
EK之 UBOOT学习

第 1 页 共 67 页

Creat at 2018-1-19 By ErKun

EK之 UBOOT学习

第 2 页 共 67 页

目录

前言...3

一 、环境搭建...4

二 、UBOOT初体验...5

三 、UBOOT源码目录...7

四 、UBOOT的配置解析...9

五 、主 Makefile 大致解析..13

六 、MLO/SPL 的生成..19

七 、镜像文件的差异...22

八 、链接脚本的一看...25

九 、MLO程序启动流程...27

十 、UBOOT程序启动流程...32

十一 、main_loop简单分析...38

十二 、UBOOT的命令体系...43

十三 、UBOOT的环境变量...49

十四 、UBOOT的启动内核及传参...53

十五 、UBOOT的硬件驱动...61

十六 、总结...67

EK之 UBOOT学习

第 3 页 共 67 页

前言

最近在学习 UBOOT，看 Makefile、看链接脚本。看 UBOOT 源码、看网上博

客的分析讲解。。。。

总之看了很多，也就着开发板做了一些测试验证。明白了很多，同时还有很

多还不明白，后来一想这么多大神这么久写出来的代码，岂能是我等晚辈三两天、

三两周就学会的。后面有时间再继续多研究研究，那个时候的主要精力应该是放

在代码的具体实现上，学习 C语言编程的高级技巧了。

所以这回我主要是想记录下来 UBOOT 的主要执行流程和一些实现上的方

式，对于那个过程的具体实现、具体的代码分析留在后续。

俗话说好记性不如烂笔头，但是看明白了，要是不赶紧记下来，那多半怕是

就白看了。所以我也想把最近看到的学到的先记下来，同时也是再复习一遍吧！

在看的过程中，也发现 UBOOT的不同版本还是有些差别的，总的来说就是

不用版本的 UBOOT 虽然做的事情都是一样的，但是可能走的路不一样，实现起

来的方式不一样，源码文件的结构有些变动。但这些在强大的 Source Insight 代

码编辑器下通通都不叫个事儿。

因为我用的是创龙的 AM43XX-EVM 的开发板，所以我看的 UBOOT也是配套

的，是 U-BOOT-2014-07的版本。

http://processors.wiki.ti.com/index.php/Linux_Core_U-Boot_User%27s_Guide

ti官方的 uboot用户指导。

http://processors.wiki.ti.com/index.php/Linux_Core_U-Boot_User%27s_Guide

EK之 UBOOT学习

第 4 页 共 67 页

一 、环境搭建

构建开发环境，安装 Linux虚拟机，安装 Ubuntu 桌面版的长期支持版本（LTS）

不要装国产的那个麒麟版本。建议安装 32 位的，因为你的 ARM 处理器就是 32

位的，而且 64位的话会需要自行安装一些 32位的支持库，如果你不知道的话，

就是强行给自己增加难度。我有切身体会的...

对于 Ubuntu的版本我觉得应该安装和开发板厂家使用的一样的版本，因为

不同版本也有些差别，同样切身体会，就是在做 SD 系统卡时的脚本，在不同版

本运行结果不同，就是因为他们的命令都变了。。。等后面全面了解 Linux 后这

些就不是问题了。我装了 Ubuntu的 1204的 32位版本和 Ubuntu1604 的 32 位和

64位版本。说多了都是泪。主要是有个追逐新版的毛病。

安装完成后，做一些后续工作。比如安装 VMware Tools、建立和 windows

之间的共享文件夹、安装 VIM 的完整版然后可以在按自己习惯配置一下，这些

事百度上讲的很多很详细。

安装编译工具链，因为 UBOOT在编译的过程中会创建很多符号链接，而符

号链接是 Linux 独有的。Windows 中没有，所以必须把 UBOOT的源码拷贝到 Linux

的原生目录下去编译，不能在共享文件夹里。

所谓的编译工具链的安装也就是直接解压就行。Linux 的目录一般都有一些

分类的所以这些工具也最好安装在/usr/local目录下。在/usr/local下新建一个 arm

的文件夹，然后把交叉编译工具链解压在这个目录下就算安装完成了。编译工具

链的版本就安装厂家提供的相应版本就行，版本一样就行，可以自行去下载，我

就是自己下的，因为提供的在我那解压出错。

解压完后还需要设置一下环境变量，这样才能在其他目录下也直接使用编译

工具链的名字而不用加路径。export PATH=安装路径:$PATH 这个命令只能在这一

次生效。还可以在~/.bashrc 文件中添加上面那句话，然后关闭命令终端，在重进

去一次就可以了。

在命令行中输入 root@dk:~# arm-linux-gnueabihf-gcc -v 查看编译工具链的版

本，能打印出来东西并且最后一行显示 gcc version 4.7.3 20130328 (prerelease)

(crosstool-NG linaro-1.13.1-4.7-2013.04-20130415 - Linaro GCC 2013.04)就表示安装

完成了。可以开始肆意交叉“感染”了。

EK之 UBOOT学习

第 5 页 共 67 页

二、UBOOT初体验

1.将 UBOOT源码拷贝到 linux下的某个目录后解压出源码，然后进入源码目录下。

2.清理 UBOOT 用 make CROSS_COMPILE=arm-linux-gnueabihf- distclean 主要是清

除上一回编译后生成的中间文件和结果

3.配置 UBOOT。UBOOT在编译之前是需要配置的，因为 UBOOT是通用的引导程

序支持很多 CPU 和开发板，所以在编译之前，需要配置一下来告诉 Makefile 要

编译那些文件。

4.编译，配置完成后即可编译 UBOOT

完成后可以再当前目录下看到生成的烧写文件。

其中 MLO和 u-boot.img 就是可以烧写的程序文件。可以拷贝到 SD卡中做测试，

如何判断执行的就是你刚编译好的呢？

那个时间就是编译时系统的时间，也就是你编译的时间吗，前面是版本信息。

5.一些解释 make CROSS_COMPILE=arm-linux-gnueabihf- distclean

EK之 UBOOT学习

第 6 页 共 67 页

命令 make就是直接按照文件中的主 Makefile文件来编译生成指定的目标

CROSS_COMPILE=arm-linux-gnueabihf- 是用来给 Makefile 传参的，就是告诉

Makefile 当前使用的交叉编译工具链是 arm-linux-gnueabihf-，当然这个只是前缀，

-后面的选项例如 gcc、ld等都一样所以已经在 Makefile 中指定了。前缀每个人可

能使用的不一样所以自己指定。

如果你确定使用某种编译工具链后，也可以直接在 Makefile 文件中直接指定，

也就是给 CROSS_COMPILE=arm-linux-gnueabihf-。这样每次使用 make是就不用在

添加 CROSS_COMPILE=arm-linux-gnueabihf-来传参了。

distclean 是 Makefile 中指定的一个伪目标。主要用来清除编译和配置时生

成的中间文件。

am43xx_evm_config 是 Makefile 中的一个用来配置的目标。会根据配置生

成一些包含信息的头文件和一些符号链接。

make 命令不带目标时，就是生成 Makefile 中默认的目标 all，也就是最终

的 MLO和 u-boot.img 和其他一些文件。

EK之 UBOOT学习

第 7 页 共 67 页

三 、UBOOT源码目录

1.UBOOT的源码目录如下图，必须要说的是 UBOOT 的不同版本之间在目录架构

上是有些差别的，但不大，内容上基本一致的。

2008年 8 月及以前按版本号命名：u-boot-1.3.4.tar.bz2(2008 年 8 月更新)

2008年 8 月以后均按日期命名。如 u-boot-2017.09.tar.bz2(2017年 9 月更新)

