Configuring Interrupts on Keystone Devices

From Texas Instruments Wiki
Jump to: navigation, search

Contents

1 Objective
2 Key Concepts

3 Software Implementation
o 3.1 Using CSL APIs
= 3.1.1 Configuring CorePac's INTC
= 3.1.2 Configuring CIC

= 3.1.3 Example
o 3.2 Using SYS/BIOS

« 3.2.2 EventCombiner
= 3.2.3 Cpintc

= 3.2.4 Example
4 Analyzing Interrupts in Code Composer Studio

5 References

Objective

The objective of this wiki page is to introduce the reader to interrupts and their software setup
and debugging on Keystone devices, using TI's TMS320C6678 device as an example.

The first part consolidates some key concepts on the interrupt controller, drawn from the relevant
user guides. The second part discusses the software implementation and delves into the two
primary approaches for interrupt setup.

Key Concepts

The KeyStone Architecture has many peripherals and a large number of event sources. The use
of events is completely dependent on a user's specific application, which drives the need for
maximum flexibility; how interrupts or events are serviced is completely up to software control.
Both the EDMAS channel controllers (EDMAS3CC) and the C66x CorePacs are capable of
receiving events directly. However, the number of accepted events for each EDMAS3CC and
C66x CorePac is limited. [1]

https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#mw-head
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#p-search
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Objective
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Key_Concepts
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Software_Implementation
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Using_CSL_APIs
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Configuring_CorePac.27s_INTC
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Configuring_CIC
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Example
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Using_SYS.2FBIOS
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#HWI
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#EventCombiner
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#CpIntc
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Example_2
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#Analyzing_Interrupts_in_Code_Composer_Studio
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices#References

A KeyStone device can have hundreds of events. Therefore, some of these events need to be
aggregated at the chip level through the Chip-level Interrupt Controller (also known as CIC or
Cpintc), before they are routed to the EDMA3CC and C66x CorePacs. It is important to note
here, that CIC/Cplntc is different from the Interrupt Controller inside a C66x CorePac, which is
denoted by the acronym INTC. To achieve the aggregation, multiple CICs are added to the SoC.
The CIC takes chip-level events (system events) and generates host interrupts which act as event
inputs to the EDMAS3CC and C66x CorePac by combining and/or selecting those chip-level
events. [1]

The figure below shows the 6678 interrupt topology along with the CICs and interrupt routing
[3]. For more information on how the CIC operates internally please see the CIC user guide as
indicated in reference [2].

@ 8 Reserved Secondary Events sl

emmm 89 Core-only Secondary Events *

63 Common Events mjie-

emmm 8 Reserved Secondary Events sl
e 89 Core-only Secondary Events s

63 Common Events e

63 Common Events s
w9 Reserved Secondary Events sl

88 EDMA3CC-only
— e econddiry Evenis =l

e 17 Reserved Secondary Events s

63 Events *

CICo

e G5 Primary Events »

e 17 Secondary Events ﬁ

emmm 5 Reserved Primary Events *

emmmm 98 Primary Events #

e 17 Secondary Events ﬁ

e 5 Reserved Primary Events sl

e 98 Primary Events sl

e 17 Secondary Events é

= 5 Reserved Primary Events »

