[image: image2.wmf]KeyStone 1 I2C Self Test Kit
[image: image3.wmf]March 2015

[image: image4.wmf][image: image5.wmf] KeyStone 1 I2C Self Test Kit User’s Guide
 KeyStone 1 I2C Self Test Kit User’s Guide

KeyStone 1
I2C Self Test Kit
User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 15, 2013
	Brighton Feng
	Initial release

	1.1
	March 20, 2015
	Brighton Feng
	1. Print device information including device type, speed grade, boot mode, required voltage, ID…

2. save/restore EERPOM content during test.
3. add KeyStone_I2C_read_follow_write() in KeyStone_I2C_init_drv.c

Contents

31
Overview

2
Test Method
3
2.1
Internal loopback test
3
2.2
I2C EEPROM test
3
2.2.1
Data pattern filling Test
3
2.2.2
Addressing test
4
2.3
I2C temperature sensor test
5
3
Test code/project
5
3.1
CCS project
5
3.2
To run the test program on KeyStone 1 EVM
6
3.3
Test configuration
6
3.4
Migrate the test to custom board
7
References
8
Appendix: Typical test output
9

Figures

5Figure 1.
Directory structure of test projects

Tables

6Table 1.
Source files of the test codes

Overview
I2C is a commonly used control bus, most KeyStone devices integrate one I2C interface.

The I2C Self Test Kit (STK) is implemented to test:

· Internal loopback
· I2C EEPROM (if available)
· I2C temperature sensor (if available)
Refer to “KeyStone_1_Self_Test_Kit_User's_Guide(READ ME FIRST).doc” for some common information about K1 STK.

1 Test Method
1.1 Internal loopback test

With Internal loopback test, the data in TX buffer is transmitted to I2C TX module, and loopback to I2C RX module, and then received to RX data buffer. The data in TX and RX buffer are compared, the throughput are calculated.
The key purposes of the internal loopback test include:

1. Verify the functions of I2C controller and related internal modules. If internal loopback test passes, while external test fails, then, it normally means the I2C controller and related internal modules work well, the problem should on external signals or the other device on the I2C bus.

2. Verify the throughput. Normally, the throughput in bps should be about (clock speed)*8/9. If the measured throughput is not as expected, it normally indicates I2C clock divider or DSP core PLL is not configured properly.

Please note, the I2C clock speed = (DSP core speed)/(divider factor), and the divider factor is integer, so, the effective I2C clock speed may not exactly meet standard clock speed. For example, 400KHz is standard speed, but the divider can only be configured to generate 399KHz clock. This should be OK in most cases.
1.2 I2C EEPROM test
The STK is designed to test AT24C512B or AT24C1024B on EVM, which should be compatible with most of the I2C EEPROM.

Two algorithms are used to test I2C EEPROM.
1.2.1 Data pattern filling Test

The pseudocode for data pattern filling test is:

for(memory range under test)

fill the memory with a value;

for(memory range under test)

read back the memory and compare the readback value to the written value

Normally, this test is done several times with different test data value. The common values used for test include 0, 0xFFFFFFFF, 0x55555555, 0xAAAAAAAA.

This test can detect stuck data bit, for example, if

written value = 0, readback value = 0x8,

It indicates bit 3 sticks to 1. If

written value = 0xFFFFFFFF, readback value = 0xFFFFFFFE,

It indicates bit 0 sticks to 0.
The test case is also used to generate specific waveforms on hardware signals, which is helpful for hardware signal integrity test. For example, transfer of 0x55555555 or 0xAAAAAAAA will generate square wave on I2C data bus.
1.2.2 Addressing test

The pseudocode for addressing test is:

for(memory range under test)

fill each memory unit with its address value;

for(memory range under test)

read back the memory and compare the readback value to the written value

This test can detect stuck bit on address bus inside EEPROM, for example, if

written value = 0 at address 0

written value = 1 at address 1

written value = 2 at address 2

written value = 3 at address 3

……

readback value = 2 at address 0

readback value = 3 at address 1

readback value = 2 at address 2

readback value = 3 at address 3

……

For this case, it indicates bit 1 of address bus sticks to 0. When you write 2 to address 2, it actually writes to address 0 because the bit 1 of address bus sticks to 0; when you write 3 to address 3, it actually writes to address 1 because the bit 1 of the address bus sticks to 0…
1.3 I2C temperature sensor test
I2C temperature sensor is one of the most popular usages of I2C interface. I2C temperature sensor test supports commonly used temperature sensor including TMP100, TMP101, ADT75.
The test code initializes the temperature sensor firstly, and then, reads the temperature from the sensor and prints it out.

The test code can not judge pass or fail automatically. The user should estimate the temperature and compare it to the test result.

