[image: image14.wmf]KeyStone 1 UART Self Test Kit

[image: image15.wmf] March 2015

[image: image16.wmf][image: image17.wmf] KeyStone UART Self Test Kit User’s Guide
 KeyStone UART Self Test Kit User’s Guide

KeyStone 1
UART Self Test Kit
User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 16, 2013
	Vincent Han
	Initial release

	1.1
	March 20, 2015
	Brighton Feng
	1. Print device information including device type, speed grade, boot mode, required voltage, ID…

2. to support selective interrupt enable for different case in KeyStone_UART_Interrupts_Init().

Contents

31
Overview

2
Test Methods and test cases
4
2.1
UART Loopback & Throughput Test
4
2.2
UART Transmit Increasing Sequence Test
5
2.3
UART Transmit Continuous Data Pattern Test
5
2.4
UART Interact with PC Test
5
2.5
Test with different masters
6
2.5.1
Transmit with DSP Core Directly
6
2.5.2
Transmit with EDMA
6
2.5.3
Receive through UART Interrupt to a DSP core
6
2.6
UART Baud Rate Configuration Accuracy
6
3
Test Project
7
3.1
CCS Project
7
3.2
Hardware Connections and Drivers Preparation
8
3.2.1
Initialize KeyStone EVM Pins for Normal Tests
8
3.2.2
Hardware Connection for External Loopback Tests
12
3.3
To Run the Test Program on KeyStone EVM
12
3.4
Test Configurations
13
3.5
Migrate the Project to Customs’ Boards
14
References
14
Appendix: Typical test output
15

Figures

3Figure 1.
KeyStone UART functional diagram

Figure 2.
UART internal loopback
4
Figure 3.
UART external line loopback
5
Figure 4.
Directory structure of test projects
7

Tables

7Table 1.
Source files of the test codes

Overview
Figure 1 shows the KeyStone UART functional diagram.

[image: image1.png]Toe-e0

16

UARTA_RXD

pin

UARTA_TXD
pin

Inerruptto CPU

Register

Eventto DMA controller

Pawer and
Emulation
Control
Register

Figure 1. KeyStone UART functional diagram
Some of KeyStone devices have 2 UART modules while some devices have only 1 UART module, for devices have 2 UART, the 2 modules can work separately as 2 functional units. The major features supported by UART in KeyStone are:

· 1 START bit + data bits (5, 6, 7, 8) + 1 PARITY bit (optional) + STOP bit (1, 1.5, 2) for UART transmitting format.
· 1 START bit + data bits (5, 6, 7, 8) + 1 PARITY bit (optional) + 1 STOP bit for UART receiving format.
· Configurable baud rate.
· The receiver and transmitter FIFOs store up to 16 bytes.
Refer to “KeyStone_1_Self_Test_Kit_User's_Guide(READ ME FIRST).doc” for some common information about K1 STK.

1 Test Methods and test cases
Several test methods are used to cover multiple usages cases.
1.1 UART Loopback & Throughput Test

Two loopback tests are implemented: internal loopback and external line loopback.

[image: image2.emf]Board

KeyStone SOC

CPU

EDMA

UART

TX

RX

RS232

Line Driver

TX

RX

Figure 2. UART internal loopback

[image: image3.emf]Board

KeyStone SOC

CPU

EDMA

UART

TX

RX

RS232

Line Driver

TX

RX

Figure 3. UART external line loopback

The purpose of the internal loopback test is mainly to check the KeyStone SOC itself; the purpose of the external line loopback test is mainly to check the components and connections for UART on the board.

If the internal loopback test fails, the problem should be in the KeyStone SOC, you may need to check the clock, power or configurations for the SOC; if the internal loopback test passes while the external line loopback test fails, then the problem is on the other components or connection on the board.
The throughput is also measured in loopback test to provide the basic benchmark of the throughput in different baud rate configurations, ranging from 115200 to 3686400 bps (double the rate for each test iteration).
1.2 UART Transmit Increasing Sequence Test
The purpose of this test method is mainly to check the UART configurations in Tx side, by outputting increasing sequence to PC terminal, it’s easy to check whether the UART configuration is correct or not.