2.文件夹列表

api：存放 uboot源码提供的接口函数

arch：主要存放和 CPU 架构体系相关的代码，是 UBOOT的重点

board：开发板，是和开发板相关的代码

common：通用代码。包括一些命令和校验之类。还包含了和 SPL 相关的代

码。

disk：磁盘相关的代码，目前我还没有涉及到

doc：说明文件

drivers：驱动，所有类型的驱动，每个驱动是一个文件夹

EK之 UBOOT学习

第 8 页 共 67 页

dts：里面就 Makefile和一个 git 相关文件，不明觉厉。

examples：示例程序

fs：文件系统，支持嵌入式开发板常见的文件系统

include：通用的头文件均在这里

lib：调用的一些库文件

Lisences：许可文件一堆.txt 文件

net：网络相关的代码一些小型的协议栈

post：加电自检程序

scripts：一些脚本程序

SI4_Project：真不好意思。这个是我用 Source Insight看代码时建的工程，跟

UBOOT没关系

test：测试程序

tools 辅助工具程序，用于编译生成的 uboot文件

3.文件目录列表

讲几个用到的吧，有些我目前也不知道啥用。

boards.cfg：开发板的配置信息，前面配置 UBOOT时就是最后会在这个文件

里面查找信息，包括状态、架构、CPU、SoC、厂商、开发板名和选项等一众信

息。

config.mk：Makefile 调用的一个配置文件里面又包含了其他目录下的

config.mk

Makefile：这个 UBOOT的主 Makefile 文件，可以重点看看

mkconfig：配置时就是调用这个文件，这个会读取 boards.cfg中的信息的

剩下的大致一看，能力不行看不懂，先略过。。。。

4.一些话

因为我是刚开始看 UBOOT，所以我觉得不要过分的去想要知道源码中的某

个文件底具体的都是干什么的，大致了解下是存放哪一类代码的即可，有一个整

体的框架。到后面看源码的时候你绝对会翻烂这些文件的。一开始接触就钻入到

某个细节的话那就真的出不来了，而且很容易就没兴趣了。我看 Makefile 时就是

这样，一脸的看不懂，两脸的还是看不懂，感觉写这些的那些人得是有多厉害啊，

后来我觉得具体的细节语法什么的用到的时候在查吧。

EK之 UBOOT学习

第 9 页 共 67 页

四 、UBOOT的配置解析

有关 Makefile 的一些规则可以看《跟我一起写 Makefile》和《GNU-make的

中文手册》，不亚于学习一门新的语言。

1.UBOOT的配置

之前提过，uboot 的配置就是执行 Makefile 中定义的配置目标。可以在主

Makefile中查找一下关于 am43xx_evm_config 的这个目标

%是 Makefile 中的通配符，am43xx_evm_config 就是带 _config 后缀的目标，所以

会执行这个目标。目标依赖于 outputmakefile

这个目标没有依赖了，会判断 KBUILD _SRC 这个变量的值是不是为空来执行

下面的命令。因为没有使用 KBUILD 所以关于 KBUILD 的基本上都可以忽略。所以

配置的时候就执行了@$(MKCONFIG) -A $(@:_config=)这条语句。MKCONFIG 这个

变量在前面有赋值为源码目录下的 mkconfig 文件。$(@:_config=)这句话是把目标

中的_config替换为了空。

综 合 一 下 就 是 调 用 了 uboot 根 目 录 下 的 mkconfig 脚 本 并 且 传 参

am43xx_evm。

mkconfig -A am43xx_evm。

进而进入 mkconfig 文件中进行分析。

我们执行的是 mkconfig -A am43xx_evm，$#表示参数的个数，$1 表示第一个

参数，

EK之 UBOOT学习

第 10 页 共 67 页

line就是在 boards.cfg中 am43xx_evm 的那行。

在 boards.cfg 中有

Status：Active $1

Arch：arm $2

CPU：armv7 $3

SoC：am33xx $4

Vendor：ti $5

Board name：am43xx $6

Target：am43xx_evm $7

Options：am43xx_evm:SERIAL1,CONS_INDEX=1,NAND $8

//Maintainers： Lokesh Vutla <lokeshvutla@ti.com> 这个忽略吧，因为只要 8个

命令中 set ${line}就是在脚本运行中给出了其他的参数， 这个时候 参数就

是上面的 8个了

然后主要是做些判断就把这些参数赋值给内部定义的相应的变量。比如下面

的 options变量。

配置时打印出来的话就是在这打印出来的，就是判断 options 选项然后就打

印出来了。

1）接下来就是创建一些符号链接包括 asm 的链接进入 arch/arm/include 文

件下删除该文件里面的 asm/arch然后重新建立 asm/arch链接指向通文件夹下的

arch-am33

mailto:<lokeshvutla@ti.com>

EK之 UBOOT学习

第 11 页 共 67 页

脚本中的 -n var 用来判断 var 变量是否有值。这里没有值，直接进入

arch/arm/include目录下先删除然后在建立符号链接。

2）然后创建 make配置文件，注意此时目录已经切换到了的源码的/include

目录下，在这个目录下新建了一个 config.mk 的文件，然后把一些信息写了进去，

其实就是写了 CPU 架构和 BOARD之类的一些信息。如下所示

3）然后创建了开发板的特殊的头文件 config.h，并且往里面写了一些东西。

同样是在 include 文件夹里面的。这个文件是自动生成的所以不要改动，内容如

下面所示。

EK之 UBOOT学习

第 12 页 共 67 页

EK之 UBOOT学习

第 13 页 共 67 页

五 、主Makefile大致解析

有关 Makefile 的一些规则可以看《跟我一起写 Makefile》和《GNU-make的

中文手册》，不亚于学习一门新的语言。

http://blog.csdn.net/dndxhej/article/details/8134148

http://blog.csdn.net/guyongqiangx/article/details/52565493

https://www.cnblogs.com/asulove/p/6010322.html

上面这几个是其他人讲解的 Makefile的一些分析，可以看一下的。

1）上来就是先定义了 UBOOT的版本，执行时打印出来的版本就是在这定义的，

后面会把这些版本信息弄成一个叫 UBOOTVERSION 的宏定义写入到一个头文件

中。

2）这个主要是指定编译的结果的输出目录的，origin 这个函数主要用来判断 O

这个参数是来自于哪里，是自己定义的还是命令行输入的。也就是谁 make的时

候可以带 o=一个目录 来把一些编译生成的中间文件输出到指定目录下。

3）这里有指定交叉编译的工具链，我们可以不管他，直接在 endif 后面添加一句

CROSS_COMPILE :=arm-linux-gnueabihf- 这样以后 make是就不用在传参了。省点

事儿。

哎呀，剩下的内容好多啊，还有好多看不明白啊，不想写了啊，反正这个

Makefile能用。

不能再一行一行看了，会忍不住放弃的。。

4）顶层目标依赖

A.首先定义了伪目标_all。注释都说了这是我们默认的目标当在命令行光

make不指定目标的是时候。想想，我们配置完后就是直接 make 的没有任何参

数（交叉编译工具链不算目标）

http://blog.csdn.net/dndxhej/article/details/8134148
http://blog.csdn.net/guyongqiangx/article/details/52565493
https://www.cnblogs.com/asulove/p/6010322.html