e 08 Primary Events #

e 17 Secondary Events ﬁ

s 5 Reserved Primary Events sl

Core0

Core1

Core2

Core3

t t t 1

mm——— 8 Broadcast Events from CICO

CIC1

emmmm 98 Primary Events #

e 17 Secondary Events ﬁ

e 5 Reserved Primary Events sl

s 98 Primary Events #

p— 17 Secondary Events mm—

== 5 Reserved Primary Events *

e 98 Primary Events #

e 17 Secondary Events ﬁ

= 5 Reserved Primary Events *

e 03 Primary Events #

e 17 Secondary Events ﬁ

= 5 Reserved Primary Events *
e § Broadcast Events from CIC1

Cored

Core5

Coreb

Core7

t t t 1

Cic2

e 38 Primary Events #

e 26 Secondary Events ﬁ

s () Primary Events sl

| e—4 Secondary Events se—

CIC3

e 32 Primary Events #

e 32 Secondary Events ﬁ
e 8 Primary Events q

L — 8 Secondary Events ﬁ

EDMA3
CC1

EDMA3
cc2

HyperLink

EDMA3
cco

https://processors.wiki.ti.com/index.php/File:Interrupt_Topology_6678.JPG

The C66x DSP provides two types of asynchronous signaling services: Interrupts and
Exceptions. Interrupts provide the means to redirect normal program flow due to the presence of
an external or internal hardware signal. Exceptions are similar in that they also redirect program
flow, but they are normally associated with error conditions in the system. The C66x DSP can
receive 12 maskable/configurable interrupts, 1 maskable exception, and 1 unmaskable
interrupt/exception. The C66x CorePac interrupt controller INTC allows up to 124 system events
to be routed to the DSP interrupt/exception inputs. These 124 events can either be directly
connected to the maskable interrupts, or grouped together as interrupts or exceptions. [2]

The figure below shows the CorePac INTC [2]. The 124 event IDs are represented by
EVT[127:4], and the 12 maskable/configurable interrupts are represented by INTC[15:4].

The 124 system events are stored in four 32-bit registers known as the Event Flag Registers and
each event is mapped to a specific flag bit. When a system event is received at INTC, the
corresponding Event Flag Register bit is set accordingly. Note that the Event Flag Registers are
read-only; the Event Set Register and Event Clear Register can be used to manually set or clear
any of the bits in the Event Flag Register. [2]

The Event Combiner allows multiple system events to be combined into a single event.

RESET

NMEVT

EVT[127:4]

T

INTERR

Interrupt controller

A 4

I—' Exception

Y

’ »{ combiner

Event
flags

l ¢—>] Event
»{ combiner

EVT[3:0]

Interrupt
selector

IDROP

mask

A 4

i AEG event
2 selector

a2 A A

Y

CPU
RESET

EXCEP
NMI
IACK

INUM[4:0]

INT[15:4]

IDROP[15:4]

AEG
(Advanced
Event
Generator)

https://processors.wiki.ti.com/index.php/File:CorePac_Interrupt_Controller_Keystone.JPG

The figure below shows a logical representation of the Event Combiner in the Keystone
CorePac. The 124 system events are divided into 4 groups, as shown in the figure below. The
Event Combiner logic has the capability of grouping multiple event inputs to 4 possible event
outputs, EVT[3:0]. These outputs are then provided as inputs to the interrupt selector and treated
as additional system events. This is illustrated in the figure above [2]

EVT MASK MEVT FLAG

EVT4 4
see EMix MEFxx

EVT31 H
EVT32 H
cee EMicx MEFxx

EVTG3
EVTG4
e e EMixcx MEFxx
EVTa5 H
EVTI6
sew EMxxox MEFxxx

EVT127 A

- EVTO

- EVT1

- EVT2

- EVT3

VUV

The following diagram summarizes the key process flow for interrupt handling on Keystone
devices.

https://processors.wiki.ti.com/index.php/File:Interrupts_Event_Combiner.png

4
combined
events

Event
Combiner

L 4

BRI

h

v

1-to-1
channel to 128
host Gem
interrupts Events
w8 | wre [14 :
System Host .
Interrupts Interrupts i
channels "
_. ememe=== r LY - >
(S i m——— |
W peemsaoaay === >
b - —— - - - — &
—'%
— >
_

The figure below shows a high-level block diagram and identifies some key terminology that
should be kept in mind as we delve into the next section on software implementation and API

3

solf

usage.
System Host Event CPU
Interrupt Interrupt D Interrupt Vector
—_— > >
CIC Chip-level Interrupt Controller

INTC

CorePac Interrupt Controller

System Interrupt

Input to CIC

Host Interrupt

Output from CIC

Event ID

Input to INTC

CPU Interrupt Vector

Output from INTC

v

https://processors.wiki.ti.com/index.php/File:Interrupt_Processing.png
https://processors.wiki.ti.com/index.php/File:Interrupt_Topology_High-Level_Block_Diagram.png

Software Implementation

There are two primary software components that provide APIs that can be leveraged to configure
interrupts on Keystone devices. The Multicore Software Development Kit (MCSDK) contains
both software packages, viz. SYS/BIOS and Platform Development Kit (PDK), that enable
developers to program interrupts. MCSDK can be downloaded from the weblink provided in the
references at the end of this document. [4]

