
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Wed, 22 Feb 2012 04:17:10 CST

HDVPSS DRIVER
USER GUIDE

JOHN
文本框
handle和通道：
handle(instance)就是该类型的硬件模块，handle的个数就是该类型的硬件模块的个数
通道channel:多通道是指视频流来自多个流，如通过network的decoder流,具有不同帧高、帧宽参数的捕获流。见P91
一个handle可以处理多个通道，也就是多个流

Contents
Articles

TI81xx- HDVPSS- UserGuide 1
T181xx- HDVPSS Overview 15
T1816X- HDVPSS- HW Overview 19
T1814X- HDVPSS- HW Overview 23
UserGuideHdvpssFolderOrg 27
UserGuideFVID2 36
UserGuideHdvpssPlatformAPIs 57
UserGuideHdvpssDisplayDriver 60
UserGuideHdvpssM2mDriver 89
UserGuideHdvpssTi816xDeiM2mDriver 119
UserGuideHdvpssTi814xDeiM2mDriver 134
UserGuideHdvpssCaptureDriver 149
TI81xx- external video drivers 177
UserGuideHdvpssIntegExample 181
TI81xx- HDVPSS MultiCore Arch 200

References
Article Sources and Contributors 205
Image Sources, Licenses and Contributors 206

TI81xx-HDVPSS-UserGuide 1

TI81xx- HDVPSS- UserGuide

About this Manual
This document describes how to install and work with the Texas Instruments TI81xx HDVPSS drivers on TI81xx
EVM. The HDVPSS package serves to provide a fundamental software platform for development, deployment and
execution of video applications. HDVPSS abstracts the functionality provided by the hardware and forms the basis
for all video applications development on this platform.
In this context, the document contains instructions to:
• Install the HDVPSS package
• Build the HDVPSS package
The document provides overview of HDVPSS and the following drivers contained in HDVPSS package:
• HDVPSS introduction
• HDVPSS Display drivers
• HDVPSS Memory to Memory drivers
• HDVPSS Capture drivers
Please note that ES 1 refer to PG 1.0 Silicon, ES 1.1 refer to PG 1.1 silicon, ES 2.0 refer to PG 2.0 silicon, ES 2.1
refer to PG 2.1 silicon. If no ES qualifier is used, it is applicable to all the known silicon versions.

Getting Started

System Requirements
Refer to 'Dependencies' section of release notes.

Installation
HDVPSS device driver installation package is a self extracting EXE. Double click the installation package and
install the package in the directory where various Texas Instruments tools are installed like CCS, BIOS, etc.
Following are the installation steps:
• Double click the installer package. Language screen appears. Select the language and click OK.

Installation step 1

JOHN
文本框
本文件描述了如何在ti81xx evl上安装和使用德州仪器ti81xx hdvpss驱动程序。hdvpss软件包为视频应用程序的开发、部署和执行提供了一个基本的软件平台。hdvpss抽象了硬件提供的功能，并构成了在此平台上开发所有视频应用程序的基础。

JOHN
文本框
描述HDVPSS驱动

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TIBanner.png
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_1.PNG

TI81xx-HDVPSS-UserGuide 2

• Dialogue box appears to confirm the package installation click Yes to install.

Installation step 2

• Welcome screen appears. Click next to continue.

Installation step 3

• Module information appears for the installation package. Click next to continue.

Installation step 4

• License agreement appears. Accept the terms of agreement after reading and click yes to continue.

Installation step 5

• Destination folder screen appears. Select the installation folder where other TI tools like CCS, BIOS are installed.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_2.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_3.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_4.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_5.PNG

TI81xx-HDVPSS-UserGuide 3

Installation step 6

• Select Typical type of installation.

Installation step 7

• Confirmation screen appears. Click next to install the package.

Installation step 8

• Click on Finish to complete the installation

Installation step 9

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_6.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_8.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_9.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_10.PNG

TI81xx-HDVPSS-UserGuide 4

This completes the installation of the package.

Running First HDVPSS Application on TI816x
This section describes the out of the box experience for the HDVPSS drivers. It shows how to run the first HDVPSS
application involving major HDVPSS drivers.
Demo application on Video Surveillance (VS) Application board

Following are the application details which is running on the VS application board:
• 16 channels NTSC interlaced input to VIP capture driver using TVP5158 in line multiplexed mode.
• VIP capture outputs all the buffers in the memory in YUV422 interlaced format.
• DEI high quality and DEI medium quality picks 8 channels each out of 16 channels and de-interlaces the

interlaced image and scales it to CIF size and outputs it to memory.
• Display operates in multi window mode of 4X4 window picking up one buffer from each of the 16 channels and

displays it in mosaic fashion at 1080P30 resolution.
More about the integration application is explained at Integration Application
Steps to run the Demo on Video Surveillance Board

Common Steps for all examples

• Switch on the board.
• Open the CCS and connect to TI816x (CortexA8) using the CCS and debugger.
• Load gel file TI816x_evm_A8_ddr3.gel under directory $HDVPSS_INSTALL_DIR/docs/TI816x for A8 processor.
• Run Scripts > TI816x HDVPSS Init > HDVPSSInit. This will enable the DDR, Ducati and HDMI.
• Connect to CortexM3_ISS
• Load gel file TI816x_evm_ducati.gel file in ISS_M3 processor under directory

$HDVPSS_INSTALL_DIR/docs/TI816x.
• Run scripts > UnicacheEnableDisable > Ducati_cache_enable. This enables the cache on Ducati.
Steps for specific application

• Connect 16 input sources to the composite input of the video surveillance board.
• Connect the HDMI output of the VS board to the HDMI input of the TV.
• Load and Run

$HDVPSS_INSTALL_DIR/pspdrivers_/build/hdvpss_examples_chains/bin/ti816x-evm/hdvpss_examples_chains_m3vpss_debug.xem3
• Select option 7 at " Enter Choice:" option.
• You can see the 4X4 window of the 16 captured channels.
Important
Currently frame drops is observed on all the channels because of the DDR2 bandwidth limitation and/or the
application issue.

JOHN
文本框
hdvpss驱动的第一个应用程序

JOHN
文本框
视频监控(VS)应用板的演示应用

JOHN
文本框
16通道ntsc在行复用模式下使用tv 5158将输入到vip捕获驱动程序。
VIP捕获以yuv 422交错格式输出内存中的所有缓冲区。
DEI高质量和中等质量从16个通道中各挑选8个通道，去带隔行图像并将其缩放到cif大小并输出到内存中。
显示器以4x4窗口的多窗口模式工作，从16个通道中每个通道取一个缓冲器，以镶嵌方式显示，分辨率为1080p30。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideHdvpssIntegExample%23DVR_use_case:_Multi-channel_Capture_.2B_Noise-Filter_.28NSF.29_.2B_De-interlacer_.28DEI.29_.2B_Scalar_.2B_Display

TI81xx-HDVPSS-UserGuide 5

Running First HDVPSS Application TI814x
This section describes the out of the box experience for the HDVPSS drivers. It shows how to run the first HDVPSS
application involving major HDVPSS drivers.
Demo application on Video Surveillance (VS) Application board

Following are the application details which is running on the VS application board:
• 4 channels NTSC interlaced input to VIP capture driver using TVP5158 in pixel multiplexed mode.
• VIP capture outputs all the buffers in the memory in YUV422 interlaced format.
• DEI de-interlaces the interlaced image and scales it to CIF size and outputs it to memory.
• Scaler scales the images to fit into 1080P window
• Display operates in single window mode and display at 1080P30 resolution.
More about the integration application is explained at Integration Application
Steps to run the Demo on Video Surveillance Board

Common Steps for all examples

• Switch on the board.
• Open the CCS and connect to TI814x (CortexA8) using the CCS and debugger.
• Load gel file TI814x_ES_xx_evm_A8_ddrX.gel under directory $HDVPSS_INSTALL_DIR/docs/TI814x for A8

processor.
• Use TI814x_ES_1_evm_A8_ddr2.gel for ES 1 DDR 2 board
• Use TI814x_ES_2x_evm_A8_ddr2.gel for ES 2.1 DDR 2 board
• Use TI814x_ES_2x_evm_A8_ddr3.gel for ES 2.1 DDR 3 board
• Run Scripts > TI814x HDVPSS Init > HDVPSSInit. This will enable the DDR, Ducati and HDMI.
• Connect to CortexM3_ISS
• Load gel file TI814x_evm_ducati.gel file in ISS_M3 processor under directory

$HDVPSS_INSTALL_DIR/docs/TI814x.
• Run scripts > UnicacheEnableDisable > Ducati_cache_enable. This enables the cache on Ducati.
Steps for specific application

• Connect 8 input sources to the composite input of the video surveillance board.
• Connect the HDMI output of the VS board to the HDMI input of the TV.
• Load and Run

$HDVPSS_INSTALL_DIR/pspdrivers_/build/hdvpss_examples_chains/bin/ti814x-evm/hdvpss_examples_chains_m3vpss_debug.xem3
• Select option 4 at " Enter Choice:" option.
• You can see the 2X2 window of the 4 captured channels.

Running First HDVPSS Application on TI8107
This section describes the out of the box experience for the HDVPSS drivers. It shows how to run the first HDVPSS
application involving major HDVPSS drivers.
Demo application on Video Surveillance (VS) Application board

Following are the application details which is running on the VS application board:
• 4 channels NTSC interlaced input to VIP capture driver using TVP5158 in pixel multiplexed mode.
• VIP capture outputs all the buffers in the memory in YUV422 interlaced format.
• DEI de-interlaces the interlaced image and scales it to CIF size and outputs it to memory.
• Scaler scales the images to fit into 1080P window
• Display operates in single window mode and display at 1080P60 resolution.
More about the integration application is explained at Integration Application

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideHdvpssIntegExample%23Multi-channel_Capture_.2B_De-interlacer_.2B_Scalar_.2B_Display
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideHdvpssIntegExample%23Multi-channel_Capture_.2B_De-interlacer_.2B_Scalar_.2B_Display

TI81xx-HDVPSS-UserGuide 6

Steps to run the Demo on Video Surveillance Board

Common Steps for all examples

• Switch on the board.
• Open the CCS and connect to CortexA8 using the CCS and debugger.
• Load gel file TI8107_ES_1_evm_A8_ddr3.gel under directory $HDVPSS_INSTALL_DIR/docs/TI8107 for A8

processor.
• Run Scripts > TI8107 System Initialization > TI8107HdvpssInit. This will enable the DDR, Ducati and HDMI.
• Run Scripts > TI8107 VDB DDR Configurations > EVM_DDR3_EMIF0_400MHz_Config_256MB. This will

enable DDR for 256MB size. Please note that this option is required only for NetCam card.
• Connect to CortexM3_ISS
• Load gel file TI8107_evm_ducati.gel file in ISS_M3 processor under directory

$HDVPSS_INSTALL_DIR/docs/TI8107.
• Run scripts > UnicacheEnableDisable > Ducati_cache_enable. This enables the cache on Ducati.
Steps for specific application

• Connect 4 input sources to the composite input of the video surveillance board.
• Connect the HDMI output of the VS board to the HDMI input of the TV.
• Load and Run

$HDVPSS_INSTALL_DIR/pspdrivers_/build/hdvpss_examples_chains/bin/ti8107-evm/hdvpss_examples_chains_m3vpss_debug.xem3
• Select option 5 at " Enter Choice:" option.
• You can see the 2X2 window of the 4 captured channels.

Compiling HDVPSS Drivers
HDVPSS drivers and examples can be built using the Makefile present in the HDVPSS installation directory. Before
doing so, user may have to modify the Rules.make file (present in the installation directory), depending upon his
build environment.
Open the Rules.make file and make sure that the paths for the following tool-chains are correct (default installation
paths for all the required tool-chains can be found in this file):
• CODEGEN_PATH_M3 := Points to the Codegen toolchain for M3.
• hdvpss_PATH := Points to the HDVPSS installation directory.
• bios_PATH := Points to the BIOS installation directory.
• xdc_PATH := Points to the XDC installation directory.
• ipc_PATH := Points to the IPC installation directory.
Important
Make sure that the above mentioned paths don't have white spaces in them. In case the installation directory has any
white space, use the short names generated by issuing dir /X on the DOS command prompt, which replaces the
white spaces by ~. Also, use forward slash '/' instead of back slash '\' in all the above paths.
To build on Linux, an additional step is required to set the OS environment variable to Linux. Alternatively, it can
be passed to the gmake command as indicated in the below steps:
After editing the Rules.make file, open a command prompt and cd (change directory) to the HDVPSS installation
directory.

>cd $(HDVPSS_INSTALL_DIR)

Provide the command gmake -s all. This will clean and recursively build all the libraries and examples for the
default platform (ti816x-evm) and default profile (whole_program_debug).

>gmake -s all

JOHN
文本框
编译HDVPSS驱动：hdvpss驱动程序和示例可以使用hdvpss安装目录中的Makefile构建。在这样做之前，用户可能必须修改规则.make文件(出现在安装目录中)，这取决于他的构建环境。

JOHN
文本框
确保上面提到的路径中没有空格。如果安装目录中有任何空白，请在DoS命令提示符上使用dir/x生成的短名称，这将用~.替换空白。此外，在所有上述路径中使用正斜杠‘/’而不是反斜杠‘。

TI81xx-HDVPSS-UserGuide 7

To build on Linux, if the OS environment variable is not set, the gmake command can be invoked as:

>gmake -s all OS=Linux

If the command prompt can't locate gmake command, then add the directory where gmake is present in the PATH
environmental variable. Typically, gmake comes along with CCS/XDC installation and can be found at
$(CCS_INSTALL_DIR)/xdctools_XX_YY_ZZ_WW.
Note Default platform and profile can be changed by modifying PLATFORM and PROFILE_$(CORE) in the
Rules.make file respectively.
During development, the below gmake targets can also be used be used for convenience:
• gmake -s hdvpss - incrementally builds only HDVPSS drivers
• gmake -s examples - incrementally builds HDVPSS drivers and all examples
• gmake -s examples_netcam - incrementally builds HDVPSS drivers and all examples for the netcam/vcam

usecase
• gmake -s clean - clean all drivers and examples
• gmake -s examplesclean - clean all examples ONLY
• gmake -s example_name - incrementally builds HDVPSS drivers and the specific example ONLY. Values for

example_name can be - i2c, captureVip, chains, display etc.
Important
The detailed build instructions with all the supported options can be found in the README.txt file in the HDVPSS
installation directory.

Memory Map for TI816x
The following shows the memory map of the DDR/OCMC memory used for the various sections and for the
different processors in the system. This assumes a 1GB DDR memory and 512KB OCMC memory. The Video/DSS
M3 MMU is configured such away that the 1GB DDR is split into two sections - 1st 512MB is cached and the next
512MB is non-cached.
• 1st 512MB - Cached:

• Linux: Used by the linux kernel running from A8. This is not used by M3.
• Tiler 16-bit, CMEM, DSP: These are not used by M3.
• Syslink IPC [SR0, SR1]: Shared memory used by syslink module to perform inter processor communication.
• DSS M3 Code: DSS M3 code program section (driver text section resides here)
• Video M3 Code: Video M3 code program section
• Video M3 Data: Video M3 bss and other data section
• DSS M3 Data: DSS M3 bss and other data section (driver bss, const and other global variables reside here)
• SHARED CTRL DUCATI, Shared Data, Debug: These are not used by M3.

• 2nd 512MB - Non-Cached:
• Notify Mem: Used as notify shared memory
• HDVPSS Shared Mem: Shared memory used for IPC between HDVPSS proxy server and client on A8 like

FBDEV driver.
• VPDMA Desc Mem: HDVPSS driver VPDMA descriptor memory section used to store descriptors and

overlay memory
• Frame Buffer: Frame buffer heap used for non-tiled video buffers
• Tiler 8-bit/Tiler page: Tiler memory for the different tiler view

DDR: 0x80000000 (Ist 512MB - Cached)

+-----------------+

JOHN
文本框
gmake所在路径的问题

通过修改规则中的Platform和Profile_$(Core)，可以更改默认平台和概要文件。

JOHN
文本框
包含所有支持选项的详细构建说明可以在hdvpss安装目录的README.txt文件中找到。

JOHN
文本框
下面显示了用于各部门和系统中的不同的处理器的DDR / OCMC记忆内存映射。
假设一个1GB的DDR内存和512 KB的ocmc内存。视频/DSSM3MMU被配置成1GB DDR被分成两个部分--第一512 MB被缓存，下一个512 MB被非缓存。

TI81xx-HDVPSS-UserGuide 8

| |

| Linux | 256MB

| |

+-----------------+

| Tiler 16-bit | 64MB

+-----------------+

| CMEM | 10MB

+-----------------+

| DSP | 32MB

+-----------------+

| IPC (SR1) | 12MB

+-----------------+

| IPC (SR0) | 16MB

+-----------------+

| DSS M3 Code | 4MB

+-----------------+

| Video M3 Code | 4MB

+-----------------+

| Video M3 Data | 32MB

+-----------------+

| DSS M3 Data | 60MB

+-----------------+

| SHARED CTRL |

| DUCATI | 11MB

+-----------------+

| Shared Data | 1MB

+-----------------+

| Debug/NOT USED | 10MB

+-----------------+

DDR: 0xA0000000 (2nd 512MB - Non-Cached)

+-----------------+

| Notify Mem | 2MB

+-----------------+

| HDVPSS Shared | 3MB

| Mem |

+-----------------+

| VPDMA Desc Mem | 3MB

+-----------------+

| FrameBuffer | 248MB

+-----------------+

| Tiler PAGE | 128MB

| |

+-----------------+

| Tiler 8-bit | 128MB

| |

+-----------------+

TI81xx-HDVPSS-UserGuide 9

OCMC: 0x40300000

+-----------------+

| OCMC0 | 256KB

+-----------------+

OCMC: 0x40400000

+-----------------+

| OCMC1 | 256KB

+-----------------+

Memory Map for TI814x
The following shows various sections defined and used by HDVPSS drivers and its sample applications. This
assumes a 512 MB of DDR memory and 128KB OCMC memory. The Video/DSS M3 MMU is configured such
away that the 512MB DDR is split into two sections - 1st 256MB is cached and the next 256MB is non-cached.
• 1st 256MB - Cached:

• Linux: Used by the linux kernel running from A8. This is not used by M3.
• Sections EVENT_LIST_CORE0, PRIVATE_CORE0_DAT and EXTMEM_CORE0 is not used by M3

HDVPSS
• Syslink IPC [SR0]: Shared memory used by syslink module to perform inter processor communication.
• VPSS M3 Data: VPSS M3 bss and other data section (driver bss, const and other global variables reside here)
• VPSS M3 Code: VPSS M3 code program section (driver text section resides here)
• Debug: Not used

• 2nd 256MB - Non-Cached:
• Notify Mem: Used as notify shared memory
• Tiler 8-bit/16-bit: Tiler memory for the different tiler view
• Frame Buffer: Frame buffer heap used for non-tiled video buffers
• VPDMA Desc Mem: HDVPSS driver VPDMA descriptor memory section used to store descriptors and

overlay memory
• HDVPSS Shared Mem: Shared memory used for IPC between HDVPSS proxy server and client on A8 like

FBDEV driver.

DDR: 0x80000000 (Ist 256MB - Cached)

+-----------------+

| |

| Linux | 83MB

| |

+-----------------+

| EVENT_LIST_CORE0| 10MB

+-----------------+

|PRIVATE_CORE0_DAT| 37MB

+-----------------+

| EXTMEM_CORE0 | 0.625MB - or 625KB

+-----------------+

| Syslink IPC | 16MB - SHARED_CTRL

+-----------------+

| |

TI81xx-HDVPSS-UserGuide 10

| VPSS M3 Data | 53MB

| |

+-----------------+

| VPSS M3 Code | 53MB

+-----------------+

| Debug/NOT USED | 3MB

+-----------------+

DDR: 0xC0000000 (2nd 256MB - Non-Cached)

+-----------------+

| |

| Tiler | 128MB

+-----------------+

| |

| Frame Buffer | 123MB

+-----------------+

| Notify Shared | 1MB

| Mem |

+-----------------+

| VPDMA Desc Mem | 2MB

+-----------------+

| HDVPSS Shared | 2MB

| Mem |

+-----------------+

OCMC: 0x00300000

+-----------------+

| OCMC0 (Not used)| 128KB

+-----------------+

Memory Map for TI8107
The following shows various sections defined and used by HDVPSS drivers and its sample applications. This
assumes a 512 MB of DDR memory and 256KB OCMC memory. The Video/DSS M3 MMU is configured such
away that the 512MB DDR is split into two sections - 1st 256MB is cached and the next 256MB is non-cached.
• 1st 256MB - Cached:

• Linux: Used by the linux kernel running from A8. This is not used by M3.
• Syslink IPC [SR0]: Shared memory used by syslink module to perform inter processor communication.
• VPSS M3 Data: VPSS M3 bss and other data section (driver bss, const and other global variables reside here)
• VPSS M3 Code: VPSS M3 code program section (driver text section resides here)
• Debug: Not used

• 2nd 256MB - Non-Cached:
• Notify Mem: Used as notify shared memory
• Tiler 8-bit/16-bit: Tiler memory for the different tiler view

TI81xx-HDVPSS-UserGuide 11

• Frame Buffer: Frame buffer heap used for non-tiled video buffers
• VPDMA Desc Mem: HDVPSS driver VPDMA descriptor memory section used to store descriptors and

overlay memory
• HDVPSS Shared Mem: Shared memory used for IPC between HDVPSS proxy server and client on A8 like

FBDEV driver.

DDR: 0x80000000 (Ist 256MB - Cached)

+-----------------+

| |

| Linux | 130.625MB

| |

+-----------------+

| Syslink IPC | 16MB - SHARED_CTRL

+-----------------+

| |

| DSS M3 Data | 53MB

| |

+-----------------+

| DSS M3 Code | 53MB

+-----------------+

| Video M3 Data | 1MB

+-----------------+

| Video M3 Code | 1MB

+-----------------+

| Debug/NOT USED | 1MB

+-----------------+

DDR: 0xA0000000 (2nd 256MB - Non-Cached)

+-----------------+

| |

| Tiler | 128MB

+-----------------+

| |

| Frame Buffer | 123MB

+-----------------+

| Notify Shared | 1MB

| Mem |

+-----------------+

| VPDMA Desc Mem | 2MB

+-----------------+

| HDVPSS Shared | 2MB

| Mem |

+-----------------+

OCMC: 0x00300000

TI81xx-HDVPSS-UserGuide 12

+-----------------+

| OCMC0 (Not used)| 256KB

+-----------------+

Directory Organization
The following expands on the directory structure of → HDVPSS Folders

HDVPSS Overview
This section provides top level information about HDVPSS hardware architecture and software architecture.

HDVPSS Hardware Overview
HDVPSS hardware overview explains the HDVPSS hardware blocks in brief. It is not necessary to have a full
knowledge of the HDVPSS hardware architecture to use HDVPSS drivers. HDVPSS hardware overview can be
found at HDVPSS Hardware Overview.

HDVPSS Software Overview
HDVPSS software overview explains the HDVPSS software and the major class of drivers supported by the
HDVPSS software interfaces to the application. It is not important to have a full understanding of the HDVPSS
software architecture for using HDVPSS drivers. HDVPSS Software overview could be found at HDVPSS Software
Overview

FVID2 Overview
FVID2 are the set of APIs or framework specifically designed for the video class of devices. It exposes number of
features of the video devices in a standard way so that application needs a minimum changed while migrating from
the once class of video devices to other class of video devices, both of them adhering to the FVID2 interfaces. More
details about the FVID2 can be found at → UserGuideFVID2

HDVPSS Drivers
This section explains about the different class of the HDVPSS drivers supported by the HDVPSS package.

Platform APIs and Drivers
This section describes about APIs and driver which are required to initialize and setup platform for HDVPSS drivers.
These API and drivers doesn't fit into FVID2 drivers since they are very much dependent on SoC and board. Users
needs to modify these APIs based on their boards. Description of platform APIs and Drivers could be found at →
HDVPSS Platform APIs and Drivers

JOHN
文本框
hdvpss硬件概述简要解释hdvpss硬件块。不需要完全了解hdvpss硬件体系结构来使用hdvpss驱动。hdvpss硬件概述可以在hdvpss硬件概述中找到。

JOHN
文本框
hdvpss软件概述解释了hdvpss软件和hdvpss软件接口支持的主要驱动程序类。对hdvpss软件体系结构有充分的理解对于使用hdvpss驱动并不重要。hdvpss软件概述可以在hdvpss软件概述中找到。

JOHN
矩形

JOHN
文本框
链接

JOHN
矩形

JOHN
矩形

JOHN
矩形

JOHN
文本框
fvid 2是专门为视频设备类设计的一组API或框架。它以标准的方式公开视频设备的数量，以便应用程序在从曾经的视频设备类别迁移到其他类型的视频设备时，所需的更改最少，它们都与fvid 2接口保持一致。有关fvid 2的更多详细信息可以在。→userguidefvid 2

JOHN
文本框
这两个链接打不开

JOHN
文本框
HDVPSS package 支持的不同类型的 HDVPSS drivers

JOHN
文本框
This section describes about APIs and driver which are required to initialize and setup platform for HDVPSS drivers.
These API and drivers doesn't fit into FVID2 drivers since they are very much dependent on SoC and board. Users
needs to modify these APIs based on their boards. Description of platform APIs and Drivers could be found at →
HDVPSS Platform APIs and Drivers

JOHN
文本框
平台 APIs和Drivers

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=T181xx-HDVPSS_Overview%23HDVPSS_Hardware_Introduction
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=T181xx-HDVPSS_Overview%23HDVPSS_Driver_Introduction
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=T181xx-HDVPSS_Overview%23HDVPSS_Driver_Introduction

TI81xx-HDVPSS-UserGuide 13

Display Drivers
Display drivers refers to the drivers which takes the input buffer from the memory and displays that buffer on the
external device like TV, LCD etc. Details of the display drivers supported by the HDVPSS packages can be found at
→ HDVPSS Display Driver UserGuide

Memory Drivers
Memory drivers refers to the drivers which takes the input from the memory, processes the input like scale the
image, chroma up samples the image and puts it back to the memory. Details of the memory drivers supported by the
HDVPSS package can be found at → HDVPSS M2M Driver UserGuide

Capture Driver
Captures drivers refers to the drivers which takes the input from the external sources like camera, dvd players etc and
puts the capture images in the memory. Details of the capture drivers supported by the HDVPSS package can be
found at → HDVPSS Capture Driver UserGuide

External video device drivers
External video device drivers refers to the devices which are external to the HDVPSS like the TVP5158 decoder,
sil9022a HDMI encoder etc. Details about the external video device drivers could be found at → External Video
Device Drivers

Integration Examples
Integration examples demos the different drivers used in various combination. It shows some specific real world
applications like 16 channel capture, noise filter it, de-interlace the interlaced capture and show it on the TV in
mosaic format. Details of the different integration applications can be found at → HDVPSS Integration Examples

HDVPSS Software Support on MultiCore Architecture
HDVPSS drivers supports the multi core architecture. All the HDVPSS driver interfaces can be exposed on any
other processor running different OS, using the HDVPSS multi core software architecture. One such use-case is
controlling the graphics plane of the HDVPSS through the Linux Os running on the A8 processor. Details about the
HDVPSS multi core architecture can be found at → HDVPSS Software MultiCore Architecture

HDVPSS Linux Drivers

Build ProxyServer BIOS Application
Installation

• Change the IPC path in Rules.make to the installed directory
• Run command prompt and cd (change directory) to the HDVPSS install directory

>cd $(HDVPSS_INSTALL)

• Provide the command gmake -s proxy. This will build proxyserver BIOS application, which is loaded by the
syslink slaveloader user space application.

JOHN
文本框
显示驱动程序是指从内存中提取输入缓冲区并在外部设备(如tv、lcd等)上显示该缓冲区的驱动程序，hdvpss包支持的显示驱动程序的详细信息可在。→显示驱动程序用户指南

JOHN
文本框
内存驱动程序是指从内存中提取输入，对输入进行缩放处理，对图像进行色度采样，并将其放回内存的驱动程序。

JOHN
文本框
捕获驱动：捕获驱动程序是指从摄像机、DVD播放机等外部源获取输入并将捕获图像放入内存的驱动程序。hdvpss包支持的捕获驱动程序的详细信息可在。→hdvpss捕获驱动程序用户指南

JOHN
文本框
外部视频设备驱动：外部视频设备驱动程序是指hdvpss外部的设备，如tvp 5158解码器、sil9022a hdmi编码器等。→外部视频设备驱动程序

JOHN
文本框
集成的例子：集成示例演示了不同组合中使用的不同驱动程序。它展示了一些具体的实际应用，如16通道捕获、噪声过滤、隔行捕获，并在电视上以马赛克格式显示。不同集成应用的详细信息可在。→hdvpss集成示例

JOHN
文本框
hdvpss驱动程序支持多核体系结构。使用hdvpss多核软件体系结构，所有hdvpss驱动程序接口都可以在运行不同os的任何其他处理器上公开。其中一个用例是通过运行在A8处理器上的linux os控制hdvpss的图形平面。有关hdvpss多核体系结构的详细信息可以在。→hdvpss软件多核体系结构

JOHN
文本框
建立代理服务器BIOS的应用

TI81xx-HDVPSS-UserGuide 14

>gmake -s proxy

To build on Linux, if the OS environment variable is not set, the gmake command can be invoked as:

>gmake -s all OS=Linux

Proxy with Display App
Introduction This sample app is intended to run an HDVPSS application on M3 when there is one more application
HDVPSS running on A8. This application runs the mosaic display test from Off-Chip HDMI on the platform. The
user can run another linux application on A8 (for ex: fbdev application) which can output on On-Chip HDMI and
check whether both the application can run in parallel.
Compilation To compile the application for linux type the following on command line

>gmake -s proxyDisplay OS=Linux

Running the application on the board To run this application the following are the steps to be done
• Boot up linux on the board
• Load Syslink module
• Load VPSS-M3 firmware (this module)
• load VPSS-M3 module
• Load fbdev module
• Load on-chip HDMI module
(For more information on how the above can be done refer to the section "Load VPSS and Fbdev Driver Modules" in
PSP Video Driver User guide) When the above is done there will be output from the off-chip HDMI to display. Now
the user can run another application on A8 to test whether the application on A8 and M3 can run in parallel (for ex:
fbdev application which outputs to On-chip HDMI)

Linux FrameBuffer Driver
This section primarily describes about the drivers which are not the part of HDVPSS package but uses the HDVPSS
drivers. Those drivers includes Linux framebuffer driver on Graphics pipeline, V4L2 display and capture driver on
display and VIP pipelines respectively. Details about all those drivers can be found at http:/ / processors. wiki. ti.
com/ index. php/ TI81XX_PSP_User_Guide

HDMI Driver
HDMI driver is another driver which is controlled from the Linux running the on A8. Currently the HDMI driver
interfaces are exposed as a part of the Linux standard Character driver interface. Details about the same can be found
at HDMI Driver

JOHN
文本框
这个示例应用程序的目的是在M3上运行hdvpss应用程序，当另一个应用程序hdvpss运行在A8上时。这个应用程序从平台上的片外HDMI运行马赛克显示测试。用户可以在A8上运行另一个Linux应用程序(for ex：fbdev应用程序)，它可以在片上hdmi上输出，并检查两个应用程序是否可以并行运行。

JOHN
文本框
(有关如何完成上述操作的更多信息，请参阅psp视频驱动程序用户指南中的“加载vpss和fbdev驱动模块”一节)。当完成上述操作时，将从片外hdmi输出到display。现在，用户可以在a8上运行另一个应用程序，以测试a8和m3上的应用程序是否可以并行运行(例如：fbdev应用程序，它输出到片上hdmi)。

JOHN
文本框
本节主要描述的驱动程序不是hdvpss包的一部分，而是使用hdvpss驱动程序。这些驱动程序包括图形管道上的linux框架缓冲区驱动程序、显示上的V4L2显示和捕获驱动程序以及VIP管道。有关所有驱动程序的详细信息，请参阅http：//processors.wiki.ti.com/index.php/ti81xx_psp_us

JOHN
矩形

JOHN
矩形

JOHN
矩形

http://processors.wiki.ti.com/index.php/TI81XX_PSP_User_Guide
http://processors.wiki.ti.com/index.php/TI81XX_PSP_User_Guide
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI816X-HDMI_Driver

T181xx-HDVPSS Overview 15

T181xx- HDVPSS Overview

HDVPSS Hardware Introduction

TI814X/TI8107 HDVPSS Hardware
→ TI814X/TI8107 HDVPSS Hardware Overview

TI816X HDVPSS Hardware
→ TI816X HDVPSS Hardware Overview

HDVPSS Driver Introduction
HDVPSS drivers could be divided at top level in three categories:
• Display Driver
• Memory Driver
• Capture Driver

Display Driver
There are several display drivers path are possible going through DEI Aux and main,422BP path and Secondary
path. Apart from this, there is support for three GRPX path which supports only RGB different data format. More
details about display driver is discussed in respective section. Some of salient features are mentioned below:
• Display driver will support different standard resolution like 1080p60, 1080i60,720p60 etc for HD VENC and SD

resolution for SD VENC.
• All Display drivers are non-blocking i.e. asynchronous drivers. Blocking calls are not supported.
• Notification of operation completion is done through callbacks.
• Different paths within display drivers could be configured using display controller.
• Once the display operation is started, the display driver always retains the last buffer and displays the same buffer

continuously till the application gives a new buffer to display.
• Some of display driver will have capability for inline scaling and de-interlacing. These capabilities are based on

whether specific IPs are available in the path or not.
• Display drivers will also be supported on the path having graphics IPs.
• All Display drivers including graphics are supported on:

• Interfaces : FVID2
• OS :BIOS6
• Processor : Ducati M3

JOHN
矩形

JOHN
文本框
有几个显示驱动程序路径可以通过dei aux和main，422 bp路径和次要路径。除此之外，还有三条只支持rgb不同数据格式的grpx路径支持。下面将讨论显示驱动程序的更多细节:
显示驱动程序将支持不同的标准分辨率，如HD venc的1080 p60、1080 i60、720 p60等，而sd venc则支持sd分辨率。

JOHN
矩形

JOHN
矩形

JOHN
矩形

JOHN
文本框
使用显示控制器控制显示路径

JOHN
文本框
一些显示驱动程序将具有内联缩放和去隔行功能。这些功能是基于特定的ips是否可用在路径上的。

JOHN
文本框
在具有图形ips的路径上也将支持显示驱动程序。

T181xx-HDVPSS Overview 16

Memory (M2M) Driver
Like display driver, there are several paths which could be used for memory to memory operation. Some of standard
M2M operations are like scaling, noise filtering, de-interlacing etc. Different supported M2M drivers are discussed
in the respective section. Following are top level features of most of memory drivers:
• All Mem-Mem drivers are non-blocking i.e. asynchronous drivers. Blocking calls not supported!!
• M2M drivers could be opened multiple times – supports multiple handles (N) for the same driver - Each handle

can have different configuration.
• Memory driver supports queuing of input request from several handles and calls returns immediately.

Caller/Requester will be informed about completion of memory operation (Resizing/NF/ de-interlacing) through
callbacks and there are different callbacks for each handles.

• Each call/requests to Mem Driver can consist of set of buffers.
• N (Maximum Number of picture or frame in each request) is fixed per handle at time of driver open.For example,

its possible to submit a request 16CH buffer to NF and get only one notification at the end of 16CH NF
processing. Thus reducing interrupts from 960 interrupts/sec to 60 interrupts/sec. This results in lower CPU load
and higher HW utilization.

• Callback will be generated after processing all requests in a given set.
• All M2M drivers are supported on:

• Interfaces : FVID2
• OS :BIOS6
• Processor : Ducati M3

Capture Driver
Capture drivers are used for capturing data from external world. Details about each of capture driver features are
discussed in the respective section. Only few of important features are mentioned here.
• VIP Capture drivers are non-blocking i.e. asynchronous drivers. Blocking calls are not supported.
• Notification of captured frames is done through callbacks.
• Multi-channel line multiplexed capture - 2CH, 4CH, 8CH - upto D1 (NTSC/PAL) resolution
• Single channel capture upto 1080P (1920x1080) resolution
• Single source (RGB 24-bit or YUV422 8/16-bit), dual output (RGB 24-bit and/or YUV422 and/or YUV420)

support
• Multi-instance (VIP0, VIP1), multi-port capture (Port A, Port B), with ability to configure each instance, port

independently.
• Capture drivers are supported on:

• Interfaces : FVID2
• OS :BIOS6
• Processor : Ducati M3

JOHN
文本框
与显示驱动程序一样，有几种路径可用于内存到内存的操作。一些标准的M2M操作，如缩放、噪声过滤、去交错等，在各自的部分中讨论了不同支持的M2M驱动程序。以下是大多数内存驱动程序的顶级特性：
所有mem-mem驱动程序都是非阻塞的，即异步驱动。不支持阻塞调用！！
M2M驱动程序可以多次打开--支持同一驱动程序的多个句柄(N)--每个句柄可以有不同的配置。
内存驱动程序支持来自多个句柄的输入请求排队，并立即返回。调用方/请求者将通过回调函数被告知内存操作完成(调整大小/nf/去交错)，每个句柄有不同的回调。

JOHN
文本框
对mem驱动程序的每个调用/请求可以由一组缓冲区组成。
n(每个请求中的最大图片或帧数)在驱动程序打开时每个句柄固定，例如，它可以向nf提交一个请求16 ch缓冲区，并在16 ch nf处理结束时只收到一个通知，从而将中断从960个中断/秒减少到60个中断/秒，从而降低CPU负载，提高hw利用率。

回调将在处理给定集合中的所有请求后生成。

JOHN
文本框
捕获驱动程序用于从外部世界捕获数据。关于每个捕获驱动程序特性的详细信息将在各自的部分中讨论。这里只提到了几个重要的特性。
VIP捕获驱动程序是非阻塞的，即异步驱动程序。不支持阻塞调用。
捕获帧的通知是通过回调完成的。

JOHN
文本框
多通道线路复用捕获

JOHN
文本框
单源(rgb 24位或yuv 422 8/16位)，双输出(rgb 24位和/或yuv 422和/或yuv 420)支持。

JOHN
文本框
多实例(vip 0，vip 1)，多端口捕获(端口a，端口b)，能够独立地配置每个实例。

T181xx-HDVPSS Overview 17

HDVPSS Driver Architecture Introduction
It is not necessary to have a full understanding of the HDVPSS driver architecture to use HDVPSS drivers. Only top
level driver architecture has been put here. It is sufficient to have understanding of FVID2 interface for development
of application or use of HDVPSS drivers. FVID2 interface is explained in details in different section.
HDVPSS Driver architecture follows layered architecture.

DSS Software Architecture

Different layers or components/modules of HDVPSS are:
• Driver layer- It is top most layer of HDVPSS driver architecture and FVID2 interface is exposed at this layer.

FVID2 interface is used for interaction with application. Apart from exposing FVID2 interface, driver layer is
also responsible for queue and de-queuing of request, handling of interaction between cores and list manager
layers with driver layer.

• Core layer- It is responsible for creation of descriptors. Descriptors are 32 or 16 bytes in length and are created in
the memory and provided to VPDMA for final action. Further, descriptors could be understood as command to
HDVPSS DMA engine for data transfer or for setting different configuration like height and width of frame.

• List layer- These descriptors are required to arranged in specific sequence for different kind of operation or
drivers like display, capture and M2M. For example, configuration descriptor for setting frame size should be
placed before data descriptor which is responsible for actual data movement. These special arrangement of
descriptors for different kind of operations are handled through list manager. As explained above, descriptors
could be understood as command to HDVPSS DMA engine for data transfer or for setting different configuration
like height and width of frame.

• HAL layer- Hardware Abstraction layer – as name suggest – it abstracts multiple IPs of HDVPSS and provides
interfaces for upper layer of stacks.

• HW layer- It is HDVPSS H/w layer.

JOHN
文本框
使用hdvpss驱动程序不需要完全了解hdvpss驱动程序体系结构。这里只提供了顶级的驱动程序体系结构。对于应用程序的开发或hdvpss驱动程序的使用，了解fvid 2接口就足够了。fvid 2接口将在不同的部分中详细解释。

JOHN
文本框
hdvpss的不同层或组件/模块如下：
驱动层--它是hdvpss驱动程序体系结构的最上层，fvid 2接口在此层公开，fvid 2接口用于与应用程序的交互，除了公开fvid 2接口外，驱动层还负责请求的入队和出队，处理内核和列表管理层与驱动层之间的交互。

JOHN
文本框
核心层-它负责创建描述符。描述符的长度为32或16字节，并在内存中创建，并提供给vpdma进行最终操作。此外，描述符可以理解为对hdvpss dma引擎的命令，用于数据传输或设置不同的配置，如帧的高度和宽度。

JOHN
文本框
描述符：控制DMA传输或者设置帧的属性

JOHN
文本框
FVID2接口

JOHN
文本框
列表层-这些描述符需要按照特定的顺序排列，用于不同类型的操作或驱动程序，如显示、捕获和m2m。例如，设置帧大小的配置描述符应放在数据描述符之前，该描述符负责实际的数据移动。这些特殊的描述符安排是通过列表管理器来处理的。如上所述，描述符可以理解为hdvpss命令。数据传输或设置不同配置(如帧高和帧宽)的DMA引擎

JOHN
文本框
描述符排序

JOHN
文本框
硬件抽象层--顾名思义--它抽象出hdvpss的多个iPS，并为上层堆栈提供接口。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Netra_DSS_Display.png

T181xx-HDVPSS Overview 18

• Event Manager- There is single interrupt flowing into Ducati M3 for HDVPSS. Event manager parses the
interrupt status register to figure out different kind of interrupts and propagates to different modules of HDVPSS
stack.

• Resource Manager- There are multiple driver possible because of various paths. Different path may use same IP
like DEI in DEI_H path in Display and Memory driver. It means only one of driver could active at any point of
time. Resource manager handles allocation resources to different drivers.

• Proxy Server- HDVPSS stack supports multi core driver architecture. It means that driver could be invoked from
different core i.e. using FVID2 interface on M3 hosting BIOS6 or v4l2/fbdev driver on A8 hosting Linux. This
has been achieved using IPC communication between M3 and A8.This is internal module of HDVPSS software
stack. It listen IPC request from V4l2/fbdev driver. It translates into appropriate FVID2 request and sends to
HDVPSS driver on Ducati M3 as if request has originated locally on Ducati M3.It uses Notify again to inform
back completion of request.

HDVPSS Driver Co-existence rule
There are several drivers possible out DSS block diagram as discussed earlier. It is very obvious that all drivers can’t
co-exit mainly because of two reasons.
• Same IP block required in more drivers - Same paths can’t be used in two drivers at same time. For example,

DEI can’t be used for M2M de-interlacing and also for online de-interlacing during display at same time. In other
words, same IP should not be used by two drivers at same time. There are several such instances where same IP
are used in different drivers. This has been managed through resource manager. Resource manager checks for
availability of resources while opening driver.

• Number of list – As discussed earlier, descriptors are used for programming of HDVPSS DMA engine i.e.
VPDMA. Descriptors could be understood as command to HDVPSS DMA engine for data transfer or for setting
different configuration like height and width of frame. Further to this, these descriptors are required to be
arranged in specific sequence for different kind of operation or drivers like display, capture and M2M. These
specific arrangements of descriptors in memory should be in contiguous and start address of this buffer holding
several descriptors should be given to VPDMA. These contiguous buffers which hold descriptors are called as
list. HDVPSS could handle such eight lists which represents eight different set of descriptors.

These lists are allocated dynamically to different drivers while opening of driver by resource manager. In general,
• One list for each display and there are independent displays are possible. It means that display could take

maximum of 3 lists in the case three display are active. This configuration is per TV and does not depend upon
how video planes like 422BP or GRPX plane are connected to same TV.

• One list for irrespective of number or kind of captures. In other words, two 1080p capture and 16 channels D1
capture will also use one list.

• Each memory driver requires different list.
• Note that list could be for activating more memory drivers in the case one of TV say SD display is not active.
There is co-existence matrix for drivers which help in showing which driver could co-exist. It could be found at
Media:HDVPSS-Coexistence.xls.

JOHN
文本框
事件管理器-有一个中断流到hdvpss的Ducati m3中。事件管理器解析中断状态寄存器以找出不同类型的中断，并传播到hdvpss堆栈的不同模块。
资源管理器-因为不同的路径可能有多个驱动程序。不同的路径可以使用相同的IP(把IP理解为HDVPSS的视频处理硬件子模块)，例如在显示和内存驱动程序中在DEI_H路径中的DEI。这意味着在任何时候只有一个驱动程序可以活动。资源管理器处理分配给不同驱动程序的资源。
代理服务器;hdvpss协议栈支持多核驱动程序体系结构，这意味着驱动程序可以从不同的内核调用，例如在M3的BIOS6中调用FVID2接口或者linux上使用V4L2/fbdev驱动程序，通过m3与a8之间的通信已经实现了。这是hdvpss软件堆栈的内部模块，它侦听来自V4L2/fbdev驱动程序的IPC请求，转换成适当的fvid 2请求并发送到M3的hdvpss驱动程序。好像请求是在M3本地发出的。它再次使用Notification通知请求的完成

JOHN
矩形

JOHN
矩形

JOHN
矩形

JOHN
文本框
解析中断

JOHN
文本框
只允许一个驱动程序有效

JOHN
文本框
驱动程序可以从不同的内核调用，例如在M3的BIOS6中调用FVID2接口或者linux上使用V4L2/fbdev驱动程序

JOHN
文本框
将A8对HDVPSS的请求通过IPC转为M3的fvid2请求，好像请求是从M3发出的

JOHN
文本框
hdvpss驱动共存规则

JOHN
文本框
前面已经讨论过，有几个驱动程序可能是DSS的。很明显，所有的驱动程序都不能同时退出，主要是因为两个原因。

JOHN
文本框
多个驱动需要相同的ip块-相同的路径不能同时在两个驱动程序中使用。例如，dei不能痛同时用于m2m去隔行，和显示时的去隔行。换句话说，两个驱动程序不应该同时使用相同的IP。在不同的驱动程序中使用相同IP的情况有几种。这已经得到了管理。通过资源管理器。资源管理器在打开驱动程序时检查资源的可用性。

JOHN
文本框
两个驱动程序不应该同时使用相同的IP(HDVPSS的硬件处理单元)。

JOHN
文本框
列表数--正如前面所讨论的，描述符用于hdvpss dma引擎的编程，即vpdma。描述符可以理解为对hdvpss dma引擎的命令或设置不同的配置，如帧高和帧宽。此外，对于不同类型的操作或驱动程序(如显示、捕获和m2m)，这些描述符需要放在一起，描述符起始地址应该告知VPDMA(通过寄存器).这些连续的缓冲区包含描述符被称为list.hdvpss可以处理这八个表示八个不同的描述符集的列表。

JOHN
矩形

JOHN
矩形

JOHN
文本框
list:组合在一起的描述符。描述符被放在一起完成工作，而且放置的内存地址通过寄存器告知VPDMA

JOHN
文本框
这些列表是在资源管理器打开驱动程序时动态地分配给不同的驱动程序的。
每个显示器有一个列表，有独立的显示器。这意味着如果三个显示是活动的，显示最多可以包含3个列表。这种配置取决于每个电视的，不取决于像422 bp或grpx平面这样的视频平面是如何连接到同一台电视的。

JOHN
文本框
一个列表，不管捕获的数量或种类。换句话说，两个1080 p捕获和16个通道D1捕获也将使用一个列表。

JOHN
文本框
不同的内存驱动程序需要不同的列表

JOHN
文本框
哪些驱动能共存在共存矩阵中说明

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS-Coexistence.xls

T1816X-HDVPSS-HW Overview 19

T1816X- HDVPSS- HW Overview

TI816X HDVPSS Hardware Introduction
The display sub system includes video display processing modules using the latest TI developed algorithms, flexible
compositing and blending engine, full range of external video interfaces in order to deliver a high quality video
contents to the end devices. This document covers various aspects of HD-related requirements in addition to
SD-related requirements.
Each of the components are explained in detail along with its features in the Netra display subsystem overview
documents.