The ASCII code value of the increasing sequence is from 0 – 127 which covers the alphabet, number and daily used punctuations in ASCII, by checking the output on PC terminal, we can basically know whether the UART configuration is correct or not.
1.3 UART Transmit Continuous Data Pattern Test
The purpose of this test method is mainly to generate waveform on TX pin to make it easy for hardware signal checking with oscilloscope. We can use the continuous data pattern such as 0x55 or 0xAA to output square wave, and then check the signal from the hardware circuit to check the signal quality or the hardware connections.
1.4 UART Interact with PC Test

The purpose of this test method is mainly to check both of the Tx and Rx sides on hardware. For Tx side, the data sent by UART will be received and printed on PC terminal. For Rx side, the data received from PC will be retransmitted from UART back to PC which will show the echo of the keyboard input.
In this test scenario, the UART configurations will be printed in CCS output window to show which parameters it’s using now, PC terminal (such as Putty or TeraTerm) should be configured with the same parameters, or the interaction will not be successful.
1.5 Test with different masters
UART tests are implemented with different masters:

· Transmit with DSP core directly
· Transmit with EDMA
· Receive through UART interrupt to a DSP core
1.5.1 Transmit with DSP Core Directly
In the testing code, user can choose to use DSP core to transmit data through UART, in this case, DSP core will be responsible to move all required data to the UART transmit register for transmission, DSP need to wait until all required data transfer complete.
1.5.2 Transmit with EDMA
In the testing code, user can choose to use EDMA to transmit data through UART, in this case, DSP only need to setup EDMA parameters and trigger the EDMA, EDMA will be responsible to move all required data to the UART transmit register for transmission, there is no need for DSP to wait until all required data transfer complete.
The EDMA usage designed here is using the A-Sync, DSP will only trigger the initial transmit, the rest EDMA transmit events are generated by UART Tx event, due to the hardware signal connections in SoC, different UART will generate different EDMA CC’s trigger events, for more information, please refer the relative Data Manual of the corresponding KeyStone devices.
1.5.3 Receive through UART Interrupt to a DSP core
Due to UART FIFO can generate interrupt from Rx side, we can free the DSP core from polling the UART receive status register to check whether there is received data or not. In UART FIFO mode, the interrupt will be generated in case of FIFO full or in case of FIFO not full but reaches the time out limitation. In the receive interrupt service routine, DSP core will read the UART register to get the received data.
1.6 UART Baud Rate Configuration Accuracy
UART board rate is generated by a divider, which derives UART clock from DSP core’s clock. For a given DSP core clock, the divider may not generate exact baud rate as required.
In the test project, we calculated the divisor value with following formula:

Divisor = round_off(DSP_Core_Speed/6/Over_Sampling_Factor/baudRate)
The rounding off is used to minimize the accuracy error, but normally, there is still error.
Since UART resynchronizes at the start edge of each byte, so the error only accumulates in one byte. In theory, if the error is 5%, when it accumulate to the 10th bit, the error will be 50%, which will make the sampling fail. So, in theory, the clock error must be less than 5%; in reality, the clock error should be more accurate because of signal distortion or delay.
2 Test Project
This section introduces the implementation of the UART tests on KeyStone DSP.
2.1 CCS Project

Following figure shows the directory structure of the test projects

[image: image4.png]Fle Edt View Novgate Project Run Scrpts Window Help
R~ iB-if- i @iCe-D- 5 % CCs Debug (F CCSEdR) 11111 | LLLLL

[§ UART Intermuptc | [& UART_mainic £ | [§ KeyStone UART Ini.. | (& KeyStone_common.c Target Con... 22| 5= Outine| = 0| |l veacing s s Heading s
1 ARM_DSP_Communication_ARM 335 /%wait for input from the UART of PC*/ & x| &
7 ARM_DSP Communication DS || 325 vhile(1);