Programmers are free to use either approach though there are some general guidelines that can be
kept in mind when making a choice:

o If application developers plan to use SYS/BIOS RTOS on their device, then it is
recommended that they leverage the relevant SYS/BIOS Interrupt APIs to configure
interrupts, and use CSL APIs only where an equivalent function does not exist in the
SYS/BIOS APIs. However, here it is important to note that if application developers use
both SYS/BIOS and CSL APIs for the purpose of mapping interrupts and writing to the
Interrupt Service Table Pointer (ISTP), there will be conflicts since both CSL and
SYS/BIOS will assume that they own ISTP.

o If the system does not use the SYS/BIOS RTQOS, then CSL APIs can be used to map and
configure interrupts.

Using CSL APlIs

The specific module in the PDK that contains the relevant APIs for interrupt programming is the
Chip Support Library (CSL). CSL APIs for the CorePac Interrupt Controller aka INTC are of the
form CSL_intcxxx and for the Chip-level Interrupt Controller aka CIC are of the form
CSL_CPINTCxxx. We’ll first focus on configuring the CorePac’s INTC and later delve into APIs
for configuring CIC.

Configuring CorePac's INTC

The general CSL approach to interrupt mapping for INTC is as shown in the code snippet below.
In this example, event ID 63 is mapped to interrupt vector 4. If you'd like to change what event
triggers the interrupt, first lookup the event 1D, which is listed in the device-specific data manual
(for 6678 this is listed in Table 7-38 in reference [3]). Once you have identified the event ID
(let's represent this by xx), modify the code snippet below to replace CSL_INTC_EVENTID_63
with CSL_INTC_EVENTID_xx as the second argument to the CSL_intcOpen function call.
Similary, if you'd like to change the interrupt vector from 4 to another vector id number (between
4 and 15), assign the new interrupt vector represented by xx as CSL_INTC_VECTID_xx to the
variable vectld in the code below.

{
CSL _IntcObj intcObj63p;
CSL IntcGlobalEnableState state;

CSL IntcContext context;

CSL_Status intStat;
CSL IntcParam vectId;

context.numEvtEntries = 0;
context.eventhandlerRecord = NULL;

CSL_intcInit (&context);

CSL_intcGlobalNmiEnable () ;
intStat = CSL_intcGlobalEnable (&state);

vectId = CSL INTC VECTID 4;
hIntc63 = CSL intcOpen (&intcObj63, CSL INTC EVENTID 63,
svectId, NULL);

EventRecord.handler = &evento63Handler;
EventRecord.arg = hIntc63;

CSL_intcPlugEventHandler (hIntc63, &EventRecord) ;
CSL intcHwControl (hIntc63,CSL INTC CMD EVTENABLE,NULL) ;

CSL IntcClose (hIntc63);
}

void event63Handler (CSL IntcHandle hlIntc) {

}

The CSL_IntcContext is the structure that is used to store the current INTC context and
incorporates four elements: the event handler record, the event allocation mask, the number of
event entries and an offset. The event handler record consists of the event handler, i.e. the ISR
function that will be invoked when a particular event occurs, and the corresponding argument
that will be passed to this ISR function. The number of event entries corresponds to the number

of events that the programmer plans to map. The event allocation mask consists of 4 arrays of
32-bit values, where each bit represents one of the 128 events. The offset map is an array of 128
elements that stores whether each of the 128 events has been mapped to a CPU interrupt or not,
and whether the event handler associated is valid or not.

In the next step in the example we enable global and NMI interrupts using the
CSL_intcGlobalEnable() and CSL_intcGlobalNmiEnable() APIs.

Mapping events to interrupts is achieved using the CSL_intcOpen(...) APl. The API reserves an
interrupt-event for use and returns a valid handle to the event only if the event is not currently
allocated. In this example, we map event ID 63 to CPU Interrupt vector 4.

To define the ISR that should be run when this event occurs, we first update the event handler
record of the INTC context. In this example, we point the event handler to “test isr_handler”,
which is the function we want executed when event 63 occurs. The
CSL_intcPlugEventHandler(...) API is then used to tie an event-handler to an event, so that
when the event occurs the relevant event-handler is invoked. The CSL intcHwControl(...) APl is
then used to enable the event, in this case event 63.