EK之 UBOOT学习

第 14 页 共 67 页

然后添加了_all目标的依赖项视另一个伪目标 all

all 目标依赖于$(ALL-y) ALL-y 是一个变量

B. ALL-y 变量包含了所有最终需要生成的文件包括一众 u-boot开头的各种文件

带只有 ALL-后面直接带 y 的是通用文件，其他的都是需要想用的变量也为 y 是才

包含进内。

u-boot.serc 依赖于 u-boot 和 FORCE

u-boot.bin 依赖于 u-boot 和 FORCE

System.map 这个文件就是神器，后面分析连接脚本和源代码段是贼好用。

依赖于 u-boot

EK之 UBOOT学习

第 15 页 共 67 页

binary_size_check 依赖于 u-boot.bin System.map FORCE

u-boot 很多文件依赖于u-boot 但u-boot依赖于 u-boot-init 和 u-boot-main

变量和连接脚本 u-boot.lds

u-boot-init 和 u-boot-main变量有分别是 head-y 和 libs-y 变量定义的

u-boot.lds 依赖于$LDSCRIPT变量 prepare 和 FORCE

没完没了了啊怎么。。。。

head-y和 libs-y 这里终于看到了对源文件的包含了啊 head 应该就是头，整

个文件的头就是 start.S和一众需要配置的才能添加的，就是变量配置为 y

libs-y 包含了一众的需要编译的文件路径，具体要编译哪个文件还是需要在

该目录下的的的

Makefile文件中指定的。

EK之 UBOOT学习

第 16 页 共 67 页

u-boot.lds 话说这文件不应该是源码里的一个连接脚本么，怎么变成一个目

标了，难道自动生成，还是说在多种情况下来选择用那个。。。。

$(LDSCRIPT)这个变量其实就是指向了我们要用到的链接脚本，下面这段代码

就是来判断和寻找 lds 文件的，果然是存在多个，然后根据配置来选择。先在开

发板目录下找，找不到就去 CPU 目录下找，再找不到就去 arch/arm/cpu 目录下

找。

我去翻了一下源码目录，确实只有在 arch/arm/cpu下面有一个 u-boot.lds 文

件。

没错那就是它了。

这里是一些列的 prepare相关的目标和依赖，啊这的是不明觉厉。。。

这里有涉及到两个文件，看名字就是描述版本和时间戳的。

include/config/uboot.release文件中如下，就是 uboot的版本号

EK之 UBOOT学习

第 17 页 共 67 页

这都是和这相关的。待我去编译好的文件夹了搂一眼去。

这个是 include/generated/timestap_autogenerated.h 文件中的内容，怎么感

觉时间不准呢，今天明明是 1月 19 号。

这个是 include/generated/version_autogenerated.h 文件中的内容，你看是个

宏定义吧，最后源码里都会调用这些头文件的

在 include/generated/下面还生成里其他的头文件，都是自动生成的一些信

息，描述一些偏移什么的。等用到的时候在看，mark一下。

最后照着大神来个图，直观体现一下。

_all all $(ALL-y)

u-boot.srec

System.map

u-boot.bin

binary_size_check

u-boot

u-boot.bin

u-boot.bin

u-boot

u-boot-init

u-boot-main

u-boot.lds

head-y

libs-y

$(LDSCRIPT)