7 Cortex A15_eample par [ype filter text

B Cortec ALS_example LPAE 225 void main(void) & Projects
1 Cortex A1S_eample TICC 20 { b @ User Defined § .
] Cortex ALS_generic_timer_eample || 341 IER= @; //disable interrupt TestKit User's Guide,
1 GIC400_manually trigger 342

4 Wticor Nodgetor b Tscinic0;

& Profe o L3 /" For TCIS618 o C8670 DS Core Speed = 122.85%65/5 = 995.4 thiz */
4 65 UART 346 /" For 6678 DSP Core Speed = 122.88%65/8 = 998.4 Mz */
b 4% Binaries 347 KeyStone_main_PLL_init(MAIN PLL_REF_CLK MHZ, MAIN PLL_MULTIPLIER, MAIN_PLL_DIVISC
» @) Includes i
L 2 by 349 4ifdef UART_INTERNAL_LOOPBACK_TEST
350 KeyStons_UART_lospback with_throughput (TRUE);
4B 351 rendif
[KeyStone_common.c =
[, KeyStone UART Jnit drv.c || 35 #ifdef UART_EXTERNAL_LTNK_LOOPBACK_TEST
& UART Iterruptc 354 KeyStons_UART_loopback with_throughput (FALSE);

355 telse
5 UART Interrupt o

[5) UART_main.c 557 #ifdef UART_TX_INCREASE_SEQUENCE

» (S UART vectors.asm 55 UART_TXIncresse Sequence();
» [KeyStonecmd Ep—

60
361 #ifdef UART_CONTINUE_TX_DATA PATTERI
52 UART_comtinue TX_data_pattern(UART_CONTINUE_TX_DATA PATTERN);
363 #endif m
e U
365 #ifdef UART_INTERACT_WITH PC T —
365 URT_Interact with PC(); | torget configuration file. Click he to

- ide this message.

[2 Problems 52 |) Advice v =08
No consoles to isplay at this time. Oitems
Description

EN

Figure 4. Directory structure of test projects

The project files are in UART folder. There is some commonly used initialization and driver code for UART, EDMA and PLL… in common folder. The main source code files are in the UART/src subfolder. Below table describes these source files.

Table 1. Source files of the test codes

	Source files
	Descriptions

	UART_main.c
	Implementation of main UART test methods, the key APIs include:

KeyStone_UART_config(Uint32 baudRate,
 Bool bLoopBackEnable,

 UART_Tx_Master txMaster)
KeyStone_UART_loopback_with_throughput(Bool bInternalLoopback)
UART_TX_Increase_Sequence()
UART_continue_TX_data_pattern(Uint8 dataPattern)
UART_Interact_with_PC()

	KeyStone_UART_Init_drv.c
	Implementation of UART initialization and driver level APIs. The key APIs are:

KeyStone_UART_init(UART_Config *pUARTCfg,
 Uint32 uartNum)
KeyStone_UART_write(unsigned char *buffer,

 unsigned int byteLen,
 Uint32 uartNum)
KeyStone_UART_TX_wait(Uint32 uartNum)
KeyStone_UART_read(unsigned char *buffer,

 unsigned int buffByteLen,
 Uint32 uartNum)
KeyStone_UART_Error_Handler(Uint32 uartNum)

	UART_Interrupt.c
	Implementation of UART interrupt initialization, configuration and ISR:
 UART_Echo_back(Uint32 rx_cnt,
 Uint32 uartNum)
 KeyStone_UART_Rx_ISR()
 KeyStone_UART_Error_ISR()
 UART_EDMA_complete_handler(Uint32 tpccNum)
 KeyStone_UART_EDMA_ISR()
 KeyStone_UART_Interrupts_Init(Bool bRxIntEnable,
 Bool bEDMAInterruptEnable)