Finally the CSL intcClose(...) APl is called to de-allocate and release the event. Once this is
called the INTC handle can no longer be used to access the event; further accesses to event
resources are possible only on “opening” an event object again.

Configuring CIC

CSL APIs for configuring CIC are of the form CSL_CPINTC_xxx. The following code snippet
shows some typical CSL APIs and the general flow for CIC configuration.

/* Disable all host interrupts. */
CSL _CPINTC disableAllHostInterrupt (hnd);

/* Configure no nesting support in the CPINTC Module. */
CSL_CPINTC setNestingMode (hnd, CPINTC NO NESTING) ;

/* We now map System Interrupt 0O - 3 to channel 3 */

CSL_CPINTC mapSystemIntrToChannel (hnd, 0 , 2);
CSL CPINTC mapSystemIntrToChannel (hnd, 1 , 4);
CSL_CPINTC mapSystemIntrToChannel (hnd, 2 , 5);
CSL _CPINTC mapSystemIntrToChannel (hnd, 3 , 3);

/* Enable system interrupts 0 - 3 */
CSL CPINTC enableSysInterrupt (hnd,

CSL CPINTC enableSysInterrupt (hnd,
CSL CPINTC enableSysInterrupt (hnd,
CSL CPINTC enableSysInterrupt (hnd,

w NP O
Ne Ne Ne .

/* Enable Host interrupt 3 */
CSL CPINTC enableHostInterrupt (hnd, 3);

/* Enable all host interrupts also. */

CSL_CPINTC enableAllHostInterrupt (hnd);

The comments in the code snippet provide an explanation of what most of the code tries to
achieve. Note that the call to function CSL_CPINTC_setNestingMode, with second argument
CPINTC_NO_NESTING, configures "nesting" to be deactivated. The term "nesting" refers to a
method that enables developers to configure CIC such that when a current interrupt is being
serviced, certain specified interrupts are disabled. The typical usage is to nest on the current
interrupt and disable all interrupts of the same or lower priority (or channel). Nesting mode is not
supported in KeyStone devices. So the information is not in the user's guide and it is disabled in
the above code snippet and in CSL examples.

For a more detailed understanding of the CSL for CIC configuration, we encourage you to
download the MCSDK, and import and explore the Code Composer Studio project at the
MCSDK install path, under the folder 'pdk_C6678_x_x_x_xx\packages\ti\csl\example\cpintc'

For a more detailed understanding of CSL, including interrupt-related APIs, please see the API
documentation in the MCSDK install path on your computer at
'pdk_C6678_x_x_x_xx\packages\ti\csl\docs\csldocs.chm’

Example

With this example, we try to leverage what we have learned so far to setup an interrupt for
Hyperlink on TI's 6678 multicore device.

/*** ——— INTC Initializations —-—-- ***/

/* Note that hyplnk EXAMPLE COREPAC VEC = 4,
hyplnk EXAMPLE COREPAC_INT INPUT = 0x15, */
/* CSL_INTC_CMD EVTCLEAR = 3, CSL INTC CMD EVTENABLE = 0 */

CSL IntcParam vectId = hyplnk EXAMPLE COREPAC VEC;
Intl6 eventId = hyplnk EXAMPLE COREPAC INT INPUT;
CSL IntcGlobalEnableState state;

/* INTC module initialization */
hyplnkExampleIntcContext.eventhandlerRecord =
hyplnkExampleEvtHdlrRecord;
hyplnkExampleIntcContext.numEvtEntries = 23
CSL intcInit (&hyplnkExampleIntcContext);

/* Enable NMIs */
CSL_intcGlobalNmiEnable () ;

/* Enable global interrupts */
CSL _intcGlobalEnable (&state);

hyplnkExampleIntcHnd = CSL intcOpen (&hyplnkExampleIntcObj,
eventlId, &vectId, NULL);
hyplnkExampleEvtHdlrRecord[0O] .handler = hyplnkExampleIsr;
hyplnkExampleEvtHdlrRecord[0] .arg = (void *)eventId;

