from the
beginning of the TCP or UDP payload.

The inputs to this field header rule are as follows:
• Offset, or where to start checking for the requested pattern (offset can be set between 0x0 to 0x5ff)
• Length, or how many bytes: can be 1 to 16
• Pattern to compare with: can be up to 16 bytes
• Masking: bit masking on the pattern

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Filter Creation

183SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

Usage notes on pattern-matching filters:
• L4_PAYLOAD_EXACT_PATTERN_FIELD type filter only applies to STA or AP (not to transceiver

mode)
• L1_PAYLOAD_EXACT_PATTERN_FIELD type filter can be in any mode (such as to a STA in

transceiver mode or to a connected STA or to an AP)

Usage note for pattern matching while the device connected to TCP transmitter:

To ensure that an application frame arrives with high probability as sent by the transmitter host
application, use a long interval (and short time-out) between the TCP sends, because TCP by nature is a
streaming protocol. The TCP stack may aggregate or fragment frames into bytes, and send them in
accordance with the current network or receiver congestion conditions.

Therefore, when a stream of bytes representing an application frame is sent over a TCP socket of the
SimpleLink Wi-Fi device, there is no guarantee that this application frame will arrive in a single WLAN
frame, as when it was sent by the transmitter host to the SimpleLink device; in these cases, the filter may
not be relevant.

The following example demonstrates a definition of a rule that finds a frame from a specific MAC address.
In this example, the rule searches for the MAC address: 0x08, 0x09, 0x76, 0x54, 0x32, 0x45:
_u8 MacMAsk[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
_u8 MacAddress[6] = {0x08,0x09,0x76,0x54,0x32,0x45};

Rule.CompareFunc = SL_WLAN_RX_FILTER_CMP_FUNC_EQUAL_TO;
Rule.Field = SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ADDR;
memcpy( Rule.Args.Value.Mac[0], MacAddress, 6 );
memcpy( Rule.Args.Mask, MacMAsk , 6 );

The following example demonstrates a definition of a rule that finds a frame from a specific group of MAC
addresses by address mask. In this example, the rule searches for MAC addresses that end with 0x45:
_u8 MacMask[6] = {0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0xFF};
_u8 MacAddress[6] = {0x08,0x09,0x76,0x54,0x32,0x45};

Rule.CompareFunc = SL_WLAN_RX_FILTER_CMP_FUNC_EQUAL_TO;
Rule.Field = SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ADDR;
memcpy(Rule.Args.Value.Mac[0], MacAddress, 6);
memcpy(Rule.Args.Mask, MacMask , 6);

10.4.4 Rule Structure for Combined Filters
The rule for combined filters is built from the following parameters:
• Compare function: not, and, or, defines the compare method of the parent filters.
• Parent filters, the filters which are compared when the compare function is not only filter supplied.

The following example demonstrates a combined filter (the parent filters are already created):
SlWlanRxFilterRule_u RuleCombination;
RuleType = SL_WLAN_RX_FILTER_COMBINATION;
RuleCombination.Combination.CombinationFilterId[0] = ParentFilter1;
RuleCombination.Combination.CombinationFilterId[1] = ParentFilter2;
RuleCombination.Combination.Operator = SL_WLAN_RX_FILTER_COMBINED_FUNC_OR;

RetVal = sl_WlanRxFilterAdd( RuleType,
FilterFlags,
( const SlWlanRxFilterRule_u* const )&RuleCombination,
( const SlWlanRxFilterTrigger_t* const) &Trigger,
( const SlWlanRxFilterAction_t* const )&Action,
&FilterId);

10.4.5 Filter Trigger
The trigger is the environment conditions verified before the matcher tests the rule. If the environment is
not fulfilling, the rule is not tested and the matching result is FALSE.

A list of parameters that define a trigger follows:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Filter Creation www.ti.com

184 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

• Parent filter ID
• Connection state
• Role

The advance features of defining counters is related to the following fields:
• Counter
• Counter val
• Compare function

The following subsection describes the parameters required to create the filter trigger.

10.4.5.1 Parent Filter ID
The filter ID contains the ID of the parent filter; filters can be organized in a tree hierarchy.
• Setting ParenFilterId to 0 creates a root filter. All filters can be assigned as root.
• The parent filter ID is the ID of the filter which is the parent of the current filter.
• The filter rule is tested only if its parent match result is TRUE.

The parent filter can be from the same layer or a lower layer than the child filter.

The following defines the filter layer of each rule type.

Filter layers: The header rules can be specified in a tree form, but the rules must also preserve a layered
approach.

Therefore, a transport layer field (such as TCP or UDP source or destination ports) cannot be a parent of
a MAC header field (such as frame type).

Table 10-6 presents which groups of header rule types can be parents of other header rule types. The
general guideline is that the lower the communication layer to which the header rule filter applies, the
more filters can depend on this filter.

NOTE: When a filter contains a drop action, it cannot be a parent of any other filter, because if a
packet is dropped the tree traversal is stopped.

Table 10-6. Rule Types Layers

Group Rule Types Can be Parent of Rules from Group
A FRAME_TYPE

FRAME_SUBTYPE
BSSID_ADDRESS
MAC_SRC_ADDRESS
MAC_DST_ADDRESS
FRAME_LENGTH

A, B, C, D

B ETHER_TYPE
IP_VERSION
Multicast destination IPs (V4 and V6)
L1_PAYLOAD

B, C, D

C Source IP (V4 and V6)
Unicast destination IP (V4 and V6)
IP PROTOCOL field (UDP, TCP, ICMP,
IGMP, and so forth)

C, D

D Source port (UDP/TCP)
Destination port (UDP/TCP)
L4_PAYLOAD

D

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Filter Creation

185SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

10.4.5.2 Connection State and Role
The filter can be set to be tested only in specific connection state; for example, only in STA mode or only
in AP mode. The state in which the filter is considered is a combination of role and connection state.

Supported roles:
• SL_WLAN_RX_FILTER_ROLE_AP
• SL_WLAN_RX_FILTER_ROLE_STA
• SL_WLAN_RX_FILTER_ROLE_PROMISCUOUS (transceiver)
• SL_WLAN_RX_FILTER_ROLE_NULL

Supported connection states:
• SL_WLAN_RX_FILTER_STATE_STA_CONNECTED
• SL_WLAN_RX_FILTER_STATE_STA_NOT_CONNECTED
• SL_WLAN_RX_FILTER_STATE_STA_HAS_IP
• SL_WLAN_RX_FILTER_STATE_STA_HAS_NO_IP

Example of defining a filter which only works in transceiver mode:
/* Parent */
Trigger.ParentFilterID = parentId;

/* No counter is used, which is the common scenario */
Trigger.Counter = SL_WLAN_RX_FILTER_NO_TRIGGER_COUNTER;

/* Role is set to Transceiver mode */
Trigger.Role = SL_WLAN_RX_FILTER_ROLE_PROMISCUOUS;

/* The connection state is ignored since the filter works in the Transceiver mode */
Trigger.ConnectionState = SL_WLAN_RX_FILTER_STATE_STA_CONNECTED;

Example of defining a filter which only works in STA mode after the IP is acquired:
/* Parent */
Trigger.ParentFilterID = parentId;

/* No counter is used, which is the common scenario */
Trigger.Counter = SL_WLAN_RX_FILTER_NO_TRIGGER_COUNTER;

/* Connection state and role, role is STA */
Trigger.Role = SL_WLAN_RX_FILTER_ROLE_STA;

/* Works only in case ip is acquired */
Trigger.ConnectionState = SL_WLAN_RX_FILTER_STATE_STA_HAS_IP;

Example of defining a filter which only works in STA mode:
/* Parent */
Trigger.ParentFilterID = parentId;

/* No counter is used, which is the common scenario */
Trigger.Counter = SL_WLAN_RX_FILTER_NO_TRIGGER_COUNTER;

/* Connection state and role, role is STA */
Trigger.Role = SL_WLAN_RX_FILTER_ROLE_STA;

/* Work on any connection state */
Trigger.ConnectionState =
SL_WLAN_RX_FILTER_STATE_STA_CONNECTED |
SL_WLAN_RX_FILTER_STATE_STA_NOT_ CONNECTED |
SL_WLAN_RX_FILTER_STATE_STA_HAS_IP |
SL_WLAN_RX_FILTER_STATE_STA_HAS_NO_IP;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Filter Creation www.ti.com

186 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

10.4.5.3 Filter During Transceiver Mode
In case of transceiver mode filtering, the transceiver socket receive function must be invoked for receiving
frames; the function triggers the device to start the receiving of Rx frames. Once the device receives
frames, the frames are processed by the Rx filter marcher. The socket receive opens a datagram in raw
socket. In transceiver mode, TCP and UDP frames are carried over fragmented IPv4 or IPv6 datagrams,
and therefore are not filtered on L4 ports or on payload.

10.4.6 Rx Filter Action
The actions execute if the filter trigger and the filter rule are matched. Each filter can be defined with
several actions.

The following actions are supported:
• SL_WLAN_RX_FILTER_ACTION_NULL, no action
• SL_WLAN_RX_FILTER_ACTION_DROP, drop the packet
• SL_WLAN_RX_FILTER_ACTION_EVENT_TO_HOST, send event

The following actions are relevant to the counters feature:
• SL_WLAN_RX_FILTER_ACTION_ON_REG_INCREASE
• SL_WLAN_RX_FILTER_ACTION_ON_REG_DECREASE
• SL_WLAN_RX_FILTER_ACTION_ON_REG_RESET

The following subsection describes the event actions.

10.4.6.1 Send Events Action
A typical usage for the send event capability is to perform wake on WLAN (that is, to wake the host on a
specific packet matching a filter).

Events can be sent from the SimpleLink Wi-Fi device to the host as a result of a matched Rx filter.

The event action arguments (Action.UserId) define the bit number set in the triggered event.

The supported ID range is from 0 to SL_RX_FILTER_MAX_USER_EVENT_ID (=63).

A single host event aggregates all the events actions which have been triggered for a single frame. The
aggregation is based on the filter groups, as described in rule types. Examples follow.

10.4.6.2 Multiple Bits Set on the Same Event
Consider the following case:
• Source IP has event action with argument ID X.
• Destination IP has event action with argument ID Y.
• Both header rule fields are from the same group C.
• A received frame passes both filters.

This results in a single host event with bit X and bit Y set.

10.4.6.3 Multiple Events From the Same Rx Frame
Consider the following case:
• Src MAC (group A) has event action with arg ID X.
• Dest IP Y (group C) has event action with arg ID.
• A received frame passes both filters.

This results in two host events: event with bit X set and event with bit Y set.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Filter Creation

187SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

10.4.6.4 Code Example
In the following code example, the event ID is set in byte 3 of the action arguments and may be set to a
value between 0 and SL_RX_FILTER_MAX_USER_EVENT_ID (=63).

The code example for adding a filter with an event (the event input is highlighted in yellow, and the event
output parsing is highlighted in gray):
void AddSomeFilters()
{

// declerations
SlWlanRxFilterID_t FilterId;
SlWlanRxFilterRuleType_t RuleType;
SlWlanRxFilterFlags_u FilterFlags;
SlWlanRxFilterRuleHeader_t Rule;
SlWlanRxFilterTrigger_t Trigger;
SlWlanRxFilterAction_t Action;
...
// here comes the code for adding a header rule filter
...

// now for events args setting.
// request an event as one of the actions to perform
Action.Type = SL_WLAN_RX_FILTER_ACTION_EVENT_TO_HOST;
// The output of the event is to set bit number (in this case it is bit 2).
Action.UserId = 2;

...
// finally the code to add the event.

RetVal = sl_WlanRxFilterAdd(
RuleType,
FilterFlags,
( const SlWlanRxFilterRule_u* const )&Rule,
( const SlWlanRxFilterTrigger_t* const)&Trigger,
( const SlWlanRxFilterAction_t* const )&ction,
&FilterId);

// rx filters events handling is a specific case in the WLAN events handling
void SLWlanEventHandler(SlWlanEvent_t *pWlanEventHandler)
{

int i = 0;

switch(pWlanEventHandler->Id)
{

case SL_WLAN_EVENT_CONNECT:
break;

case SL_WLAN_EVENT_STA_ADDED:
break;

case SL_WLAN_EVENT_DISCONNECT:
break;

case SL_WLAN_EVENT_RXFILTER:
{

SlWlanEventRxFilterInfo_t *pEventData =
(SlWlanEventRxFilterInfo_t *)&pWlanEventHandler->Data;

/*
printf("\n\nRx filter event %d, event type = %d

\n",g_RxFilterEventsCounter,pEventData->Type);
for(i = 0;i < 64;i++)
{

if(SL_WLAN_ISBITSET8(pEventData->UserActionIdBitmap,i))
{

printf("User action %d filter event
arrived\n",i);

}
}

*/
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Managing Filters www.ti.com

188 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

break;
}

}

10.4.6.5 Counter Action
Two sets of filter counters can be used. Each counter is associated with a filter type groups (see rule
types layers).

The counter ID that can be used for each rule layer follows:
• RX_FILTER_COUNTER1-4: can be used with filters from groups C-D
• RX_FILTER_COUNTER5-8: can be used with filters from groups A-B

10.5 Managing Filters
Manage the filters performed by calling the regular sl_WlanSet and sl_WlanGet APIs. The available
operations contain:
• Enable and disable
• Remove
• Save
• Update

To manage several filters simultaneously, the SimpleLink Wi-Fi device receives a bit field of the filters that
the operation should take on. This bit field contains up to 128 bits. The following macro can be used to
define a correct bit for a filter ID:
SL_WLAN_SETBIT8 (BitField.FilterIdMask, FilterId);

For example, to set the operation on filter 1 and filter 35, the macro should be called twice:
SL_WLAN_SETBIT8 (FilterIdMask, 1);
SL_WLAN_SETBIT8 (FilterIdMask, 35);

If the filter is not defined or created, the SimpleLink Wi-Fi device ignores its bit on the bit field mask.
Therefore, operations can be performed with a bit field of all 1s.

NOTE: TI highly recommends updating the Rx filters while the sockets are closed.

10.5.1 Enable and Disable Filters
TI recommends creating a filter as a disable, and then enable all the relevant filters at once. A filter with its
corresponding bit is set to 1 is enabled, and a filter in which its corresponding bit is set to 0 is disabled;
filters which are not defined are ignored.

To enable or disable filters, call the sl_WlanSet API with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_STATE

Example:
_u16 Size = sizeof(SlWlanRxFilterRetrieveStateBuff_t);
_u16 opt = SL_WLAN_RX_FILTER_STATE;
RetVal = sl_WlanGet( SL_WLAN_RX_FILTERS_ID, &opt , &Size ,

(unsigned char *)&RxFilterIdBitField);
SL_WLAN_CLEARBIT8(OutputBuff.FilterIdMask,selectedfilter);
RetVal = sl_WlanSet( SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_STATE,

sizeof(SlWlanRxFilterOperationCommandBuff_t),
(unsigned char*)&RxFilterIdBitField);

10.5.2 Get Filter Status
To get the enable status of filters, call the sl_WlanGet API with the following arguments:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Managing Filters

189SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Rx Filters

• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_STATE

Example:
_u16 Size = sizeof(SlWlanRxFilterRetrieveStateBuff_t);
_u16 opt = SL_WLAN_RX_FILTER_STATE;

RetVal = sl_WlanGet( SL_WLAN_RX_FILTERS_ID, &opt ,(_u16*)&Size , (_u8*)&RxFilterIdBitField );

10.5.3 Removing a Filter
Removing a filter is started by removing the filters from the active filters list. If the filter is persistent,
removing it alone is not enough, and the STORE operation must also be called.

In this command, filters with bits set to 1 are removed, and filters with bits set to 0 or filters which are not
defined are ignored.

To remove filters, call the sl_WlanSet API with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_REMOVE

10.5.4 Storing Filters into the SFLASH
The filters are not stored on the storage automatically. This operation must be initiated by the host. In this
command, filters where a persistent bit is set are stored. The stored filters are loaded each time the device
is started.

To store the filters, call the sl_WlanSet command with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_STORE

Example:
retVal = sl_WlanSet(SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_STORE, 0, NULL);

10.5.5 Update Filter Arguments
To update the rule attributes of an existing filter, call the sl_WlanSet command with the following
arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_UPDATE_ARGS

Example:
memcpy(updateFilterBuff.Args.Value.Bssid[0], filterData, 6);
memcpy(updateFilterBuff.Args.Mask, MacMAsk, 6);

updateFilterBuff.FilterId = FilterId;
updateFilterBuff.BinaryOrAscii = 1;
retVal = sl_WlanSet(SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_UPDATE_ARGS,

sizeof(SlWlanRxFilterUpdateArgsCommandBuff_t),
(unsigned char *) &updateFilterBuff);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


190 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Ping

Chapter 11
SWRU455E–February 2017–Revised February 2018

Ping

Topic ........................................................................................................................... Page

11.1 General Description ......................................................................................... 191
11.2 Start and Stop Ping........................................................................................... 191
11.3 Limitations....................................................................................................... 192

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com General Description

191SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Ping

11.1 General Description
Ping is a network utility, part of the device internal network utilities, which verifies if a particular IP address
exists. This utility is based on the ICMP (control message protocol), and sends an echo request to a
specified entity in the network and waits for a reply. Ping supports IPv4 and IPv6 standards. This utility
can be used to test connectivity and determine the round trip time.

