
Configuring Interrupts on Keystone Devices

From Texas Instruments Wiki

Jump to: navigation, search

Contents

• 1 Objective

• 2 Key Concepts

• 3 Software Implementation

o 3.1 Using CSL APIs

▪ 3.1.1 Configuring CorePac's INTC

▪ 3.1.2 Configuring CIC

▪ 3.1.3 Example

o 3.2 Using SYS/BIOS

▪ 3.2.1 HWI

▪ 3.2.2 EventCombiner

▪ 3.2.3 CpIntc

▪ 3.2.4 Example

• 4 Analyzing Interrupts in Code Composer Studio

• 5 References

Objective

The objective of this wiki page is to introduce the reader to interrupts and their software setup

and debugging on Keystone devices, using TI's TMS320C6678 device as an example.

The first part consolidates some key concepts on the interrupt controller, drawn from the relevant

user guides. The second part discusses the software implementation and delves into the two

primary approaches for interrupt setup.

Key Concepts

The KeyStone Architecture has many peripherals and a large number of event sources. The use

of events is completely dependent on a user's specific application, which drives the need for

maximum flexibility; how interrupts or events are serviced is completely up to software control.

Both the EDMA3 channel controllers (EDMA3CC) and the C66x CorePacs are capable of

receiving events directly. However, the number of accepted events for each EDMA3CC and

C66x CorePac is limited. [1]

https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#mw-head
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#p-search
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Objective
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Key_Concepts
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Software_Implementation
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Using_CSL_APIs
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Configuring_CorePac.27s_INTC
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Configuring_CIC
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Example
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Using_SYS.2FBIOS
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#HWI
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#EventCombiner
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#CpIntc
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Example_2
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Analyzing_Interrupts_in_Code_Composer_Studio
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#References

A KeyStone device can have hundreds of events. Therefore, some of these events need to be

aggregated at the chip level through the Chip-level Interrupt Controller (also known as CIC or

CpIntc), before they are routed to the EDMA3CC and C66x CorePacs. It is important to note

here, that CIC/CpIntc is different from the Interrupt Controller inside a C66x CorePac, which is

denoted by the acronym INTC. To achieve the aggregation, multiple CICs are added to the SoC.

The CIC takes chip-level events (system events) and generates host interrupts which act as event

inputs to the EDMA3CC and C66x CorePac by combining and/or selecting those chip-level

events. [1]

The figure below shows the 6678 interrupt topology along with the CICs and interrupt routing

[3]. For more information on how the CIC operates internally please see the CIC user guide as

indicated in reference [2].

https://processors.wiki.ti.com/index.php/File:Interrupt_Topology_6678.JPG

The C66x DSP provides two types of asynchronous signaling services: Interrupts and

Exceptions. Interrupts provide the means to redirect normal program flow due to the presence of

an external or internal hardware signal. Exceptions are similar in that they also redirect program

flow, but they are normally associated with error conditions in the system. The C66x DSP can

receive 12 maskable/configurable interrupts, 1 maskable exception, and 1 unmaskable

interrupt/exception. The C66x CorePac interrupt controller INTC allows up to 124 system events

to be routed to the DSP interrupt/exception inputs. These 124 events can either be directly

connected to the maskable interrupts, or grouped together as interrupts or exceptions. [2]

The figure below shows the CorePac INTC [2]. The 124 event IDs are represented by

EVT[127:4], and the 12 maskable/configurable interrupts are represented by INTC[15:4].

The 124 system events are stored in four 32-bit registers known as the Event Flag Registers and

each event is mapped to a specific flag bit. When a system event is received at INTC, the

corresponding Event Flag Register bit is set accordingly. Note that the Event Flag Registers are

read-only; the Event Set Register and Event Clear Register can be used to manually set or clear

any of the bits in the Event Flag Register. [2]

The Event Combiner allows multiple system events to be combined into a single event.

https://processors.wiki.ti.com/index.php/File:CorePac_Interrupt_Controller_Keystone.JPG

The figure below shows a logical representation of the Event Combiner in the Keystone

CorePac. The 124 system events are divided into 4 groups, as shown in the figure below. The

Event Combiner logic has the capability of grouping multiple event inputs to 4 possible event

outputs, EVT[3:0]. These outputs are then provided as inputs to the interrupt selector and treated

as additional system events. This is illustrated in the figure above [2]