HDVPSS Features
Few top features are mentioned below
• The HDVPSS supports HD (up to 1080p) and SD (NTSC/PAL) outputs simultaneously
• The HDVPSS handles both video and graphics efficiently to create high-quality user interfaces. This includes (but

not limited to) deinterlacing, scaling, noise reduction, alpha blending, chroma keying, flicker filtering, and pixel
format conversion.

• It supports tiled and raster data formats, scan format conversion, aspect-ratio conversion, and frame size
conversion.

• The HDVPSS generate secure video signal with proper content protection mechanisms,i.e., HDCP and
Macrovision/CGMS-a for digital and analog outputs, respectively.

• Four independently controlled compositors (HDMI, HD-comp, DVO2, SD) shall be supported.
• Two parallel video processing pipelines (main and aux) for concurrent video stream processing is supported.
• Both the main and auxiliary video pipelines shall include a write-back path to the external memory to support

memory to memory scaling of video frames independently from the display output frame timing.
• It supports three graphics plane and include an up/down scaler optimized for graphics application with each

graphics path. Multiple regions in a graphics layer are supported to reduce the amount of data transfer from the
external memory.

• HDVPSS supports two independently configurable external video input capture ports.Each video input capture
port can be operated as one 16/24-bit input channel (with separate Y and Cb/Cr inputs) or two clock independent
8-bit input channels (with interleaved Y/C data input). Embedded sync and external sync modes are supported for
all input configurations.

• The video capture port channel shall support de-multiplexing of both pixel-to-pixel and line-to-line multiplexed
streams. It could support upto 16 D1 or 32 CIF multiplexed mode capture.It could also support upto 2 channel
1080p60 capture.

T1816X-HDVPSS-HW Overview 20

HDVPSS Block Diagram
Below figure shows the full blown block diagram of the HDVPSS. Driver uses this diagram to point out the paths
used by respective drivers for the different HDVPSS components.

TI816X HDVPSS Block Diagram

DEI_H

The DEI_H (High Quality De-interlacer) is primarily used to convert interlaced video source material to progressive
form. This particular module incorporates features such as Temporal Noise Reduction, 4 and 5 field motion detection
and very fine edge detection capabilities to produce a very high quality deinterlaced output. In addition, it performs
film mode detection and film mode deinterlacing. It can perform deinterlacing on up to 1080i video input source,
producing 1080p video output.

DEI_M

The DEI (De-interlacer) is primarily used to convert interlaced video source material to progressive form. This
particular module is a reduced feature set of the DEI_H module, in that in does not perform Temporal Noise
Reduction and is limited to 4 field motion detection. It performs edge directed interpolation, but utilizes a simpler
(and smaller) algorithm compared to the DEI_H module. In addition, it performs film mode detection and film mode
deinterlacing. It can perform deinterlacing on up to 1080i video input source, producing 1080p video output.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Ti816x-HDVPSS.jpg

T1816X-HDVPSS-HW Overview 21

CHR_US

The CHR_US (Chroma Upsampler) converts YUV420 data format input to YUV422 data format output.

DRN

The DRN (De-Ringing) applies a de-ringing algorithm on input video data to reduce noise.

SC_H

The SC_H (High Quality Scaler) takes the data from the upstream module. The input image is resized to the desired
output size. The module sends the output image to the downstream module. It can scale full HD (1080p) and output
full HD (1080p) and uses edge-directed vertical scaling to create a high quality result.

SC_M

The SC_M (Scaler) takes the data from the upstream module. The input image is resized to the desired output size.
The module sends the output image to the downstream module. It can scale full HD (1080p) and output full HD
(1080p).

VCOMP

The VCOMP (Video Compositor) module composites two sources of input video over a background color layer.
Both input sources are in 4:2:2 YUV format. The output of the module is also 4:2:2 YUV.

EDE

The EDE (Edge Detail Enhancer) module performs edge detail enhancement on the input video source.

CPROC

Color processing is to provide
• color space conversion,
• dynamic contrast control, and
• color-related processing such as flesh tone detection, memory color enhancement, white point control.
Advanced color processing is performed in the CIE Color Appearance Model 2.0 (CIECAM 2.0).

CIG

The CIG module takes in a single non-constrained video and generates following two outputs:
• The same non-constrained video which may optionally be interlaced
• The same or constrained version of the source video which may optionally interlaced
The first output is sent to the HDMI digital output (via COMP/HD_VENC_D) and the second output is sent to the
analog HD component output (via COMP/HD_VENC_A). In addition, the CIG modules takes in a second video
input and positions the video in a full display output screen if the input video is a PIP sized.

T1816X-HDVPSS-HW Overview 22

CSC

The CSC (Color Space Conversion) converts from either YUV444 format to RGB format or RGB format to
YUV444 format.

COMP

The COMP (Compositor) blends video from the two video sources with the Graphics sources (GRPX) to form the
final video streams going to the three video encoders. COMP has independent compositor/blender, each of them
them could upto 5 input layers (2 video and 3 graphics).

GRPX

GRPX is a region-based graphics processor that composes one or more graphics regions to create a display plane
input for the video compositor. Regions are rectangular in size. GRPX module could handle multiple rectangular
“regions” and composite them into one full screen sized image. GRPX inserts blank pixel data (zero pixel) where
region data is unavailable. It supports color formats on Graphics pipeline: RGB565, ARGB1555, RGBA5551,
ARGB4444, RGBA4444, ARGB6666,RGBA6666,RGB888, ARGB8888 and RGBA8888, Palette of 1/2/4/8 bits per
pixel.

HD_VENC_D_DVO1

The HD_VENC_D_DVO1(High Definition Video Encoder HDMI/DVO1) converts internally processed video to
both an HDMI format or DVO format.

HD_VENC_A

The HD_VENC_A (High Definition Video Encoder Analog) converts internally processed video to Component
format

HD_VENC_D_DVO2

The HD_VENC_D_DVO2 (Hish Definition Video Encoder DVO2) converts internally processed video to DVO
format

SD_VENC

The SD_VENC (Standard Definition Video Encoder) converts internally processed video to composite, S-Video and
component format outputs.

NTSC_RF

The NTSC_RF (NTSC R/F Modulator) performs R/F modulation on the output of the SD_VENC

VIP (PARSER)

The VIP Parser (Video Input Port Parser) provides an input for external video sources. Each Video Input Port can
receive from 16 CIF streams to 1 1080p60 streams. There are two instance of VIP Parser.

CHR_DS

The CHR_DS (Chroma Downsampler) converts YUV422 data format input to YUV420 data format output.

NF

The NF (Noise Filter) performs a memory to memory spatial/temporal noise filter algorithm on a 422 raster input
source and produces a 420 tiled output source. Its primary use mode is part of the Video Input Port processing.

T1816X-HDVPSS-HW Overview 23

COMP/DECOMP

COMP/DECOMP (Compress/Decompress)are modules that are used to perform compression on DEI private
YUV422 private data outbound and decompression on inbound DEI private YUV422 data.

VPDMA

The VPDMA shall be capable of transporting data to and from an external memory location, most often an EMIF,
buffering this data and then delivering the data as demanded to Application Modules as programmed.

T1814X- HDVPSS- HW Overview

TI814X/TI8107 HDVPSS Hardware Introduction
The display sub system includes video display processing modules using the latest TI developed algorithms, flexible
compositing and blending engine, full range of external video interfaces in order to deliver a high quality video
contents to the end devices. This document covers various aspects of HD-related requirements in addition to
SD-related requirements.
Each of the components are explained in detail along with its features in the TI814x display subsystem overview
documents.

HDVPSS Features
Few top features are mentioned below:
• The HDVPSS supports HD (up to 1080p) and SD (NTSC/PAL) outputs simultaneously
• The HDVPSS handles both video and graphics efficiently to create high-quality user interfaces. This includes (but

not limited to) deinterlacing, scaling, noise reduction, alpha blending, chroma keying, flicker filtering, and pixel
format conversion.

• It supports tiled and raster data formats, scan format conversion, aspect-ratio conversion, and frame size
conversion.

• The HDVPSS generate secure video signal with proper content protection mechanisms,i.e., HDCP and
Macrovision/CGMS-a for digital and analog outputs, respectively.

• Three independently controlled compositors (HDMI, DVO2, SD) is supported.
• TI8107 supports four compositors (HDMI, HDCOMP, DVO2, SD) is supported.
• Two parallel video processing pipelines (main and aux) for concurrent video stream processing is supported.
• Both the main and auxiliary video pipelines shall include a write-back path to the external memory to support

memory to memory scaling of video frames independently from the display output frame timing.
• It supports three graphics plane and include an up/down scaler optimized for graphics application with each

graphics path.
• HDVPSS supports two independently configurable external video input capture ports.Each video input capture

port can be operated as one 16/24-bit input channel (with separate Y and Cb/Cr inputs) or two clock independent
8-bit input channels (with interleaved Y/C data input). Embedded sync and external sync modes are supported for
all input configurations.

• The video capture port channel shall support de-multiplexing of both pixel-to-pixel and line-to-line multiplexed
streams. It could support upto 16 D1 or 32 CIF multiplexed mode capture.It could also support upto 2 channel
1080p60 capture.

JOHN
文本框
显示子系统包括使用最新TI开发算法的视频显示处理模块、灵活的合成和混合引擎、全方位的外部视频接口，以便向终端设备提供高质量的视频内容。本文件除SD相关需求外，还涵盖了与HD相关的各个方面的要求。每个组件以及其在ti814x显示子系统概述文档中的特性都将得到详细解释。

JOHN
文本框
它支持平铺和栅格数据格式。

JOHN
文本框
hdvpss产生安全的视频信号，并具有适当的内容保护机制，即HDCP和宏视觉/CGMS-a，分别用于数字和模拟输出。

JOHN
文本框
主视频管道和辅助视频管道都应包括对外部存储器的回写路径，以支持存储器与显示输出帧定时无关的视频帧的存储器缩放。

JOHN
文本框
视频捕获端口通道应支持像素对像素和逐行复用流的解复用。它可以支持多达16 d1或32 cif复用模式捕获，还可以支持最多2通道1080p60捕获。

T1814X-HDVPSS-HW Overview 24

TI814x HDVPSS Block Diagram
Below figure shows the full blown block diagram of the HDVPSS. Driver uses this diagram to point out the paths
used by respective drivers for the different HDVPSS components.

TI814X HDVPSS Block Diagram

JOHN
文本框
下图显示了hdvpss的完整框图。驱动程序使用此图指出不同hdvpss组件的各自驱动程序使用的路径。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Ti814x-HDVPSS_updated.jpg

T1814X-HDVPSS-HW Overview 25

TI8107 HDVPSS Block Diagram
Below figure shows the full blown block diagram of the HDVPSS. Driver uses this diagram to point out the paths
used by respective drivers for the different HDVPSS components.

TI8107 HDVPSS Block Diagram

DEI

The DEI (De-interlacer) is primarily used to convert interlaced video source material to progressive form. Performs
motion adaptive de-interlacing. Supports 4 field motion detection. It performs edge directed interpolation, detects
edges in seven direction in 2X7 window. In addition, it performs film mode detection and film mode deinterlacing. It
can deinterlace on up to 1080i video input source, producing 1080p video output.

CHR_US

The CHR_US (Chroma Upsampler) converts YUV420 data format input to YUV422 data format output.

JOHN
矩形

JOHN
矩形

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI8107-HDVPSS_Hardware.jpg

T1814X-HDVPSS-HW Overview 26

SC

The SC (Scaler) takes the data from the upstream module. The input image is resized to the desired output size. The
module sends the output image to the downstream module. It can scale full HD (1080p) and output full HD (1080p).

VCOMP

The VCOMP (Video Compositor) module composites two sources of input video over a background color layer.
Both input sources are in 4:2:2 YUV format. The output of the module is also 4:2:2 YUV.

CIG

The CIG module takes in a single non-constrained video and generates following two outputs:
• The same non-constrained video which may optionally be interlaced
• The same or constrained version of the source video which may optionally interlaced
The first output is sent to the HDMI digital output (via COMP/HD_VENC_D) and the second output is sent to the
analog HD component output (via COMP/HD_VENC_A). In addition, the CIG modules takes in a second video
input and positions the video in a full display output screen if the input video is a PIP sized.

CSC

The CSC (Color Space Conversion) converts from either YUV444 format to RGB format or RGB format to
YUV444 format.

COMP

The COMP (Compositor) blends video from the two video sources with the Graphics sources (GRPX) to form the
final video streams going to the three video encoders. COMP has independent compositor/blender, each of them
them could upto 5 input layers (2 video and 3 graphics).

GRPX

GRPX is a region-based graphics processor that composes one or more graphics regions to create a display plane
input for the video compositor. Regions are rectangular in size. GRPX module could handle multiple rectangular
“regions” and composite them into one full screen sized image. GRPX inserts blank pixel data (zero pixel) where
region data is unavailable. It supports color formats on Graphics pipeline: RGB565, ARGB1555, RGBA5551,
ARGB4444, RGBA4444, ARGB6666,RGBA6666,RGB888, ARGB8888 and RGBA8888, Palette of 1/2/4/8 bits per
pixel.

HD_VENC_D_DVO1

The HD_VENC_D_DVO1(High Definition Video Encoder HDMI/DVO1) converts internally processed video to
both an HDMI format or DVO format.

HD_VENC_D_DVO2

The HD_VENC_D_DVO2 (Hish Definition Video Encoder DVO2) converts internally processed video to DVO
format

HD_VENC_A

This output is supported only on TI8107. The HD_VENC_A (High Definition Video Encoder Analog) converts
internally processed video to Component format. This output runs in synchronous with either HDMI VENC or
DVO2 VENC. It is not possible to run this VENC independently.

JOHN
矩形

JOHN
矩形

JOHN
文本框
grpx是一种基于区域的图形处理器，它由一个或多个图形区域组成，用于为视频排序器创建显示平面输入。

JOHN
文本框
创建平面输入图形

T1814X-HDVPSS-HW Overview 27

SD_VENC

The SD_VENC (Standard Definition Video Encoder) converts internally processed video to composite, S-Video and
component format outputs. Only Composite output supported on TI8107.

VIP (PARSER)

The VIP Parser (Video Input Port Parser) provides an input for external video sources. Each Video Input Port can
receive from 16 CIF streams to 1 1080p60 streams. There are two instance of VIP Parser.

CHR_DS

The CHR_DS (Chroma Downsampler) converts YUV422 data format input to YUV420 data format output.

NF

The NF (Noise Filter) performs a memory to memory spatial/temporal noise filter algorithm on a 422 raster input
source and produces a 420 tiled output source. Its primary use mode is part of the Video Input Port processing.

VPDMA

The VPDMA shall be capable of transporting data to and from an external memory location, most often an EMIF,
buffering this data and then delivering the data as demanded to Application Modules as programmed.

UserGuideHdvpssFolderOrg

HDVPSS Code / Directory Organization

Top Level
On successful installation of HDVPSS source code, in the installed directory following folders would be created.
Lets consider 01_00_01.27 versioned release as an example.

JOHN
文本框
vpdma应该能够将数据传输到外部存储器位置，通常是从外部存储器位置，缓冲该数据，然后按编程的要求将数据传送到应用模块。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TopLevel.PNG

UserGuideHdvpssFolderOrg 28

Build
Build directory essentially holds all the generated binaries and libraries. For each sample application that comes with
this HDVPSS release, will have separate folder under build directory. Each example in turn will have platform
specific folder, which will hold the binary for that platform.

Docs
The docs folder contains release notes, user guide, API guide, gel files and other for all the platforms. The
relnotes_archive folder contains the user guides for the previous releases. The platform specific folders (such as
ti814x, ti8107, ti816x) contains the gels files (for both A8 and M3 cores), binary to configure on-chip HDMI from
A8 and other utilities

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:BuildFolder.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DocsFolder.PNG

UserGuideHdvpssFolderOrg 29

Makerules
The folder contains the make files required to compile HDVPSS drivers, sample applications and other utilities. The
docs folder under makerules folder contain makerules_spec.doc document that elaborates on the make files used.

Packages
Detailed in next section - Reducing the indentation by two levels.

Packages
Is the root folder for all HDVPSS Drivers, the following sections expand on contents of sub-folders.

JOHN
文本框
cslr:包含用于访问各个硬件块的寄存器的定义。平台特定的文件，定义每个块的基址。

JOHN
文本框
Devices:包含驱动/功能实现，以控制机载编码器、解码器、其他设备，如tvp 7002、tvp 5158等。
src:包含初始化受支持的板上设备驱动程序和取消初始化的函数.
设备名文件夹：定义了设备的驱动 .h定义了驱动接口(通常为初始化函数和反初始化函数)，统一被devices\src\vpsdrv_device.c中的函数调用

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:MakeFolder.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PsVpsFolder.PNG

UserGuideHdvpssFolderOrg 30

CSLR
Contains defines that would be used to access registers of the individual hardware blocks. The platform specific file,
defines the base address of each of the blocks.

Devices
Contains driver / function implementation to control on-board encoders, decoders, other devices such as TVP7002,
TVP5158, etc…
Folder devices/src – Contains functions that initialize the supported on-board devices drivers and de-initialize the
same. Folder <device name> e.g. TVP7002 – Interface file vpsdrv_tvp7002.h at \packages\ti\psp\devices\tvp7002 -
Defines the interface exposed by the TVP7002 decoder driver, typically initialization and de-initialization function
called by device initialization. \devices\src\vpsdrv_device.c Encoder / decoder device driver implementation could
be found at - \packages\ti\psp\devices\tvp7002\src

Examples
The examples folder is the root folder for all the examples provided in standard HDVPSS release. The examples
could be broadly classified into platform specific examples and examples that are common for all supported
platforms.

Common

JOHN
文本框
包含用于访问各个硬件块的寄存器的定义。平台特定的文件，定义每个块的基址。

JOHN
文本框
Devices:包含驱动/功能实现，以控制机载编码器、解码器、其他设备，如tvp 7002、tvp 5158等。
src:包含初始化受支持的板上设备驱动程序和取消初始化的函数.
设备名文件夹：定义了设备的驱动 .h定义了驱动接口(通常为初始化函数和反初始化函数)，统一被devices\src\vpsdrv_device.c中的函数调用

JOHN
文本框
示例文件夹是标准hdvpss发布中提供的所有示例的根文件夹。这些示例可以广泛地分为平台特定示例和所有支持的平台中常见的示例。

JOHN
文本框
Proxy Server：实现代理服务器的主机应用程序。proxyserverhost_main.c在上为每个受支持的平台实现主机，内存映射可能不同，配置文件proxyserverhost_ti81xx.cfg在proxyserverhostproxyservervsm3ti814x上指定给定平台的内存映射。

JOHN
文本框
IIC:实现基于命令行的i2c应用程序，该应用程序可用于读取/写入任何视频上的设备，如sii 9022a、tvp 7002、io扩展器。

JOHN
文本框
Utils：实现支持的通用实用程序应用程序，用于调试辅助
printDesc文件夹：实现一个可以用于打印任何vpdma描述符的简单应用程序。这通常用作调试辅助，以识别损坏/不正确的vpdma描述符。
vpdmaListDump ：实现一个应用程序，可以转储列表管理器的当前配置。这是另一个调试辅助。

JOHN
文本框
VPS:是包含所有驱动程序示例应用程序实现的根文件夹。这些示例的组织都是相似的.如果驱动程序有多个示例应用程序，则会有多个文件夹，每个文件夹都包含一个示例应用程序。例如，显示应用程序有3个不同的示例应用程序供显示，所有这些示例应用程序都位于显示文件夹下的单独文件夹中。

JOHN
文本框
platforms:平台特定的操作，如确定平台类型、板版本、硅版本等，都是通过本文件夹下的文件/函数实现的。作为hdvpss初始化的一部分，平台功能将被初始化。

JOHN
文本框
通用实用程序函数(如堆内存、tiler内存管理等)

JOHN
文本框
代理服务器实现
vps_proxyServer.h 代理服务器接口

JOHN
文本框
所有的HDVPSS驱动：整个驱动程序和fvid 2接口所需的接口文件都位于该文件夹。任何需要使用hdvpss驱动程序服务的应用程序都必须包含一个或多个接口文件。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:EgOthersFolder.PNG

UserGuideHdvpssFolderOrg 31

I2C

Implements the command line based I2C application, that could be used to read / write into any of the video
on-board devices such as sii9022a, TVP7002, IO Expanders.

Proxy Server

Implements host application for the proxy server. The file ProxyServerHost_main.c implements host at
\proxyServer\hostProxyServerVpsM3\src For each of the supported platform, the memory map could be different,
the config file proxyServerHost_ti81xx.cfg at \proxyServer\hostProxyServerVpsM3\ti814x\ specifies the memory
map for a given platform.

Utils

Implements generic utility applications that are supported.
• Utils\printDesc folder – Implements a simple application that could be used to print any VPDMA descriptors.

This is typically used as debug aid to identify corrupted / incorrect VPDMA descriptors.
• Utils\vpdmaListDump – Implements a application that could dump the current configuration of the List Manager.

This is another debug aid.

VPS

Is the root folder that contains all the driver sample application implementations. The organization of these examples
are similar for all examples. The following paragraph expands on one of the example, same could be extended to
others
In case a driver has multiple sample applications, there would be multiple folders, each holding a sample application.
E.g. Display application, there are 3 different sample application for display, all these sample applications are in
separate folders under display folder.

JOHN
文本框
实现基于命令行的i2c应用程序，该应用程序可用于读取/写入任何视频上的设备，如sii 9022a、tvp 7002、io扩展器。

JOHN
文本框
实现代理服务器的主机应用程序。proxyserverhost_main.c在上为每个受支持的平台实现主机，内存映射可能不同，配置文件proxyserverhost_ti81xx.cfg在proxyserverhostproxyservervsm3ti814x上指定给定平台的内存映射。

JOHN
文本框
Utils：实现支持的通用实用程序应用程序，用于调试辅助
printDesc文件夹：实现一个可以用于打印任何vpdma描述符的简单应用程序。这通常用作调试辅助，以识别损坏/不正确的vpdma描述符。
vpdmaListDump ：实现一个应用程序，可以转储列表管理器的当前配置。这是另一个调试辅助。

JOHN
文本框
VPS:是包含所有驱动程序示例应用程序实现的根文件夹。这些示例的组织都是相似的.如果驱动程序有多个示例应用程序，则会有多个文件夹，每个文件夹都包含一个示例应用程序。例如，显示应用程序有3个不同的示例应用程序供显示，所有这些示例应用程序都位于显示文件夹下的单独文件夹中。

UserGuideHdvpssFolderOrg 32

captureVip

Is the place holder for the make file and captures applications configuration file. The src folder under this holds the
source code for the captures sample application. Please refer the user guide of capture for details on the capture
sample application.

I2C
The folder is the place holder for I2C driver implementation. The interface exposed by I2C driver is available at
\packages\ti\psp\i2c\psp_i2c.h. The source I2C driver is available at \packages\ti\psp\i2c\src\

JOHN
文本框
是make文件和捕获应用程序配置文件的位置持有人。下面的src文件夹保存捕获示例应用程序的源代码。有关捕获示例应用程序的详细信息，请参阅捕获的用户指南。

JOHN
文本框
有关捕获示例应用程序的详细信息，请参阅捕获用户指南。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:EgFolder.PNG

UserGuideHdvpssFolderOrg 33

Platform
The platform specific operations such as determining the platform type, board versions, silicon versions, etc… is
implemented by files / functions under this folder. As part of HDVPSS initialization, the platform functionality
would be initialized

Utility
Is the place holder for all generic utility functions (such heap memory, Tiler memory management, etc…)

Proxy Server
Is the place holder for proxy server implementation. The interface exposed by proxy server is at
\packages\ti\psp\proxyServer\vps_proxyServer.h, along with make file to build proxy server. The folder
\packages\ti\psp\proxyServer\src\ contains the source files for proxy server.

VPS
Is the master folder for all HDVPSS drivers. The interface files required for the entire driver and the FVID 2
interface is available at \packages\ti\psp\vps\. Any application that requires using the services of HDVPSS driver
will have to include one or more of the interface files.

JOHN
文本框
平台特定的操作，如确定平台类型、板版本、硅版本等，都是通过本文件夹下的文件/函数实现的。作为hdvpss初始化的一部分，平台功能将被初始化。

JOHN
文本框
通用实用程序函数(如堆内存、tiler内存管理等)

JOHN
文本框
代理服务器实现
vps_proxyServer.h 代理服务器接口

JOHN
文本框
所有的HDVPSS驱动：整个驱动程序和fvid 2接口所需的接口文件都位于该文件夹。任何需要使用hdvpss驱动程序服务的应用程序都必须包含一个或多个接口文件。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:I2cplatformFolder.PNG

UserGuideHdvpssFolderOrg 34

Common
The common functionality such as queuing, event management, resource management, event/error logging is
implemented in this folder. The files under packages\ti\psp\vps\common\ provides the interfaces that could be used
by the drivers. The folder packages\ti\psp\vps\common\src\ is the place holder for the implementation.

Core
The common functional block / paths that could potentially be used by one or more drivers, is configured / managed
by common software entity called “core”. The implementation of this core is at \packages\ti\psp\vps\core\src\ and the
interface files of core is at \packages\ti\psp\vps\core

JOHN
文本框
常见的功能，如队列，事件管理，资源管理，事件/错误日志记录在本文件夹中实现。
包括对外接口和源文件

JOHN
文本框
一个或多个驱动程序可能使用的公共功能块/路径由称为“core”的通用软件实体配置/管理。 包括接口声明和源文件

JOHN
文本框
common:常见的功能，如队列，事件管理，资源管理，事件/错误日志记录在本文件夹中实现。
包括对外接口和源文件

JOHN
文本框
core：一个或多个驱动程序可能使用的公共功能块/路径由称为“core”的通用软件实体配置/管理。 包括接口声明和源文件

JOHN
文本框
hal:是底层硬件的软件抽象，提供配置设备/vpdma配置描述符的功能。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PsVpsFolder.PNG

UserGuideHdvpssFolderOrg 35

HAL
Is a software abstraction of the underlying hardware, provides function to configure the devices / VPDMA
configuration descriptors.

Driver

The HDVPSS drivers are segregated into capture, display and m2m drivers. Each of the sub-folder under driver
folder implements one or more HDVPSS drivers. Each of the sub-folder have consistent sub-folder directory
structure, as an example, lets consider Capture sub-folder
The application interface exposed by the drivers is available at \packages\ti\psp\vps\ and the driver interface (to
FVID2 Manager) is defined at \packages\ti\psp\vps\drivers\capture\
The makefile to build the driver is also contained here.
The source folder “src” under the driver folder is the place holder for the driver implementation. Note that there could
multiple drivers, as in case of the m2m driver. The driver instances defined in the application interface at
\packages\ti\psp\vps\ is expected to be used to differentiate the drivers.

JOHN
文本框
是底层硬件的软件抽象，提供配置设备/vpdma配置描述符的功能。

JOHN
文本框
HDVPSS驱动分为capture, display and m2m drivers。每个子文件夹下的驱动文件夹实现一个或多个hdvpss驱动。每个子文件夹都有一致的子文件夹目录结构(头文件+src文件夹)，作为一个例子，让我们考虑捕获子文件夹。

JOHN
文本框
驱动程序公开的应用程序接口位于\packages\ti\psp\vps\

FVID2 manager的驱动程序接口位于./drivers\capture\

JOHN
文本框
驱动文件夹下的源文件夹“SRC”是驱动程序实现的文件夹。请注意，可能有多个驱动程序，如在M2M驱动程序的情况下。在\packages\ti\psp\vps\的应用程序接口中定义的驱动程序实例预计将用于区分驱动程序。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DriversFolder.PNG

UserGuideFVID2 36

UserGuideFVID2

FVID2

Introduction
FVID2 are the interface APIs for the video capture, video display and video processing (Memory to Memory
drivers)applications on top of BIOS operating system. Provides the interfaces for the streaming operations like
queuing of buffers to the hardware and getting is back from the hardware. Also provides the control interface for the
devices like video encoders and video decoders which are actually not the data path devices. Gives same look and
feel for the video applications across different SoCs.
Following are the features of the FVID2 APIs.

• Platform independent and CPU independent APIs.
• Suitable for multiprocessor communication environment like client-server model.
• Supports blocking as well as non-blocking APIs.
• Supports streaming class of devices like video capture and video display.
• Supports non-steaming class of devices like video encoders and video decoders.
• Supports sliced based operations like sliced based capture and slice based memory to memory drivers.
• Support for the multiple buffers representing a single frame.
• Support for configuring the hardware on per frame basis in synchronous with the frames submitted. AKA

Runtime parameters change.
• Interface supports multiple handle and multiple channel operation. Explained in detail in coming sections.
• Support for adding the custom controls specific to the device.
Warning
Underlying drivers catering to FVID2 interfaces may decide to expose the sub-set of features supported by FVID2.
Please refer to the individual driver userGuide for the features exposed by drivers.

FVID2 enumerations

FVID2_DataFormat
FVID2_DataFormat represents the arrangement of the different components forming the pixel. These
components can be in YUV color space or the RGB color space or any other color space. Below figure shows the
commonly used data formats. FVID2 supports many more data formats. Specific driver may expose subset of the
data formats from the mentioned below based on the hardware capability.
YUV420 Semiplanar Format

JOHN
文本框
fvid 2是用于BIOS操作系统之上的视频捕获、视频显示和视频处理(内存到内存驱动程序)应用程序的接口API。它为流操作提供接口，例如把缓冲区数据与硬件的数据交换。还为视频编码器和视频解码器等设备提供控制接口，它们实际上不是数据路径设备。为不同的SoC视频应用程序提供相同的外观和感觉

JOHN
文本框
独立于平台的API和与CPU无关的API

JOHN
文本框
适用于客户端-服务器模型等多处理器通信环境.

JOHN
文本框
支持阻塞和非阻塞API。

JOHN
文本框
支持流类设备，如视频捕获和视频显示。

JOHN
文本框
支持非蒸汽类设备，如视频编码器和视频解码器

JOHN
文本框
支持基于切片的操作，例如基于切片的捕获和基于切片的内存转移操作

JOHN
文本框
支持表示单个帧的多个缓冲区。

JOHN
文本框
支持在每个帧的基础上配置硬件，并与帧同步。也就是运行时参数更改。

JOHN
文本框
接口支持多句柄和多通道操作。在接下来的章节中详细解释。

JOHN
文本框
支持添加特定于设备的自定义控件。

JOHN
文本框
满足fvid 2接口的底层驱动程序可能决定公开fvid 2支持的特性子集。请参阅驱动程序公开的特性的单个驱动程序用户指南。

JOHN
文本框
枚举数据类型

JOHN
文本框
fvid 2_datamat表示构成像素的不同组件的排列。这些组件可以在yuv颜色空间或RGB颜色空间或任何其他颜色空间中。下图显示了常用的数据格式。fvid 2支持更多的数据格式。特定驱动程序可能会根据硬件功能从下面提到的数据格式中公开子集。

JOHN
文本框
数据格式

JOHN
文本框
FVID2_DataFormat
FVID2 ScanFormat
FVID2 Field ID
Bits per Pixel

UserGuideFVID2 37

YUV420 DataFormat with Y in one plane and
UV in another plane

YUV422 Interleaved Format

YUV422 DataFormat with Y and UV
components interleaved

RGB888 Packed Format

RGB888 DataFormat

typedef enum

{

 FVID2_DF_YUV422I_UYVY = 0x0000,

 /**< YUV 422 Interleaved format - UYVY. */

 FVID2_DF_YUV422I_YUYV,

 /**< YUV 422 Interleaved format - YUYV. */

 FVID2_DF_YUV422I_YVYU,

 /**< YUV 422 Interleaved format - YVYU. */

 FVID2_DF_YUV422I_VYUY,

 /**< YUV 422 Interleaved format - VYUY. */

 FVID2_DF_YUV422SP_UV,

 /**< YUV 422 Semi-Planar - Y separate, UV interleaved. */

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV420_semiplanar_changed.jpeg
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV422_interleaved.jpeg
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:RGB888_packed.jpeg

UserGuideFVID2 38

 FVID2_DF_YUV422SP_VU,

 /**< YUV 422 Semi-Planar - Y separate, VU interleaved. */

 FVID2_DF_YUV422P,

 /**< YUV 422 Planar - Y, U and V separate. */

 FVID2_DF_YUV420SP_UV,

 /**< YUV 420 Semi-Planar - Y separate, UV interleaved. */

 FVID2_DF_YUV420SP_VU,

 /**< YUV 420 Semi-Planar - Y separate, VU interleaved. */

 FVID2_DF_YUV420P,

 /**< YUV 420 Planar - Y, U and V separate. */

 FVID2_DF_YUV444P,

 /**< YUV 444 Planar - Y, U and V separate. */

 FVID2_DF_YUV444I,

 /**< YUV 444 interleaved - YUVYUV... */

 FVID2_DF_RGB16_565 = 0x1000,

 /**< RGB565 16-bit - 5-bits R, 6-bits G, 5-bits B. */

 FVID2_DF_ARGB16_1555,

 /**< ARGB1555 16-bit - 5-bits R, 5-bits G, 5-bits B, 1-bit

Alpha (MSB). */

 FVID2_DF_RGBA16_5551,

 /**< RGBA5551 16-bit - 5-bits R, 5-bits G, 5-bits B, 1-bit

Alpha (LSB). */

 FVID2_DF_ARGB16_4444,

 /**< ARGB4444 16-bit - 4-bits R, 4-bits G, 4-bits B, 4-bit

Alpha (MSB). */

 FVID2_DF_RGBA16_4444,

 /**< RGBA4444 16-bit - 4-bits R, 4-bits G, 4-bits B, 4-bit

Alpha (LSB). */

 FVID2_DF_ARGB24_6666,

 /**< ARGB4444 24-bit - 6-bits R, 6-bits G, 6-bits B, 6-bit

Alpha (MSB). */

 FVID2_DF_RGBA24_6666,

 /**< RGBA4444 24-bit - 6-bits R, 6-bits G, 6-bits B, 6-bit

Alpha (LSB). */

 FVID2_DF_RGB24_888,

 /**< RGB24 24-bit - 8-bits R, 8-bits G, 8-bits B. */

 FVID2_DF_ARGB32_8888,

 /**< ARGB32 32-bit - 8-bits R, 8-bits G, 8-bits B, 8-bit

Alpha (MSB). */

 FVID2_DF_RGBA32_8888,

 /**< RGBA32 32-bit - 8-bits R, 8-bits G, 8-bits B, 8-bit

Alpha (LSB). */

 FVID2_DF_BITMAP8 = 0x2000,

 /**< BITMAP 8bpp. */

 FVID2_DF_BITMAP4_LOWER,

 /**< BITMAP 4bpp lower address in CLUT. */

 FVID2_DF_BITMAP4_UPPER,

UserGuideFVID2 39

 /**< BITMAP 4bpp upper address in CLUT. */

 FVID2_DF_BITMAP2_OFFSET0,

 /**< BITMAP 2bpp offset 0 in CLUT. */

 FVID2_DF_BITMAP2_OFFSET1,

 /**< BITMAP 2bpp offset 1 in CLUT. */

 FVID2_DF_BITMAP2_OFFSET2,

 /**< BITMAP 2bpp offset 2 in CLUT. */

 FVID2_DF_BITMAP2_OFFSET3,

 /**< BITMAP 2bpp offset 3 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET0,

 /**< BITMAP 1bpp offset 0 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET1,

 /**< BITMAP 1bpp offset 1 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET2,

 /**< BITMAP 1bpp offset 2 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET3,

 /**< BITMAP 1bpp offset 3 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET4,

 /**< BITMAP 1bpp offset 4 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET5,

 /**< BITMAP 1bpp offset 5 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET6,

 /**< BITMAP 1bpp offset 6 in CLUT. */

 FVID2_DF_BITMAP1_OFFSET7,

 /**< BITMAP 1bpp offset 7 in CLUT. */

 FVID2_DF_BAYER_RAW = 0x3000,

 /**< Bayer pattern. */

 FVID2_DF_RAW_VBI,

 /**< Raw VBI data. */

 FVID2_DF_RAW,

 /**< Raw data - Format not interpreted. */

 FVID2_DF_MISC,

 /**< For future purpose. */

 FVID2_DF_INVALID,

 /**< Invalid data format. Could be used to initialize

variables. */

 FVID2_DF_MAX

 /**< Should be the last value of this enumeration.

 Will be used by driver for validating the input parameters. */

} FVID2_DataFormat;

UserGuideFVID2 40

FVID2 ScanFormat
Strucutre represents the scanning format.

typedef enum

{

 FVID2_SF_INTERLACED = 0,

 /**< Interlaced mode. */

 FVID2_SF_PROGRESSIVE,

 /**< Progressive mode. */

 FVID2_SF_MAX

 /**< Should be the last value of this enumeration.

 Will be used by driver for validating the input parameters. */

} FVID2_ScanFormat;

FVID2 Field ID
Represents field ID of the buffer. For interlaced buffers field ID could be 0 or 1 depending upon the even and odd
field buffer contains. For progressive displays field ID is same for all the frames.

typedef enum

{

 FVID2_FID_TOP = 0,

 /**< Top field. */

 FVID2_FID_BOTTOM,

 /**< Bottom field. */

 FVID2_FID_FRAME,

 /**< Frame mode - Contains both the fields or a progressive

frame. */

 FVID2_FID_MAX

 /**< Should be the last value of this enumeration.

 Will be used by driver for validating the input parameters. */

} FVID2_Fid;

Bits per Pixel
Represents bits per pixel for buffer. For example for YUV422 interlaced format bit per pixel will be 16 and for
YUV444 it will be 24 and YUV420 it will be 12.

typedef enum

{

 FVID2_BPP_BITS1 = 0,

 /**< 1 Bits per Pixel. */

 FVID2_BPP_BITS2,

 /**< 2 Bits per Pixel. */

 FVID2_BPP_BITS4,

 /**< 4 Bits per Pixel. */

 FVID2_BPP_BITS8,

 /**< 8 Bits per Pixel. */

 FVID2_BPP_BITS12,

 /**< 12 Bits per Pixel - used for YUV420 format. */

JOHN
文本框
fvid 2扫描格式：逐行 隔行

JOHN
文本框
表示缓冲区的字段id。对于隔行缓冲区，字段id可以是0或1，这取决于奇偶字段缓冲区包含。对于逐行扫描显示，所有帧的字段ID是相同的。

JOHN
文本框
隔行 0/1
逐行

JOHN
文本框
表示缓冲器的每像素所占的位数。例如，对于yuv 422，每像素交错格式比特为16，而yuv 444为24，yuv 420为12。

UserGuideFVID2 41

 FVID2_BPP_BITS16,

 /**< 16 Bits per Pixel. */

 FVID2_BPP_BITS24,

 /**< 24 Bits per Pixel. */

 FVID2_BPP_BITS32,

 /**< 32 Bits per Pixel. */

 FVID2_BPP_MAX

 /**< Should be the last value of this enumeration.

 Will be used by driver for validating the input parameters. */

} FVID2_BitsPerPixel;

FVID2 Structures

FVID2 CallBack Parameters
FVID2 supports the driver call back. Driver call the application on specific events like, completion of buffer capture,
displayed or process. Or in case of error where application needs to take some action. Following is the structure
defined by the FVID2 API for the application to pass the callback functions to be invoked by the driver.

typedef struct

{

 FVID2_CbFxn cbFxn;

 /**< Application callback function used by the driver to

intimate any

 operation has completed or not. This is an optional

parameter

 in case application decides to use polling method and so

could be

 set to NULL. */

 FVID2_ErrCbFxn errCbFxn;

 /**< Application error callback function used by the driver

to intimate

 any error occurs at the time of streaming. This is an

optional

 parameter in case application decides not to get any error

 callback

 and so could be set to NULL. */

 Ptr errList;

 /**< Pointer to a valid framelist (FVID2_FrameList) in case

of capture

 and display drivers or a pointer to a valid processlist

 (FVID2_ProcessList) in case of M2M drivers where the

driver copies

 the aborted/error packet. The memory of this list should

be

 allocated by the application and provided to the driver at

 the time

 of driver creation. When the application gets this

JOHN
文本框
数据结构
FVID2 CallBack Parameters

JOHN
文本框
fvid 2支持驱动程序回调。驱动程序在特定事件上调用应用程序，如完成缓冲区捕获、显示或处理。或者在出现错误时，应用程序需要采取一些操作。下面是fvid 2 API为应用程序传递将由驱动程序调用的回调函数而定义的结构。

JOHN
文本框
驱动程序用来通知操作已经完成或未完成的回调函数。这是一个可选的参数，如果应用程序决定使用轮询方法，因此可以设置为NULL

JOHN
文本框
在捕获和显示驱动程序的情况下，指向有效框架列表(FVID 2_FrameList)的指针；在M2M驱动程序中，指向有效处理列表(FVID 2_ProcessList)的指针，M2M驱动程序用来复制中止/错误数据包。此列表的内存应由应用程序分配，并在驱动程序创建时提供给驱动程序。当应用程序得到这个回调时，它必须清空这个列表，并采取必要的操作，比如释放内存等等。然后，驱动程序将为将来的错误回调重用相同的列表。如果errCbFxn是空的，这可能是空的。否则，这应该是非空的。

UserGuideFVID2 42

callback, it has

 to empty this list and taken necessary action like freeing

 up memories

 etc. The driver will then reuse the same list for future

error

 callback.

 This could be NULL if errCbFxn is NULL. Otherwise this

should be

 non-NULL. */

 Ptr appData;

 /**< Application specific data which is returned in the

callback function

 as it is. This could be set to NULL if not used. */

 Ptr reserved;

 /**< For future use. Not used currently. Set this to NULL.

*/

} FVID2_CbParams;

FVID2 Format
Defines the format capabilities of the buffer like dataformat, scanFormat, width, height etc.

typedef struct

{

 UInt32 channelNum;

 /**< Channel Number to which this format belongs to.

 This is used in case of multiple buffers queuing/deqeuing

using a

 single call. This is not applicable for all the drivers. When

not

 used set it to zero. */

 UInt32 width;

 /**< Width in pixels. */

 UInt32 height;

 /**< Number of lines per frame. For interlaced mode, this should

 be set to

 the frame size and not the field size. */

 UInt32 pitch[FVID2_MAX_PLANES];

 /**< Pitch in bytes for each of the sub-buffers. This represents

 the

 difference between two consecutive line address.

 This is irrespective of whether the video is interlaced or

 progressive and whether the fields are merged or separated for

 interlaced video. */

 UInt32 fieldMerged[FVID2_MAX_PLANES];

 /**< Whether both the fields have to be merged - line

JOHN
文本框
在回调函数中返回的特定于应用程序的数据

JOHN
文本框
定义缓冲区的格式功能，如数据格式、扫描格式、宽度、高度等。

JOHN
文本框
此格式所属的频道号。
这在多个缓冲区使用单个call来入队列/出队列的情况下使用。这并不适用于所有的驱动。当未使用时，将其设置为零。

JOHN
文本框
以字节为单位，每个子缓冲区的间距。这表示两个连续行地址之间的差异，这与视频是隔行的还是累进的，以及对于交错的视频是否合并或分开都是无关的。

JOHN
文本框
是否必须合并字段——行交错。
仅用于交错格式。根据这一信息和pitch参数计算有效pitch。如果字段被合并，有效pith=pitch*2 其他有效pitch=pitch

UserGuideFVID2 43

interleaved or not.

 Used only for interlaced format. The effective pitch is

calculated

 based on this information along with pitch parameter. If

fields are

 merged, effective pitch = pitch * 2 else effective pitch =

pitch. */

 UInt32 dataFormat;

 /**< Frame data Format. For valid values see #FVID2_DataFormat.

*/

 UInt32 scanFormat;

 /**< Scan Format. For valid values see #FVID2_ScanFormat. */

 UInt32 bpp;

 /**< Number of bits per pixel. For valid values see

#FVID2_BitsPerPixel. */

 Ptr reserved;

 /**< For future use. Not used currently. Set this to NULL. */

} FVID2_Format;

FVID2 Slice information
Represents the slice information. Used in sliced bases processing like slice based capture and sliced based memory
to memory driver

typedef struct

{

 UInt32 sliceNum;

 /**< Current slice Number in this frame,

 range is from 0 to (NoOfSlicesInFrame-1) */

 UInt32 numSlcInLines;

 /**< Number of lines available in the frame at the end of

this slice. */

 UInt32 numSlcOutLines;

 /**< Number of lines generated in output buffer after

processing

 current slice */

} FVID2_SliceInfo;

JOHN
文本框
帧数据格式

JOHN
文本框
表示切片信息。用于基于切片的处理，例如基于切片的捕获和基于切片的内存到内存驱动程序。

JOHN
文本框
当前在此帧中的切片号

JOHN
文本框
在此切片末尾的帧中可用的行数

JOHN
文本框
处理完当前帧后在输出缓冲区中生成的行数

UserGuideFVID2 44

FVID2 Frame
Represents the attribute of one buffer in frame. Attributes like address of each planes and each fields. YUV420
semi-planar buffer with interlaced scan format will have two planes one each for Y data and UV data and odd and
even fields. Below figure shows the manipulation of the addr field of the FVID2_Frame structure for different data
formats and scan formats.
YUV420 Semiplanar
Below figure shows the addr field of the FVID2_Frame structure for the YUV420 semi planar data in which the
image is interlaced and fields are separate in two different buffers.

addr field of FVID2_Frame structure

YUV422 Interleaved
Below figure shows the addr field of the FVID2_Frame structure for the YUV422 interleaved data in which the
image is interlaced and fields are merged in single buffer. For the progressive image only the addr[0][0] needs
to be initialized

addr field of FVID2_Frame structure

Below figure shows the FVID2 frame structure in detail

typedef struct

{

 Ptr addr[FVID2_MAX_FIELDS][FVID2_MAX_PLANES];

 /**< FVID2 buffer pointers for supporting multiple addresses

 like

 y, u, v etc for a given frame. The interpretation of these

 pointers

 depend on the format configured.

 The first dimension represents the field and the second

JOHN
文本框
表示帧中一个缓冲区的属性。属性如每个planes和每个field的地址。例如 具有交错扫描格式的yuv 420半平面缓冲区将有两个平面，一个用于y数据和UV数据，两个fields奇数和偶数字段。下图显示了对不同数据格式和扫描格式的fvid 2_Frame结构的addr字段的操作。

JOHN
文本框
下面的图显示的fvid2_frame结构地址场为YUV420半平面的数据图像交错领域在不同缓冲液是分开的。

JOHN
文本框
不同的数据格式addr所代表的含义

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV420_addr.jpeg
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV422_addr.jpeg

UserGuideFVID2 45

dimension

 represents the plane. Not all pointers are valid for a

given format.

 Representation of YUV422 Planar Buffer:

 Field 0 Y -> addr[0][0], Field 1 Y -> addr[1][0]

 Field 0 U -> addr[0][1], Field 1 U -> addr[1][1]

 Field 0 V -> addr[0][2], Field 1 V -> addr[1][2]

 Representation of YUV422 Interleaved Buffer:

 Field 0 YUV -> addr[0][0], Field 1 YUV -> addr[1][0]

 Other pointers are not valid.

 Representation of RGB888 Buffer (Assuming RGB is always

progressive):

 RGB -> addr[0][0]

 Other pointers are not valid.

 Instead of using numerical for accessing the buffers, the

application

 can use the macros defined for each buffer formats like

 FVID2_YUV_INT_ADDR_IDX, FVID2_RGB_ADDR_IDX, FVID2_FID_TOP

etc.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 UInt32 fid;

 /**< Indicates whether this frame belong to top or bottom

field.

 For valid values see #FVID2_Fid.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 UInt32 channelNum;

 /**< Channel number to which this FVID2 frame belongs to.

 This is used in case of multiple buffers queuing/deqeuing

using a

 single call.

 If only one channel is supported, then this should be set

to zero.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 UInt32 timeStamp;

 /**< Time Stamp for captured or displayed frame.

 [OUT] for dequeue operation. Not valid for queue

operation. */

 Ptr appData;

UserGuideFVID2 46

 /**< Additional application parameter per frame. This is not

 modified by

 driver. */

 Ptr perFrameCfg;

 /**< Per frame configuration parameters like scaling ratio,

positioning,

 cropping etc...

 This could be set to NULL if not used.

 [IN] for queue operation. Dequeue returns the same pointer

 back to

 the application. */

 Ptr blankData;

 /**< Blanking data.