11.2 Start and Stop Ping
The same API starts and stops the ping process. To stop the ping process, apply value 0 in the IP field.
The following parameters can be configured in the ping start command:
• Ping parameters – holds configuration regarding the ping command:

– Ping interval time: interval between ping packets, in ms
– Ping size: ping packet size
– Ping request time-out: time-out time for every ping, in ms
– Total number of attempts: number of ping requests. 0 indicates infinite.
– Flags: flag options are as follows:

• 0 – send ping report only when finishing transmitting all the requests
• 1 – send ping report for every ping request
• 2 – stop ping after one successful ping request (received reply)
• 4 – Do not fragment the ping packet. This flag can be set with other flags.

– IP: destination IPv4\IPv6 address. In case of IPv4, use this field only.
– Ip1OrPadding: destination IPv6 address
– Ip2OrPadding: destination IPv6 address
– Ip3OrPadding: destination IPv6 address

• Family – specifies the protocol family IPv4 or IPv6
• Report – Return value. If callback is not set, the API is blocked until the ping report is received. Hold

information regarding the results of the ping request and include the following parameters:
– Packets sent – number of sent ping requests
– Packets received – number of received ping replied
– Min round time – shortest round time, in ms
– Max round time – longest round time, in ms
– Average round time – average round time, in ms
– Test time – total time the test took, in ms

• Ping callback – optional parameter. If the callback is provided, the API does not block, and immediately
returns. When results are available, the callback is called. If it is not implemented, NULL should be
placed and API blocks, until the results are ready.

Example of sending an IPV4 ping request with a report for every successful ping:
_i16 Status;
SlNetAppPingReport_t report;
SlNetAppPingCommand_t pingCommand;

pingCommand.Ip = SL_IPV4_VAL(10,1,1,200); /* destination IP address is 10.1.1.200 */
pingCommand.PingSize = 150; /* size of ping, in bytes */
pingCommand.PingIntervalTime = 100; /* delay between pings, in milliseconds */
pingCommand.PingRequestTimeout = 1000; /* timeout for every ping in milliseconds */
pingCommand.TotalNumberOfAttempts = 20; /* number of ping requests */
pingCommand.Flags = 0; /* report only when finished */

Status = sl_NetAppPing( &pingCommand, SL_AF_INET, &report, NULL );
if (Status)
{

/* error */
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Limitations www.ti.com

192 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Ping

Example of stopping the ping request:
_i16 Status;
SlNetAppPingCommand_t pingCommand;

pingCommand.Ip = 0;
Status = sl_NetAppPing( &pingCommand, SL_AF_INET, &report, NULL ) ;
if (Status)
{

/* error */
}

Example of sending an IPV6 infinite ping request:
_i16 Status;
SlNetAppPingReport_t report;
SlNetAppPingCommand_t pingCommand;

pingCommand.Ip = 0xFF020000; /* IPV6 Address */
pingCommand.Ip1OrPadding = 0; /* IPV6 Address */
pingCommand.Ip2OrPadding = 0; /* IPV6 Address */
pingCommand.Ip3OrPadding = 0xFB; /* IPV6 Address */
pingCommand.PingSize = 150; /* size of ping, in bytes */
pingCommand.PingIntervalTime = 100; /* delay between pings, in milliseconds */
pingCommand.PingRequestTimeout = 1000; /* timeout for every ping in milliseconds */
pingCommand.TotalNumberOfAttempts = 0; /* max number of ping requests. 0 - forever */
pingCommand.Flags = 0; /* report only when finished */

Status = sl_NetAppPing( &pingCommand, SL_AF_INET6, &report, NULL ) ;
if (Status)
{

/* error */
}

11.3 Limitations
An infinite number of ping requests can be implemented only with a callback.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


193SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

Chapter 12
SWRU455E–February 2017–Revised February 2018

Transceiver

Topic ........................................................................................................................... Page

12.1 Introduction ..................................................................................................... 194
12.2 Key Features.................................................................................................... 194
12.3 Configurations and Setting ................................................................................ 194

12.3.1 Open Transceiver Socket ........................................................................... 194
12.3.2 Close Transceiver Socket........................................................................... 195
12.3.3 Send Data............................................................................................. 195
12.3.4 Receive Data ......................................................................................... 196

12.4 Internal Packet Generator .................................................................................. 196
12.5 CW.................................................................................................................. 197
12.6 Changing Socket Properties .............................................................................. 197

12.6.1 Change Operating Channel ........................................................................ 197
12.6.2 Change Default PHY Data Rate ................................................................... 198
12.6.3 Change Tx Power.................................................................................... 199
12.6.4 Change Number of Frames to Transmit (Internal Packet Generator)......................... 199
12.6.5 Change 802.11b Preamble ......................................................................... 199
12.6.6 Set CCA Threshold .................................................................................. 199
12.6.7 Set Tx Frames Time-out ............................................................................ 200
12.6.8 Enable or Disable Sending ACKs.................................................................. 200

12.7 Limitations....................................................................................................... 200

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

194 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

12.1 Introduction
The transceiver mode is a powerful tool that gives the ability to send and receive any raw data in Layer 2.
The user can use the entire frame, including the 802.11 header (excluding duration field), to receive and
transmit its own data. Transceiver mode is only enabled when the SimpleLink Wi-Fi device is not
connected to an AP. Receiving packets in transceiver mode is enabled only after the first call to the
sl_Recv API. Before this call, no packets can be received. By default, there is no frame
acknowledgements or retries; therefore, there are no promises that the frames reach their destination
(when working in L1 mode, it is also not ensured that there will be no collision with other frames or with
other interference).

One common use case for transceiver mode applications is for transmitting the same packet in continues.
This is used mostly for tagging and for measuring loss, using the RX statistics feature. Another use case
can be promiscuous mode, such as with as a sniffer.

12.2 Key Features
Table 12-1 lists the key features of the transceiver.

Table 12-1. Key Features

Key Features Description
TX\RX Layer 1 raw data Send and receive any L1 raw data
TX\RX Layer 2 raw data Send and receive any L2 raw data
Internal Packer Generator The device can auto-generate packet internally with infinite

transmission.
CW Carrier-wave signal transmission

12.3 Configurations and Setting
Host driver commands are used to start and operate the transceiver mode.

NOTE: To use transceiver mode, the device must be set in STA role, be disconnected, and have
disabled previous connection policies that might try to automatically connect to an AP.

Example:
_i16 Status;
Status = sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,0,0),NULL,0);
if( Status )
{

/* error */
}
Status = sl_WlanDisconnect();
if( Status )
{

/* error */
}

12.3.1 Open Transceiver Socket
Only a single transceiver socket is supported. To start the transceiver mode, use the sl_Socket API with
the following arguments:
• Domain – Set to SL_AF_RF; indicates transceiver mode socket. Configure this value as the family

parameter.
• Type – Set to one of the following options:

– SL_SOCK_RAW – Indicates an L1 mode raw socket (no respect for 802.11 medium access policy -
CCA)

– SL_SOCK_DGRAM – Indicates an L2 mode raw socket (respecting 802.11 medium access
policies)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Configurations and Setting

195SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

• Channel – Used for configuring the operational channel from which the device should start receiving or
transmitting traffic. If the channel is set to 0, the channel is set as the last transceiver channel used. If
this is the first time the transceiver socket is open, a channel should be applied by the sl_SetSockOpt
operation, or by the flags parameter in the sl_Send operation.

This command must be called only when the device is in STA role and disconnected. The command
returns the socket ID, which is used from now on to reference the socket. If there is a problem with the
socket, the command returns a negative error code.

Example:
_i16 sd;
_i16 channel = 6;

sd = sl_Socket(SL_AF_RF ,SL_SOCK_RAW/SL_SOCK_DGRAM, channel);

12.3.2 Close Transceiver Socket
The sl_Close API is used to close the transceiver mode.

Example:
_i16 Status, sd;

Status = sl_Close(sd);
if( Status )
{

/* error */
}

12.3.3 Send Data
Transmitting raw socket data is done by calling sl_Send after successfully opening the transceiver socket.
The API return value is the number of bytes sent, or negative value in case of an error.

The SimpleLink Wi-Fi device allows the option to set the following parameters as part of the send
operation as part of the flags parameter:
• Channel
• Rate
• Tx Power
• 802.11b preamble

The flags parameters given as part of the sl_Send API are valid only for this specific send operation, and
are not kept for any further operation. If the flag parameter is set to 0, the default values remain. These
parameters can also be set through the sl_SetSockOpt API, as specified in the example that follows.

NOTE: These parameters have no default values, and therefore must be set through the sl_Send
API or sl_SetSockOpt, as specified below.

Example: transmit a frame on channel 1, with 1-MBps data rate, maximum TX power and long preamble:
void sendPacket(char * data)
{

/* Base frame: */
#define FRAME_TYPE 0x88
#define FRAME_CONTROL 0x00
#define DURATION 0xc0,0x00
#define RECEIVE_ADDR 0x08, 0x00, 0x28, 0x5A, 0x72, 0x3C
#define TRANSMITTER_ADDR 0x08, 0x00, 0x28, 0x5a, 0x78, 0x1e
#define BSSID_ADDR 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
#define FRAME_NUMBER 0x00, 0x00
#define QOS_CTRL 0x00, 0x00

_i32 NumOfBytes =0;
_i32 sock=0;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Configurations and Setting www.ti.com

196 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

/* MAC header */
char buff[1536];
char FrameBaseData[] = {
FRAME_TYPE, /* version, type sub type */
FRAME_CONTROL, /* Frame control flag */
DURATION, /* duration */
RECEIVE_ADDR, /* Receiver ADDr */
TRANSMITTER_ADDR, /* Transmitter Address */
BSSID_ADDR, /* destination */
FRAME_NUMBER, /* Frame number */
QOS_CTRL}; /* Transmitter */

memcpy(buff,FrameBaseData,sizeof(FrameBaseData));
memcpy (buff + sizeof(FrameBaseData), data, sizeof(buff ) -

sizeof(FrameBaseData));/* Example data */
sock = sl_Socket(SL_AF_RF, SL_SOCK_RAW, 1);
NumOfBytes = sl_Send(sock,buff,sizeof(buff),SL_WLAN_RAW_RF_TX_PARAMS(CHANNEL_1,

SL_WLAN_RATE_1M,0,SL_WLAN_LONG_PREAMBLE));
}

12.3.4 Receive Data
Receiving raw socket data is done by calling sl_Recv after successfully opening the transceiver socket.
The API return value is the number of bytes received, or a negative value in case of an error. Each
receive packet has an 8-byte proprietary header which includes the following parameters:
• Rate – packet received rate
• Channel – packet received channel
• RSSI – computed RSSI value in dBm of current frame
• Time Stamp – frame timestamp in µs

If the packet is longer than the receive buffer, the remainder of the packet is discarded. The maximum
packet size which can be received is 1544 (1536 bytes of data and 8 bytes of proprietary header).

Example:
_i16 NumOfByets;
signed char buf [1000];
_i16 Soc;
_i16 channel = 6;
_i16 len = 1000;

Soc = sl_Socket(SL_AF_RF ,SL_SOCK_RAW, channel);
NumOfByets = sl_Recv(Soc, buf,500,0);

12.4 Internal Packet Generator
The SimpleLink Wi-Fi device can internally generate packets in transceiver mode. The device is capable
of repeating a user-predefined pattern of data.

Before calling sl_Send, you must set the number of frames using the sl_SetSockOpt API to the number of
frames desired to be transmitted (0 means infinite number of frames).

A single call to the sl_Send API triggers the frames transmission. The SimpleLink Wi-Fi device keeps
transmitting until it has sent all the requested frames, or until the socket is closed or another socket
property changes (through sl_SetSockOpt). Receiving packets operation is available during the send
operation. Setting the number of frames to transmit to 1 returns the socket to the regular transceiver
socket state.

Example of transmitting multiple data packets:
void sendPacket(char * data)
{

/* Base frame: */
#define FRAME_TYPE 0x88
#define FRAME_CONTROL 0x00
#define DURATION 0xc0,0x00

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com CW

197SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

#define RECEIVE_ADDR 0x08, 0x00, 0x28, 0x5A, 0x72, 0x3C
#define TRANSMITTER_ADDR 0x08, 0x00, 0x28, 0x5a, 0x78, 0x1e
#define BSSID_ADDR 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
#define FRAME_NUMBER 0x00, 0x00
#define QOS_CTRL 0x00, 0x00

_i32 NumOfBytes =0;
_i32 Soc=0;
_i16 Status =0;
_u32 numFrames=20;

/* Mac header */
char buff[1536];
char FrameBaseData[] = {
FRAME_TYPE, /* version, type sub type */
FRAME_CONTROL, /* Frame control flag */
DURATION, /* duration */
RECEIVE_ADDR, /* Receiver ADDr */
TRANSMITTER_ADDR, /* Transmitter Address */
BSSID_ADDR, /* destination */
FRAME_NUMBER, /* Frame number */
QOS_CTRL}; /* Transmitter */

memcpy(buff,FrameBaseData,sizeof(FrameBaseData));
/* Example data */

memcpy (buff + sizeof(FrameBaseData), data, sizeof(buff ) - sizeof(FrameBaseData));
Soc = sl_Socket(SL_AF_RF, SL_SOCK_RAW, 1);
/* Set 20 frames to transmit */
Status = sl_SetSockOpt(Soc, SL_SOL_PHY_OPT,SL_SO_PHY_NUM_FRAMES_TO_TX,

&numFrames,sizeof(numFrames));
if (Status)
{

/* Error */
}
/* Send 20 packet with the same buffer */
NumOfBytes = sl_Send(Soc,buff,sizeof(buff),SL_WLAN_RAW_RF_TX_PARAMS(CHANNEL_1,

SL_WLAN_RATE_1M,1, SL_WLAN_LONG_PREAMBLE));
}

12.5 CW
The SimpleLink Wi-Fi device can transmit infinite carrier-wave signals using the sl_Send API, with NULL
buffer and 0 (zero) length.

The flags parameter in the sl_Send API is used to signal the tone offset (–25 to 25).

The CW is continuously transmitted until stopped. Stopping CW transmission is done by triggering another
sl_Send API with flags= –128 (decimal).

12.6 Changing Socket Properties
The SimpleLink Wi-Fi device offers multiple transceiver socket configurations by using the sl_SetSockOpt
API. All configurations must be set after successfully opening the socket. The configurations are not
persistent, and are deleted after the socket is closed.

12.6.1 Change Operating Channel
Change the transceiver operational channel if changing the channel during packet transmission results in
changing the channel, only after all packet transmission completes.

Example:
_i16 Status;
_i16 channel = 9;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Changing Socket Properties www.ti.com

198 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

Status = sl_SetSockOpt(soc, SL_SOL_SOCKET, SL_SO_CHANGE_CHANNEL, &channel,sizeof(channel));
if (Status)
{

/* Error */
}

NOTE: The channel parameter has no default value, and therefore must be set when opening the
socket, through the sl_Send operation, or through sl_SetSockOpt, as specified in this
section.

12.6.2 Change Default PHY Data Rate
Change the WLAN transmit rate. The values can be one of the following:
• SL_WLAN_RATE_1M = 1
• SL_WLAN_RATE_2M = 2
• SL_WLAN_RATE_5_5M = 3
• SL_WLAN_RATE_11M = 4
• SL_WLAN_RATE_6M = 6
• SL_WLAN_RATE_9M = 7
• SL_WLAN_RATE_12M = 8
• SL_WLAN_RATE_18M = 9
• SL_WLAN_RATE_24M = 10
• SL_WLAN_RATE_36M = 11
• SL_WLAN_RATE_48M = 12
• SL_WLAN_RATE_54M = 13
• SL_WLAN_RATE_MCS_0 = 14
• SL_WLAN_RATE_MCS_1 = 15
• SL_WLAN_RATE_MCS_2 = 16
• SL_WLAN_RATE_MCS_3 = 17
• SL_WLAN_RATE_MCS_4 = 18
• SL_WLAN_RATE_MCS_5 = 19
• SL_WLAN_RATE_MCS_6 = 20
• SL_WLAN_RATE_MCS_7 = 21

Example:
_i16 Status;
_i16 rate = SL_WLAN_RATE_1M;

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_RATE, &rate, sizeof(rate));
if (Status)
{

/* Error */
}

NOTE: The PHY data rate parameter has no default value, and therefore must be through the
sl_Send operation or through sl_SetSockOpt, as specified in this section.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Changing Socket Properties

199SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

12.6.3 Change Tx Power
Setting the Tx power lets the user change the transmission power relative to the maximum Tx power. The
values represent steps 0 to 15, which reflect as dBm offset from maximum power (0 means MAX power).
For more information, see Chapter 3.

