
LoggerIdle Uart

From Texas Instruments Wiki

Jump to: navigation, search

Contents

 [hide]

• 1 Introduction

• 2 LoggerIdle

• 3 LoggerIdle Example

o 3.1 Example Configuration

o 3.2 Example Transport Function

o 3.3 Example Task

o 3.4 Example Exception Hook Function

o 3.5 Example Output

o 3.6 Example Source Code

• 4 Using a Newer UIA Product with your CCS Project

Introduction[edit]

Unified Instrumetation Architecture (UIA) provides target-side APIs and transports for

capturing events and uploading them to a host program, such as Code Composer Studio's

(CCS) System Analyzer. In some cases, it may not be possible to have CCS connected to

the target, but we would still like to see Log data displayed on a host computer. In this

article, we will show how to use UIA's LoggerIdle logger to capture Log data from the

target and send it to the UART, where it can be viewed on the host computer in a serial

port console window. The example we give will run for awhile, logging data to the

UART, and then cause a divide-by-zero exception. The exception handler will then dump

the remaining Log data in the LoggerIdle buffer to the UART.

The advantage of using LoggerIdle, is that we can format the Log data during idle time

instead of during the Log_write call. We could have used xdc.runtime.LoggerSys which

formats the Log data, together with xdc.runtime.SysMin. We would then provide an

output function for SysMin which writes the data to the UART. However, we would need

to call System_flush() to call our output function, and System_flush() disables interrupts.

Since the output function should poll on UART writes instead of blocking (since we don't

know from what context System_flush() would be called), interrupts could be disabled

for a very long time.

LoggerIdle[edit]

https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#mw-head
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#p-search
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Introduction
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#LoggerIdle
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#LoggerIdle_Example
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Example_Configuration
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Example_Transport_Function
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Example_Task
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Example_Exception_Hook_Function
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Example_Output
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Example_Source_Code
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart#Using_a_Newer_UIA_Product_with_your_CCS_Project
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=1
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=2

UIA's LoggerIdle is a logger that processes log events as they are generated, stores them

in a buffer and during idle time, sends a section of the buffer to a user configured

transport function.

LoggerIdle internally handles the wrapping of the buffer where the Log events are

written, making it a "circular" buffer. A write pointer indicates the location in the buffer

where the next Log event can be written, and a read pointer indicates the location of the

next Log event to be sent to the user's transport function. Log write calls cause the write

pointer to advance, and when Log data is passed to the user's transport function in the idle

loop, the read pointer advances. If the read pointer catches up the the write pointer, the

buffer is 'empty', and if the write pointer catches up the the read pointer, the buffer is full.

The LoggerIdle buffer will fill up, if the idle function to output the Log data cannot keep

up with the Log writes. LoggerIdle has a Boolean configuration parameter that controls

the behavior of Log writes when the buffer fills.

• Do not allow further writes to the LoggerIdle buffer when it is full.

• Adjust the LoggerIdle read pointer until there is space for the event to be written.

There are advantages and disadvantages of each of these options, but one may be

preferable over the other, depending on the situation. If we don't allow Log writes when

the buffer is full, any Log writes made while the buffer is full will be lost. However, this

may not be an issue if the user's transport function runs frequently enough. There is also

some overhead in allowing Log writes when the buffer is full. Since Log event sizes vary,

there is overhead in determining how much the read pointer must be adjusted to fit the

new Log event. In addition, only one event at a time can be output to the user's transport

function. The following table summarizes the advantages of each configuration, and

when you might want to use it.

Allow

writes

when

full

Advantages When to use

true
Always get the

most recent Log

data

Use when you want the

most recent Log data,

for example to

analyze a system

crash

false

Less overhead in

getting Log data

to the transport

function

Idle time is

sufficient to get the

Log data out

For our example, we will enable Log writes when the LoggerIdle buffer is full, since we

want to see the most recent Log data up to the exception on the target.

LoggerIdle Example[edit]

We provide an example here for the Stellaris LM4F232 device, that illustrates how to

send formatted Log events to the UART, and how to configure a SYS/BIOS exception

hook function. Note that the exception handling mechanisms are only available for some

targets (e.g., Cortex M3 and M4).