 This could be set to NULL if not used.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 Ptr drvData;

 /**< Used by driver. Application should not modify this. */

 FVID2_SliceInfo *sliceInfo;

 /**< Used for Slice level processing information exchange

between

 application and driver.

 This could be set to NULL if slice level processing is not

 used. */

 Ptr reserved;

 /**< For future use. Not used currently. Set this to NULL.

*/

} FVID2_Frame;

FVID2 FrameList
Framelist represents N frames. For display N frames represent buffer address of each window in a multi-window
mode. For capture it represents different channel buffers for the multiplexed channels. Currently FVID2_Framelist
can handle maximum of FVID2_MAX_FVID_FRAME_PTR frame pointers.

typedef struct

{

 FVID2_Frame *frames[FVID2_MAX_FVID_FRAME_PTR];

 /**< An array of FVID2 frame pointers.

 [IN] The content of the pointer array i.e FVID2_Frame

pointer is input

 for queue operation

 [OUT] Output for dequeue operation. */

 UInt32 numFrames;

 /**< Number of frames - Size of the array containing FVID2

pointers.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 Ptr perListCfg;

JOHN
文本框
每帧附加应用参数

JOHN
文本框
每帧配置参数，如缩放比、定位

JOHN
文本框
消隐数据

JOHN
文本框
驱动使用 应用程序不应修改此

JOHN
文本框
用于应用程序和驱动程序之间的片级处理信息交换。

JOHN
文本框
framelist代表N帧(N个数据帧)。对于显示，n帧代表多窗口模式中每个窗口的缓冲地址。对于捕获，它表示多路复用信道的不同信道缓冲区。目前fvid2_framelist可以处理的最大fvid2_max_fvid_frame_ptr帧指针

JOHN
文本框
FVID2帧指针的数组。

JOHN
文本框
为队列操作输入指针数组的内容，即FVID 2_Frame指针

UserGuideFVID2 47

 /**< Per list configuration parameters like scaling ratio,

positioning,

 cropping etc for all the frames together.

 This could be set to NULL if not used. In this case, the

driver will

 use the previous configuration.

 [IN] for queue operation. Dequeue returns the same pointer

 back to

 the application. */

 Ptr drvData;

 /**< Used by driver. Application should not modify this. */

 Ptr reserved;

 /**< For future use. Not used currently. Set this to NULL.

*/

} FVID2_FrameList;

Below figure shows the framelist containing FVID2_Frame in case of display and capture drivers.

Framelist pointing frames in Capture case

Framelist pointing frames in Display case

FVID2 ProcessList
FVID2 process list containing frame list used to exchange multiple input/output buffers in M2M (memory to
memory) operation. Each of the frame list in turn have multiple frames/request.

typedef struct

{

 FVID2_FrameList *inFrameList[FVID2_MAX_IN_OUT_PROCESS_LISTS];

 /**< Pointer to an array of FVID2 frame list pointers for input

nodes.

 [IN] for both queue and dequeue operation.

 The content of the pointer array i.e FVID2_FrameList pointer

is

 input for queue operation and is output for dequeue operation.

 */

 FVID2_FrameList *outFrameList[FVID2_MAX_IN_OUT_PROCESS_LISTS];

 /**< Pointer to an array of FVID2 frame list pointers for output

 nodes.

JOHN
文本框
每个list对所有帧的配置参数，如缩放比，定位，裁剪等所

JOHN
文本框
捕获：多通道
不同的信道缓冲区

显示：多窗口 每个窗口的缓冲地址

JOHN
文本框
FVID2 ProcessList：fvid 2进程列表，包含用于交换M2M(内存到内存)操作中的多个输入/输出缓冲区的帧列表。每个帧列表依次具有多个帧/请求。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID_FrameListCapture.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID_FrameListDisplay.PNG

UserGuideFVID2 48

 [IN] for both queue and dequeue operation.

 The content of the pointer array i.e FVID2_FrameList pointer

is

 input for queue operation and is output for dequeue operation.

 */

 UInt32 numInLists;

 /**< Number of input frame list valid in inFrameList.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 UInt32 numOutLists;

 /**< Number of output frame list valid in outFrameList.

 [IN] for queue operation.

 [OUT] for dequeue operation. */

 Ptr drvData;

 /**< Used by driver. Application should not modify this. */

 Ptr reserved;

 /**< For future use. Not used currently. Set this to NULL. */

} FVID2_ProcessList;

Below figure shows the processlist containing FVID2_FrameList which in turn will point to FVID2_Frame

ProcessList pointing FVID2_FrameList

FVID2 APIs

FVID2 Init
This API should be called before calling any of the FVID2 APIs. This API initializes the underlying
hardware/software sub-system built on top of FVID2 APIs. This should be called once during the system
initialization time in the task context. This function should not be called from the ISR context.

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

JOHN
文本框
这个API应该在调用fvid 2 apis之前被调用。这个API初始化构建在fvid 2 apis之上的底层硬件/软件子系统。这应该在任务内容的系统初始化期间调用一次。这个函数不应该从ISR上下文中调用

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID_ProcessList.PNG

UserGuideFVID2 49

FVID2 DeInit
This function should be called during the system de-Initialization. De-Initializes the hardware/software sub-system
built on top of FVID2 APIs. This should be called only once from the task context.

Int32 FVID2_deInit(Ptr args);

args - Not used

FVID2 Create
This API is used to open the FVID2 driver. drvId and InstanceId pair represents the hardware on which driver
operates. It initializes the hardware supported by the driver and configures it according to the parameters provided by
open. Some of the FVID2 driver supports multiple creates/open on the same drvId and instanceId. Requests from the
different handles of the multiple opens is serialize by the driver and is operated upon the same hardware one by one.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - [IN] Used to find a matching ID in the device driver table
instanceId - [IN] Instance ID of the driver to open and is used to differentiate multiple instance support on a single
driver.
createArgs - [IN] Pointer to the create argument structure. The type of the structure is defined by the specific driver.
This parameter could be NULL depending on whether the actual driver forces it or not.
createStatusArgs - [OUT] Pointer to status argument structure where the driver returns any status information. The
type of the structure is defined by the specific driver. This parameter could be NULL depending on whether the
actual driver forces it or not.
cbParams - Application callback parameters FVID2_CbParams. This parameter could be NULL depending on
whether the actual driver forces it or not.
return - Returns a non-NULL FVID2_Handle object on success else returns NULL on error.

FVID2 Set Format
Sets the format information for the already opened driver for a given channel. This function should be called from
the task context.

Int32 FVID2_setFormat(FVID2_Handle handle, FVID2_Format *fmt)

handle - [IN] FVID2 handle returned by FVID2 Create call.
fmt - [IN] Pointer to the FVID2 Create structure.
return - FVID2_SOK on success, else appropriate FVID2 Error Code on failure

JOHN
文本框
这个函数应该在系统去初始化过程中调用。去初始化构建在fvid 2 apis之上的硬件/软件子系统。这应该只从任务上下文中调用一次。

JOHN
文本框
这个API用于打开fvid 2驱动器。drvid和instanceid一起表示驱动程序操作的硬件。它初始化驱动程序支持的硬件，并根据opend提供的参数对其进行配置。一些fvid 2驱动程序支持在相同的drvid和instanceid上创建/打开多个驱动程序。来自多个打开的不同句柄的请求由驱动程序序列化，并一个一个地在同一个硬件上进行操作。

返回： FVID2_Handle

JOHN
文本框
输入参数：表示要操作的硬件

JOHN
文本框
初始化并配置硬件

JOHN
文本框
区分单个驱动程序上的多个实例支持

JOHN
文本框
创建参数：指向创建参数结构的指针。结构的类型是由特定的驱动器定义的。这个参数可以是空的，这取决于实际驱动程序是否强制它。

JOHN
文本框
输入参数

JOHN
文本框
输出参数，指示创建状态

JOHN
文本框
应用程序回调参数fvid 2_cbferences。该参数可能为空，这取决于实际驱动程序是否强制它。

JOHN
文本框
应用程序回调参数fvid 2_cbferences

JOHN
文本框
FVID2 Set Format设置给定通道的已打开驱动程序的格式信息。此函数应从任务上下文中调用。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_CbParams
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes

UserGuideFVID2 50

FVID2 Get Format
Returns the format already set for the opened driver for a given channel. This function should be called from the task
context.

Int32 FVID2_setFormat(FVID2_Handle handle, FVID2_Format *fmt)

handle - [IN] FVID2 handle returned by FVID2 Create call.
fmt - [OUT] Pointer to the FVID2 Create structure.
return - FVID2_SOK on success, else appropriate FVID2 Error Code on failure.

FVID2 Control
Driver exposes the custom control commands specific to the driver and hardware througth this interface. All the
FVID2 control commands are blocking. These control commands should be called from the task context unless
specified otherwise by the specific drivers. Example of the control commands exposed by different drivers are
creation/selection of the different multi window layout in case of display driver, programming of coefficients in case
of memory drivers involving scalars.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - [IN] FVID2 handle returned by FVID2 Create call.
cmd - [IN] IOCTL command. The type of command supported is defined by the specific driver.
cmdArgs - [IN] Pointer to the command argument structure. The type of the structure is defined by the specific
driver for each of the supported IOCTL. This parameter could be NULL depending on whether the actual driver
forces it or not.
cmdStatusArgs - [OUT]Pointer to status argument structure where the driver returns any status information. The
type of the structure is defined by the specific driver for each of the supported IOCTL. This parameter could be
NULL depending on whether the actual driver forces it or not.
return - FVID2_SOK on success, else appropriate FVID2 Error Code on failure.

FVID2 Start
An application calls FVID2 start to request the video device driver to start the video display or capture operation.
Most of the control commands and start FVID2 commands like FVID2_setFormat,FVID2_getFormat cannot be
called unless specified otherwise by driver. This function should be called from the task context.

Int32 FVID2_start(FVID2_Handle handle, Ptr cmdArgs)

handle - [IN] FVID2 handle returned by FVID2 Create call.
cmdArgs - [IN] Pointer to the start argument structure. The type of the structure is defined by the specific driver.
This parameter could be NULL depending on whether the actual driver forces it or not.
return - FVID2_SOK on success, else appropriate FVID2 Error Code on failure.

JOHN
文本框
返回已为给定通道的打开驱动程序设置的格式。

JOHN
文本框
输出

JOHN
文本框
驱动程序通过这个接口公开特定于驱动程序和硬件的自定义控制命令。所有fvid 2控制命令都是阻塞的。这些控制命令应该从任务上下文中调用，除非特定的驱动程序另有规定。不同驱动程序公开的控制命令的示例是在显示驱动程序情况下创建/选择不同的多窗口布局，在内存驱动程序涉及标量的情况下对系数进行编程。

JOHN
文本框
应用程序调用fvid 2_start来请求视频设备驱动程序启动视频显示或捕获操作。大多数控制命令和启动fvid 2命令(如fvid 2_setFormat、fvid 2_getFormat)都不能被调用，除非驱动器另有规定。此函数应从任务上下文中调用。

JOHN
文本框
指向开始参数结构的指针
结构的类型是由特定的驱动器定义的。这个参数可以是空的，这取决于实际的驱动程序是否强制它

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Set_Format
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Get_Format
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes

UserGuideFVID2 51

FVID2 Stop
An application calls the FVID2 stop to request the video device driver to stop the video display or capture operation.
FVID2 Stop may be called by application to change the setting of the driver like format, encoder/decoder mode etc.
After doing the required operation driver can be start again.
Warning: If driver settings are called after FVID2_Stop, then remaining buffers in the queue should be de-queued
before starting the driver again.

Int32 FVID2_stop(FVID2_Handle handle, Ptr cmdArgs)

handle - [IN] FVID2 handle returned by FVID2 Create call.
cmdArgs - [IN] Pointer to the start argument structure. The type of the structure is defined by the specific driver.
This parameter could be NULL depending on whether the actual driver forces it or not.
return - FVID2_SOK on success, else appropriate FVID2 Error Code on failure.

FVID2 Queue
This is used to submit a video buffer to the video device driver. This is used in capture/display drivers. This function
should be called from task context unless driver specifies that it can be called from the interrupt context as well. This
is a non blocking API unless the specific driver specifies otherwise.

Int32 FVID2_queue(FVID2_Handle handle,

 FVID2_FrameList *frameList,

 UInt32 streamId);

handle - [IN] FVID2 handle returned by FVID2 Create call.
frameList - [IN] Pointer to the FVID2 FrameList structure containing the information about the FVID2 frames that
has to be queued in the driver.
streamId- Stream ID to which the frames should be queued. This is used in drivers where they could support
multiple streams for the same handle. Otherwise this should be set to zero.
return - FVID2_SOK on success, else appropriate FVID2 Error Code on failure.

FVID2 De-Queue
An application calls FVID2_dequeue to request the video device driver to give ownership of a video buffer. This is
used in the capture and display driver. This is a non-blocking API if timeout is FVID2_TIMEOUT_NONE and could
be called by task context as well as interrupt context unless specific driver mentions otherwise. This is blocking API
if timeout is FVID2_TIMEOUT_FOREVER if supported by specific driver implementation.

Int32 FVID2_dequeue(FVID2_Handle handle,

 FVID2_FrameList *frameList,

 UInt32 streamId,

 UInt32 timeout);

handle - [IN] FVID2 handle returned by FVID2 Create call.
frameList - [OUT] Pointer to the FVID2 FrameList structure where the de-queued frame pointers will be stored
streamId - [IN] Stream ID from where frames should be dequeued. This is used in drivers where it could support
multiple streams for the same handle. Otherwise this should be set to zero.
timeout - [IN] FVID2 timeout in units of OS ticks. This will determine the timeout value till the driver will block for
a free or completed buffer is available. For non-blocking drivers this parameter might be ignored. return -
FVID2_SOK on success, else appropriate FVID2 Error Code on failure.

JOHN
文本框
应用程序调用fvid2_stop来视频设备驱动程序停止视频显示器或捕获操作。fvid2停止可能被改变司机像格式设置应用，编码器/解码器再次启动模式等需要操作的驱动程序可以做

JOHN
文本框
这用于向视频设备驱动器提交视频缓冲区。用于捕获/显示驱动程序。此函数应从任务上下文中调用，除非驱动程序指定可以从中断上下文调用该函数。这是一个非阻塞API，除非特定驱动程序另有规定。

JOHN
文本框
指向fvid 2 FrameList的指针，该结构包含必须在驱动程序中排队的FVID2_frames的信息。

JOHN
文本框
应该排队的Frames的Stream ID。这是在驱动程序中使用的，在驱动程序中，它们可以支持同一个手柄的多个流。否则，应该设置为零。

JOHN
文本框
应该排队的Frames的Stream ID。

JOHN
文本框
指向fvid 2 FrameList的指针

JOHN
文本框
应用程序调用fvid 2_deQueuel来请求视频设备驱动程序提供视频缓冲区的所有权。。这在捕获和显示驱动器中使用。如果超时为fvid 2_timeout_no，则这是一个非阻塞API，并且可以由任务上下文以及中断上下文调用，除非特定驱动程序提到其他情况。如果超时是fvid 2_timeout_永久性的，则这是阻塞API，如果得到特定驱动程序实现的支持。

JOHN
文本框
想要出队列的Stream ID

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes

UserGuideFVID2 52

FVID2 Queue and De-Queue

Single Queue and Single De-Queue

Single queue and corresponding single de-queue of the framelist is used in the display driver. Where the single
framelist can contain the single buffer for the whole frame or can contain multiple buffers in case of multiple
window configuration. Below figure shows how FVID2 FrameList and FVID2 Frames are initialized in case of
multiple window configuration.

FrameList and Frame Initlialization

As shown in above figure
• One FVID2_Frame is pointing to one buffer each.
• All the FVID2 frames to be display as a part of single video frame is pointed by the FVID2 Frame pointers inside

FVID2 FrameList.
Below figure shows how the FVID2 Frame pointers inside the FVID2_Frame list are exchanged between the driver
and the application in the FVID2 Queue and FVID2 De-Queue calls.

FVID2_Queue and FVID2_DeQueue sequence in
case of Display

As show in above figure.
• FVID2 FrameList contains 4 FVID2 Frames.
• Its submitted through single FVID2 Queue and will be displayed as single video frame.
• Driver copies all the content inside the FVID2 FrameList into the driver's FVID2 FrameList and application can't

touch it till driver returns it back. Now the application FVID2 FrameList is free to load new FVID2 Frames.
• Driver gives the callback to the application on successfully displaying the video frames inside FVID2 FrameList
• Application calls the FVID2 De-Queue with the empty FVID2 FrameList. Driver copied back all the FVID2

Frames back.
• In display case application always queues all the frames required to display one video frame and driver gives it

back once it completes displaying that video frame.
• Hence always single FVID2 Queue call results in single FVID2 De-Queue call.

JOHN
文本框
在显示驱动器中使用了frmelist的单队列和相应的单列解队列。其中，单个framelist可以包含整个帧的单个缓冲区，或者在多个窗口配置的情况下可以包含多个缓冲区。下图显示了在多个窗口配置情况下如何初始化fvid 2框架和fvid 2帧。

JOHN
文本框
下图显示了fvid 2_Frame列表中的fvid 2帧指针是如何在fvid 2队列和fvid 2去队列调用中的驱动程序和应用程序之间交换的。

JOHN
文本框
dequeue:把处理完的数据帧放回list

JOHN
文本框
queue:从list中取出待处理的数据帧进行处理

JOHN
文本框
fvid2 framelist包含4个fvid2帧。
它通过单个fvid 2队列提交，并作为单个数据帧显示
驱动程序将fvid 2 framelist中的所有内容复制到驱动程序的fvid 2 framelist中，并且应用程序在驱动程序返回之前无法触摸它。现在，应用程序fvid 2framelist可以自由加载新的fvid 2帧。

JOHN
文本框
驱动程序在fvid 2 framelist内成功显示视频帧时将回调给应用程序。

JOHN
文本框
应用程序使用空的fvid 2 ramelist来调用fvid 2去队列。驱动程序将所有fvid 2帧复制回来。

JOHN
文本框
在Displaycase中，应用程序总是将显示一个视频帧所需的所有帧排队，并在完成显示该视频帧后，驱动程序将其返回。

JOHN
文本框
所以，一个 FVID2 Queue 对应一个FVID2 De-Queue

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_FrameList.png
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_Queue_DeQueue_displayBig.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue

UserGuideFVID2 53

Single Queue and Multiple De-Queue

This is used in case of multiple channel case. While priming of the buffers before the capture starts application
submits buffers for all the channels using a single FVID2 Queue call. Since the capture is multiplexed input frames
from the different sources could complete at different time for each input and application wants to process buffer as
soon as its captured. This concept allows buffers to be de-queued as they are complete without waiting for other
channels to be completed. This results in single queue where buffers for all the channels are queued in single called
and de-queued as the channels are completed capturing.
Below figure shows the single queue and multiple de-queue used in capture driver.

FVID2_Queue and FVID2_DeQueue sequence in
case of Capture

As show in above figure
• FVID2 FrameList contains 4 FVID2 Frames one for each channel in case of 4 channels multiplexed capture.
• Capture driver gives callback to the application with two frames completed capturing.
• Application calls FVID2 De-Queue with empty FVID2 FrameList.
• Capture driver returns pointers to both completed FVID2 Frames
• Again capture driver gives callback to application with the rest of the two frames captured.
• Application calls FVID2 De-Queue with empty FVID2 FrameList.
• Again capture driver returns pointers to both completed FVID2 Frames
So this results in the singe call to FVID2 Queue to submit frames related to all channels, and driver giving multiple
callbacks to the application for the number of frames captured which results in the multiple de-queue calls for a
single queue call.
Application can also opt to wait for the multiple callback and call FVID2 Queue which will return all the frames
capture till then.

FVID2 ProcessFrames
An application calls this function to submit a video buffer to the video device driver. This API is very similar to
FVID2 Queue API except that this work in M2M drivers. This function can be called from the task context unless
driver specifies that it can be called from the interrupt context as well. This is a non blocking API unless driver
specifies otherwise.

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

handle - [IN] FVID2 handle returned by FVID2 Create call.
processList - [OUT] Pointer to the FVID2 ProcessList structure containing the information about the FVID2 frame
lists and frames that has to be queued to the driver for processing. return - FVID2_SOK on success, else appropriate
FVID2 Error Code on failure.

JOHN
文本框
这是在多信道情况下使用的。在捕获启动前，准备好buffers,应用程序使用一个 FVID2 Queue向所有的channels提交buffers。由于捕获是多路复用的，来自不同源的输入帧可以在不同的时间完成，因此每个输入和应用程序希望在捕获后立即处理缓冲区。.这个概念允许缓冲区在操作完成时就 to be de-queued ，而不等待其他通道完成。这将导致单队列，其中所有通道的缓冲区在一个单独的队列中queued，并在通道完成捕获时进行de-queued。

JOHN
文本框
fvid 2 framelist包含4个fvid 2帧，在4个通道多路捕获的情况下，每个信道一个。

JOHN
文本框
捕获驱动程序完成两个帧的捕获后，使得应用程序执行回调。

JOHN
文本框
应用程序使用空的fvid 2 framelsit调用fvid 2 De-Queue。

JOHN
文本框
捕获驱动程序返回指向两个已完成的fvid 2 Frames的指针。

JOHN
文本框
同样，捕获驱动程序完成接下来的两个帧的捕获后，使得应用程序执行回调。

JOHN
文本框
捕获舞动程序捕获帧数据

JOHN
文本框
queue:捕获帧数据

JOHN
文本框
dequeue:将捕获的帧数据返回

JOHN
文本框
应用程序调用此函数将视频缓冲区提交给视频设备驱动器。除非在M2M 驱动调用，此API与fvid 2 QueueAPI非常类似。此函数可以从任务上下文中调用，除非驱动程序指定它也可以从中断上下文调用。这是一个非阻塞API，除非驱动程序另有规定。

JOHN
文本框
指向fvid 2 ProcessList structure的指针，该结构包含关于必须queued来交给驱动处理的fvid 2framelist和frames的信息。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_Queue_DeQueue_capture.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Error_Codes

UserGuideFVID2 54

FVID2 GetProcessedFrames
An application calls this function to request the video device driver to give ownership of a video buffer.This API is
very similar to the FVID2_dequeue API except that this is used in M2M drivers only. This is a non-blocking API if
timeout is FVID2_TIMEOUT_NONE and could be called by task and ISR context unless the driver specifies
otherwise. This is blocking API if timeout is FVID2_TIMEOUT_FOREVER if supported by specific driver
implementation.

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

handle - [IN] FVID2 handle returned by FVID2 Create call.
processList - [OUT] Pointer to the FVID2 ProcessList structure where the driver will copy the references to the
dequeued FVID2 frame lists and frames.
timeout - [IN] FVID2 timeout. This will determine the timeout value till the driver will block for a free or completed
buffer is available. For non-blocking drivers this parameter might be ignored.
Below figure shows how FVID2 FrameList pointers and FVID2 Frame pointers are initialized inside FVID2
ProcessList

FVID2 ProcessList

As shown in above figure.
• Input Framelist pointer is initialized with one Framelist and output Framelist pointers are initialized with two

FrameLists.
• So numInLists is set to 1 and numOutLists is set to 2
• In inputFramelist 3 Frame pointers are initialized with Frames.
• In outputFrameLists Frame pointers of both the framelists are intialized with three Frames each.
Below figure shows how FVID2 ProcessList are exchanged between the driver and application in the FVID2
ProcessFrames and FVID2 GetProcessedFrames APIs.

JOHN
文本框
应用程序调用此函数以请求视频设备驱动程序提供平视频缓冲区的所有权。此API与fvid 2_deQueue api非常类似，除非早m2M驱动程序使用该函数。如果超时为fvid 2_timeout_no，并且可以由任务和ISR上下文调用，则这是一个非阻塞API，除非驱动程序指定。如果超时是fvid2_timeout_永久性的，则这是阻塞API，如果得到特定驱动程序实现的支持，则为永久阻塞API。

JOHN
文本框
指向fvid 2处理列表结构的指针，在该结构中，驱动程序将引用复制到排队列的fvid 2帧列表和帧。

JOHN
文本框
下图显示了fvid 2处理框架和fvid 2 getProcessiveFramesAPI中驱动程序和应用程序之间如何交换fvid 2处理列表。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Create
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Frame
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_ProcessList.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessFrames
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessFrames
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_GetProcessedFrames

UserGuideFVID2 55

ProcessList Queue DeQueue

As show in figure FVID2_processFrames and FVID2_GetProcessedFrames is same like FVID2 Queue and FVID2
De-Queue in a single Queue and single De-Queue case except here the FVID2 ProcessList acts as containers instead
of FVID2 FrameList

FVID2_getStandardInfo
Function to get the information about various FVID2 standards.Returns FVID2_SOK on success, else appropriate
FVID2 error code on failure.

Int32 FVID2_getStandardInfo(FVID2_StandardInfo *stdInfo);

stdInfo - [OUT] Pointer to #FVID2_StandardInfo structure where the information is filled

FVID2 Error Codes
Following is the list of error codes that FVID2 APIs returns on successful or on the failure of the API. Each of the
error codes is explained in the below code snapshot.

#define FVID2_SOK ((Int32) 0)

 /* FVID2 API call successful. */

#define FVID2_EFAIL ((Int32) -1)

 /* FVID2 API call returned with error as failed. It may be some

 * hardware failure or software failure */

#define FVID2_EBADARGS ((Int32) -2)

 /* FVID2 API call returned with error as bad arguments. Typically

 * NULL pointer passed to the FVID2 API where its not expected. */

#define FVID2_EINVALID_PARAMS ((Int32) -3)

 /* FVID2 API call returned with error as invalid parameters.

Typically

 * when parameters are not valid. */

#define FVID2_EDEVICE_INUSE ((Int32) -4)

 /* FVID2 API call returned with error as device already in use.

Tried

JOHN
文本框
类似于queue,取出数据帧处理

JOHN
文本框
类似于dequeue,把数据帧写回

JOHN
文本框
fvid 2处理列表充当容器，而不是fvid 2框架列表。

JOHN
文本框
函数获取有关各种fvid 2标准的信息。

JOHN
文本框
下面是fvid 2 api在api成功或失败时返回的错误代码列表。下面的代码快照解释了每个错误代码。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:ProcessList_Queue_DeQueue.PNG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_De-Queue
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_ProcessList
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideFVID2%23FVID2_FrameList

UserGuideFVID2 56

 * to open the driver maximum + 1 times. Display and Capture

driver suppports

 * single open, while M2M driver supports multiple open. */

#define FVID2_ETIMEOUT ((Int32) -5)

 /* FVID2 API call returned with error as timed out. Typically API

is

 * waiting for some condition and returned as condition not

happened

 * in the timeout period. */

#define FVID2_EALLOC ((Int32) -6)

 /* FVID2 API call returned with error as allocation failure.

Typically

 * memory or resource allocation failure. */

#define FVID2_EOUT_OF_RANGE ((Int32) -7)

 /* FVID2 API call returned with error as out of range. Typically

when

 * API is called with some argument that is out of range for that

API like

 * array index etc. */

#define FVID2_EAGAIN ((Int32) -8)

 /* FVID2 API call returned with error as try again. Momentarily

API is

 * not able to service request because of queue full or any other

 temporary

 * reason. */

#define FVID2_EUNSUPPORTED_CMD ((Int32) -9)

 /* FVID2 API call returned with unsupported command. Typically

when

 * command is not supported by control API. */

#define FVID2_ENO_MORE_BUFFERS ((Int32) -10)

 /* FVID2 API call returned with error as no more buffers

available.

 * Typically when no buffers are available. */

JOHN
文本框
等待的条件没有发生

JOHN
文本框
内存或者资源分配失败

JOHN
文本框
例如数组超标

JOHN
文本框
返回错误的fvid2api调用，然后再试一次。暂时由于队列满或任何其他临时原因，api无法服务请求。

JOHN
文本框
不受支持的命令返回的fvid2api调用。通常在控件API不支持命令时返回。

JOHN
文本框
没有更多的缓存

UserGuideFVID2 57

#define FVID2_EUNSUPPORTED_OPS ((Int32) -11)

 /* FVID2 API call returned with error as unsupported operation.

 * Typically when the specific operation is not supported by that

API such

 * as IOCTL not supporting some specific functions. */

#define FVID2_EDRIVER_INUSE ((Int32) -12)

 /* FVID2 API call returned with error as driver already in use. */

UserGuideHdvpssPlatformAPIs

Platform APIs and Drivers

Introduction
Platform APIs and driver does not fall into any of the FVID2 driver categories. These drivers and API are very much
dependent on SoC and board. User may need to modify these APIs to suit their platform or board. Following is the
list of platform APIs and their description.

FVID2_init
This is the first function to be called before calling any of the FVID2 APIs. It initializes all the data structures for
FVID2 software stack. This is not a board dependent function. It doesn't require any change in case of board change.
Internally different functions are called based on platform like DM814x, DM816x, DM8107 etc. So this function
requires to be ported for all different platforms.

Int32 FVID2_init(Ptr args)

args - User should always pass NULL here.
return_val - Returns FVID2_SOK on success, else proper error code.

FVID2_deInit
This is the last function to be called after calling any of the FVID2 APIs. It De-initializes all the data structures
initialized during FVID2_init.

Int32 FVID2_deInit(Ptr args)

args - User should always pass NULL here.
return_val - Returns FVID2_SOK on success, else proper error code.

JOHN
文本框
HdvpssPlatformAPIs使用指南

JOHN
文本框
平台API和驱动程序不属于任何fvid 2驱动程序类别。这些驱动程序和API非常依赖SoC和board。用户可能需要修改这些API以适应他们的平台或板。下面是平台API的列表及其描述。

JOHN
文本框
与Soc平台紧密相关的APIs和驱动

JOHN
文本框
这是调用fvid 2 apis之前的第一个函数。它初始化fvid 2软件堆栈的所有数据结构。这不是板相关的功能。它不需要在板发生更改时进行任何更改。内部不同的函数是基于dm814x、dm816x、dm 8107等平台调用的，因此这个函数需要移植到所有不同的平台上。

UserGuideHdvpssPlatformAPIs 58

Vps_platformInit
This is the platform initialization functions. It sets up the hardware for HDVPSS drivers. This function is platform
dependent and it needs to be ported for different platforms like DM814x, DM816x, DM8107 etc. Function does
following at at a high level for setting up of platform.
• Enabling of the HDVPSS functional clocks.
• Setting up of the display pixel clock for default values.
• Setting up of the pin mux for DVO2 in discrete sync mode with 24 data signals and 5 control signals.
• Setting up of the pin mux for VIP capture for 24/16 bit data signals and 5 control signals.
• Setting up of the I2C clocks for off-chip devices like TVPs and SILs
• Setting up of the interrupt muxing if required.

Int32 Vps_platformTI816xInit(Vps_PlatformInitParams *initParams)

initParams - Platform initialization parameters. Its explained below. return_val - Returns FVID2_SOK on
success, else proper error code.

/**

 * \brief Platform initialization parameters

 */

typedef struct

{

 UInt32 isPinMuxSettingReq;

 /**< Pinumx setting is requried or not. Sometimes pin mux setting

 * is required to be done from Host operating system like Linux.

 */

} Vps_PlatformInitParams;

Vps_platformDeInit
This is platform De-Initialization function. It only clears the software states. Hardware states are maintained as is
what was last before calling this function.

Int32 Vps_platformTI816xDeInit(void)

return_val - Returns FVID2_SOK on success, else proper error code. </pre>

Vps_platformDeviceInit
This is the initialization functions for all on-board devices like TVPs and SILs. This functions requires porting
depending on platforms like DM814x, DM816x, DM8107 as well as on boards like Video Surveillance, Video
Conferencing etc. It also requires change in case of the on-board devices is different or interfaced differently than
what Video Surveillance and Video Conferencing boards supports. This function also initializes system driver,
which provides APIs for setting up of pixel clock.

Vps_platformDeviceInit(Vps_PlatformDeviceInitParams *initPrms)

initParams - Platform device initialization parameters. Its explained below. return_val - Returns FVID2_SOK on
success, else proper error code.

typedef struct

{

 UInt32 isI2cInitReq;

JOHN
文本框
这是平台初始化功能，它为hdvpss驱动程序设置硬件，该功能依赖于平台，需要移植到dm814x、dm816x、dm 8107等不同平台上。

JOHN
文本框
使能时钟
设置时钟
DVO2引脚复用
VIP引脚复用
IIC时钟
所需的中断复用

JOHN
文本框
平台初始化参数。

JOHN
文本框
Pinumx设置是否正确。有时需要在Linux这样的主机操作系统上进行PIN mux设置。

JOHN
文本框
清除软件状态
硬件状态与调用此函数之前的状态相同。

JOHN
文本框
这是所有on-board devices(如tvps和sils)的初始化功能。这种功能需要依赖dm814x、dm816x、dm 8107等平台进行移植，以及视频监视、视频会议等板上的移植，它还要求在板上设备与视频监视和视频会议板支持的不同或接口不同的情况下进行更改。此功能还初始化系统驱动程序，该驱动程序为设置像素时钟提供API。

JOHN
文本框
平台设备初始化参数

UserGuideHdvpssPlatformAPIs 59

 /**< Indicates whether I2C initialization is required.

 * This is not requried in case all the on-board devices

 * are getting controlled by host operating system like Linux

 */

 UInt32 isI2cProbingReq;

 /**< If this is TRUE, Vps_platformDeviceInit will try to probe

all the I2C

 * devices connected on a specific I2C bus. This should be FALSE

for

 * all production system since this is a time consuming function.

 * For debugging this should be kept TRUE to probe all on-board I2C

 devices.

 * This field is dont care if #isI2cInitReq=FALSE.

 */

} Vps_PlatformDeviceInitParams;

Vps_platformDeviceDeInit
This function De-initializes all external devices like filter, decoders and encoders. Deletion is only limited to deleting
the software handles for all these devices. Devices states are actually not touched.

Vps_platformDeviceDeInit(void)

return_val - Returns FVID2_SOK on success, else proper error code.

System Driver
System driver provides application interface to configure Video display PLLs. Video display PLLs are shared
between displays, so application needs to configure PLL based on the mode set on Venc. FVID2_create API is used
to open the system driver. Plls can be set using the System driver ioctls with the handle got during FVID2_create.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

</pre> drvId - FVID2_VPS_VID_SYSTEM_DRV System Driver ID. Use this ID to open system driver.
instanceId - 0Instance ID is dont care for system controller driver.
createArgs - This parameters should be NULL
createStatusArgs - This parameter should be NULL.
cbParams - Since there is no callback from system driver, this parameters should be set to NULL.

JOHN
文本框
指示是否需要I2C初始化

JOHN
文本框
是否尝试探测连接在特定i2C总线上的所有i2C设备，耗时，多用于调试

JOHN
文本框
此函数对所有外部设备(如过滤器、解码器和编码器)进行去初始化。
删除仅限于删除所有这些设备的软件句柄。设备状态实际上是不被触及的。

JOHN
文本框
系统驱动提供配置Video display PLLs的应用接口。Video display PLLs are shared
between displays, 所以应用需要配置PLL基于Venc的模式。fvid2_create API是用来打开系统驱动。可以使用系统驱动程序ioctls和fvid 2_create期间获得的句柄来设置PLLs。

JOHN
矩形

JOHN
文本框
FVID2_create API is used to open the system driver.

JOHN
文本框
FVID2_create 创建这个句柄

ioctls通过这个句柄设置Plls

UserGuideHdvpssPlatformAPIs 60

FVID2_control

This API of system driver is used to expose control command provided by system driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

FVID2 Control - IOCTL_VPS_VID_SYSTEM_SET_VIDEO_PLL

Above control command is used to set PLL frequency of the selected Video encoder.
</pre> handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_VID_SYSTEM_SET_VIDEO_PLL ioctl.
cmdArgs - Pointer to Vps_SystemVPllClk structure containing venc on which PLL frequency needs to be set
and the actual frequency that needs to be set. For details about structure please refer API guide.
cmdStatusArgs - This parameter should be NULL.

FVID2_delete

This API is used to closed the system driver handle previously opened.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL. deleteArgs - This
parameter should be NULL.

UserGuideHdvpssDisplayDriver

Display Drivers

Introduction
Display drivers takes the video buffer from the application and displays the video on the video encoder (VENC) at
specified frame rate and resolution.
Display driver follows the FVID2 interface for the applications:
• Supports only one handle per instance. This means that a specific driver could be opened only once.
• Supports queuing mechanism. Application may queue multiple buffers with the driver and the driver displays the

buffers one after the another sequentially in order the buffers are queued.
• Multiple buffer submission per queue/dequeue is not supported. Supports only one request per queue/dequeue

operation. In order to queue/dequeue multiple buffers, the application has to call queue/dequeue multiple times.
• Queue and Dequeue FVID2 calls for all the display drivers are non blocking. However the control commands like

programming of the scalar coefficients are blocking.
• Display driver calls the application call back function on displaying the application buffer. Application could

dequeue the buffers by explicitly calling dequeue function after the callback.
• Once the display operation is started, the display driver always retains the last buffer and displays the same buffer

continuously till the application gives a new buffer to display.
• Any dequeue call to get back the last buffer when display is in progress will return error. Application should stop

display operation before it could dequeue the last buffer from the driver.

JOHN
文本框
控制命令

JOHN
文本框
显示驱动程序从应用程序获取视频缓冲区，并以指定的帧速率和分辨率在视频编码器(Venc)上显示视频。

JOHN
文本框
每个实例只支持一个句柄。这意味着一个特定的驱动程序只能打开一次。

JOHN
文本框
支持排队机制。应用程序可以与驱动程序排队多个缓冲区，驱动程序按照缓冲区排队顺序依次显示缓冲区。

JOHN
文本框
每个 queue/dequeue不支持多个缓冲区提交，每个 queue/dequeue操作只支持一个请求，为了使多个缓冲区 queue/dequeue，应用程序必须多次调用队 queue/dequeue。

JOHN
文本框
所有显示驱动程序的队列和排队列fvid 2调用都是非阻塞的。然而，像标量系数编程这样的控制命令是阻塞的。

JOHN
文本框
显示驱动程序在显示应用程序缓冲区时调用应用程序回调函数。应用程序可以在回调后显式调用deQueue

JOHN
文本框
一旦启动显示操作，显示驱动程序总是保留最后一个缓冲区，并连续显示相同的缓冲区，直到应用程序给出一个新的缓冲区来显示为止

JOHN
文本框
任何在显示过程中返回最后一个缓冲区的dequeue调用都会返回错误。应用程序应该停止显示操作，然后才能将最后一个缓冲区从驱动程序中排出队列。

UserGuideHdvpssDisplayDriver 61

• When operating in interlaced mode, the display driver always takes both the field in a queue/dequeue call. The
exception to this in de-interlace display driver where the driver works on a field at a time.

• Before the display operation is started, the application has to queue a minimum set of buffers. This operation is
called priming.

• The minimum of number buffers required could defer from driver to driver. Generally this is equal to 1 buffer and
the recommended value is equal to 3 buffers. Refer the driver specific documentation for the exact value.

Sample Application Flow
Following diagrams show the typical application flows for the display driver:

Sample Application Flow

Display Controller Driver

Introduction
This chapter describes the hardware overview, application software interfaces for Display Controller driver. The
features and limitations of current driver implementation are listed in subsequent sections.
Important
The features supported or NOT supported in any release of the driver may vary from one HDVPSS driver release to
another. See respective release notes for exact release specific details.

Features Supported
• Connecting multiplexers, VCOMP, CIG and COMP modules statically and dynamically (but not at run time, i.e.

after display is started)
• Supports setting modes and synchronizing multiple VENCs
• Supports static configuration for VCOMP, CIG, EDE (TI816X only) and COMP modules of HDVPSS
• All HD VENCs support upto 720p60, 1080p30, 1080i60 and 1080p60 mode and SD VENC supports NTSC and

PAL modes. Other modes are not supported.
• Supports FVID2 interface

JOHN
文本框
当在交错模式下操作时，显示驱动程序总是在queue/dequeue调用中同时接受这两个field。这在去交错显示驱动程序中的例外情况，驱动程序一次在一个field上工作。
在启动显示操作之前，应用程序必须queue一组最小的缓冲区。这个操作叫做启动。
所需的最小数目缓冲区各个驱动程序可以不同。通常这等于一个缓冲区，建议值等于3个缓冲区。请参阅驱动程序特定的文档以获得确切值。

JOHN
文本框
本章介绍了显示控制器驱动程序的硬件概述、应用软件接口，并在后面的章节中列出了当前驱动程序实现的特点和局限性。

JOHN
文本框
静态和动态地连接多路复用器、vcomp、cig和comp模块(但不是在运行时，例如启动显示后)
支持设置模式和同步多个vencs。
支持hdvpss的vcomp、cig、ede(仅限ti816x)和comp模块的静态配置。
所有HD vencs支持高达720 p60，1080p30，1080i60和1080p60模式，而SD venc支持NTSC和PAL模式。其他模式不支持
fvid2接口支持

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DisplayFlowChart.png

UserGuideHdvpssDisplayDriver 62

Features Not Supported
• Does not support configuring different modes on the tied VENCs like 1080P@60 FPS on DVO1 and 720P@60

FPS on DV02 could not be tied (synchronized)
• Run time configuration of VCOMP, CIG and blenders is not supported
• CPROC features are not supported. CPROC is currently put in simple bypass mode - does only color space

conversion. Note that CPROC module is available only on TI816X.
• Run time switching of input path at the multiplexer and graphics enable/disable at the COMP is not supported.

Hardware Overview
Below figures shows the complete HDVPSS Hardware. The circled part in the figure shows the modules which are
controlled by display controller.

Overview - TI8107

Display Controller - TI8107

JOHN
文本框
不支持在绑定vencs上配置不同的模式，例如DVo1上的1080 p@60 fps和dv 02上的720 p@60 fps无法绑定(同步)
不支持vcomp、cig和搅拌机的运行时配置。
cproc功能不支持。cproc目前处于简单的旁路模式-只进行颜色空间转换。请注意cproc模块仅在ti816x上可用。
不支持在多路复用器的输入路径切换和图形启用

JOHN
文本框
下图显示了完整的hdvpss硬件，图中的圆圈部分显示了由显示控制器控制的模块。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DctrlTI8107.JPG

UserGuideHdvpssDisplayDriver 63

Overview - TI814X

Display Controller - TI814X

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DisplayCtrlCentaurusMinimal.jpg

UserGuideHdvpssDisplayDriver 64

Overview - TI816X

Display Controller - TI816X

As shown in the figure, display driver controls configuration of VCOMP, CIG, EDE (TI816X only), CPROC
(TI816X only), CSC, COMP and all the VENCs. It also configures the muxes to enable/disable the different paths to
a particular VENC.
It provides APIs to the application to configure these paths and to set the different frame rates and resolutions in the
VENC.
The display controller will provide necessary information to the display driver about the resolution and frame rate
that it has to operate. This is abstracted from the application.
Below figures shows the mapping between the DCTRL nodes to the macro names as defined by the DCTRL
interface file.

JOHN
文本框
如图所示，显示驱动程序控制vcomp、cig、ede(仅为ti816x)、cproc(仅为ti816x)、csc、comp和所有vencs的配置。它还配置mux以启用/禁用到特定venc的不同路径。

JOHN
文本框
它为应用程序提供API，以配置这些路径，并在VOC中设置不同的帧速率和分辨率。

JOHN
文本框
显示控制器将向显示驱动程序提供它必须操作的分辨率和帧速率的必要信息。

JOHN
文本框
下图显示了dctrl节点到dctrl接口文件定义的宏名称之间的映射。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DisplayCtrlNetraMinimal.JPG

UserGuideHdvpssDisplayDriver 65

Macro mapping - TI814X

Display Controller Macro Mapping - TI814X

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DCTRL_Topology_TI814x.JPG

UserGuideHdvpssDisplayDriver 66

Macro mapping - TI8107

Display Controller Macro Mapping - TI8107

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DCTRL-Topology-TI8107.jpg

UserGuideHdvpssDisplayDriver 67

Macro mapping - TI816X

Display Controller Macro Mapping - TI816X

Software Application Interfaces
Display controller driver is not the streaming driver. Its used to control the specific part of the display controller as
shown in above figure. The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: NA
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.
Note
Details of the structure, enumerations and #defines mentioned in the section can be found in HDVPSS API Guide

JOHN
文本框
软件应用程序接口

JOHN
文本框
显示控制器驱动程序不是流驱动程序。它用于控制显示控制器的特定部分，如上图所示。驱动程序操作可以划分为以下几个阶段：
System init阶段：在这里，驱动程序子系统被初始化。
创建阶段：在这里创建或实例化驱动程序句柄
运行阶段：Na
删除阶段：在这里，驱动程序、句柄或实例被解除分配。
系统去初始化阶段：在这里，驱动子系统是去初始化的。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DCTRL_Topology.JPG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssDisplayDriver 68

System Init Phase
The display driver sub-system initialization happens as part of overall HDVPSS system init. This API must be the
the first API call before making any other FVID2 calls. Below section lists all the APIs which are part of the System
Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

Create Phase
In this phase user application opens or creates a driver instance. Any number of instances can be created for the
display controller. Each instance works on the same central hardware block show above. Concurrency issues
between the different handles is taken care by the display controller driver. User can pass number of parameters to
the drivers during create phase like configuration of the path, settings of the venc etc, either through the create
parameters or through the control commands.

FVID2 Create

This API is used to open the display controller driver. This is a blocking call and it returns the handle which is to be
used in subsequent call to this driver.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - FVID2_VPS_DCTRL_DRV Display Controller Driver ID. Use this ID to open display controller driver.
Details can be found in UserGuide
instanceId - VPS_DCTRL_INST_0 Instance 0 of the display controller.
createArgs - Pointer to Vps_DcCreateConfig structure containing valid create params. This parameter can be
NULL.
createStatusArgs - Pointer to UInt32 return value where the driver returns the actual return code for create
function. This parameter should not be NULL.
cbParams - Since there is no callback from the display controller, this parameters should be set to NULL.

FVID2 Control - Set Config

This is used to issue a control command to the driver. IOCTL_VPS_DCTRL_SET_CONFIG ioctl is used to set the
entire display configuration in one shot. This ioctl takes pointer to the structure Vps_DcConfig. This structure
takes either name of the use case or takes list of edges connecting nodes and configures display paths. It first
validates these paths and then configures VPS for the display paths. It configures all display controller modules.
Important
This API should not be called after the display operation is started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

JOHN
文本框
显示驱动子系统初始化发生作为整体hdvpss系统初始化部分。这个API必须第一个API调用之前调用任何其他fvid2。下面列出了系统初始化阶段的所有API。

JOHN
文本框
系统初始化

JOHN
文本框
阶段

JOHN
文本框
在这个阶段中，用户应用程序打开或创建一个驱动实例。显示控制器可以创建很多实例。每个实例都可以在同一中央硬件块上工作。不同句柄之间的并发问题由显示控制器驱动处理。用户可以在创建路径的类似阶段的配置、venc的设置等过程中将参数数传递给驱动程序。通过创建参数或通过控件命令。

JOHN
文本框
创建驱动实例，即创建一个应用的实例

JOHN
文本框
此API用于打开显示控制器驱动。这是一个阻塞调用，它返回句柄，该句柄将在随后调用这个驱动程序时使用。

JOHN
文本框
使用此ID打开显示控制器驱动程序

JOHN
文本框
display controller的实例ID为0

JOHN
文本框
display controller无回调函数

JOHN
文本框
设置显示控制器的参数

JOHN
文本框
用来向驱动发控制命令。ioctl_vps_dctrl_set_config ioctl用于一次设置整个显示配置。此ioctl包含指向结构vps_dcconfig的指针。该结构采用用例名称或边缘连接节点列表，并配置显示路径。它首先验证这些路径，然后配置VPs用于显示路径。它将所有显示控制器模块都配置好。

JOHN
文本框
在启动显示操作后，不应调用此API。

JOHN
文本框
配置显示控制器时，cmd应该为IOCTL_VPS_DCTRL_SET_CONFIG

UserGuideHdvpssDisplayDriver 69

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_DCTRL_SET_CONFIG ioctl.
cmdArgs - Pointer to Vps_DcConfig structure containing Display Controller configuration. This parameter
should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Clear Config

This is used to issue a control command to the driver. IOCTL_VPS_DCTRL_CLEAR_CONFIG ioctl is used to
clear the entire display configuration in one shot. This ioctl takes pointer to the structure Vps_DcConfig. This
structure takes either name of the use case or takes list of edges connecting nodes and disables path between these
nodes. It does not validate the edge list. It simply disables edge connecting nodes. For the vencs, it checks for the
validity and then disables the VENC of there are no errors.
Important
This API should not be called after the display operation is started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_DCTRL_CLEAR_CONFIG ioctl.
cmdArgs - Pointer to Vps_DcConfig structure containing Display Controller configuration. This parameter
should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

Delete Phase
In this phase FVID2 delete API is called to close the driver instance. Remember to clear the configuration before
closing the driver instance.