start.S

文件目录

目录下的 lds 文件

EK之 UBOOT学习

第 18 页 共 67 页

好图必须得收藏

FORCE 目标本身是一个空目标，所以先忽略。

libs 为各层目录下的 build-in.o 的集合，各目录下的.o 文件合并变成一个

build-in.o供外部链接使用。

prepare是一系列的伪目标和动作组合，完成编译前的准备工作。

2018-01-19周五

EK之 UBOOT学习

第 19 页 共 67 页

六 、MLO/SPL的生成

在上个阶段编译生成 u-boot.bin 和 u-boot.img 镜像后，这些镜像都有

300KB-500KB 这么大。这些都大于了 SoC 内部自带的 SRAM 的大小，ROM code

根本无法直接执行他们，所以就有了用来引导 uboot的代码，叫做 SPL，在 ti的

叫法中也可以用 MLO，因为 ROM code 就认 MLO这个名字。所以下文 SPL和 MLO

就说的是一个东西了。

SPL 的代码是和 UBOOT的代码在一起的，是 UBOOT代码中的一部分吧，是

在编译的时候通过一些条件编译和一些宏配置来划分出来的。不过我一直觉得为

什么不把 UBOOT 的前一段代码直接截取出来作为 SPL，截出来这段只要小于内

部 SRAM 的大小并且包含了初始化 DDR和重定位 UBOOT的代码就可以啊。而且

之前确实有其他的 UBOOT就是这么干的啊。估计还是和代码有关系，这样的话

就必须保证前一段代码是位置无关码了，可能这样就不是很通用了。

接着说，make编译生成后会在源码目录下生成 MLO文件，同时会生成一个

叫 spl的文件，这个文件内部是一些用来生成 u-boot-spl、u-boot-spl.bin等的一些.o

文件。感觉就是低配版的 uboot。

MLO/spl 是和 u-boot.bin 等一起一次性生成的，所以还是分析 make 命令，

分析主 Makefile文件。

在文件中有根据变量来判断在默认目标中添加 spl/u-boot-spl.bin 文件的。我

想这些应该是包含在内了把。

特意找了一下这些 CONFIG开头的一堆变量的定义。

EK之 UBOOT学习

第 20 页 共 67 页

这些都是包含在这几个自动生成的文件中尤其 include/autoconf.mk文件。这

个文件是依赖于 include/config.h 文件，这个文件是在配置时生成的里面包含了几

个 CPU 之类的宏后还包含了一些头文件，其中就包括源码中的 include/configs 文

件夹下面的板子配置的头文件，里面才是真正的这些变量的来源。也是就是说用

工具将这里面的宏变成了 include/autoconf.mk里面的一众配置变量供Makefile调

用。

源码目录下的 config.mk 好像没干什么事，就是用 Sinclude 又包含了一些其

他的目录下的 config.mk。这些.mk不是自动生成的。用 sinclude 意思是如果目录

下没有也不会报错的。所以有的目录下就没有 config.mk这个文件。

回归 SPL。spl/u-boot-spl.bin依赖于 spl/u-boot-spl

spl/u-boot-spl依赖于 tools 和 prepare

tools 又依赖于 prepare

看似找不到了，但是目标 spl/u-boot-spl 的命令里面是转移到了 scripts 下面

的 Makefile.spl里面的 all 目标。

下面分析是在 scripts/Makefile.spl文件里

一样的老套路啊，all 依赖于 ALL-y 而 ALL-y 其实就是 u-boot-spl.bin文件

剩下的简直和 UBOOT是一样的套路。

EK之 UBOOT学习

第 21 页 共 67 页

MLO也是有 u-boot-spl.bin 用 mkimage 工具生成的。

EK之 UBOOT学习

第 22 页 共 67 页

七 、镜像文件的差异

一开始我也是郁闷的，都是个 uboot镜像和 spl的镜像怎么还这么多版本。

后来找了个二进制阅读文件看了一些。二进制文件阅读和比较有比较好的工具，

比如 Beyond Compare和 UItraEdit 等，但都是需要钱的啊，在试用了一个月后只

好放弃。公司内也不敢用破解的。。。

http://blog.csdn.net/mathsoftware/article/details/51423664

后来网上找了一个 HexCmp 的小软件，也不用安装，解压后直接就能用的挺

不错的。

我拿来对比了一下两个文件。

http://blog.csdn.net/mathsoftware/article/details/51423664

EK之 UBOOT学习

第 23 页 共 67 页

猛一瞅吧，我擦都不一样啊。首先对比两个文件的大小。MLO比 u-boot-spl

多了 520个字节。然后剩下的就都是一模一样了。

还挺暧昧的，MLO对 u-boot-spl.bin 说：我只比你多了一个 520！

MLO 是在 u-boot-spl.bin 的基础上添加了一个 header 用来启动时校验等的

吧。

然后 u-boot.bin和 u-boot.img也是如此，只不过这回不是 520 了

只是多了一个 64 字节的头部信息。其他的还是一样的。u-boot.img 是由

u-boot.bin在 tools/mkimage工具生成的。这是传参也就是头部信息的。

EK之 UBOOT学习

第 24 页 共 67 页

在 linux 中用 file 命令可以来查看文件的属性。u-boot.bin 就是二进制 data。

而 u-boot.img 就是 u-boot 的 legacy uImage。后面那些应该就是头部信息。包含

了版本和板件还有地址之类的信息。

EK之 UBOOT学习

第 25 页 共 67 页

八 、链接脚本的一看

源码在编译生成.o的文件后需要使用 lds链接脚本来指定这些.o文件的排列

方式最后生成二进制文件。

http://blog.csdn.net/itxiebo/article/details/50938753

输出格式 elf32 的 arm 小端模式。输出架构是 arm。整个程序的入口地址是

_start

然后就开始排列了。.0x00000000;就是说当前地址是 0，这个在调用 lds 脚本

是会在外部指定链接地址的。外部指定的比这个 0 的优先级要高，所以并不会真

正的连接到 0地址的。

.__image_copy_start;一点就是指当前地址，也就是__image_copy_start 这个

标号就是指向当前地址，这个主要是便于程序中重定位是拷贝程序是用的，后面

还有一个 end。

http://blog.csdn.net/itxiebo/article/details/50938753

EK之 UBOOT学习

第 26 页 共 67 页

然后开始排列_start入口和其他的所有的 text代码段。完了是 rodata段、data

段 .ALIGN(4)是当前地址开始 4字节对齐后在接着放。

接下来是 u_boot_list段，这个是后面分析命令时有用的。后面还有一些其他

的段，包括 bss段。

下图则是 System.map中的关于代码的排列顺序。

EK之 UBOOT学习

第 27 页 共 67 页

九 、MLO程序启动流程

MLO 程序在编译时在 Makefile.spl 中会生成 CONFIG_SPL_BUILD 的宏定义，

这个就区分了 MLO和 UBOOT的不同的执行流程。

那么开始吧。我以为_start会在 start.S 文件中，而且很多版本的 uboot都是

在这个文件中，但是我看的这个就是在 vectors.S 文件中。

然后跳转_reset

reset 在 start.S 文件中后面尽量不截图代码了，感觉太多，截不过来，还是

需要对着代码来看的。

保存一些参数，一般不用管它。我觉得现在的水平真不能每个函数都去扣，

先了解主要流程再说吧。下面是在关闭 FIQ 和 IRQ，就是关闭了中断，然后设置

进入 SVC32模式。Supervisor 超级管理模式。

然后设置向量表，然后调用这两个都是在 start.S文件中

cpu_init_cp15 关闭 L1的 I/Dcache 就是关闭了数据和指令的 cache缓冲。

cpu_init_crit 直接跳转 lowlevel_init

lowlevel_init 在 lowlevel_init.S 文件中，设置了暂时的栈，为了调用 C 函数。sp

指向 CONFIG_SYS_INIT_SP_ADDR。这个宏是在 include/configs/ti_armv7_common.h

EK之 UBOOT学习

第 28 页 共 67 页

中定义的。然后减去了全局变量结构体的大小。

sp 8 字节对齐 设置全局变量 保存 ip指针 跳转到 s_init。

s_init在 arch/arm/cpu/armv7/am33xx/board.c文件中。有些宏定义在 Source Insight

显示是没有定义的，但是也不敢保证就真的没有定义。哎。。。。

UBOOT的串口初始化在这。SPL 启动的时候打印的这句话就是在这打印出来的。

在 board_early_init_f();中初始化时钟 PLL 和使能了板子上的引脚复用。

board_early_init_f();函数中有 prcm_init();

在 prcm_init();函数中有 scale_vcores();还有 PLL 时钟的各种设置。

在 scale_vcores();函数函数中处理读取 eeprom 来获取板件信息。这个是 ti 的 evm

系列的开发板有的，根据这个来获取开发板具体型号的。

sdram_init();就是完成了 DDR的初始化。

回到 start.S后又跳转到_main，这个位于 arch/arm/lib/crt0.S 文件中

再一次设置了栈指针指向了 CONFIG_SPL_STACK 这个地址是 DDR 开始地址

0x800000000+32KB 的地方 8 字节对齐后调用了 board_init_f(0);多看一下注释讲

的很清楚的。r0就是传给board_init_f参数。当参数小于等于4个时是保存在 r0123

EK之 UBOOT学习

第 29 页 共 67 页

寄存器里的再多的话是在栈中保存的。可以看出来全局变量也在栈里参合着呢目

前看来。

说一句的是_main 中的 board_init_f();函数之后的代码通通没有执行。要记着

在 MLO/SPL 执行的时候 CONFIG_SPL_BUILD 是有效的啊。

board_init_f();函数在 arch/arm/lib/spl.c 文件中

清除了 bss 段获取了全局变量的地址，然后调用了位于 common/spl/spl.c 文

件中的 board_init_r();函数。

在这个函数中执行 spl_board_init();初始化了一些开发板上的用到的一些初

始化。比如用到了 gpmc 接口的初始化。如果有定义的话还有一些 USB 之类的初

始化。

然后调用了 spl_boot_device();来获取启动介质，接着就是 switch语句来加载

和启动 uboot 了。这个函数其实就是去读取了配置启动引脚的那些配置来确定

的。

EK之 UBOOT学习

第 30 页 共 67 页

MMC是就用的 spl_mmc_load_image();函数，在函数中会调用 spl_start_boot();

这两句是在 spl_start_boot();打印出来的。

在 spl_mmc_load_image(); 函 数 中 初 始 化 了 MMC 相 关 的 东 西 。

spl_boot_mode();函数获取了 boot方式，有 RAW的也有 FAT方式的。FAT方式是

在 windows 和 linux 下直接能看的见得所以把程序直接拷贝带 SD 卡就能执行而

不用费劲去写 sd 卡内部的扇区了。spl_load_image_fat_os();函数会读取环境变量

中的文件名。但在 SPL 中好像没有设置环境变量呢。（实测没有环境变量的）失

败后会退回执行 spl_load_image_fat();函数。并且掺入下面这两个作为参数。

这里还出现了 u-boot.img 的头部信息。正好就是比 u-boot.bin 多的 64 个字

节啊。

EK之 UBOOT学习

第 31 页 共 67 页

file_fat_read();函数就是读取并且填充了头部信息。然后解析了头部信息。因

为里面包含了 u-boot 的加载地址。然后再一次将 uboot 读取进来。这里是 0 不

知道为啥啊？

回归 board_init_r();函数。最后执行这个函数后跳转执行 u-boot去了。

这个里面就是函数指针方式的跳转。

2018-01-20周六

EK之 UBOOT学习

第 32 页 共 67 页

十 、UBOOT程序启动流程

uboot的执行流程其实和 MLO基本一致的，只是因为 CONFIG_SPL_BUILD 这

个宏定义在 uboot 执行时是没有定义的所以会不在执行已经在 MLO执行过的函

数。比如 DDR和 PLL 以及 PINMUX 之类的代码。

uboot 的运行在进入 ctr0.S 文件下的_main 后开始和 MLO 就分了。同样是

board_init_f();这个函数名，但是不是在 spl.c 文件里面那个了。是在

common/board_f.c 文件中的同名函数。

这 个 函 数 显 示 处 理 了 一 下 global data ， 然 后 就 是

initcall_run_list(init_sequence_f);

自己真的是孤陋寡闻、薄才惰艺。这种操作还真是头回见。

init_sequence_f是一个函数指针数组名。里面包含了一众参数是 void 返回值

是一个 int的函数。然后一个 initcall_run_list就把所有的函数执行一遍。

让我们荡起双桨，小船儿。。额，让我们来大致看一下这一堆函数吧。

EK之 UBOOT学习

第 33 页 共 67 页

环境变量的初始化，是直接使用了默认值。后面还回有从启动介质中读取环

境变量的过程，如果成功的话会覆盖这些默认值的。环境变量后面还回单独拿出

来研究的。测了一下，jump_to_copy 不是在这执行的。

定时器初始化串口波特率串口初始化。。。

因为我是拿的开发板配套的 uboot 在看，所以我特别喜欢看打印出来的东

西，然后去源码里查找打印的地方来追踪执行流程。

EK之 UBOOT学习

第 34 页 共 67 页

第一行版本信息。是在这打印出来的。

第二行 SI2C 就比较尴尬了，其实这 I2C 那个 S 是我自己添加的，看看是不是

我找的那个地方打印出来的。后来忘了改回去了。

第三行的 DRAM：是一个来自于 announce_dram_init函数，

在另一个函数中 show_dram_config 中显示了容量的大小。512MiB

回到 crt0.S文件的_main中运行 relocate_code在 arch/arm/lib下的 relocate.S 中

EK之 UBOOT学习

第 35 页 共 67 页

链接脚本中的__image_cpoy_start 排上用场了。借用 ti 的话：实现 uboot的

重定位，也即是将 uboot 的程序搬移到 DDR 内存中合适的位置去执行。作用有

二：一是为kernel腾出低端空间，防止接下来的引导进来的kernel解压覆盖uboot，

而是静态存储器（spiflash nandflash）启动，这个 relocation是必须的。

不是很明白。uboot 在连接时就已经指定了运行地址了，而且 uboot 有很

多全局变量所以是位置相关代码，怎么能在运行时在挪到其他地方呢。当 kernel

解压的时候 uboot就已经完成使命了，覆盖了也没啥事啊。spiflash nandflash 不

只是一个代码存储介质么，当 MLO把 uboot读到 DDR 中不就没它什么事了么。

http://www.360doc.com/content/17/0525/17/37911645_657208881.shtml

这个链接是讲述为什么进行这种重定位，准确的说应该是讲解如何实现的重

定位。

接下来设置了 C的运行环境，是最后的运行环境了。并且清除了 bss 段，

这里的代码已经是 relocation后的了。

接着调用 board_init_r();并且传参到 r0和 r1。

在 common/board_init_r.c 文件中。

http://www.360doc.com/content/17/0525/17/37911645_657208881.shtml

EK之 UBOOT学习

第 36 页 共 67 页

一样的套路。

在这里输出了 NAND：nand_init();里面输出了 512MiB

在这里输出了 MMC相关的那行信息。

这个函数打印出了和环境变量相关的东西。环境变量是以一个叫 uboot.env

的文件存在 SD启动卡的 boot分区的。如果没有这个文件就会使用默认的环境变

量。

common/board_r.c 的 initr_env();