2.2 Hardware Connections and Drivers Preparation
2.2.1 Initialize KeyStone EVM Pins for Normal Tests
Due to the KeyStone EVM have the pins to select the UART I/O through RS232 or COM2USB interface, we need to choose the pins to select RS232 as COM port. It mainly as follow:
[image: image5.png]Figure 3.3: COM_SEL1J

umper setting

Wire pinl1-3 and pin2-4
UART over the XDS100v1

Wire pin3-5 and pin4-6
UART over the 3-pin terminal

w
- <
Eﬁ
o N

For C6670 EVM:

[image: image6.png]

For C6678 EVM:

[image: image7.png]

For TCI6614 EVM:
[image: image8.png]

Connect the 3-Pin 2 RS232 cables before power on the EVM board:

[image: image9.png]

[image: image10.png]

Make sure the board in “no boot” mode for these tests through CCS.

If the COM drivers and ports are correctly installed, open the hyper-terminal tool (we use TeraTerm as example) to create a session on your PC:

[image: image11.png](4 COML:115200baud - Tera Term VT (= [Enes |

File

Edit_setup_Control

Tera Term: Serial port setup

Window_Help

Port:
Baud rate:
Data:
Parity:
Stop:

Flow control:

Transmit delay

0 mseclt

COM1 =

115200~

char 0 msecfline

2.2.2 Hardware Connection for External Loopback Tests
On KeyStone EVM, the UART0 is connected with both USB2COM port and the 3-Pin on-board connectors, we need to use the 3-Pin on-board connectors for the external loopback tests due to some extra manual connections is required.

[image: image12.emf]Board

KeyStone SOC

CPU

EDMA

UART

TX

RX

RS232

Line Driver

TX

RX

According the test method for external loopback, we need to short the UART Tx and Rx pins on the connector side, so the extra jumper connector need to be placed on the EVM UART on-board connectors as the following picture:

[image: image13.png]

The jumper connector connects UART0 “Tx” and “Rx” pins which implements the external loopback.
2.3 To Run the Test Program on KeyStone EVM

The test program can be run on EVMs of C6670, C6678, or TCI6614.

The steps to run the test cases on EVM board are:

1. Extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)

2. Import the project to CCS

3. Build the project. You may need to change the CSL including path, by default the project use CSL header files in: C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl for C6678.
4. Set the boot mode of the device on EVM to no boot
5. Connect the Com cable and setup the PC terminal with the same configuration which UART uses in the CCS projects
6. Load the program to core 0 of a DSP.

7. Run the core 0, then, you should see output in console window.

Refer to appendix of this document to see the typical test output.

2.4 Test Configurations
These tests are implemented based on TI’s EVM boards. The code implemented can identify the device type automatically by checking the JTAG ID register on the chip. The following devices can be identified by the current code version:
· C6670

· C6678

· TCI6614

There are multiple macros defined in the source code to configure the test.

To specify which UART for initialization and testing, use the following macro defined in “UART_main.c”.

#define TEST_UART_NUM
0
Following macros in “UART_main.c” can be used to select test cases. Defining the macros means enable the tests, and undefining (or commenting) the macros means disable the test.
#define UART_INTERNAL_LOOPBACK_TEST
//#define UART_EXTERNAL_LINK_LOOPBACK_TEST
#define UART_TX_INCREASE_SEQUENCE
#define UART_CONTINUE_TX_DATA_PATTERN
0x55
#define
UART_INTERACT_WITH_PC
Please note, if UART_EXTERNAL_LINK_LOOPBACK_TEST is defined, the INCREASE_SEQUENCE, TX_DATA_PATTERN and INTERACT_WITH_PC tests will not be executed.
The UART configurations are configured in function “KeyStone_UART_config” which defined in “UART_main.c” as below. You can modify the parameters with values or corresponding enums defined in “KeyStone_UART_Init_drv.h”.