FVID2 Delete

This API is used to close the display controller driver. This is a blocking call and returns after closing the handle.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
deleteArgs - Not used currently. This parameter should be set to NULL.

JOHN
文本框
 IOCTL_VPS_DCTRL_CLEAR_CONFIG用来一次性清除整个显示配置

JOHN
文本框
删除阶段：关闭driver实例

UserGuideHdvpssDisplayDriver 70

System De-Init Phase

FVID2 de-Init

Display controller is de-initialized as a part of this phase. Here all resources acquired during system initialization are
freed. Make sure all driver instances deleted before calling this API. Display sub-system de-init happens as part of
overall FVID2 system de-init. Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

Sample Application
Refer specific Display driver sample examples which uses display controller functions to configure the paths and
VENC settings.

Display Driver

Introduction
This chapter describes the hardware overview, application software interfaces, typical application flow and sample
application usage for display driver involving bypass paths and secondary path.
The features and limitations of current driver implementation are listed in subsequent sections.
Important

Features Supported

Features Supported Supported in
TI816x

Supported in
TI814x

Supported in
TI8107

YUV422 interleaved format YES YES YES

YUV420 and YUV422 semi planar format (only on SD path) YES NOT TESTED YES

Interlaced and progressive displays YES YES YES

Mosaic display support (only on Bypass paths) YES YES YES

Dynamic mosaic layout change once the display is started (only on Bypass paths) YES YES YES

Resolution upto 1080P@60FPS display on HD VENC D_DVO1/DVO2 through
Bypass paths

YES YES YES

NTSC interlaced display on SD VENC through SD path YES NOT TESTED YES

Non-blocking queue/dequeue operation YES YES YES

Buffer from tiler (only on SD path) YES NOT TESTED NOT TESTED

Periodic callback feature YES YES YES

Runtime change of VCOMP cropping and positioning YES NOT TESTED NOT TESTED

Field merged interlaced buffer mode YES YES NOT TESTED

Field separated interlaced buffer mode YES YES YES

JOHN
文本框
显示控制器作为本阶段的一部分进行去初始化。这里，系统初始化过程中获得的所有资源都是免费的。请确保在调用这个api之前删除了所有驱动程序实例。显示子系统de-init作为fvid 2系统解inint的一部分发生。这通常是在系统关闭期间完成的。

JOHN
文本框
本章描述了显示驱动程序的硬件概述、应用软件接口、典型的应用程序流程和示例应用程序使用情况，包括旁路和辅助路径。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=UserGuideHdvpssDisplayDriver%23Sample_Application_2

UserGuideHdvpssDisplayDriver 71

Features Not Supported
• Runtime configuration of CIG and Blenders is not supported

Features Supported
Following are the layouts tested through BP0 and BP1 paths for 1080p and 720p resolutions
• Full screen mode
• Non-Full screen mode
• 2x2 layout
• 4x4 layout
• 3x3 layout
• 8 Channel layout
• 6 Channel layout
• 2x1 layout

Hardware Overview
Below figures shows the complete HDVPSS Hardware. Two red bold lines in the figure shows the path on which the
bypass path display driver operates.

HDVPSS Block Diagram - Bypass Path 0/1 Display

The red bold line on the right hand side of the image shows the secondary path display driver.

JOHN
文本框
不支持运行时配置cig和混合器。

JOHN
文本框
图中的两行红色粗体线显示旁路显示驱动程序操作的路径。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PpDisplayPathMinimal.jpg

UserGuideHdvpssDisplayDriver 72

HDVPSS Block Diagram - Secondary 1 Display

As shown in the figure, display driver controls the three red line path in the hardware. It configures only up to the
muxes. The rest of the hardware below the mux/switch like CIG, COMP, VENC etc are controlled by display
controller driver. The display driver will communicate with the display controller internally to know about the
resolution and frame rate that it has to operate. This is abstracted from the application.

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here the driver is used to capture, process and release frames continuously
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.
Note
Details of the structure, enumerations and #defines mentioned in the section can be found in HDVPSS API Guide

JOHN
文本框
该红线为 secondary path display driver

JOHN
文本框
如图所示，显示驱动程序控制硬件中的三条红线路径。它只配置到muxs(多路选择器)。在mux/开关下面的其余硬件，如cig、comp、venc等，由display
controller driver控制。显示驱动程序将与显示控制器内部通信，以了解它必须操作的分辨率和帧速率。这是从应用程序中抽象出来的。

JOHN
铅笔

JOHN
文本框
dispaly driver

JOHN
文本框
 display
controller driver.

JOHN
文本框
驱动程序操作可以划分为以下几个阶段：

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:SecDisplayPathMinimal.JPG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssDisplayDriver 73

System Init Phase
The display driver sub-system initialization happens as part of overall HDVPSS system init. This API must be the
the first API call before making any other FVID2 calls. Below section lists all the APIs which are part of the System
Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

Create Phase
In this phase user application opens or creates a driver instance. Up to VPS_DISPLAY_INST_MAX (defined in
vps_display.h) driver instances can be opened by a user. Each driver instance is associated with one of the bypass
paths or the secondary path as listed in detail in HDVPSS API Guide.
User can pass number of parameters to the drivers during create phase like setting the format, setting the multi
window configuration etc. These all configuration can be either done through standard FVID2 APIs or driver
exported control commands or through driver create parameters itself.

FVID2 Create

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver. This cannot be called from ISR context.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - FVID2_VPS_DISP_DRV to open the display driver.
instanceId - VPS_DISP_INST_BP0 macro to open bypass path 0 display driver or pass
VPS_DISP_INST_BP1 macro to open bypass path 1 display driver or VPS_DISP_INST_SEC1 macro to open
secondary path display driver.
createArgs - Pointer to Vps_DispCreateParams structure containing valid create params. This parameter
should not be NULL.
createStatusArgs - Pointer to Vps_DispCreateStatus structure containing the return value of create function
and other driver information. This parameter could be NULL if application don't want the create status information.
cbParams - Pointer to FVID2_CbParams structure containing FVID2 callback parameters. This parameter
should not be NULL. But the callback function pointers inside this structure is optional.

JOHN
文本框
显示驱动程序子系统初始化是整个hdvpss系统的一部分。在进行任何其他fvid 2调用之前，这个API必须是第一个API调用。下面的部分列出了系统init阶段的所有API。

JOHN
文本框
在这个阶段中，用户应用程序打开或创建一个驱动实例。用户最多可以打开VPS_DISPLAY_INST_MAX 个驱动实例。每个驱动程序实例与上面的一个bypass或secondary路径关联

参数设置：用户可以在创建阶段向驱动程序传递参数数，例如设置格式、设置多窗口配置。这些所有的配置都可以通过标准的fvid 2 api或驱动程序导出的控制命令或驱动程序本身创建参数来完成。

JOHN
文本框
这个API用来打开驱动器。这是一个阻塞调用，它返回句柄，在以后调用这个驱动器时使用。这不能从ISR上下文中调用。

JOHN
文本框
VPS_DISP_INST_BP0 旁路0 VPS_DISP_INST_BP1 旁路1
VPS_DISP_INST_SEC1 第二通路

JOHN
文本框
FVID2_VPS_DISP_DRV代表display driver

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssDisplayDriver 74

FVID2 Set Format

This API is used by the application to set the required buffer format for the display path. This is a blocking call and
returns after setting the required format. This cannot be called from ISR context.
Note
This API should be called after the create function call to set the application buffer information. If the application
fails to call this IOCTL, then the driver will assume buffer format according to the current VENC settings where this
path is connected.
Note
When the application changes the VENC or any display controller settings after stopping the display driver, this
IOCTL should be called before starting the display again. This ensures that the new display controller settings will
be used by the driver. Otherwise the driver will work with the old information which could lead to issues.
Important
This API should not be called after the display operation has started.

Int32 FVID2_setFormat(FVID2_Handle handle, FVID2_Format *fmt);

handle - Driver handle returned by create function call. This parameter should not be NULL.
fmt - Pointer to FVID2_Format structure containing the format information. This parameter should not be NULL.
channelNum - Should be set to 0.
width - Frame width in pixels. This should be set less than or equal to the VENC settings.
height - Number of lines in the display frame. This should be set less than or equal to the VENC settings.
pitch[FVID2_YUV_INT_ADDR_IDX] - Should be atleast twice the input width in bytes in case of YUV422
interleaved format. pitch[FVID2_YUV_SP_Y_ADDR_IDX]/pitch[FVID2_YUV_SP_CBCR_ADDR_IDX]
- should be atleast equal to the input width in bytes for YUV422/YUV420 semi-planar formats.
scanFormat - FVID2_SF_INTERLACED or FVID2_SF_PROGRESSIVE.
fieldMerged[FVID2_YUV_INT_ADDR_IDX] or fieldMerged[FVID2_YUV_SP_Y_ADDR_IDX] or
fieldMerged[FVID2_YUV_SP_CBCR_ADDR_IDX] - For interlaced display TRUE if fields are merged,
FALSE if fields are separated. For progressive display this should be set to FALSE.
dataFormat - FVID2_DF_YUV422I_YUYV for bypass path and secondary path, FVID2_DF_YUV420SP_UV
or FVID2_DF_YUV422SP_UV for secondary path.
bpp - FVID2_BPP_BITS16 for YUV422 format or FVID2_BPP_BITS12 for YUV420 format.

FVID2 Get Format

This API is used by the application to get the current buffer format for the display path. This is a blocking call and
returns after getting the required format. This cannot be called from ISR context.

Int32 FVID2_getFormat(FVID2_Handle handle, FVID2_Format *fmt);

handle - Driver handle returned by create function call. This parameter should not be NULL.
fmt - Pointer to FVID2_Format structure where the format information needs to be copied by the driver. This
parameter should not be NULL.

JOHN
文本框
应用程序使用此API设置显示路径所需的缓冲区格式。这是一个阻塞调用，在设置所需的格式后返回。这不能从ISR上下文中调用。

JOHN
文本框
应该在创建函数调用之后调用这个API来设置应用程序缓冲区信息。如果应用程序无法调用这个ioctl，那么驱动程序将根据连接此路径的当前venc设置假定缓冲区格式。

JOHN
文本框
当应用程序在停止显示驱动程序后更改venc或任何显示控制器设置时，应在再次启动显示之前调用此ioctl。这将确保驱动器将使用新的显示控制器设置。否则驱动程序将处理可能导致问题的旧信息。

UserGuideHdvpssDisplayDriver 75

FVID2_control

This API is used to expose the different control commands to the application depending upon the specific driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

FVID2 Control - Create Layout

IOCTL_VPS_CREATE_LAYOUT ioctl is used to create a layout depending on the multiple window parameter. This
is a blocking call. This IOCTL creates the necessary infrastructure for the specified layout. The user has to call select
multiple window layout IOCTL to explicitly select a particular layout before starting display. This cannot be called
from ISR context. This API is not supported for the secondary path display driver instance.
Note
This API could be called after the display operation has started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_CREATE_LAYOUT ioctl.
cmdArgs - Pointer to Vps_MultiWinParams structure containing valid multiple window parameters. This
parameter should not be NULL. For the bypass path display driver, different data format and BPP for each individual
windows is not supported. They should be set to FVID2_DF_YUV422I_YUYV and FVID2_BPP_BITS16
respectively. When windows overlap, priority should be set depending on which window should be displayed.
cmdStatusArgs - Pointer to Vps_LayoutId structure containing the unique layout ID to be used by the
application for future reference. This parameter should not be NULL.

FVID2 Control - Delete Layout

IOCTL_VPS_DELETE_LAYOUT ioctl is used to delete an already created layout. This is a blocking call. This
cannot be called from ISR context. When the layout to delete is used by the current display or is not created, this
returns error. This API is not supported for the secondary path display driver instance.
Note
All the created layouts will be automatically deleted (if not deleted by this IOCTL) when the application closes the
driver.
Note
This API could be called after the display operation has started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_DELETE_LAYOUT ioctl.

JOHN
文本框
ioctl_vps_CREATELayout ioctl用于根据多个窗口参数创建布局。。此ioctl为指定的布局创建必要的基础结构。用户必须调用SELECT多窗口布局ioctl来显式地选择一个特定的布局，然后开始显示。这个API不支持辅助路径显示驱动程序实例。

JOHN
文本框
窗口参数

JOHN
文本框
删除已创建的布局

JOHN
文本框
当应用程序关闭驱动程序时，将自动删除所有创建的布局(如果应用程序没有删除该ioctl)。

UserGuideHdvpssDisplayDriver 76

cmdArgs - Pointer to Vps_LayoutId structure containing delete parameter containing the layout ID to delete.
This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Select Layout

IOCTL_VPS_SELECT_LAYOUT ioctl is used to select an already created layout for display. This is a blocking call.
This cannot be called from ISR context. This API is not supported for the secondary path display driver instance.
Note
This IOCTL should be called before starting the display to select the default layout to start with. This IOCTL could
not be called once the display starts. For changing the layout after operation is started, application could do so by
passing the layout ID (which is returned through create layout IOCTL) as a part of display runtime parameter
Vps_DispRtParams which needs to be passed along with frame list perListCfg.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SELECT_LAYOUT ioctl.
cmdArgs - Pointer to Vps_LayoutId structure containing select parameter containing the layout ID to select.
This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Delete All Layout

IOCTL_VPS_DELETE_ALL_LAYOUT ioctl is used to delete all the created layouts. Typically this is used after
stopping the display and before closing the driver. This is a blocking call. This cannot be called from ISR context.
This IOCTL could not be called when display is in progress with one of the created layout. This API is not supported
for the secondary path display driver instance.
Note
All the created layouts will be automatically deleted (if not deleted by this IOCTL) when the application closes the
driver.
Note
This API could be called after the display operation has started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_DELETE_ALL_LAYOUT ioctl.
cmdArgs - Not used currently. This parameter should be set to NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

JOHN
文本框
用于选择已创建的布局以供显示。

JOHN
文本框
这个IOCTL应该在开始显示之前被调用，以选择要开始的默认布局。显示启动后无法调用此IOCTL。为了在操作启动后更改布局，应用程序可以通过传递布局ID(通过CREATELayout IOCTL返回)作为显示运行时参数VPs_DispRtParams的一部分，该参数需要与FrameList perListCfg一起传递。

JOHN
文本框
删除所有创建的布局。

UserGuideHdvpssDisplayDriver 77

Run Phase
This phase is used to start or stop the already started display driver. This is also used to exchange the displayed
buffers and the fresh buffers between the driver and applications.

FVID2 Start

This API is used by the application to start the display operation. This is a blocking call and returns after starting the
display operation. Before starting the display operation, the application has to prime at least 1 buffer with the driver
using queue API. Typically 3 buffers are used: 1 used by application and 2 buffers are queued with the driver at any
given time. This cannot be called from ISR context.

Int32 FVID2_start(FVID2_Handle handle, Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

FVID2 Stop

This API is used by the application to stop the display operation. This is a blocking call and returns after stopping the
display operation. This cannot be called from ISR context.

Int32 FVID2_stop(FVID2_Handle handle, Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

FVID2 Queue

This API is used to submit a video buffer to the driver for display operation. This is a non-blocking call and could be
called from task or ISR context. Once the buffer is queued the application loses ownership of the buffer and is not
suppose to modify or use the buffer.

Int32 FVID2_queue(FVID2_Handle handle,

 FVID2_FrameList *frameList,

 UInt32 streamId);

handle - Driver handle returned by create function call. This parameter should not be NULL.
frameList - Pointer to FVID2_FrameList structure containing the pointer to the FVID2 frames. This parameter
should not be NULL. In normal display operation, the number of frames passed using this call is one. When multiple
window configuration is set, this frame list contains the frames of all the multiple window buffers representing a
single composited video frame. For queuing multiple window buffers, the frames should be given in the same order
in which the window parameters are specified while creating a layout using IOCTL_VPS_CREATE_LAYOUT ioctl.
streamId - Not used currently. This parameter should be set to 0.

FVID2 Dequeue

This API is used by the application to get ownership of a displayed video buffer from the display driver. This is a
non-blocking call and could be called from task or ISR context.

Int32 FVID2_dequeue(FVID2_Handle handle,

 FVID2_FrameList *frameList,

 UInt32 streamId,

 UInt32 timeout);

JOHN
文本框
此阶段用于启动或停止已经启动的显示驱动器。这也用于在驱动程序和应用程序之间交换显示缓冲区和新缓冲区。

JOHN
文本框
这个API被应用程序用来启动显示操作。这是一个阻塞调用，并在启动显示操作后返回。在启动显示操作之前，应用程序必须与使用队列api驱动程序有至少一个缓冲区。通常使用3个缓冲区：一个由应用程序使用，两个缓冲区在任何给定的时间与驱动程序一起排队。这不能从ISR上下文中调用。

JOHN
文本框
此api用于向驱动程序提交视频缓冲区以供显示操作。一旦缓冲区排队，应用程序将失去缓冲区的所有权，并且不应该修改或使用缓冲区。

JOHN
文本框
指向fvid 2_framelist结构的指针，其中包含指向fvid 2帧的指针。此参数不应为空。在正常显示操作中，每次传递一个缓存。当设置了多个窗口配置时，此框frame list包含表示单个复合视频帧的所有多窗口缓冲区的帧。对于排队多个窗口缓冲区，应以相同的顺序给出这些帧。在使用

JOHN
文本框
应用程序使用该API从显示驱动器获得显示displayed video buffer的所有权。这是一个非阻塞调用，可以从任务或ISR上下文中调用

UserGuideHdvpssDisplayDriver 78

handle - Driver handle returned by create function call. This parameter should not be NULL.
frameList - Pointer to FVID2_FrameList structure where the driver will copy the displayed FVID2 frames.
This parameter should not be NULL. In normal display operation, the number of frames returned using this call is
one. When multiple window configuration is set, this frame list returns the frames of all the multiple window buffers
of the current layout.
streamId - Not used currently. This parameter should be set to 0.
timeout - Not used currently as only non-blocking queue/dequeue operation is supported. This parameter should be
set to FVID2_TIMEOUT_NONE.

Delete Phase
In this phase FVID2 delete API is called to close the driver instance. All the resources are freed. Make sure display is
stopped using FVID2_stop() before deleting a display instance. Once the driver is instance is closed it can be opened
again with new configuration.

FVID2 Delete

This API is used to close the display driver. This is a blocking call and returns after closing the handle. This cannot
be called from ISR context.
Note
Closing the driver will implicitly stop the display if stop IOCTl is not called by the application. This will also delete
all the created layouts.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
deleteArgs - Not used currently. This parameter should be set to NULL.

System De-Init Phase

FVID2 de-Init

In this phase display driver is de-initialized. Here all resources acquired during system initialization are free'ed.
Make sure all driver instances deleted before calling this API. Display sub-system de-init happens as part of overall
FVID2 system de-init. Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

Sample Application

Mosaic Display
This example illustrates the dynamic mosaic feature of Bypass Path 0 by displaying different layouts on On-Chip
HDMI/HDDAC/Off-Chip HDMI/LCD (Present in VS/VC/VCAM daughter cards) outputs.
Since the input buffer size used for the mosaic windows is same, this application makes use of the buffer pitch to
display a smaller window by cropping the input buffer according to the layout. This application creates all possible
combinations of 4x4 layouts like, 1x1, 1x2, 1x3, 1x4, 2x1 so on and up to 4x4 layouts. Then while the display is in
progress, changes the layout every LAYOUT_SWITCH_RATE frames.
For On-Chip HDMI display, the On-Chip HDMI encoder should be configured from the A8 core after running this

JOHN
文本框
FrameList:指向fvid 2_framelist结构的指针，其中驱动程序将复制已经显示的fvid 2帧。此参数不应为空。在正常显示操作中，使用此调用返回的帧数为一个。当设置多个窗口配置时，此框架列表返回当前布局中所有多窗口缓冲区的帧。

JOHN
文本框
在这个阶段，会调用fvid 2 DELETE API来关闭驱动程序实例。所有资源都被释放了。请确保在删除显示实例之前使用fvid 2_STOP()停止显示。一旦驱动程序被关闭，就可以使用新的配置再次打开。

JOHN
文本框
此API用于关闭显示驱动器。
如果应用程序没有调用停止ioctl，关闭驱动程序将隐式停止显示。这也将删除所有创建的布局。

JOHN
文本框
在系统初始化期间获得的所有资源都被释放。

JOHN
文本框
此示例通过输出On-Chip HDMI/HDDAC/Off-Chip HDMI/LCD (Present in VS/VC/VCAM daughter cards) outputs显示不同的布局来说明bypass Path0的动态mosaic feature。

由于用于mosaic窗口的输入缓冲区大小相同，此应用程序利用缓冲区间距根据布局通过裁剪输入缓冲区来显示一个较小的窗口。该应用程序创建了所有可能的4x4布局组合，如，1x1，1x2，1x3，1x4，2x1等等，最多4x4层。然后，当显示正在进行时，every LAYOUT_SWITCH_RATE frames更改每个布局

JOHN
文本框
For On-Chip HDMI display，在运行该例子后，A8 core应该使用$(rel_folder)\docs\ti814x\TI814x_A8_HDMI_Sample.out 中提供的exe配置 the On-Chip HDMI encoder

UserGuideHdvpssDisplayDriver 79

example using the executable provided along with this package at
$(rel_folder)\docs\ti816x\TI816x_A8_HDMI_Sample.out for TI816x or
$(rel_folder)\docs\ti814x\TI814x_A8_HDMI_Sample.out for TI814x/TI8107.
• Please refer Common Steps for connecting CCS to TI81xx, running gel file etc.
• Load hdvpss_examples_mosaicDisplay.xem3 executable file found at

$(rel_folder)\build\example-name\bin\$platform\example-name-whole-program-debug.xem3 to DSS M3 debug
session

• Run the application and it will halt for the user to provide the desired VENC and then the desired VENC
resolution.

• Then it will halt for the user to load the input frames.
• Using loadRaw command in script console of CCS, load 5 frames of 1920 x 1080 YUYV interleaved data to the

printed location. (Ignore "syntax error" if it appears during loading)

loadRaw(<Address Location>, 0, " < File Path > ", 32,

false);

• Enter 1 on the console when application stops at after loading of the frames is completed.
Input a numeric key and press enter after loading...

• This will display the various layouts one after the other on the video probe. By default, the layout will switch
every 6 seconds for 1080p60/720p60 or for every 12 seconds for 1080p30/1080i60. It could be changed by
changing the macro LAYOUT_SWITCH_RATE to any value from 1.

• Application will stop after displaying TOTAL_LOOP_COUNT frames
• Configuration Options: To display in bypass path 1, change the macro DRIVER_INSTANCE to
VPS_DISP_INST_BP1

• Configuration Options: To change the number of frames to display, change the macro TOTAL_LOOP_COUNT to
any desired value greater than 2.

• Configuration Options: Change the LAYOUT_SWITCH_RATE macro to change how often the layout should
change. To disable dynamic layout change, set this to more than the application loop count.

• Configuration Options: Change BUFFER_WIDTH and BUFFER_HEIGHT macro according to the input buffer
dimension. The application will automatically change the layout window sizes according to the buffer size and
pitch.

• This application also displays WSVGA @70fps on VCAM LCD

NTSC Display on SD VENC
This example illustrates secondary path SD display by displaying a 720 x 480 image on SD VENC configured for
NTSC.
• Please refer Common Steps for connecting ccs to TI816x, running gel file etc.
• Load hdvpss_examples_sdDisplay.xem3 executable file found at

$(rel_folder)\build\example-name\bin\$platform\example-name-whole-program-debug.xem3 to DSS M3 debug
session

• Run the application and it will halt for the user to load the input frames.
• Using loadRaw command in script console of CCS, load 10 frames of 720 x 480 YUV420 Semiplanar (Y in one

plane, UV interleaved in other plane)
data to location as printed on the console. (Ignore "syntax error" if it appears during loading)

loadRaw(<Location>, 0, " < File Path > ", 32, false);

• Enter 1 on the console when application stops at after loading of the frames is completed.

JOHN
文本框
运行应用程序，它将停止来等地用户提供想要的venc和venc分辨率。

JOHN
文本框
然后，它将停止来等待用户加载输入帧。

JOHN
文本框
使用CCS脚本控制台中的loadraw命令，加载YUYV视频数据

JOHN
文本框
当帧停止加载后应用程序停止时，在控制台上输入1。

JOHN
文本框
这将在视频探针上逐一显示各种布局。6/12s更新一次

JOHN
文本框
应用程序显示总循环计数帧后将停止

JOHN
文本框
配置选项：若要在绕行路径1中显示，请将宏驱动程序_实例更改为vps_disp_inst_bp 1

JOHN
文本框
NTSC在SD VOC上的显示

JOHN
文本框
此示例通过在配置为ntsc的sd venc上显示720 x 480图像来说明辅助路径sd显示。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssDisplayDriver 80

Input a numeric key and press enter after loading...

• This will display video on the SD VENC.
• Application will stop after displaying 3000 frames
• Configuration Options: To change the number of frames to display, change the macro TOTAL_LOOP_COUNT to

any desired value greater than 2

Tripple Display
• Please refer Common Steps for connecting ccs to TI816x, running gel file etc.
• Load hdvpss_examples_triDisplay.xem3 executable file found at

$$(rel_folder)\build\example-name\bin\$platform\example-name-whole-program-debug.xem3 to DSS M3 debug
session

• Run the application and it will halt for the user to select the desired Display Combo.
• It will also half for the user to load input images
• Using loadRaw command in script console of CCS, load 10 frames of 720 x 480 YUV422 Interleaved.
data to location as printed on the console. (Ignore "syntax error" if it appears during loading)

loadRaw(<Location>, 0, " < File Path > ", 32, false);

• Enter 1 on the console when application stops at after loading of the frames is completed.
Input a numeric key and press enter after loading...

• Application uses same input images to display on all active displays.
• This will display video either on on-chip HDMI, on DVO2 or on SD VENC or combination of these three

display.
• Application will stop after displaying 1000 frames on all active displays.
• Configuration Options: To change the number of frames to display, change the macro TOTAL_LOOP_COUNT to

any desired value greater than 2

Sample Application with on-chip HDMI
Following is the procedure for setting the output to the on-chip HDMI and running the on-chip HDMI sample
example on A8.
'TI816X'
• Download the "$HDVPSS_install_dir\pspdrivers_\docs\ti816x\TI816x_A8_HDMI_Sample.out to A8 after

running the gel option specified in respective applications.
• Run HDMI sample with desired resolution.
• Run the respective sample application on M3.
'TI814X/TI8107'
• Run the A8 gel file as required by the respective sample application.
• Run the M3 gel file for enabling the cache as specified in respective application.
• Load "$HDVPSS_install_dir\pspdrivers_\docs\ti814x\TI814x_A8_HDMI_Sample.out to A8 at any point when

M3 code halts for console input (scanf).
• Run TI814x_A8_HDMI_Sample.out with desired resolution.
• Run the gel file on A8 with "HDMI_PLL_Config_1_485_GHz" or "HDMI_PLL_Config_742_5_MHz" option

based on resolution selected. This is to be done from gel file because the A8 .out for the HDMI configuration runs
in "User Mode" and PRCM configuration is not allowed from "User Mode" of the processor.

• If using Ccsv5 halt M3 processor while giving input on A8 and vice versa.
• Now continue the M3 application and select on-chip HDMI as the option.

JOHN
文本框
下面是将输出设置为片上hdmi并在a8上运行片上hdmi示例示例的过程。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssDisplayDriver 81

These steps remain same for all the applications which requries the on-chip HDMI as one of the display. HDMI.out
provided with this release will be removed from next release onwards. It will be demonstrated on how to use HDMI
kernel module to run tri-display application.

Graphics Path 0/1/2 Display Driver

Introduction
This chapter describes the hardware overview, application software interfaces, typical application flow and sample
application usage for Graphics path 0/1/2 display driver. The features and limitations of current driver
implementation are listed in subsequent sections.
Important
The features supported or NOT supported in any release of the driver may vary from one HDVPSS driver release to
another. See respective release notes for exact release specific details.

Features Supported
• Supports display of the following graphics data format via Graphics paht 0/1/2
• RGB16-565
• ARGB16-1555
• ARGB16-4444
• RGB16A-5551
• RGBA16-4444
• ARGB24-6666
• RGB24-888
• ARGB32-8888
• RGBA24-6666
• RGBA32-8888
• various bitmap 8/4/2/1 bit
• Supports both interlaced and progressive graphics data
• Supports FVID2 streaming model - queue and de-queue of the buffers
• Supports FVID2 non-streaming model - frame buffer mode
• multiple region display support - Supports up to 12 region display on a single frame
• Supports 1080P@60FPS progressive display on HD VENC D_DVO1/DVO2 and NTSC interlaced display on SD

VENC
• Supports non-blocking queue/dequeue operation
• Supports runtime region feature changes: position, dimension, alpha blending, boundbox blending, stenciling,

tranparency masking and scaling.
• Supports runtime scaling ratio changes among frames.

JOHN
文本框
本章描述了图形路径0/1/2显示驱动器的硬件概述、应用软件接口、典型的应用程序流程和示例应用程序使用情况。

JOHN
矩形

UserGuideHdvpssDisplayDriver 82

Features Not Supported
• Multiple region use case is not supported when operated under frame buffer mode
• FVID2 error callback feature is not supported
• Changing scaling ratio between regions in any givien display frame is not supported
• Stenciling is not supported on TI814x.

Hardware Overview
Below figures shows the complete HDVPSS Hardware.

HDVPSS Block Diagram - Graphics Path 0/1/2 Display

The red bold lines in the figure shows the path on which the graphics path display driver operates. As shown in the
figure, graphics path display driver controls the three red line path in the hardware. It configures only itself. The rest
of the hardware below like COMP, VENC etc are controlled by display controller driver. The display driver will
communicate with the display controller internally to know about the resolution and frame rate that it has to operate.
This is abstracted from the application. Please refer to the HDVPSS Graphics hardware specification for details
information.

JOHN
文本框
图中的红色粗体线显示图形路径显示驱动程序操作的路径。如图所示，图形路径显示驱动程序控制硬件中的三条红线路径。它只对其进行配置。下面的其他硬件(如comp、venc等)由显示控制器驱动程序控制。显示驱动程序将与显示控制器内部通信以了解它要操作的分辨率和帧速率。请参阅hdvpss图形硬件规范获得详细信息。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:GrpxPathMinimal.jpg

UserGuideHdvpssDisplayDriver 83

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here the driver is used to capture, process and release frames continuously
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.
Note
Details of the structure, enumerations and #defines mentioned in the section can be found in HDVPSS API Guide

System Init Phase
The display driver sub-system initialization happens as part of overall HDVPSS system init. This API must be the
the first API call before making any other FVID2 calls. Below section lists all the APIs which are part of the System
Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

Create Phase
In this phase user application opens or creates a driver instance. Up to VPS_DISP_GRPX_MAX_INST (defined in
vps_graphics.h) driver instances can be opened by a user. Each driver instance is associated with one of the graphics
path.
User can pass number of parameters to the drivers during create phase like setting the format, setting the multi region
configuration etc. These all configuration can be either done through standard FVID2 APIs or driver exported
control commands or through driver create parameters itself.

FVID2 Create

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - FVID2_VPS_DISP_GRPX_DRV to open the display driver.
instanceId - VPS_DISP_INST_GRPX0 macro to open graphics path 0 display driver or pass
VPS_DISP_INST_GRPX1 macro to open graphics path 1 display driver or pass VPS_DISP_INST_GRPX2
macro to open graphics path 2 display driver.
createArgs - Pointer to Vps_GrpxCreateParams structure containing valid create params. This parameter
should not be NULL.

JOHN
文本框
驱动程序操作可以划分为以下几个阶段：

JOHN
文本框
显示驱动程序子系统初始化是整个hdvpss系统的一部分。在进行任何其他fvid 2调用之前，这个API必须是第一个API调用。下面的部分列出了系统init阶段的所有API。

JOHN
文本框
在这个阶段中，用户应用程序打开或创建一个驱动程序实例。每个实例与graphics path中的一个相关联。

用户可以在创建阶段向驱动程序传递多个参数，如设置格式、设置多区域配置等。所有配置都可以通过标准的fvid 2 API或驱动程序导出的控制命令完成，或者通过驱动程序自己创建参数。

JOHN
文本框
FVID2_VPS_DISP_GRPX_DRV

JOHN
文本框
VPS_DISP_INST_GRPX0/1/2

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssDisplayDriver 84

createStatusArgs - Pointer to Vps_GrpxCreateStatus structure containing the return value of create function
and other driver information. This parameter could be NULL if application does not want the status information.
cbParams - Pointer to FVID2_CbParams structure containing FVID2 callback parameters. This parameter
should not be NULL. But the callback function pointers inside this structure is optional.

FVID2 Set Format

This API is used by the application to set the required buffer format for the display path. This is a blocking call and
returns after setting the required format.
Note
This API should be called immediately after the create function call to set buffer information. if application failed to
call this IOCTL, driver will return error when other IOCTls are called..
Note
When the application changes the VENC settings after stopping the display driver, this IOCTL should be called
before starting the display again. This ensures that the new display controller settings will be used by the driver.
Otherwise the driver will work with the old information which could lead to issues.
Important
This API should not be called after the display operation is started.

Int32 FVID2_setFormat(FVID2_Handle handle, FVID2_Format *fmt);

handle - Driver handle returned by create function call. This parameter should not be NULL.
fmt - Pointer to FVID2_Format structure containing the format information. This parameter should not be NULL.
Below are the supported formats for graphics path display driver.
channelNum - Should be set to 0.
width - Region width in pixels.
height - Number of lines in the display region.
pitch[FVID2_YUV_INT_ADDR_IDX] - in bytes, this is up to the graphics data format.
scanFormat - FVID2_SF_INTERLACED or
FVID2_SF_PROGRESSIVE, this is graphics data format instead of display format, most of time, this shall be set to
FVID2_SF_PROGRESSIVE.
fieldMerged[FVID2_YUV_INT_ADDR_IDX] - For interlaced graphics input data, TRUE if fields are merged,
FALSE if fields are separated. For progressive graphics input this should be set to FALSE.
dataFormat - FVID2_DF_RGB24_888 , FVID2_DF_ARGB16_1555 FVID2_DF_RGBA16_5551 ,
FVID2_DF_ARGB16_4444 FVID2_DF_RGBA16_4444 , FVID2_DF_ARGB24_6666

FVID2_DF_RGBA24_6666 , FVID2_DF_RGBA32_8888 FVID2_DF_ARGB32_8888 ,
FVID2_DF_RGB16_565 FVID2_DF_BITMAP4_LOWER , FVID2_DF_BITMAP4_UPPER

FVID2_DF_BITMAP2_OFFSET0 , FVID2_DF_BITMAP2_OFFSET1 FVID2_DF_BITMAP2_OFFSET2 ,
FVID2_DF_BITMAP2_OFFSET3 FVID2_DF_BITMAP1_OFFSET0 , FVID2_DF_BITMAP1_OFFSET1

FVID2_DF_BITMAP1_OFFSET2 , FVID2_DF_BITMAP1_OFFSET3 FVID2_DF_BITMAP1_OFFSET4 ,
FVID2_DF_BITMAP1_OFFSET5 FVID2_DF_BITMAP1_OFFSET6 , FVID2_DF_BITMAP1_OFFSET7

FVID2_DF_BITMAP8.
bpp - based on dataFormat, FVID2_BPP_BITS1, FVID2_BPP_BITS2, FVID2_BPP_BITS4,
FVID2_BPP_BITS8, FVID2_BPP_BITS16, FVID2_BPP_BITS24, FVID2_BPP_BITS32.

JOHN
文本框
应用程序使用此API设置显示路径所需的缓冲区格式。这是一个阻塞调用，在设置所需格式后返回。

JOHN
文本框
在创建函数调用以设置缓冲区信息之后，立即调用此api。如果应用程序没有调用这个ioctl，调用其他IOCTL时，驱动程序将返回错误。

JOHN
文本框
当应用程序在停止显示驱动程序后更改venc设置时，应该在再次启动显示之前调用此ioctl。这将确保驱动器将使用新的显示控制器设置。否则驱动程序将处理可能导致问题的旧信息。

UserGuideHdvpssDisplayDriver 85

FVID2 Get Format

This API is used by the application to get the buffer format set for the display path. This is a blocking call and
returns after getting the required format.

Int32 FVID2_getFormat(FVID2_Handle handle, FVID2_Format *fmt);

handle - Driver handle returned by create function call. This parameter should not be NULL.
fmt - Pointer to FVID2_Format structure where the format information needs to be copied by the driver. This
parameter should not be NULL.

FVID2 Control - Create Multiple Regions Layout

This is used to issue a control command to the driver. IOCTL_VPS_CREATE_LAYOUT ioctl is used to create a
multiple region layout depending on the multiple window(region) parameters. This is a blocking call. This call can
not be called from ISR context.
Important
This API should not be called after the display operation is started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_CREATE_LAYOUT ioctl.
cmdArgs - Pointer to Vps_MultiWinParams structure containing valid multiple window(region) parameters.
This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Set Graphcis Regions Parameters

This is used to issue a control command to the driver. IOCTL_VPS_SET_GRPX_PARAMS ioctl is used to set the
graphics regions parameters. This is a blocking call.
Important
This API should not be called after the display operation is started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SET_GRPX_PARAMS ioctl.
cmdArgs - Pointer to Vps_GrpxParamsList structure containing valid graphics region parameters. This
parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

JOHN
文本框
应用程序使用此API获取显示路径的缓冲区格式。这是一个阻塞调用，并在获得所需格式后返回。

JOHN
文本框
创建多区域布局

JOHN
文本框
设置图形区域参数

UserGuideHdvpssDisplayDriver 86

FVID2 Control - Get Graphcis Regions Parameters

This is used to issue a control command to the driver. IOCTL_VPS_GET_GRPX_PARAMS ioctl is used to get the
graphics regions parameters. This is a blocking call.
Important
This API could be called after the display operation is started.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_GET_GRPX_PARAMS ioctl.
cmdArgs - Pointer to Vps_GrpxParamsList structure containing valid graphics region parameters. This
parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

Run Phase
This phase is used to start or stop the already started display driver. This is also used to exchange the displayed
buffers and the fresh buffers between the driver and applications.

FVID2 Start

This API is used by the application to start the display operation. This is a blocking call and returns after starting the
display operation. Before starting the display operation, the application has to prime at least 1 buffer with the driver
using queue API. When driver is openned under VPS_GRPX_NON_FRAME_BUFFER_MODE, typically 3 buffers are
used - 1 used by application and 2 buffers are queued with the driver at any given time. When driver is openned
under VPS_GRPX_FRAME_BUFFER_MODE, typically 1 buffer is used.

Int32 FVID2_start(FVID2_Handle handle, Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

FVID2 Stop

This API is used by the application to stop the display operation. This is a blocking call and returns after stopping the
display operation.

Int32 FVID2_stop(FVID2_Handle handle, Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

FVID2 Queue

This API is used to submit a video buffer to the driver for display operation. This is a non-blocking call and could be
called from task or ISR context. Once the buffer is queued the application loses ownership of the buffer and is not
suppose to modify or use the buffer. When driver is openned under VPS_GRPX_NON_FRAME_BUFFER_MODE, the
buffers submitted by multiple API calls will be queued by the driver. While if driver is openned under
VPS_GRPX_FRAME_BUFFER_MODE, only the buffer submitted by the last API call will be used by the driver.

JOHN
文本框
获取图形区域参数

JOHN
文本框
此阶段用于启动或停止已经启动的显示驱动器。这也用于在驱动程序和应用程序之间交换显示缓冲区和新缓冲区。

JOHN
文本框
这个API被应用程序用来启动显示操作。在启动显示操作之前，应用程序必须通过驱动程序调用queue api来启动至少一个buffer.当驱动程序在vps_grpx_non_framework_Buffer模式下打开时，通常使用3个缓冲区-1由应用程序使用，2个缓冲区与驱动程序在任何位置排队。给定的时间。当驱动程序在vps_grpx_framework_Buffer_模式下打开时，通常使用一个缓冲区。

JOHN
文本框
此API用于向驱动程序提交视频缓冲区以供显示操作。这是一个非阻塞调用，可以从任务或ISR Context调用。一旦缓冲区queued，应用程序将失去缓冲区的所有权，并且不应该修改或使用缓冲区。
当驱动程序在vps_grpx_non_Frame_Buffer_模式下打开时，由多个API调用提交的缓冲区将由驱动程序排队。如果驱动程序是在vps_grpx_framework_Buffer_模式下打开的，则驱动程序将只使用上一次API调用提交的缓冲区。

UserGuideHdvpssDisplayDriver 87

Int32 FVID2_queue(FVID2_Handle handle,

 FVID2_FrameList *frameList,

 UInt32 streamId);

handle - Driver handle returned by create function call. This parameter should not be NULL.
frameList - Pointer to FVID2_FrameList structure containing the pointer to the FVID2 frames(Graphics
Region). This parameter should not be NULL. In normal display operation, the number of frames passed using this
call is one. When multiple window(region) configuration is set, this frame list contains the frames(regions) of all the
multiple window(region) buffers representing a single composited graphics frame.
streamId - Not used currently. This parameter should be set to 0.

FVID2 Dequeue

This API is used by the application to get ownership of a displayed video buffer from the display driver. This is a
non-blocking call and could be called from task or ISR context. If the driver is opened under
VPS_GRPX_FRAME_BUFFER_MODE, this API is not available and a error is returned to caller.

Int32 FVID2_dequeue(FVID2_Handle handle,

 FVID2_FrameList *frameList,

 UInt32 streamId,

 UInt32 timeout);

handle - Driver handle returned by create function call. This parameter should not be NULL.
frameList - Pointer to FVID2_FrameList structure where the driver will copy the displayed FVID2 frames.
This parameter should not be NULL. In normal display operation, the number of frames(regions) passed using this
call is one. When multiple window(region) configuration is set, this frame list contains the frames(regions) of all the
multiple window(region) buffers representing a single composited graphics frame. For queuing multiple
window(region) buffers, the frames(regions) should be given from top to bottom sequence.
streamId - Not used currently. This parameter should be set to 0.
timeout - Not used currently as only non-blocking queue/dequeue operation is supported. This parameter should be
set to FVID2_TIMEOUT_NONE.

Delete Phase
In this phase FVID2 delete API is called to close the driver instance. All the resources are freed. Make sure display is
stopped using FVID2_stop() before deleting a display instance. Once the driver is instance is closed it can be opened
again with new configuration.

FVID2 Delete

This API is used to close the display driver. This is a blocking call and returns after closing the handle.
Note
Closing the driver will implicitly stop the display if stop IOCTl is not called by the application.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
deleteArgs - Not used currently. This parameter should be set to NULL.

JOHN
文本框
应用程序调用该api从display driver获得已经显示的视频缓冲区的所有权。

UserGuideHdvpssDisplayDriver 88

System De-Init Phase

FVID2 de-Init

Driver sub-system gets de-initialized as a part of this phase. Here all resources acquired during system initialization
are free'ed. Make sure all driver instances deleted before calling this API. Display sub-system de-init happens as part
of overall FVID2 system de-init. Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

Sample Application

Single Region Display through HDMI VENC
This example illustrates the feature of graphics Path 0 by displaying one 240 x 160 RGB888 image on OFF-CHIP
HDMI Encoder through DVO2 VENC configured with 1080P 30 FPS. This also illustrates the FVID2
queue/dequeue usage from Task context.
• Please refer Common Steps for connecting ccs to TI816x, running gel file etc.
• Load hdvpss_examples_grpxDisplay.xem3 executable file found at

$(rel_folder)\build\example-name\bin\ti816x-evm\example-name-whole-program-debug.xem3

to DSS M3 debug session
• Run the application and it will automatically load color bar frames.
Loading 3 graphics frames of size 240x160 to location: @BE000000 ... Image

loading done ...

• This will display single moving graphics region in the video probe with runtime on/off stenciling and scaling
features. Those changes were present every 100 frames, which is controll by the RTS_SWITCH_RATE.

• Application will stop after displaying 3000 frames
• Configuration Options: To display in graphics path 1/2, change the macro DRIVER_INSTANCE to
VPS_DISP_INST_GRPX1/2

• Configuration Options: To change the number of frames to display, change the macro TOTAL_LOOP_COUNT to
any desired value greater than 2

• Configuration Options: Change RT_SWITCH_RATE to adjust how ofter the runtime change is performed. To
disable this function, set the RT_SWITCH_RATE bigger than the total loop count.

Multiple Regions Display through HDMI VENC
This example illustrates the feature of graphics Path 0 by displaying two 240 x 160 RGB888 images on OFF-CHIP
HDMI encoder through DVO2 VENC configured for 1080P 30 FPS. This also illustrates the FVID2 queue/dequeue
usage from Task context.
• Please refer Common Steps for connecting ccs to TI816x, running gel file etc.
• Load hdvpss_examples_grpxDisplayMultiReg.xem3 executable file found at

$(rel_folder)\build\example-name\bin\ti816x-evm\example-name-whole-program-debug.xem3

to DSS M3 debug session
• Run the application and it will automatically load the color bar test image.
Loading 6 graphics frames of size 240x160 to location: @BE000000 ... Image

loading done ...

JOHN
文本框
此示例通过在HDMI输出上显示240*160 RGB888的图像说明the feature of graphics Path 0
这还说明了任务上下文中的fvid 2队列/脱队列使用情况。

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssDisplayDriver 89

• This will display two moving graphics regions in the video probe with runtime enable/disable stenciling and
scaling ratio. Those changes were present every 100 frames, which is controll by the RTS_SWITCH_RATE.

• Application will stop after displaying 3000 frames
• Configuration Options: To display in graphics path 1/2, change the macro DRIVER_INSTANCE to
VPS_DISP_INST_GRPX1/2

• Configuration Options: To change the number of frames to display, change the macro TOTAL_LOOP_COUNT to
any desired value greater than 2

• Configuration Options: Change RT_SWITCH_RATE to adjust how ofter the runtime change is performed. To
disable this function, set the RT_SWITCH_RATE bigger than the total loop count.

UserGuideHdvpssM2mDriver

Memory to Memory Drivers

Introduction
Memory to Memory drivers takes the video buffer from the memory, optionally process the buffer, processing done
on the buffer depends on the specific memory to memory driver and puts it back to memory. Memory to memory
driver follows the FVID2 interface for the applications.
Following are the general feature set for the memory to memory drivers:
• All the memory to memory driver supports multiple handle. This means the driver can be opened multiple times.
• All the memory drivers supports multiple channels request submission per handle. Multiple channels means the

video stream coming from multiple streams like frames coming from decoder over network, multiple capture
streams each having different frame parameters like height, width etc.

• Memory driver supports parameter configuration for the buffer processing per handle or per channel of the
handle. There can be individual set of parameters for each channel of the handle like height, width, data format
etc or else application can have the same parameters for all the channels of the handle.

• Application can submit multiple channels for processing in a single request call
• FVID2_processFrames (queue) and FVID2_getProcessFrames (de-queue) FVID2 calls for all the memory to

memory drivers are non blocking. While the control commands like programming of the scalar coefficients are
blocking.

• All memory to memory driver calls the application call back function on completion of the request. Application
should de-queue the request after the callback.

Noise Filter (NSF) - Memory to Memory Driver

Introduction
Noise filter (NF or NSF) driver allows user to filter noise from video data by processing them through the noise filter
hardware. The NF hardware supports spatial as well as temporal noise filtering.
When temporal noise filtering is enabled, the hardware needs the previous noise filtered output as one of the inputs.
When temporal noise filter is disabled (VPS_NSF_BYPASS_MODE_SNF_TNF), this previous noise filtered frame
is not required. It is possible to bypass both spatial as well as temporal noise filter
(VPS_NSF_BYPASS_MODE_SNF_TNF), i.e. driver can be used for only YUV422 to YUV420 chroma
downsampling. In this case too, previous noise filtered frame is not required.

