[image: image7.wmf]KeyStone 1 Self Test Kit
[image: image8.wmf]March 2015

[image: image9.wmf][image: image10.wmf] KeyStone 1 Self Test Kit User’s Guide
 KeyStone 1 Self Test Kit User’s Guide

KeyStone 1
Self Test Kit
User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 15, 2013
	Brighton Feng
	Initial Release

	1.1
	March 20, 2015
	Brighton Feng
	Minor function improvement and bug fix.

Contents

31
Overview

2
Framework
3
3
Test methods
6
4
Test coverage
8
5
To run the test program on KeyStone 1 EVM
8
6
Migrate the test to custom board
11
References
11

Figures

4Figure 1.
Two layers of STK

Figure 2.
Directory structure of test projects
5
Figure 3.
Default include path
9
Figure 4.
Setup path variable for workspace
10

Tables

6Table 1.
Source files of low level common codes

Overview
The main purpose of the STK is to help hardware debug including new board bring-up and failure analysis. The STK is implemented based on TI’s EVM, but it is designed in the way that it is easy to be modified to test other custom boards.

The STK also measures the performance of most modules in the KeyStone device. The performance data measured on TI’s EVM can be used for solution evaluation and analysis; it can also be used as reference when user measures the performance on other custom boards.
Please note, performance/throughput test is also useful for hardware debug. For example, lower performance than expectation may indicate:

· Improper speed (PLL) configuration

· Hardware interface signal integrity issue which result in retransmission
The STK code can also be used as reference code for user to develop their own driver code.
To achieve good Readability and portability, in STK:
· No directly register access through its raw address

· No directly register write with raw value

Most STK modules are developed based on register layer of CSL (Chip Support Library). Register overlay pointer is used to access register; Register values are composed with SHIFT/MASK macros defined in CSL header files. For some registers not defined in CSL, such as PLL and Serdes, the STK defines the SHIFT/MASK macros in the style of CSL.
CSL is lowest level of PDK (Platform Development Kit), and PDK is part of MCSDK (MultiCore Software Development Kit).

To make STK simple and highly efficient, BIOS and LLD of MCSDK is not used in STK.
STK is designed to not rely on GEL initialization because normally GEL is not available on other custom boards. All modules used or tested by STK are initialized by STK.
1 Framework
The STK includes test project for each interface or hardware module, the test program executes multiple test cases to cover most usage cases for each module.
The STK programs are implemented in two layers, Figure 1 shows it.

[image: image1.emf]main() function

Test functions for different

test cases

Low level hardware

configuration and driver

API

Figure 1. Two layers of STK
Low level hardware configuration and driver is implemented based on CSL.

Typical configuration API are defined as a configuration structure and a configuration function like below:

typedef struct {
 Parameter 1;

 Parameter 2;

…

} KeyStone_xxx_Config;

KeyStone_xxx_Init(KeyStone_xxx_Config * xxx_cfg);

For hardware debug purpose, users only need modify the parameters of higher level API to execute different test cases on different boards.
Low level code only need be modified to implement very rare/special test case. Low level code may be used directly in user’s driver, or used as reference code for user’s driver development.
Figure 2 shows the directory structure of test projects.
[image: image2.png] [image: image3.png]
Figure 2. Directory structure of test projects

All documents of the STK are in the “docs” folder.

“auto_test” folder includes JavaScripts to run multiple STK programs automatically, and reference test results of all test programs are also included in the folder for reference.

The low level hardware configuration and driver code are in the “common” folder, they may be linked into multiple test projects.