common/env_common.c 中 env_relocate();

common/env_fat.c 中 env_relocate_spec();

fs/fat/fat.c 中 file_fat_read()；涉及到读取文件了啊

网络初始化在这，但是我在 uboot中用网口也是不太能行啊，目前没有细看

这块的初始化。

EK之 UBOOT学习

第 37 页 共 67 页

最后直接进入了 run_main_loop 函数，然后又进入 common/main.c 里面的

main_loop函数

在 main_loop中先进行了 bootdelay的功能，然后根据 bootdelay的不同来选

择进入命令的命令体系还是直接启动内核。感觉又是比较重要的，或者说这才是

uboot真正干实事的地方。

EK之 UBOOT学习

第 38 页 共 67 页

十一 、main_loop简单分析

modem_init();内部有个条件编译，所以这是个空函数。没干什么事情。

setenv();是把新生成的版本信息写进环境变量中。

cli_init();开始为后面循环做一些初始化，比如解析器的初始化。

bootdelay_process();读取环境变量和默认的比较。

在 bootdelay_process();函数中同时也读取了 bootcmd 环境变量。这个主要就是自

动 boot时执行的命令。

autoboot_command(s);执行了 bootdelay 延时，然后要么投币，要么刷卡，要么

滚蛋，戴个墨镜，当自己黑客帝国呢！额。。要么执行 S 也就是 bootcmd自动启

EK之 UBOOT学习

第 39 页 共 67 页

动 kernel，要么退出来进入 cli_loop();进入命令体系中。

abortboot();函数执行调用 abortboot_normal(bootdelay);

那句话就是在这里打印出来的。然后检测是否有按键输入，有就直接返回 1.退出

自动启动。否则返回 0，则在 autoboot_command();中 if 语句成立，进入里面执

行 run_command_list(s,-1,0);开始自动启动，其实就是执行了 bootcmd 里面的命

令。对于命令的执行在后面会再来讲解 uboot的命令体系。

看后缀带个_list就是一个命令列表，而且 bootcmd也确实是多个命令的集合。

common/cli.c文件中 cli_loop();这里面根据CONFIG_SYS_HUSH_PARSER这个宏

定义了两种循环方式。cli_simple_loop();是比较好看懂的读取一行输入，然后解

析然后执行然后在读取....这样的方式。另一种时采用了 HUSH 的解析器方式。看

着挺吓人的。

common/cli_hush.c 文件中 parse_file_outer();

EK之 UBOOT学习

第 40 页 共 67 页

setup_file_in_str();函数就是输入的初始化。

http://blog.csdn.net/andy_wsj/article/details/8614905

这个链接主要讲 main_loop循环方式的。

file_peek调用的是 fgetc();

file_get调用了 get_user_input(i);它又调用了 cli_readline();函数，感觉又回到了那

个 simple的套路了啊。

http://blog.csdn.net/andy_wsj/article/details/8614905

EK之 UBOOT学习

第 41 页 共 67 页

那个宏就是在 uboot的命令时前端的引导标识啊。

虽然初始化时将 i->get = file_get ，但是在哪使用呢？？？

初始化之后，parse_file_outer函数内调用主循环函数：

rcode = parse_stream_outer(&input, FLAG_PARSE_SEMICOLON);

将初始化之后的 input传给了主循环，主循环继续调用

rcode = parse_stream(&temp, &ctx, inp, '\n');

将 inp(即 input)传递给 parse_stream

在 parse_stream 函数内循环读取输入：

while ((ch=b_getch(input))!=EOF) {

b_getch是一个宏： #define b_getch(input) ((input)->get(input))

实际就是 while ((ch = input->get(input)) != EOF) {

如 此 以 来 就 调 用 到 了 readline ， 然 后 调 用 关 系 ：

readline-->readline_into_buffer-->getc

getc再调用 serial_getc，实现与串口输入关联，与 simple方式一相同。

parse_stream_outer函数中以 do{}while();方式实现循环。

EK之 UBOOT学习

第 42 页 共 67 页

rcode = parse_stream(&temp, &ctx, inp, '\n');这个函数是读取一条命令并解析之。

code = run_list(ctx.list_head);执行命令 common/cli_hush.c

run_list_real(pi); common/cli_hush.c

rcode = run_pipe_real(pi); common/cli_hush.c

大致意思就是将收到的指令通过一系列处理加入一个执行列表，然后执行这个列

表。还有一大堆的控制、出错处理.......

最后，hush方式也调用到 cmd_process 函数，这又与 simple相同。

2018-01-22周一

EK之 UBOOT学习

第 43 页 共 67 页

十二 、UBOOT的命令体系

在启动 UBOOT后，如果在 bootdelay执行完之前按下了任何按键，则就进入

了 uboot的命令行中。开始进入上一节讲述的循环中接受和处理命令。在 UBOOT

中试定义了一些命令的。代码主要存放在 common/目录下以 cmd_xx.c 格式命名

的一堆文件中和 command.c 文件。还有 include 目录下的 command.h 文件。

一个命令有一个描述该命令的结构体和对应的 do_xxx 开头的对应函数。若干个

命令的在内存中存放靠的不是链表，也不是结构体数据，而是上次在连接脚本时

说的自定义的段。下图是一个命令结构体的内容。include/command.h

name是命令的名字。

maxargs 是设定的最大的传参个数

repeatable 是设定这个命令是否可以重复执行，就是当你在命令行输入一行命令

执行后，当你接着在一次不输入命令，只按回车（就是输入空）他会执行上一次

执行的那个命令。

(*cmd)(struct cmd_tbl_s *, int, int, char * const []);这个就是命令本体了，是一个函

数指针，指向 do_开头的执行函数。

*usage; 是简短的使用帮助。

EK之 UBOOT学习

第 44 页 共 67 页

*help; 是长使用帮助说明

(*complete)(int argc, char * const argv[], char last_char, int maxv, char *cmdv[]);这个