CSL_intcPlugEventHandler (hyplnkExampleIntcHnd,
hyplnkExampleEvtHdlrRecord) ;

/* Clear the event in case it is pending */
CSL_intcHwControl (hyplnkExampleIntcHnd, CSL INTC CMD EVTCLEAR,
NULL) ;

/* Enable event */
CSL_intcHwControl (hyplnkExampleIntcHnd, CSL_ INTC CMD EVTENABLE,
NULL) ;

/*** ——— CIC Initializations —-—-- ***/

CSL_CPINTC Handle hnd;
hnd = CSL _CPINTC open (0);

/* Disable all host interrupts. */
CSL _CPINTC disableAllHostInterrupt (hnd);

/* Configure no nesting support in the CPINTC Module */
CSL_CPINTC setNestingMode (hnd, CPINTC NO NESTING) ;

/* Clear Hyperlink system interrupt number 111 */

/* We get the interrupt number from Table 7-39 in the 6678 */

/* data manual at http://www.ti.com/lit/ds/sprs69lc/sprs69lc.pdf
*/

CSL _CPINTC clearSysInterrupt (hnd, CSL _INTCO VUSR _ INT O);

/* Enable Hyperlink system interrupt number 111 on CICO */
CSL_CPINTC enableSysInterrupt (hnd, CSL INTCO VUSR INT O);

/* Map System Interrupt to Channel. */

/* Note that hyplnk EXAMPLE INTC OUTPUT = 32 + (11 * CoreNumber)
= 43 for Core0*/

CSL_CPINTC mapSystemIntrToChannel (hnd, CSL_ INTCO VUSR INT O,
hyplnk EXAMPLE INTC OUTPUT) ;

/* Enable the Host Interrupt */
CSL CPINTC enableHostInterrupt (hnd, hyplnk EXAMPLE INTC OUTPUT) ;

CSL CPINTC enableAllHostInterrupt (hnd);

Note that in 6678 there is one-to-one mapping between host interrupt and channel, so we do not
need to use the CSL_CPINTC_mapChannelToHostInterrupt API

Using SYS/BIOS

SYS/BIOS is installed as part of the MCSDK installation. Three APl modules within SYS/BIOS
are of particular interest for interrupt processing: HWI, EventCombiner and Cpintc. The HWI
module is used to configure the CorePac's INTC; the EventCombiner module is used to
configure the Event Combiner; and the Cplntc module is used to configure CIC to map system
interrupts to host interrupts. In this section we delve into each of these modules.

HWI

This module provides APIs for managing hardware interrupts. The ti.syshios.family.c64p.Hwi
module provides APIs that implement HWI functions specific to the C64x+ and C66x devices.

The code snippet below shows an example of creating an HWI instance. In this example, event
ID 10 is mapped to interrupt vector 5. If you'd like to change what event triggers the interrupt,
first lookup the event ID, which is listed in the device-specific data manual (for 6678 this is
listed in Table 7-38 in reference [3]). Once you have identified the event ID modify the code
snippet below to assign the relevant HWI params element (hwiParams.eventld) to the new event
ID. If you'd like to change the interrupt vector from 5 to another vector id number (between 4
and 15), use the new interrupt vector number as the first argument to the Hwi_create function

call.

#include <xdc/runtime/Error.h>
#include <ti/sysbios/hal/Hwi.h>

Hwi Handle myHwi;

Int main(Int argc, char* argvl[])

{

Hwi Params hwiParams;
Error Block eb;

Hwi Params_init (&hwiParams) ;
Error init (&eb);

// set the argument you want passed to your ISR function
hwiParams.arg = 1;

// set the event id of the peripheral assigned to this

interrupt

}

hwiParams.eventId = 10;

// don't allow this interrupt to nest itself
hwiParams.maskSetting = Hwi MaskingOption SELF;

// Configure interrupt 5 to invoke "myIsr".

// Automatically enables interrupt 5 by default

// set params.enableInt = FALSE if you want to control

// when the interrupt is enabled using Hwi enablelInterrupt ()

myHwi = Hwi create(5, myIsr, &hwiParams, é&eb);
if (Error check(&eb)) {

// handle the error
}

Void myIsr (UArg arg)

// this runs when interrupt #5 goes off

EventCombiner

The event combiner allows the user to combine up to 32 system events into a single combined
event. The events 0, 1, 2, and 3 are the events associated with the event combiner. Using the
EventCombiner module along with the Hwi module, allows the user to route a combined event to
any of the 12 maskable CPU interrupts available on GEM. The EventCombiner supports up to
128 system events. Users can specify a function and an argument for each system event and can
choose to enable whichever system events they want.