2 Test code/project
This section introduces the implementation of these tests on KeyStone 1 DSP.
2.1 CCS project

Following figure shows the directory structure of the test projects:
 [image: image1.png]42 12C [Active - Debug]

» 4 Binaries

» & Includes

» & Debug

45 sc
» & common_testc
> [2 12C_EEPROM_drv.c
» [12C_EEPROM_drvh
> [12C_EEPROM Testc
> [B 12C_EEPROM Testh
» [2 12C_Loopback testc
» [B 12C_Loopback testh
> 48 12C_mainc
» [2 12C_Temp_Sensor_drv.c
» [B 12C_Temp_Sensor_drvh
» [& INT_vectors.asm
> [KeyStone_common.c
» [& KeyStone_DDR Initc
> [& Keystone_12C_init_drv.c

» [# KeyStone.cmd

Figure 1. Directory structure of test projects

The project files are in “I2C” folder. There is some commonly used initialization and driver code for PLL and TSC… in “common” folder. The main source code files are in the “I2C\src” subfolder. Below table describes these source files.

Table 1. Source files of the test codes
	Function
	Source file
	Description

	I2C_Master_Init
	\common\ KeyStone_I2C_Init_drv.c
	Initialize I2C as master

	I2C_read
I2C_write
	
	Implementation of low level operations on I2C

	I2C_loopback_test
	\I2C\src\I2C_loopback_Test.c
	Loopback data and verify them, measure the throughput.

	I2C_EEPROM_Test
	\I2C\src\I2C_EEPROM_Test.c
	Fill I2C EEPROM with fixed pattern or address, and then verify them.

	I2C_EEPROM_read
	\I2C\src\I2C_EEPROM_drv.c
	Implementation of low level operations on I2C EEPROM.

	I2C_EEPROM_write
	
	

	GetTemperature
	\I2C\src\I2C_Temp_Sensor_drv.c
	Read temperature from the I2C temperature sensor

2.2 To run the test program on KeyStone 1 EVM

The test programs can be run on EVM of C6678, C6670 or TCI6614. The type of the device on EVM is detected by STK code automatically.

The steps to run the test cases on EVM board are:

1. extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)

2. import the project to CCS

3. build the projects. You may need to change the CSL including path, by default the project use CSL header files in: C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl for C6678.

4. Set the boot mode of the device on EVM to no boot.

5. load the program to core 0 of a DSP

6. run the core, then, you should see output in console window.

Refer to appendix of this document to see the typical test output.

2.3 Test configuration
There are multiple macros defined in the source code to configure the test.

Each test case can be configured to be tested or not through following macros in “I2C_main.c”. The value of “1” means enable the test, and “0” means disable the test.
#define I2C_LOOPBACK_TEST

1

#define I2C_EEPROM_TEST

1

#define I2C_TEMP_SENSOR_TEST
0
The data pattern used for data filling test is defined in “I2C_EEPROM_test.c” as below. You can add, remove or modify the values.

unsigned int uiDataPatternTable[] = { 0x00000000, 0xffffffff, 0xaaaaaaaa, 0x55555555 };
The two memory test algorithms introduced in above section can be enabled or disabled separately through following macros in “I2C_EEPROM_test.c”. “1” means enable, “0” means disable.

#define BIT_PATTERN_FILLING_TEST

1

#define ADDRESS_TEST

1

2.4 Migrate the test to custom board
These tests are implemented based on TI’s EVM boards. In your real system, the I2C EERPOM driver may need be changed in “I2C_EEPROM_drv.c”, I2C EEPROM size and address may be modified with following macros in “I2C_main.c”.

#if I2C_EEPROM_TEST

#define I2C_EEPROM_SIZE_KB
64

Uint32 I2C_EEPROM_address= 0x50;

#endif
The I2C temperature sensor driver may need be changed in “I2C_Temp_Sensor_drv.c”, I2C temperature sensor address may be modified with following macros in “I2C_main.c”.

#if I2C_TEMP_SENSOR_TEST

#define I2C_TEMP_SENSOR_ADDRESS 0x48

#endif
DSP core speed configuration may need be changed in main function like below:

//DSP core speed: 122.88*236/29= 999.9889655MHz

KeyStone_main_PLL_init(122.88, 236, 29);

To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) header files are used by these projects, you may need change CSL including path in your system before you rebuild the project.
References

1. KeyStone Architecture Inter-IC Control Bus (I2C) User Guide (SRPUGV3)
2. TMS320C66x DSP CorePac User's Guide (SPRUGW0A)
Appendix: Typical test output

Below is the test output on C6678 EVM.

JTAG ID= 0x1009e02f. This is C6678/TCI6608 device, version variant = 1.

DEVSTAT= 0x00010081. little endian, No boot or EMIF16(NOR FLASH) or UART boot, PLL configuration implies the input clock for core is 50MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x02011014, 0x04010169, 0x00000000, 0x40680021

Device speed grade = 1000MHz.

Enable Exception handling...

Initialize DSP main clock = 100.00MHz/1x10 = 1000MHz

Initialize DDR speed = 66.67MHzx/1x20 = 1333.333MTS

I2C expected speed = 400KHz, effective speed = 392KHz

I2C loopback test passed with data pattern 0x0. Throughput= 354Kbps

I2C loopback test passed with data pattern 0xff. Throughput= 354Kbps

I2C loopback test passed with data pattern 0x55. Throughput= 354Kbps

I2C expected speed = 400KHz, effective speed = 392KHz

I2C EEPROM test start...

Save data from 0x08000 to 0x08800.