是自动补全命令的一个函数，跟 linux 中那个效果一样的。

每一个命令都有这样一个结构体的，让我们来看一下定义。这就是 saveenv命令

的所有身家了。

U_BOOT_CMD是一个宏定义。在 include/command.h

这个宏调用了 U_BOOT_CMD_COMPLETE的宏，有调用了两个宏，晕。。。

11_entry_declare在 include/linker_lists.h文件中，

_type是命令的结构体类型，_name 是命令的名字，cmd 是函数指针。##两个这

个在 C中是连接符的意思，整个这个的意思就是定义结构体并把这个结构体放到

了内存中的 .u_boot_list 开头的那一段，并且有新的标号名也是结构体名

_u_boot_list_2_cmd_2_name,如果是 save命令就是_u_boot_list_2_cmd_2_saveenv

接下来是这个宏 U_BOOT_CMD_MKENT_COMPLETE，这个其实就是在给刚定义的

结构体赋值。_CMD_HELP 和_CMD_COMPLETE 是两个宏，根据条件编译来确定用

EK之 UBOOT学习

第 45 页 共 67 页

不用包含 help和 complete内容。

总体来说呢，就是通过宏定义来定义了一个命令的结构体，并且添加属性连接

到.u_boot_list的那一段去了。

KEEP 关键字是为了保证所有的段多被加进来，不要被链接器自作聪明的把某些

它认为没有的段舍弃，事实上我们确实是定义了一些会让它看起来没用的段，这

个我们后面会提到；而 SORT关键字如其名字就是根据段名字串进行排序然后存

放。*********现在来看一下 System.map中的分布图吧。

我只是截图截了一部分，还有挺多的。可能现在还是有疑问，虽然都放在了一块

但是并没有标明存放的其实地址和长度啊，但是来查找还是无法下手啊。还是之

前版本的好理解一点啊。之前的版本是这样的，看直接标明了命令段的其实和结

束地址在代码中可以直接在这一段内存中遍历查询就可以。

这种确实比较好理解。

不过咱们接着看下去。

EK之 UBOOT学习

第 46 页 共 67 页

接着 main_loop 那里说到，最后都执行到了 common/command.c 文件中

cmd_process函数。find_cmd函数就是来在内存中寻找命令结构体的，你看他的

返回值也是一个命令结构体。

在 find_cmd中，11_entry_start和 11_entry_count都是和刚才呢类似的宏定义啊。

继续往下找，先定义了一个字符数组，很奇芭的是 0 个元素的数组，而且同样是

声明在了和命令结构体的同一段内，但是人家_list_后面是 1 啊，这样在脚本中

的 SORT排序命令就用上了，而且因为这个数组 0 元素不占内存，所以为了避免

编译器的优化，KEEP 命令就用上了。定义完成后，就是取地址并且强制类型转

化为命令结构体的地址了。

让我们去 System.map中看一下

可以看出来 start并不占内存而且是第一个命令的地址。

EK之 UBOOT学习

第 47 页 共 67 页

在 11_entry_count中标明了起始地址和结束地址，然后计算了长度。

真正在查找命令的是 find_cmd_tbl();函数，通过一个 for循环来遍历那一段内存

如果没有找到命令则就是返回 NULL了

如果找到的话就是检查参数然后接调用 cmd_call函数执行命令了，就是通过结构

体的方式调用的啊

EK之 UBOOT学习

第 48 页 共 67 页

当然，当你调用有问题是他会打印出来 usage 的简短的使用说明来提醒你，如果

使用 help命令则打印长 help帮助。

命令的执行大致先这样，具体每个命令时怎么实现的，可以去看源码，源码

就在那摆着，随时等你去看。而且确实感觉如果能把 UBOOT的源码全部看懂了，

不用说全部，就单单一个字符串处理你如果整会了那就很屌了。加油加油。。。

EK之 UBOOT学习

第 49 页 共 67 页

十三 、UBOOT的环境变量

环境变量这个东西，可以理解为对于这个系统来说就是一些全局的变量，当

然这些都是以字符串的形式存储的，所以又涉及到了字符串的处理，那 256 个

ascii 码的字符感觉构成整个软件行业啊。

环境变量让我们可以不用修改 uboot的源代码，而是通过修改环境变量来影

响 uboot 运行时的一些数据和特性。比如说通过修改 bootdelay环境变量就可以

更改系统开机自动启动时倒数的秒数。环境变量相关的代码主要在 common目录

中以 env_xxx.c 文件中，因为我们指定的是在 mmc 中保存环境变量，所以在

env_mmc.c 文件中。在 include目录下也有相关的 env_xxx.h 的头文件。

前面多少也涉及到了环境变量的初始化和从 SD卡中读取 u-boot.env的环境

变量。这个是 u-boot.env内容的一部分，是一个整的字符串，以 NULL 也就是‘\0’

来隔开的，剩下的全部是‘\0’

在代码中初始化 env时使用的是默认的环境变量，然后在环境变量的 relocate时

读取 SD卡中的 u-boot.env，如果失败就是使用默认了。

在 include的 environment.h 文件中定义了环境变量的结构体，包含 crc 校验码和

一个是否有效的判断位和一个包含真正数据的字符数组。环境变量的大小在配置

文件中也定义大概就是 64KB然后减掉了头部那两个变量的大小差不多就是64KB

减去 5个字节的大小。

在 include目录下的 env_default.h文件中定义了默认的环境量，如下图所示。

环境变量的优先级是比内部默认的值要高的，如果有环境变量是以环境变量的结

果为主要参考的。

EK之 UBOOT学习

第 50 页 共 67 页

中间的那些是一些宏这些宏又是在配置的头文件中定义的一堆宏，其实说到底真

正的指定默认环境变量的地方还是配置头文件，在 include/configs 目录下的。将

一个宏变为字符串就是前面加一个#号就行

和环境变量相关的几个命令主要是 printenv、setenv、saveenv主要就是打印所有

的环境变量、设置环境变量和保存环境变量。

这些个函数全部定义在 common/cmd_nvedit.c 文件中。

一个一个看一下这个是判断-a选项的，就是打印所有的环境变量。

EK之 UBOOT学习

第 51 页 共 67 页

新版的 uboot 好像在内存中存储环境变量使用哈希表表示的，怪不得我是一点没看懂。

这个是打印所有的环境变量的，并且在最后输出了已经使用的和总共的空间。

主要还是利用 for循环来实现打印所有的环境变量。

这个是打印指定的环境变量的。也是先遍历后找到了在打印的。

setenv就是用来设置环境变量的，如果原来有就直接改原来的如果没有则新

建一个。其实我是不大明白新建这个有啥用，程序里面可定用不上你后加的还是

自己随便叫的东西吧，只是保存一些只看的数据感觉。

如果设置是名字后面为空，就是删除这个环境变量了。

这就是用来删除的，传参个数小于 3或者第三个参数是空就是删除了。

在往下执行的就是真正的修改某个环境变量了。不过我看不懂。。。。好像每个

环境变量都会排序的，不再是像原来那种的最新修改的都是在最后一个，现在的

是更人性化了，会排序了，但是就是代码更复杂了。

saveenv是保存环境变量到 SD卡中

EK之 UBOOT学习

第 52 页 共 67 页

保存在哪里是可以设置的，我这是保存在了 fat格式的 sd卡上了

在 common/env_fat.c中调用 file_fat_write();完成了在 SD卡写入 uboot.env的文件

中

common/env_common.c 文件中的这两个函数感觉是字符串和哈希表之间的桥梁

啊，从内存往 sd卡写的时候就先 export导出来成字符串并且计算了 crc，等开机

从 SD 卡往内存写的时候就是 import 导入，先计算 crc，如果没问题就直接换成

哈希表形式。

env_export();

env_import();

读取环境变量

char *getenv(const char *name);

这个函数返回的是直接的内存中的地址，属于不可重入的函数

int getenv_f(const char *name, char *buf, unsigned len);