Example:
_i16 Status;
_u32 TxPower = 1; /* valid range is 1-15 */

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_TX_POWER, &TxPower, sizeof(TxPower));
if (Status)
{

/* Error */
}

NOTE: The Tx power parameter has no default value, and therefore must be through the sl_Send
operation or sl_SetSockOpt, as specified in this section.

12.6.4 Change Number of Frames to Transmit (Internal Packet Generator)
The RAW socket packet generator sets the number of frames to transmit in the internal packet generator.

Example:
_i16 Status;
_u32 NumFrames = 10;

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_NUM_FRAMES_TO_TX, &NumFrames,
sizeof(NumFrames));
if (Status)
{

/* Error */
}

12.6.5 Change 802.11b Preamble
Set Long or Short WLAN PHY preamble for 802.11b rates only. Set 1 for short preamble or 0 for long.

Example:
_u32 preamble = 1; /* set short preamble */
_i16 Status;

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_PREAMBLE, &preamble, sizeof(preamble));
if (Status)
{

/* Error */
}

NOTE: The 802.11b preamble parameter has no default value, and therefore must be through the
sl_Send operation or sl_SetSockOpt, as specified in this section.

12.6.6 Set CCA Threshold
The CCA threshold can be configured to set the specific threshold when the channel is considered as
occupied. The following values can be set:
• SL_TX_INHIBIT_THRESHOLD_MIN (–88 dBm)
• SL_TX_INHIBIT_THRESHOLD_LOW (–78 dBm)
• SL_TX_INHIBIT_THRESHOLD_DEFAULT (–68 dBm)
• SL_TX_INHIBIT_THRESHOLD_MED (–58 dBm)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Changing Socket Properties www.ti.com

200 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Transceiver

• SL_TX_INHIBIT_THRESHOLD_HIGH (–48 dBm)
• SL_TX_INHIBIT_THRESHOLD_MAX (–38 dBm)

Example:
_i16 Status;
_u32 thrshld = SL_TX_INHIBIT_THRESHOLD_MED;

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_TX_INHIBIT_THRESHOLD,
&thrshld,sizeof(thrshld));
if (Status)
{

/* Error */
}

12.6.7 Set Tx Frames Time-out
Tx time-out for transceiver frames (lifetime) can be set. The value is given in ms (maximum value is 100
ms).

Example:
_i16 Status;

_u32 TimeOut = 50;

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_TX_TIMEOUT,&TimeOut,sizeof(TimeOut));
if (Status)
{

/* Error */
}

12.6.8 Enable or Disable Sending ACKs
Enable or disable sending ACKs in transceiver mode (enable = 1, disable = 0). This option is disabled by
default.

Example:
_i16 Status;
_u32 Acks = 1; /* 0 = disabled / 1 = enabled */

Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_ALLOW_ACKS ,&Acks, sizeof(Acks));
if (Status)
{

/* Error */
}

12.7 Limitations
• Only one transceiver socket is supported in the system.
• Transceiver mode is available in STA mode only.
• Length of a received packet is trimmed if it exceeds 1536 bytes of data. Each packet includes the 8

bytes of proprietary header. Therefore, the receive buffer should be set to a maximum of 1544 bytes.
• Cannot transmit a frame over 1536 total bytes (including any header) and below 14 bytes (shortest

MAC header).
• Transceiver mode is not available in connected mode. Auto-connection mode is also considered as

connected mode, even if not connected.
• sl_SendTo and sl_RecvFrom are not available in transceiver mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


201SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Power Managment

Chapter 13
SWRU455E–February 2017–Revised February 2018

Power Managment

Topic ........................................................................................................................... Page

13.1 Introduction ..................................................................................................... 202
13.1.1 LPDS .................................................................................................. 202
13.1.2 802.11 Power Save.................................................................................. 202
13.1.3 Low Power versus Latency ......................................................................... 202
13.1.4 Power Modes versus Device Modes .............................................................. 202

13.2 Key Features.................................................................................................... 202
13.3 Configurations and Settings .............................................................................. 203

13.3.1 Changing Power Policy ............................................................................. 203
13.3.2 Enabling Fast Connect .............................................................................. 203

13.4 Network Applications and Power Consumption.................................................... 203
13.4.1 mDNS ................................................................................................. 203
13.4.2 HTTP Server.......................................................................................... 203

13.5 Design Guidelines ............................................................................................ 204
13.5.1 LSI and Packet Loss ................................................................................ 204
13.5.2 PHY Calibration Mode............................................................................... 204

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

202 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Power Managment

13.1 Introduction

13.1.1 LPDS
Whenever possible, the SimpleLink device strives to enter and remain in its low-power state (LPDS). In
this state, most of its clocks and logic are powered down, and only the memory and basic supervision
circuitry are enabled, which leads to low power consumption. The host interface is designed such that
entering and exiting LPDS is completely transparent to the host. The host may initiate a new command at
any time, regardless of the power state of the device.

13.1.2 802.11 Power Save
When the device is in station mode and connected to an access point, it automatically tries to use the
power-save mechanism defined in the 802.11 standard. This mechanism allows entering into low-power
mode while maintaining a connection to the access point.

13.1.2.1 LSI (Long Sleep Interval)
The 802.11 power-save feature lets the device remain in low-power mode without the risk of missing data
destined to it (including network broadcast data). It is achieved by sending all broadcast data after a DTIM
beacon. The transmission time of this beacon is known in advance to the SimpleLink device, which wakes
it up in time for the traffic. When the device is in LSI mode, the device only wakes up for a single
broadcast period within the time interval specified by the user. This process allows further power
reduction, but may cause the device to miss broadcast data on the network.

13.1.3 Low Power versus Latency
Both the LPDS and 802.11 power-save features have an overhead, which causes an increased latency in
data transmission and reception. The user may optimize the device for low latency instead of low power
by changing the power policy of the system, as described in Section 13.3.1. Table 13-1 summarizes the
available policies and their effect on power and latency.

Table 13-1. Power and Latency

Policy LPDS 802.11 Power Save Device Power Saving Device Latency
Always On Disabled Disabled None Minimal
Low Latency Enabled High entry threshold Low Low
Normal Enabled Normal entry threshold Medium Medium
Low Power Enabled Low entry threshold High High
LSI Enabled Entry threshold set by

user
Highest Highest

13.1.4 Power Modes versus Device Modes
The low-power policies of the SimpleLink device are only available when it is in STA and P2P client mode.
Once the device is put into AP or P2P group owner mode, the power-management profile is forced to
always on.

13.2 Key Features
Table 13-2 lists the key power management features.

Table 13-2. Key Features

Key Features Description
Auto-power management The SimpleLink device has advanced internal power-management logic that puts it

in LPDS (low-power deep sleep) in a manner transparent to the host.
802.11 Power save Use of the power-save feature of the 802.11 standard allows the device to consume

very little power while maintaining a connection to an access point.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Configurations and Settings

203SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Power Managment

Table 13-2. Key Features (continued)
Key Features Description

Power-optimized out of the box Device is power-optimized by default. No configuration by the host is necessary to
activate these features.

Fast connect Can connect to the last known network without performing a WLAN scan, which
dramatically decreases connection time and saves power.

13.3 Configurations and Settings

13.3.1 Changing Power Policy
Power policy is changed through the generic sl_WlanPolicySet API, as shown in Table 13-3.

Table 13-3. Power Policy

Desired Policy API Parameters
Type Policy pVal ValLen

Normal (default) SL_POLICY_PM SL_NORMAL_POLICY NULL 0
Low Latency SL_POLICY_PM SL_LOW_LATENCY_POLICY NULL 0
Low Power SL_POLICY_PM SL_LOW_POWER_POLICY NULL 0
Always On SL_POLICY_PM SL_ALWAYS_ON_POLICY NULL 0
Long Sleep SL_POLICY_PM SL_LONG_SLEEP_INTERVAL_P

OLICY
SlWlanPmPolicyPara
ms_t*

sizeof(SlWlanPmPolicyP
arams_t)

All settings of the sl_WlanPolicySet API are effective immediately after the call, and persistent between
device resets.

13.3.2 Enabling Fast Connect
Fast connect is controlled by the WLAN API (for details see Chapter 3). When enabled, the scan process
is skipped if the connection attempt is to the last connected network. Skipping the scan can save
hundreds of milliseconds in the connection time, thereby reducing the power consumption.

13.4 Network Applications and Power Consumption

13.4.1 mDNS
The device mDNS service (enabled by default) is based on sending and receiving broadcast and multicast
data frames on the connected network, without any use interaction. Because the effects of this behavior
on power consumption cannot be determined in advance, TI recommends turning this service off in power-
constrained systems (assuming it is not necessary for the application). This service will be turned off
automatically if LSI mode with a sleep time greater than 2000 ms is specified.

13.4.2 HTTP Server
The device HTTP server is automatically turned off if LSI is set to 2000 ms. This occurs because the
chances of the server to successfully accept a client connection in these conditions are extremely low.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Design Guidelines www.ti.com

204 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Power Managment

13.5 Design Guidelines

13.5.1 LSI and Packet Loss
When setting the LSI sleep time as greater than the DTIM period of the network (the period of the beacon
after which all broadcast messages are sent), the device will most likely miss some of the network
broadcast traffic. The effect of this is application-specific: if the application always initiates traffic and relies
on unicast rather than broadcast response, no behavioral impact is expected other than higher latency. If
the application is expected to respond to unsolicited traffic (run a UDP/TCP server, respond to pings or
mDNS) the effect might be more significant, and may result in clients failing to connect to the device or
sense its presence on the network.

13.5.2 PHY Calibration Mode
The PHY calibration mode directly affects system power consumption, because it prolongs the initialization
phase of the device. In normal mode, PHY is calibrated every time the networking subsystem is started
and the device was either reset (using nShut pin), or 24 hours have passed since the last calibration. This
mode is set by default, and provides maximum Tx power flexibility at the expense of occasionally
prolonged initialization time. The triggered calibration mode provides more power saving, by performing
calibrations after reset only if the Tx power was changed. The one-time calibration mode provides further
power savings, by performing calibrations on the first system power up only (this also prevents changing
the Tx power). For more information, see Section 3.8.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


205SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

Chapter 14
SWRU455E–February 2017–Revised February 2018

Provisioning

Topic ........................................................................................................................... Page

14.1 Introduction ..................................................................................................... 206
14.2 Key Features.................................................................................................... 206
14.3 Provisioning Process Overview.......................................................................... 206

14.3.1 Configuring a Profile ................................................................................. 206
14.3.2 Confirming a Profile.................................................................................. 206

14.4 Host Provisioning Application Flow .................................................................... 207
14.5 Configuration Modes......................................................................................... 209

14.5.1 AP Provisioning ...................................................................................... 209
14.5.2 SC Provisioning ...................................................................................... 209
14.5.3 AP and SC Provisioning ............................................................................ 209
14.5.4 AP and SC and External Configuration Provisioning............................................ 209

14.6 Starting and Stopping the Provisioning Process .................................................. 209
14.7 Auto-Provisioning............................................................................................. 210
14.8 Delivering Feedback to the User......................................................................... 210

14.8.1 External Confirmation ............................................................................... 211
14.9 External Configuration ...................................................................................... 211
14.10 Common Events and Errors ............................................................................. 212

14.10.1 Provisioning Status Event ......................................................................... 212
14.10.2 Provisioning Profile-Added Event ................................................................ 213
14.10.3 Reset Request Event .............................................................................. 213
14.10.4 Errors................................................................................................. 213
14.10.5 Host Commands During Provisioning ........................................................... 213

14.11 Usage Examples ............................................................................................. 215
14.11.1 Successful SmartConfig Provisioning............................................................ 215
14.11.2 Unsuccessful SmartConfig Provisioning......................................................... 216
14.11.3 Successful SmartConfig Provisioning With AP Fallback ...................................... 217
14.11.4 Successful AP Provisioning ....................................................................... 218
14.11.5 Successful AP Provisioning With Cloud Confirmation......................................... 219
14.11.6 Using External Configuration Method: WAC.................................................... 220
14.11.7 Successful SmartConfig Provisioning While External Configuration Enabled.............. 221

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

206 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.1 Introduction
Wi-Fi provisioning is the process of providing an IoT (Internet of Things) device the information needed to
connect to a wireless network for the first time (network name, password, and so forth). Providing this
information may be challenging, because not all IoT devices are equipped with conventional input
peripherals such as keyboards or touchscreens.

The SimpleLink Wi-Fi CC3120, CC3220 Internet-on-a chip solution offers smart and fast built-in Wi-Fi
provisioning capabilities, which lets end-users configure their IoT devices wirelessly using a smartphone or
a tablet running a dedicated provisioning app. The provisioning capabilities can be easily embedded by
developers on their own wireless applications.

This document describes the various provisioning methods supported by SimpleLink Wi-Fi family, and
provides a detailed overview about the provisioning process flow.

14.2 Key Features
Table 14-1 lists the key provisioning features of the device.

Table 14-1. Key Features

Key Features Description
Access-Point Provisioning The SimpleLink Wi-Fi device creates a wireless network of its

own with a predefined network name, letting the user connect it
with an external device (such as smartphone, tablet, or PC) and
add a profile through the internal HTTP web server.

SmartConfig Provisioning TI proprietary provisioning method that uses a smartphone or a
tablet to broadcast network credentials to an unprovisioned
device. The user can add a profile using any SmartConfig-
capable smartphone or tablet app.

14.3 Provisioning Process Overview

14.3.1 Configuring a Profile
When a provisioning process is started, the SimpleLink Wi-Fi device waits for the end-user to provide it
(using an external tablet or smartphone app) the information needed to connect to a wireless network:
• Network name (SSID)
• Password
• Device name (optional)
• UUID (Universally Unique Identifier; optional)

The provided information is saved into the device serial flash memory as a new profile.

14.3.2 Confirming a Profile
Once a profile is configured, the device tries to connect to it to confirm that it was properly provided (the
user might type the wrong SSID or password), and that the wireless network is valid. If the connection
attempt was successful (such as a WLAN connection was successfully established and an IP address was
successfully acquired), the device tries to provide the end-user who configured the profile a feedback
(through a proper message on their tablet or smartphone app) about the successful connection.

If the feedback about a successful connection was successfully delivered to the user, the profile
confirmation is successful and the provisioning process successfully ends.

If the connection was not successful, or if the connection was successful but the feedback was not
successfully delivered to the user, the confirmation fails, and the device waits for the user to try to
configure another profile, as shown in Figure 14-1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Smartphone App 6LPSOH/LQN��'HYLFH

Wireless Network

Configure Profile

Feedback

Confirm 

Connection

www.ti.com Host Provisioning Application Flow

207SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

Figure 14-1. The Provisioning Environment

14.4 Host Provisioning Application Flow
The entire provisioning process (adding profiles, confirming profiles, delivering confirmation results to the
user, and so forth) is executed internally by the networking subsystem. The host application is responsible
only for initiating the process. Once the process is started, no further actions are needed.

Figure 14-2 depicts the host application during a provisioning process.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Wait for 
Confirmation 

Result

Wait for 
Provisioning 

Stopped event

Host Application
Active

(Provisioning Stopped)

Provisioning Start 
Command

Confirmation Success 
Event

Confirmation Fail

Provisioning Stopped 
Event

Provisioning Stopped 
Event

(due to time-out)

Host Provisioning Application Flow www.ti.com

208 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

Figure 14-2. The Provisioning Process

After a provisioning process is started, the host should wait for the networking subsystem to send it the
profile confirmation result. During this time, the host application should not perform any networking activity
that may interrupt the ongoing provisioning process. The confirmation result is sent after the end-user has
configured a profile and the networking subsystem has finished confirming it.

Possible confirmation result values:
• Confirmation failed, SSID was not found during scan
• Confirmation failed, SSID was found, but WLAN connection failed
• Confirmation failed, WLAN connection was successful, but IP address was not acquired
• Confirmation failed, IP address was successfully acquired but feedback to the user’s smartphone app

was not delivered
• Confirmation succeeded

If the received confirmation result is successful (that is, a profile was configured, connection was
successful, and feedback was successfully delivered to the user), the provisioning process automatically
stops, and the host should wait for the provisioning-stopped event before it may continue with its activities.
If the profile confirmation failed, the provisioning process continues, to let the user configure another
profile. If no profile was configured by the user for some time (inactivity time-out), the provisioning process
automatically stops, and the provisioning-stopped event is sent to the host.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Configuration Modes

209SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

Updates regarding the progress of the provisioning process are constantly sent by the networking
subsystem to the host.

14.5 Configuration Modes
The provisioning process can be started in four different configuration modes: AP provisioning, SC
provisioning, AP+SC provisioning, and AP+SC+External configuration mode.

14.5.1 AP Provisioning
In this configuration mode, The SimpleLink Wi-Fi device is in AP role, creating a wireless network of its
own with a predefined network name. Users can connect with an external device (such as a tablet or
smartphone running a dedicated provisioning app) to the SimpleLink AP and can configure a profile
through the SimpleLink HTTP server.