Our example will also route System_printf()'s to the UART. The System_printf()

messages will only be seen after a call to System_flush(), an operation that should be

used sparingly, as interrupts are disabled during this call.

Example Configuration[edit]

LoggerIdle has the following configuration parameters that we are concerned about:

<syntaxhighlight lang='javascript'> config SizeT bufferSize = 256; /* LoggerIdle buffer

size in MAUS */ config Bool isTimestampEnabled = true; /* Enable/disable logging of

64-bit with event */ config LoggerFxn transportFxn = null; /* User's function for

transmitting Log records */ config Bool writeWhenFull = false; /* Enable/disable Log

writes when buffer is full */ </syntaxhighlight>

We will leave the buffer size as is, keep timestamps enabled, and enable Log writes when

the buffer is full. The transport function will be set to loggerIdleSend(), our example

function to format the Log data and send it out the UART. The configuration code for

LoggerIdle is the following:

<syntaxhighlight lang='javascript'> var LoggerIdle =

xdc.useModule('ti.uia.sysbios.LoggerIdle'); LoggerIdle.bufferSize = 256;

LoggerIdle.transportFxn = "&loggerIdleSend"; LoggerIdle.isTimestampEnabled = true;

LoggerIdle.writeWhenFull = true; </syntaxhighlight>

Since we want System_printf() messages to go the the UART, we will configure

xdc.runtime.System as follows:

<syntaxhighlight lang='javascript'> var System = xdc.useModule('xdc.runtime.System');

var SysMin = xdc.useModule('xdc.runtime.SysMin'); SysMin.bufSize = 0x400;

SysMin.outputFxn = '&log2Uart'; System.SupportProxy = SysMin; </syntaxhighlight>

Our SysMin output function, log2Uart(), will also be used by loggerIdleSend() for

sending out the formatted Log records.

https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=3
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=4

The configuration code for enabling SYS/BIOS exception handling and plugging our

exception hook function is the following:

<syntaxhighlight lang='javascript'> var M3Hwi =

xdc.useModule('ti.sysbios.family.arm.m3.Hwi'); M3Hwi.enableException = true;

M3Hwi.nvicCCR.UNALIGN_TRP = 1; M3Hwi.nvicCCR.DIV_0_TRP = 1;

M3Hwi.excHookFunc = '&myExceptionHook'; </syntaxhighlight>

Example Transport Function[edit]

The function prototype of the LoggerIdle transport function is: <syntaxhighlight lang='c'>

Int transportFxn(UChar *buffer, Int size); </syntaxhighlight>

The buffer parameter contains the raw Log data and the size is the amount of data in

target MAUs. The function should return the number of MAUs actually transferred. Since

we don't want to view raw Log data on a COM port console window, our transfer

function will format the data.

We use a helper function, log2uart(), which will write formatted Log data and

System_printf() messages to the UART. Since we are sending data to the UART in the

idle loop, we don't want to block, so we use UART_writePolling() to write to the

UART. UART_writePolling comes with the TI-RTOS drivers library. The log2uart()

function code is basically the following (but please refer to the actual attached example

for more details and comments):

<syntaxhighlight lang='c'> Void log2Uart(Char *buf, Int size) {

 UART_Handle uart;

 Int nBytes = 0;

 Int bytesLeft = size;

 Int bytesToWrite;

 if (size > 0) {

 uart = ports[fd].handle; /* A previously opened UART handle */

 /* Write to the UART 16 bytes at a time, until the transfer is

finished. */

 while (bytesLeft > 0) {

 bytesToWrite = (bytesLeft < 16) ? bytesLeft : 16;

 nBytes = UART_writePolling(uart, (Char *)buf, bytesToWrite);

 buf += nBytes;

 bytesLeft -= nBytes;

 }

 }

} </syntaxhighlight>

Formatting the Log data before sending it to the UART sounds like a difficult task, but

fortunately, we can make use of the xdc.runtime.Log function, Log_doPrint(), and

modify it for our needs. Our Log print function, MyLog_doPrint(), replaces calls to

System_printf() with System_sprintf(), so that the formatted Log is placed in a buffer.

https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=5

The buffer is then passed to log2uart(). Our transport function, loggerIdleSend(), loops

through the Log data and fills in a Log_EventRec structure to pass to MyLog_doPrint().