Each of all other folders includes one test project, the high level test codes are in the “src” subfolder of each test project.
Table 1 describes some commonly used low level code; other modules specific low level code and high level test code are described in the user’s guide of each test module.
Table 1. Source files of low level common codes

	Source files
	Descriptions

	KeyStone_common.c/h
	Implementation of APIs for:

· PLL configuration;

· Timer configuration and watch dog service function;

· TSC (Time Stamp Counter) utility functions;
· PSC (Power Sleep Controller) functions;

· EDMA initialization and EDMA/IDMA copy/fill functions;

· L1/LL2 memory protection setup, SL2/DDR MPAX setup and Peripherals MPU setup;

· L1/LL2/SL2 EDC setup and error handler;
· Exception configuration and handlers for CPU internal exception, memory protection error, bus error, interrupt drop, EDMA error…
· Cache/prefetch coherency utility functions;

· CIC (Chip Interrupt Controller) initialization;

	common_test.c/h
	Common test functions including memory test, memory copy, EDMA copy…

	CPU_access_test.c/h
	Functions test CPU latency for LDDW (Load double word), STDW (Store double word).

	CPU_LD_ST_test.asm
	Assembly function for LDDW and STDW latency test.

	INT_vectors.asm
	Default interrupt vector table for exception handling.

	KeyStone_Navigator_init_drv.c/h

KeyStone_Packet_Descriptor.h
	Implementation of APIs for:

· QMSS linking RAM initialization;

· QMSS descriptor region initialization;

· Queue initialization and operations;

· QMSS PDSP firmware setup, accumulation and reclamation control;

· Packet DMA configuration and channel control;

	KeyStone_DDR_Init.c/h
	DDR3 initialization

	KeyStone_Serdes_init.c/h
	SerDes initialization for SRIO, HyperLink, SGMII …

	
	

2 Test methods
The test methods or algorithms for each module may be different, refer to the user’s guide of each module for details. This section introduces some common test methods:
The basic test methods include: write/readback test, loopback test, output test and input test.
The basic steps for write/readback test are:
1. STK code writes special data patterns (such as 0, 0xFFFFFFFF, 0x55555555, address…) to destination

2. STK code reads back data from the destination and compares with the known pattern.

Write/readback test is normally used for memories including internal memories, external DDR3, NOR FLASH and NAND FLASH through EMIF16, NOR FLASH through SPI, EEPROM through I2C. Write/readback test is also used for modules can be accessed like memory including PCIE, HyperLink.

The basic steps for loopback test are:

1. Setup the module under test in loopback mode. For internal loopback, the STK code setup the module in loopback mode; for external loopback test, it may be implemented with an external cable or wires setup by user manually, or it may need run test program on the device on the other end to let it send data back.

2. The STK code generates test data (normally, with special pattern); and then sends the data to the module under test;
3. The data is looped back in the module under test.

4. The STK code receives the loop backed data, and verifies the data.

The modules support both internal and external loopback test include SRIO, HyperLink, PCIE, Ethernet, UART, AIF2. The STK modules support internal loopback include Packet DMA, SPI, I2C.
The output only test is normally used to output data for hardware signal measurement or for testing the other device. For example, continuously transferring 0x55555555 on UART or SPI will generate square wave on the TX pin, this facilitates hardware signal measurement; for SerDes based interfaces, to measure the eye-diagram, normally, we also need transfer data continuously.
The input only test is normally used to detect data or signal generated from another device, for example, the GPIO interrupt triggered by external device.

For tests of most interfaces, both internal loopback and two devices tests are implemented. To simplify the STK usage, same test program are used on two Devices test. The trick is that user must load the program into core 0 of Device0, and load same program into core 1 of Device1. The program will detect the core number at run time, if it is core 0, then it executes the configuration and functions for Device0; if it is core 1, then it executes the configuration and functions for Device1.

If internal loopback test passes, while external test fails, then, it normally means the internal modules work well, the problem should on external signals or the other device connected to the interface. Normally, the signal integrity on PCB should be checked to analyze the root cause.
3 Test coverage
The tests should cover most usage cases of the module. For example, both CPU and DMA are used to test memories, PCIE, HyperLink, UART…

The test cases are designed to match real usage cases as much as possible. The data receiving of most cases is triggered by interrupt though polling is also supported.