这个是把环境变量读取到一个 buf中，是可重入函数，就是比较安全

可重入函数就是可以被并发执行的任务调用的函数。

EK之 UBOOT学习

第 53 页 共 67 页

十四 、UBOOT的启动内核及传参

当 bootdelay 没有被打断时就是直接根据环境变量“bootcmd”中的值去启

动内核了，而“bootcmd”的值其实就是几个启动内核的命令。看一下，

先寻找了 fdt设备树，然后从 mmc 启动，如果失败就 usb启动，再就是 nand 启

动。这是一个寻找 kernel的顺序。

do_run在 common/cli.c 文件中定义。先读取了环境变量然后去执行了。

run这个命令是用来方便自己使用的，你可以添加一个环境变量这个环境变量的

值是想要执行的一堆的操作，然后 run 这个环境变量，就可以执行上面所定义

的一系列命令了。比如 mmcboot就是一些列的命令，zxc那个是我临时测试的，

你看就是打印出来了 bootdelay。这回算是知道自定义的环境变量用来干啥了。

感觉跟写了个脚本一样。

这一系列的判断查找 sd卡然后还干了一些其他的事情打印一些mmc相关的信息

然后就是 bootz命令真正干事的来了。

bootz命令就是来启动 zImage 格式的 linux 内核的。原来看过的是用 bootm 来启

动 zImage镜像的。

https://www.cnblogs.com/chenfulin5/p/6937334.html

https://www.cnblogs.com/chenfulin5/p/6937334.html

EK之 UBOOT学习

第 54 页 共 67 页

当时开了个会，心烦意乱了，看 bootz看不下去了。 2018-01-23周二

vmlinuz和 zImage 和 uImage，*******这段是来自于朱友鹏老师的讲义

(1)uboot 经过编译直接生成的 elf 格式的可执行程序是 u-boot，这个程序类似于

windows下的 exe格式，在操作系统下是可以直接执行的。但是这种格式不能用

来烧录下载。我们用来烧录下载的是 u-boot.bin，这个东西是由 u-boot 使用

arm-linux-objcopy 工具进行加工（主要目的是去掉一些无用的）得到的。这个

u-boot.bin就叫镜像（image），镜像就是用来烧录到 sd卡中执行的。

(2)linux 内核经过编译后也会生成一个 elf 格式的可执行程序，叫 vmlinux 或

vmlinuz，这个就是原始的未经任何处理加工的原版内核 elf 文件；嵌入式系统部

署时烧录的一般不是这个 vmlinuz/vmlinux，而是要用 objcopy 工具去制作成烧录

镜像格式（就是 u-boot.bin 这种，但是内核没有.bin 后缀），经过制作加工成烧

录镜像的文件就叫 Image（制作把 78M大的精简成了 7.5M，因此这个制作烧录

镜像主要目的就是缩减大小，节省磁盘）。

(3)原则上 Image就可以直接被烧录到 Flash上进行启动执行（类似于 u-boot.bin），

但是实际上并不是这么简单。实际上 linux 的作者们觉得 Image 还是太大了所以

对 Image进行了压缩，并且在 image 压缩后的文件的前端附加了一部分解压缩代

码。构成了一个压缩格式的镜像就叫 zImage。（因为当年 Image 大小刚好比一

张软盘（软盘有 2种，1.2M的和 1.44MB 两种）大，为了节省 1张软盘的钱

于是乎设计了这种压缩 Image成 zImage的技术）。

(4)uboot 为了启动 linux 内核，还发明了一种内核格式叫 uImage。uImage 是由

zImage 加工得到的，uboot中有一个工具，可以将 zImage 加工生成 uImage。注

EK之 UBOOT学习

第 55 页 共 67 页

意：uImage 不关 linux 内核的事，linux 内核只管生成 zImage 即可，然后 uboot

中的 mkimage工具再去由 zImage加工生成 uImage 来给 uboot启动。这个加工过

程其实就是在 zImage前面加上 64 字节的 uImage的头信息即可。

(4)原则上 uboot 启动时应该给他 uImage 格式的内核镜像，但是实际上 uboot 中

也可以支持 zImage 定义了 LINUX_ZIMAGE_MAGIC 这个宏。所以大家可以看出：

有些 uboot 是支持 zImage 启动的，有些则不支持。但是所有的 uboot 肯定都支

持 uImage启动。

主要来看一下 do_bootz 函数执行 mmcboot 的前面命令已经把 zImage 拷贝到内

存指定位置了啊。

bootz_start()；函数主要是 start么初始化一些东西。

do_bootm_states();这个函数会根据传参来做一些不同状态时做的事情。如图

下面这些就是不同的状态。

EK之 UBOOT学习

第 56 页 共 67 页

do_bootm_states();这个函数会多次调用，但传参不同，执行的动作也不同。

最后调用 common/boom.c 文件中的 bootm_start()函数。主要初始化了头部信息。

然后回到 bootz_start()函数中因为 argc 不是 0 所以讲传入 argv[0]作为入口地址。也就是

0x82000000。

接下来执行 bootz_setup();函数，

位于 arch/arm/lib 目录下的 bootm.c 文件中

EK之 UBOOT学习

第 57 页 共 67 页

那个宏 LINUX_ARM_ZIMAGE_MAGIC 0x016f2818就是 zImage 的魔数身份证。

kernel的信息也是这里打印出来的。

执行完 bootz_setup 后回到 bootz_start 中执行寻找 fdt 设备，同时相关的信息也

是这里面打印出来的。

执行完 bootz_start后回到 do_bootz中先关闭了中断后就开始有执行了 do_bootm_states

函数。状态有_PREP、 _FAKE_GO、 _GO

有上面知悉，images->os.os 是 IH_OS_LINUX

这个函数中主要是获取 os 的加载程序，就是加载 kernel 的函数。

EK之 UBOOT学习

第 58 页 共 67 页

咱们是 linux 就是执行的 do_bootm_linux 函数。arch/arm/lib目录下的 bootm.c

boot_fn就是刚查找到的 do_bootm_linux函数，下面这句也就是执行了这个函数。

进入 do_bootm_linux 函数中了。

因为有 BOOTM_STATE_OS_PREP所致执行了 boot_prep_linux 函数。这个函数其实

就是用来准备给 kernel传参数的。分为 atags传参和 fdt传参。咱们用的是 fdt

tag方式传参***朱老师讲义

(1)struct tag，tag 是一个数据结构，在 uboot 和 linux kernel 中都有定义 tag 数据

机构，而且定义是一样的。

(2)tag_header 和 tag_xxx。tag_header 中有这个 tag 的 size和类型编码，kernel 拿

到一个 tag 后先分析 tag_header 得到 tag 的类型和大小，然后将 tag 中剩余部分

当作一个 tag_xxx 来处理。

(3)tag_start 与 tag_end。kernel 接收到的传参是若干个 tag 构成的，这些 tag 由

tag_start起始，到 tag_end结束。

(4)tag传参的方式是由 linux kernel发明的，kernel 定义了这种向我传参的方式，

uboot只是实现了这种传参方式从而可以支持给 kernel 传参。

**

bootargs 也是我们要传给 kernel 的参数，这个是在 mmcboot 的那一堆命令中定

义的，有的 uboot是在环境变量中直接就有这个值。

EK之 UBOOT学习

第 59 页 共 67 页

用的是 fdt传参，这个设备树我是换没搞明白是个什么东东

回到 do_bootm_states 中继续执行 boot_selected_os，看注释我们不希望你在

回来了啊。

再一次执行 boot_fn 也就是 do_bootm_linux 函数这回就不回来了。因为有

BOOTM_STATE_GO 所致直接执行 boot_jump_linux 函数了

这是将入口地址直接转为了一个函数指针，

这个函数打印出了 Starting kernel ...的最后一句话，并且清除了一些 uboot 中的设

置。

EK之 UBOOT学习

第 60 页 共 67 页

Starting kernel ... 这个是 uboot中最后一句打印出来的东西。

这句如果能出现，说明 uboot整个是成功的，也成功的加载了内核镜像，也校验

通过了，也找到入口地址了，也试图去执行了。如果这句后串口就没输出了，

说明内核并没有被成功执行。原因一般是：传参（80%）、内核在 DDR 中的加载

地址·······

这个就是直接调用函数指针跳转了啊，传的参数是一个 0，machid和参数的存放

的开始地址

移植时注意事项

(1)uboot移植时一般只需要配置相应的宏即可

(2)kernel启动不成功，注意传参是否成功。传参不成功首先看 uboot中 bootargs

设置是否正确，其次看 uboot是否开启了相应宏以支持传参。

2018-01-24 周三

EK之 UBOOT学习

第 61 页 共 67 页

十五 、UBOOT的硬件驱动

**朱老师课件

1、uboot 本身是裸机程序

(1)裸机本来是没有驱动的概念的（狭义的驱动的概念就是操作系统中用来具体