It uses the UIA EvnetHdr macros to determine whether or not the Log record is

timestamped, and the length and sequence number of the Log records. This information is

used to fill in the Log_EventRec structure.

As the code for the transport function and MyLog_doPrint() is not listed here, please

download the example to see these functions.

Example Task[edit]

The example has one task (other than the idle task), that seemingly loops forever,

sleeping and printing messages. The sleep time allows the idle task to run and upload Log

data to the UART. After a point, the task causes a divide-by-zero exception, causing the

SYS/BIOS exception handler to run and the program to abort. Here is the task code:

<syntaxhighlight lang='c'> Void taskFxn(UArg arg0, UArg arg1) {

 Int sleepDur = 100;

 Int id = (Int)arg0;

 Int count = 40;

 while (TRUE) {

 Task_sleep(sleepDur);

 /* Benchmark time to do a Log_print2 */

 t1 = Timestamp_get32();

 Log_print4(Diags_USER1, "Task %d awake, count = %d, %d, %d", id,

count, 0xabcd, 0x1234);

 t2 = Timestamp_get32();

 System_printf("Time to do Log_print2: %d, count: %d\n", t2 - t1,

count);

 /* Decrement count so that eventually we will get an exception

*/

 count--;

 sleepDur = (sleepDur / count) * count;

 }

} </syntaxhighlight>

Example Exception Hook Function[edit]

Since Log data is only output during idle time, we won't get the most recent Logs that

occurred just before the divide-by-zero exception. To handle this situation, LoggerIdle

has a flush function which we can call in our exception hook. LoggerIdle_flush() will

dump whatever Log records remain in the LoggerIdle buffer. Since the LoggerIdle idle

write function may have been in the middle of outputting Logs when it was last

preempted, calling LoggerIdle_flush() may show duplicate Log records (if

LoggerIdle.writeWhenFull = false), or a missing record (if LoggerIdle.writeWhenFull =

true). For that reason, LoggerIdle_flush() is not intended for general use. Below is the

code for the example exception handler.

https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=6
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=7

<syntaxhighlight lang='c'> Void

myExceptionHook(ti_sysbios_family_arm_m3_Hwi_ExcContext *excp) {

 System_printf("Exception context = 0x%x\n", excp);

 LoggerIdle_flush();

} </syntaxhighlight>

Example Output[edit]

The screen shot below shows the COM port console with the Log and System messages

from the example. Note that because we called LoggerIdle_flush() in our exception hook

function, we get the last Log message before the exception occurred, showing the count

value of 1. Also note that System messages are output after the Log messages, even

though they were made earlier. This is because System messages will not be displayed

until System_flush() is called, in this case by the exception handler, after calling our

exception hook function.

https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=8

Example Source Code[edit]

https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=9
https://processors.wiki.ti.com/index.php/File:LoggerIdle_UART_output.jpg

The example code can be downloaded here: File:LoggerIdle UART example

StellarisLM4F232H5QD.zip

Using a Newer UIA Product with your CCS

Project[edit]

This example requires UIA version 1.02.01.11 or higher. If you are using a TI-RTOS

product that includes UIA 1.02.01.11 or higher, you do not need to perform the steps

described in this section. If your TI-RTOS product contains a UIA version that is older

than 1.02.01.11, you will need to install a newer version of UIA. There are also a couple

of steps you need to do to get your CCS project to build using the newly installed UIA

product instead of with the one included in TI-RTOS:

• First, in the project settings, you need to enable UIA. See the screen shot below.

https://processors.wiki.ti.com/index.php/File:LoggerIdle_UART_example_StellarisLM4F232H5QD.zip
https://processors.wiki.ti.com/index.php/File:LoggerIdle_UART_example_StellarisLM4F232H5QD.zip
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit§ion=10