The following diagram summarizes the key process flow for interrupt handling on Keystone

devices.

https://processors.wiki.ti.com/index.php/File:Interrupts_Event_Combiner.png

The figure below shows a high-level block diagram and identifies some key terminology that

should be kept in mind as we delve into the next section on software implementation and API

usage.

https://processors.wiki.ti.com/index.php/File:Interrupt_Processing.png
https://processors.wiki.ti.com/index.php/File:Interrupt_Topology_High-Level_Block_Diagram.png

Software Implementation

There are two primary software components that provide APIs that can be leveraged to configure

interrupts on Keystone devices. The Multicore Software Development Kit (MCSDK) contains

both software packages, viz. SYS/BIOS and Platform Development Kit (PDK), that enable

developers to program interrupts. MCSDK can be downloaded from the weblink provided in the

references at the end of this document. [4]

Programmers are free to use either approach though there are some general guidelines that can be

kept in mind when making a choice:

• If application developers plan to use SYS/BIOS RTOS on their device, then it is

recommended that they leverage the relevant SYS/BIOS Interrupt APIs to configure

interrupts, and use CSL APIs only where an equivalent function does not exist in the

SYS/BIOS APIs. However, here it is important to note that if application developers use

both SYS/BIOS and CSL APIs for the purpose of mapping interrupts and writing to the

Interrupt Service Table Pointer (ISTP), there will be conflicts since both CSL and

SYS/BIOS will assume that they own ISTP.

• If the system does not use the SYS/BIOS RTOS, then CSL APIs can be used to map and

configure interrupts.

Using CSL APIs

The specific module in the PDK that contains the relevant APIs for interrupt programming is the

Chip Support Library (CSL). CSL APIs for the CorePac Interrupt Controller aka INTC are of the

form CSL_intcxxx and for the Chip-level Interrupt Controller aka CIC are of the form

CSL_CPINTCxxx. We’ll first focus on configuring the CorePac’s INTC and later delve into APIs

for configuring CIC.

Configuring CorePac's INTC

The general CSL approach to interrupt mapping for INTC is as shown in the code snippet below.

In this example, event ID 63 is mapped to interrupt vector 4. If you'd like to change what event

triggers the interrupt, first lookup the event ID, which is listed in the device-specific data manual

(for 6678 this is listed in Table 7-38 in reference [3]). Once you have identified the event ID

(let's represent this by xx), modify the code snippet below to replace CSL_INTC_EVENTID_63

with CSL_INTC_EVENTID_xx as the second argument to the CSL_intcOpen function call.

Similary, if you'd like to change the interrupt vector from 4 to another vector id number (between

4 and 15), assign the new interrupt vector represented by xx as CSL_INTC_VECTID_xx to the

variable vectId in the code below.

{

 CSL_IntcObj intcObj63p;

 CSL_IntcGlobalEnableState state;

 CSL_IntcContext context;

 CSL_Status intStat;

 CSL_IntcParam vectId;

 context.numEvtEntries = 0;

 context.eventhandlerRecord = NULL;

 CSL_intcInit(&context);

 CSL_intcGlobalNmiEnable();

 intStat = CSL_intcGlobalEnable(&state);

 vectId = CSL_INTC_VECTID_4;

 hIntc63 = CSL_intcOpen (&intcObj63, CSL_INTC_EVENTID_63,

&vectId, NULL);

 EventRecord.handler = &event63Handler;

 EventRecord.arg = hIntc63;

 CSL_intcPlugEventHandler(hIntc63,&EventRecord);

 CSL_intcHwControl(hIntc63,CSL_INTC_CMD_EVTENABLE,NULL);

 CSL_IntcClose(hIntc63);

}

void event63Handler(CSL_IntcHandle hIntc){

 . . .

}

The CSL_IntcContext is the structure that is used to store the current INTC context and

incorporates four elements: the event handler record, the event allocation mask, the number of

event entries and an offset. The event handler record consists of the event handler, i.e. the ISR

function that will be invoked when a particular event occurs, and the corresponding argument

that will be passed to this ISR function. The number of event entries corresponds to the number

of events that the programmer plans to map. The event allocation mask consists of 4 arrays of

32-bit values, where each bit represents one of the 128 events. The offset map is an array of 128

elements that stores whether each of the 128 events has been mapped to a CPU interrupt or not,

and whether the event handler associated is valid or not.

