[image: image4.wmf]KeyStone 1 Timer Self Test Kit
[image: image5.wmf]March 2015

[image: image6.wmf][image: image7.wmf] KeyStone 1 Timer Self Test Kit User’s Guide
 KeyStone 1 Timer Self Test Kit User’s Guide

KeyStone 1
Timer Self Test Kit
User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 15, 2013
	Brighton Feng
	Initial release

	1.1
	March 20, 2015
	Brighton Feng
	1. Print device information including device type, speed grade, boot mode, required voltage, ID…

2. Add function to generate continual square waves.

Contents

31
Introduction

1.1
Generate square wave with Timer and EDMA
3
2
Test code/project
4
2.1
CCS project
4
2.2
To run the test program on KeyStone 1 EVM
5
2.3
Test configuration
5
2.4
Migrate the test to custom board
6
References
7
Appendix: Typical test output
8

Figures

3Figure 1.
Generate square waves with Timer + EDMA

Figure 2.
Directory structure of test project
4

Tables

5Table 1.
Source files of the test codes

Introduction
Timer on KeyStone 1 devices is very flexible. The Timer STK (Self Test Kit) is designed to verify four main features of Timer:

1. generate one-shot pulse and interrupt

2. generate continual clock and interrupts

3. generate continual square wave and interrupts

4. watch-dog

The pulse or clocks are output on TIMO0 pin in these tests. The square waves are output on TIMO1. The difference between square wave and clock is the duty cycle of clock is always 50%.

Interrupt Service Routine is setup to monitor and verify if the interrupts are generated as expected.

Watch-dog timer is setup up, and be serviced for sometimes, and then stop servicing the watch-dog timer and let it trigger NMI exception, a pulse is also generated on TIMO0.

Exception service routine is setup to monitor and verify if the NMI exception is triggered by watch-dog timer as expected.

The number of the timer for square wave test is 8 or 4; the number of the timer for other tests is same as the number of the core running the test program because only timer N can be used as watch dog timer for core N.
Refer to “KeyStone_1_Self_Test_Kit_User's_Guide(READ ME FIRST).doc” for some common information about K1 STK.

1.1 Generate square wave with Timer and EDMA
Period reload function of timer plus mode and EDMA is used to generate the square waves, following figure shows the setup:

[image: image1.emf]Timer

Memory

EDMA

OPT= SYNC_AB

ACNT=4; BCNT=2; CCNT=2

SRC= &(Low period value)

DST = & (RELLO register)

SRC_BIDX=4; DST_BIDX=16

SRC_CIDX=8; DST_BIDX=0

Low period value

0x000F000F

RELLO register

Trigger

TIMO1

INTCTLSTAT register

High period value

0x000F000F

Note: Address offset from RELLO to INTCTLSTAT is 16 bytes

Figure 1. Generate square waves with Timer + EDMA
Please note, there are some limitation on K1 between EDMA and Timer:

· Only some EDMA TCs can access timer register;

· Only some timers can trigger some EDMA CCs;

So, in the test, Timer 8 combined with EDMA CC1 channel 22 is used.

In plus mode, the

The key initialization parameters of timer include:

· PLUSEN= 1 (enable plus features)

· ENAMODE= CONT_RELOAD (continuously period reload);

· TIMMODE= DUAL_UNCHAINED (dual 32-bit timers unchained mode);

· PRDLO = low period value;

· RELLO = high period value;

2 Test code/project
This section introduces the implementation of these tests on KeyStone 1 DSP.
2.1 CCS project

Following figure shows the directory structure of the test project
[image: image2.png]

 [image: image3.png]4 & Timer

» 4 Binaries

» @ Includes

© & Debug

4@ sc
» [KeyStone_common.c
» [@ timer_main.c
© [8 timer_vectorsasm

» [KeyStone.cmd

Figure 2. Directory structure of test project

The project files are in “Timer” folder. There is some commonly used initialization and driver code for Timer, interrupt, exception and PLL… in “common” folder. The main source code files are in the “Timer\src” subfolder. Below table describes these source files.

Table 1. Source files of the test codes

	Function
	Source file
	Description

	Timer64_Init
	\common\ KeyStone_common.c
	configure timer

	KeyStone_Exception_cfg
	
	Enable Exception handling for NMI

	Exception_service_routine
	
	Exception Service routine

	KeyStone_main_PLL_init
	
	DSP core PLL configuration

	generate_pulse_by_timer
	\Timer\src\ timer_main.c
	use local timer to generate a pulse on TIMO0,

an interrupt is generated as well

	generate_clocks_by_timer
	
	use local timer to generate a clock on TIMO0,

interrupts are generated as well

	generate_waves_by_timer
	
	use timer to generate square waves on TIMO1,

interrupts are generated as well.

EDMA is used to reload period register

	watchdog_timer_test
	
	set local timer as watch dog timer,

service the watch-dog for sometimes,

and then stop servicing watch-dog, let it trigger NMI

	Timer_Interrupts_Init
	
	Initialize interrupt of timer

	Timer_ISR
	
	Interrupt service routine for timer

2.2 To run the test program on KeyStone 1 EVM

The test programs can be run on EVM of C6678, C6670 or TCI6614. The type of the device on EVM is detected by STK code automatically.
The steps to run the test cases on EVM board are:

1. extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)

2. import the project to CCS

3. build the projects. You may need to change the CSL including path, by default the project use CSL header files in: C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl for C6678.