Passed I2C_EEPROM Fill Test from 0x 8000 to 0x 8800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x 8000 to 0x 8800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x 8000 to 0x 8800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x 8000 to 0x 8800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x 8000 to 0x 8800

Restore data from 0x08000 to 0x08800.

Save data from 0x08800 to 0x09000.

Passed I2C_EEPROM Fill Test from 0x 8800 to 0x 9000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x 8800 to 0x 9000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x 8800 to 0x 9000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x 8800 to 0x 9000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x 8800 to 0x 9000

Restore data from 0x08800 to 0x09000.

Save data from 0x09000 to 0x09800.

Passed I2C_EEPROM Fill Test from 0x 9000 to 0x 9800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x 9000 to 0x 9800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x 9000 to 0x 9800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x 9000 to 0x 9800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x 9000 to 0x 9800

Restore data from 0x09000 to 0x09800.

Save data from 0x09800 to 0x0a000.

Passed I2C_EEPROM Fill Test from 0x 9800 to 0x a000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x 9800 to 0x a000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x 9800 to 0x a000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x 9800 to 0x a000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x 9800 to 0x a000

Restore data from 0x09800 to 0x0a000.

Save data from 0x0a000 to 0x0a800.

Passed I2C_EEPROM Fill Test from 0x a000 to 0x a800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x a000 to 0x a800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x a000 to 0x a800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x a000 to 0x a800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x a000 to 0x a800

Restore data from 0x0a000 to 0x0a800.

Save data from 0x0a800 to 0x0b000.

Passed I2C_EEPROM Fill Test from 0x a800 to 0x b000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x a800 to 0x b000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x a800 to 0x b000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x a800 to 0x b000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x a800 to 0x b000

Restore data from 0x0a800 to 0x0b000.

Save data from 0x0b000 to 0x0b800.

Passed I2C_EEPROM Fill Test from 0x b000 to 0x b800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x b000 to 0x b800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x b000 to 0x b800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x b000 to 0x b800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x b000 to 0x b800

Restore data from 0x0b000 to 0x0b800.

Save data from 0x0b800 to 0x0c000.

Passed I2C_EEPROM Fill Test from 0x b800 to 0x c000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x b800 to 0x c000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x b800 to 0x c000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x b800 to 0x c000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x b800 to 0x c000

Restore data from 0x0b800 to 0x0c000.

Save data from 0x0c000 to 0x0c800.

Passed I2C_EEPROM Fill Test from 0x c000 to 0x c800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x c000 to 0x c800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x c000 to 0x c800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x c000 to 0x c800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x c000 to 0x c800

Restore data from 0x0c000 to 0x0c800.

Save data from 0x0c800 to 0x0d000.

Passed I2C_EEPROM Fill Test from 0x c800 to 0x d000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x c800 to 0x d000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x c800 to 0x d000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x c800 to 0x d000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x c800 to 0x d000

Restore data from 0x0c800 to 0x0d000.

Save data from 0x0d000 to 0x0d800.

Passed I2C_EEPROM Fill Test from 0x d000 to 0x d800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x d000 to 0x d800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x d000 to 0x d800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x d000 to 0x d800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x d000 to 0x d800

Restore data from 0x0d000 to 0x0d800.

Save data from 0x0d800 to 0x0e000.

Passed I2C_EEPROM Fill Test from 0x d800 to 0x e000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x d800 to 0x e000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x d800 to 0x e000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x d800 to 0x e000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x d800 to 0x e000

Restore data from 0x0d800 to 0x0e000.

Save data from 0x0e000 to 0x0e800.

Passed I2C_EEPROM Fill Test from 0x e000 to 0x e800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x e000 to 0x e800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x e000 to 0x e800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x e000 to 0x e800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x e000 to 0x e800

Restore data from 0x0e000 to 0x0e800.

Save data from 0x0e800 to 0x0f000.

Passed I2C_EEPROM Fill Test from 0x e800 to 0x f000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x e800 to 0x f000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x e800 to 0x f000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x e800 to 0x f000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x e800 to 0x f000

Restore data from 0x0e800 to 0x0f000.

Save data from 0x0f000 to 0x0f800.

Passed I2C_EEPROM Fill Test from 0x f000 to 0x f800 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x f000 to 0x f800 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x f000 to 0x f800 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x f000 to 0x f800 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x f000 to 0x f800

Restore data from 0x0f000 to 0x0f800.

Save data from 0x0f800 to 0x10000.

Passed I2C_EEPROM Fill Test from 0x f800 to 0x10000 with pattern 0x 0

Passed I2C_EEPROM Fill Test from 0x f800 to 0x10000 with pattern 0xffffffff

Passed I2C_EEPROM Fill Test from 0x f800 to 0x10000 with pattern 0xaaaaaaaa

Passed I2C_EEPROM Fill Test from 0x f800 to 0x10000 with pattern 0x55555555

Passed I2C_EEPROM Address Test from 0x f800 to 0x10000

Restore data from 0x0f800 to 0x10000.

I2C test complete.
1
2
Error! No text of specified style in document.

Error! No text of specified style in document.
5

_948891555.doc