In the next step in the example we enable global and NMI interrupts using the

CSL_intcGlobalEnable() and CSL_intcGlobalNmiEnable() APIs.

Mapping events to interrupts is achieved using the CSL_intcOpen(…) API. The API reserves an

interrupt-event for use and returns a valid handle to the event only if the event is not currently

allocated. In this example, we map event ID 63 to CPU Interrupt vector 4.

To define the ISR that should be run when this event occurs, we first update the event handler

record of the INTC context. In this example, we point the event handler to “test_isr_handler”,

which is the function we want executed when event 63 occurs. The

CSL_intcPlugEventHandler(…) API is then used to tie an event-handler to an event, so that

when the event occurs the relevant event-handler is invoked. The CSL_intcHwControl(…) API is

then used to enable the event, in this case event 63.

Finally the CSL_intcClose(…) API is called to de-allocate and release the event. Once this is

called the INTC handle can no longer be used to access the event; further accesses to event

resources are possible only on “opening” an event object again.

Configuring CIC

CSL APIs for configuring CIC are of the form CSL_CPINTC_xxx. The following code snippet

shows some typical CSL APIs and the general flow for CIC configuration.

/* Disable all host interrupts. */

CSL_CPINTC_disableAllHostInterrupt(hnd);

/* Configure no nesting support in the CPINTC Module. */

CSL_CPINTC_setNestingMode (hnd, CPINTC_NO_NESTING);

/* We now map System Interrupt 0 - 3 to channel 3 */

CSL_CPINTC_mapSystemIntrToChannel (hnd, 0 , 2);

CSL_CPINTC_mapSystemIntrToChannel (hnd, 1 , 4);

CSL_CPINTC_mapSystemIntrToChannel (hnd, 2 , 5);

CSL_CPINTC_mapSystemIntrToChannel (hnd, 3 , 3);

/* Enable system interrupts 0 - 3 */

CSL_CPINTC_enableSysInterrupt (hnd, 0);

CSL_CPINTC_enableSysInterrupt (hnd, 1);

CSL_CPINTC_enableSysInterrupt (hnd, 2);

CSL_CPINTC_enableSysInterrupt (hnd, 3);

/* Enable Host interrupt 3 */

CSL_CPINTC_enableHostInterrupt (hnd, 3);

/* Enable all host interrupts also. */

CSL_CPINTC_enableAllHostInterrupt(hnd);

The comments in the code snippet provide an explanation of what most of the code tries to

achieve. Note that the call to function CSL_CPINTC_setNestingMode, with second argument

CPINTC_NO_NESTING, configures "nesting" to be deactivated. The term "nesting" refers to a

method that enables developers to configure CIC such that when a current interrupt is being

serviced, certain specified interrupts are disabled. The typical usage is to nest on the current

interrupt and disable all interrupts of the same or lower priority (or channel). Nesting mode is not

supported in KeyStone devices. So the information is not in the user's guide and it is disabled in

the above code snippet and in CSL examples.

For a more detailed understanding of the CSL for CIC configuration, we encourage you to

download the MCSDK, and import and explore the Code Composer Studio project at the

MCSDK install path, under the folder 'pdk_C6678_x_x_x_xx\packages\ti\csl\example\cpintc'

For a more detailed understanding of CSL, including interrupt-related APIs, please see the API

documentation in the MCSDK install path on your computer at

'pdk_C6678_x_x_x_xx\packages\ti\csl\docs\csldocs.chm'

Example

With this example, we try to leverage what we have learned so far to setup an interrupt for

Hyperlink on TI's 6678 multicore device.

/*** --- INTC Initializations --- ***/

/* Note that hyplnk_EXAMPLE_COREPAC_VEC = 4,

hyplnk_EXAMPLE_COREPAC_INT_INPUT = 0x15, */

/* CSL_INTC_CMD_EVTCLEAR = 3, CSL_INTC_CMD_EVTENABLE = 0 */

CSL_IntcParam vectId = hyplnk_EXAMPLE_COREPAC_VEC;

Int16 eventId = hyplnk_EXAMPLE_COREPAC_INT_INPUT;

CSL_IntcGlobalEnableState state;

/* INTC module initialization */

hyplnkExampleIntcContext.eventhandlerRecord =

hyplnkExampleEvtHdlrRecord;

hyplnkExampleIntcContext.numEvtEntries = 2;