4. Set the boot mode of the device on EVM to no boot.

5. load the program to any core of a DSP.

6. run the core, then, you should see output in console window.

Refer to appendix of this document to see the typical test output.

2.3 Test configuration
The period or delay of the timer can be changed with following macro at the beginning of “timer_main.c”.

/*delay (in millisecond) before the timer generate one-shot pulse*/

#define PULSE_DELAY_MS

2000

/*period (in millisecond) of the clock generated by timer*/

#define CLOCK_PERIOD_MS

1

/*number of the clocks generated in this test*/

#define NUM_CLOCKS_GENERATED
500

/*period (in millisecond) of the waveform generated by timer*/

#define WAVE_PERIOD_MS

1

/*Duty cycle of the waveform (percentage of low period)*/

#define WAVE_LOW_PERCENT

66

/*number of the waves generated in this test*/

#define NUM_WAVES_GENERATED
500

/*period (in millisecond) of the watch-dog timer*/

#define WATCH_DOG_PERIOD_MS
3000
The period or delay are defined in millisecond with above macro, they will be converted and configured to the PRD (period) register of timer.

Please note, the timer runs at (DSP core clock)/6, the conversion between millisecond and timer PRD value is:

PRD = (xxx_MS/1000)*DSP_CLK_HZ/6

 = xxx_MS*(DSP_CLK_HZ/1000)/6

If you only want to run one or two of the three test cases, just comment one or two of the four function calls in main function:

generate_pulse_by_timer();

generate_clocks_by_timer();

generate_waves_by_timer();

watchdog_timer_test();

2.4 Migrate the test to custom board
These tests are implemented based on TI’s EVM boards.

In real system, DSP core speed configuration may need be changed in main function like below:

//DSP core speed: 122.88*236/29= 999.9889655MHz

KeyStone_main_PLL_init(122.88, 236, 29);

To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) header files are used by these projects, you may need change CSL including path in your system before you rebuild the project.
References

1. KeyStone Architecture Timer64 User Guide (SPRUGV5)
2. TMS320C66x DSP CorePac User's Guide (SPRUGW0)
Appendix: Typical test output

Below is the test output on C6678 EVM.

JTAG ID= 0x1009e02f. This is C6678/TCI6608 device, version variant = 1.

DEVSTAT= 0x00010081. little endian, No boot or EMIF16(NOR FLASH) or UART boot, PLL configuration implies the input clock for core is 50MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x02011014, 0x04010169, 0x00000000, 0x40680021

Device speed grade = 1000MHz.

Enable Exception handling...

Initialize DSP main clock = 100.00MHz/1x10 = 1000MHz

a pulse will be generated on TIMO0...

a pulse was generated on TIMO0

clocks will be generated on TIMO0...

clocks were generated on TIMO0

Square waves will be generated on TIMO1...

Square waves were generated on TIMO1

start watch-dog timer...

service watch-dog 1 times, at time counter = 6

service watch-dog 2 times, at time counter = 4056452

service watch-dog 3 times, at time counter = 4097936

service watch-dog 4 times, at time counter = 3977269

service watch-dog 5 times, at time counter = 4025883

service watch-dog 6 times, at time counter = 4054447

service watch-dog 7 times, at time counter = 4066352

service watch-dog 8 times, at time counter = 4076247

service watch-dog 9 times, at time counter = 4102692

service watch-dog 10 times, at time counter = 4162245

service watch-dog 11 times, at time counter = 4079429

service watch-dog 12 times, at time counter = 4094498

service watch-dog 13 times, at time counter = 4141569

service watch-dog 14 times, at time counter = 4128782

service watch-dog 15 times, at time counter = 4091493

service watch-dog 16 times, at time counter = 4080618

service watch-dog 17 times, at time counter = 4076007

service watch-dog 18 times, at time counter = 4109133

service watch-dog 19 times, at time counter = 4054335

service watch-dog 20 times, at time counter = 4108828

service watch-dog 21 times, at time counter = 4126822

service watch-dog 22 times, at time counter = 4115945

service watch-dog 23 times, at time counter = 4047009

service watch-dog 24 times, at time counter = 4062672

service watch-dog 25 times, at time counter = 4157796

service watch-dog 26 times, at time counter = 4474330

service watch-dog 27 times, at time counter = 4013465

service watch-dog 28 times, at time counter = 4103189

service watch-dog 29 times, at time counter = 4104715

service watch-dog 30 times, at time counter = 4123159

stop servicing watch-dog, it will timeout and trigger NMI...

NMI exception happened, normally you should reset the DSP to recover from the problem!

NRP=0xc0004ac, NTSR=0x1800d, IRP=0xc006ee4, ITSR=0xd, TSCH= 0x1, TSCL= 0x6156c4f9

 B3=0xc000494, A4=0x65a0bc00, B4= 0x1, B14= 0x8021c0, B15= 0x8011e0

Exception happened at a place can not safely return!
1
8
Error! No text of specified style in document.

Error! No text of specified style in document.
9

_1488719746.vsd
EDMA

OPT= SYNC_AB
ACNT=4; BCNT=2; CCNT=2
SRC= &(Low period value)
DST = & (RELLO register)
SRC_BIDX=4; DST_BIDX=16
SRC_CIDX=8; DST_BIDX=0

Low period value

0x000F000F

RELLO register

Memory

Timer

Trigger

TIMO1

INTCTLSTAT register

High period value

0x000F000F

Note: Address offset from RELLO to INTCTLSTAT is 16 bytes

_948891555.doc