JOHN
文本框
内存到内存驱动程序从内存中获取视频缓冲区，或者处理缓冲区，并将其放回内存.对缓冲区进行的处理取决于特定内存到内存驱动程序。内存到内存驱动程序遵循应用程序的fvid 2接口。

JOHN
文本框
以下是内存到内存驱动程序的一般功能集：

JOHN
矩形

JOHN
文本框
多句柄支持

JOHN
文本框
支持多通道请求提交

JOHN
文本框
多通道是指视频流来自多个流，如通过network的decoder流,具有不同帧高、帧宽参数的捕获流

JOHN
文本框
每个句柄的每个通道都可以有单独的参数集，如高度、宽度、数据格式等

JOHN
文本框
在一个请求调用中提交多个通道以进行处理。

JOHN
文本框
所有内存到内存驱动程序在请求完成后调用应用程序回调函数。

JOHN
文本框
噪声滤波器(nf或nsf)驱动程序允许用户通过噪声过滤器硬件处理来自视频数据的噪声。nf硬件支持空间和时间噪声滤波。

JOHN
文本框
当启用时态噪声滤波时，硬件需要先前的噪声滤波输出作为输入之一。当禁用时间噪声滤波器(VP_NSF_BASBAND_MODE_SNF_TNF)时，不需要这个先前的噪声过滤帧。可以绕过空间和时间噪声滤波器(VP_NSF_旁路_MODE_SNF_TNF)，即驱动器只能用于yuv 422到yuv420色度下降采样。在这种情况下，也不需要先前的噪声滤波帧

JOHN
矩形

UserGuideHdvpssM2mDriver 90

The data paths supported by the current driver implementation are shown in the figure below:

HDVPSS Noise Filter Block Diagram

The features and limitations of current driver implementation are listed in subsequent sections.
Important
The features supported or NOT supported in any release of the NSF driver may vary from one HDVPSS driver
release to another. See respective release notes for exact release specific details.

Features Supported
• Input formats:

• YUV422, non-tiled memory, YUYV interleaved data - this is the only input format supported by the NSF
hardware

• Output formats:
• YUV420T, tiled memory, YUV420 semi-planer data - this is the only output format supported by the NSF

hardware
• Multi-channel support - upto VPS_NSF_MAX_CH_PER_HANDLE channels per handle
• Multi-handle support - upto VPS_NSF_MAX_HANDLES handles per system
• Configurable input size (width, height, startX, startY, pitch) per channel
• Configurable output pitch per channel. Output size is always same as input size
• Configurable noise filter processing parameters like filter strength, filter threshold per channel
• Configurable noise filter operation mode per channel like temporal NF bypass, spatial NF bypass, all NF bypass

i.e. only chroma downsample
• Run-time input size and noise filter parameter change via FVID2 control API
• Non-blocking FVID2 process frames and get processed frames API support

JOHN
文本框
当前驱动程序实现的特性和局限性在后面的部分中列出。

JOHN
文本框
NSF驱动程序的任何版本中支持的或不支持的特性可能有所不同，从一个hdvpss驱动程序发布到另一个hdvpss驱动程序。

JOHN
文本框
yuv 422，非平铺内存，yuyv交错数据这是nsf硬件支持的唯一输入格式。

JOHN
文本框
yuv420t，平铺内存，yuv 420半平面数据这是nsf硬件支持的唯一输出格式。

JOHN
文本框
多通道支持
多句柄支持

JOHN
文本框
每个通道可配置的输入大小(宽度、高度、StartX、起始点、螺距)

JOHN
文本框
每个通道的可配置输出pitch。输出大小总是与输入大小相同。

JOHN
文本框
可配置噪声滤波器处理参数，如滤波器强度、每个信道的滤波阈值

JOHN
文本框
可配置的噪声滤波器每个通道的工作模式，如时间nf旁路、空间nf旁路、所有nf旁路，即仅限色度下采样。

JOHN
文本框
通过fvid 2控制api改变运行时输入大小和噪声滤波器参数

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Nsf-m2m-path.JPG

UserGuideHdvpssM2mDriver 91

• Tiler support for YUV420 output, YUV420 previous filtered input
• Slice based NF (Will be supported only on NETRA)

Features Not Supported
• Slice based NF (Centarus)

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here the driver is used to filter or process the frames continuously
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is deinitialized
The subsequent sections describe each phase in detail.

System Init Phase
The NSF driver sub-system initialization happens as part of overall HDVPSS system init. Below code shows the
FVID2 API used to initialize the overall HDVPSS subsystem. This API must be the the first API call before making
any other FVID2 calls.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

#include "ti/psp/vps/vps_m2mNsf.h"

Int32 mySysInit() {

 Int32 status;

 status = FVID2_init(NULL);

 if(status!=FVID2_SOK) {

 // error in HDVPSS driver system initialization

 }

 return status;

}

Internally, following happens when NSF driver initialization is done:
• Hardware resources like interrupts, hardware lists are allocated
• NF Hardware is reset to known state and NF related muxes are configured
• Driver name is registered with FVID2 sub-system

Create Phase
In this phase, user application opens or creates a driver instance. Upto VPS_NSF_MAX_HANDLES (defined in
vps_m2mNsf.h) driver instances can be opened by a user. Upto VPS_NSF_MAX_CH_PER_HANDLE (defined in
vps_m2mNsf.h) channels can be associated with a given handle. Upto
VPS_NSF_MAX_CH_IN_ALL_HANDLES (defined in vps_m2mNsf.h) channels can be associated when all
handles are considered together. When any of the max handles, max channels per handles or max channels in all
handles limit is exceeded by user, error is returned during FVID2 create.

JOHN
文本框
注册时操作：
分配硬件资源
NF重启，配置复用引脚
在FVID2 sub-system注册驱动名

JOHN
文本框
在这个阶段，用户应用程序打开或创建一个驱动实例。最多可以创建VPS_NSF_MAX_HANDLES个句柄。一个句柄可以关联VPS_NSF_MAX_CH_PER_HANDLE个通道。 当所有句柄中的最大句柄、最大通道或最大通道在所有句柄中都被考虑在一起时，可以将通道关联到给定的手柄。向上到VPs_nsf_max_ch_in_all_Handles(定义在VP_m2mnsf.h中)通道可以关联到所有句柄中的任意一个最大句柄、每个句柄或最大通道。超出用户，则在fvid 2创建期间返回错误。

UserGuideHdvpssM2mDriver 92

User can pass a number of parameters during create which controls the mode in which the driver instance gets
created. For e.g., number of channels, width and height of each channel, NF processing parameters for each channel.
Refer to M2M Noise Filter API section in HDVPSS API Guide for detailed list of create time parameters.

FVID2 create

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.
drvId - Pass FVID2_VPS_M2M_NSF_DRV to open noise filter memory driver.
instanceId - Pass VPS_M2M_INST_NF0 macro to open the only instance of noise filter driver
createArgs - Pass a pointer to Vps_NsfCreateParams structure containing the valid parameters. This
parameter should not be null
createStatusArgs - Pass a pointer to Vps_NsfCreateStatus structure. Driver returns status in this structure.
This parameter can be NULL.
cbParams - Pass the pointer to FVID2_DrvCbParams. These call back parameters are used to indicate the
successful processing of the frame or the error frames.
As an example, FVID2 create call, used to create a NF driver instance, is shown below:

#include "ti/psp/vps/vps_m2mNsf.h"

FVID2_Handle fvidHandle;

Vps_NsfCreateParams createArgs;

Vps_NsfCreateStatus createStatus;

FVID2_CbParams cbPrm;

UInt16 chId;

Vps_NsfDataFormat dataFormat[VPS_NSF_MAX_CH_PER_HANDLE];

Vps_NsfProcessingParams processingCfg[VPS_NSF_MAX_CH_PER_HANDLE];

Vps_NsfDataFormat *pDataFormat;

Vps_NsfProcessingParams *pProcessingParams;

createArgs.numCh = VPS_NSF_MAX_CH_PER_HANDLE;

createArgs.dataFormat = dataFormat;

createArgs.processingCfg = processingCfg;

cbPrm.cbFxn = myCallbackFunc;

cbPrm.appData = NULL;

cbPrm.errCbFxn = NULL;

cbPrm.errData = NULL;

for(chId=0; chId < createArgs.numCh; ch++)

{

 pDataFormat = & createArgs.dataFormat[chId];

 pProcessingParams = & createArgs.processingCfg[chId];

JOHN
文本框
FVID2_VPS_M2M_NSF_DRV

JOHN
文本框
VPS_M2M_INST_NF0只有一个硬件实例

JOHN
文本框
指向FVID2_DrvCbParams回调函数
表示处理完成或者错误

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssM2mDriver 93

 pDataFormat->channelNum = chId;

 pDataFormat->inMemType = VPS_VPDMA_MT_NONTILEDMEM;

 pDataFormat->outMemType = VPS_VPDMA_MT_NONTILEDMEM;

 pDataFormat->inDataFormat = FVID2_DF_YUV422I_YUYV;

 pDataFormat->inFrameWidth = 720;

 pDataFormat->inFrameHeight = 480;

 pDataFormat->inCropCfg.cropStartX = 0;

 pDataFormat->inCropCfg.cropStartY = 0;

 pDataFormat->inCropCfg.cropWidth = pDataFormat- >

inFrameWidth;

 pDataFormat->inCropCfg.cropHeight = pDataFormat- >

inFrameHeight;

 pDataFormat->inPitch = ALIGN(pDataFormat- > inFrameWidth,

32)*2;

 pDataFormat->outDataFormat = FVID2_DF_YUV420SP_UV;

 pDataFormat->outPitch[0] = pDataFormat- > inPitch/2;

 pDataFormat->outPitch[1] = pDataFormat- > outPitch[0];

 pProcessingParams->channelNum = chId;

 pProcessingParams->bypassMode = VPS_NSF_BYPASS_MODE_NONE;

 pProcessingParams->enableFrameNoiseAutoCalc = TRUE;

 pProcessingParams->resetFrameNoiseCalc = TRUE;

 pProcessingParams->enableSliceMode = FALSE;

 pProcessingParams->numLinesPerSlice = 128;

 pProcessingParams->staticFrameNoise[0] = 0;

 pProcessingParams->staticFrameNoise[1] = 0;

 pProcessingParams->staticFrameNoise[2] = 0;

 pProcessingParams->spatialStrengthLow[0]

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->spatialStrengthLow[1]

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->spatialStrengthLow[2]

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->spatialStrengthHigh[0]

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->spatialStrengthHigh[1]

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->spatialStrengthHigh[2]

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->temporalStrength

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->temporalTriggerNoise

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->noiseIirCoeff

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->maxNoise

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->pureBlackThres

UserGuideHdvpssM2mDriver 94

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

 pProcessingParams->pureWhiteThres

 = VPS_NSF_PROCESSING_PARAMS_DEFAULT;

}

fvidHandle = FVID2_create(

 FVID2_VPS_M2M_NSF_DRV,

 VPS_M2M_INST_NF0,

 & createArgs,

 & createStatus,

 & cbPrm

);

if(fvidHandle==NULL)

{

 // error in FVID2 handle creation

}

Internally, following happens when FVID2 create is called:
• Software resources like semaphores, queues are allocated, depending on the create parameters that are passed
• NO hardware register or VPDMA descriptor programming takes place during create.

Run Phase
In this phase the driver can be used to process frames continuously (FVID2_processFrames()). Once the
frames are noise filtered, the driver generates a callback to indicate completion of frame processing, at which point
user could get the processed frames from the driver (FVID2_getProcessedFrames()).
Like other memory-to-memory drivers, user can send multiple frames from different channels for processing in one
request via FVID2_processFrames() function call. Also, multiple such requests can be queued inside driver
without user having to wait for completion of a previously submitted request.

FVID2_processFrames

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

This is used to submit the frames for processing. Processlist contains the frames from various channels to be
processed. Application can open the driver for N channels and it can submit request for the M channels where M <=
N. Processlist is returned to the driver and it can use the processlist for submitting the next request whereas all the
elements inside the processlist is driver's ownership and can be reused by application only after de-queuing the
request. This is a non blocking call and requests are queued inside the driver for processing. Driver calls the
application call back once the hardware completes processing the request.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the processlist containing the frames to be processed. User can also pass the run time parameters
with the processlist to change the parameters run time. Run time parameters only needs to be passed once.
Subsequent process_frames function will be operated with the last run time parameters passed. If user wants to
updated that again new set of run time parameters needs to be passed. Noise Filter driver supports run time
parameters change in synchronous with the submitted frame. Run time parameter structure supported by Noise Filter
driver is Vps_M2mNsfRtParams.
Queuing multiple requests

JOHN
文本框
当FVID2_create被调用后，接下来发生：
软件资源(如信号量)、队列(取决于传递的创建参数)被分配。
在创建过程中不进行硬件寄存器或vpdma描述符编程。

JOHN
文本框
在这个阶段，驱动程序可以用来连续地处理帧(fvid 2_processFrams())，一旦帧被噪声过滤，驱动程序就会生成一个回调，以指示帧处理的完成，此时用户可以从驱动程序(fvid 2_getProceseriesFrams())获得处理过的帧。
与其他内存到内存驱动程序一样，用户可以通过fvid 2_processframework()函数调用从不同的通道发送多通道帧数据，以便在一个请求中进行处理。此外，多个这样的请求也可以在驱动程序中排队，而无需等待先前提交的请求的完成。

JOHN
文本框
它用于提交要处理的frames。processList包含来自各个待处理通道的frames。应用程序可以为n个通道打开驱动程序，并且它可以提交m个通道的请求，其中m<=N。Processlist被返回给驱动程序，它可以使用Processlist来提交下一个请求，而Processlist的所有元素都是驱动程序的所有者，而且可以被驱动程序再次使用after de-queuing the request。请求在驱动程序中排队以进行处理。驱动程序在硬件完成处理请求后调用应用程序回调函数。

JOHN
文本框
传递包含待处理帧的processlist。用户也可以通过processlist传递运行时参数以更改参数。运行时参数只需要一次传递。后续的帧处理函数会采用最后一次的运行时参数。噪声过滤驱动程序支持运行时参数与提交的Frame同步更改。噪声滤波驱动程序支持的运行时参数结构为vps_m2mnsfrtparams。

UserGuideHdvpssM2mDriver 95

FVID2_processFrames() can be called multiple number of times to queue multiple requests to the driver. Once
the driver internal request queue is full, no further requests will be accepted by the driver and error is returned. The
number of requests that can be queued without any error or blocking is made known to the user via status, returned
during create phase (Vps_NsfCreateStatus.maxReqInQueue).
Queuing multiple frames from same channel

FVID2_processFrames() can be used to queue frames from the same channel either in the same API call or
multiple API calls. However, since the internal channel specific memory (queue) is statically allocated, the number
of frames per channel that can be queued is limited to Vps_NsfCreateStatus.maxFramesPerChInQueue.
Once the per channel queue becomes full, no further frames will be accepted by the driver and error will be returned.
Note, when, for a channel, frame submission error is returned, the current request is aborted for all channels in that
request.
Maximum frames in one request

The number of frames that be submitted in a request is also limited to
Vps_NsfCreateParams.maxFramesInProcessFrames. This will be at least equal to the number of
channels in the handle (Vps_NsfCreateParams.numCh)
Below example shows the APIs that are used to submit frames to the driver for processing. Once the submitted
frames are processed by NF driver, it calls a user specified callback to indicate that the frames have been processed.

#include "ti/psp/vps/vps_m2mNsf.h"

/* NSF driver request information */

typedef struct

{

 /* Input frame pointers */

 FVID2_Frame *inFrames[VPS_NSF_MAX_CH_PER_HANDLE];

 /* Previous output frame pointers */

 FVID2_Frame *prevOutFrames[VPS_NSF_MAX_CH_PER_HANDLE];

 /* Output frame pointers */

 FVID2_Frame *outFrames[VPS_NSF_MAX_CH_PER_HANDLE];

 /* Input frame list

 0 - for input frames

 1 - for previous output frames

 */

 FVID2_FrameList inFrameList[2];

 /* Output frame list

 0 - for output frames

 */

 FVID2_FrameList outFrameList[1];

 /* Process list thats submitted to driver in this request */

 FVID2_ProcessList processList;

} NsfApp_ReqObj;

/* make process list */

Int32 NsfApp_drvObjMakeReq(NsfApp_ReqObj *reqObj)

{

 UInt32 chId;

 Int32 prevOutFrameId, numFramesInReq;

JOHN
文本框
多个请求在驱动中排队：
fvid 2_processFrame()可以被多次调用以将多个请求排队到驱动程序。一旦驱动程序内部请求队列满了，驱动程序将不再接受进一步的请求并返回错误。可以排队的请求的数量可以通过状态通知用户，并在创建阶段返回(vps_nsfcreatestatus.maxreqinQueue)。

fvid 2_processframework()可以用于在同一个API调用或多个API调用对来自同一个信道的帧进行queue。但是，由于内部通道特定的内存(队列)是静态分配的，每个信道可以排队的帧数仅限于vps_nsfcreatus.maxframesperchinQueue。一旦每个通道队列满了，驱动程序将不再接受其他帧并返回错误。返回通道、帧提交错误.注意，如果产生帧提交错误，该请求中所有通道的当前请求将中止。

JOHN
文本框
一个请求的最大帧数
在请求中提交的帧数也仅限于vps_nsfcreateparents.maxframesinprocessframs。这至少等于句柄中的通道数(vps_nsfcreatepars.numch)。

JOHN
文本框
下面的示例显示了用于将框架提交给驱动程序进行处理的API。一旦提交的帧被nf驱动程序处理，它将调用用户指定的回调以指示已处理的帧。

JOHN
文本框
输入frame list和输入pointers：用来表示准备传给NF模块进行处理的frames数据

输出frame list和输入pointers：用来表示NF模块处理后的frames数据

上一个输出frame list和输入pointers： 这个有什么作用啊？？

UserGuideHdvpssM2mDriver 96

 /* A request consists of frame from every channel.

 Note, this is just the way test case is written, as such a

reqeust can

 mix of requests for same or different channels and that too in

any order

 */

 numFramesInReq = createArgs.numCh;

 reqObj->inFrameList[0].frames = reqObj->inFrames;

 reqObj->inFrameList[0].numFrames = numFramesInReq;

 reqObj->inFrameList[0].perListCfg = NULL;

 reqObj->inFrameList[0].reserved = NULL;

 /* init inFrameList [1] */

 reqObj->inFrameList[1].frames = reqObj->prevOutFrames;

 reqObj->inFrameList[1].numFrames = numFramesInReq;

 reqObj->inFrameList[1].perListCfg = NULL;

 reqObj->inFrameList[1].reserved = NULL;

 /* init outFrameList [0] */

 reqObj->outFrameList[0].frames = reqObj->outFrames;

 reqObj->outFrameList[0].numFrames = numFramesInReq;

 reqObj->outFrameList[0].perListCfg = NULL;

 reqObj->outFrameList[0].reserved = NULL;

 /* init processList */

 reqObj->processList.inFrameList[0] = &

reqObj->inFrameList[0];

 reqObj->processList.inFrameList[1] = &

reqObj->inFrameList[1];

 reqObj->processList.outFrameList[0] = &

reqObj->outFrameList[0];

 reqObj->processList.numInLists = 2;

 reqObj->processList.numOutLists = 1;

 reqObj->processList.reserved = NULL;

 /* for each channel in request obj do ... */

 for(chId=0; chId < numFramesInReq; chId++)

 {

 /* Set input and output frame pointers */

 reqObj->inFrames[chId] = get input frame pointer;

 reqObj->prevOutFrames[chId] = get previous output frame

pointer;

 reqObj->outFrames[chId] = get output frame pointer;

 }

 return FVID2_SOK;

}

UserGuideHdvpssM2mDriver 97

/* Use driver to process frames*/

Int32 NsfApp_drvObjProcessFrames()

{

 NsfApp_ReqObj pReqObj;

 Int32 status, reqId, numReqInQueue;

 /*

 get max request to queue, based on driver status thats

 returned during create

 */

 numReqInQueue = createStatus.maxReqInQueue;

 /* for each request that is to be submitted ... */

 for(reqId=0; reqId < numReqInQueue; reqId++)

 {

 /* get current free request object */

 pReqObj = & reqObj[reqId];

 /* make the request object */

 NsfApp_drvObjMakeReq(pReqObj);

 /* Submit request to driver */

 status = FVID2_processFrames(fvidHandle, &

pReqObj->processList);

 if(status!=FVID2_SOK)

 {

 /* Error in request submission */

 }

 }

 return status;

}

FVID2_getProcessedFrames

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

This is used to de-queue the already processed request. This is again a non blocking call and if there are requests in
the driver to be de-queued it will return the dequeued frames in the processlist else it will return with error.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the pointer to the processlist. Driver will copy the pointer to the processed framelist to the
processlist.
timeout - Currently unused arguments. Driver ignores this.

UserGuideHdvpssM2mDriver 98

When the user callback gets called, user can get the processed frames from the NF driver. The processed frames can
be retrieved from the driver in the callback itself or later in some application task context.
An example is shown below:

FVID2_ProcessList processList;

Int32 timeout;

timeout = BIOS_NO_WAIT; // non-blocking

/* get processed frames from driver */

status = FVID2_getProcessedFrames(fvidHandle, & processList,

timeout);

if(status!=FVID2_SOK)

{

 /* Error in getting processed frames */

}

else

{

 /* success */

}

Run time parameter change

There are two ways of changing the runtime parameters.
IOCTL Method

Some parameters like input size, noise filter processing can be changed while the driver is in running phase. Once a
parameter is changed, the effect of the change will happen only for the subsequent frames that are submitted. For
current frames, new parameters will not take effect. These parameters can be changed independently for each
channel.
FVID2 IOCTLs, as shown below, can be used for run-time parameter change:
• IOCTL_VPS_NSF_SET_PROCESSING_CFG - this can be used to change noise filter processing parameters

like operation mode (TNF/SNF ON/OFF), filter strengths, filter threshold, reset filter state etc.
• IOCTL_VPS_NSF_SET_DATA_FORMAT - this can be used to change input size, input pitch, input area

selection (crop) and output pitch.
An example is shown below:

#include "ti/psp/vps/vps_m2mNsf.h"

Int32 NsfApp_drvObjUpdateParams()

{

 Int32 status;

 UInt32 chId;

 Vps_NsfDataFormat *nsfDataFormat;

 /* for all channels */

 for(chId=0; chId < createArgs.numCh; chId++)

 {

 /* channel data format */

UserGuideHdvpssM2mDriver 99

 nsfDataFormat = &createArgs.dataFormat[chId];

 /* half the input width x height for the channel */

 nsfDataFormat->inMemType = VPS_VPDMA_MT_NONTILEDMEM;

 nsfDataFormat->outMemType = VPS_VPDMA_MT_NONTILEDMEM;

 nsfDataFormat->inFrameWidth /= 2;

 nsfDataFormat->inFrameHeight /= 2;

 nsfDataFormat->inCropCfg.cropStartX = 0;

 nsfDataFormat->inCropCfg.cropStartY = 0;

 nsfDataFormat->inCropCfg.cropWidth =

nsfDataFormat->inFrameWidth;

 nsfDataFormat->inCropCfg.cropHeight =

nsfDataFormat->inFrameHeight;

 /* rest of the parameters are kept same as create time

parameters */

 /* Do IOCTL to change the new channel information

 This updated information will get reflected from

 next submission to the driver

 Pending submission will still use old channel information

 */

 status = FVID2_control(fvidHandle,

 IOCTL_VPS_NSF_SET_DATA_FORMAT,

 nsfDataFormat,

 NULL

);

 assert(status==FVID2_SOK);

 }

 return 0;

}

Runtime parameters passed with the frame

User can also pass the run time parameters with the processlist to change the parameters run time. Run time
parameters only needs to be passed once. Subsequent process_frames function will be operated with the last run time
parameters passed. If user wants to updated that again new set of run time parameters needs to be passed. Noise
Filter driver supports run time parameters change in synchronous with the submitted frame. Run time parameter
structure supported by Noise Filter driver is Vps_M2mNsfRtParams.

Delete Phase
In this phase, FVID2 delete API is called to free all resources allocated during create. Make sure no frames are
submitted/queued to the driver when this API is called.
The FVID2 delete API call is shown below:

#include "ti/psp/vps/vps_m2mNsf.h"

FVID2_delete(fvidHandle, NULL);

UserGuideHdvpssM2mDriver 100

System De-init Phase
In this phase, NF sub-system is de-initialized. Here, all resources acquired during system initialization are freed.
Make sure all NF handles are deleted before calling this API. NF sub-system de-init happens as part of overall
FVID2 system de-init. Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

#include "ti/psp/vps/vps_capture.h"

Void mySysDeInit() {

 FVID2_deInit(NULL);

}

Sample Application
This section shows how to run the sample application for NF driver. The sample application source code is located at
the below path: \packages\ti\psp\examples\common\vps\m2m\m2mNsf

Running the sample application
The Memory-to-memory Noise Filter application executes the NF driver in many different modes, like single handle,
single channel, multi handle, multi channel, with callback, without callback and so on. The sample code does some
limited data verification check to make sure that output data is fine. It also prints performance information including
frame per second achieved and the CPU load.
The application takes the input buffer for processing, optionally processes the buffers by running through the list of
pre-configured options one by one, and then writes the buffer(s) back to memory.
Following are the steps to run the application:
• Please refer Common Steps for connecting CCS to TI816x, running gel file etc.
• Load hdvpss_examples_m2mNsf_m3vpss_whole_program_debug.xem3' at

$(rel_folder)\build\example-name\bin\ti816x-evm\example-name_whole_program_debug.xem3

to DSS M3 debug session
• Run the application.
• The application will halt for the user to load the input frames. Using loadRaw command load images on the

memory location mentioned in the console print.
The command to be used for loading the image into the memory buffer shall be printed on the console. For example,
the command for loading the images is similar to the below:

loadRaw(<addr>, 0,

"<filePath>\\<fileName>_yuyv422_prog_packed_640_480.tigf",

32, false);

• Press any key after loading
• The program continues running, finishes processing and then waits for the user to save the processed image.
• Save the processed image(s). Using saveRaw command, the image file can be saved. The command to be used

for saving the image file from the memory buffer shall be printed on the console. For example, the command for
saving the image file is similar to the below:

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssM2mDriver 101

saveRaw(0, <addr>,

"<filePath>\\<fileName>_nv12_prog_packed_640_480.tigf",

1152000, 32, true);

Warning
If the processor is not halted or waiting for console input when saving the images, the images will be seen green as
the data dumped will be 0x00.
• View the saved image using any external YUV image viewer.
• The program runs again for the next option in the list till it waits for the user to save the processed image. This

continues till all the options are completed.
Once application execution is complete, to re-run the application, just reset the CPU, reload and run as before.
Sample output printed on the CCS console is shown below:

 NSFAPP: Load YUYV422 test data (640 x 480, 10 frames) @ 0xa0800000

!!!

 loadRaw(0xa0800000, 0, "<my

folder>\noisyVideo_yuyv422_prog_packed_640_480.tigf", 32, false);

 NSFAPP: Press Any Key to Continue ... !!!

 NSFAPP: NsfApp_init() - DONE !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0: MODE:

0 !!!

 M2mNsf:Output Buffers Start Address 0xa0ddc000

 M2mNsf:Save output file with command:saveRaw(0, 0xa0ddc000,

"C:\\0nsfWbOut_nv12_prog_packed_640_480.tigf", 1152000, 32, true);

 NSFAPP: 0: NsfApp_initDrvObj() - DONE !!!

 NSFAPP: 5.2 s: Frames = 5224 (1044 fps)

 NSFAPP: 0: NsfApp_deInitDrvObj() - DONE !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0!!! -

DONE

 Execution Total Total Total Total D1@60Hz CPU

 Time Frames FPS Mpixels Mpixels/s Ch's Load

 ===

 10.1 s 10436 1043 1803 180 17 9

 10250: LOAD: CPU: 8 HWI: 3, SWI:0

 10251: PRF : NSFAPP: : t: 10000 ms, c: 1, f: 2609, fps: 260, fpc:

2609

 NSFAPP: Press Any Key to continue after saving output image ... !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0: MODE:

3 !!!

 M2mNsf:Output Buffers Start Address 0xa0ddc000

 M2mNsf:Save output file with command:saveRaw(0, 0xa0ddc000,

UserGuideHdvpssM2mDriver 102

"C:\\1nsfWbOut_nv12_prog_packed_640_480.tigf", 1152000, 32, true);

 NSFAPP: 0: NsfApp_initDrvObj() - DONE !!!

 NSFAPP: 5.1 s: Frames = 5248 (1049 fps)

 NSFAPP: 0: NsfApp_deInitDrvObj() - DONE !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0!!! -

DONE

 Execution Total Total Total Total D1@60Hz CPU

 Time Frames FPS Mpixels Mpixels/s Ch's Load

 ===

 10.0 s 10484 1048 1811 181 17 9

 20259: LOAD: CPU: 8 HWI: 3, SWI:0

SubFrame Based Noise Filtering

Introduction
Applications which requires low latency in video processing, like Video communications, divides video frame in to
multiple parts, called subframes and do all processing at subframe level. This results in total end2end delay reduction
and thus enhances user experience.
This chapter describes support of subframe based Noise Filtering in memory to memory drivers, application software
interfaces, and sample application usage.

Software Overview
Application can enable subframe processing for each channel at Create time by setting enable flag and providing
number of lines per subframe in Channel create parameters.
For Processing, Application should pass subframe number and number of lines per subframe as input along with the
frame start address, for each subframe. Driver will process this subframe and updates the number of lines available
in output frame for further processing by other modules.

Software Application Interfaces
This section describes SubFrame processing related structures and parameters setting in FVID2 level functions.

Application Interfaces

FVID2_create

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.

UserGuideHdvpssM2mDriver 103

To enable subframe processing, Vps_SubFrameParams structure elements inside createArgs structure of
corresponding driver needs to be populated with below values:
• Vps_SubFrameParams->subFrameModeEnable should be set to TRUE
• Vps_SubFrameParams->numLinesPerSubFrame should be set to a value equal to

NumberOfLinesPerSubFrame.
• NumberOfLinesPerSubFrame should always be multiple of 32 as NF internally processes on a 32x32 block

FVID2_processFrames

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

This is used to submit the frames for processing. Processlist contains the frames from various channels to be
processed. Application can open the driver for N channels and it can submit request for the M channels where M <=
N. Processlist is returned to the driver and it can use the processlist for submitting the next request whereas all the
elements inside the processlist is driver's ownership and can be reused by application only after de-queuing the
request. This is a non blocking call and requests are queued inside the driver for processing. Driver calls the
application call back once the hardware completes processing the request.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the processlist containing the frames to be processed.
For channels where subframe processing is enabled, FVID2_SubFrameInfo structure (inside FVID2_Frame)
of the frames related to this channel needs to be populated with below values.
• FVID2_SubFrameInfo->subFrameNum should be set to '0' for first subframe and needs to be incremented

by '1' for subsequent subframes.
• FVID2_SubFrameInfo->numInLines should be set to Number of lines per subframe.
Warning
SubFrame parameter interface may change in future as this interface is currently experimental.

FVID2_getProcessedFrames

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

This is used to de-queue the already processed request. This is again a non blocking call and if there are requests in
the driver to be de-queued it will return the dequeued frames in the processlist else it will return with error.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the pointer to the processlist. Driver will copy the pointer to the processed framelist to the
processlist.
For the channels where subframe processing is enabled, FVID2_SubFrameInfo structure of output frames will
be updated by driver.
• FVID2_SubFrameInfo->subFrameNum contains latest subframe number processed by driver, 0 to N-1.
• FVID2_SubFrameInfo->numOutLines contains Number of lines avaialble in output frame after

processing current subframe.
timeout - Currently unused arguments. Driver ignores this.

UserGuideHdvpssM2mDriver 104

Sample Applications
This section shows how to run the sample application for slice based NF driver. The sample application source code
is located at the below path: \packages\ti\psp\examples\common\vps\m2m\m2mNsf_Subframe

Running the sample application
To run the non-tiler memory sample application, load and run the
$(rel_folder)\build\example-name\bin\ti816x-evm\example-name-whole-program-debug.xem3

via CCS.
Once application execution is complete, to re-run the application, just reset the CPU, reload and run as before.
Some notes about the sample application:
• Please refer Common Steps for connecting CCS, running gel file etc.
• The sample application executes the NF driver in many different modes, and it takes 1920x1080 frame as input

with slice size of 128.
• The sample code does some limited data verification check to make sure that output data is fine.
Sample output printed on the CCS console is shown below:

 NSFAPP: NsfApp_init() - DONE !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0: MODE:

0 !!!

 NSFAPP: 0: NsfApp_initDrvObj() - DONE !!!

 NSFAPP: 5.2 s: Frames = 5224 (1044 fps)

 NSFAPP: 0: NsfApp_deInitDrvObj() - DONE !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0!!! -

DONE

 Execution Total Total Total Total D1@60Hz CPU

 Time Frames FPS Mpixels Mpixels/s Ch's Load

 ===

 10.1 s 10436 1043 1803 180 17 9

 10250: LOAD: CPU: 8 HWI: 3, SWI:0

 10251: PRF : NSFAPP: : t: 10000 ms, c: 1, f: 2609, fps: 260, fpc:

2609

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0: MODE:

3 !!!

 NSFAPP: 0: NsfApp_initDrvObj() - DONE !!!

 NSFAPP: 5.1 s: Frames = 5248 (1049 fps)

 NSFAPP: 0: NsfApp_deInitDrvObj() - DONE !!!

 NSFAPP: HANDLES 1: CHANNELS 1 : RUN COUNT 10: UPDATE_PRM_RT 0!!! -

DONE

 Execution Total Total Total Total D1@60Hz CPU

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssM2mDriver 105

 Time Frames FPS Mpixels Mpixels/s Ch's Load

 ===

 10.0 s 10484 1048 1811 181 17 9

 20259: LOAD: CPU: 8 HWI: 3, SWI:0

Scalar (SC) - Memory to Memory Driver

Introduction
This chapter describes the hardware overview, application software interfaces, typical application flow and sample
application usage.

Hardware Overview
Below figure shows the different instances of the scalar driver. At a maximum 3 scalar drivers can be active at time.

Secondary Path 0 to Scalar 5 M2M Driver

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:SEC0_SC5.JPG

UserGuideHdvpssM2mDriver 106

Bypass Path 0/1 to Scalar M2M Driver

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:BP01_SC5_M2M.JPG

UserGuideHdvpssM2mDriver 107

Secondary Path 0/1 to Scalar3/4 VIP0/1 M2M Driver

Following are the instances supported by the scalar driver.
VPS_M2M_INST_SEC0_SC5_WB2: This instance involves chroma upsampler in the secondary path and the
scalar 5 hardware.
VPS_M2M_INST_BP0_SC5_WB2/VPS_M2M_INST_BP1_SC5_WB2: These two instances involves the bypass
path and the scalar 5 hardware.
VPS_M2M_INST_SEC0_SC3_VIP0/VPS_M2M_INST_SEC1_SC4_VIP1: These two instances involves the
chroma upsampler in the secondary path and the VIP hardware.
Chroma upsampler takes the YUV420 semi planar(NV12) or YUYV422 image format as the inputs and bypass path
can take YUYV image format. Chroma upsampler input can be from the raster based buffer or the tiled buffer and
bypass path can take input from the raster based buffer only. Medium quality scalar can scale the images from 1/8x
to the line size that is 2048 pixels. It involves different types of scalars like poly phase scalars, running average
scalars. It can also do the optional cropping of the image and then do the scaling primarily known as digital zoom
feature. It also supports non linear scaling like conversion of the 4:3 aspect ratio to 16:9 and vice versa. Details about
the scalar capabilities can be found in the HDVPSS specifications.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:HDVPSS_SEC01_SC34_VIP01.JPG

UserGuideHdvpssM2mDriver 108

Instances supported

Instances TI816x TI814x/TI8107

VPS_M2M_INST_SEC0_SC5_WB2 Supported Supported

VPS_M2M_INST_BP0_SC5_WB2/ VPS_M2M_INST_BP1_SC5_WB2 Supported Supported

Features supported

Features
Supported

VPS_M2M_INST_SEC0_SC5_WB2
Instance

VPS_M2M_INST_BP0_SC5_WB2/
VPS_M2M_INST_BP1_SC5_WB2

Instances

VPS_M2M_INST_SEC0_SC3_VIP0/
VPS_M2M_INST_SEC1_SC4_VIP1

Instances

Chroma up
sampling from
YUV420 semiplanar
to YUYV422
interleaved format.

Supported Not supported Supported

Input from Tiled
buffer

Supported Not supported Supported

Scaling from 1/8x to
2014 maximum
pixels in horizontal
direction. Vertical
scaling upto 1080
lines without any
ratio limitation.

Supported Supported Supported

Supports user
programmable as
well as standard set
of coefficients for
the scalar.

Supported Supported Supported

Supports horizontal
and vertical
cropping of the
image before
scaling.

Supported Supported Supported

Supports different
types of scalar like
poly phase and
running average.

Supported Supported Supported

Output data formats
supported

FVID2_DF_YUV422I_YUYV FVID2_DF_YUV422I_YUYV FVID2_DF_YUV422I_YUYV,
FVID2_DF_YUV420SP_UV

UserGuideHdvpssM2mDriver 109

Features Not Supported
• Interlaced image at input or output not supported.

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here driver is used to submit the frames for processing and getting the processed frames from the

driver.
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.
Note
Details of the structure, enumerations and #defines mentioned in the section can be found in HDVPSS API Guide

System Init Phase
The scalar driver initialization happens as part of overall HDVPSS system init. This API must be the the first API
call before making any other FVID2 calls. Below section lists the APIs which are part of the System Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

Create Phase
In this phase user application opens or creates a driver instance. Each instance of the driver supports
VPS_M2M_SC_MAX_HANDLE (defined in vps_m2mSc.h) handles creation. Operation commands from the
different handles of the same instance will be serialized by the driver and will be served by the singe instance of the
hardware. Below sections lists the API interfaces to be used in the create phase. Create phase allows the application
to do the configuration either through control commands exposed by driver or through the parameters passed with
the driver create API.

FVID2_create

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.
drvId - Driver Id for all the instances of the scalar driver is FVID2_VPS_M2M_SC_DRV
instanceId - Pass VPS_M2M_INST_BP0_SC5_WB2/VPS_M2M_INST_BP1_SC5_WB2 macro to open the 422P
bypass path1/bypass path2 instance of the driver. VPS_M2M_INST_SEC0_SC5_WB2 opens secondary path scalar
instance of driver and VPS_M2M_INST_SEC0_SC3_VIP0/VPS_M2M_INST_SEC1_SC4_VIP1 opens the

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssM2mDriver 110

secondary path scalar driver involving one of the VIP hardware.
createArgs - Pass a pointer to Vps_M2mScCreateParams structure containing the valid parameters. This
parameter should not be null
createStatusArgs - Pass a pointer to Vps_M2mScCreateStatus structure.
cbParams - Pass the pointer to FVID2_DrvCbParams. These call back parameters are used to indicate the
successful processing of the frame or the error frames.

FVID2 Control - Set Scalar Coefficient

This is used to issue a control command to the driver. IOCTL_VPS_SET_COEFFS ioctl is used to set the scalar
coefficients. This is a blocking call.
Important
This API must not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SET_COEFFS ioctl.
cmdArgs - Pointer to Vps_ScCoeffParams structure containing valid scaling coefficient. This parameter should
not be NULL. Since this driver has a single scalar in all the paths, the scalarId can be set to 0. It is ignored.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

More information

This IOCTL is used to program the scalar coefficients. Scalar coefficients programmed by a handle will affect all the
open handles and can be programmed only if none of the requests for that handle are pending to be processed in the
driver. It supports standard set of coefficients for the different scaling ratios as well as the user coefficient

FVID2 Control - Enable/Disable Lazy Loading

This is used to issue a control command to the driver. IOCTL_VPS_SC_SET_LAZY_LOADING ioctl is used to
enable/disable Scalar Lazy Loading. This is a blocking call.
Important
This API should not be called when there are any pending requests with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SC_SET_LAZY_LOADING ioctl.
cmdArgs - Pointer to Vps_ScLazyLoadingParams structure. This parameter must not be NULL. Since this
driver has a single scalar in all the paths, the scalarId can be set to 0. It is ignored.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.
cmdStatusArgs - This is for future use. Application can safely pass NULL. Driver ignores this.

UserGuideHdvpssM2mDriver 111

More information

This IOCTL enables or disables Lazy Loading for the scalar coefficients.
Without the Scalar Lazy Loading feature for memory to memory drivers, the user needs to set coefficients for all
scalars in the driver instance as per the channel characteristics. When multiple drivers are simultaneously used, this
makes programming more complex. By using Lazy Loading, the user does not need to be concerned with this, and
can simply enable Lazy Loading, and the coefficient configuration happens automatically internally. Also, for
multi-channel scaling, the scaler coefficients and filter type are fixed for the frames being scaled on all channels. Due
to this, if frames of different size are provided on the channels, it results in lower quality scaling output. To ensure
good quality scaling output, the user is hence required to issue frames one by one and make
IOCTL_VPS_SET_COEFFS commands to change the scaling coefficients in between the issued frames. This causes
programming complexity. When Lazy Loading is enabled, the driver internally configures the scalar coefficients if
required, as per the frame characteristics, when the frames are issued, and the user does not need to configure the
coefficients in between frame issues.
Features:

1. Scalar Lazy Loading is supported for memory-to-memory drivers only
1. SC5: sec0 wb path
2. SC1 and SC2: DEI path
3. SC3 and SC4: VIP path

2. The driver internally selects the appropriate scaling coefficients for each frame (channel). If the scaling factor is
different from the current scaling factor for that scalar, it internally sets the coefficients before processing the
frame.

3. The driver internally selects the appropriate vertical scaling filter (polyphase or running average) for each frame
depending on the scaling ratio for that frame. For higher than 1/4 scaling ratio for Vertical scaling, RAV filter is
used.
1. The polyphase filter is used for upscaling for horizontal as well as on vertical side.
2. For horizontal scaling, decimation filters are internally configured when horizontal scaling factor is less than

1/2.
4. The decision to enable/disable lazy loading is configurable through the IOCTL:

IOCTL_VPS_SC_SET_LAZY_LOADING
5. If a scalar is in bypass, then loading any coefficients does not happen for that scalar.

1. If the src and dest are same, but scalar is not in bypass, the loading of coefficients still happens if there is a
difference with previous coefficients.

6. If RT params are provided, the scaling factor configuration accordingly changes, and coefficient configuration
may happen if necessary.

7. By default, Scalar Lazy Loading is disabled for all scalars.

UserGuideHdvpssM2mDriver 112

Run Phase
M2m drivers are non-streaming drivers. This phase is used to submit the requests for processing and getting the
processes request back.

Start and stop

NA

FVID2_processFrames

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

This is used to submit the frames for processing. Processlist contains the frames from various channels to be
processed. Application can open the driver for N channels and it can submit request for the M channels where M <=
N. Processlist is returned to the driver and it can use the processlist for submitting the next request whereas all the
elements inside the processlist is driver's ownership and can be reused by application only after de-queuing the
request. This is a non blocking call and requests are queued inside the driver for processing. Driver calls the
application call back once the hardware completes processing the request.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the processlist containing the frames to be processed. User can also pass the run time parameters
with the processlist to change the parameters run time. Run time parameters only needs to be passed once.
Subsequent process_frames function will be operated with the last run time parameters passed. If user wants to
updated that again new set of run time parameters needs to be passed. The driver supports run time parameters
change in synchronous with the submitted frame. Run time parameter structure supported by scalar driver is
Vps_M2mScRtParams.
Application needs to pass this structure either with the framelist or with the individual frames. If the driver is open
with the same configuration for all the channels then user needs to pass the pointer to this structure with the input
frame list or else if the driver is open with separate configuration for each channel user needs to pass the the pointer
to this structure with each individual frame of the input frame list.
User need to populate the structure and pass the same pointer to inFramelist or the frames inside the frame list
depending upon how the driver is opened as explained earlier.
Warning
Run time parameter interface may change in the future as this interface is currently experimental.

FVID2_getProcessedFrames

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

This is used to de-queue the already processed request. This is again a non blocking call and if there are requests in
the driver to be de-queued it will return the dequeued frames in the processlist else it will return with error.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the pointer to the processlist. Driver will copy the pointer to the processed framelist to the
processlist.
timeout - Currently unused arguments. Driver ignores this.

UserGuideHdvpssM2mDriver 113

Delete Phase
In this phase FVID2 delete API is called to close the driver handle. Hardware resources are freed once all the handles
of the particular instance are freed. Handle can be opened again once close with different configuration.

FVID2_delete

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

This API is used to close the driver. This is again a blocking call. Call returns only when the handle is closed. This
API will return error is the request is queued and application tries to close the driver. All queued requests needs to be
de-queued before closing of the driver.
handle - Pass the handle returned to the application while opening of the driver.
deleteArgs - This is reserved for future use. Application must pass NULL.

System De-Init Phase

FVID2 de-Init

Drivers gets de-initializes as a part of HDVPSS sub-system de-Initialization. Here all resources acquired during
system initialization are free'ed. Make sure all driver instances and handles are deleted before calling this API.
Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

Sample Application

Typical application flow
Following diagram shows the typical application flow for the driver:

Sample Application Flow - Secondary path to
Scalar M2M Driver

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:M2M_FlowChart.png

UserGuideHdvpssM2mDriver 114

Scalar driver application
Multichannel scalar applications exercise all the instances of the scalar driver. It presents the users with the different
options to run scalar driver with different options and different configurations of the driver like multiple channels,
different resolutions and different data formats. It also prints the frame per second achieved and the CPU load.
This example illustrates the five paths supported by SC5/SC3/SC4 scalar memory to memory driver for subframe
based processing. Driver path can be selected using user input through console.
• Secondary 0 Path to SC5 Scale: VPS_M2M_INST_SEC0_SC5_WB2
• Bypass Path0 to SC5 Scale: VPS_M2M_INST_BP0_SC5_WB2
• Bypass Path1 to SC5 Scale: VPS_M2M_INST_BP1_SC5_WB2
• Secondary 0 Path to VIP SC3 Scale:VPS_M2M_INST_SEC0_SC3_VIP0
• Secondary 1 Path to VIP SC4 Scale:VPS_M2M_INST_SEC1_SC4_VIP1
Application takes the input buffers for processing, optionally processes the buffers based on the option selected and
writes the buffer back to memory. Following are the steps to run the multichannel application.
• Please refer Common Steps for connecting CCS to TI816x, running gel file etc.
• Load hdvpss_examples_m2mScMultiChan.xem3' at

$(rel_folder)\build\example-name\bin\ti816x-evm\example-name-whole-program-debug.xem3

to DSS M3 debug session
• Run the application.
• Different options are printed for the scalar driver on the console.
• Select the required options
• The application will halt for the user to load the input frames. Using loadRaw command load images on the

memory location mentioned in the console print.
The command to be used for loading the image into the memory buffer shall be printed on the console. For example,
the command for loading the images is similar to the below:

loadRaw(<addr>, 0,

"<filePath>\\<fileName>_nv12_prog_packed_720_480.tigf", 32,

 false);

• Enter an alphanumeric letter and press enter after loading
• Run the program till it shows the options again
• Save the processed images. Using saveRaw command, the image file can be saved. The command to be used

for saving the image file from the memory buffer shall be printed on the console. For example, the command for
saving the image file is similar to the below:

saveRaw(0, <addr>,

"<filePath>\\<fileName>_nv12_prog_packed_1920_1080.tigf",

777600, 32, true);

Warning
If the processor is not halted or waiting for console input when saving the images, the images will be seen green as
the data dumped will be 0x00.
• View the saved images using any external YUV image viewer.
• The image can also be viewed with the Image Analyzer tool in CCSV4.
• Following image shows the properties of the image analyzer tool for viewing the image. Address of the each

buffer needs to be changed and then right click on the image and say "Refresh".

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssM2mDriver 115

Image Analyzer properties for viewing 720X480
YUV Packed images

SubFrame Based Scaling

Introduction
Applications which requires low latency in video processing, like Video communications, divides video frame in to
multiple parts, called subframes and do all processing at subframe level. This results in total end2end delay reduction
and thus enhances user experience.
This chapter describes support of subframe based scaling in memory to memory drivers, application software
interfaces, and sample application usage.