14.5.2 SC Provisioning
SmartConfig is a TI proprietary provisioning method that uses a smartphone or a tablet to broadcast
network credentials to an unprovisioned device. In this mode, the SimpleLink Wi-Fi device is in STA role,
scanning for SmartConfig data broadcasts. Users can configure a profile using any SmartConfig-capable
tablet or smartphone app.

14.5.3 AP and SC Provisioning
In this mode, the SimpleLink Wi-Fi device is in AP role, simultaneously scanning for SmartConfig
broadcasts. Users can either connect with an external device (such as a tablet or a smartphone running a
dedicated provisioning app) to the SimpleLink AP and configure a profile through the SimpleLink HTTP
server, or configure a profile using SmartConfig.

14.5.4 AP and SC and External Configuration Provisioning
In this mode, the SimpleLink Wi-Fi device is in AP role, enabling users to use AP provisioning or
SmartConfig provisioning (same as AP+SC mode), or in addition, to use an external configuration method
executed by the host application (for example, WAC provisioning).

14.6 Starting and Stopping the Provisioning Process
The provisioning process can be started after receiving an explicit request from the host application. When
the host initiates the provisioning process, it should provide the desired configuration mode, the role
(AP/STA) to which the device should switch in case of a successful provisioning, and an inactivity time-out
value which defines the period of time (in seconds) the system waits before it automatically stops the
provisioning process when no user activity is detected. During provisioning, the device may have higher
power consumption than usual, so TI does not recommend using long inactivity time-out values (of more
than few minutes).

An example of starting provisioning from the host application (in AP+SC configuration mode):
_i32 status;

status = sl_WlanProvisioning(SL_WLAN_PROVISIONING_CMD_START_MODE_APSC,
ROLE_STA,
PROVISIONING_INACTIVITY_TIMEOUT,
NULL, 0x0);

If (0 > status)
{

/* handle error */
}

Once the provisioning process has started, it continues running until one of the following occurs:
• A configured profile is successfully confirmed.
• The host requested to stop the provisioning process by issuing a provisioning stop command.
• There was no user activity for some time (defined by the inactivity time-out parameter).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Auto-Provisioning www.ti.com

210 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

• The device is reset.

When the provisioning process is stopped due to host request or after inactivity time-out expires, the
device switches back to the role (AP/STA) that was active before the provisioning process was started. If
the process is stopped because a profile was successfully confirmed, the device switches to the role
defined by the host during the provisioning start command. After a provisioning process is successfully
stopped, a PROVISIONING_STOPPED event is sent to the host. The event is sent after the switching to
the desired role is done. The host application should wait for the PROVISIONING_STOPPED event before
issuing any additional commands. If the host application tries to issue a command during an active
provisioning process, the command is not served and an error is returned.

An example of stopping provisioning from the host application follows:
_i32 status;

status = sl_WlanProvisioning(SL_WLAN_PROVISIONING_CMD_STOP,
0,
0,
NULL, 0x0);

If (0 > status)
{

/* handle error */
}

14.7 Auto-Provisioning
When the auto-provisioning connection policy is enabled, the networking subsystem automatically starts
provisioning process in the following cases:
• The device was started without any saved profiles, and 2 seconds have passed without receiving any

command from host.
• The device is in STA role, auto-start connection policy is enabled, the profile list is not empty, and the

device is disconnected from WLAN network for more than 2 minutes.

If the provisioning process is auto-started while in STA role, SC-only configuration mode is used. If it was
auto-started while in AP role, AP+SC configuration mode is used. Whenever a provisioning process is
auto-started by the networking subsystem, the SL_WLAN_PROVISIONING_AUTO_STARTED
provisioning status event is sent to the host. The auto-provisioning connection policy is enabled by default.

14.8 Delivering Feedback to the User
After the SimpleLink device has finished confirming a profile, it should send the confirmation result to the
provisioning smartphone app to report the user who configured the profile, whether the provisioning
process was successful or not.

When the provisioned SimpleLink device is able to connect to the configured wireless network and acquire
an IP address, it advertises itself using broadcast and multicast packets, and waits for the smartphone app
to contact it. The smartphone app should connect to the same wireless network that was configured to the
provisioned device, discover the device IP address by listening to its broadcasts, and send the device
internal HTTP server a GET request for the confirmation result.

If the smartphone app can get the confirmation result from the device, it notifies the user about the
successful provisioning, and on the side of the device, a successful confirmation result event is sent from
the networking subsystem to the host.

If the provisioned device cannot successfully connect to the configured wireless network, or if it is able to
connect to the configured wireless network, but the smartphone app did not receive the confirmation
result, the profile confirmation fails. When a profile confirmation fails, the confirmation fail reason is sent by
the networking subsystem to the host through an event, and the device waits for another profile
configuration attempt. At this point, the smartphone app still does not have the confirmation result,
because it was not able to find the provisioned device on the wireless network. To get the confirmation
result, the smartphone app may disconnect from the configured wireless network and try to directly
connect the SimpleLink device AP (possible only if AP-provisioning or AP+SC-provisioning configuration
modes are used). If the smartphone app was able to connect the SimpleLink AP, it sends the device
internal HTTP server a GET request for the confirmation result. If the profile confirmation failed because

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Delivering Feedback to the User

211SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

the device was not able to connect to the wireless network (SSID was not found, WLAN connection failed,
or an IP address was not acquired), the smartphone app reports it the user. If the profile confirmation
failed because the confirmation result was not successfully delivered to the smartphone (feedback failed),
the smartphone app reports to the user that the confirmation was successful, and the networking
subsystem sends the host a successful confirmation result event (because the feedback was eventually
successfully provided to the user’s smartphone app).

14.8.1 External Confirmation
Feedback to the user’s smartphone app can also be delivered through an external cloud-based server.
When the SimpleLink device is able to connect to the configured network and acquire an IP address, it
tries to contact a cloud-based server over the internet. The user’s smartphone app, instead of connecting
the same wireless network that was configured to the provisioned device, also connects the cloud-based
server over the internet, and asks it if the SimpleLink device is able to connect to the cloud. In this mode,
the smartphone provisioning app does not need to discover the IP address acquired by the device.

Connecting the cloud-based server is not done internally by the networking subsystem, but by the host
application. When the device is able to successfully connect and acquire an IP address, it notifies the host
through an event that an IP address was acquired and that it may start sending socket commands to the
networking subsystem to connect the cloud server. If the device was able to successfully deliver the
feedback through the cloud server to the smartphone app, the host application should manually stop the
provisioning process by issuing a PROVISIONING_STOP command and order the networking subsystem
to stay in STA role (instead of restoring the previous role). The networking subsystem cannot
automatically stop the provisioning process, because it is not aware of the results coming from the cloud
and is unaware of the successful feedback delivery. If the device can acquire an IP address, but cannot
contact the smartphone app through the cloud server, the host application should notify the networking
subsystem about the failure by issuing an ABORT_EXTERNAL_CONFIRMATION command, and the
networking subsystem should prepare for another profile configuration attempt.

To use a cloud-based feedback, the external confirmation bit should be set in the provisioning host
command flags parameter.

14.9 External Configuration
When the provisioning process is started in APSC + external configuration mode, the device is ready to
serve stations trying to connect to it (for AP provisioning), ready to handle SmartConfig transmissions (SC
provisioning), and can allow the host to execute an additional external provisioning method that is not
implemented inside the networking subsystem (for example: WAC).

In this mode, the host is allowed to send commands and receive events from the networking subsystem
while provisioning is running. After the networking subsystem has successfully started the provisioning
process, it sends the EXTERNAL_CONFIGURATION_READY event to the host, which indicates that the
host may start executing its external provisioning method (for example: start listening on socket). At this
point, the end-user may choose which method to use: AP provisioning, SC provisioning, or the external
method implemented by the host application.

If the host application identifies that the end-user chose to use the external configuration method, it should
stop the internal running provisioning process by issuing a PROVISIONING_STOP command (the host
should also order the networking subsystem to stay in its current role after stopping the provisioning), and
continue carrying out the external provisioning process.

If the end-user has configured a profile using one of the internal provisioning methods (AP or SC
provisioning), the device must be restarted before it can continue the internal provisioning process. The
networking subsystem sends a RESET_REQUEST event to the host, and the host should stop its external
provisioning process (close all opened sockets, and so forth), restart the SimpleLink Wi-Fi device (by
sending sl_stop and sl_start commands), and wait for the internal provisioning process to end.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Common Events and Errors www.ti.com

212 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.10 Common Events and Errors

14.10.1 Provisioning Status Event
The networking subsystem constantly updates the host application regarding the progress of the
provisioning process, through the provisioning status event.

The provisioning status event has the following parameters:
• Status
• Role
• WlanStatus
• SsidLen
• Ssid

Table 14-2 lists the status parameter values.

Table 14-2. Provisioning Status

SL_WLAN_PROVISIONING_GENERAL_ERROR 0 The provisioning process has encountered an unknown error. TI
recommends stopping and starting the process again.

SL_WLAN_PROVISIONING_CONFIRMATION_S
TATUS_FAIL_NETWORK_NOT_FOUND

1 Profile confirmation failed because the SSID was not found during
scan.

SL_WLAN_PROVISIONING_CONFIRMATION_S
TATUS_FAIL_CONNECTION_FAILED

2 Profile confirmation failed; the SSID was found during scan, but the
WLAN connection was not successful (possibly due to the wrong
password).

SL_WLAN_PROVISIONING_CONFIRMATION_S
TATUS_FAIL_CONNECTION_SUCCESS_IP_NO
T_ACQUIRED

3 Profile confirmation failed; the SSID was found during scan, the
WLAN connection was successful, but an IP address was not
successfully acquired.

SL_WLAN_PROVISIONING_CONFIRMATION_S
TATUS_SUCCESS_FEEDBACK_FAILED

4 Profile confirmation failed; the SSID was found during scan, the
WLAN connection was successful, IP address was successfully
acquired, but the feedback to user about the successful connection
was not successfully delivered. This event might be followed by a
profile confirmation succeeded event, if feedback is eventually
delivered.

SL_WLAN_PROVISIONING_CONFIRMATION_S
TATUS_SUCCESS

5 Profile confirmation succeeded; the SSID was found during scan, the
WLAN connection was successful, IP address was successfully
acquired, and the feedback to user about the successful connection
was successfully delivered.

SL_WLAN_PROVISIONING_ERROR_ABORT 6 The provisioning process was not started due to an unknown error.
SL_WLAN_PROVISIONING_ERROR_ABORT_IN
VALID_PARAM

7 Auto-provisioning process was not started due to an invalid
parameter.

SL_WLAN_PROVISIONING_ERROR_ABORT_H
TTP_SERVER_DISABLED

8 Auto-provisioning process was not started because the HTTP server
is disabled.

SL_WLAN_PROVISIONING_ERROR_ABORT_P
ROFILE_LIST_FULL

9 Auto-provisioning process was not started because the profile list is
full.

SL_WLAN_PROVISIONING_ERROR_ABORT_P
ROVISIONING_ALREADY_STARTED

10 Auto-provisioning process was not started because it is already
running.

SL_WLAN_PROVISIONING_AUTO_STARTED 11 The provisioning process was automatically started by the networking
subsystem.

SL_WLAN_PROVISIONING_STOPPED 12 The provisioning process has ended.
SL_WLAN_PROVISIONING_SMART_CONFIG_S
YNCED

13 SmartConfig configuration data transmission was discovered by the
device. The device starts listening and collecting the profile data.

SL_WLAN_PROVISIONING_SMART_CONFIG_S
YNC_TIMEOUT

14 SmartConfig configuration data transmission was discovered by the
device, but the device was not able to extract the profile data from it.

SL_WLAN_PROVISIONING_CONFIRMATION_W
LAN_CONNECT

15 A WLAN connection was established during profile confirmation
attempt.

SL_WLAN_PROVISIONING_CONFIRMATION_IP
_ACQUIRED

16 IP address was acquired during profile confirmation attempt.

SL_WLAN_PROVISIONING_EXTERNAL_CONFI
GURATION_READY

17 The host application may start running an external provisioning
method (relevant only when APSC + External Configuration mode is
used).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Common Events and Errors

213SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

During provisioning, the device might switch between different roles and connection statuses without
notifying the host application; thus, when the process is stopped, a report about the current status of the
device is sent to the host. When the value of the status parameter is
SL_WLAN_PROVISIONING_STOPPED (12), additional information is provided through the following
parameters:
• Role: The active role (AP/STA) after the provisioning process ended.
• WlanStatus: If the active role is STA, this parameter also shows the device WLAN connection status

(0-Disconnected, 1-Scanning, 2-Connecting, 3-Connected) after the provisioning process ended.
• Ssid, SsidLen: If WlanStatus is connected, these parameters provide the SSID to the connected

device.

These parameters are not relevant in other provisioning status values.

14.10.2 Provisioning Profile-Added Event
When a profile is configured to the device during provisioning, the
SL_WLAN_EVENT_PROVISIONING_PROFILE_ADDED event is sent to the host.

14.10.3 Reset Request Event
During the provisioning process, the SimpleLink device might automatically restart itself as part of process.
If a restart is required while the host application is busy (for example, when the host has opened sockets
during external configuration provisioning), instead of performing the restart automatically, the networking
subsystem asks the host application to do it. When this event arrives, the host should stop its activities (for
example, close all opened sockets), and restart the device by issuing sl_stop and sl_Stop commands.

14.10.4 Errors
Table 14-3 shows the following values that may be returned when a provisioning command is issued.

Table 14-3. Errors

STATUS_OK 0 Command was successfully executed.
SL_ERROR_WLAN_PROVISIONING_ABORT_
PROVISIONING_ALREADY_STARTED

-2169 Start provisioning command failed because provisioning process
is already running.

SL_ERROR_WLAN_PROVISIONING_ABORT_
HTTP_SERVER_DISABLED

-2170 Start provisioning command failed because the HTTP server is
disabled.

SL_ERROR_WLAN_PROVISIONING_ABORT_
PROFILE_LIST_FULL

-2171 Start provisioning command failed because the profile list is full.

SL_ERROR_WLAN_PROVISIONING_ABORT_I
NVALID_PARAM

-2172 Start provisioning command failed because one of the
parameters was invalid.

SL_ERROR_WLAN_PROVISIONING_ABORT_
GENERAL_ABORT

-2173 Start provisioning command failed because of an unknown
reason.

SL_ERROR_WLAN_PROVISIONING_CMD_NO
T_EXPECTED

-2177 Provisioning command failed because it was not expected.

14.10.5 Host Commands During Provisioning
During the provisioning process, the device switches between different roles, connects to different APs,
and changes its IP addressthus, the host commands may not be properly served. As a result, when a
command is issued by the host application during an active provisioning process, the
SL_RET_CODE_PROVISIONING_IN_PROGRESS (–2014) error is returned. The only allowed
commands are sl_WlanProvisioning and sl_stop. If host is interested to execute a different command, it
must either wait for the provisioning process to end, or to manually stop it (using the
SL_WLAN_PROVISIONING_CMD_STOP command). In addition, events that may be sent to the host
during the provisioning connection attempts (such as NETAPP_IPACQUIRED) are blocked, and will not
reach the host application (except for dedicated provisioning events, such as the provisioning status
event).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Common Events and Errors www.ti.com

214 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

In some cases, after provisioning starts, the host is allowed to send commands and receive all events to
perform some actions necessary for completing the provisioning process:
• External confirmation: When feedback to the user’s smartphone app is done using an external cloud-

based server, the host application must be able to access the internet. Therefore, commands are
allowed right after the PROVISIONING_CONFIRMATION_IP_ACQUIRED status event is sent to the
host.

• External configuration: When APSC + external configuration mode is used, the host application might
need to issue a socket command as part of its external provisioning process. To enable this,
commands are allowed right after the PROVISIONING_EXTERNAL_CONFIGURATION_READY
status event is sent to the host.

• Auto-provisioning: When provisioning is auto-started, commands are still allowed (unlike host-initiated
provisioning, where the commands are blocked right after the provisioning process was started). They
are blocked only after user activity was detected (such as when a profile is being configured).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


x
Smartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

������ï������������������

Wait for profile configuration

Start profile confirmation

Provisioning ended

Provisioning Command 

(Start APSC mode)

Profile added event

SmartConfig synced event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result Success (HTTP)

Confirmation status success event

Provisioning stopped event APIs allowed

www.ti.com Usage Examples

215SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11 Usage Examples

14.11.1 Successful SmartConfig Provisioning
In Figure 14-3, a profile is configured using SmartConfig. The provisioned device connects to the wireless
network from the configured profile and waits for the smartphone app to contact its HTTP web server.
When the confirmation result is delivered to the smartphone app, the device sends the successful result to
the host, and stops the process.