• Second, you need to change the search order of the repositories, so that the newer

UIA is found first. Click

on the "Order" tab, select the UIA package, and click the "UP" button until UIA moves to

the top. See the screen shot below.

https://processors.wiki.ti.com/index.php/File:LoggerIdle_UART_ProjectSettings1.jpg

{{

1. switchcategory:MultiCore=

• For technical support on

MultiCore devices, please

post your questions in the

C6000 MultiCore Forum

• For questions related to the

BIOS MultiCore SDK

Keystone=

• For

technical

support on

MultiCore

devices,

please post

your

questions

in the

C6000

C2000=For

technical

support on

the C2000

please post

your

questions

on The

C2000

Forum.

Please post

only

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:LoggerIdle_UART_ProjectSettings2.jpg
https://processors.wiki.ti.com/index.php/File:E2e.jpg

(MCSDK), please use the

BIOS Forum

Please post only comments related

to the article LoggerIdle Uart

here.

MultiCore

Forum

• For

questions

related to

the BIOS

MultiCore

SDK

(MCSDK),

please use

the BIOS

Forum

Please post only

comments related

to the article

LoggerIdle Uart

here.

comments

about the

article

LoggerIdle

Uart here.

Links
Amplifiers

& Linear

Audio

Broadband

RF/IF &

Digital

Radio

Clocks &

Timers

Data

Converters

DLP &

MEMS

High-

Reliability

Interface

Logic

Power

Management

Processors

• ARM Processors

• Digital Signal

Processors

(DSP)

• Microcontrollers

(MCU)

• OMAP

Applications

Processors

Switches &

Multiplexers

Temperature

Sensors &

Control ICs

Wireless

Connectivity

Retrieved from

"https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&oldid=182528"

Navigation menu

Personal tools

• Log in

• Request account

Namespaces

http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&oldid=182528
https://processors.wiki.ti.com/index.php?title=Special:UserLogin&returnto=LoggerIdle+Uart
https://processors.wiki.ti.com/index.php/Special:RequestAccount
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png

• Page

• Discussion

Variants

Views

• Read

• View source

• View history

More

Search

Go

Navigation

• Main Page

• All pages

• All categories

• Recent changes

• Random page

• Help

Toolbox

• What links here

• Related changes

• Special pages

• Printable version

• Permanent link

• Page information

• This page was last edited on 28 July 2014, at 06:34.

• Content is available under Creative Commons Attribution-ShareAlike unless

otherwise noted.

• Privacy policy

• About Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/LoggerIdle_Uart
https://processors.wiki.ti.com/index.php?title=Talk:LoggerIdle_Uart&action=edit&redlink=1
https://processors.wiki.ti.com/index.php/LoggerIdle_Uart
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=edit
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=history
https://processors.wiki.ti.com/index.php/Main_Page
https://processors.wiki.ti.com/index.php/Special:AllPages
https://processors.wiki.ti.com/index.php/Special:Categories
https://processors.wiki.ti.com/index.php/Special:RecentChanges
https://processors.wiki.ti.com/index.php/Special:Random
https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents
https://processors.wiki.ti.com/index.php/Special:WhatLinksHere/LoggerIdle_Uart
https://processors.wiki.ti.com/index.php/Special:RecentChangesLinked/LoggerIdle_Uart
https://processors.wiki.ti.com/index.php/Special:SpecialPages
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&printable=yes
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&oldid=182528
https://processors.wiki.ti.com/index.php?title=LoggerIdle_Uart&action=info
http://creativecommons.org/licenses/by-sa/3.0/
https://processors.wiki.ti.com/index.php/Project:Privacy_policy
https://processors.wiki.ti.com/index.php/Project:About

• Disclaimers

• Terms of Use

•

•

https://processors.wiki.ti.com/index.php/Project:General_disclaimer
https://processors.wiki.ti.com/index.php/Project:Terms_of_Service
http://creativecommons.org/licenses/by-sa/3.0/
https://www.mediawiki.org/