CSL_intcInit(&hyplnkExampleIntcContext);

/* Enable NMIs */

CSL_intcGlobalNmiEnable();

/* Enable global interrupts */

CSL_intcGlobalEnable(&state);

hyplnkExampleIntcHnd = CSL_intcOpen (&hyplnkExampleIntcObj,

eventId, &vectId, NULL);

hyplnkExampleEvtHdlrRecord[0].handler = hyplnkExampleIsr;

hyplnkExampleEvtHdlrRecord[0].arg = (void *)eventId;

CSL_intcPlugEventHandler(hyplnkExampleIntcHnd,

hyplnkExampleEvtHdlrRecord);

/* Clear the event in case it is pending */

CSL_intcHwControl(hyplnkExampleIntcHnd, CSL_INTC_CMD_EVTCLEAR,

NULL);

/* Enable event */

CSL_intcHwControl(hyplnkExampleIntcHnd, CSL_INTC_CMD_EVTENABLE,

NULL);

/*** --- CIC Initializations --- ***/

CSL_CPINTC_Handle hnd;

hnd = CSL_CPINTC_open (0);

/* Disable all host interrupts. */

CSL_CPINTC_disableAllHostInterrupt(hnd);

/* Configure no nesting support in the CPINTC Module */

CSL_CPINTC_setNestingMode (hnd, CPINTC_NO_NESTING);

/* Clear Hyperlink system interrupt number 111 */

/* We get the interrupt number from Table 7-39 in the 6678 */

/* data manual at http://www.ti.com/lit/ds/sprs691c/sprs691c.pdf

*/

CSL_CPINTC_clearSysInterrupt (hnd, CSL_INTC0_VUSR_INT_O);

/* Enable Hyperlink system interrupt number 111 on CIC0 */

CSL_CPINTC_enableSysInterrupt (hnd, CSL_INTC0_VUSR_INT_O);

/* Map System Interrupt to Channel. */

/* Note that hyplnk_EXAMPLE_INTC_OUTPUT = 32 + (11 * CoreNumber)

= 43 for Core0*/

CSL_CPINTC_mapSystemIntrToChannel (hnd, CSL_INTC0_VUSR_INT_O,

hyplnk_EXAMPLE_INTC_OUTPUT);

/* Enable the Host Interrupt */

CSL_CPINTC_enableHostInterrupt (hnd, hyplnk_EXAMPLE_INTC_OUTPUT);

CSL_CPINTC_enableAllHostInterrupt(hnd);

Note that in 6678 there is one-to-one mapping between host interrupt and channel, so we do not

need to use the CSL_CPINTC_mapChannelToHostInterrupt API

Using SYS/BIOS

SYS/BIOS is installed as part of the MCSDK installation. Three API modules within SYS/BIOS

are of particular interest for interrupt processing: HWI, EventCombiner and CpIntc. The HWI

module is used to configure the CorePac's INTC; the EventCombiner module is used to

configure the Event Combiner; and the CpIntc module is used to configure CIC to map system

interrupts to host interrupts. In this section we delve into each of these modules.

HWI

This module provides APIs for managing hardware interrupts. The ti.sysbios.family.c64p.Hwi

module provides APIs that implement HWI functions specific to the C64x+ and C66x devices.

The code snippet below shows an example of creating an HWI instance. In this example, event

ID 10 is mapped to interrupt vector 5. If you'd like to change what event triggers the interrupt,

first lookup the event ID, which is listed in the device-specific data manual (for 6678 this is

listed in Table 7-38 in reference [3]). Once you have identified the event ID modify the code

snippet below to assign the relevant HWI params element (hwiParams.eventId) to the new event

ID. If you'd like to change the interrupt vector from 5 to another vector id number (between 4

and 15), use the new interrupt vector number as the first argument to the Hwi_create function

call.

#include <xdc/runtime/Error.h>

#include <ti/sysbios/hal/Hwi.h>

Hwi_Handle myHwi;

Int main(Int argc, char* argv[])

{

 Hwi_Params hwiParams;

 Error_Block eb;

 Hwi_Params_init(&hwiParams);

 Error_init(&eb);

 // set the argument you want passed to your ISR function

 hwiParams.arg = 1;

 // set the event id of the peripheral assigned to this

interrupt

 hwiParams.eventId = 10;

 // don't allow this interrupt to nest itself

 hwiParams.maskSetting = Hwi_MaskingOption_SELF;

 //

 // Configure interrupt 5 to invoke "myIsr".