Figure 14-3. Successful SmartConfig Provisioning

The APIs between the host driver and the networking subsystem (commands and events) are blocked
during the entire provisioning process. The host is allowed to send commands only after the
provisioning_stopped event arrives.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


xSmartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

Device not found (timeout)

Wait for profile configuration

Start profile confirmation

Provisioning Command 

(Start AP+SC mode)

Profile added event

SmartConfig synced event

WLAN connected event

Confirmation status fail

IP not acquired event

Get confirmation result (HTTP)

Confirmation result fail IP not acquired (HTTP)

IP acquired timeout

Wait for profile configuration

���������������������?���

Usage Examples www.ti.com

216 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11.2 Unsuccessful SmartConfig Provisioning

Figure 14-4. Unsuccessful SmartConfig Provisioning

In AP+SC mode, the device is waiting for a profile configuration while in AP role.

After profile confirmation fails (because an IP address was not acquired in the configured wireless
network), the device is ready for another profile configuration (back in AP role).

After the smartphone app fails to find the device and collect the confirmation result on the local wireless
network, it tries to get it by connecting directly to the SimpleLink device AP.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


xSmartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

Device not found (timeout)

Wait for profile configuration

Start profile confirmation

Provisioning Command 

(Start AP+SC mode)

Profile added event

SmartConfig synced event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result success (HTTP)

User feedback timeout

Wait for profile configuration

���������������������?���x Provisioning ended

Confirmation status success event

Provisioning stopped event APIs allowed

Confirmation status fail

User feedback failed event

www.ti.com Usage Examples

217SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11.3 Successful SmartConfig Provisioning With AP Fallback
In APSC mode, the device is waiting for a profile configuration while in AP role.

In Figure 14-5, the provisioned device connects to the wireless network, but the smartphone app fails to
find the device and collect the confirmation result.

Figure 14-5. Successful SmartConfig Provisioning With AP Fallback

After profile confirmation fails, the device waits for another configuration attempt.

After the smartphone app fails to find the device and collect the confirmation result on the local wireless
network, it tries to get it by connecting directly to the SimpleLink device AP.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


x
xSmartphone App Networking Subsystem Host

APIs blocked

���������������������?���

�����������������ï������������

������ï������������������

Wait for profile configuration

Start profile confirmation

Provisioning ended

Provisioning Command 

(Start AP+SC mode)

Profile added event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result Success (HTTP)
Confirmation status success event

Provisioning stopped event APIs allowed

Connect to AP from profile

Add profile (HTTP)

Request to confirm profile (HTTP)

Usage Examples www.ti.com

218 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11.4 Successful AP Provisioning
In Figure 14-6, a profile is configured to the SimpleLink device through its internal HTTP server while the
device is in AP mode.

Figure 14-6. Successful AP Provisioning

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


xxSmartphone App Networking Subsystem Host

APIs blocked

���������������������?���

Connect to the Cloud server

Get results from the Cloud 

server

Wait for profile configuration

Start profile confirmation

Provisioning ended

Provisioning Command 

(Start AP+SC)

Profile added event

WLAN connected event

IP acquired event

Provisioning stopped event

APIs allowed

Connect to AP from profile

Add profile (HTTP)

Request to confirm profile (HTTP)

Socket commands

(Connect to the Cloud server 

and send results)

Provisioning Command 

(Stop Provisioning)

www.ti.com Usage Examples

219SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11.5 Successful AP Provisioning With Cloud Confirmation
Figure 14-7 depicts a successful AP provisioning with cloud confirmation.

Figure 14-7. Successful AP Provisioning With Cloud Confirmation

When feedback is provided through a cloud server (external confirmation), the host can send commands
to the networking subsystem to connect the cloud-based server only after the IP acquired event is
received.

Because the networking subsystem is unaware of the results coming from the cloud server, the host is
responsible for stopping the provisioning process (and for ordering the networking subsystem to stay in its
active role – STA), in case confirmation is successful. For the same reason, the host must order the
networking subsystem to stop the profile confirmation attempt (by sending the
ABORT_EXTERNAL_CONFIRMATION command) in case confirmation failed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


xxSmartphone App Networking Subsystem Host

APIs blocked

���������������������?���

Start WAC Provisioning

Wait for profile configuration

Provisioning ended

Provisioning Command 

(Start AP+SC + External 

Configuration mode)

Provisioning stopped event

APIs allowed
External configuration ready event

Socket commands

(Listen for WAC provisioning)

Provisioning Command 

(Stop Provisioning)

WAC Provisioning detected

Continue WAC Provisioning

Usage Examples www.ti.com

220 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11.6 Using External Configuration Method: WAC

Figure 14-8. External Configuration Method: WAC

When provisioning is started in AP + SC + external configuration mode, the host can start sending
commands to the networking subsystem only after the external configuration ready event is received.
When the host identifies that a user has started a provisioning process using the external configuration
method, it should order the networking subsystem to stop the internal provisioning process. When the
internal provisioning process is stopped, the host can continue with its external provisioning process.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


xSmartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

������ï������������������

Wait for profile configuration

Start profile confirmation

Provisioning Command 

(Start AP + SC + External 

configuration mode)

Profile added event

SmartConfig synced event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result success (HTTP)

Provisioning ended

External configuration readyx APIs allowed

Socket commands

(Listen for WAC provisioning)

Reset request event

Stop WAC provisioning

Sl_Stop Command

Sl_Start Command

Confirmation status success event

Provisioning stopped event

www.ti.com Usage Examples

221SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Provisioning

14.11.7 Successful SmartConfig Provisioning While External Configuration Enabled

Figure 14-9. Successful SmartConfig Provisioning While External Configuration Enabled

When provisioning is started in AP + SC + external configuration mode, and the user is using one of the
internal provisioning methods (AP or SC), the device sends a reset request event to the host. The host
should stop all of its external provisioning activities, and restart the device. Once the device is restarted, it
starts the profile confirmation, and the internal provisioning process continues as usual.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


222 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

Chapter 15
SWRU455E–February 2017–Revised February 2018

Crypto Utilities

Topic ........................................................................................................................... Page

15.1 Introduction ..................................................................................................... 223
15.1.1 API and Usage ....................................................................................... 223
15.1.2 Limitations and Constraints......................................................................... 226
15.1.3 Errors .................................................................................................. 226

15.2 Secured Content Delivery .................................................................................. 227
15.2.1 Process Flow ......................................................................................... 227
15.2.2 Encrypted File Format............................................................................... 229

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

223SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

15.1 Introduction
The SimpleLink device supports on-chip asymmetric key-pair storage (secure key storage) with built-in
crypto acceleration and crypto services to assist in some common cryptographic-related operations.

These crypto services provide a mechanism to manage up to eight ECC key-pairs, and use them to sign
or verify data buffers. This capability could be used for authenticating the device identity, among other
usage options.

There are three types of supported key-pairs:
• Device-unique key-pair: A single 256-bit unique key of the device, embedded in hardware
• Temporary key-pair: Created upon request using the internal TRNG engine
• Installed key-pair: Installed and maintained by the vendor

The system supports a single constant key-pair. Entry 0 is reserved for this key-pair. Entries 1 to 7 could
be used for temporary or installed key-pairs, according to the application needs. All keys are ECC keys
using the SECP256R1 curve. This applies to all entries:
• Constant and temporary key types – The SimpleLink Wi-Fi device is responsible for using the correct

type and curve.
• Installed key type – The vendor is responsible only for installing keys of this type and curves.

For all key pairs, the private key is never exposed, and can only be accessed indirectly when using it to
sign buffers. The public key may be retrieved by the host application (see Section 15.1.1). Table 15-1 lists
the key crypto utility features.

Table 15-1. Key Features

Main Features Description
Manage temporary key-pair Create or remove temporary keys at a provided index. Temporary keys are not persistent

over the power cycle. Creating a temporary key in an index occupied by another
temporary key, and overrides the occupied key. An installed key on that index cannot be
overridden.

Installed key-pairs Install or uninstall key pairs provided by the host application. The keys must be
preprogrammed in the file system. The install action adds them to the data base, and
allows using them to sign and verify buffers. This operation is persistent over the power
cycle without consideration of system-persistent configuration. Cannot install a key in an
occupied index.

Constant key-pair Unique key for the given device, embedded in the hardware. Always available and
constant.

Retrieve public key For any key-pair type, the host may request to retrieve the public key of the pair in x9.63
raw format. The host application can also retrieve the metadata of this key (type, curve,
length, filename, and so forth).

Verify buffer Given a buffer and a signature, the host can request to use any key-pair to verify the
ECDSA signature.

Sign buffer Given a buffer, the host can request to use any key-pair to create a signature using
ECDSA.

Secured content delivery Transfer secure content by sending the public key to the application server which
encrypts the file, and decrypts in the device internally using the private key only

True random number Retrieve buffer with true random numbers from the networking subsystem. Maximum
buffer length 172 bytes for each retrieval.

15.1.1 API and Usage

15.1.1.1 Install and Uninstall Key-Pairs and Certificates
This command is used to install and uninstall a key-pair in one of the crypto utilities key-pair management
mechanism. The key must be an ECC key-pair using the SECP256R1 curve, and already programmed to
the file system in a DER format file. The install and uninstall operations are done using the sl_NetUtilsCmd
API. The key installation is persistent without consideration of system-persistent configuration, and is not
erased over the power cycle. If the wanted index is already occupied by a key-pair, the install operation
fails. Installation of the certificate without a key pair is used to verify buffers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

224 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

An example of installing a key and then uninstalling it follows:
SlNetUtilCryptoCmdKeyMgnt_t keyAttrib;
SlNetUtilCryptoPubKeyInfo_t *pInfoKey;
_i16 Status;
_u8 buf[256];
_u16 resultLen;

keyAttrib.ObjId = 5; /* key index is 5 */
keyAttrib.SubCmd = SL_NETUTIL_CRYPTO_INSTALL_SUB_CMD;
pInfoKey->KeyAlgo = SL_NETUTIL_CRYPTO_PUB_KEY_ALGO_EC;
pInfoKey->KeyParams.EcParams.CurveType = SL_NETUTIL_CRYPTO_EC_CURVE_TYPE_NAMED;
pInfoKey-
>KeyParams.EcParams.CurveParams.NamedCurveParams = SL_NETUTIL_CRYPTO_EC_NAMED_CURVE_SECP256R1;

pInfoKey = (SlNetUtilCryptoPubKeyInfo_t *)buf;
name = ((_u8 *)pInfoKey) + sizeof(SlNetUtilCryptoPubKeyInfo_t);
pInfoKey->KeyAlgo = SL_NETUTIL_CRYPTO_PUB_KEY_ALGO_EC;
pInfoKey->KeyParams.EcParams.CurveType = SL_NETUTIL_CRYPTO_EC_CURVE_TYPE_NAMED;
pInfoKey-
>KeyParams.EcParams.CurveParams.NamedCurveParams = SL_NETUTIL_CRYPTO_EC_NAMED_CURVE_SECP256R1;

pInfoKey->CertFileNameLen = 0; /* unused */
name += pInfoKey->CertFileNameLen;
strcpy((char *)name, "extkey.der"); /* private key in the file system */
pInfoKey->KeyFileNameLen = strlen("extkey.der")+1;

Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_INSTALL_OP,
(_u8 *)&keyAttrib, sizeof(SlNetUtilCryptoCmdKeyMgnt_t),
(_u8 *)pInfo,
sizeof(SlNetUtilCryptoPubKeyInfo_t) + pInfoKey->KeyFileNameLen,
NULL, &resultLen);

if(Status < 0)
{

/* error */
}
resultLen = 0;
keyAttrib.ObjId = 5;
keyAttrib.SubCmd = SL_NETUTIL_CRYPTO_UNINSTALL_SUB_CMD;
/* Uninstall the key */
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_INSTALL_OP, (_u8 *)&keyAttrib,

sizeof(SlNetUtilCryptoCmdKeyMgnt_t), NULL, 0 , NULL, &resultLen);
if(Status < 0)
{

/* error */
}

15.1.1.2 Create or Remove Temporary Key
This command is used to create or remove a temporary ECC key-pair with the SECP256R1 curve on a
given index. Create and remove operations are done using the sl_NetUtilsCmd API. The key is generated
internally by the SimpleLink Wi-Fi device. The key is not persistent over the power cycle, and is overridden
if using create temporary key again on that index. The operation fails if the desired index is already
occupied by an installed key-pair (not a temporary one).

An example of creating a temporary key pair follows:
SlNetUtilCryptoCmdKeyMgnt_t keyAttrib;
_i16 Status;
_u16 resultLen;

keyAttrib.ObjId = 1; /* key index is 1 */
keyAttrib.SubCmd = SL_NETUTIL_CRYPTO_TEMP_KEYS_CREATE;

Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_TEMP_KEYS,
(_u8 *)&keyAttrib, sizeof(SlNetUtilCryptoCmdKeyMgnt_t),

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Introduction

225SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

NULL,
0,
NULL, &resultLen);

if(Status < 0)
{

/* error */
}

15.1.1.3 Get Public Key
This command is used to retrieve the public key of the key-pair installed or temporarily created in a certain
index.

The key is in x9.63 raw format. The operation is done using the sl_NetUtilGet API.
_i16 Status;
_u8 configOpt = 0;
_u32 objId = 0;
_u16 configLen = 0;

configOpt = SL_NETUTIL_CRYPTO_PUBLIC_KEY;
objId = 1;
configLen = 255;

/* get the Public key */
Status = sl_NetUtilGet(configOpt, objId, buf, &configLen);
if(Status < 0)
{

/* error */
}

15.1.1.4 Sign Buffer
This command is used to create a digital signature using the ECDSA algorithm and a key-pair from the
crypto-utilities key management mechanism. This operation is done using the sl_NetUtilCmd. Signing a
buffer is only allowed with ECDSAwithSHA.

NOTE: The input buffer for signing must not exceed 1.5KB.

15.1.1.5 Verify Buffer
This command is used to verify a digital signature using the ECDSA algorithm. The signature must be
created with one of the key-pairs from the crypto-utilities key management mechanism. Verification of a
buffer can be done by ECDSAwithSHA or ECDSAwithSHA256, where the buffer to digest is given in the
API. If a predigested message is used, verification occurs when the digest is passed in the verify
command, instead of the buffer.

NOTE: The input buffer for signing must not exceed 1.5KB. If a larger buffer must be verified,
predigest the buffer and pass it as the verify buffer with
SL_NETUTIL_CRYPTO_SIG_DIGESTwECDSA sigType.

An example of sign and verify buffer:
_u16 configLen = 0;
_u8 buf[256];
_u8 verifyBuf[2048];
SlNetUtilCryptoCmdSignAttrib_t signAttrib;
SlNetUtilCryptoCmdVerifyAttrib_t verAttrib;
_i32 verifyResult;
_u16 resultLen;
_u8 messageBuf[1500];
_i16 Status;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

226 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

signAttrib.Flags = 0;
signAttrib.ObjId = 3;
signAttrib.SigType = SL_NETUTIL_CRYPTO_SIG_SHAwECDSA; /* this is the only type supported */
configLen = 255;

Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_SIGN_MSG, (_u8 *)&signAttrib,
sizeof(SlNetUtilCryptoCmdSignAttrib_t),
messageBuf, sizeof(messageBuf), buf, &configLen);

if(0 > Status)
{

/* error */
}

/* now verify the buffer */
memcpy(verifyBuf, messageBuf, sizeof(messageBuf));
memcpy(verifyBuf + sizeof(messageBuf), buf, configLen);

verAttrib.Flags = 0;
verAttrib.ObjId = 3;
verAttrib.SigType = SL_NETUTIL_CRYPTO_SIG_SHAwECDSA; /* this is the only type supported */
verAttrib.MsgLen = sizeof(messageBuf);
verAttrib.SigLen = configLen;

/* use the created keys to verify the signature from the previous step */
resultLen = 4;
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_VERIFY_MSG, (_u8 *)&verAttrib,

sizeof(SlNetUtilCryptoCmdVerifyAttrib_t),
verifyBuf, sizeof(messageBuf) + configLen,
(_u8 *)&verifyResult , &resultLen);

if(0 > Status)
{

/* error */
}

15.1.1.6 True Random Number
Retrieve a buffer of true random numbers from the networking subsystem. Maximum buffer length is 172
bytes for each retrieval. if the requested length exceeds 172 bytes, it is trimmed to 172 bytes.
Status = sl_NetUtilGet(SL_NETUTIL_TRUE_RANDOM,0,buffer,&len);

15.1.2 Limitations and Constraints
• Mechanism supports a total of eight keys, where index 0 is reserved for the constant key-pair.
• Only ECC keys using the SECP256R1 curve are supported.
• Index management is a host application responsibility; find free index or retrieve index list are not

provided.
• For signing and verifying operations, the buffer size is limited to 1.5KB.

15.1.3 Errors
Table 15-2 lists the common errors.

Table 15-2. Common Errors

Error Code Value Comments
SL_ERROR_NETUTIL_CRYPTO_GENERAL -12289 An unspecified general error has

occurred.
SL_ERROR_NETUTIL_CRYPTO_INVALID_INDEX -12290 The provided index is out of the valid

range.
SL_ERROR_NETUTIL_CRYPTO_INVALID_PARAM -12291 One of the provided parameters is invalid

or illegal.
SL_ERROR_NETUTIL_CRYPTO_MEM_ALLOC -12292 A memory-allocation failure has occurred.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Secured Content Delivery

227SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

Table 15-2. Common Errors (continued)
Error Code Value Comments

SL_ERROR_NETUTIL_CRYPTO_INVALID_DB_VER -12293 Not in use
SL_ERROR_NETUTIL_CRYPTO_UNSUPPORTED_OPTIO
N

-12294 One of the provided parameters requires
an unsupported capability or option.