Software Overview
Application can enable subframe processing for each channel at Create time by setting enable flag and providing
number of lines per subframe in Channel create parameters.
For Processing, Application should pass subframe number and number of lines available in the frame as input along
with the frame start address, for each subframe. Driver will process this subframe and updates the number of lines
available in output frame for further processing by other modules.
Chroma upsampler and scalar uses multi-tap filters to achieve their functionality. Because of this, subframe level
processing requires few lines of video from previous and next subframes to match subframe level processing output
with frame level processing. This memory is referred as Line memory.
Line memory required will change based on the type of vertical filter used in scalar, Polyphase/Running Average
and input type, YUV420/YUYV422. This Line memory for each subframe is calculated internally by the driver and
used for the subframe processing to adjust buffer offsets and other parameters. Also driver calculates scalar phase
information for each subframe and program them in scalar for that subframe processing.
As each subframe contains integral number of lines, No special considerations are required for horizontal scalar.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Image_Properties_720X480.png

UserGuideHdvpssM2mDriver 116

Supported Drivers
SubFrame based processing is supported in following set of drivers:
• DEIH/DEI Memory to Memory Driver: MAIN-DEIH-SC1-WB0 and AUX-DEI-SC2-WB1 single scale paths.
• Scalar5 Memory to Memory Driver with Secondary 0 path OR Bypass path 0 OR Bypass path 1.

Features Supported
• SubFrame processing for different types of vertical scalar, like poly phase and running average.
• SubFrame processing for YUV420 semi planar(NV12) or YUYV422 progressive input.

Features Not Supported
• Interlaced image at input or output not supported.

Software Application Interfaces
This section describes SubFrame processing related structures and parameters setting in FVID2 level functions.

Application Interfaces

FVID2_create

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.
To enable subframe processing, Vps_SubFrameParams structure elements inside createArgs structure of
corresponding driver needs to be populated with below values:
• Vps_SubFrameParams->subFrameModeEnable should be set to TRUE
• Vps_SubFrameParams->numLinesPerSubFrame should be set to a value equal to

framseSize/NumberOfSubFramesPerFrame.

FVID2_processFrames

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

This is used to submit the frames for processing. Processlist contains the frames from various channels to be
processed. Application can open the driver for N channels and it can submit request for the M channels where M <=
N. Processlist is returned to the driver and it can use the processlist for submitting the next request whereas all the
elements inside the processlist is driver's ownership and can be reused by application only after de-queuing the
request. This is a non blocking call and requests are queued inside the driver for processing. Driver calls the
application call back once the hardware completes processing the request.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the processlist containing the frames to be processed.

UserGuideHdvpssM2mDriver 117

For channels where subframe processing is enabled, FVID2_SubFrameInfo structure (inside FVID2_Frame)
of the frames related to this channel needs to be populated with below values.
• FVID2_SubFrameInfo->subFrameNum should be set to '0' for first subframe and needs to be incremented

by '1' for subsequent subframes.
• FVID2_SubFrameInfo->numInLines should be set to Number of lines avaialble in the frame at the end of

current subframe.
Warning
SubFrame parameter interface may change in future as this interface is currently experimental.

FVID2_getProcessedFrames

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

This is used to de-queue the already processed request. This is again a non blocking call and if there are requests in
the driver to be de-queued it will return the dequeued frames in the processlist else it will return with error.
handle - Pass the handle returned to the application while opening of the driver.
processList - Pass the pointer to the processlist. Driver will copy the pointer to the processed framelist to the
processlist.
For the channels where subframe processing is enabled, FVID2_SubFrameInfo structure of output frames will
be updated by driver.
• FVID2_SubFrameInfo->subFrameNum contains latest subframe number processed by driver, 0 to N-1.
• FVID2_SubFrameInfo->numOutLines contains Number of lines avaialble in output frame after

processing current subframe.
timeout - Currently unused arguments. Driver ignores this.

Sample Applications

SubFrame Processing in SC5 M2M driver
This example illustrates the three paths supported by SC5 scalar memory to memory driver for subframe based
processing. Driver path can be selected using user input through console.
• Secondary 0 Path to SC5 Scale: VPS_M2M_INST_SEC0_SC5_WB2
• Bypass Path0 to SC5 Scale: VPS_M2M_INST_BP0_SC5_WB2
• Bypass Path1 to SC5 Scale: VPS_M2M_INST_BP1_SC5_WB2
Application opens the driver in a single channel configuration with one channel per handle.
Application takes the single YUV420 semi planar (NV12 format) image (SEC0 path) OR YUYV422 (for BP0/1
path) from the memory of size SD (720X480) as 4 subframes and outputs 1920x1080 image of YUYV422 format.
For SEC0 pathm Chroma upsampler in the path converts the YUV420 to YUYV22 while the scalar in the path scales
the image from SD to full HD. Following are the steps to run the sample application.
• Please refer Common Steps for connecting CCS to TI816x, running gel file etc.
• Load hdvpss_examples_m2mScMultiChan.xem3' at

$(rel_folder)\build\bin\$platform\m3vpss\whole_program_debug

to DSS M3 debug session
• Run the application.
• The application will halt for the user to select driver instance to run and to load the input frames.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssM2mDriver 118

• Please select the any one of the options for subframe based scaling examples:
• 1 CH SUB-FRAME PROCESSING YUV420 SD ---> YUV422 HD, Driver:

VPS_M2M_INST_SEC0_SC5_WB2
• 1 CH SUB-FRAME PROCESSING YUV422 SD ---> YUV422 HD, Driver: VPS_M2M_INST_BP0_SC5_WB2
• 1 CH SUB-FRAME PROCESSING YUV422 SD ---> YUV422 HD, Driver: VPS_M2M_INST_BP1_SC5_WB2
• Using loadraw command load the YUV420 Semiplanar/YUYV422 image of size 720X480 on the memory

location mentioned in the console print. Following is the command for loading the image.

loadRaw(<addr>,0,"d:\\NV_12\\000_nv12_prog_packed_720_480.tigf",32,false);

• Enter an alphanumeric letter and press enter after loading
• Run the program till it outputs "Test Successful!!" on console
• Halt the processor and save the image. Following is the command for saving the image. Program prints the output

buffer address. Please verify that output buffer address are same from where the image is stored. If its not same
save the images from correct address after modifying the below addresses.

saveRaw(0,<addr>,"d:\\results\\ch.yuv",1036800,32,true);

Warning
If the proccessor is not halted before saving of the images. Images will be seen green as the data dumped will be
0x00.
• View the image with the Image Analyzer tool in CCSV4. Image format is YUYV422 interleaved 1920X1080
• Saved Images can also be viewed using any external YUV image viewer.

SubFrame processing in DEI M2M Single Scale
This example illustrates two paths supported by DEI memory to memory driver for subframe processing. Driver path
can be selected using user input through console.
• DEIH Single Scale writeback: MAIN-DEIH-SC1-WB0
• DEI Single Scale writeback: AUX-DEI-SC2-WB1
DEIH/DEI Single Scale SubFrame processing example features: 720x480 progressive YUV420 data is fed into the
DEI path. DEI, DRN are configured in bypass mode. This application will feed the frame as 4 subframes to driver.
Input is scaled to 360x240 (YUV422) in 4 parts and written to memory via the WB0/WB1 path.
• Please refer Common Steps for connecting CCS to TI816x, running gel file etc.
Warning
Please recompile hdvpss_example_m2mDeiScale.xem3 after editing
packages\ti\psp\examples\ti816x\vps\m2m\m2mDeiScale\src\M2mDeiScale_test.c to define
SC_APP_TEST_SUBFRAME and also reduce DEI_TOTAL_LOOP_COUNT macro to 1. This will be fixed in next
release to provide pre-built executable
• Load hdvpss_example_m2mDeiScale.xem3 executable file found at

$(rel_folder)\build\bin\ti816x-evm\m3vpss\whole_program_debug to DSS M3 debug session
• Run the application
• The application will halt for the user to load the input frames and to select driver path. Using loadRaw command

in script console of CCS, load one 720 x 480 YUV420 semi-planar video to location mentioned in the console
print. (Ignore "syntax error" if it appears during loading)

loadRaw(< Location >, 0, " < File Path > ", 32, false);

• Choose the required mode of driver from displayed options and enter in 'CCS console' window

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssM2mDriver 119

Ex: For DEI WB1 single output driver, type '1' followed by 'enter' in console

window.

• The application will print status on console for each subframe processed. After processing is complete,
application will wait for the user to save scaled output to file. Use the output buffer address printed in console for
'Location' in below command.

saveRaw(0, < Location >, " < File Path > ", 436800, 32, true);

• Press any numeric key to exit application after saving output image.

Deinterlacer - Memory to Memory Driver

TI814X/TI8107 Deinterlacer Memory to Memory Driver
→ TI814X/TI8107 DEI M2M Driver

TI816X Deinterlacer Memory to Memory Driver
→ TI816X DEI M2M Driver

UserGuideHdvpssTi816xDeiM2mDriver

TI816X Deinterlacer (DEIH/DEI) Memory to Memory Driver

Introduction
This chapter describes the hardware overview, application software interfaces, typical application flow and sample
application usage for DEIH/DEI memory to memory driver.
The features and limitations of current driver implementation are listed in subsequent sections.
Important
The features supported or NOT supported in any release of the driver may vary from one HDVPSS driver release to
another. See respective release notes for exact release specific details.

Features Supported

Features Supported in
TI816x

Instances

MAIN-DEIH-SC1-WB0 single scale paths YES

AUX-DEI-SC2-WB1 single scale paths YES

MAIN-DEIH-SC3-VIP0 dual scale paths YES

AUX-DEI-SC4-VIP1 dual scale paths YES

MAIN-DEIH-SC1-SC3-WB0-VIP0 dual scale paths YES

AUX-DEI-SC2-SC4-WB1-VIP1 dual scale paths YES

Input Formats

YUV422 Interleaved YES

UserGuideHdvpssTi816xDeiM2mDriver 120

YUV420 Semi-Planar YES

YUV422 Semi-Planar YES

YUV420 Semi-Planar Tiled YES

YUV422 Semi-Planar Tiled YES

Output Formats

YUV422 Interleaved on WB0/1 YES

YUV422 Interleaved on VIP0/1 YES

YUV420 Semi-Planar on VIP0/1 YES

YUV422 Semi-Planar on VIP0/1 YES

YUV420 Semi-Planar Tiled on VIP0/1 YES

YUV422 Semi-Planar Tiled on VIP0/1 YES

RGB on VIP0/1 NO

DEI Features

DEI in deinterlacing mode YES

DEI in progressive bypass mode YES

Compression enable/disable for previous field inputs YES

DEIH/DEI Mode1 in which both DEIH and DEI are operating to provide 30 fps output from DEIH from 60 input fields per
second

YES

Line averaging and field averaging mode of DEI operation YES

Progressive TNR operation in DEIH YES

SC Features

Optional scaling using SC1, SC2, SC3 and SC4 YES

Scaling from 1/8x to 2048 maximum pixels in horizontal direction YES

Different types of scalar like poly phase and running average YES

Horizontal and vertical cropping of the image before scaling YES

User programmable scalar coefficients YES

Other Features

Enable/disable of DRN YES

Frame drop feature on WB0/1 and VIP0/1 outputs to enable load balancing YES

Multi-channel (up to VPS_M2M_DEI_MAX_HANDLE_PER_INST channels per instance) YES

Multi-handle (up to VPS_M2M_DEI_MAX_HANDLE_PER_INST channels per instance) YES

Error callbacks YES

Slice based scaling when DEI is in progressive bypass mode YES

Slice based scaling when DEI is in deinterlacing mode NO

Interlaced bypass mode NO

Runtime Configurations

Input resolution change when DEI is in progressive bypass mode YES

Input resolution change when DEI is in deinterlacing mode YES

Output resolution change on WB0/1 YES

Output resolution change on VIP0/1 YES

UserGuideHdvpssTi816xDeiM2mDriver 121

SC crop and config change on SC1/SC2 YES

SC crop and config change on SC3/SC4 YES

DEI reset YES

Hardware Overview
Below figures show the complete HDVPSS Hardware. The red bold lines in the figure shows the path on which the
DEI memory to memory driver operates.
DEI-WB0/1 Single Output Paths: As shown in below figures, the DEI memory to memory driver takes in
YUYV422/YUV420 interlaced/progressive input via the DEI path and provide single scaled output of the
deinterlaced/bypassed output via writeback path 0/1.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeihSingleScM2MPath.JPG

UserGuideHdvpssTi816xDeiM2mDriver 122

DEI-VIP0/1 Single Output Paths: As shown in below figures, the DEI memory to memory driver takes in
YUYV422/YUV420 interlaced/progressive input via the DEI path and provide single scaled output of the
deinterlaced/bypassed output via VIP path 0/1.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiSingleScM2MPath.JPG

UserGuideHdvpssTi816xDeiM2mDriver 123

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeihSingleScVipM2MPath.JPG

UserGuideHdvpssTi816xDeiM2mDriver 124

MAIN-DEIH-SC1-SC3-WB0-VIP0 and AUX-DEI-SC2-SC4-WB1-VIP1 Dual Output Paths: As shown in
below figures, the DEI memory to memory driver takes in YUYV422/YUV420 interlaced/progressive input via the
DEI path and provide two scaled version of the deinterlaced/bypassed outputs - one via writeback path 0/1 and
another via VIP 0/1.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiSingleScVipM2MPath.JPG

UserGuideHdvpssTi816xDeiM2mDriver 125

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeihDualScaleM2MPath.JPG

UserGuideHdvpssTi816xDeiM2mDriver 126

Below figure shows the DEIH-DEI Mode1 driver. The red bold lines in the figure shows the path on which the
DEIH-DEI Mode1 memory to memory driver operates.

HDVPSS Block Diagram - DEIH-DEI Mode1
Memory Path

In this mode of DEI driver, both the DEIH and DEI are used to deinterlace input fields. DEI is used to get YUYV422
interleaved data from YUV420 semi-planar input data. This YUYV422 interleaved output will be fed to the DEIH as
one field delayed data. DEIH is used in 4 field mode to deinterlace input fields. It takes two input fields i.e. current
field and previous field from DEI and generates deinterlaced frame.
Even field of all the input channels are fed to the DEI. DEI will provide YUYV422 interleaved data from WB1 and
it will provide scaled YUV420 frames from VIP1. The odd field of the all the input channels are fed to the DEIH
along with the 422 interleaved fields from DEI to deinterlace these fields.
Below diagram shows an example of DEIH-DEI Mode1 driver where even fields of all the input channels are fed to
DEI to get the YUYV422 interleaved data and these YUYV422 interleaved data is fed to the DEIH as one field data
along with the odd fields of all the input channels. DEIH deinterlaces odd fields of all the channels and generates
frame. This generated frame can again be scaled in VIP0 to get the YUYV422 interleaved or YUV420 semi-planar
data. It can also be scaled in SC1 to get the YUYV422 interleaved data.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiDualScaleM2MPath.JPG
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiHqMqMode1M2MPath.png

UserGuideHdvpssTi816xDeiM2mDriver 127

Since only one field of the input channel is getting deinterlaced, output frame rate will be 30 frames per second from
60 fields per second for all the input channels in this mode of the driver.

HDVPSS Block Diagram - DEIH-DEI Mode1
Path

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here driver is used to submit the frames for processing and getting the processed frames from the

driver.
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.
Note
Details of the structure, enumerations and #defines mentioned in the section can be found in HDVPSS API Guide

System Init Phase
DEI M2m driver initialization happens as part of overall HDVPSS system init. This API must be the the first API
call before making any other FVID2 calls. Below section lists the APIs which are part of the System Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

 /* Init FVID2 and VPS */

 retVal = FVID2_init(NULL);

 if (FVID2_SOK != retVal)

 {

 System_printf("FVID2 Init failed\n");

 }

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiHqMqMode1Exmpl.png
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssTi816xDeiM2mDriver 128

Create Phase
In this phase user application opens or creates a driver instance. Each instance of the driver supports
VPS_M2M_DEI_MAX_HANDLE_PER_INST (defined in vps_m2mDei.h) handles creation. Operation commands
from the different handles of the same instance will be serialized by the driver and will be served by the singe
instance of the hardware. Below sections lists the API interfaces to be used in the create phase. Create phase allows
the application to do the configuration either through control commands exposed by driver or through the parameters
passed with the driver create API.

FVID2 Create

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - FVID2_VPS_M2M_DEI_DRV to open the driver.
instanceId - VPS_M2M_INST_MAIN_DEIH_SC1_SC3_WB0_VIP0 macro to open
MAIN-DEIH-SC1-SC3-WB0-VIP0 dual scale memory driver.
VPS_M2M_INST_AUX_DEI_SC2_SC4_WB1_VIP1 macro to open AUX-DEI-SC2-SC4-WB1-VIP1 dual scale
memory driver. VPS_M2M_INST_MAIN_DEIH_SC1_WB0 macro to open MAIN-DEIH-SC1-WB0 single scale
memory driver. VPS_M2M_INST_AUX_DEI_SC2_WB1 macro to open AUX-DEI-SC2-WB1 single scale memory
driver. VPS_M2M_INST_MAIN_DEIH_SC3_VIP0 macro to open MAIN-DEIH-SC3-VIP0 single scale memory
driver. VPS_M2M_INST_AUX_DEI_SC4_VIP1 macro to open AUX-DEI-SC4-VIP1 single scale memory driver.
createArgs - Pointer to Vps_M2mDeiCreateParams structure containing valid create params. This parameter
should not be NULL.
createStatusArgs - Pointer to Vps_M2mDeiCreateStatus structure containing the return value of create
function and other driver information. This parameter should not be NULL.
cbParams - Pointer to FVID2_CbParams structure containing FVID2 callback parameters. This parameter
should not be NULL.

 FVID2_Handle fvidHandle;

 FVID2_CbParams cbParams;

 Vps_M2mDeiChParams chPrms;

 Vps_M2mDeiCreateParams createParams;

 Vps_M2mDeiCreateStatus createStatus;

 /* Init create params */

 createParams.mode = VPS_M2M_CONFIG_PER_CHANNEL;

 createParams.numCh = 1u;

 createParams.deiHqCtxMode = VPS_DEIHQ_CTXMODE_DRIVER_ALL;

 createParams.chParams = &chPrms;

 createParams.isVipScReq = TRUE;

 /* Init callback parameters */

 cbParams.cbFxn = App_m2mDeiAppCbFxn;

UserGuideHdvpssTi816xDeiM2mDriver 129

 cbParams.errCbFxn = App_m2mDeiAppErrCbFxn;

 cbParams.errList = &errProcessList;

 cbParams.appData = NULL;

 cbParams.reserved = NULL;

 /* Open the driver */

 fvidHandle = FVID2_create(

 FVID2_VPS_M2M_DEI_DRV,

 VPS_M2M_INST_MAIN_DEIH_SC1_SC3_WB0_VIP0,

 &createParams,

 &createStatus,

 &cbParams);

 if (NULL == fvidHandle)

 {

 System_printf("Create failed!!\n");

 }

FVID2 Control - Set Scalar Coefficient

This is used to issue a control command to the driver. IOCTL_VPS_SET_COEFFS ioctl is used to set the scalar
coefficients. This is a blocking call.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SET_COEFFS ioctl.
cmdArgs - Pointer to Vps_ScCoeffParams structure containing valid scaling coefficient. This parameter should
not be NULL. To set the scalar coefficient for DEI scalar, scalarId should be set to
VPS_M2M_DEI_SCALAR_ID_DEI_SC and for VIP scalar scalarId should be set to
VPS_M2M_DEI_SCALAR_ID_VIP_SC.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Enable/Disable Lazy Loading

This is used to issue a control command to the driver. IOCTL_VPS_SC_SET_LAZY_LOADING ioctl is used to
enable/disable Scalar Lazy Loading. This is a blocking call.
Important
This API should not be called when there are any pending requests with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.

UserGuideHdvpssTi816xDeiM2mDriver 130

cmd - IOCTL_VPS_SC_SET_LAZY_LOADING ioctl.
cmdArgs - Pointer to Vps_ScLazyLoadingParams structure. This parameter must not be NULL. To
enable/disable Lazy Loading for DEI scalar, scalarId should be set to
VPS_M2M_DEI_SCALAR_ID_DEI_SC and for VIP scalar scalarId should be set to
VPS_M2M_DEI_SCALAR_ID_VIP_SC.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Get DEI Context Information

When DEI is in de-interlacing mode, DEI requires previous fields and motion vectors. Buffers for storing these
context information must be allocated by the application and provided to the driver before starting M2M operation.
IOCTL_VPS_GET_DEI_CTX_INFO ioctl is used to get the number of internal buffers to be allocated and their
sizes. Application should get this information from the driver and allocate these buffers and provide the buffers to
the driver before issuing any request. Once these buffers are given to the driver, application should not modify these
buffers. This should be done for each and every channel. This is a blocking call.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_GET_DEI_CTX_INFO ioctl.
cmdArgs - Pointer to Vps_DeiCtxInfo structure where the DEI context information will be filled by driver.
This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Set DEI Context Buffers

IOCTL_VPS_SET_DEI_CTX_BUF ioctl is used to set the DEI context buffers for a channel before providing any
request to the driver. This is a blocking call.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SET_DEI_CTX_BUF ioctl.
cmdArgs - Pointer to Vps_DeiCtxBuf structure valid buffer pointers as requested by the driver for a particular
DEI mode of operation. This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

UserGuideHdvpssTi816xDeiM2mDriver 131

FVID2 Control - Get DEI Context Buffers

IOCTL_VPS_GET_DEI_CTX_BUF ioctl is used to get the DEI context buffers for a channel from the driver. Once
the DEI context buffer is returned to the application, no more request should be provided to the driver. This is a
blocking call.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_GET_DEI_CTX_BUF ioctl.
cmdArgs - Pointer to Vps_DeiCtxBuf structure where the driver returns back the DEI context buffer to the
application. This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

Run Phase
M2m drivers are non-streaming drivers. This phase is used to submit the requests for processing and getting the
processes request back.

Start and stop

NA

FVID2 Process Frames

This API is used to submit video buffers to the driver for processing operation. This is a non-blocking call and
should be called from task context. Once the buffer is queued the application loses ownership of the buffer and is not
suppose to modify or use the buffer.

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

handle - Driver handle returned by create function call. This parameter should not be NULL.
processList - Pointer to FVID2_ProcessList structure containing the pointer to the FVID2 frames/framelist.
This parameter should not be NULL.

FVID2 Get Processed Frames

This API is used by the application to get ownership of the processed video buffer from the memory driver. This is a
non-blocking call and could be called from task or ISR context.

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

handle - Driver handle returned by create function call. This parameter should not be NULL.
processList - Pointer to FVID2_ProcessList structure where the driver will copy the processed FVID2
frames/framelist. This parameter should not be NULL.

UserGuideHdvpssTi816xDeiM2mDriver 132

timeout - Not used currently as only non-blocking queue/dequeue operation is supported. This parameter should be
set to FVID2_TIMEOUT_NONE.

Delete Phase
In this phase FVID2 delete API is called to close the driver handle. Hardware resources are freed once all the handles
of the particular instance are freed. Handle can be opened again, once close, with different configuration.

FVID2 Delete

This API is used to close the memory driver. This is a blocking call and returns after closing the handle.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
deleteArgs - Not used currently. This parameter should be set to NULL.

System De-Init Phase

FVID2 de-Init

Drivers gets de-initializes as a part of HDVPSS sub-system de-Initialization. Here all resources acquired during
system initialization are free'ed. Make sure all driver instances and handles are deleted before calling this API.
Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

Sample Application

Sample Application Flow
Following diagrams show the typical application flows for the DEI memory driver - TODO

DEI Single and Dual Scale
This example illustrates the six paths supported by DEI memory to memory driver involving single and dual scaling
outputs as listed below. Driver path can be selected using user input through console.
• DEIH Single Scale: MAIN-DEIH-SC1-WB0
• DEI Single Scale: AUX-DEI-SC2-WB1
• DEIH-VIP0 Single Scale: MAIN-DEIH-SC3-VIP0
• DEI-VIP1 Single Scale: AUX-DEI-SC4-VIP1
• DEIH-VIP0 Dual Scale: MAIN-DEIH-SC1-SC3-WB0-VIP0
• DEI-VIP1 Dual Scale: AUX-DEI-SC2-SC4-WB1-VIP1
DEIH/DEI Single Scale example features: 720x240 interlaced YUV420 data is fed into the DEI path. DEI is
configured in deinterlacing mode. The deinterlaced input is scaled to 360x240 (YUV422) and output via the
WB0/WB1 path.
DEIH/DEI-VIP0/1 Single Scale example features: 720x240 interlaced YUV420 data is fed into the DEI path. DEI is
configured in deinterlacing mode. The deinterlaced input is is fed to the VIP0/1 through the transcode path and
converted to 720x480 YUV420 progressive output.

UserGuideHdvpssTi816xDeiM2mDriver 133

DEIH-VIP0/DEI-VIP1 Dual Scale example features: 720x240 interlaced YUV420 data is fed into the DEI path. DEI
is configured in deinterlacing mode. The deinterlaced input is scaled to 360x240 (YUYV422) and output via the
WB0/WB1 path. Simultaneously the video is fed to the VIP0/1 through the transcode path and converted to 720x480
YUV420 progressive output.
• Please refer Common Steps for connecting CCS to TI816x, running gel file etc.
• Load hdvpss_examples_m2mDeiScale.xem3 executable file found at

$(rel_folder)\build\bin\ti816x-evm\m3vpss\whole_program_debug

to DSS M3 debug session
• Run the application
• The application will halt for the user to load the input frames and to select driver path. Using loadRaw command

in script console of CCS, load 10 fields of
720 x 240 YUV420 semiplanar video to location mentioned in the console print. (Ignore "syntax error" if it appears
during loading)

loadRaw(< Location >, 0, " < File Path > ", 32, false);

• Choose the required mode of driver from displayed options and enter in 'CCS console' window

Ex: For DEI WB1 single ouput driver, type '1' followed by 'enter' in

console window.

• User can save the outputs to a file using the saveraw command as printed from the console window.

saveRaw(0, < Location >, " < File Path > ", 432000, 32,

true);

saveRaw(0, < Location >, " < File Path > ", 1296000, 32,

true);

• Application will stop after processing 10 frames

DEI HQMQ-Mode1
This application shows an example of the DEIH-DEI Mode1 feature of the DEI M2M driver. It opens both the DEI
instances, which provides dual output, in single channel per handle configuration mode. DEI takes even fields of the
input channel and provides YUYV422 interleaved output from WB 0/1 path and also provides 360x240 (with 368 as
pitch) YUV420 semi-planar output from VIP path. Odd fields of the the channel and YUYV422 interleaved output
from the DEI as one field delayed input are fed to the DEIH. DEIH provides deinterlaced 360x240 (with 720 as
pitch) YUYV422 interleaved output from DEIH writeback output and deinterlaced 720x480 YUV420 semi-planar
output from VIP.
• Please refer Common Steps for connecting CCS to TI816x, running gel file etc.
Load hdvpss_examples_m2mDeiScale.xem3 executable file found at
$(rel_folder)\build\bin\ti816x-evm\m3vpss\whole_program_debug
• Load hdvpss_examples_m2mDeiHqMqMode1.xem3 executable file found at

$(rel_folder)\build\bin\ti816x-evm\m3vpss\whole_program_debug to DSS M3 debug session
• Run the application after loading gets complete
• The application will halt for the user to load the input frames. Using loadRaw command in script console of CCS,

load 20 fields of 720 x 240 YUV420 semiplanar video to location mentioned in the console print for one handle.
(Ignore "syntax error" if it appears during loading)

loadRaw(< Location >, 0, " < File Path > ", 32, false);

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI81xx-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssTi816xDeiM2mDriver 134

• Once loading is completed. Press any key to continue. It prints output buffer addresses of DEI and VIP outputs.
These addresses can be used to store output images into file using saveRaw command. saveRaw command dumps
memory into a file. Use below command to save DEI SC_HQ output to a file

saveRaw(0, < Location >, " < File Path > ", 0x465000, 32,

true);

Use below command to save VIP0 output to a file

saveRaw(0, < Location >, " < File Path > ", 0x69780, 32,

true);

Use below command to save VIP1 output to a file

saveRaw(0, < Location >, " < File Path > ", 0x69780, 32,

true);

• Application will stop after processing 20 frames

UserGuideHdvpssTi814xDeiM2mDriver

TI814X/TI8107 Deinterlacer (DEI) Memory to Memory Driver

Introduction
This chapter describes the hardware overview, application software interfaces, typical application flow and sample
application usage for DEI memory to memory driver.
The features and limitations of current driver implementation are listed in subsequent sections.
Important
The features supported or NOT supported in any release of the driver may vary from one HDVPSS driver release to
another. See respective release notes for exact release specific details.

Features Supported

Features Supported in
TI814x

Supported in
TI8107

Instances

DEI_SC1_WB0 single scale path YES YES

DEI_SC3_VIP0 single scale path YES YES

DEI_SC1_SC3_WB0_VIP0 dual scale paths YES YES

SC2_WB1 single scale path YES YES

SC4_VIP1 single scale path YES YES

SC2_SC4_WB1_VIP1 dual scale paths YES YES

Input Formats

YUV422 Interleaved YES YES

YUV420 Semi-Planar YES YES

YUV422 Semi-Planar YES YES

UserGuideHdvpssTi814xDeiM2mDriver 135

YUV422 Semi-Planar Tiled NOT TESTED NOT TESTED

YUV420 Semi-Planar Tiled NOT TESTED NOT TESTED

Output Formats

YUV422 Interleaved on WB0 YES YES

YUV422 Interleaved on VIP0 YES YES

YUV420 Semi-Planar on VIP0 YES YES

YUV422 Semi-Planar on VIP0 YES NOT TESTED

YUV420 Semi-Planar Tiled on VIP0 NOT TESTED NOT TESTED

YUV422 Semi-Planar Tiled on VIP0 NOT TESTED NOT TESTED

RGB on VIP0 NO NO

DEI Features

DEI in deinterlacing mode YES YES

DEI in progressive bypass mode YES NOT TESTED

Compression enable/disable for previous field inputs NO/NA NO/NA

Line averaging and field averaging mode of DEI operation YES NOT TESTED

SC Features

Optional scaling using SC3 and SC5 YES YES

Scaling from 1/8x to 2048 maximum pixels in horizontal direction YES YES

Different types of scalar like poly phase and running average YES YES

Horizontal and vertical cropping of the image before scaling YES YES

User programmable scalar coefficients YES YES

Other Features

Frame drop feature on WB0 and VIP0 outputs to enable load balancing YES YES

Multi-channel (up to VPS_M2M_DEI_MAX_HANDLE_PER_INST channels per instance) YES YES

Multi-handle (up to VPS_M2M_DEI_MAX_HANDLE_PER_INST channels per instance) YES YES

Error callbacks YES YES

Slice based scaling when DEI is in progressive bypass mode NOT TESTED NOT TESTED

Slice based scaling when DEI is in deinterlacing mode NO NO

Interlaced bypass mode NO NO

Runtime Configurations

Input resolution change when DEI is in progressive bypass mode YES NOT TESTED

Input resolution change when DEI is in deinterlacing mode YES NOT TESTED

Output resolution change on WB0 YES NOT TESTED

Output resolution change on VIP0 YES YES

SC crop and config change on SC1/SC4 YES YES

SC crop and config change on SC3/SC4 YES YES

DEI reset NOT TESTED NOT TESTED

UserGuideHdvpssTi814xDeiM2mDriver 136

Hardware Overview
Below figures show the complete HDVPSS Hardware. The red bold lines in the figure shows the path on which the
DEI memory to memory driver operates.
DEI-WB0 Single Output Path As shown in below figures, the DEI memory to memory driver takes in
YUYV422/YUV420 interlaced/progressive input via the DEI path and provide single scaled output of the
deinterlaced/bypassed output via writeback path 0

DEI-SC3-VIP0 Single Output Path As shown in below figures, the DEI memory to memory driver takes in
YUYV422/YUV420 interlaced/progressive input via the DEI path and provide single scaled output of the
deinterlaced/bypassed output via VIP path 0.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814x_DEI_SC1_WB0.jpeg

UserGuideHdvpssTi814xDeiM2mDriver 137

DEI-SC1-SC3-WB0 Dual Output Path As shown in below figures, the DEI memory to memory driver takes in
YUYV422/YUV420 interlaced/progressive input via the DEI path and provide two scaled version of the
deinterlaced/bypassed outputs - one via writeback path 0 and another via VIP 0.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814x_DEI_VIP0_SC3.jpeg

UserGuideHdvpssTi814xDeiM2mDriver 138

SC2-WB1 Single Output Path As shown in below figures, the SC memory to memory driver takes in
YUYV422/YUV420 progressive input via the AUX path and provide single scaled output via writeback path 1 In
this Instance of the driver we dont have DEI in its path, so only scaling is performed.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814x_DEI_SC1_VIP0_SC3.jpeg

UserGuideHdvpssTi814xDeiM2mDriver 139

SC4-VIP1 Single Output Path As shown in below figures, the SC memory to memory driver takes in
YUYV422/YUV420 progressive input via the AUX path and provide single scaled output via VIP path 1. In this
Instance of the driver we dont have DEI in its path, so only scaling is performed.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814X_SC2_WB1.jpg

UserGuideHdvpssTi814xDeiM2mDriver 140

SC2-SC4-WB1-VIP1 Dual Output Path As shown in below figures, the SC memory to memory driver takes in
YUYV422/YUV420 progressive input via the AUX path and provide two scaled version of the outputs - one via
writeback path 1 and another via VIP 1.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814X_SC4_VIP1.jpg

UserGuideHdvpssTi814xDeiM2mDriver 141

Overview
De-interlacing operation of a field requires two previous fields. This requirement is abstracted by the driver, the
drivers holds back required input fields as context fields. The following expand on the behavior of the driver.

• Considering a single channel operation for DEI_SC1_WB0, following steps describe the operations
performed on FVID2_ProcessList.inFrameList referred as inFrameList

• First FVID2_processFrames () assuming F1 was submitted to be de-interlaced, on completion of this API,
FVID2_getProcessedFrames ()could be called to retrieve the output frame and input field. However, the
input field would be held back by the driver (F1 in this case). i.e. The numFrames of inFrameList is set 0x1
and inFrameList->frames[0x0] = NULL. The output frame would be available, i.e. the numFrames of
outFrameList is set to 0x01 and outFrameList->frames[0x0] will point to a valid frame. The applications are
expected to check for valid frames, before performing further operations on the frame.

inFrameList.numFrame = 0x01
inFrameList.frames[0x0] = NULL
outFrameList.numFrames = 0x01
outFrameList.frames[0x0] = valid frame

• On second FVID2_processFrames () assuming F2 was submitted to be de-interlaced, the above step is
repeated for field F2. i.e. F2 is also held back the driver

• On third FVID2_processFrames () assuming F3 was submitted to be de-interlaced, the above step is
repeated for field F3. i.e. F3 is also held back the driver

• On fourth FVID2_processFrames () assuming F4 was submitted to be de-interlaced, on completion of this
API, FVID2_getProcessedFrames ()could be called to retrieve the output frame and input field. The first

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814X_SC2_SC4_VIP1_WB1.jpg

UserGuideHdvpssTi814xDeiM2mDriver 142

input field and fourth output frame is given back. i.e.
inFrameList.numFrame = 0x01
inFrameList.frames[0x0] = F1
outFrameList.numFrames = 0x01
outFrameList.frames[0x0] = valid frame

• On filth FVID2_processFrames () assuming F5 was submitted to be de-interlaced, the above step is
performed with following output

inFrameList.numFrame = 0x01
inFrameList.frames[0x0] = F2
outFrameList.numFrames = 0x01
outFrameList.frames[0x0] = valid frame

• The driver would hold back previous N-1 and N-2 input fields as context buffers. This buffer could be
retrieved using FIVD2_stop API.

• Multiple channel - The same procedures described for single channel applies. the numFrames of
inFrameList and outFramesList defines the number of frames/fields that application should look for in the
frames array.

inFrameList.numFrame = 0x04
inFrameList.frames[0x0] = CH1F1
inFrameList.frames[0x1] = CH2F1
inFrameList.frames[0x2] = NULL

inFrameList.frames[0x3] = CH3F1
outFrameList.numFrames = 0x04
outFrameList.frames[0x0] = valid frame
outFrameList.frames[0x1] = valid frame
outFrameList.frames[0x2] = valid frame
outFrameList.frames[0x3] = valid frame

Note that, in above example the driver has held back input field of channel 3, while releasing input fields of other
channels. This would mean that channel 3 did not enough context buffers.
Important
Applications should take into account that any input field could be held back by the driver, an NULL check on field
should be performed before using it.

UserGuideHdvpssTi814xDeiM2mDriver 143

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here driver is used to submit the frames for processing and getting the processed frames from the

driver.
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.
Note
Details of the structure, enumerations and #defines mentioned in the section can be found in HDVPSS API Guide

System Init Phase
DEI M2m driver initialization happens as part of overall HDVPSS system init. This API must be the the first API
call before making any other FVID2 calls. Below section lists the APIs which are part of the System Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

 /* Init FVID2 and VPS */

 retVal = FVID2_init(NULL);

 if (FVID2_SOK != retVal)

 {

 System_printf("FVID2 Init failed\n");

 }

Create Phase
In this phase user application opens or creates a driver instance. Each instance of the driver supports
VPS_M2M_DEI_MAX_HANDLE_PER_INST (defined in vps_m2mDei.h) handles creation. Operation commands
from the different handles of the same instance will be serialized by the driver and will be served by the singe
instance of the hardware. Below sections lists the API interfaces to be used in the create phase. Create phase allows
the application to do the configuration either through control commands exposed by driver or through the parameters
passed with the driver create API.
For VPS_M2M_INST_AUX_SC2_WB1, VPS_M2M_INST_AUX_SC4_VIP1 and
VPS_M2M_INST_AUX_SC2_SC4_WB1_VIP1 instances of the driver dei related params in the createargs should
be NULL.
The above three instances will use the existing DEI driver interface but has no DEI in their path, so dei related
parameters should be passed as NULL from the application during create time. deiCfg param which is member of
Vps_M2mDeiChParams structure should be assigned NULL for new instances. deiRtCfg param of
Vps_M2mDeiRtParams structure should also be passed as NULL, if runtime parameters are used.

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssTi814xDeiM2mDriver 144

FVID2 Create

This API is used to open the driver. This is a blocking call and it returns the handle which is to be used in subsequent
call to this driver.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - FVID2_VPS_M2M_DEI_DRV to open the driver.
instanceId - VPS_M2M_INST_MAIN_DEI_SC1_SC3_WB0_VIP0 macro to open DEI_SC1_SC3_WB0_VIP0
dual scale memory driver.
VPS_M2M_INST_MAIN_DEI_SC1_WB0 macro to open DEI_SC1_WB0 single scale memory driver.
VPS_M2M_INST_MAIN_DEI_SC3_VIP0 macro to open DEI_SC3_VIP0 single scale memory driver.
VPS_M2M_INST_AUX_SC2_SC4_WB1_VIP1 macro to open SC2_SC4_WB1_VIP1 dual scale memory driver.
VPS_M2M_INST_AUX_SC2_WB1 macro to open SC2_WB1 single scale memory driver.
VPS_M2M_INST_AUX_SC4_VIP1 macro to open SC4_VIP1 single scale memory driver.
createArgs - Pointer to Vps_M2mDeiCreateParams structure containing valid create params. This parameter
should not be NULL.
createStatusArgs - Pointer to Vps_M2mDeiCreateStatus structure containing the return value of create
function and other driver information. This parameter should not be NULL.
cbParams - Pointer to FVID2_CbParams structure containing FVID2 callback parameters. This parameter
should not be NULL.

 FVID2_Handle fvidHandle;

 FVID2_CbParams cbParams;

 Vps_M2mDeiChParams chPrms;

 Vps_M2mDeiCreateParams createParams;

 Vps_M2mDeiCreateStatus createStatus;

 /* Init create params */

 createParams.mode = VPS_M2M_CONFIG_PER_CHANNEL;

 createParams.numCh = 1u;

 createParams.deiHqCtxMode = VPS_DEIHQ_CTXMODE_DRIVER_ALL;

 createParams.chParams = &chPrms;

 createParams.isVipScReq = TRUE;

 /* Init callback parameters */

 cbParams.cbFxn = App_m2mDeiAppCbFxn;

 cbParams.errCbFxn = App_m2mDeiAppErrCbFxn;

 cbParams.errList = &errProcessList;

 cbParams.appData = NULL;

 cbParams.reserved = NULL;

 /* Open the driver */

 fvidHandle = FVID2_create(

UserGuideHdvpssTi814xDeiM2mDriver 145

 FVID2_VPS_M2M_DEI_DRV,

 VPS_M2M_INST_MAIN_DEI_SC3_VIP0,

 &createParams,

 &createStatus,

 &cbParams);

 if (NULL == fvidHandle)

 {

 System_printf("Create failed!!\n");

 }

FVID2 Control - Set Scalar Coefficient

This is used to issue a control command to the driver. IOCTL_VPS_SET_COEFFS ioctl is used to set the scalar
coefficients. This is a blocking call.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SET_COEFFS ioctl.
cmdArgs - Pointer to Vps_ScCoeffParams structure containing valid scaling coefficient. This parameter should
not be NULL. To set the scalar coefficient for DEI scalar, scalarId should be set to
VPS_M2M_DEI_SCALAR_ID_DEI_SC and for VIP scalar scalarId should be set to
VPS_M2M_DEI_SCALAR_ID_VIP_SC.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Get DEI Context Information

When DEI is in de-interlacing mode, DEI requires previous fields and motion vectors. Buffers for storing these
context information must be allocated by the application and provided to the driver before starting M2M operation.
IOCTL_VPS_GET_DEI_CTX_INFO ioctl is used to get the number of internal buffers to be allocated and their
sizes. Application should get this information from the driver and allocate these buffers and provide the buffers to
the driver before issuing any request. Once these buffers are given to the driver, application should not modify these
buffers. This should be done for each and every channel. This is a blocking call. This IOCTL is not supported for
VPS_M2M_INST_AUX_SC2_WB1, VPS_M2M_INST_AUX_SC4_VIP1 and
VPS_M2M_INST_AUX_SC2_SC4_WB1_VIP1 instances.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_GET_DEI_CTX_INFO ioctl.

UserGuideHdvpssTi814xDeiM2mDriver 146

cmdArgs - Pointer to Vps_DeiCtxInfo structure where the DEI context information will be filled by driver.
This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Set DEI Context Buffers

IOCTL_VPS_SET_DEI_CTX_BUF ioctl is used to set the DEI context buffers for a channel before providing any
request to the driver. This is a blocking call. This IOCTL is not supported for VPS_M2M_INST_AUX_SC2_WB1,
VPS_M2M_INST_AUX_SC4_VIP1 and VPS_M2M_INST_AUX_SC2_SC4_WB1_VIP1 instances.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SET_DEI_CTX_BUF ioctl.
cmdArgs - Pointer to Vps_DeiCtxBuf structure valid buffer pointers as requested by the driver for a particular
DEI mode of operation. This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Get DEI Context Buffers

IOCTL_VPS_GET_DEI_CTX_BUF ioctl is used to get the DEI context buffers for a channel from the driver. Once
the DEI context buffer is returned to the application, no more request should be provided to the driver. This is a
blocking call. This IOCTL is not supported for VPS_M2M_INST_AUX_SC2_WB1,
VPS_M2M_INST_AUX_SC4_VIP1 and VPS_M2M_INST_AUX_SC2_SC4_WB1_VIP1 instances.
Important
This API should not be called when there are any pending request with the driver.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_GET_DEI_CTX_BUF ioctl.
cmdArgs - Pointer to Vps_DeiCtxBuf structure where the driver returns back the DEI context buffer to the
application. This parameter should not be NULL.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

UserGuideHdvpssTi814xDeiM2mDriver 147

Run Phase
M2m drivers are non-streaming drivers. This phase is used to submit the requests for processing and getting the
processes request back.

Start

NA

Stop

The driver would retained 3 fields, as context fields. Once application has completed all the de-interlacing operation.
This command could be used to retrieve the context fields.

• Should only be used when de-interlacing, i.e. should not be used in bypass mode
• Normally when applications are ready to close, this control command is expected to be used.
• Is a blocking call

Int32 FVID2_stop(FVID2_Handle handle,

 Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

FVID2 Process Frames

This API is used to submit video buffers to the driver for processing operation. This is a non-blocking call and
should be called from task context. Once the buffer is queued the application loses ownership of the buffer and is not
suppose to modify or use the buffer.

Int32 FVID2_processFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList);

handle - Driver handle returned by create function call. This parameter should not be NULL.
processList - Pointer to FVID2_ProcessList structure containing the pointer to the FVID2 frames/framelist.
This parameter should not be NULL.

FVID2 Get Processed Frames

This API is used by the application to get ownership of the processed video buffer from the memory driver. This is a
non-blocking call and could be called from task or ISR context.

Int32 FVID2_getProcessedFrames(FVID2_Handle handle,

 FVID2_ProcessList *processList,

 UInt32 timeout);

handle - Driver handle returned by create function call. This parameter should not be NULL.
processList - Pointer to FVID2_ProcessList structure where the driver will copy the processed FVID2
frames/framelist. This parameter should not be NULL.
timeout - Not used currently as only non-blocking queue/dequeue operation is supported. This parameter should be
set to FVID2_TIMEOUT_NONE.

UserGuideHdvpssTi814xDeiM2mDriver 148

Delete Phase
In this phase FVID2 delete API is called to close the driver handle. Hardware resources are freed once all the handles
of the particular instance are freed. Handle can be opened again, once close, with different configuration.

FVID2 Delete

This API is used to close the memory driver. This is a blocking call and returns after closing the handle.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
deleteArgs - Not used currently. This parameter should be set to NULL.

System De-Init Phase

FVID2 de-Init

Drivers gets de-initializes as a part of HDVPSS sub-system de-Initialization. Here all resources acquired during
system initialization are free'ed. Make sure all driver instances and handles are deleted before calling this API.
Typically this is done during system shutdown.

Int32 FVID2_deInit(Ptr args);

args - Not used

Sample Application

DEI Single and Dual Scale
This example illustrates the three paths supported by DEI memory to memory driver involving single and dual
scaling outputs as listed below. Driver path can be selected using user input through console.
• DEI Single Scale: DEI_SC1_WB0
• DEI-VIP0 Single Scale: DEI_SC3_VIP0
• DEI-VIP0 Dual Scale: DEI_SC1_SC3_WB0_VIP0
DEI Single Scale example features: 720x240 interlaced YUV420 data is fed into the DEI path. DEI is configured in
deinterlacing mode. The deinterlaced input is scaled to 360x240 (YUV422) and output via the WB0 path.
DEI-VIP0 Single Scale example features: 720x240 interlaced YUV420 data is fed into the DEI path. DEI is
configured in deinterlacing mode. The deinterlaced input is is fed to the VIP0 through the transcode path and
converted to 720x480 YUV420 progressive output.
DEI-VIP0 Dual Scale example features: 720x240 interlaced YUV420 data is fed into the DEI path. DEI is
configured in deinterlacing mode. The deinterlaced input is scaled to 360x240 (YUYV422) and output via the WB0
path. Simultaneously the video is fed to the VIP0 through the transcode path and converted to 720x480 YUV420
progressive output.
• Please refer Common Steps for connecting CCS to TI814x/TI8107, running gel file etc.
• Load hdvpss_examples_m2mDeiScale.xem3 executable file found at

$(rel_folder)\build\bin\ti8107-evm\m3vpss\whole_program_debug

to DSS M3 debug session
• Run the application
• The application will halt for the user to load the input frames and to select driver path. Using loadRaw command

in script console of CCS, load 10 fields of

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=TI816X-HDVPSS-UserGuide%23Steps_to_run_the_Demo_on_Video_Surveillance_Board

UserGuideHdvpssTi814xDeiM2mDriver 149

720 x 240 YUV420 semiplanar video to location mentioned in the console print. (Ignore "syntax error" if it appears
during loading)

loadRaw(< Location >, 0, " < File Path > ", 32, false);

• Choose the required mode of driver from displayed options and enter in 'CCS console' window

Ex: For DEI WB1 single ouput driver, type '1' followed by 'enter' in

console window.