 // Automatically enables interrupt 5 by default

 // set params.enableInt = FALSE if you want to control

 // when the interrupt is enabled using Hwi_enableInterrupt()

 //

 myHwi = Hwi_create(5, myIsr, &hwiParams, &eb);

 if (Error_check(&eb)) {

 // handle the error

 }

}

Void myIsr(UArg arg)

{

 // this runs when interrupt #5 goes off

}

EventCombiner

The event combiner allows the user to combine up to 32 system events into a single combined

event. The events 0, 1, 2, and 3 are the events associated with the event combiner. Using the

EventCombiner module along with the Hwi module, allows the user to route a combined event to

any of the 12 maskable CPU interrupts available on GEM. The EventCombiner supports up to

128 system events. Users can specify a function and an argument for each system event and can

choose to enable whichever system events they want.

There are two ways you can setup EventCombiner. One way is to do this statically in your

RTSC configuration file (.cfg) in your CCS project. The other way is to do this in your C code.

Both methods are illustrated in the code snippets below.

Method 1: In .cfg file

This code snippet combines events 15 and 16, and uses interrupt vector 4

var EventCombiner =

xdc.useModule('ti.sysbios.family.c64p.EventCombiner');

EventCombiner.events[15].unmask = true;

EventCombiner.events[15].fxn = '&event15Fxn';

EventCombiner.events[15].arg = 0x15;

EventCombiner.events[16].unmask = true;

EventCombiner.events[16].fxn = '&event16Fxn';

EventCombiner.events[16].arg = 0x16;

Method 2: In C file

This code snippet combines events 4 and 5, and uses interrupt vector 8

eventId = 4;

EventCombiner_dispatchPlug(eventId, &event4Fxn, arg, TRUE);

EventCombiner_dispatchPlug(eventId + 1, &event5Fxn, arg, TRUE);

Hwi_Params_init(¶ms);

params.arg = (eventId / 32);

params.eventId = (eventId / 32);

params.enableInt = TRUE;

intVector = 8;

Hwi_create(intVector, &EventCombiner_dispatch, ¶ms, NULL);

CpIntc

This module manages the CIC hardware. This module supports enabling and disabling of both

system and host interrupts. This module also supports mapping system interrupts to host

interrupts and host interrupts to Hwis or to the EventCombiner. These functionality are supported

statically and during runtime for CICs connected to the GEM interrupt controller but only during

runtime for other CICs. There is a dispatch function for handling GEM hardware interrupts

triggered by a system interrupt. The Global Enable Register is enabled by default in the module

startup function.

System interrupts are those interrupts generated by a hardware module in the system. These

interrupts are inputs into CIC. Host interrupts are the output interrupts of CIC. There is a one-to-

one mapping between channels and host interrupts therefore, the term "host interrupt" is also

used for channels. Note that this modules does not support prioritization, nesting, and

vectorization.

The SYS/BIOS module that provides the CpIntc APIs is 'ti.sysbios.family.c66.tci66xx.CpIntc.'

The following code snippet provides an example implementation using CpIntc APIs. The

comments before each line of code explain what the code achieves.

// Map system interrupt 15 to host interrupt 8

CpIntc_mapSysIntToHostInt(0, 15, 8);

// Plug the function for event #15

CpIntc_dispatchPlug(15, &event15Fxn, 15, TRUE);

// Enable host interrupt #8

CpIntc_enableHostInt(0, 8); // enable host interrupt 8

Example

Here we put together our learning from this section and walk through a SYS/BIOS example.

/* Map the System Interrupt i.e. the Interrupt Destination 0

interrupt to the DIO ISR Handler. */

CpIntc_dispatchPlug(CSL_INTC0_INTDST0,

(CpIntc_FuncPtr)myDioTxCompletionIsr, (UArg)hSrioDrv, TRUE);

/* The configuration is for CPINTC0. We map system interrupt 112

to Host Interrupt 8. */

CpIntc_mapSysIntToHostInt(0, CSL_INTC0_INTDST0, 8);

/* Enable the Host Interrupt. */

CpIntc_enableHostInt(0, 8);

/* Enable the System Interrupt */

CpIntc_enableSysInt(0, CSL_INTC0_INTDST0);