SL_ERROR_NETUTIL_CRYPTO_BUFFER_TOO_SMALL -12295 The buffer provided by the host-
application is not large enough to contain
the returned output.

SL_ERROR_NETUTIL_CRYPTO_EMPTY_DB_ENTRY -12296 The provided index points to an empty
database entry.

SL_ERROR_NETUTIL_CRYPTO_NON_TEMPORARY_KEY -12297 The host application is trying to perform
an operation related to temporary keys,
but the provided index does not contain a
temporary key.

SL_ERROR_NETUTIL_CRYPTO_DB_ENTRY_NOT_FREE -12298 The provided index points to a nonempty
database entry (while the requested
operation requires the entry to be empty).

SL_ERROR_NETUTIL_CRYPTO_CORRUPTED_DB_FILE -12299 The file that stores the database on the
filesystem (for persistency) has been
corrupted.

15.2 Secured Content Delivery
The secure content delivery feature lets the user program a secured file, which is encrypted by a remote
device and decrypted inside the NWP. The private key used for the process remains inside the SimpleLink
Wi-Fi networking subsystem alone with no access from the host. This ability lets the user transfer a file to
the system on any unsecured tunnel.

NOTE: Secured content delivery is designed to work with a temporary key generated on secure key
index 1.

15.2.1 Process Flow
1. Retrieve a temporary, nonpersistent ECC public key using the NetUtils APIs described in Appendix A.
2. Send the public key to the application remote server.
3. Receive the encrypted file.
4. Open a file with a special flag, indicating secure content delivery is about to be written:

secAccessFlags = SL_FS_FILE_MODE_OPEN_CREATE(fpInSize,SL_FS_FILE_DOWNLOAD_SECURED_CONTENT);
fileHande = sl_FsOpen("sec_cont1.txt",secAccessFlags,NULL);
if(0 > fileHande)
{

/* error */
}

5. Write the file sequentially (all bytes in order with no random access) – the offset attribute in the
sl_FsWrite has no meaning regarding a secured content delivery write, and is ignored.

6. Close the file using the sl_FsClose API.

At the end of this process, the file is saved on the SFLASH, and encrypted as a normal secured file on the
file system. The file system uses a different key and method than is used to encrypt the file for the secure
content delivery process.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


SimpleLink CC3220 Internet-on-a-chip Solution

Peripherals
CC32xx Network Processor + MCU

SPI and I2C
GPIO
UART
PWM
ADC



Serial Flash

TRANSFER RUN- TIME STORAGE

Network Processor

Storage

Secure File System

HW Crypto Engines

Crypto Utils
ECC Keys

MCU
Cortex-M4 

256KB RAM + 
Optional 1MB XIP 

Flash

Application
Vendor

Application 
Servers

User

Access Point

Internet

Get key

Generate temp pair

Get public key

Public key
Public key

Send encrypted data
Open file for write

Write data 
(cipher text)

Close file

Encrypt using normal file system 
methods.

Encrypt data using secret.

Use the private data.

PLAIN TEXT PLAIN TEXT CIPHER TEXT CIPHER TEXT

Server Device - APP Device - NWP

Generate Priv-Pub key pair.

Generate ECDHE secret.

Decrypt data using secret.

Generate ECDHE secret.

Secured Content Delivery www.ti.com

228 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

Figure 15-1 depicts this process.

Figure 15-1. Secure Content Delivery

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Shared Secret

Key Initialization Vector

Shared Secret

b0 b1 b126 b127

0 1 14 15

b128 b129 b254 b255

16 17 30 31b0 b1 b126 b127 b128 b129 b254 b255

b0 b1 b126 b127 b128 b129 b254 b255

b0 b1 b126 b127

XOR

www.ti.com Secured Content Delivery

229SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

15.2.2 Encrypted File Format
Multiple steps are involved in building the secure content file in the format expected by the network
processor. Before building the file, the server must first derive the ECDHE secret from the public key sent
by the SimpleLink device and the private key of the server. The AES key and initialization vector (IV) used
to encrypt the data are formed as follows:
• AES IV: Upper 128 bits of ECDHE secret
• AES Key

– Upper 128 bits of AES Key = Bitwise XOR of upper and lower 128 bits of ECDHE secret
– Lower 128 bits of AES Key = Lower 128 bits of ECDHE secret

Figure 15-2. AES Key Diagram

The order of operations for building the bundle is:
1. Use SHA256 to generate a digest of the RAW data.
2. Append the RAW data to the digest in a single file.
3. Encrypt the file (digest + RAW data) with AES 256 CBC (allow the encryption function to pad the file as

needed).
4. Add the bundle header that includes the RAW data size, padding, and server ECC public key.

When creating the bundle header, the RAW data size should be specified in little endian format (that is, a
raw data size of 16 is specified as "10 00 00 00" at the beginning of the file).

The file delivered with this process should be in the proprietary format (see Figure 15-3).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


SHA256 on RAW data

RAW data
(AES256)

 

ECC X9.63 Public Key
(SECP256R1)

Padding
RAW data size

n BytesA
E

S
25

6
 

32 Bytes

65 Bytes

4 Bytes

4 Bytes

Secured Content Delivery www.ti.com

230 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Crypto Utilities

Figure 15-3. File Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


231SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

Chapter 16
SWRU455E–February 2017–Revised February 2018

Porting the Host Driver

Topic ........................................................................................................................... Page

16.1 Introduction ..................................................................................................... 232
16.2 Create Platform Porting File............................................................................... 233
16.3 Select Capabilities Set ...................................................................................... 233
16.4 Bind the Device Enable/Disable Line................................................................... 235
16.5 Implement the Interface Communication Abstract Layer ....................................... 235
16.6 Choose Memory-Management Model .................................................................. 237
16.7 Implement OS Adaptation Layer ......................................................................... 237

16.7.1 Sync Objects ......................................................................................... 237
16.7.2 Locking Objects ...................................................................................... 238

16.8 Implement Timestamp Services.......................................................................... 238
16.9 Set Asynchronous Event Handler Routines ......................................................... 238

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Introduction www.ti.com

232 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

16.1 Introduction
The SimpleLink Wi-Fi device family consists of several device types: the CC3220S and CC3220SF, which
are fully-integrated system-on-chip (SoC) solutions consisting of both applications MCU and the network
processor, and the CC3120, which consists only of the network subsystem processor. The CC3120 device
can be bundled with any platform (MCU, MPU, or other). While the CC3220x is already fully integrated, to
work with the CC3120 device, the user must port its host driver to the new platform. The porting of the
SimpleLink Wi-Fi host driver to any new platform is based on a few simple steps. This chapter provides
basic step-by-step guidelines on how to port the SimpleLink host driver to new platforms. Follow the
instructions carefully to avoid any problems during this process and to enable efficient and proper work
with the CC3120 device.

The basic concept of the porting is that all modifications and porting adjustments of the host driver are
made in one file (user.h header file). Strictly following these guidelines ensures a smooth transition to new
versions of the driver. The porting process consists of a few simple steps:
1. Create the user.h file for the target platform.
2. Select capabilities set.
3. Bind the device enable/disable line.
4. Implement the interface communication driver.
5. Choose memory-management model.
6. Implement OS adaptation layer.
7. Implement timestamp services.
8. Bind asynchronous event handlers routines.

The remainder of this chapter describes these steps in more detail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


source

x
user.h

ti

drivers

net

wifi

x
cc_pal.c

x
cc_pal.h

porting

www.ti.com Create Platform Porting File

233SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

16.2 Create Platform Porting File
The first step is to create a user.h file, which is tailored to the specific requirements of the target platform.
The file must be under the porting folder, as shown in Figure 16-1.

Figure 16-1. User.h Location

As a basis for this file, TI recommends using one of the porting layers provided with the SimpleLink Wi-Fi
SDKs and plug-ins.

16.3 Select Capabilities Set
The SimpleLink host driver supports different predefined sets of capabilities that can fit most target
platforms:
• SL_TINY – Provides limited functionality set, compatible for platforms with very limited resources.
• SL_FULL – Provides access to all SimpleLink functionality

TI recommends trying and choosing one of these predefined capabilities set before building a customized
set. To choose one of these sets, the set name must be defined in user.h (only one of them). For
example:
#define SL_TINY

If any of these predefined sets do not provide the required functionality, it is possible to tailor the driver in
a more flexible way. This is done by enabling or disabling API groups (silos) and setting the APIs level.
The levels of the APIs are divided into two categories: normal and extended. Table 16-1 describes the
available groups and their relative macros.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Select Capabilities Set www.ti.com

234 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

Table 16-1. : Selecting Capabilities

GroupName and Macro Normal APIs Level
(#undef SL_INC_EXT_API)

Extended APIs Level
(#define SL_INC_EXT_API)

Default

sl_Start
sl_Stop
sl_StatusGet
sl_Task

sl_Start
sl_Stop
sl_StatusGet
sl_Task
sl_DeviceGet
sl_DeviceSet
sl_DeviceEventMaskGet
sl_DeviceEventMaskSet

SL_INC_WLAN_PKG
sl_WlanSet
sl_WlanSetMode
sl_WlanProvisioning

sl_WlanSet
sl_WlanSetMode
sl_WlanProvisioning
sl_WlanConnect
sl_WlanDisconnect
sl_WlanProfileAdd
sl_WlanProfileGet
sl_WlanProfileDel
sl_WlanPolicySet
sl_WlanPolicyGet
sl_WlanGetNetworkList
sl_WlanRxFilterAdd
sl_WlanRxStatStart
sl_WlanRxStatStop
sl_WlanRxStatGet

SL_INC_SOCKET_PKG

sl_Socket
sl_Close
sl_Bind
sl_Connect
sl_Select
sl_SetSockOpt
sl_Recv
sl_RecvFrom
sl_Send
sl_SendTo
sl_Htonl
sl_Htons

sl_Socket
sl_Close
sl_Bind
sl_Connect
sl_Select
sl_SetSockOpt
sl_Recv
sl_RecvFrom
sl_Send
sl_SendTo
sl_Htonl
sl_Htons
sl_Accept
sl_Listen
sl_GetSockOpt

SL_INC_NET_APP_PKG
sl_NetAppDnsGetHostByName
sl_NetAppStart
sl_NetAppStop

sl_NetAppDnsGetHostByName
sl_NetAppStart
sl_NetAppStop
sl_NetAppSet
sl_NetAppGet
sl_NetAppRecv
sl_NetAppSend
sl_NetAppDnsGetHostByService
sl_NetAppMDNSRegisterService
sl_NetAppMDNSUnRegisterService
sl_NetAppGetServiceList
sl_NetAppPing

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Bind the Device Enable/Disable Line

235SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

Table 16-1. : Selecting Capabilities (continued)

GroupName and Macro Normal APIs Level
(#undef SL_INC_EXT_API)

Extended APIs Level
(#define SL_INC_EXT_API)

SL_INC_NET_CFG_PKG sl_NetCfgGet
sl_NetCfgSet

sl_NetCfgGet
sl_NetCfgSet
sl_MacAdrrGet
sl_MacAdrrSet

SL_INC_NET_UTIL_PKG
sl_NetUtilGet
sl_NetUtilSet
sl_NetUtilCmd

sl_NetUtilGet
sl_NetUtilSet
sl_NetUtilCmd

SL_INC_NVMEM_PKG

sl_FsOpen
sl_FsClose
sl_FsRead
sl_FsWrite
sl_FsDel

sl_FsOpen
sl_FsClose
sl_FsRead
sl_FsWrite
sl_FsDel
sl_FsGetInfo
sl_FsCtl
sl_FsProgram
sl_FsGetFileList

NOTE: There is no option to enable or disable a particular function.

16.4 Bind the Device Enable/Disable Line
The CC3120 has two external hardware lines that can be used to enable or disable the device:
• nReset – Puts the device in shutdown mode
• nHib – Puts the device in hibernate mode

For more information, see Section 2.3.

NOTE: Only one of these lines or modes can be used. During sl_Start or sl_Stop, the driver calls the
macros to force one of these lines to high or low in the correct sequence.

To bind one of these lines, the following macros must be defined correctly:
• sl_DeviceEnable – To force the line to high level
• sl_DeviceDisable – To force the line to low level

Example:
#define sl_DeviceEnable() (P4OUT |= BIT1)

#define sl_DeviceDisable() (P4OUT &= ~BIT1)

If some initializations are required before the enable or disable macros are called, the host application can
also define the following optional macro:

sl_DeviceEnablePreamble

This macro is called during sl_Start before sl_DeviceEnable is called. The macro can be used as a
placeholder to implement any preprocess operations before enabling networking operations.

16.5 Implement the Interface Communication Abstract Layer
The SimpleLink Wi-Fi CC3120 device supports two standard communication interfaces: SPI and UART.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Implement the Interface Communication Abstract Layer www.ti.com

236 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

The device automatically detects the active interface during initialization. From the device perspective,
after the detection, the second interface is closed and cannot be used. The host driver uses a unified
interface for both communication interfaces (abstract layer). The following functions should be
implemented:
• sl_IfOpen – Opens the interface communication port to be used for communicating with the SimpleLink

Wi-Fi device. Prototype:
_SlFd_t sl_IfOpen(char* pIfName , unsigned long flags);

• sl_IfClose – Closes an opened interface communication port. Prototype:
int sl_IfClose(_SlFd Fd);

• sl_IfRead – Reads bytes from an opened communication channel into a buffer. Prototype:
int sl_IfRead(_SlFd Fd , char* pBuff , int Len);

• sl_IfWrite – Transmits buffer of bytes on an opened communication channel. Prototype:
int sl_IfWrite(_SlFd Fd , char* pBuff , int Len);

• sl_IfRegIntHdlr – Registers an interrupt handler routine for the host IRQ line. Prototype:
sl_IfRegIntHdlr(InterruptHdl , pValue);

The way these functions are implemented has a direct impact on the performances of the SimpleLink Wi-
Fi device. Consider using DMA or jitter buffer, if possible.

The function sl_IfOpen returns a file descriptor used later by sl_IfClose, sl_IfRead, and sl_IfWrite. The
host application can define the type of this descriptor to any type required by defining _SlFd_t as a macro
or typedef in user.h.

Example:
typedef _u32 _SlFd_t;

The sl_IfOpen function opens and configures the interface communication port using given interface name
and option flags. The interface name is a parameter of the sl_Start function that passes as is to the
sl_IfOpen function. The value of the option flags is set to constant value by defining the macro
_SlIfOpenFlags in user.h.

The baud rate, clock polarity, clock phase, chip select, flow control, or any other specific attributes of the
communication channel must be configured in this function. If the interface name and option flags are not
enough for this configuration and the communication channel could not be entirely configured on this
function, the host application alternatively can leave the sl_IfOpen function empty, and open and configure
the communication channel externally before calling sl_Start. In this method, the host application should
provide to sl_Start the file descriptor of the opened channel. The sl_IfClose function is always called on
sl_Stop, even if the host application opened the communication channel externally.

For most of the platform, implementing the five macros above for the interface communication is sufficient.

By default, the host driver is running in a zero-copy method. This method is good for most cases, but
essential for microcontrollers with tight availability of resources. However, it means that some commands
or messages are sent in several transactions. In some platforms, it can be more efficient, in terms of
performances, to copy the data to a temporary buffer and send it all at once. The driver allows this method
by implementing additional two macros in user.h:
• sl_IfStartWriteSequence – Indicates that a write sequence is starting. From this point, the host

application can store all the data from sl_IfWrite in a buffer. Prototype:
int sl_IfStartWriteSequence (_SlFd Fd);

• sl_IfEndWriteSequence – Indicates that a write sequence completed. At this point, the host should
send the temporary buffer. Prototype:

int sl_IfEndWriteSequence (_SlFd Fd);

In some platforms, the host application might need to mask the IRQ line whenever this interrupt could be
masked. The host driver provides a method to implement such schema. To allow this functionality, the
user can define and implement the following macros:
• sl_IfMaskIntHdlr
• sl_IfUnMaskIntHdlr

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Choose Memory-Management Model

237SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

16.6 Choose Memory-Management Model
The SimpleLink host driver supports two memory models: static (default) and dynamic.

The major difference between these memory models is that the static model requires the memory
allocation of the driver’s control block, even when the driver is not active, and the dynamic does not. In the
dynamic model, the control block and all required resources are allocated on sl_Start and freed on
sl_Stop.

To enable the dynamic model, the macro SL_MEMORY_MGMT_DYNAMIC must be defined. For
example:
#define SL_MEMORY_MGMT_DYNAMIC

And a complementary malloc and free functions must also be defined:
• sl_Malloc – Allocates a buffer of at least the given size and returns a pointer to this buffer. Prototype:
void* sl_Malloc(int Size);

• sl_Free – Frees a given buffer by a pointer. Prototype:
void sl_Free(void* pBuff);

NOTE: TI recommends using the static memory management model.