• User can save the outputs to a file using the saveraw command as printed from the console window.

saveRaw(0, < Location >, " < File Path > ", 432000, 32,

true);

saveRaw(0, < Location >, " < File Path > ", 1296000, 32,

true);

• Application will stop after processing 10 frames

UserGuideHdvpssCaptureDriver

Introduction
VIP capture driver makes use of VIP hardware block in HDVPSS to capture data from external video source like
video decoders (example, TVP5158, TVP7002). The video data is captured from the external video source by the
VIP Parser sub-block in the VIP block. The VIP Parser then sends the captured data for further processing in the VIP
block which can include colour space conversion, scaling, chroma down sampling and finally writes the video data
to external DDR memory.
The data paths supported by the current driver implementation are shown in the below figure:
Important
Only multichannel capture is tested on TI8107 platform

Features supported

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Vip-capture-paths.png

UserGuideHdvpssCaptureDriver 150

Features Supported in
TI816x

Supported in TI814x Supported in TI8107

Input Video Source Formats

YUV422 8-bit embedded sync mode YES YES YES

YUV422 16-bit embedded sync mode YES YES NOT TESTED

RGB 24-bit embedded sync mode YES NOT TESTED NOT TESTED

YUV422 8-bit discrete sync mode NOT TESTED NOT TESTED NOT TESTED

YUV422 16-bit discrete sync mode YES YES NOT TESTED

RGB 24-bit discrete sync mode YES NOT TESTED NOT TESTED

YUV422 8-bit 2x/4x pixel multiplxed mode YES YES YES

YUV422 8-bit 4x line multiplexed mode YES YES YES

YUV422 8-bit 4x split-line multiplexed mode NO NO NO

YUV444 24-bit embedded/discrete sync mode NO NO NO

Output Video formats

YUV422 YUYV interleaved format YES YES YES

YUV420 Semi-planer format YES YES NOT TESTED

RGB 24-bit interleaved format YES YES NOT TESTED

YUV422 Semi-planer format YES NO NOT TESTED

In-line video processing features

Color space conversion YES YES NOT TESTED

Down-Scaling YES YES NOT TESTED

Chroma-down sampling YES YES NOT TESTED

Other features

Multi-instance (VIP0, VIP1), multi-port capture (Port A, Port B), with
ability to configure each instance, port
independently

YES YES YES

Interlaced as well as progressive capture YES YES YES

Non-multiplexed capture upto Dual 1080P60 (1920x1080) resolution
using 2 VIP ports (VIP0/A, VIP1/A)

YES YES NOT TESTED

Multi-channel - upto 16CH D1 (NTSC/PAL) using 4 VIP ports
(VIP0/A, VIP0/B, VIP1/A, VIP1/B)

YES YES For 8 Channels on
VIP0 Port A/B

YES For 4 Channels on
VIP0 Port A

Multi-channel - upto 32CH Half-D1/CIF (NTSC/PAL) using 4 VIP
ports (VIP0/A, VIP0/B, VIP1/A, VIP1/B)

NOT TESTED NOT TESTED NOT TESTED

Per frame info to user like - field ID, captured frame width x height,
timestamp, logical channel ID

YES YES YES

Frame-rate depends on external video source, no limitation in driver as
such

YES YES YES

For RGB input, optional color space conversion to YUV is supported YES NOT TESTED NOT TESTED

For RGB input with color space conversion to YUV enabled, optional
scaling is supported

YES NOT TESTED NOT TESTED

For RGB input with color space conversion to YUV enabled, optional
scaling is supported

YES NOT TESTED NOT TESTED

UserGuideHdvpssCaptureDriver 151

For YUV input, optional color space conversion to RGB is supported YES NOT TESTED NOT TESTED

For YUV input, optional scaling is supported YES YES NOT TESTED

For YUV input, optional chroma downsampling is supported YES YES NOT TESTED

Per channel frame-dropping. Example, for a 60fps video source, 30fps,
15fps, 7fps capture

YES YES NOT TESTED

Ability to change scalar parameters while capture is running YES NOT TESTED NOT TESTED

Single source (RGB 24-bit or YUV422 8/16-bit), dual output (RGB
24-bit and/or YUV422 and/or YUV420)
support. See table below for support combinations

YES YES NOT TESTED

Raw VBI capture for single/multi channel modes YES NOT TESTED NOT TESTED

Non-blocking FVID2 queue, dequeue API support YES YES YES

VIP resource management is supported for VIP capture driver YES YES YES

Create time path allocation is supported i.e. when a capture driver is
opened for a particular input to output
combination, the driver will select a path that is not used by any other
VIP capture driver or M2M driver that uses
VIP in its path. Path allocation is possible only at create time. Run-time
path switching is not possible

YES YES YES

Possible to configure VIP port for different video input source
properties like Hsync polarity, Vsync polarity, PCLK polarity

YES YES NOT TESTED

Possible to configure custom scaling co-effs during create time YES NOT TESTED NOT TESTED

Tiler memory support when output type is YUV420 semi-planer YES NOT TESTED NOT TESTED

Sub-frame based capture NO NO NO

• In the table above,
Support = YES, means feature has been tested with current driver on current platform board/EVM.
Support = NO, means feature is not supported in current driver and using it will give unpredictable results.
Feature is planned to be supported in future releases.
Support = NOT TESTED, means feature is present in driver but has NOT been tested on due to current platform
board/EVM limitations AND/OR is planned to be tested in subsequent releases.

Input to Output Combinations support

Input Format Output format - 0 Output format - 1 Support in
TI816x

Supoprt in
TI814x

UserGuideHdvpssCaptureDriver 152

YUV422 8/16-bit embedded sync
mode

YUV422 YUYV interleaved format
(optionally scaled)

NONE YES YES

YUV420 Semi-planer format (optionally
scaled)

NONE YES YES

RGB 24-bit interleaved format (via CSC) NONE YES NOT TESTED

YUV422 Semi-planer format (optionally
scaled)

NONE YES NO

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV420 Semi-planer
format (one output
optionally scaled)

YES YES

YUV422 YUYV interleaved format
(optionally scaled)

RGB 24-bit interleaved
format (via CSC)

YES NOT TESTED

YUV422 YUYV interleaved format (one
output MUST BE scaled)

YUV422 YUYV
interleaved format (one
output MUST be scaled)

YES YES

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

YES NO

YUV420 Semi-planer format (one output
MUST be scaled)

YUV420 Semi-planer
format (one output MUST
be scaled)

YES YES

YUV420 Semi-planer format (optionally
scaled)

RGB 24-bit interleaved
format (via CSC)

YES NOT TESTED

YUV420 Semi-planer format (one output
optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

YES NO

YUV444 24-bit embedded/discrete
sync mode

NA NA NO NO

YUV422 8/16-bit embedded sync
mode - MULTI-CH modes - pixel
mux, line mux

YUV422 YUYV interleaved format
(SCALING, CHR_DS, CSC NOT
SUPPORTED in MULTI-CH mdoes)

NONE (Dual output not
supported in MULTI-CH
modes)

YES YES

UserGuideHdvpssCaptureDriver 153

RGB 24-bit discrete sync mode (CSC
is used when output format is YUV)

YUV422 YUYV interleaved format
(optionally scaled)

NONE YES NOT TESTED

YUV420 Semi-planer format (optionally
scaled)

NONE YES NOT TESTED

RGB 24-bit interleaved format NONE YES NOT TESTED

YUV422 Semi-planer format (optionally
scaled)

NONE YES NO

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV420 Semi-planer
format (one output
optionally scaled)

YES NOT TESTED

YUV422 YUYV interleaved format
(optionally scaled)

RGB 24-bit interleaved
format

YES NOT TESTED

YUV422 YUYV interleaved format (one
output MUST BE scaled)

YUV422 YUYV
interleaved format (one
output MUST be scaled)

YES NOT TESTED

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

YES NO

YUV420 Semi-planer format (one output
MUST be scaled)

YUV420 Semi-planer
format (one output MUST
be scaled)

YES NOT TESTED

RGB 24-bit interleaved format YUV420 Semi-planer
format (optionally scaled)

YES NOT TESTED

YUV420 Semi-planer format (one output
optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

YES NO

UserGuideHdvpssCaptureDriver 154

RGB 16-bit discrete sync mode (CSC
is used when output format is YUV)

YUV422 YUYV interleaved format
(optionally scaled)

NONE YES YES

YUV420 Semi-planer format (optionally
scaled)

NONE YES YES

RGB 24-bit interleaved format NONE YES YES

YUV422 Semi-planer format (optionally
scaled)

NONE NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV420 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format
(optionally scaled)

RGB 24-bit interleaved
format

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output MUST BE scaled)

YUV422 YUYV
interleaved format (one
output MUST be scaled)

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

YUV420 Semi-planer format (one output
MUST be scaled)

YUV420 Semi-planer
format (one output MUST
be scaled)

NOT TESTED NOT TESTED

YUV420 Semi-planer format (optionally
scaled)

RGB 24-bit interleaved
format

YES YES

YUV420 Semi-planer format (one output
optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

UserGuideHdvpssCaptureDriver 155

RGB 8-bit discrete sync mode (CSC
is used when output format is YUV)

YUV422 YUYV interleaved format
(optionally scaled)

NONE NOT TESTED NOT TESTED

YUV420 Semi-planer format (optionally
scaled)

NONE NOT TESTED NOT TESTED

RGB 24-bit interleaved format NONE NOT TESTED NOT TESTED

YUV422 Semi-planer format (optionally
scaled)

NONE NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV420 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format
(optionally scaled)

RGB 24-bit interleaved
format

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output MUST BE scaled)

YUV422 YUYV
interleaved format (one
output MUST be scaled)

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

YUV420 Semi-planer format (one output
MUST be scaled)

YUV420 Semi-planer
format (one output MUST
be scaled)

NOT TESTED NOT TESTED

YUV420 Semi-planer format (optionally
scaled)

RGB 24-bit interleaved
format

NOT TESTED NOT TESTED

YUV420 Semi-planer format (one output
optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

UserGuideHdvpssCaptureDriver 156

RGB 24-bit embedded sync mode
(CSC is used when output format is
YUV)

YUV422 YUYV interleaved format
(optionally scaled)

NONE NOT TESTED NOT TESTED

YUV420 Semi-planer format (optionally
scaled)

NONE NOT TESTED NOT TESTED

RGB 24-bit interleaved format NONE YES NOT TESTED

YUV422 Semi-planer format (optionally
scaled)

NONE YES NO

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV420 Semi-planer
format (one output
optionally scaled)

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format
(optionally scaled)

RGB 24-bit interleaved
format

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output MUST BE scaled)

YUV422 YUYV
interleaved format (one
output MUST be scaled)

NOT TESTED NOT TESTED

YUV422 YUYV interleaved format (one
output optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

YES NO

YUV420 Semi-planer format (one output
MUST be scaled)

YUV420 Semi-planer
format (one output MUST
be scaled)

NOT TESTED NOT TESTED

RGB 24-bit interleaved format YUV420 Semi-planer
format (optionally scaled)

YES NOT TESTED

YUV420 Semi-planer format (one output
optionally scaled)

YUV422 Semi-planer
format (one output
optionally scaled)

YES NO

• In the table above,
Support = YES, means feature has been tested with current driver on current platform board/EVM.
Support = NO, means feature is not supported in current driver and using it will give unpredictable results.
Feature is planned to be supported in future releases.
Support = NOT TESTED, means feature is present in driver but has NOT been tested on due to current platform
board/EVM limitations AND/OR is planned to be tested in subsequent releases.

Limitations/Issues
• There are limiations in capture driver for features like video source cable disconnect/connect, discrete sync mode,

VIP parser overflow, Chroma downsampling. These limiations are related to Si issues. Please refer to Si Errata
document to get latest update and workarounds for these issues.

Software Application Interfaces
The driver operation can be partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here the driver is used to capture, process and release frames continuously
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.

UserGuideHdvpssCaptureDriver 157

System Init Phase
The VIP capture driver sub-system initialization happens as part of overall HDVPSS system init. Below code shows
the FVID2 API used to initialize the overall HDVPSS subsystem. This API must be the the first API call before
making any other FVID2 calls.
An example is shown below. Also shown in the example there is a FVID2 create API call to create the global VIP
capture handle. This handle, as shown later, can be used to queue, dequeue frames from all active VIP ports.

#include "ti/psp/vps/vps_capture.h"

FVID2_Handle fvidHandleVipAll;

Int32 mySysInit()

{

 Int32 status;

 FVID2_CbParams cbPrm;

 /* FVID2 system init */

 status = FVID2_init(NULL);

 assert(status==0);

 /* must be NULL for VPS_CAPT_INST_VIP_ALL */

 memset(& cbPrm, 0, sizeof(cbPrm));

 /* Create global VIP capture handle, used for dequeue,

 queue from all active captures */

 fvidHandleVipAll = FVID2_create(

 FVID2_VPS_CAPT_VIP_DRV,

 VPS_CAPT_INST_VIP_ALL,

 NULL, /* must be NULL for VPS_CAPT_INST_VIP_ALL */

 NULL, /* must be NULL for VPS_CAPT_INST_VIP_ALL */

 & cbPrm

);

 assert(fvidHandleVipAll!=NULL);

 return status;

}

Internally the following happens when VIP capture initialization is done via FVID2 init:
• Hardware resources like interrupts, hardware lists are allocated
• Driver name is registered with FVID2 sub-system
• In addition to doing FVID2_init(), some platform specific init may also be required, like initializing I2C's, video

PLL's etc. Refer to sample code directly for sample platform specific init.

UserGuideHdvpssCaptureDriver 158

Create Phase
In this phase user application opens or creates a driver instance. Up to VPS_CAPT_INST_MAX (defined in
vps_capture.h) driver instances can be opened by a user. A driver instance is associated with one or more VIP parser
ports depending on whether the operation mode is 8-bit or 16-bit or 24-bit.
User can pass a number of parameters during create which controls the mode in which the driver instance gets
created, example single channel or multi-channel mode. Refer to VIP Capture section in HDVPSS API Guide for
detailed list of create time parameters.

Driver Instance to hardware port mapping for different bus-widths
The mapping of driver instance to VIP parser ports in HDVPSS is shown below:

Driver Instance 8-bit interface 16-bit interface 24-bit interface

VPS_CAPT_INST_VIP0_PORTA VIP0 PortA VIP0 PortA VIP0 PortA

VPS_CAPT_INST_VIP0_PORTB VIP0 PortB NOT USED NOT USED

VPS_CAPT_INST_VIP1_PORTA VIP1 Port A VIP1 Port A NOT USED (TI816x)
VIP1 PortA (TI 814x)

VPS_CAPT_INST_VIP1_PORTB VIP1 Port B NOT USED NOT USED

Output streams
A maximum of two output streams (excluding VBI capture) are possible from the capture driver in non-multiplexed
modes of capture. Data from each stream can be independently queued/dequeued when capture data streaming is
enabled using FVID2_start().
Refer to table in previous section for valid supported input / output combinations for different input source formats.
Example of streams are:
• Single source dual format capture - YUV420 capture (stream 0) + RGB capture (stream 1)
• Ancillary data capture - YUV422 capture (stream 0) + VBI capture (stream 1)
NOTE
Channel is different from stream in the sense that channel is associated with a distinct input source. For different
output streams the input source (or channel) is the same, however the final output format - data format (RGB,
YUV422, YUV420), or resolution, or data type (VBI, active data) - is different for each output stream. Thus when
capturing 4CH D1 through one VIP port, number of valid channels will be four and output streams would be one
(YUV422 format). However when capturing single channel 24-bit RGB, number of output streams can be three -
YUV420 (stream 0), RGB 24-bit (stream 1), Ancillary data (stream 3).
NOTE
If FVID2_DF_YUV422SP_UV is used as output format, it must be the first output format (output format at the
index 0 in outStreamInfo of Vps_CaptCreateParams).

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=Media:HDVPSS_ApiGuide.CHM

UserGuideHdvpssCaptureDriver 159

FVID2 create
The FVID2 create call that is used to create a capture instance is shown below. The example shows FVID2 create
used to create two output streams of RGB and scaled YUV420 output from single 24-bit RGB input source.
Important
UInt32 Vps_CaptCreateParams.channelNumMap[VPS_CAPT_STREAM_ID_MAX]
[VPS_CAPT_CH_PER_PORT_MAX] is the channel number assigned by user for every channel in every output
stream for a given instance during FVID2 create.
This channel number will be returned with the FVID2 frame when it is captured by the driver.
Channel number is used internally by the driver to identify the driver instance, output stream, input source a frame
belongs to.
Channel number can also be used by the user for the same purpose.
Further internally driver needs that the channel number across all VIP capture instances to be unique. Its upto the
user to ensure that this condition is met.
A utility API, UInt32 Vps_captMakeChannelNum(UInt32 instId, UInt32 streamId, UInt32 chId) , is provided to help
user generate such system unique channel numbers.
However user is free to use their own mechanism for generating system unique channel numbers.
A channel number MUST be between 0 and 255.

#include "ti/psp/vps/vps_capture.h"

#include "ti/psp/vps/common/vpsutils_mem.h"

#define CAPTURE_APP_FRAMES_PER_CH (6) // MUST be <=

VPS_CAPT_FRAME_QUE_LEN_PER_CH_MAX

typedef struct {

 UInt32 instId;

 Vps_CaptCreateParams createArgs;

 Vps_CaptCreateStatus createStatus;

 FVID2_CbParams cbPrm;

 FVID2_Handle fvidHandle;

 FVID2_Frame frames[

 VPS_CAPT_STREAM_ID_MAX*

 VPS_CAPT_CH_PER_PORT_MAX*

 CAPTURE_APP_FRAMES_PER_CH

];

 Vps_CaptRtParams rtParams[

 VPS_CAPT_STREAM_ID_MAX*

 VPS_CAPT_CH_PER_PORT_MAX*

 CAPTURE_APP_FRAMES_PER_CH

];

} CaptureApp_DrvObj;

UserGuideHdvpssCaptureDriver 160

Int32 CaptureApp_create(CaptureApp_DrvObj *pDrvObj)

{

 UInt16 chId, streamId, instId = VPS_CAPT_INST_VIP0_PORTA;

 pDrvObj->instId = instId;

 memset(& pDrvObj->createArgs, 0,

sizeof(Vps_CaptCreateParams));

 pDrvObj->createArgs.videoCaptureMode

 =

VPS_CAPT_VIDEO_CAPTURE_MODE_SINGLE_CH_NON_MUX_EMBEDDED_SYNC;

 pDrvObj->createArgs.videoIfMode =

VPS_CAPT_VIDEO_IF_MODE_24BIT;

 pDrvObj->createArgs.inDataFormat = FVID2_DF_RGB24_888;

 pDrvObj->createArgs.enablePeriodicCallback = FALSE;

 pDrvObj->createArgs.numCh = 1;

 pDrvObj->createArgs.numStream = 2;

 pDrvObj->createArgs.outStreamInfo[0].dataFormat =

FVID2_DF_YUV420SP_UV;

 pDrvObj->createArgs.outStreamInfo[0].memType =

VPS_VPDMA_MT_NONTILEDMEM;

 pDrvObj->createArgs.outStreamInfo[0].pitch[0] = pitch of Y plane

data, MUST be multiple of 16bytes;

 pDrvObj->createArgs.outStreamInfo[0].pitch[1] = pitch of C plane

data, MUST be multiple of 16bytes;

 pDrvObj->createArgs.outStreamInfo[0].scEnable = TRUE;

 pDrvObj->createArgs.outStreamInfo[0].subFrameModeEnable = FALSE;

 pDrvObj->createArgs.outStreamInfo[0].maxOutHeight =

VPS_CAPT_MAX_OUT_HEIGHT_1080_LINES;

 pDrvObj->createArgs.outStreamInfo[1].dataFormat =

FVID2_DF_RGB24_888;

 pDrvObj->createArgs.outStreamInfo[1].memType =

VPS_VPDMA_MT_NONTILEDMEM;

 pDrvObj->createArgs.outStreamInfo[1].pitch[0] = pitch of RGB

24-bit data, MUST be multiple of 16bytes;

 pDrvObj->createArgs.outStreamInfo[1].scEnable = FALSE;

 pDrvObj->createArgs.outStreamInfo[1].sliceModeEnable = FALSE;

 pDrvObj->createArgs.outStreamInfo[1].subFrameModeEnable = FALSE;

 pDrvObj->createArgs.outStreamInfo[1].maxOutHeight =

VPS_CAPT_MAX_OUT_HEIGHT_1080_LINES;

UserGuideHdvpssCaptureDriver 161

 pDrvObj->createArgs.scParams.inWidth = input source width in

pixels;

 pDrvObj->createArgs.scParams.inHeight= input source height in

lines;

 pDrvObj->createArgs.scParams.outWidth

 = pDrvObj->createArgs.scParams.inWidth/2;

 pDrvObj->createArgs.scParams.outHeight =

 = pDrvObj->createArgs.scParams.inHeight/2;

 pDrvObj->createArgs.scParams.inCropCfg.cropStartX = 0

 pDrvObj->createArgs.scParams.inCropCfg.cropStartY = 0

 pDrvObj->createArgs.scParams.inCropCfg.cropWidth

 = pDrvObj->createArgs.scParams.inWidth;

 pDrvObj->createArgs.scParams.inCropCfg.cropHeight

 = pDrvObj->createArgs.scParams.inHeight;

 pDrvObj->createArgs.scParams.inScanFormat = FVID2_SF_PROGRESSIVE;

 pDrvObj->createArgs.scParams.scConfig = NULL; // driver will use

default config

 pDrvObj->createArgs.scParams.scCoeffConfig = NULL; // driver will

load default co-effs

 pDrvObj->createArgs.vipParserInstConfig = NULL; // driver will use

 default VIP Parser config

 pDrvObj->createArgs.vipParserPortConfig = NULL; // driver will use

 default VIP Parser config

 pDrvObj->createArgs.cscConfig = NULL; // driver will use default

CSC settings

 pDrvObj->createArgs.inScanFormat = FVID2_SF_PROGRESSIVE;

 for(streamId=0; streamId <

pDrvObj->createArgs.numStream;streamId++)

 {

 for(chId=0; chId < pDrvObj->createArgs.numCh; chId++)

 {

 /* A utility API shown below is used to create unique

 channelNum for every channel in every stream, for a given

instance

 */

 pDrvObj->createArgs.channelNumMap[streamId][chId] =

 Vps_captMakeChannelNum(instId, streamId, chId);

UserGuideHdvpssCaptureDriver 162

 }

 }

 memset(& pDrvObj->cbPrm, 0, sizeof(pDrvObj->cbPrm));

 pDrvObj->cbPrm.cbFxn = set user callback function

 pDrvObj->cbPrm.appData = pDrvObj; // set user callback context

 pDrvObj->fvidHandle = FVID2_create(

 FVID2_VPS_CAPT_VIP_DRV,

 instId,

 & pDrvObj->createArgs,

 & pDrvObj->createStatus,

 & pDrvObj->cbPrm

);

 if(pDrvObj->fvidHandle==NULL) {

 // error in driver instance create

 return -1;

 }

 return CaptureApp_allocAndQueueFrames(pDrvObj);

}

/*

 Allocate and queue frames to driver

 pDrvObj - capture driver information

*/

Int32 CaptureApp_allocAndQueueFrames(CaptureApp_DrvObj *pDrvObj)

{

 Int32 status;

 UInt16 streamId, chId, frameId, idx;

 FVID2_Format format;

 FVID2_Frame *frames;

 Vps_CaptRtParams *rtParams;

 FVID2_FrameList frameList;

 Vps_CaptOutInfo *pOutInfo;

 /* init frameList for list of frames that are queued per CH to driver

 */

 frameList.perListCfg = NULL;

 frameList.reserved = NULL;

 /* for every stream and channel in a capture handle */

 for(streamId=0; streamId < pDrvObj->createArgs.numStream;

UserGuideHdvpssCaptureDriver 163

streamId++)

 {

 for(chId=0; chId < pDrvObj->createArgs.numCh; chId++)

 {

 pOutInfo = & pDrvObj->createArgs.outStreamInfo[streamId];

 /* base index for pDrvObj->frames[] and pDrvObj->rtParams[]

 */

 idx =

VPS_CAPT_CH_PER_PORT_MAX*CAPTURE_APP_FRAMES_PER_CH*streamId

 + CAPTURE_APP_FRAMES_PER_CH*chId

 ;

 rtParams = & pDrvObj->rtParams[idx];

 frames = & pDrvObj->frames[idx];

 /* fill format with channel specific values */

 format.channelNum = Vps_captMakeChannelNum(

 pDrvObj->instId,

 streamId,

 chId

);

 format.width = input source width;

 format.height = input source height;

 format.pitch[0] = pOutInfo->pitch[0];

 format.pitch[1] = pOutInfo->pitch[1];

 format.pitch[2] = pOutInfo->pitch[2];

 format.fieldMerged[0] = FALSE;

 format.fieldMerged[1] = FALSE;

 format.fieldMerged[2] = FALSE;

 format.dataFormat = pOutInfo->dataFormat;

 format.scanFormat = FVID2_SF_PROGRESSIVE;

 format.bpp = FVID2_BPP_BITS8; /* ignored */

 /* alloc memory based on 'format'

 Allocated frame info is put in frames[]

 CAPTURE_APP_FRAMES_PER_CH is the number of buffers per channel

to

 allocate

 */

 VpsUtils_memFrameAlloc(format, frames,

CAPTURE_APP_FRAMES_PER_CH);

 /* Set rtParams for every frame in perFrameCfg */

 for(frameId=0; frameId < CAPTURE_APP_FRAMES_PER_CH; frameId++)

UserGuideHdvpssCaptureDriver 164

 {

 frames[frameId].perFrameCfg = & rtParams[frameId];

 pFrames[frameId] = & frames[frameId];

 }

 /* Set number of frame in frame list */

 frameList.numFrames = CAPTURE_APP_FRAMES_PER_CH;

 /* queue the frames in frameList

 All allocate frames are queued here as an example.

 In general atleast 2 frames per channel need to queued

 before starting capture,

 else frame will get dropped until frames are queued

 */

 status = FVID2_queue(pDrvObj->fvidHandle, & frameList,

streamId);

 assert(status==FVID2_SOK);

 }

 }

 return FVID2_SOK;

}

After FIVD2 create is called user should allocate the memory for frames to be captured and then queue the buffers to
the driver using FVID2 queue. Atleast three buffers per channel need to be queued initially to the driver in order to
receive frames without any frame drops. A utility function VpsUtils_memFrameAlloc() is provided to help user in
their frame memory allocation. User is however free to use their own memory allocation function.
Internally the following happens when FVID2 create is called:
• Hardware resources like VIP parser ports, scalar, etc are allocated
• Software resources like semaphores, queues are allocated depending on the create parameters that are passed
• VIP hardware registers are initialized and VIP is made ready to begin capturing data,
• Data capture itself is not started during FVID2 create.

Run Phase
In this phase the driver can be used to start capture and continuously capture (dequeue) frame buffers from the driver
and then process them and release (queue) them back to the driver.

Start and stop
Below API is used to start the capture. Once capture is started other FVID2 APIs can be used to dequeue and queue
frame's continuously from the capture driver.

#include "ti/psp/vps/vps_capture.h"

status = FVID2_start(fvidHandle, NULL);

if(status!=FVID2_SOK) {

 // error in starting the capture

}

UserGuideHdvpssCaptureDriver 165

Below API is used to stop the capture. Capture can be started once again by using the FVID2 start API without
having to create the driver once again.

#include "ti/psp/vps/vps_capture.h"

status = FVID2_stop(fvidHandle, NULL);

if(status!=FVID2_SOK) {

 // error in stopping the capture

}

Dequeueing-Queuing frames
Once the capture is started as described above, below API can be used to dequeue captured frames from the capture
driver. Once capture is started it starts capturing data in the frame buffer's allocated and queued during create phase.
Once a frame is captured completely, it queue's the captured frame to its "completed" frame queue. Now when user
calls dequeue the captured frames are given to the user application.
A single dequeue call can be used to dequeue multiple captured frames from multiple channels associated with that
handle. Similarly a single queue can used to return multiple frames from different channels associated with that
handle back to driver.
Example: Non-blocking dequeue from stream 0 for a capture handle

The API used is a non-blocking API, i.e. API will return immediately with zero or more captured buffers.

#include "ti/psp/vps/vps_capture.h"

FVID2_FrameList frameList;

status = FVID2_dequeue(fvidHandle, & frameList, 0, BIOS_NO_WAIT);

if(status!=FVID_SOK) {

 // error in dequeue-ing frames from capture handle

} else {

 // success, received 0 or more frames

 printf(" Received %d frames\n", frameList.numFrames);

}

Example: Dequeue from all active handles using a single API

The global VIP handle, fvidHandleVipAll, is created by user during system init and can be used to dequeue/queue
frames from all active (created) capture handles.

#include "ti/psp/vps/vps_capture.h"

FVID2_FrameList frameList;

status = FVID2_dequeue(fvidHandleVipAll, & frameList, 0,

BIOS_NO_WAIT);

if(status!=FVID_SOK) {

 // error in dequeue-ing frames from capture handle

} else {

 // success, received 0 or more frames

 printf(" Received %d frames\n", frameList.numFrames);

UserGuideHdvpssCaptureDriver 166

}

Example: Queue captured (dequeued) frames back to the driver

The frame dequeued would typically be processed by user application like encoding, scaling etc and once user is
done with the frame, user application should queue the frames back to the driver as shown below. Instead of instance
specifc handle shown below, the global VIP capture driver handle can also be used to queue the frame back to the
correct driver instance without the user having to worry about which handle the frames belong to.

#include "ti/psp/vps/vps_capture.h"

FVID2_FrameList frameList;

status = FVID2_queue(fvidHandle, & frameList, 0);

if(status!=FVID_SOK) {

 // error in queue-ing frames to capture handle

} else {

 // success

}

TIP
User should make sure to dequeue / queue frames from the capture handle at the required rate (frame-rate), else the
capture driver may not have frames internally to write video data and it will then be forced to drop frames until a
buffer is available.

Callback
A user callback can be registered during driver create which is then called by the driver whenever data is available at
any of the channels, streams associated with the driver. User would typicall set a semaphore to wake up a task. The
woken up task will then call dequeue API to get the newly captured frames. Dequeue should be called for every
stream associated with the driver to get the captured frames, since the callback just indicates there is data but the data
could be in any of the streams that are valid for the driver instance.
NOTE
The callback itself could be called from interrupt or SWI context, so user should use only APIs that are allowed in
interrupt or SWI context inside the callback.

Understanding captured frame information
Once a frame is captured the FVID2 frame structure contains information about the captured frame. The captured
information can retrieved as shown below. The example below assumes "channelNum" was created using the utility
API Vps_captMakeChannelNum() during create.

#include "ti/psp/vps/vps_capture.h"

FVID2_FrameList frameList;

FVID2_Frame *pCurFrame;

Vps_CaptRtParams *pCaptureRtParams;

Int32 frameId;

FVID2_dequeue(fvidHandleVipAll, & frameList, 0, BIOS_WAIT_FOREVER);

UserGuideHdvpssCaptureDriver 167

System_printf(" CAPTUREAPP: Received %d frame(s) \n",

frameList.numFrames);

for(frameId=0; frameId < frameList.numFrames; frameId++)

{

 pCurFrame = frameList.frames[frameId];

 pCaptureRtParams = (Vps_CaptRtParams*)pCurFrame->perFrameCfg;

 System_printf(" CAPTUREAPP: %d: time %d: ch %d:%d:%d: fid %d: %dx%d:

addr 0x%08x\n",

 frameId,

 pCurFrame->timeStamp, // timestamp in msecs

 Vps_captGetInstId(pCurFrame->channelNum), // VIP instance ID

 Vps_captGetStreamId(pCurFrame->channelNum),// Stream ID

 Vps_captGetChId(pCurFrame->channelNum), // channel ID

 pCurFrame->fid, // Even or Odd field

 pCaptureRtParams->captureOutWidth, // captured frame width

 pCaptureRtParams->captureOutHeight, // captured frame height

 pCurFrame->addr[0][0] // captured buffer

address for YUV422P format

);

}

// process captured frames ...

...

FVID2_queue(fvidHandleVipAll, & frameList, 0);

TIP
Be careful to not modify the "FVID2_Frame.perFrameCfg" from the received (dequeued) frame when returning
(queuing) the frame back to the driver. If FVID2_Frame.perFrameCfg has to be modified make sure user application
sets it to a valid pointer in order to get captured frame width, height information from the driver, else set it to NULL.
Understanding FVID2_Frame.channelNum

Important
Be careful to not modify the "FVID2_Frame.channelNum" from the received (dequeued) frame when returning
(queuing) the frame back to the driver. The FVID2 queue API uses "channelNum" to identify the VIP instance,
stream and channel that the frame belongs to, in order to return it to the correct channel "free" queue.
The below description is valid only when during create, channel number was made using the utility API
Vps_captMakeChannelNum(). In case user had created channel number using their own logic they need to apply a
inverse logic in order to know the instance, stream, channel associated with the received frame .
The capture driver assigns a unique channel number to every video channel, stream that is being captured via any of
the VIP ports. User application needs to be aware of this assignment when handling frames from different VIP ports .

UserGuideHdvpssCaptureDriver 168

"FVID2_Frame.channelNum" identifies the channel associated with a given frame. Given
"FVID2_Frame.channelNum" user application can find out the VIP instance, stream and channel ID using the APIs
shown in above example.
The table below shows the channel number assignment for different VIP ports:

 VIP port channel number assignment

VIP
Instance

Output Stream 0 Output Stream 1 Output Stream 2 Output Stream 3

VIP0 Port A CH00 .. CH15 CH16 .. CH31 CH32 .. CH47 CH48 .. CH63

VIP0 Port B CH64 .. CH79 CH80 .. CH95 CH96 .. CH111 CH112 .. CH127

VIP1 Port A CH128 .. CH143 CH144 .. CH159 CH160 .. CH175 CH176 .. CH191

VIP1 Port B CH192 .. CH207 CH208 .. CH223 CH224 .. CH239 CH240 .. CH255

Control IOCTLs supported

Frame skip control IOCTL_VPS_CAPT_SET_FRAME_SKIP

User can program a frame skip mask per channel to selectively skip frames. In this way user can control the
frame-rate at which they want the data to be captured. When a frame is skipped, it is not written to DDR so that will
also result in DDR bandwidth reduction.
This IOCTL can be called even while capture is running and frame-skip mask can be changed dynamically while
capture is running.
An example is given below:

#include "ti/psp/vps/vps_capture.h"

Vps_CaptFrameSkip frameSkip;

// channelNum is the one that was specified by user during create in

channelNumMap[][]

frameSkip.channelNum = createArgs.channelNumMap[streamId][chId];

// Example: for full frame-rate

frameSkip.frameSkipMask = 0;

// Example: for 1/2 frame-rate

frameSkip.frameSkipMask = 0x2AAAAAAA;

status = FVID2_control(

 fvidHandle,

 IOCTL_VPS_CAPT_SET_FRAME_SKIP,

 & frameSkip,

 NULL

);

UserGuideHdvpssCaptureDriver 169

Digital Pan, Crop, Down-scale control IOCTL_VPS_CAPT_SET_SC_PARAMS

This IOCTL is valid for streams where Vps_CaptCreateParams.outInfo[x].scEnable = TRUE during create.
This IOCTL allows user to select the scalar input area and output area and thus effectively doing digital crop and/or
down-scale and pan.
User must make sure output width and height do not exceed actual buffer size allocated by user.
• Scaler coefficient load: If enableCoeffLoad is specified as FALSE in the Vps_CaptScParams provided, this

API shall not load scaler co-efficients. If enableCoeffLoad is specified as TRUE, scaler coefficients shall also be
loaded during this IOCTL.
• If the user provides specific scaler coefficients in scParams.scCoeffConfig, these are used for

programming the scaler. If not provided, the driver internally calculates the scaling factor for the provided
scaler params.

• The driver checks if the scaling factor has changed with respect to the current scaling factor.
• If the scaling factor, and hence the horizontal & vertical coefficients (for polyphase filter) are the same,

nothing extra needs to be done.
• If the scaling factor, and hence the horizontal or vertical coefficients (for polyphase filter) have changed, the

new scaler coefficients are fetched.
• To enable loading the new scaler coefficients, the VIP instance is then stopped, the scaler coefficients

programmed, the VIP instance is reset, and then restarted. This results in a maximum of two frame drops.
• Even if the scaler is initially in bypass at create time, scaler coefficients are loaded with default values

internally.
• If scaler is brought out of bypass in this ioctl, if enableCoeffLoad is specified as FALSE, the default

coefficients will continue to be used. If enableCoeffLoad is specified as TRUE, new suitable coefficients
shall get loaded at that time.

• If scaler is placed in bypass through this ioctl, scaler coefficient load is not done even if
enableCoeffLoad is TRUE.

If scaler coefficients are not to be loaded, this IOCTL effect will take place from next frame that is captured.
ImportantUpscaling is NOT supported during in-line scaling during capture and should NOT be done. This API can
be called anytime after FVID2 create. It can be called even when capture is running
An example is shown below:

#include "ti/psp/vps/vps_capture.h"

Vps_CaptScParams scParams;

scParams.inWidth = createArgs.scParams.inWidth;

scParams.inHeight = createArgs.scParams.inHeight;

scParams.inCropCfg.cropStartX = 0;

scParams.inCropCfg.cropStartY = 0;

scParams.inCropCfg.cropWidth = createArgs.scParams.inWidth;

scParams.inCropCfg.cropHeight = createArgs.scParams.inHeight;

/* setting output wxh to original w/4 x h/4

 this is just a example

*/

scParams.outWidth = createArgs.scParams.inWidth/4;

UserGuideHdvpssCaptureDriver 170

scParams.outHeight = createArgs.scParams.inHeight/4;

scParams.inScanFormat = FVID2_SF_PROGRESSIVE;

scParams.scConfig = NULL; /* when NULL driver uses default SC config */

scParams.scCoeffConfig = NULL; /* IGNORED BY IOCTL */

scParams.enableCoeffLoad = TRUE; /* Enable scaler coefficient load */

FVID2_control(

 fvidHandle,

 IOCTL_VPS_CAPT_SET_SC_PARAMS,

 & scParams,

 NULL

);

Get Channel Status IOCTL_VPS_CAPT_GET_CH_STATUS

This IOCTL allows user to get channel related information as detected by the hardware, like channel data width,
height, video detect.
Width and height that is returned is the width and height of the last captured frame that hardware has detected.
Video detect status is calculated based on last received frame timestamp and expected frame interval. If a frame is
not received in the given frame interval, then its considered as video is not detected.
Typically usage of this would be to periodically call this API from user context, say every 10ms or 30ms. User could
then use this API to know detected video width and height and then allocate and queue buffers to the driver.
An example is shown below:

#include "ti/psp/vps/vps_capture.h"

/*

 Check video detect status using IOCTL

*/

int status, chId, streamId;

Vps_CaptChGetStatusArgs chStatusArgs;

Vps_CaptChStatus chStatus

/* for all streams and channels */

for(streamId=0; streamId < createArgs.numStream; streamId++)

{

 for(chId=0; chId < createArgs.numCh; chId++)

 {

 chStatusArgs.channelNum = createArgs.channelNumMap[streamId][chId];

 /* expected frame capture interval between two frames/field in

msecs */

 chStatusArgs.frameInterval = 16;

 /* get video detect status */

 status = FVID2_control(

UserGuideHdvpssCaptureDriver 171

 fvidHandle,

 IOCTL_VPS_CAPT_GET_CH_STATUS,

 & chStatusArgs,

 & chStatus

);

 if(chStatus.isVideoDetected)

 {

 /* video detect, print video info */

 System_printf(" DETECT = %d: %dx%d\n",

 chStatus.isVideoDetected,

 chStatus.captureOutWidth,

 chStatus.captureOutHeight

);

 }

 }

}

Set Buffer Storage format IOCTL_VPS_CAPT_SET_STORAGE_FMT

This ioctl is used to set the buffer storage format for the interlaced capture. Application can configure driver to
capture individual fields or both fields (frame) using this ioctl. For the frame capture in the interlaced input format,
both fields can be merged or it can be separate. In frame capture mode application needs to queue buffer for both the
fields using FVID2_queue and application gets call back once both fields are captured. In field capture mode
application needs to queue buffer
An example is given below:

#include "ti/psp/vps/vps_capture.h"

Vps_CaptStoragePrms storagePrms;

/* chNum is ignored configuration applies for all channels/streams of

 * of the handle

 */

if (TRUE == gCaptureApp_ctrl.utParams.fieldMerged)

{

 storagePrms.chNum = 0;

 storagePrms.bufferFmt = FVID2_BUF_FMT_FRAME; /* FVID2_BUF_FMT_FIELD

 for field capture */

 storagePrms.fieldMerged = TRUE;

 status = FVID2_control (pDrvObj->fvidHandle,

 IOCTL_VPS_CAPT_SET_STORAGE_FMT,

 &storagePrms, NULL);

 GT_assert(GT_DEFAULT_MASK, status == FVID2_SOK);

}

UserGuideHdvpssCaptureDriver 172

Other IOCTLs

Followingare some other IOCTLs that can be used by user for different purposes as shown in below table

IOCTL Applicable
Driver Handle

Purpose

IOCTL_VPS_CAPT_RESET_VIP0 Global Handle
ONLY

This is used to reset whole VIP0 block. This MUST be called before calling
FVID2 create for the VIP instance. Refer to API Guide for more details.

IOCTL_VPS_CAPT_RESET_VIP1 Global Handle
ONLY

Same as IOCTL_VPS_CAPT_RESET_VIP0 excpet that it applies to VIP1
instance

IOCTL_VPS_CAPT_PRINT_ADV_STATISTICS Global Handle
ONLY

Prints advanced debug and statistical information like frames captured, fps
etc. Used for Advanced debug ONLY

IOCTL_VPS_CAPT_CHECK_OVERFLOW Global Handle
ONLY

Checks if any VIP instance has overflowed. Refer to API Guide for more
details.

IOCTL_VPS_CAPT_RESET_AND_RESTART Global Handle
ONLY

In any any VIP port is overflowed, this IOCTL can be used to reset and
restart capture associated with that VIP instance. Refer to API Guide for
more details.

IOCTL_VPS_CAPT_GET_STORAGE_FMT Instance specific
Handle

This ioctl let application know, driver is set for Field based capture of Frame
based capture for interlaced inputs.

Delete Phase
In this phase FVID2 delete API is called to free all resources allocated during capture. Make sure capture is stopped
using FVID2_stop() before deleting a capture instance. Once a capture handle is deleted the resources free'ed by that
capture handle could be used when another capture driver or other related driver is opened.
The FVID2 delete API call is shown below:

#include "ti/psp/vps/vps_capture.h"

FVID2_delete(fvidHandle, NULL);

System De-init Phase
In this phase VIP capture sub-system is de-initialized. Here all resources acquired during system initialization are
free'ed. Make sure all capture handles are deleted before calling this API. VIP sub-system de-init happens as part of
overall FVID2 system de-init. Typically this is done during system shutdown.
The global VIP capture handle, if opened earlier, should also be deleted before called FVID2 de-init

#include "ti/psp/vps/vps_capture.h"

Void mySysDeInit() {

 /* Delete global VIP capture handle */

 FVID2_delete(fvidHandleVipAll, NULL);

 /* FVID2 system de-init */

 FVID2_deInit(NULL);

}

UserGuideHdvpssCaptureDriver 173

Sample application
This section shows how to configure and run the sample application for VIP capture. The sample application source
code is located at the below path.
pspdrivers_\packages\ti\psp\examples\common\vps\capture\captureVip

Running the sample application
To run the sample application, load and run the
$(hdvpss_install_folder)\build\bin\$platform\m3vpss\whole_program_debug\hdvpss_examples_captureVip.xem3

onto HDVPSS-M3 processor of the TI EVM for TI816x or TI814x via CCS v4 and above
This application will detect the platform board/EVM and then execute different capture modes depending on the
detect platform board/EVM.
Currently following platform specific boards/EVMs and capture combinations are supported by the capture example.

TI816x TI814x

Video Security (VS) EVM 4x TVP5158 MULTI-CH capture 2x TVP5158 MULTI-CH
capture

Video Conferencing (VC) EVM 2x SII9135 + 1x TVP7002 (muxed with 1x SII9135) SINGLE-CH capture 1x SII9135

Sample output printed on the CCS console for TI816x VS EVM is shown below:

 === HDVPSS Clocks are enabled ===

 === HDVPSS is fully functional ===

 === HDVPSS module is not in standby ===

 === I2C1 Clk is active ===

 CAPTUREAPP: HDVPSS Drivers Version String: HDVPSS_01_00_01_25

 *** VPDMA Firmware Loading... ***

 VPDMA Firmware Address = 0x921a2fc0

 VPDMA Load Address = 0x4810d004

 VPDMA Firmware Version = 0x4d000185

 VPDMA List Busy Status = 0x00000000

 *** VPDMA Firmware Load Success ***

 I2C1: Passed for address 0x20 !!!

 I2C1: Passed for address 0x21 !!!

 I2C1: Passed for address 0x39 !!!

 I2C1: Passed for address 0x3d !!!

 I2C1: Passed for address 0x58 !!!

 I2C1: Passed for address 0x5a !!!

 I2C1: Passed for address 0x5c !!!

 I2C1: Passed for address 0x5e !!!

 I2C1: Passed for address 0x60 !!!

 CAPTUREAPP : Detected [4x TVP5158 VS] Board !!!

 CAPTUREAPP: CaptureApp_init() - DONE !!!

 CAPTUREAPP: Loop 1 of 1 !!!

 CAPTUREAPP: HANDLES 4: MODE 0002 : CH 4: RUN COUNT 10:

OUTPUT:1:12292 !!!

 CAPTUREAPP: 0: CaptureApp_create() - DONE !!!

UserGuideHdvpssCaptureDriver 174

 CAPTUREAPP: VIP 0: VID DEC 0400 (0x58): 5158:0002:0000

 CAPTUREAPP: Detect video in progress for inst 0 !!!

 TVP5158: 0x58: Downloading patch ...

 TVP5158: 0x58: Downloading patch ... DONE !!!

 TVP5158: 0x58: 5158:0002:0124

 CAPTUREAPP: Detected video at CH0 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH1 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH2 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH3 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detect video Done !!!

 CAPTUREAPP: 1: CaptureApp_create() - DONE !!!

 CAPTUREAPP: VIP 2: VID DEC 0400 (0x5a): 5158:0002:0000

 CAPTUREAPP: Detect video in progress for inst 2 !!!

 TVP5158: 0x5a: Downloading patch ...

 TVP5158: 0x5a: Downloading patch ... DONE !!!

 TVP5158: 0x5a: 5158:0002:0124

 CAPTUREAPP: Detected video at CH0 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH1 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH2 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH3 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detect video Done !!!

 CAPTUREAPP: 2: CaptureApp_create() - DONE !!!

 CAPTUREAPP: VIP 1: VID DEC 0400 (0x5c): 5158:0002:0000

 CAPTUREAPP: Detect video in progress for inst 1 !!!

 TVP5158: 0x5c: Downloading patch ...

 TVP5158: 0x5c: Downloading patch ... DONE !!!

 TVP5158: 0x5c: 5158:0002:0124

 CAPTUREAPP: Detected video at CH0 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH1 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH2 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH3 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detect video Done !!!

 CAPTUREAPP: 3: CaptureApp_create() - DONE !!!

 CAPTUREAPP: VIP 3: VID DEC 0400 (0x5e): 5158:0002:0000

 CAPTUREAPP: Detect video in progress for inst 3 !!!

 TVP5158: 0x5e: Downloading patch ...

 TVP5158: 0x5e: Downloading patch ... DONE !!!

 TVP5158: 0x5e: 5158:0002:0124

 CAPTUREAPP: Detected video at CH0 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH1 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH2 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detected video at CH3 (720x240@59Hz, 1)!!!

 CAPTUREAPP: Detect video Done !!!

 CAPTUREAPP: Starting capture ... !!!

 CAPTUREAPP: Starting capture ... DONE !!!

 CAPTUREAPP: Capture in progress ... DO NOT HALT !!!

 CAPTUREAPP: Stopping capture ... !!!