Most modules can be tested continuously, not simple one-shot test. For example, for packet DMA based module, limited number of descriptor/packets are used to test the module continuously, the descriptor/packets recycling are fully implemented like real application.
The performance tests of a module are designed to fully stretch the capabilities of the module. Highest speed is tested; all channels/links/ports (if available) may be tested simultaneously.
4 To run the test program on KeyStone 1 EVM

The test programs can be run on EVM of C6678, C6670 or TCI6614. The type of the device on EVM is detected by STK code automatically.
The steps to run the test cases on EVM board are:

1. extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)
2. import the projects to CCS

3. build the projects. You may need to change the CSL including path, by default the projects use CSL header files in: C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl for C6678, C:\ti\pdk_C6670_1_1_2_6\packages\ti\csl for C6670, or C:\ti\pdk_tci6614_1_02_01_03\packages\ti\csl for TCI6614.
4. Set the boot mode of the device on EVM to no boot.

5. To run the test on one core, load the program to core 0 of a device; to run the test on all cores, load the program to all cores; to run the test on two devices, normally, the program is loaded into core 0 of device 0 and core 1 of device 1.
6. run the core or cores. For tests between two devices, some test may require run one device before the other device. Refer to the user’s guide of the specific module for details.
The default include path setup of most projects looks like following figure.
[image: image4.png]
Figure 3. Default include path

Please note that:

1. The path variable “PDK_INSTALL_PATH” is not defined by default.

2. the "${PDK_INSTALL_PATH}\packages" and "${PDK_INSTALL_PATH}\packages\ti\csl" are in front of the "C:\ti\pdk_C6678_1_1_2_6\packages" and "C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl"
For C6678 user, who uses PDK in default path, no modification is required for the setup. The CCS/compiler will generates a warning message about the invalid path based on variable “PDK_INSTALL_PATH” (the warning message may be ignored), and then the CCS/compiler finds the header files in the absolute path.

For other users who install PDK in different path, the CCS/compiler will generate error that it can not find header files.

For user who only want to modify the include path for one project, the straightforward way is to modify the absolute path directly in the Include Options dialog. Please note, both two absolute paths "C:\ti\pdk_C6678_1_1_2_6\packages" and "C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl" need be modified.
For user who wants to modify the include path for whole workspace (valid for all projects in the workspace), the most efficient way is to setup the “PDK_INSTALL_PATH” path variable through Window menu -> Preferences dialog as shown in following figures.

[image: image5.png]
[image: image6.png]
Figure 4. Setup path variable for workspace

As long as the “PDK_INSTALL_PATH” path variable is defined and valid, the CCS/compiler will find the header file in it.

If both the path based on the “PDK_INSTALL_PATH” variable and the absolute path are valid, the CCS/compiler will use the header files in the path based on the variable if it is in front of the absolute path.
To run all these programs manually in CCS may take about one hour, to run all these programs on multiple boards is not only time consuming but also tedious. So, Automation test script based on DSS (Debug Server Script) is provided in “auto_test” subfolder to improve test efficiency. Refer to STK Automation Test User’s guide for more details.

5 Migrate the test to custom board
These tests are implemented based on TI’s EVM boards.
In real system, the DDR configuration may be changed according to user’s hardware design in “KeyStone_DDR_Init.c”.
DSP core and DDR speed configuration may need be changed in main function like below:

//DSP core speed: 122.88*236/29= 999.9889655MHz

KeyStone_main_PLL_init(122.88, 236, 29);

//DDR init 66.667*20/1= 1333

KeyStone_DDR_init (66.667, 20, 1);
There are other module specific parameters may need be change for user’s board, refer to the user’s guide of the STK for specific module for more details.

To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) header files are used by these projects, you may need change CSL including path in your system before you rebuild the project.

References

1. TMS320C66x DSP CorePac User's Guide (SPRUGW0A)
2. KeyStone Multicore Shared Memory Controller (MSMC) User's Guide (SRPUGW7)
3. KeyStone DDR3 Memory Controller User's Guide (SPRUGV8)
4. KeyStone Architecture Enhanced Direct Memory Access (EDMA3) Controller User Guide (SPRUGS5)
1
2
Error! No text of specified style in document.

Error! No text of specified style in document.
3

_1440335259.vsd
main() function
Test functions for different test cases

Low level hardware configuration and driver

API

_948891555.doc