16.7 Implement OS Adaptation Layer
The SimpleLink Wi-Fi host driver can run on multithreaded environment (OS), as well as a non-OS
environment. This step is not required if the host application is based on a non-OS environment.

To enable the multithreaded environment, the macro SL_PLATFORM_MULTI_THREADED must be
defined. For example:
#define SL_PLATFORM_MULTI_THREADED

The OS adaptation layer consists of two major objects:
• Sync objects – To allow synchronization between threads
• Locking objects – To protect access to resources from different threads

16.7.1 Sync Objects
A sync object is an object used to synchronize between two threads, or between a thread and an interrupt
handler. One thread is waiting on the object and the other thread or interrupt handler sends a signal,
which then releases the waiting thread. The signal can be sent from interrupt context. This object is
generally implemented by binary semaphore.

The type of the sync object is defined by the host application as needed, by defining the _SlSyncObj_t
function as a typedef or a macro.
#define _SlSyncObj_t HANDLE

The following functions should also be implemented:
• sl_SyncObjCreate – Creates a sync object. The function receives a pointer to a memory control block

for the object, which is later passed to the other functions of the sync object.
• sl_SyncObjDelete – Destroys a sync object. If one of the threads already waits on the sync object

while this function is called, the driver expects that the waiting thread will exit with an error when this
function is called.

• sl_SyncObjSignal – Generates a synchronization signal to the sync object from a thread context, which
should release the other thread context that is waiting on this sync object.

• sl_SyncObjSignalFromIRQ – The same as sl_SyncObjSignal, but called from interrupt handler routine.
In most operating systems, there is no difference between these functions, but in some operating
systems there is a special function for this function.

• sl_SyncObjWait – Waits for a synchronization signal of a specific sync object. The calling thread is
blocked on this function until the signal is generated or time-out value elapsed. If the function is called

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Implement OS Adaptation Layer www.ti.com

238 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

after the signal is already generated, the waiting thread should be released immediately.

16.7.2 Locking Objects
Locking objects are used to protect resources from mutual accesses of two or more threads. A locking
object should support reentrant locks by a single thread. This object is generally implemented by a mutex
semaphore.

The type of the locking object could be defined by the host application as needed, by defining the
_SlLockObj_t function as a typedef or a macro. For example:
#define _SlLockObj_t HANDLE

The following functions should also be implemented:
• sl_LockObjCreate – Creates a locking object. The function receives a pointer to a memory control

block for the object, which is later passed to the other functions of the locking object.
• sl_LockObjDelete – Destroys a locking object.
• sl_LockObjLock – Locks a locking object. Other threads that try to lock the same object must be

suspended until the locking thread unlocks this locking object.
• sl_LockObjUnlock – Unlocks a locking object to be used by other threads.

16.8 Implement Timestamp Services
The SimpleLink host driver supports a time-out mechanism for busy loops that the operating systems
object do not support (for example, while waiting for a response from the device between a small SPI
transactions). These time-outs require an implementation of timestamp mechanism.

NOTE: TI recommends implementing this mechanism.

To implement this mechanism, the host application must provide a function that retrieves the current
timestamp:
• slcb_GetTimestamp – Gets counter value in ticks units

In addition, the host application must declare the time resolution of the timestamp on the platform by using
the following macros:
• SL_TIMESTAMP_TICKS_IN_10_MILLISECONDS
• SL_TIMESTAMP_MAX_VALUE

The default time-out values are set to meet the common values of an average system. If the host
application needs to, it can set a different time-out value by defining the following macros:
• SL_DRIVER_TIMEOUT_SHORT – In ms. By default, set to 30 seconds if this macro is not defined.
• SL_DRIVER_TIMEOUT_LONG – In ms. By default, set to 60 seconds if this macro is not defined.
• SYNC_PATTERN_TIMEOUT_IN_MSEC – In ms. By default, set to 60 seconds if this macro is not

defined.

16.9 Set Asynchronous Event Handler Routines
The host application can register asynchronous event handler routines for the different API silos. TI
recommends registering to all of these routines and handling the different events. Registering to these
routines is optional, and might be changed from one host application implementation to another.

The following asynchronous event handlers can be registered:
• slcb_DeviceFatalErrorEvtHdlr – Handles fatal errors from the device or the host driver. After this

routine is called, the host application must restart the driver and the device (call to sl_Stop and
sl_Start) to continue using the device.

• slcb_DeviceGeneralEvtHdlr – Handles general errors from the device.
• slcb_WlanEvtHdlr – Handles events and errors of the WLAN silo
• slcb_SockEvtHdlr – Handles events and errors of the Socket silo.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Set Asynchronous Event Handler Routines

239SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Porting the Host Driver

• slcb_NetAppEvtHdlr – Handles events and errors of the NetApp silo.
• slcb_NetAppHttpServerHdlr – Handles events of the HTTP server.
• slcb_NetAppRequestHdlr – Handles NetApp requests.
• slcb_NetAppRequestMemFree – Frees a buffer used in a NetApp request. Allows the use of a dynamic

memory buffer in these requests.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


240 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Appendix A
SWRU455E–February 2017–Revised February 2018

A.1 Host APIs
Table A-1 provides a brief description of the different host APIs.

Table A-1. Host APIs

API Silo Description
sl_Start Device Start the SimpleLink device by initializing the communication

interface, setting the enable pin, allocating resources, and
calling to the init complete callback if provided.

sl_Stop Device Stop the SimpleLink device by clearing the enable pin of the
device, closing the communication, and releasing all
resources allocated by the driver.

sl_Task Device The SimpleLink task entry function. This function must be
called from the main loop in non-OS platform or otherwise
from dedicated thread if the internal spawn is used.

sl_DeviceGet Device Retrieves device configurations and statuses.
sl_DeviceSet Device Sets device configurations and statuses.
sl_DeviceEventMaskGet Device Retrieves the current asynchronous events bit mask of the

device.
sl_DeviceEventMaskSet Device Sets the asynchronous event bit mask of the device. Masked

events do not generate asynchronous messages to the host.
By default all events are active.

sl_DeviceUartSetMode Device Relevant for UART host interface only. Used to change the
baud rate of the UART after the device was started.

sl_RegisterEventHandler Device This API enables registration of the SimpleLink host driver in
runtime

sl_WlanConnect Wlan Initiates a connection to Wi-Fi network.
sl_WlanDisconnect Wlan Initiates a disconnection from the current connected Wi-Fi

network. If the Auto connection policy is active, a new
connection is initiated immediately.

sl_WlanProfileAdd Wlan Adds a preferred network profile.
sl_WlanProfileGet Wlan Retrieves the nonconfidential data of existing preferred

network profile.
sl_WlanProfileDel Wlan Deletes a preferred network profile.
sl_WlanSet Wlan Sets Wlan configurations.
sl_WlanGet Wlan Retrieves Wlan configurations
sl_WlanPolicySet Wlan Sets Wlan policy configurations
sl_WlanPolicyGet Wlan Retrieves Wlan policy configurations
sl_WlanGetNetworkList Wlan Gets the last Wlan scan results
sl_WlanRxStatStart Wlan Starts collecting wlan RX statistics
sl_WlanRxStatStop Wlan Stops collecting wlan RX statistics
sl_WlanRxStatGet Wlan Retrieves Wlan RX statistics. Upon calling this function, the

statistics are cleared and collected from beginning.
sl_WlanSetMode Wlan Sets the Wlan mode
sl_WlanProvisioning Wlan Starts the provisioning process
sl_WlanRxFilterAdd Wlan Adds a new receive filter rule to the system
sl_Socket Socket Creates an endpoint for communication
sl_Listen Socket Listens for connections on a socket

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Host APIs

241SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Table A-1. Host APIs (continued)
API Silo Description

sl_Accept Socket Accepts a connection on a socket
sl_Bind Socket Assigns an address to a socket
sl_Close Socket Closes an endpoint socket. If the socket is connected, it

gracefully closes the socket.
sl_Connect Socket Initiates a connection on a socket
sl_Select Socket Monitors set of sockets activities
sl_Send Socket Writes a data buffer to a socket. Used especially in stream

sockets.
sl_SendTo Socket Writes a data buffer to a socket. Used especially in datagram

sockets.
sl_Recv Socket Reads a data buffer from a socket. Used especially in stream

sockets.
sl_RecvFrom Socket Reads a data buffer from a socket. Used especially in

datagram sockets.
sl_GetSockOpt Socket Retrieves a socket options
sl_SetSockOpt Socket Sets a socket options
sl_NetAppStart NetApp Starts network applications (bitmask)
sl_NetAppStop NetApp Stops network applications (bitmask)
sl_NetAppDnsGetHostByName NetApp Retrieves the IP address of a host on the network
sl_NetAppDnsGetHostByService NetApp Retrieves service attributes like IP address, port and text

according to service name
sl_NetAppGetServiceList NetApp Retrieves the cached services of the peer
sl_NetAppMDNSUnRegisterService NetApp Unregisters mDNS service
sl_NetAppMDNSRegisterService NetApp Registers a new mDNS service
sl_NetAppPingStart NetApp Sends ICMP ECHO_REQUEST to a host on the network
sl_NetAppSet NetApp Sets configuration for a network application
sl_NetAppGet NetApp Retrieves configuration for a network application
sl_NetCfgSet NetCfg Sets the network configuration of the device
sl_NetCfgGet NetCfg Retrieves the network configuration of the device
sl_NetUtilSet NetUtil Sets configurations of a network utility
sl_NetUtilGet NetUtil Retrieves configurations of a network utility
sl_NetUtilCmd NetUtil Activates a network utility-related command
sl_FsOpen FS Opens a file for read or write
sl_FsClose FS Closes a file
sl_FsRead FS Reads a block of data from a file
sl_FsWrite FS Writes a block of data to a file
sl_FsGetInfo FS Retrieves information of a file
sl_FsDel FS Deletes specific file from the file system
sl_FsCtl FS Controls various file system operations
sl_FsProgram FS Enables to format and configure the device with preprepared

configuration
sl_FsGetFileList FS Retrieves the list of stored files and their basic attributes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


242 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Appendix B
SWRU455E–February 2017–Revised February 2018

B.1 Persistency
The SimpleLink device supports a few different persistency types for settings and configurations:
• Nonpersistent: Effective immediately, but returned to default after reset
• System-persistent: Effective immediately, and kept after reset according to system-persistent mode
• Persistent: Effective immediately, and kept after reset, regardless the system-persistent mode
• Optionally persistent: Effective immediately, and kept after reset, according to a parameter in the API

call
• Reset: Persistent, but effective only after reset

Table B-1 lists the different configurations and settings of the device, and their persistency type.

Table B-1. Persistency Settings

Functionality API Type Comments
Set time and date sl_DeviceSet Nonpersistent* Kept during hibernate. Setting

operation include write to the
file system.

Set system-persistent
configuration

sl_DeviceSet Persistent

Set Events mask sl_EventMaskSet System-persistent
Set UART baud rate sl_UartSetMode Nonpersistent
Start NetApp Applications sl_NetAppStart System-persistent Setting effective to current Wi-

Fi mode
Stop NetApp Applications sl_NetAppStop System-persistent Setting effective to current Wi-

Fi mode
Set Http port number sl_NetAppSet System-persistent
Enable/Disable Http
authentication check

sl_NetAppSet System-persistent

Set Http authentication name sl_NetAppSet System-persistent
Set Http authentication
password

sl_NetAppSet System-persistent

Set Http authentication realm sl_NetAppSet System-persistent
Enableor Disable Http ROM
pages access

sl_NetAppSet System-persistent

Set secondary port number sl_NetAppSet System-persistent
Enable or Disable of secondary
port

sl_NetAppSet System-persistent

Enableor Disable security on
the primary port

sl_NetAppSet System-persistent

Set private key file name sl_NetAppSet System-persistent
Set device certificate file name sl_NetAppSet System-persistent
Set CA certificate file name sl_NetAppSet System-persistent
Register mDNS service sl_NetAppMDNSRegisterServic

e
Optionally persistent

Unregister mDNS service sl_NetAppMDNSUnRegisterSe
rvice

Optionally persistent

Set http temporary mDNS
service name

sl_NetAppSet Nonpersistent

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Persistency

243SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Table B-1. Persistency Settings (continued)
Functionality API Type Comments

Unset http temporary mDNS
service name

sl_NetAppSet Nonpersistent

Set DHCP server parameters sl_NetAppSet Reset
Set mDNS continues query sl_NetAppSet System-persistent
Set mDNS event mask sl_NetAppSet System-persistent
Set mDNS timing parameters sl_NetAppSet System-persistent
Set Device URN sl_NetAppSet System-persistent MDNS restarts internally
Set Domain Name and SNI sl_NetAppSet Reset
Enable IPv4 STA\Wi-Fi Direct
client DHCP

sl_NetCfgSet Reset

Enable and set IPv4 STA\Wi-Fi
Direct client static

sl_NetCfgSet Reset

Enable IPv4 STA\Wi-Fi Direct
client DHCP release address
before disconnect

sl_NetCfgSet System-persistent

Enable and set IPv4 AP\Wi-Fi
Direct GO static

sl_NetCfgSet Reset

Enable or Disable IPv6
interface (local\local+global)

sl_NetCfgSet System-persistent

Set IPv6 local or global state sl_NetCfgSet System-persistent
Set IPv6
static\stateless\statefull

sl_NetCfgSet System-persistent

Enable and set IPv4 STA\W-iFi
Direct client static

sl_NetCfgSet Reset

Set MAC address sl_NetCfgSet Reset
Disconnet AP station by MAC
address

sl_NetCfgSet Nonpersistent

Enable or Disable periodic
keep-alive

sl_SetSockOpt Nonpersistent

Set receive time-out value sl_SetSockOpt Nonpersistent
Sets tcp max recv window size sl_SetSockOpt Nonpersistent
Sets socket to nonblocking
operation

sl_SetSockOpt Nonpersistent

Sets method to tcp secured
socket

sl_SetSockOpt Nonpersistent

Sets specific cipher to tcp
secured socket

sl_SetSockOpt Nonpersistent

Map secured socket to CA file
by name

sl_SetSockOpt Nonpersistent

Map secured socket to private
key by name

sl_SetSockOpt Nonpersistent

Map secured socket to
certificate file by name

sl_SetSockOpt Nonpersistent

Map secured socket to Diffie
Hellman file by name

sl_SetSockOpt Nonpersistent

Sets channel in transceiver
mode

sl_SetSockOpt Nonpersistent

Set socket TTL value of
outgoing multicast packets

sl_SetSockOpt Nonpersistent

UDP socket; join IPv4 multicast
group

sl_SetSockOpt Nonpersistent

UDP socket; leave IPv4
multicast group

sl_SetSockOpt Nonpersistent

RAW socket; remove IP
header from received data

sl_SetSockOpt Nonpersistent

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Persistency www.ti.com

244 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Table B-1. Persistency Settings (continued)
Functionality API Type Comments

RAW socket; packet include
the IP header

sl_SetSockOpt Nonpersistent

RAW socket; packet include
the ipv6 header

sl_SetSockOpt Nonpersistent

RAW socket; set WLAN PHY
transmit rate

sl_SetSockOpt Nonpersistent

RAW socket; set WLAN PHY
TX power

sl_SetSockOpt Nonpersistent

RAW socket; set number of
frames to transmit in
transceiver mode

sl_SetSockOpt Nonpersistent

RAW socket; set WLAN PHY
preamble for Long/Short

sl_SetSockOpt Nonpersistent

Set CCA threshold sl_SetSockOpt Nonpersistent
Set TX frame time-out sl_SetSockOpt Nonpersistent
Enable ACK in transceiver
mode

sl_SetSockOpt Nonpersistent

Start secured socket sl_SetSockOpt Nonpersistent
Set keepalive time sl_SetSockOpt Nonpersistent
Set IPV6 Hops time-out sl_SetSockOpt Nonpersistent
Join ipv6 multicast group sl_SetSockOpt Nonpersistent
Leave ipv6 multicast group sl_SetSockOpt Nonpersistent
Add profile sl_WlanProfileAdd Persistent
Delete profile sl_WlanProfileDel Persistent
Set connection policy sl_WlanPolicySet System-persistent
Set system scan time interval
and start scan

sl_WlanPolicySet Nonpersistent

Set PM policy for STA mode
only

sl_WlanPolicySet System-persistent

Set negotiation policy
parameters for P2P role

sl_WlanPolicySet System-persistent

Set WLAN mode sl_WlanSetMode Reset
Set SSID for AP mode sl_WlanSet Reset
Set channel for AP mode sl_WlanSet Reset
Set hidden SSID mode for AP
mode

sl_WlanSet Reset

Set security type for AP mode sl_WlanSet Reset
Set password for for AP mode sl_WlanSet Reset
Set scan parameters sl_WlanSet System-persistent
Set Country Code for AP mode sl_WlanSet System-persistent
Set STA mode Tx power level sl_WlanSet System-persistent
Set AP mode Tx power level sl_WlanSet System-persistent
Set AP mode info element sl_WlanSet System-persistent
Set smart config key sl_WlanSet Persistent
Set P2P device type sl_WlanSet System-persistent
Set P2P channels sl_WlanSet System-persistent
Add new filter rule to the
system

sl_WlanRxFilterAdd Optionally Persistent

Enable or disable filter in a
filter list

sl_WlanSet Optionally Persistent

Remove filter from memory sl_WlanSet Optionally Persistent
Save the filters for persistent sl_WlanSet Persistent