操控硬件的那部分代码叫驱动）

(2)裸机程序中是直接操控硬件的，操作系统中必须通过驱动来操控硬件。这两

个有什么区别？本质区别就是分层。

2、uboot 的虚拟地址对硬件操作的影响

(1)操作系统（指的是 linux）下 MMU 肯定是开启的，也就是说 linux 驱动中肯定

都使用的是虚拟地址。而纯裸机程序中根本不会开 MMU，全部使用的是物理地

址。这是裸机下和驱动中操控硬件的一个重要区别。

(2)uboot早期也是纯物理地址工作的，但是现在的 uboot开启了 MMU 做了虚拟

地址映射，这个东西驱动也必须考虑。

3、uboot 借用（移植）了 linux 驱动

(1)linux驱动本身做了模块化设计。linux 驱动本身和 linux 内核不是强耦合的，

这是 linux 驱动可以被 uboot借用（移植）的关键。

(2)uboot移植了 linux 驱动源代码。uboot是从源代码级别去移植 linux 驱动的，

这就是 linux 系统的开源性。

(3)uboot 中的硬件驱动比 linux 简单。linux 驱动本身有更复杂的框架，需要实现

更多的附带功能，而 uboot本质上只是个裸机程序，uboot移植 linux 驱动时只是

借用了 linux 驱动的一部分而已。

同样也看一下我当前版本的 mmc 驱动。之前看就是看见带_init的就觉得初始化

了。单片机搞习惯了，就一直觉得那一堆来回的操作都是在玩蛇啊，只有真真看

到了往寄存器所在的内存写东西了才觉得：哦，你确实初始化了。

MMC初始化，想象一下写单片机程序是初始化 SD 卡时都干了啥？

1）用啥外设就先开啥外设的时钟，然后配置内部寄存器

2）用到了 gpio 所以 gpio也得配置

3）给 SD 卡发一些命令让其初始化

EK之 UBOOT学习

第 62 页 共 67 页

4）如果有文件系统还得完成里面的底层 io 读写接口，然后挂载上去

来看一下源码吧，从 UBOOT的 board_init_r 函数的一堆函数队列中有 initr_mmc

的初始化。

在 drivers/mmc/mmc.c 文件中有，mmc_devices 是一个链表头，初始化是指向自

己的，uboot中的同一类设备都是用一个链表连起来的。

board_mmc_init();这个函数也在 mmc.c 文件中，（一定要仔细找啊，不要上了

Source Insight 的坑，它自动帮你定位的是一个错的），看在 mmc.c 中给人起了

一个别名叫__def_mmc_init 还有一个 weak属性，weak就是你定义这个函数我就

啥也是不是了，就以你定义的为准，你没定义的话，那就不好意思了，就只能是

我了。当然在这里，我是这么理解的。

直接返回-1了。调用 cpu_mmc_init这个函数自定是定义的了。在 arch/arm/cpu/armv7/am33xx

的 board.c 文件中，（还一位驱动都在 drivers 文件夹中呢，这就是分离和分层的思想了吧）

EK之 UBOOT学习

第 63 页 共 67 页

cpu_mmc_init() 在 arch/arm/cpu/armv7/am33xx 的 board.c 文件中

调用 omap_mmc_init()函数

omap_mmc_init() 在 drivers/mmc/omap_hsmmc.c 文件中，这个函数主要是

获取了相关的寄存器、时钟配置和 gpio 配置信息全部存在一

个结构体中。包括一些 mmc的操作函数指向

mmc_creat() 在 drivers/mmc/mmc.c 文件中

将这个包含了各种信息的结构体添加到了链表中

同样包括一些 mmc 的 block 的操作函数的指向

在 driver/mmc/omap_hsmmc.c 文件中定义

在 mmc_creat()函数中，也是初始化了一些操作 mmc 的 block的函数，这些函数

也同样是穿给 fs的。

一个结构体包括了这个设备所有你想知道的东西和使用的东西

譬如MMC驱动的结构体就是 struct mmc这些结构体中包含一些变量和一些函数

指针，变量用来记录驱动相关的一些属性，函数指针用来记录驱动相关的操作方

法。这些变量和函数指针加起来就构成了驱动。

驱动就被抽象为这个结构体。

一个驱动工作时主要就分几部分：驱动构建（构建一个 struct mmc 然后填充它）、

驱动运行时（调用这些函数指针指针的函数和变量）

EK之 UBOOT学习

第 64 页 共 67 页

print_mmc_devices(',');在 drivers/mmc/mmc.c 文件中，这个函数主要是导引信息，

比如启动时打印的名字就是在这打印出来的

遍历 mmc_decices这个链表，然后打印出来的设备的名字。

struct mmc *mmc;这个结构体包含了跟 mmc 相关的所有信息和操作函数，所以

说一个设备就是一个链表中的结构体。

do_preinit(); 在 drivers/mmc/mmc.c 文件中遍历链表开始初始化了。

mmc_start_init函数 在 drivers/mmc/mmc.c这里面主要就是发送 mmc/SD卡相关

的命令来初始化 SD卡或者 MMC 卡了。比如一些命令码

mmc_go_idle(mmc);

mmc_send_cmd(mmc, &cmd, NULL);

mmc_send_if_cond(mmc);

mmc_send_cmd(mmc, &cmd, NULL);

mmc_send_op_cond(mmc);

mmc_send_cmd(mmc, &cmd, NULL);

...还有一些类似的

EK之 UBOOT学习

第 65 页 共 67 页

mmc_send_cmd(mmc, &cmd, NULL);这个函数最后调用的就是 mmc 结构体里面的

那个函数指针。

分离思想

(1)分离思想就是说在驱动中将操作方法和数据分开。

(2)操作方法就是函数，数据就是变量。所谓操作方法和数据分离的意思就是：

在不同的地方来存储和管理驱动的操作方法和变量，这样的优势就是驱动便于移

植。

分层思想

(1)分层思想是指一个整个的驱动分为好多个层次。简单理解就是驱动分为很多

个 源 文 件 ， 放 在 很 多 个 文 件 夹 中 。 本 次 的 在 drivers/mmc 目 录 和

arch/arm/cpu/armv7/am33xx 目录。

(2)以 mmc 驱动为例来分析各个文件的作用：

drivers/mmc/mmc.c：这种毫无特色的文件命名法，肯定是说这个文件是通用的，

本文件的主要内容是和 MMC 卡操作有关的方法，MMC 卡设置空闲状态的、卡

读写数据等。但是本文件中并没有具体的硬件操作函数，操作最终指向的是 struct

mmc 结构体中的函数指针，这些函数指针是在驱动构建的时候和真正硬件操作

的函数挂接的（真正的硬件操作的函数在别的文件中）。

drivers/mmc/omap_hsmmc.c：这个文件就完成了和当前 SoC 相关的一些列的设置

和操作函数的具体实现。比如 omap_send_command等这些函数就是具体操作硬

件的函数，也就是 mmc.c 中需要的那些硬件操作函数。

arch/arm/cpu/armv7/am33xx/board.c：这个文件中有个 cpu_mmc_init(bd_t *bis)

函数。这个函数其实啥也没干，而是直接调用了 drivers/mmc/omap_hsmmc.c 中

的 omap_mmc_init函数。就是兜了一圈了。完全没必要啊。

EK之 UBOOT学习

第 66 页 共 67 页

如果我们要把这一套 mmc 驱动移植到别的 SoC 上 mmc.c 就不用动，

omap_hsmmc.c 动就可以了；

如果 SoC 没变但是 SD 卡升级了，这时候只需要更换 mmc.c，不需要更换

omao_hsmmc.即可。

EK之 UBOOT学习

第 67 页 共 67 页

十六 、总结

之前一直玩个裸机，后来才意识到 arm+linux 这种的威力，于是乎马上开整，

正好项目上也涉及到了 arm+linux，也算是学有所用。

通过这一周多的学习，算是对 uboot简单走了一个过场，不知道为什么心里

不是会很高兴，感觉越看越发现有太多太多东西还不会，感觉压力很大。真的是

刷新了认知，真是体验到了朱老师说过的，你看这种代码的时候你就发现，诶，

这特么 C语言还能这样玩，这跟我学的不一样啊....

安装 ubuntu系统时装了个 64位，结果交叉编译工具链装完后真个不能使用，

后来一通查，才知道是 32 位库的问题，虽然解决了，但为了后续再出现这种问

题，我还是装回 32 位版本的了，一开始也只是照着开发板的用户手册在简单配

置编译烧写试了一下，后来才开始研究源码，最起码知道它的执行流程啊。再后

来你得会用 uboot啊，用就用吧，还老想知道这是咋实现的，就继续看源码。看

的过程也发想由于这个工程挺大的，你可能当时知道了，等再去看的时候就又要

在翻一通，所以我才想着简单的写一下这个流程。

通过写出来，确实能加深自己的理解啊，所以后面再做移植的时候我也打算

在一边学一边记下来。

路漫漫其修远兮.............

壮士一去兮不复还............

2018-01-25周四

	目录
	前言
	一、环境搭建
	二、UBOOT初体验
	三、UBOOT源码目录
	四、UBOOT的配置解析
	五、主Makefile大致解析
	六、MLOSPL的生成
	七、镜像文件的差异
	八、链接脚本的一看
	九、MLO程序启动流程
	十、UBOOT程序启动流程
	十一、main_loop简单分析
	十二、UBOOT的命令体系
	十三、UBOOT的环境变量
	十四、UBOOT的启动内核及传参
	十五、UBOOT的硬件驱动
	十六、总结