/* Get the event id associated with the host interrupt. */

eventId = CpIntc_getEventId(8);

Hwi_Params_init(¶ms);

/* Host interrupt value*/

params.arg = 8;

/* Event id for your host interrupt */

params.eventId = eventId;

/* Enable the Hwi */

params.enableInt = TRUE;

/* This plugs the interrupt vector 4 and the ISR function. */

/* When using CpIntc, you must plug the Hwi fxn with

CpIntc_dispatch */

/* so it knows how to process the CpIntc interrupts.*/

Hwi_create(4, &CpIntc_dispatch, ¶ms, NULL);

Analyzing Interrupts in Code Composer

Studio

TI's Code Composer Studio provides the ability to view the device memory map and register

values as you step through your code.

Here we provide a GEL file with functions that you can use to analyze your interrupt use case.

To download the GEL file please click here

Please change the extension from .txt to .gel and load in CCS. If you are new to GEL files,

please see http://processors.wiki.ti.com/index.php/GEL

References

[1] CorePac User Guide http://www.ti.com/litv/pdf/sprugw0b

[2] CIC User Guide http://www.ti.com/litv/pdf/sprugw4a

[3] C6678 Data Manual http://www.ti.com/lit/ds/symlink/tms320c6678.pdf

[4] MCSDK Download Page http://www.ti.com/tool/bioslinuxmcsdk

[5] SYS/BIOS & HWI e2e Forum Post

http://e2e.ti.com/support/embedded/bios/f/355/t/94262.aspx

http://processors.wiki.ti.com/index.php/File:Shannon_Interrupts_v0.2.gel.zip
http://processors.wiki.ti.com/index.php/GEL
http://www.ti.com/litv/pdf/sprugw0b
http://www.ti.com/litv/pdf/sprugw4a
http://www.ti.com/lit/ds/symlink/tms320c6678.pdf
http://www.ti.com/tool/bioslinuxmcsdk
http://e2e.ti.com/support/embedded/bios/f/355/t/94262.aspx

[6] Nesting e2e Forum Post http://e2e.ti.com/support/dsp/c6000_multi-

core_dsps/f/639/t/189559.aspx

[7] CpIntc e2e Forum Post

http://e2e.ti.com/support/embedded/bios/f/355/p/203249/724263.aspx#724263

Retrieved from

"https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&

oldid=121920"

Navigation menu

Personal tools

• Log in

• Request account

Namespaces

• Page

• Discussion

Variants

Views

• Read

• View source

• View history

More

Search

Search Go

Navigation

• Main Page

• All pages

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/189559.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/189559.aspx
http://e2e.ti.com/support/embedded/bios/f/355/p/203249/724263.aspx#724263
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&oldid=121920
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&oldid=121920
https://processors.wiki.ti.com/index.php?title=Special:UserLogin&returnto=Configuring+Interrupts+on+Keystone+Devices
https://processors.wiki.ti.com/index.php/Special:RequestAccount
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Talk:Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&action=edit
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&action=history
https://processors.wiki.ti.com/index.php/Main_Page
https://processors.wiki.ti.com/index.php/Special:AllPages

• All categories

• Recent changes

• Random page

• Help

Toolbox

• What links here

• Related changes

• Special pages

• Printable version

• Permanent link

• Page information

• This page was last edited on 27 September 2012, at 19:50.

• Content is available under Creative Commons Attribution-ShareAlike unless otherwise

noted.

• Privacy policy

• About Texas Instruments Wiki

• Disclaimers

• Terms of Use

•

•

https://processors.wiki.ti.com/index.php/Special:Categories
https://processors.wiki.ti.com/index.php/Special:RecentChanges
https://processors.wiki.ti.com/index.php/Special:Random
https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents
https://processors.wiki.ti.com/index.php/Special:WhatLinksHere/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Special:RecentChangesLinked/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Special:SpecialPages
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&printable=yes
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&oldid=121920
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&action=info
http://creativecommons.org/licenses/by-sa/3.0/
https://processors.wiki.ti.com/index.php/Project:Privacy_policy
https://processors.wiki.ti.com/index.php/Project:About
https://processors.wiki.ti.com/index.php/Project:General_disclaimer
https://processors.wiki.ti.com/index.php/Project:Terms_of_Service
http://creativecommons.org/licenses/by-sa/3.0/
https://www.mediawiki.org/