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


www.ti.com Persistency

245SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Table B-1. Persistency Settings (continued)
Functionality API Type Comments

Update the arguments of
existing filter

sl_WlanSet Optionally Persistent

Change the default creation of
the pre-prepared filters

sl_WlanSet Optionally Persistent

Set maximum supported
stations

sl_WlanSet Persistent

Set AP access list mode sl_WlanSet Persistent
Add station to black list by mac
address

sl_WlanSet Persistent

Remove station from black list
by mac address

sl_WlanSet Persistent

Remove station from black list
by index

sl_WlanSet Persistent

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


Revision History www.ti.com

246 SWRU455E–February 2017–Revised February 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from D Revision (December 2017) to E Revision ........................................................................................... Page

• Updated Calibrations section. .......................................................................................................... 67
• Updated Calibration Modes table. ..................................................................................................... 68
• Updated code in Create a File versus Open for Write section. .................................................................. 112
• Updated code in Open a File for Read section..................................................................................... 118
• Updated code in CC3220 Bundle Aspects section................................................................................. 124
• Added Note.............................................................................................................................. 164
• Updated Selecting Capabilities table. ............................................................................................... 234
• Updated Persistency Settings table. ................................................................................................. 244

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU455E


IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Table of Contents
	Preface
	1 Networking Application
	1.1 Introduction
	1.1.1 Wi-Fi Connectivity
	1.1.2 Traffic Types
	1.1.3 Security
	1.1.4 User Experience
	1.1.5 Power Consumption
	1.1.6 Provisioning

	1.2 Basic Examples
	1.2.1 Wi-Fi Doorbell
	1.2.1.1 Description
	1.2.1.2 Design Considerations

	1.2.2 Power Socket
	1.2.2.1 Description
	1.2.2.2 Design Constraints

	1.2.3 Wi-Fi Tag
	1.2.3.1 Description
	1.2.3.2 Design Consideration



	2 Device
	2.1 Introduction
	2.2 Key Features
	2.3 Start and Stop
	2.3.1 Start
	2.3.2 Stop
	2.3.3 Hibernate and Shutdown
	2.3.4 Lock State
	2.3.5 Initialization Sequence

	2.4 Host Interface
	2.4.1 SPI Interface
	2.4.2 UART Interface
	2.4.2.1 Change UART Baud Rate


	2.5 Version
	2.6 Event Mask
	2.7 Time and Date
	2.8 MAC Address
	2.9 Device Name
	2.10 Domain Name
	2.11 Device Status
	2.12 Persistent Configuration
	2.13 Errors

	3 WLAN
	3.1 Introduction
	3.2 Key Features
	3.3 Station (STA)
	3.3.1 General Description
	3.3.2 Configurations and Settings
	3.3.2.1 Set Mode
	3.3.2.2 Set General STA Parameters

	3.3.3 Connection
	3.3.3.1 Connection Policies
	3.3.3.2 Preferred Networks (Profiles)
	3.3.3.3 Manual Connection

	3.3.4 Events and Errors

	3.4 Access Point
	3.4.1 General Description
	3.4.2 Configurations and Settings
	3.4.2.1 Set Mode
	3.4.2.2 Set General AP Parameters
	3.4.2.3 Get General AP Parameters
	3.4.2.4 Black List

	3.4.3 Set Network Configuration
	3.4.3.1 Set AP IP Parameters

	3.4.4 Station Management
	3.4.4.1 Get Connected Stations
	3.4.4.2 Disconnect a Station

	3.4.5 Events and Errors
	3.4.6 Limitations

	3.5 Wi-Fi Direct
	3.5.1 General Description
	3.5.2 Supported Features
	3.5.3 Configurations and Settings
	3.5.3.1 Configuring Wi-Fi Direct General Parameters
	3.5.3.2 Set Wi-Fi Direct Policy
	3.5.3.3 Configure Connection Policy

	3.5.4 Connection
	3.5.5 Events and Errors
	3.5.6 Limitations

	3.6 WLAN Security
	3.6.1 Personal Security
	3.6.2 Enterprise Security
	3.6.3 WPS

	3.7 Scan
	3.7.1 General Description
	3.7.2 Configuration (AP/STA)
	3.7.3 Usage
	3.7.4 Miscellaneous

	3.8 Calibrations

	4 Network Addresses
	4.1 Introduction
	4.2 Key Features
	4.3 Addressing
	4.3.1 IPv4 Addresses
	4.3.2 IPv6 Addresses
	4.3.2.1 Local Link
	4.3.2.2 Link-Global

	4.3.3 DNS Addresses

	4.4 DHCPv4 client
	4.4.1 Modes
	4.4.2 Address Release

	4.5 DHCPv4 Server
	4.5.1 Enable and Disable the DHCP Server
	4.5.2 Set DHCP Server Parameters

	4.6 DNS Server
	4.7 Errors and Asynchronous Events

	5 Socket
	5.1 Introduction
	5.2 Key Features
	5.3 Socket Types
	5.4 BSD API
	5.5 Socket Working Flow
	5.5.1 TCP
	5.5.1.1 Client Side
	5.5.1.2 Server Side
	5.5.1.3 TCP Keep Alive

	5.5.2 UDP
	5.5.2.1 Multicast
	5.5.2.2 Packet Boundary

	5.5.3 RAW
	5.5.3.1 Layer 4: Transport
	5.5.3.2  Layer 3: Network
	5.5.3.3 Layer 2: Data Link (Transceiver Mode, Not Connected)


	5.6 DNS
	5.7 Operation Modes
	5.7.1 Nonblocking Mode
	5.7.2 Trigger Mode
	5.7.2.1 Trigger Mode for Accept
	5.7.2.2 Trigger Mode for Data Reception


	5.8 IP Fragmentation
	5.9 Errors

	6 Secure Socket
	6.1 Introduction
	6.2 Key Features
	6.3 Opening a Secure Socket
	6.4 Trusted Root-Certificate Catalog
	6.5 Options and Features Use
	6.5.1 Set SSL Version
	6.5.2 Set Cipher Suites
	6.5.3 Set Certificates, Root CA, Private Key, and DH Files
	6.5.4 Disable the Use of the Trusted Root-Certificate Catalog
	6.5.5 Set ALPN List
	6.5.6 Set Domain Name for Verification and SNI
	6.5.7 Upgrade Nonsecured Socket to Secured
	6.5.8 Get Connection Parameters

	6.6 Supported Cryptographic Algorithms
	6.7 Common Errors and Asynchronous Events
	6.7.1 Using Socket Asynchronous Events in SSL
	6.7.2 Common Errors


	7 File System
	7.1 Introduction
	7.2 Key Features
	7.3 File System Characteristics
	7.4 Write a File
	7.4.1 Introduction
	7.4.2 Create a File versus Open for Write
	7.4.3 Create a File
	7.4.3.1 Secure File Creation Notes
	7.4.3.2 Forced Creation Flags

	7.4.4 Open a File for Write
	7.4.5 Write an Opened File
	7.4.6 Close an Opened (for Write) File
	7.4.7 Close an Opened (for Write) Secure-Signed File

	7.5 Read a File
	7.5.1 Open a File for Read
	7.5.2 Read an Opened File
	7.5.3 Close an Opened (for Read) File

	7.6 Delete a File
	7.7 Rename a File
	7.8 File System Helper Functions
	7.8.1 Get File Information
	7.8.2 Get Storage Information
	7.8.3 Get List of Files

	7.9 Bundle Protection
	7.9.1 Bundle File States
	7.9.2 Bundle States
	7.9.2.1 STOPPED
	7.9.2.2 STARTED
	7.9.2.3 PENDING_COMMIT

	7.9.3 Commit a Bundle
	7.9.4 Rollback a Bundle
	7.9.5 Retrieve the Bundle and Files State
	7.9.6 CC3220 Bundle Aspects

	7.10 File Commit Feature
	7.10.1 File Commit Process

	7.11 File Rollback Process
	7.12 Programming
	7.12.1 Creation of the Programming Image
	7.12.1.1 Programming Image Types
	7.12.1.2 Program the Device
	7.12.1.2.1 Image Creator Tool (UART) Programming
	7.12.1.2.2 Host Programming
	7.12.1.2.3 External Tool Programming



	7.13 Restore to Factory
	7.13.1 Restore to Factory by the Host
	7.13.2 Restore to Factory by Using the SOP
	7.13.2.1 CC3120
	7.13.2.2 CC3220/R/S/F


	7.14 Security Alerts
	7.15 Design Consideration
	7.15.1 Choosing SFLASH Type
	7.15.2 Software Design Consideration
	7.15.3 Retrieving Info Regarding SFLASH Usage
	7.15.4 SFLASH Size
	7.15.4.1 Restore to Factory is Disabled
	7.15.4.2 Restore to Factory is Enabled

	7.15.5 Storage Usage Information


	8 HTTP Server
	8.1 Introduction
	8.1.1 Built-in Configuration Pages
	8.1.2 RESTful APIs
	8.1.2.1 Changing Configuration
	8.1.2.2 Reading Configuration

	8.1.3 Custom Static Pages
	8.1.3.1 Custom Pages With Device Tokens
	8.1.3.2 Static Pages With Host Tokens

	8.1.4 Host Application Interface

	8.2 Key Features
	8.3 Configurations and Settings
	8.4 RESTful API Processing
	8.4.1 Ping
	8.4.2 IP Configuration
	8.4.3 URN Configuration
	8.4.4 WLAN Profiles
	8.4.5 WLAN Scan
	8.4.6 Provisioning Confirmation
	8.4.7 Connection Policy
	8.4.8 Station Action
	8.4.9 AP Black List
	8.4.10 Date and Time

	8.5 Device Parameter Querying Through HTTP (Device Tokens)
	8.5.1 Retrieving Tokens Through GET Request
	8.5.2 Embedded Tokens
	8.5.3 System Information
	8.5.4 Version Information
	8.5.5 Network Information
	8.5.6 Ping Results
	8.5.7 Connection Policy Status
	8.5.8 Provisioning
	8.5.9 Display Profile Information
	8.5.10 P2P Information
	8.5.11 Host Tokens

	8.6 Resource Search Order
	8.6.1 GET Request Search Order
	8.6.2 POST Request Search Order
	8.6.3 PUT and DELETE Request Search Order

	8.7 Host HTTP Requests Processing
	8.7.1 Metadata (TLVs) Description
	8.7.2 GET Processing
	8.7.2.1 Fragmentation

	8.7.3 POST Processing
	8.7.3.1 Long Requests and Delayed Responses

	8.7.4 PUT Processing
	8.7.5 DELETE Processing

	8.8 Security
	8.8.1 Authentication
	8.8.1.1 HTTP Realm

	8.8.2 Secure Connection

	8.9 Other
	8.9.1 Processing of Parallel Requests


	9 mDNS
	9.1 Introduction
	9.2 Key Features
	9.3 Configurations and Settings
	9.4 Query
	9.4.1 One Shot Query
	9.4.2 Continuous Query
	9.4.3 Mask Services

	9.5 Get Service List
	9.6 Advertisement
	9.6.1 Registering mDNS Services
	9.6.2 Unregistering mDNS Services
	9.6.3 Advertisement Settings
	9.6.3.1 Timing
	9.6.3.2 Update Text


	9.7 Limitations

	10 Rx Filters
	10.1 Introduction
	10.2 Matching Process
	10.2.1 Filter Matching
	10.2.2 Tree Traversal

	10.3 Examples of Filter Use
	10.3.1 Example 1
	10.3.2 Example 2

	10.4 Filter Creation
	10.4.1 Filter Type
	10.4.2 Filter Flags
	10.4.3 Rule Structure for Header Filters
	10.4.3.1 Field
	10.4.3.2 Compare Functions
	10.4.3.3 Rule Fields
	10.4.3.4 Pattern-Matching Rule Fields

	10.4.4 Rule Structure for Combined Filters
	10.4.5 Filter Trigger
	10.4.5.1 Parent Filter ID
	10.4.5.2 Connection State and Role
	10.4.5.3 Filter During Transceiver Mode

	10.4.6 Rx Filter Action
	10.4.6.1 Send Events Action
	10.4.6.2 Multiple Bits Set on the Same Event
	10.4.6.3 Multiple Events From the Same Rx Frame
	10.4.6.4 Code Example
	10.4.6.5 Counter Action


	10.5 Managing Filters
	10.5.1 Enable and Disable Filters
	10.5.2 Get Filter Status
	10.5.3 Removing a Filter
	10.5.4 Storing Filters into the SFLASH
	10.5.5 Update Filter Arguments


	11 Ping
	11.1 General Description
	11.2 Start and Stop Ping
	11.3 Limitations

	12 Transceiver
	12.1 Introduction
	12.2 Key Features
	12.3 Configurations and Setting
	12.3.1 Open Transceiver Socket
	12.3.2 Close Transceiver Socket
	12.3.3 Send Data
	12.3.4 Receive Data

	12.4 Internal Packet Generator
	12.5 CW
	12.6 Changing Socket Properties
	12.6.1 Change Operating Channel
	12.6.2 Change Default PHY Data Rate
	12.6.3 Change Tx Power
	12.6.4 Change Number of Frames to Transmit (Internal Packet Generator)
	12.6.5 Change 802.11b Preamble
	12.6.6 Set CCA Threshold
	12.6.7 Set Tx Frames Time-out
	12.6.8 Enable or Disable Sending ACKs

	12.7 Limitations

	13 Power Managment
	13.1 Introduction
	13.1.1 LPDS
	13.1.2 802.11 Power Save
	13.1.2.1 LSI (Long Sleep Interval)

	13.1.3 Low Power versus Latency
	13.1.4 Power Modes versus Device Modes

	13.2 Key Features
	13.3 Configurations and Settings
	13.3.1 Changing Power Policy
	13.3.2 Enabling Fast Connect

	13.4 Network Applications and Power Consumption
	13.4.1 mDNS
	13.4.2 HTTP Server

	13.5 Design Guidelines
	13.5.1 LSI and Packet Loss
	13.5.2 PHY Calibration Mode


	14 Provisioning
	14.1 Introduction
	14.2 Key Features
	14.3 Provisioning Process Overview
	14.3.1 Configuring a Profile
	14.3.2 Confirming a Profile

	14.4 Host Provisioning Application Flow
	14.5 Configuration Modes
	14.5.1 AP Provisioning
	14.5.2 SC Provisioning
	14.5.3 AP and SC Provisioning
	14.5.4 AP and SC and External Configuration Provisioning

	14.6 Starting and Stopping the Provisioning Process
	14.7 Auto-Provisioning
	14.8 Delivering Feedback to the User
	14.8.1 External Confirmation

	14.9 External Configuration
	14.10 Common Events and Errors
	14.10.1 Provisioning Status Event
	14.10.2 Provisioning Profile-Added Event
	14.10.3 Reset Request Event
	14.10.4 Errors
	14.10.5 Host Commands During Provisioning

	14.11 Usage Examples
	14.11.1 Successful SmartConfig Provisioning
	14.11.2 Unsuccessful SmartConfig Provisioning
	14.11.3 Successful SmartConfig Provisioning With AP Fallback
	14.11.4 Successful AP Provisioning
	14.11.5 Successful AP Provisioning With Cloud Confirmation
	14.11.6 Using External Configuration Method: WAC
	14.11.7 Successful SmartConfig Provisioning While External Configuration Enabled


	15 Crypto Utilities
	15.1 Introduction
	15.1.1 API and Usage
	15.1.1.1 Install and Uninstall Key-Pairs and Certificates
	15.1.1.2 Create or Remove Temporary Key
	15.1.1.3 Get Public Key
	15.1.1.4 Sign Buffer
	15.1.1.5 Verify Buffer
	15.1.1.6 True Random Number

	15.1.2 Limitations and Constraints
	15.1.3 Errors

	15.2 Secured Content Delivery
	15.2.1 Process Flow
	15.2.2 Encrypted File Format


	16 Porting the Host Driver
	16.1 Introduction
	16.2 Create Platform Porting File
	16.3 Select Capabilities Set
	16.4 Bind the Device Enable/Disable Line
	16.5 Implement the Interface Communication Abstract Layer
	16.6 Choose Memory-Management Model
	16.7 Implement OS Adaptation Layer
	16.7.1 Sync Objects
	16.7.2 Locking Objects

	16.8 Implement Timestamp Services
	16.9 Set Asynchronous Event Handler Routines

	A 
	A.1 Host APIs

	B 
	B.1 Persistency

	Revision History
	Important Notice