gUARTCfg.baudRate = baudRate;

gUARTCfg.DSP_Core_Speed_Hz = gDSP_Core_Speed_Hz;

gUARTCfg.dataLen = DATA_LEN_8BIT;

gUARTCfg.parityMode = PARITY_DISABLE;

gUARTCfg.stopMode = ONE_STOP_BIT;

 gUARTCfg.autoFlow = AUTO_FLOW_DIS;

gUARTCfg.osmSel = OVER_SAMPLING_16X;

 gUARTCfg.fifoRxTriBytes = TRIGGER_LEVEL_14BYTE;

 gUARTCfg.txMaster = txMaster;

gUARTCfg.bLoopBackEnable = bLoopBackEnable;
2.5 Migrate the Project to Customs’ Boards
These tests are implemented based on TI’s EVM boards. In your real system, the DSP core speed may be changed by modifying the parameters of following function call in “UART_main.c”:

//DSP core speed: 100*10/1=1000MHz

KeyStone_main_PLL_init(100, 10, 1);

To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) header files are used by these projects, you may need change CSL including path in your system before you rebuild the project.
References

1. KeyStone Architecture Universal Asynchronous Receiver_Transmitter (UART) User Guide (sprugp1)
2. KeyStone Architecture Enhanced Direct Memory Access (EDMA3) Controller User Guide (SPRUGS5)
Appendix: Typical test output

Below is the test output on C6678 EVM.

JTAG ID= 0x1009e02f. This is C6678/TCI6608 device, version variant = 1.

DEVSTAT= 0x00010081. little endian, No boot or EMIF16(NOR FLASH) or UART boot, PLL configuration implies the input clock for core is 50MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x02011014, 0x04010169, 0x00000000, 0x40680021

Device speed grade = 1000MHz.

Enable Exception handling...

Initialize DSP main clock = 100.00MHz/1x10 = 1000MHz

Init UART0 at 115200bps in loopback mode...

Required baud rate 115200, effective baud rate 115740!

EDMA CC2 for UART transfer complete.

UART0: Tx 1024 bytes, Rx 1024 bytes, 1024 correct bytes. Consumes 88311108 cycles, throughput is 92Kbps

Init UART0 at 230400bps in loopback mode...

Required baud rate 230400, effective baud rate 231481!

EDMA CC2 for UART transfer complete.

UART0: Tx 1024 bytes, Rx 1024 bytes, 1024 correct bytes. Consumes 44160240 cycles, throughput is 185Kbps

Init UART0 at 460800bps in loopback mode...

Required baud rate 460800, effective baud rate 452898!

EDMA CC2 for UART transfer complete.

UART0: Tx 1024 bytes, Rx 1024 bytes, 1024 correct bytes. Consumes 22575412 cycles, throughput is 362Kbps

Init UART0 at 921600bps in loopback mode...

Required baud rate 921600, effective baud rate 946969!

EDMA CC2 for UART transfer complete.

UART0: Tx 1024 bytes, Rx 1024 bytes, 1024 correct bytes. Consumes 10801818 cycles, throughput is 758Kbps

Init UART0 at 1843200bps in loopback mode...

Required baud rate 1843200, effective baud rate 1736111!

EDMA CC2 for UART transfer complete.

UART0: Tx 1024 bytes, Rx 1024 bytes, 1024 correct bytes. Consumes 5896221 cycles, throughput is 1389Kbps

Init UART0 at 3686400bps in loopback mode...

Required baud rate 3686400, effective baud rate 3472222!

EDMA CC2 for UART transfer complete.

UART0: Tx 1024 bytes, Rx 1024 bytes, 1024 correct bytes. Consumes 2952819 cycles, throughput is 2774Kbps

Init UART0 at 115200bps...

Required baud rate 115200, effective baud rate 115740!

Start print character code from 0 to 255 over UART0...

EDMA CC2 for UART transfer complete.

UART test complete.
1
2

7

_1437128196.vsd

Board

KeyStone SOC

CPU
EDMA

UART

TX

RX

RS232
Line Driver

_1437128197.vsd
CPU
EDMA

UART

TX

RX

RS232
Line Driver

KeyStone SOC

Board

_948891555.doc