UserGuideHdvpssCaptureDriver 175

 CAPTUREAPP: Stopping capture ... DONE !!!

 Execution Statistics

 ====================

 Execution time : 11.65 s

 Total field Count : 10684 (965 fields/sec)

 Avg CPU Load : 5 %

 *** Capture Driver Advanced Statistics ***

 VIP Parser Reset Count : 0

 | Total Even Odd Total Even Odd Min / Max Min /

Max Dropped FrmErr

 CH | Fields Fields Fields FPS FPS FPS Width

Height Fields (DescErr)

--

 000 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 001 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 002 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 003 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 100 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 101 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 102 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 103 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 200 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 201 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 202 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 203 | 668 334 334 60 30 30 720 / 720 243 /

244 0 0(0)

 300 | 667 333 334 60 30 30 720 / 720 243 /

244 0 0(0)

 301 | 667 333 334 60 30 30 720 / 720 243 /

244 0 0(0)

UserGuideHdvpssCaptureDriver 176

 302 | 667 333 334 60 30 30 720 / 720 243 /

244 0 0(0)

 303 | 667 333 334 60 30 30 720 / 720 243 /

244 0 0(0)

 *** Capture List Manager Advanced Statistics ***

 List Post Count : 5516

 List Stall Count : 0

 List Post Time (ms) : Max = 0, Min = 0, Avg = 0, Total = 0

 Error descriptor count : 0

 Recv descriptor count : 0

 Extra descriptor programmed count : 0

 VIP and VPDMA registers,

 VIP0 : FIQ_STATUS : 0x4810551c = 0x00001400

 VIP1 : FIQ_STATUS : 0x48105a1c = 0x00001400

 VPDMA: LIST_BUSY : 0x4810d00c = 0x00000000

 VPDMA: PERF_MON32 = 0xb3350000, PERF_MON33 = 0xa332496d, PERF_MON34 =

 0x81000001, PERF_MON35 = 0x13150000

 CAPTUREAPP: 0: CaptureApp_delete() - DONE !!!

 CAPTUREAPP: 1: CaptureApp_delete() - DONE !!!

 CAPTUREAPP: 2: CaptureApp_delete() - DONE !!!

 CAPTUREAPP: 3: CaptureApp_delete() - DONE !!!

 CAPTUREAPP: ERROR COUNT 0: HANDLES 4: MODE 0002 : CH 4: RUN COUNT

10: !!! - DONE

 24870: LOAD: CPU: 5% HWI: 0%, SWI:0%

 CAPTUREAPP: CaptureApp_deInit() - DONE !!!

TI81xx-external video drivers 177

TI81xx- external video drivers

Introduction
External Video drivers control the video devices, which are external to the HDVPSS. These devices include
TVP5158, TVP7002, Sil9022, SiL9135 etc. These video drivers are exposed to the application by FVID2 interface.

Sil9022A HDMI Transmitter
Sil9022A supports High Definition Multimedia Interface. It support YUV422, YUV444 and RGB as the input and
output pixel format. It supports embedded as well as seprate sync format. It has internal DE generator to support
non-embedded sync format. Its output is compatible with HDMI, HDCP and DVI. It supports resolution upto 1080p
and it it pre-programmed with HDCP keys and has completely self-sequencing HDCP detection and authentication,
including SHA-1 for repeaters.
Sil9022A is present on both VS as well as VC daughter cards. It is exposed to application throug FVID2 interface.
Sil9022A FVID2 driver can be opened using FVID2_VPS_VID_ENC_SII9022A_DRV driver Id and 0 as the
instance Id.
Important
The interfaces defined in this file is bound to change. Kindly treat the interfaces as work in progress. Release
notes/user guide list the additional limitation/restriction of this module/interfaces.

Features Supported
• Supports FVID2 interface
• Supports 720p@60, 1080I@60, 1080p@30 and 1080p@60 modes
• Supports ioctls to start and stop hdmi output, to get the status of the hot plug detection event, to get the chip Id.

Features Not Supported
• Selection on input and output format
• Selection of input format
• DVI as output
• HDCP

Limitations/Issues
• None

Software Application Intefaces
Since this driver is used to control HDMI9022A only, it is not a streaming driver. The driver operation can be
partitioned into the below phases:
• System Init Phase: Here the driver sub-system is initialized
• Create Phase: Here the driver handle is created or instantiated
• Run Phase: Here the drive is started or stopped
• Delete Phase: Here the driver handle or instance is deallocated
• System De-init Phase: Here the driver sub-system is de-initialized
The subsequent sections describe each phase in detail.

TI81xx-external video drivers 178

System Init Phase
The HDMI9022A sub-system initialization happens as part of overall HDVPSS system init and platform init. This
API must be the the first API call before making any other FVID2 calls. Below section lists all the APIs which are
part of the System Init phase.

FVID2 Init

Int32 FVID2_init(Ptr args);

args - NULL currently not used.

Platform Init

Int32 VpsUtils_platformEvmInit();

System Create Phase
In this phase user application opens or creates a driver instance. Any number of instances can be created for this
hdmi driver. After opening the driver, status can be obtained and mode can be set in the driver.

FVID2 Create

This API is used to open the HDMI 9022A driver. This is a blocking call and it returns the handle which is to be
used in subsequent call to this driver.

FVID2_Handle FVID2_create(UInt32 drvId,

 UInt32 instanceId,

 Ptr createArgs,

 Ptr createStatusArgs,

 const FVID2_CbParams *cbParams);

drvId - FVID2_VPS_VID_ENC_SII9022A_DRV HDMI 9022A Driver ID. Use this ID to open HDMI9022A
driver. Details can be found in UserGuide
instanceId - 0 Instance 0 of the HDMI 9022A driver.
createArgs - Pointer to Vps_VideoEncoderCreateParams structure containing valid create params. This
parameter must not be null.
createStatusArgs - Pointer to UInt32 return value where the driver returns the actual return code for create
function. This parameter should not be NULL.
cbParams - Since there is no callback from the display controller, this parameters should be set to NULL.

FVID2 Control - Get Detailed Chip ID

This is used to issue a control command to the driver. IOCTL_VPS_SII9022A_GET_DETAILED_CHIP_ID ioctl is
used to get the detailed chip id.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SII9022A_GET_DETAILED_CHIP_ID ioctl.
cmdArgs - Pointer to Vps_HdmiChipId structure containing revision id for device, hdcp, TPI.

TI81xx-external video drivers 179

cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control Get hot plug Status

This is used to issue a control command to the driver. IOCTL_VPS_SII9022A_QUERY_HPD ioctl is use to query
status of the hot plug detect event.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_SII9022A_QUERY_HPD ioctl.
cmdArgs - Pointer to Vps_SiI9022aHpdPrms structure containing event for hpd, bus error.
cmdStatusArgs - Not used currently. This parameter should be set to NULL.

FVID2 Control - Set Mode

This is used to issue a control command to the driver. IOCTL_VPS_VIDEO_ENCODER_SET_MODE ioctl is used
to set mode in the HDMI9022A.

Int32 FVID2_control(FVID2_Handle handle,

 UInt32 cmd,

 Ptr cmdArgs,

 Ptr cmdStatusArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmd - IOCTL_VPS_VIDEO_ENCODER_SET_MODE ioctl.
cmdArgs - Pointer to Vps_SiI9022aModeParams structure containing mode parameters. cmdStatusArgs -
Not used currently. This parameter should be set to NULL.

System Run Phase
This phase is used to start or stop the output from HDMI transmitter

FVID2 Start

This API is used by the application to start the output from HDMI9022A. This is a blocking call and returns after
starting output. This cannot be called from ISR context.

Int32 FVID2_start(FVID2_Handle handle, Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

TI81xx-external video drivers 180

FVID2 Stop

This API is used by the application to stop the output of HDMI9022A. This is a blocking call and returns after
stopping the HDMI9022A output. This cannot be called from ISR context.

Int32 FVID2_stop(FVID2_Handle handle, Ptr cmdArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
cmdArgs - Not used currently. This parameter should be set to NULL.

Delete Phase
In this phase FVID2 delete API is called to close the driver instance.

FVID2 Delete

This API is used to close the HDMI9022A driver. This is a blocking call and returns after closing the handle.

Int32 FVID2_delete(FVID2_Handle handle, Ptr deleteArgs);

handle - Driver handle returned by create function call. This parameter should not be NULL.
deleteArgs - Not used currently. This parameter should be set to NULL.

System De-init Phase
In this phase, HDMI9022A driver is de-initialized. Here all resources acquired during system initialization are
free'ed. Make sure all driver instances deleted before calling this API. HDMI9022A de-init happens as part of overall
FVID2 system and platform de-init. Typically this is done during system shutdown.

Platform De-init

Int32 VpsUtils_platformEvmDeInit();

args - Not used

FVID2 De-init

Int32 FVID2_deInit(Ptr args);

args - Not used

UserGuideHdvpssIntegExample 181

UserGuideHdvpssIntegExample

Integration Examples

Link-chain Framework
This framework is developed (as an example) so that it becomes easier for the individual modules to integrate
themselves with others, create a chain of different modules and test them together for a particular use case. It is
based on few assumptions and may not be suitable for all possible use cases.
A link is a stand-alone independent task which is created on top of a specific module (like capture, scalar, noise filter
etc) and is meant to perform a predefined operation. For e.g. the display link will only take care of the display related
functionalities, a noise-filter link will only look towards noise filtering etc.
A chain is a set of links joined together to perform a complete sequence of operations desired for the specific use
case. For e.g. capture and display links can be joined to form a chain which will capture frames from the input source
and display them on the connected output.
During initialization, each link registers itself with this framework and then creates its own individual task. This task
listens to the incoming messages and takes the appropriate actions.
Each link accepts messages from the previous link(s) (the only exception is capture link) and sends output to the
connected link(s) (an exception is display). The link is informed by its predecessor link once the data is available for
its use. The link can then start processing the data and once it is done, it informs the next link. The next connected
link in the chain will then start processing the data and the process continues.

Link-Chains Examples
Below are a few examples of chains having different links with detailed diagrams and performing various tasks.
The chains and links implementation can be found in \packages\ti\psp\examples\common\vps\chains\ folder.
Main source file for all chains is: src\chains_main.c

NOTE: The examples shown in this section is not a exhaustive list of link-chains that are actually implemented in
the HDVPSS chains examples. See next section for list of all links-chains that are implemented

Single-channel Capture + Display

This is the simplest chain which uses capture and display links. Capture link takes single input from the source
(camera) and informs the display link once the frames are captured. Display link then configures the attached display
(for e.g. HDMI) and starts displaying captured frames from a single channel on the same. Both capture and display
links operate in single channel mode here.
Source file: src\chains_singleChCaptureSii9135.c

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain1.jpeg

UserGuideHdvpssIntegExample 182

Multi-channel Capture + Scalar + Display

This chain uses capture, scalar and display links. Capture link takes multiple inputs from various sources and passes
the captured frames to the scalar link. Scalar link then upscales/downscales the incoming frames as per the
configuration parameters and performs software mosaic on them, resulting in a single frame having all the selected
input frames. Scalar link then sends this output frame to the display link which, after configuring the attached
display, starts displaying these frames on the same.
Source file: src\chains_multiChCaptureNsf.c

Multi-channel Capture + Noise-filter + Scalar + Display

This chain uses capture, noise-filter, scalar and display links. Capture link takes multiple inputs from various sources
and passes the captured frames to the noise filter link. This link does the noise-filtering on incoming frames as per its
configuration and sends them to the next link – scalar – in the chain. Scalar link then upscales/downscales the
incoming frames as per the configuration parameters and performs software mosaic on them, resulting in a single
frame having all the selected input frames. Scalar link then sends this output frame to the display link which, after
configuring the attached display, starts displaying these frames on the same.
Source file: src\chains_multiChCaptureNsf.c

Multi-channel Capture + De-interlacer + Scalar + Display

This chain uses capture, de-interlacer, scalar and display links. Capture link takes multiple inputs from various
sources and passes the captured frames to the de-interlacer link. This link converts the interlaced video content from
multiple channels to progressive form. This link has two outputs: one before the scalar in the DEI block and other
after the scalar in the DEI block. Here, the first non-scaled output is sent to the scalar link and the other output is sent
to the NULL link which acts as a dummy link and returns those frames immediately to the DEI link for further
usage. Scalar link then upscales/downscales the incoming frames as per the configuration parameters and performs
software mosaic on them, resulting in a single frame having all the selected input frames. Scalar link then sends this

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain3.jpeg
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain4.jpeg
http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain5.jpeg

UserGuideHdvpssIntegExample 183

output frame to the display link which, after configuring the attached display, starts displaying these frames on the
same.
Source file: src\chains_multiChCaptureNsfDei.c

Multi-channel Capture + Noise-Filter (NSF) + De-interlacer (DEI) + Scalar + Display

This chain exercises most of the available links - capture, noise-filter, de-interlacer, scalar and display links. Capture
link takes multiple inputs from various sources and passes the captured frames to the noise-filter link. This link does
the noise-filtering on incoming frames as per its configuration and sends them to the next link – de-interlacer – in
the chain. This link converts the interlaced video content from multiple channels to progressive form. This link has
two outputs: one before the scalar in the DEI block and other after the scalar in the DEI block. Here, the first
non-scaled output is sent to the scalar link and the other output is sent to the NULL link which acts as a dummy link
and returns those frames immediately to the DEI link for further usage. Scalar link then upscales/downscales the
incoming frames as per the configuration parameters and performs software mosaic on them, resulting in a single
frame having all the selected input frames. Scalar link then sends this output frame to the display link which, after
configuring the attached display, starts displaying these frames on the same.
Source file: src\chains_multiChCaptureNsfDei.c

Link - Chain Actual Samples in HDVPSS driver package
The following link-chains are implemented in HDVPSS driver package

Platforms

Supported

Applicable
Board

Menu Option in
Chains Example

Main Source File Data Flow Additional
Comments

TI816x

TI814x

TI8107

VS 1: Single CH
Capture + Scale +
Display (2CH 2x
TVP5158, NTSC,
YUV420SP)

chains_tvp5158NonMuxCapture.c - Non-mux D1
capture via 2x
TVP5158 in
YUV420SP dual
output format

- Output from
capture scaled
from YUV420SP
to YUV422I
using SC5 and
output arranged
in 2x2 layout

- Displayed on a
1080p60 Display
(On-Chip or
Off-HDMI)

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain6.jpeg

UserGuideHdvpssIntegExample 184

TI816x
TI814x
TI8107

VS 2: Multi CH Capture
+ Scale + Display (
TVP5158, NTSC,
YUV422I)

chains_multiChCaptureNsf.c - 4CH D1 muxed
capture via 4x
TVP5158 in
YUV422I output
format - Output
from capture
scaled from
YUV422I to
YUV422I using
SC5 and output
arranged in 4x4
layout

- Displayed on a
1080p60 Display
(On-Chip or
Off-HDMI)

TI816x
TI814x
TI8107

VS 3: Multi CH Capture
+ NSF + Scale +
Display (TVP5158,
NTSC, YUV422I)

chains_multiChCaptureNsf.c - 4CH D1 muxed
capture via 4x
TVP5158 in
YUV422I output
format

- Output from
capture noise
filtered (NSF)
(YUV422I to
YUV420SP
conversion while
doing NSF)

- Output from
NSF scaled from
YUV420SP to
YUV422I using
SC5 and output
arranged in 4x4
layout

- Displayed on a
1080p60 Display
(On-Chip or
Off-HDMI)

NSF mode full
enable or
bypass/disable can
be selected via
settings menu

UserGuideHdvpssIntegExample 185

TI816x
TI814x
TI8107

VS 4: Multi CH Capture
+ DEI + Scale +
Display (4CH 1x
TVP5158, NTSC,
YUV422I)

chains_multiChCaptureNsfDei.c - 4CH D1 muxed
capture via 1x
TVP5158 in
YUV422I output
format - Output
from capture
deinterlaced
(DEI) and 1:1
scaled using
DEI-SC as well
as 1:1 scaled via
VIP-SC

- Output from
DEI-SC scaled
from YUV422I
to YUV422I
using SC5 and
output arranged
in 2x2 layout

- Displayed on a
1080p60 Display
(On-Chip or
Off-HDMI)

DEIH or DEI can
be selected via
settings menu

The DEI output to
be scaled and
displayed can be
DEI-SC output or
VIP-SC output
depending on
option selected via
settings menu

TI816x
TI814x
TI8107

VS 5: Multi CH Capture
+ NSF + DEI +
Scale + Display (
8CH 2x TVP5158,
NTSC, YUV422I)

chains_multiChCaptureNsfDei.c - 4CH D1 muxed
capture via 2x
TVP5158 in
YUV422I output
format - Output
from capture
noise filtered
(NSF)
(YUV422I to
YUV420SP
conversion while
doing NSF)

- Output from
NSF deinterlaced
(DEI) and 1:1
scaled using
DEI-SC as well
as 1:1 scaled via
VIP-SC

- Output from
DEI-SC scaled
from YUV422I
to YUV422I
using SC5 and
output arranged
in 2x2 layout

- Displayed on a
1080p60 Display
(On-Chip or
Off-HDMI)

NSF mode full
enable or
bypass/disable can
be selected via
settings menu

DEIH or DEI can
be selected via
settings menu

The DEI output to
be scaled and
displayed can be
DEI-SC output or
VIP-SC output
depending on
option selected via
settings menu

UserGuideHdvpssIntegExample 186

TI816x VS 6: Multi CH Capture
+ DEI + Mosaic
Display (8CH 2x
TVP5158, NTSC,
YUV422I)

chains_multiChSystemUseCase.c - 4CH D1
muxedcapture
via 2x TVP5158
in YUV422I
output format

- Output from
capture
deinterlaced
(DEI) and scaled
using DEI-SC
for 8CH layout

- Output from
DEI shown in
8CH mode via
1080p60 mosaic
display

DEIH or DEI can
be selected via
settings menu

TI816x VS 7: Multi CH System
Use Case (16CH 4x
TVP5158, NTSC,
YUV422I)

chains_multiChSystemUseCase.c - 4CH D1 muxed
capture via 4x
TVP5158 in
YUV422I output
format - Output
from capture
noise filtered
(NSF)
(YUV422I to
YUV420SP
conversion while
doing NSF)

- Output from
NSF deinterlaced
(DEIH+DEI) and
scaled using
DEI-SC for 4x4
layout

- Output from
DEIH+DEI
shown in 16CH
mode via
1080p60 mosaic
display

NSF mode full
enable or
bypass/disable can
be selected via
settings menu

UserGuideHdvpssIntegExample 187

TI816x VS 8: Multi CH System
Use Case - II (16CH
4x TVP5158,
NTSC, YUV422I)

chains_multiChSystemUseCase2.c - 4CH D1 muxed
capture via 4x
TVP5158 in
YUV422I output
format - Output
from capture
noise filtered
(NSF)
(YUV422I to
YUV420SP
conversion while
doing NSF)

- Output from
NSF deinterlaced
(DEIH+DEI) and
1:1 scaled using
DEI-SC as well
as 1:1 scaled via
VIP-SC

- Output from
DEIH-VIP-SC +
DEI-VIP-SC
scaled from
YUV420SP to
YUV422I using
dual instances of
SC5 and output
arranged in 8CH
layout

- Displayed on a
dual 1080p60
Display
(On-Chip +
Off-HDMI)

This option needs
additional memory
so will not work
with default
memory map in
HDVPSS
examples. Need to
modify memory
map in config.bld
file and give more
memory in
vpsutils_mem.h
(needs 350MB) to
frame buffers in
order to make this
work

TI816x
TI814x

VS 9: Single CH
Capture + DEI +
Display (Full screen
DEI) (1CH 1x
TVP5158, NTSC,
YUV422I)

chains_singleChCaptureNsfDeiTvp5158.c - Non-mux D1
capture via 1x
TVP5158 in
YUV420SP dual
output format

- Output from
capture noise
filtered (NSF)
(YUV422I to
YUV420SP
conversion while
doing NSF)

- Output from
NSF deinterlaced
(DEI) and
scaled using
DEI-SC for
1080p output

- Displayed on a
1080p60 Display
(On-Chip or
Off-HDMI)

NSF mode full
enable or
bypass/disable can
be selected via
settings menu
DEIH or DEI can
be selected via
settings menu

UserGuideHdvpssIntegExample 188

TI816x
TI814x

VC 1: Single CH
Capture + Display
(1x SII9135 16b,
1080P60, YUV422I
)

chains_singleChCaptureSii9135.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 1080p60
source)

- Capture Output
1: Unscaled
YUV422I output

- Capture Output
2: Scaled
800x450
YUV422I output

- Display,
1080p60

- Shows Capture
Output 1 for
11secs and
Capture Output 2
for 11 secs and
so on

UserGuideHdvpssIntegExample 189

TI816x
TI814x

VC 2: Single CH
Capture + SC +
Display (1x SII9135
16b, 1080P60,
YUV420SP)

chains_singleChCaptureSii9135.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 1080p60
source)

- Capture Output
1: Unscaled
YUV420SP
output

- Capture Output
2: Scaled
800x450
YUV420SP
output

- SC - (SC5)

- Takes Capture
Output 1 as input
and outputs 1:1
SC YUV422I
output

- Does this for
11secs and then
flips to Capture
Output 2 as input
and so on

- Display,
1080p60

- Shows
YUV422I output
from SC

TI816x
TI814x

VC 3: Single CH
Capture + NSF +
DEI + Display (1x
TVP7002 16b,
1080i60, YUV422I
)

chains_singleChCaptureNsfDeiTvp7002.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
outputs
YUV422I from
VIP0 PortA (via
TVP7002,
expects 1080i60
input)

- NSF takes
capture output
and converts it to
YUV420

- DEI takes NSF
output and
converts it to
YUV422

- Display takes
DEI output and
displays it

UserGuideHdvpssIntegExample 190

TI816x
TI814x

VC 4: Single CH
Capture + DEI +
Display (1x
TVP7002 16b,
1080i60,
YUV420SP)

chains_singleChCaptureNsfDeiTvp7002.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
outputs
YUV420SP from
VIP0 PortA (via
TVP7002,
expects 1080i60
input)

- DEI takes
Capture output
and converts it to
YUV422

- Display takes
DEI output and
displays it

TI816x
TI814x

VC 5: Single CH
Capture + Display
(1x TVP7002 24b,
1080i60, YUV422I
)

chains_singleChCaptureTvp7002DisSync.c - Capture
operates in
24-bit RGB
discrete sync
mode - Capture
from VIP0 PortA
(via TVP7002,
expects 1080i60
source)

- CSC converts
RGB to YUV

- Capture Output
1: Unscaled
YUV422I output

- Capture Output
2: Scaled
960x540
YUV422I output

- Display,
1080p60

- Shows Capture
Output 1 for
11secs and
Capture Output 2
for 11 secs and
so on

UserGuideHdvpssIntegExample 191

TI816x
TI814x

VC 6: Single CH
Capture + SC +
Display (1x
TVP7002 24b,
1080i60,
YUV422SP)

chains_singleChCaptureTvp7002DisSync.c - Capture
operates in
24-bit RGB
discrete sync
mode - Capture
from VIP0 PortA
(via TVP7002,
expects 1080i60
source)

- CSC converts
RGB to YUV

- Capture Output
1: Unscaled
YUV422SP
output

- SC - (SC5)

- Takes Capture
Output 1 as input
and outputs 1:1
SC YUV422I
output

- Display,
1080p60

- Shows
YUV422I output
from SC

UserGuideHdvpssIntegExample 192

TI816x
TI814x

VC 7: Single CH
Capture + SC +
Display (1x
TVP7002 16b + 1x
SII9135 16b,
1080i60+1080P60,
YUV420SP)

chains_singleChCaptureSii9135Tvp7002.c - Dual port
capture - VIP0
PortA -
TVP7002 in
16-bit YUV422
embedded sync
mode, expects
1080i60 source

- VIP-SC 1:1
feeds both
outputs as below

- Capture Output
1: 1920x540
YUV420SP

- Capture Output
2: 1920x540
YUV420SP

- VIP1 PortA -
Sii9135 in 16-bit
YUV422
embedded sync
mode, expects
1080p60 source

- Capture Output
1: Unscaled
YUV420SP

- Capture Output
2: Scaled
1280x720
YUV420SP

- SC (SC5)

- Takes the 4
capture outputs
as inputs and
outputs to a
1920x1080
buffers in a 2x2
formats (we call
it SW
moasicing)

- Display,
1080p60

- Shows
YUV422I output
from SC

TI816x
TI814x

VC 8: Single CH
Capture + SC +
Display (1x
TVP7002 24b + 1x
SII9135 16b,
1080i60+1080P60,
YUV420SP)

chains_singleChCaptureSii9135Tvp7002.c - Same as above
except VIP0
PortA operates
in 24-bit RGB
mode - CSC
converts RGB to
YUV for this
port

UserGuideHdvpssIntegExample 193

TI816x
TI814x

VC 9: Single CH
Capture + SC +
Display (1x SII9135
16b, 1080P60,
YUV422SP)

chains_singleChCaptureSii9135.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 1080p60
source)

- Capture Output
1: Unscaled
YUV422SP
output

- SC - (SC5)

- Takes Capture
Output 1 as input
and outputs 1:1
SC YUV422I
output

- Display,
1080p60

- Shows
YUV422I output
from SC

TI816x VC a: Single CH
Capture + NSF +
DEI + Display (1x
SII9135 16b, 480i60
-> 480p60 ,
YUV422I)

chains_singleChCaptureNsfDeiSii9135_480i.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 1080i60
source)

- Capture Output
1: Unscaled
YUV422SP
output

- DEI takes
Capture output
and converts it to
YUV422
Progressive

- DEI -
(DEI_H/DEI) +
(SC_H/SC) -
1080i -> 1080p

- Display,
1080p60

- Shows
YUV422I output
from DEI

UserGuideHdvpssIntegExample 194

TI816x VC b: Single CH
Capture + NSF +
DEI + Display (1x
SII9135 16b,
1080i60 ->
1080p60, YUV422I
)

chains_singleChCaptureNsfDeiSii9135_1080i.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 1080i60
source)

- Capture Output
1: Unscaled
YUV422I output

- NSF takes
capture output
and converts it to
YUV420

- DEI takes NSF
output and
converts it to
YUV422

- DEI -
(DEI_H/DEI) -
1080i -> 1080p

- Display,
1080p60

- Shows
YUV422I output
from DEI

UserGuideHdvpssIntegExample 195

TI816x VC c: Single CH
Capture + NSF +
DEI + Display (1x
SII9135 16b, 480i60
-> 1080p60,
YUV422I)

chains_singleChCaptureNsfDeiSii9135_480i_fullscreen.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 480i60
source)

- Capture Output
1: Unscaled
YUV422I output

- NSF takes
capture output
and converts it to
YUV420

- DEI takes NSF
output and
converts it to
YUV422

- DEI -
(DEI_H/DEI) +
(SC_H/SC) -
480i -> 1080p

- Display,
1080p60

- Shows
YUV422I output
from DEI

UserGuideHdvpssIntegExample 196

TI816x VC d: Single CH
Capture + DEI +
Display (1x SII9135
16b, 480i60 ->
480p60 , YUV422I
)

chains_singleChCaptureNsfDeiSii9135_480i.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 480i60
source)

- Capture Output
1: Unscaled
YUV422SP
output

- DEI takes
Capture output
and converts it to
YUV422
Progressive

- DEI -
(DEI_H/DEI) +
(SC_H/SC) -
480i -> 480p

- Display,
1080p60

- Shows
YUV422I output
from DEI

TI816x VC e: Single CH
Capture + DEI +
Display (1x SII9135
16b, 1080i60 ->
1080p60, YUV422I
)

chains_singleChCaptureNsfDeiSii9135_1080i.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 1080i60
source)

- Capture Output
1: Unscaled
YUV422SP
output

- DEI takes
Capture output
and converts it to
YUV422
Progressive

- DEI -
(DEI_H/DEI) +
(SC_H/SC) -
1080i -> 1080p

- Display,
1080p60

- Shows
YUV422I output
from DEI

UserGuideHdvpssIntegExample 197

TI816x VC f: Single CH
Capture + DEI +
Display (1x SII9135
16b, 480i60 ->
1080p60, YUV422I
)

chains_singleChCaptureNsfDeiSii9135_480i_fullscreen.c - Capture
operates in
16-bit YUV422
embedded sync
mode - Capture
from VIP1 PortA
(via Sii9135,
expects 480i60
source)

- Capture Output
1: Unscaled
YUV422SP
output

- DEI takes
Capture output
and converts it to
YUV422
Progressive

- DEI -
(DEI_H/DEI) +
(SC_H/SC) -
480i -> 1080p

- Display,
1080p60

- Shows
YUV422I output
from DEI

UserGuideHdvpssIntegExample 198

TI816x VC g: Single CH
Capture + SC +
Display (1x
TVP7002 16b,
1080i60,
YUV420SP,
FieldsMerged ->
1080p30,
YUV422I)

chains_singleChCaptureTvp7002FieldMerged.c - Capture
operates in
16-bit YUV422
embedded sync
mode
- Capture from
VIP0 PortA (via
TVP7002,
expects 1080i60
source)
- Capture Output
1: Unscaled
YUV420SP
output, field
merged
- Capture Output
2: Unscaled
YUV420SP
output, field
merged
- SC: SC5 driver,
Takes Capture
Output 1,2
alternatively as
input and outputs
1:1 SC
YUV422I output
- Display:
1080p30
- Shows
YUV422I output
from SC

Link Details
The links which are used to create all the above mentioned chains are described below. <span style="color: rgb(255,
0, 0);" />
1. Capture: This single link is used to capture frames from all the four VIP parser ports. It has no input queue and 4

output queues to support 4 instances of VIP ports. It can capture a maximum of 16 channels from 4 VIP ports.
IOCTL CAPTURE_LINK_CMD_DETECT_VIDEO is supported for this link which is used to detect the video
and fetch the image properties from the sensor. After capturing, this link can either send all the captured channels
to 1 output queue or it can distribute the channels among the 4 output queues. For e.g., in dual 1080p mode, it can
capture one channel each from two VIP ports, configure the VIP in dual output mode and send the 4 (2 VIP ports
* 2 outputs) outputs to 4 output queues.

2. Noise filter: This link has one input and two output queues. It takes multiple frames from different channels as
input and gives the same number of frames/channels as outputs after noise-filtering. Output can be split in two
output queues depending on a configuration switch which allows either using output queue 0 for all the channels
or using both the output queues for half of the total available channels.

3. DEI: This link has one input and two output queues. It takes multiple frames from different channels as input and
gives the same number of frames/channels as outputs after de-interlacing. DEI always gives two outputs: a)
de-interlaced non-scaled output, which goes to VIP scalar, and b) de-interlaced scaled output. First output is in
YUV420 format whereas the second output is in YUV422 format hence it can be given directly to the display.
Each of the outputs can be enabled/disabled individually for this link.

UserGuideHdvpssIntegExample 199

4. Scalar - Software Mosaic: This link has one input and one output queue. It takes multiple frames from different
channels as input and gives one channel as output after processing. This single channel output has all the
up-scaled/downscaled frames, arranged in a mosaic format. Scaling is done after every n msec which is
configurable. This link supports SCALAR_SW_MS_LINK_CMD_SWITCH_LAYOUT IOCTL which is used to
switch layout for the number of windows/channels chosen for display. The starting channel number for the layout
can also be changed from the application. Channels which are not used for mosaic are returned immediately to the
previous link.

5. Scalar: This link has one input and one output queue. It takes multiple frames from different channels as input
and gives the same number of frames/channels as outputs after scaling.

6. Display: This link has only one input queue and no output queue. It takes multiple channels as input and shows
only one pre-selected channel on the connected display. The channel which will be displayed can be changed by
using DISPLAY_LINK_CMD_SWITCH_CH IOCTL. All the other channels are returned immediately to the
previous link.

7. Display – Hardware Mosaic: It has two input queues and no output queue. It takes multiple channels as inputs
and displays the selected subset of channels in mosaic format on the connected display. All other channels are
returned immediately to the previous link. The two input queues can be used to connect to two different links like
DEI and DEI_H. In this case, both input queues will receive frames from the previous links. Depending on the
display link settings, it will choose a subset from all the available channels, create a mosaic display out of them
and display it accordingly.

8. Graphics: It is a pseudo-link for the graphics module which initializes the graphics driver and displays a
pre-defined logo on the connected output. It is meant only for the system-level integration example.

9. Null: It is used as a dummy sink for links having multiple outputs (like DEI) in which one output is not used and
hence needs to be returned immediately. It can be used for debugging purpose as well. For e.g. if display link
doesn’t work as expected, the previous link in the chain can be connected to the NULL link to make sure that
other links in the chain are working properly.

The interfaces files and the corresponding source code for all the above links can be found in
packages\ti\psp\examples\common\vps\chains\links folder.

S
No

Link Interface file Source code (folder)

1 Capture captureLink.h capture

2 Noise filter nsfLink.h nsf

3 De-interlacer deiLink.h dei

4 Scalar Software Mosaic scalarSwMsLink.h scalarSwMs

5 Scalar scLink.h scalar

6 Display displayLink.h display

7 Display Hardware Mosaic displayHwMsLink.h displayHwMs

8 Graphics grpxLink.h grpx

9 Null nullLink.h null

TI81xx-HDVPSS MultiCore Arch 200

TI81xx- HDVPSS MultiCore Arch

HDVPSS Software MultiCore Architecture

Need
HDVPSS driver is running on Ducati M3 (hosting BIOS6) and applications running on Ducati M3 can interface via
FVID2, If we required to control HDVPSS from other cores, we would require to re-write/port HDVPSS drivers to
other cores and/or operating system. Which requires significant effort to develop and maintain drivers in multiple
operating system (and CPUs). Additionally resource allocation/management across cores could be challenging.

Overview
The basic idea is to have HDVPSS driver running on Ducati M3 along with a daemon (referred as Proxy Server) and
other cores will run an dummy drivers (referred as clients) that would request host to perform required operations,
based on the request from the local applications.
The interface exposed by client could be same as FVID2, or any other interface (as required by architecture of the
local applications/OS)
Example
1. Assuming that we would require to access display driver from A8 running Linux. The client running on A8,

would present itself as the display driver to Linux (V4L2 Display Driver or FBDev Display Driver), translate
Linux display requests to FVID2 commands and have them processed by Proxy Server.

2. Assuming that we are running a client on BIOS6 on DSP and we have applications running on DSP that use
FVID interfaces. the client would simply transfer the FVID2 call to the proxy server and return back the response
to application that made the call.

TI81xx-HDVPSS MultiCore Arch 201

Dependencies

IPC
Proxy Server relies on Texas Instruments IPC for inter-core communication in particular on Notify module of IPC.

Customized FVID2 Interace
Proxy Server Interface build upon FIVD2 interfaces, Please refer Interface Sections for details...

Protocol
Proxy Server is based on command response mechanism. The following pictures depicts the same for
display/capture/FBDev driver running on A8 Linux.

Protocol

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Protocol.jpg

TI81xx-HDVPSS MultiCore Arch 202

Sample Queue and DeQueue operation
Below pictures depicts the sequence of operations done on host and client to process an command from remote core.

Queue De-queue

Server
Reserved Notify

Control commands such as FVID2_init, FVID2_create, FVID2_delete, FVID2_deInit and display
controller command, will require to use a reserved IPC notify number. (An initialization time parameter)

Notify event number to be used by client for IO

On successful creation of a FVID2 stream, an notify event number would be allocated. Clients are
expected to use this for all further IO on this stream

Task that process commands from clients

There would be 5 tasks
1 Control task, used to execute control commands
1 Task each to handle streams (Capture, Display, Memory2Memory and Graphics)
Priorities of these tasks is initialization time parameter. Could be used for load balancing

Client requires to identify the class of stream during channel creation. (Left to clients to enable load
balancing

A separate Q for each task

Depth of the Q is initialization time parameter
Requires Physical address of the command Structure

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Q-Dq.jpg

TI81xx-HDVPSS MultiCore Arch 203

Clients
Implements the functions defined by fvid2.h

Essentially a thin driver that would talk to host to perform fvid2 operations
Structure of each command is predefined, clients require to order any request into this

All control commands are requested via reserved notification event number

A callback requires to be registered with IPC.Notify on the allocated notification event number. This callback
should handle completed IO requests

Interface
Proxy Server build upon FIVD2 interface, where each FVID2 API is defined as command structure with 3 additional
parameters...

 [IN] VPS_PSrvCommands command;

 [IN] UInt32 reserved;

 [OUT] Int32 returnValue;

Where command identifies type of FVID2 API and returnValue to hold the return value returned by HDVPSS
drivers.
Each FVID2 command is encapsulated in a command structure defined below

Composite Command is not supported

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:SimplexCommand.jpg

TI81xx-HDVPSS MultiCore Arch 204

Proxy Server Features
1. Single API to initialize Proxy Server
2. Configurable to serve predefined cores
3. Priorities of tasks that process clients commands
4. Number of events for a given core, each core could potentially have different number of events and different

event numbers...
5. Configurable reserved notify event number. Applies to all cores.

Sample Application
This release provides a application to initialize proxy server. Linux FBDEV driver for TI81xx devices, uses this
application to control, configure and display images from a different core.

Article Sources and Contributors 205

Article Sources and Contributors
TI81xx- HDVPSS- UserGuide Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=130605 Contributors: A0868651, Anuj.aggarwal, HardikShah, Jadavbrijesh,
MugdhaKamoolkar, PurushotamKumar, SivarajR, Sudhir, SujithShivalingappa

T181xx- HDVPSS Overview Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129171 Contributors: Anuj.aggarwal, BrijeshJadav, HardikShah, Jadavbrijesh, SivarajR

T1816X- HDVPSS- HW Overview Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=68887 Contributors: Anuj.aggarwal

T1814X- HDVPSS- HW Overview Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129177 Contributors: Anuj.aggarwal, Jadavbrijesh, SujithShivalingappa

UserGuideHdvpssFolderOrg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129122 Contributors: Jadavbrijesh, SujithShivalingappa

UserGuideFVID2 Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=125959 Contributors: Anuj.aggarwal, HardikShah, Vikramgara

UserGuideHdvpssPlatformAPIs Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129180 Contributors: HardikShah, Jadavbrijesh

UserGuideHdvpssDisplayDriver Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129206 Contributors: A0868651, Anuj.aggarwal, BrijeshJadav, HardikShah, Jadavbrijesh,
Lkreddy, SivarajR, Vikramgara

UserGuideHdvpssM2mDriver Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129200 Contributors: A0131716, Anuj.aggarwal, HardikShah, Jadavbrijesh, Lkreddy,
MugdhaKamoolkar, SivarajR, SujithShivalingappa, Vikramgara

UserGuideHdvpssTi816xDeiM2mDriver Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=122624 Contributors: Anuj.aggarwal, MugdhaKamoolkar, SivarajR

UserGuideHdvpssTi814xDeiM2mDriver Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129198 Contributors: A0131716, Anuj.aggarwal, Jadavbrijesh, SivarajR,
SujithShivalingappa

UserGuideHdvpssCaptureDriver Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129203 Contributors: Anuj.aggarwal, HardikShah, Jadavbrijesh, Kedarsc,
MugdhaKamoolkar, SivarajR, SujithShivalingappa

TI81xx- external video drivers Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=72409 Contributors: BrijeshJadav, HardikShah, Kedarsc, SivarajR

UserGuideHdvpssIntegExample Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=129209 Contributors: A0131716, Anuj.aggarwal, Jadavbrijesh, Kedarsc, SivarajR,
SujithShivalingappa, Vikramgara

TI81xx- HDVPSS MultiCore Arch Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=79998 Contributors: HardikShah, SivarajR, SujithShivalingappa

Image Sources, Licenses and Contributors 206

Image Sources, Licenses and Contributors
Image:TIBanner.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TIBanner.png License: unknown Contributors: Sriram
Image:Install_1.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_1.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_2.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_2.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_3.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_3.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_4.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_4.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_5.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_5.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_6.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_6.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_8.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_8.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_9.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_9.PNG License: unknown Contributors: Anuj.aggarwal
Image:Install_10.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Install_10.PNG License: unknown Contributors: Anuj.aggarwal
Image:Netra DSS Display.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Netra_DSS_Display.png License: unknown Contributors: PurushotamKumar
Image:Ti816x-HDVPSS.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Ti816x-HDVPSS.jpg License: unknown Contributors: Anuj.aggarwal, SivarajR
Image:Ti814x-HDVPSS_updated.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Ti814x-HDVPSS_updated.jpg License: unknown Contributors:
SujithShivalingappa
Image:TI8107-HDVPSS Hardware.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI8107-HDVPSS_Hardware.jpg License: unknown Contributors: Jadavbrijesh
File:TopLevel.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TopLevel.PNG License: unknown Contributors: SujithShivalingappa
File:BuildFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:BuildFolder.PNG License: unknown Contributors: SujithShivalingappa
File:DocsFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DocsFolder.PNG License: unknown Contributors: SujithShivalingappa
File:MakeFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:MakeFolder.PNG License: unknown Contributors: SujithShivalingappa
File:PsVpsFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PsVpsFolder.PNG License: unknown Contributors: SujithShivalingappa
File:EgOthersFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:EgOthersFolder.PNG License: unknown Contributors: Jadavbrijesh, SujithShivalingappa
File:EgFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:EgFolder.PNG License: unknown Contributors: SujithShivalingappa
File:I2cplatformFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:I2cplatformFolder.PNG License: unknown Contributors: SujithShivalingappa
File:DriversFolder.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DriversFolder.PNG License: unknown Contributors: SujithShivalingappa
Image:YUV420_semiplanar_changed.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV420_semiplanar_changed.jpeg License: unknown Contributors:
HardikShah
Image:YUV422_interleaved.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV422_interleaved.jpeg License: unknown Contributors: HardikShah
Image:RGB888_packed.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:RGB888_packed.jpeg License: unknown Contributors: HardikShah
Image:YUV420 addr.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV420_addr.jpeg License: unknown Contributors: HardikShah
Image:YUV422_addr.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:YUV422_addr.jpeg License: unknown Contributors: HardikShah
Image:FVID_FrameListCapture.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID_FrameListCapture.PNG License: unknown Contributors: HardikShah
Image:FVID_FrameListDisplay.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID_FrameListDisplay.PNG License: unknown Contributors: HardikShah
Image:FVID_ProcessList.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID_ProcessList.PNG License: unknown Contributors: HardikShah
Image:FVID2_FrameList.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_FrameList.png License: unknown Contributors: HardikShah
Image:FVID2_Queue_DeQueue_displayBig.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_Queue_DeQueue_displayBig.PNG License: unknown
 Contributors: HardikShah
Image:FVID2_Queue_DeQueue_capture.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_Queue_DeQueue_capture.PNG License: unknown Contributors:
HardikShah
Image:FVID2_ProcessList.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:FVID2_ProcessList.PNG License: unknown Contributors: HardikShah
Image:ProcessList_Queue_DeQueue.PNG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:ProcessList_Queue_DeQueue.PNG License: unknown Contributors:
HardikShah
Image:DisplayFlowChart.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DisplayFlowChart.png License: unknown Contributors: Anuj.aggarwal
Image:DctrlTI8107.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DctrlTI8107.JPG License: unknown Contributors: Jadavbrijesh
Image:DisplayCtrlCentaurusMinimal.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DisplayCtrlCentaurusMinimal.jpg License: unknown Contributors:
Anuj.aggarwal
Image:DisplayCtrlNetraMinimal.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DisplayCtrlNetraMinimal.JPG License: unknown Contributors: Anuj.aggarwal,
SivarajR
Image:DCTRL_Topology_TI814x.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DCTRL_Topology_TI814x.JPG License: unknown Contributors:
Anuj.aggarwal
Image:DCTRL-Topology-TI8107.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DCTRL-Topology-TI8107.jpg License: unknown Contributors: Jadavbrijesh
Image:DCTRL_Topology.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DCTRL_Topology.JPG License: unknown Contributors: SivarajR
Image:PpDisplayPathMinimal.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:PpDisplayPathMinimal.jpg License: unknown Contributors: Anuj.aggarwal, SivarajR
Image:SecDisplayPathMinimal.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:SecDisplayPathMinimal.JPG License: unknown Contributors: Anuj.aggarwal,
SivarajR
Image:GrpxPathMinimal.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:GrpxPathMinimal.jpg License: unknown Contributors: Anuj.aggarwal, SivarajR
Image:Nsf-m2m-path.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Nsf-m2m-path.JPG License: unknown Contributors: SivarajR
Image:SEC0_SC5.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:SEC0_SC5.JPG License: unknown Contributors: Lkreddy, SivarajR
Image:BP01_SC5_M2M.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:BP01_SC5_M2M.JPG License: unknown Contributors: Lkreddy, SivarajR
Image:HDVPSS_SEC01_SC34_VIP01.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:HDVPSS_SEC01_SC34_VIP01.JPG License: unknown Contributors:
SivarajR
Image:M2M FlowChart.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:M2M_FlowChart.png License: unknown Contributors: Anuj.aggarwal
Image:Image Properties 720X480.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Image_Properties_720X480.png License: unknown Contributors: Anuj.aggarwal
Image:DeihSingleScM2MPath.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeihSingleScM2MPath.JPG License: unknown Contributors: SivarajR
Image:DeiSingleScM2MPath.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiSingleScM2MPath.JPG License: unknown Contributors: SivarajR
Image:DeihSingleScVipM2MPath.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeihSingleScVipM2MPath.JPG License: unknown Contributors: SivarajR
Image:DeiSingleScVipM2MPath.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiSingleScVipM2MPath.JPG License: unknown Contributors: SivarajR
Image:DeihDualScaleM2MPath.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeihDualScaleM2MPath.JPG License: unknown Contributors: SivarajR
Image:DeiDualScaleM2MPath.JPG Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiDualScaleM2MPath.JPG License: unknown Contributors: SivarajR
Image:DeiHqMqMode1M2MPath.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiHqMqMode1M2MPath.png License: unknown Contributors: Anuj.aggarwal,
SivarajR
Image:DeiHqMqMode1Exmpl.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:DeiHqMqMode1Exmpl.png License: unknown Contributors: Anuj.aggarwal

Image Sources, Licenses and Contributors 207

Image: TI814x_DEI_SC1_WB0.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814x_DEI_SC1_WB0.jpeg License: unknown Contributors:
SujithShivalingappa
Image: TI814x_DEI_VIP0_SC3.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814x_DEI_VIP0_SC3.jpeg License: unknown Contributors:
SujithShivalingappa
Image: TI814x_DEI_SC1_VIP0_SC3.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814x_DEI_SC1_VIP0_SC3.jpeg License: unknown Contributors:
SujithShivalingappa
Image: TI814X_SC2_WB1.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814X_SC2_WB1.jpg License: unknown Contributors: A0131716
Image: TI814X_SC4_VIP1.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814X_SC4_VIP1.jpg License: unknown Contributors: A0131716
Image: TI814X_SC2_SC4_VIP1_WB1.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:TI814X_SC2_SC4_VIP1_WB1.jpg License: unknown Contributors:
A0131716
Image:Vip-capture-paths.png Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Vip-capture-paths.png License: unknown Contributors: Anuj.aggarwal, SivarajR
Image:Chain1.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain1.jpeg License: unknown Contributors: Anuj.aggarwal
Image:Chain3.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain3.jpeg License: unknown Contributors: Anuj.aggarwal
Image:Chain4.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain4.jpeg License: unknown Contributors: Anuj.aggarwal
Image:Chain5.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain5.jpeg License: unknown Contributors: Anuj.aggarwal
Image:Chain6.jpeg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Chain6.jpeg License: unknown Contributors: Anuj.aggarwal
Image:Protocol.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Protocol.jpg License: unknown Contributors: SujithShivalingappa
Image:Q-Dq.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:Q-Dq.jpg License: unknown Contributors: SujithShivalingappa
Image:simplexCommand.jpg Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=File:SimplexCommand.jpg License: unknown Contributors: SujithShivalingappa

	运行第一个程序 816x 814x ..
	Compiling HDVPSS Drivers
	内存分配设置
	FVID2 APIs
	UserGuideHdvpssPlatformAPIs
	UserGuideHdvpssDisplayDriver
	Display Controller Driver 用来控制多分布HDVPSS的子模块
	Display Controller Driver的例子

	UserGuideHdvpssM2mDriver
	Noise Filter (NSF) - Memory to Memory Driver