There are two ways you can setup EventCombiner. One way is to do this statically in your
RTSC configuration file (.cfg) in your CCS project. The other way is to do this in your C code.
Both methods are illustrated in the code snippets below.

Method 1: In .cfg file
This code snippet combines events 15 and 16, and uses interrupt vector 4

var EventCombiner =
xdc.useModule ('ti.sysbios.family.c64p.EventCombiner') ;
EventCombiner.events[15] .unmask = true;

EventCombiner.events[15].fxn = '&eventl5Fxn';
EventCombiner.events[15] .arg = 0x15;
EventCombiner.events[16] .unmask = true;
EventCombiner.events[1l6].fxn = '&eventloFxn';
EventCombiner.events[l6].arg = 0x16;

Method 2: In C file
This code snippet combines events 4 and 5, and uses interrupt vector 8

eventId = 4;
EventCombiner dispatchPlug(eventld, &eventd4Fxn, arg, TRUE);
EventCombiner dispatchPlug(eventId + 1, &eventbFxn, arg, TRUE);

Hwi Params_init (¶ms);
params.arg = (eventId / 32);
params.eventId = (eventId / 32);
params.enableInt = TRUE;

intVector = 8;

Hwi create(intVector, &EventCombiner dispatch, ¶ms, NULL);

Cplintc

This module manages the CIC hardware. This module supports enabling and disabling of both
system and host interrupts. This module also supports mapping system interrupts to host
interrupts and host interrupts to Hwis or to the EventCombiner. These functionality are supported
statically and during runtime for CICs connected to the GEM interrupt controller but only during
runtime for other CICs. There is a dispatch function for handling GEM hardware interrupts
triggered by a system interrupt. The Global Enable Register is enabled by default in the module
startup function.

System interrupts are those interrupts generated by a hardware module in the system. These
interrupts are inputs into CIC. Host interrupts are the output interrupts of CIC. There is a one-to-
one mapping between channels and host interrupts therefore, the term "host interrupt” is also
used for channels. Note that this modules does not support prioritization, nesting, and
vectorization.

The SYS/BIOS module that provides the Cplintc APIs is 'ti.sysbios.family.c66.tci66xx.Cplntc.’

The following code snippet provides an example implementation using Cplintc APIs. The
comments before each line of code explain what the code achieves.

// Map system interrupt 15 to host interrupt 8
CpIntc mapSysIntToHostInt (0, 15, 8);

// Plug the function for event #15
CpIntc_dispatchPlug (15, &eventlbFxn, 15, TRUE);

// Enable host interrupt #8
CpIntc_enableHostInt (0, 8); // enable host interrupt 8

Example

Here we put together our learning from this section and walk through a SYS/BIOS example.

/* Map the System Interrupt i.e. the Interrupt Destination 0
interrupt to the DIO ISR Handler. */

CpIntc dispatchPlug (CSL INTCO INTDSTO,

(CpIntc_ FuncPtr)myDioTxCompletionIsr, (UArg)hSrioDrv, TRUE);

/* The configuration is for CPINTCO. We map system interrupt 112
to Host Interrupt 8. */
CpIntc mapSysIntToHostInt (0, CSL INTCO INTDSTO, 8);

/* Enable the Host Interrupt. */
CpIntc enableHostInt (0, 8);

/* Enable the System Interrupt */
CpIntc _enableSysInt (0, CSL INTCO INTDSTO) ;

/* Get the event id associated with the host interrupt. */
eventId = CpIntc getEventId(8);

Hwi Params init (¶ms);

/* Host interrupt value*/
params.arg = 8;

/* Event id for your host interrupt */
params.eventId = eventId;

/* Enable the Hwi */
params.enableInt = TRUE;

/* This plugs the interrupt vector 4 and the ISR function. */
/* When using CpIntc, you must plug the Hwi fxn with
CpIntc_dispatch */

/* so it knows how to process the CpIntc interrupts.*/

Hwi create (4, &CpIntc dispatch, ¶ms, NULL);

Analyzing Interrupts in Code Composer
Studio

TI's Code Composer Studio provides the ability to view the device memory map and register
values as you step through your code.

Here we provide a GEL file with functions that you can use to analyze your interrupt use case.
To download the GEL file please click here

Please change the extension from .txt to .gel and load in CCS. If you are new to GEL files,
please see http://processors.wiki.ti.com/index.php/GEL

References

[1] CorePac User Guide http://www.ti.com/litv/pdf/sprugwOb

[2] CIC User Guide http://www.ti.com/litv/pdf/sprugw4a

[3] C6678 Data Manual http://www.ti.com/lit/ds/symlink/tms320c6678.pdf

[4] MCSDK Download Page http://www.ti.com/tool/bioslinuxmcsdk

[5] SYS/BIOS & HWI e2e Forum Post
http://e2e.ti.com/support/embedded/bios/f/355/t/94262.aspx

http://processors.wiki.ti.com/index.php/File:Shannon_Interrupts_v0.2.gel.zip
http://processors.wiki.ti.com/index.php/GEL
http://www.ti.com/litv/pdf/sprugw0b
http://www.ti.com/litv/pdf/sprugw4a
http://www.ti.com/lit/ds/symlink/tms320c6678.pdf
http://www.ti.com/tool/bioslinuxmcsdk
http://e2e.ti.com/support/embedded/bios/f/355/t/94262.aspx

[6] Nesting e2e Forum Post http://e2e.ti.com/support/dsp/c6000_multi-
core_dsps/f/639/t/189559.aspx

[7] Cplntc e2e Forum Post
http://e2e.ti.com/support/embedded/bios/f/355/p/203249/724263.aspx# 724263

Retrieved from
"https://processors.wiki.ti.com/index.php?title=Configuring Interrupts on Keystone Devices&
oldid=121920"

Navigation menu
Personal tools

e Login
¢ Request account

Namespaces

o Page
o Discussion

=
Variants

Views

e Read
o View source

e View history

-
More

Search

Search | Go

Navigation

e Main Page
e All pages

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/189559.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/189559.aspx
http://e2e.ti.com/support/embedded/bios/f/355/p/203249/724263.aspx#724263
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&oldid=121920
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&oldid=121920
https://processors.wiki.ti.com/index.php?title=Special:UserLogin&returnto=Configuring+Interrupts+on+Keystone+Devices
https://processors.wiki.ti.com/index.php/Special:RequestAccount
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Talk:Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&action=edit
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&action=history
https://processors.wiki.ti.com/index.php/Main_Page
https://processors.wiki.ti.com/index.php/Special:AllPages

o All categories
« Recent changes

e Random page

° Help
Toolbox

e What links here
o Related changes
e Special pages

e Printable version
e Permanent link

o Page information

o This page was last edited on 27 September 2012, at 19:50.
o Content is available under Creative Commons Attribution-ShareAlike unless otherwise

noted.
e Privacy policy

e About Texas Instruments Wiki
o Disclaimers
e Terms of Use

[E®] Mediawia

https://processors.wiki.ti.com/index.php/Special:Categories
https://processors.wiki.ti.com/index.php/Special:RecentChanges
https://processors.wiki.ti.com/index.php/Special:Random
https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents
https://processors.wiki.ti.com/index.php/Special:WhatLinksHere/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Special:RecentChangesLinked/Configuring_Interrupts_on_Keystone_Devices
https://processors.wiki.ti.com/index.php/Special:SpecialPages
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&printable=yes
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&oldid=121920
https://processors.wiki.ti.com/index.php?title=Configuring_Interrupts_on_Keystone_Devices&action=info
http://creativecommons.org/licenses/by-sa/3.0/
https://processors.wiki.ti.com/index.php/Project:Privacy_policy
https://processors.wiki.ti.com/index.php/Project:About
https://processors.wiki.ti.com/index.php/Project:General_disclaimer
https://processors.wiki.ti.com/index.php/Project:Terms_of_Service
http://creativecommons.org/licenses/by-sa/3.0/
https://www.mediawiki.org/

