
NDK Dynamic Memory Manager

Tasks
Sockets

TCP sockets
UDP sockets

Nettool services
Tools services
How to reduce RAM usage

Reducing Task stack sizes
Reducing socket sizes
Final step in reducing dynamic memory usage

The NDK uses heaps created by SYS/BIOS for run-time allocation. The main items allocated from these heaps are:

SYS/BIOS allocations:

Task related items: Tasks objects and task stacks. These are allocated by SYS/BIOS from the default SYS/BIOS system heap (unless you specify a different heap using the
Task.common$.instanceHeap or Defaults.common$.instanceHeap advanced configuration properties).
A small amount of additional RAM is used to create a few other SYS/BIOS objects, such as Semaphores and Hwi objects. The amount of memory used for these objects is trivial
compared to the other items allocated from heaps.

NDK allocations: For the remaining items, heap allocation is performed by the NDK mmBulkAlloc() function. This function uses the default SYS/BIOS heap (for example, by
calling Memory_alloc(NULL, ...)). You can call the _mmCheck() API to get a snapshot of the mmBulkAlloc() statistics.

Socket related items: For example, Rx/Tx buffers.
Nettools services internal structures: DHCP client/server, DNS server, etc.
Tools services: The packages\ti\ndk\tools directory contains sample code that might be useful to an application.

The mmAlloc() API is also used for NDK allocations, but mmAlloc() gets memory from the NDK Static Internal Memory Manager.

The zero-copy option or jumbo frames within NDK are not covered in this discussion.

The NDK creates the following Task objects:

1. Main NDK Task: This is the main NDK task.
2. Boot Task: This task is responsible from some initialization activities and is terminated once it is completed. The memory allocated for this Task object is freed when the task

terminates.
3. DHCP Client Task (if the DHCP Client is used): This task makes the initial DHCP request and subsequent lease renewals.
4. DaemonNew calls: This task is created as a result of the application calling DaemonNew(). The NDK's HTTP and Telnet servers also call this function.
5. dchild Tasks: A daemon creates a dchild task to handle new activity on a socket.
6. DHCP Server Task (if the DHCP Server is used): This task processes DHCP requests.
7. DNS Server Task (if the DNS Server is used): This task processes DNS requests.
8. Tools Services: Example code in the packages\ti\ndk\tools directory creates tasks also.

All the above task objects and task stacks are allocated out of the default system heap (unless you are an advanced user and specify a different heap using the

Task.common$.instanceHeap or Defaults.common$.instanceHeap configuration properties). The size of the task stacks are determined by the following configuration properties:

Global.ndkThreadStackSize
Global.lowTaskStackSize
Global.normTaskStackSize
Global.highTaskStackSize

The size of the Boot Task is not configurable. Its stack size is hard-coded to 2048 bytes. Once completed, the Boot Task terminates and the memory is freed back to the system heap.

You can set these properties by editing the configuration file (*.cfg) directly or graphically using XGCONF. To use the graphical editor, open the NDK settings in your application's

configuration file (*.cfg) as described in Configuring NDK Memory Use. Once you see the TI-RTOS > Products > NDK > Networking - Welcome configuration panel, choose the

Scheduling link.

Contents

Tasks

https://processors.wiki.ti.com/index.php/NDK_Static_Internal_Memory_Manager
https://processors.wiki.ti.com/index.php/TI-RTOS_Networking_Stack_Memory_Usage#Configuring_NDK_Memory_Use


The default values depend on the target. For example, on C6000 targets, larger values are used.

Note: Assigning different stack sizes for different priorities is generally not necessary. The NDK was designed to work with different operating systems. This feature might have more

value on non-SYS/BIOS operating systems.

When a socket is created, memory is allocated from the default SYS/BIOS heap by the mmBulkAlloc() function. The default values for the below configuration properties are target

specific (for example, the M3 value is smaller than the C6000 value).

When a TCP socket is created, two buffers are allocated from the default SYS/BIOS heap. The sizes of these buffers (one Tx and one Rx) are dictated by the Tcp.transmitBufSize and

Tcp.receiveBufSize properties.

To modify these properties with CCS, select the Tcp module in the Outline pane. If the Tcp module is not listed in the Outline pane, expand the tree in the Available Products pane to see

the TI-RTOS > Products > NDK > Transport Layer > Tcp module. Right-click on the Tcp module and choose Use Tcp.

The Udp.receiveBufSize property dictates the maximum number of cumulative bytes contained in packet buffers than can be queued up at any given UDP (or RAW based) socket.

To modify this properties with CCS, select the Udp module in the Outline pane. If the Udp module is not listed in the Outline pane, expand the tree in the Available Products pane to see

the TI-RTOS > Products > NDK > Transport Layer > Udp module. Right-click on the Udp module and choose Use Udp.

Sockets

TCP sockets

UDP sockets

https://processors.wiki.ti.com/index.php/File:Ndkheaps.png
https://processors.wiki.ti.com/index.php/File:Tcpbuffers.png


The code (for example, telnet and dhcp client) in the nettools directories allocate memory using the mmBulkAlloc() API. The size of the allocated memory is based on internal structure

sizes and cannot be easily reduced.

The packages\ti\ndk\tools directory contains sample code that might be useful to an application. For example it contains TCP echo and console code. You are free to change the

requested memory allocations as you see fit.

The most common way to reduce the memory used from the dynamic heaps is to reduce the stack sizes. In CCS Debug mode, you can use the RTOS Object View (ROV) tool to see the

"Detailed" view of the Task module. This view allows you to determine whether a task size can be reduced. The TI-RTOS tcpEcho example is used in this figure.

The above figure shows that the following are probably safe assumptions:

NDK's stackThread stack can be reduced to 1536 bytes (controlled by the Global.ndkThreadStackSize property).
NDK's DHCP stack can be reduced to 768 bytes (controlled by the Global.lowTaskStackSize property).
The applications tcpHandler stack can be reduced to 896 bytes (controlled by the stackSize property in the application's Task_create() function).
SYS/BIOS Idle stack can be reduced to 512 (controlled by Task.idleTaskStackSize property).

Note: Run the target for awhile under the worst expected conditions before halting it. This provides a more accurate value for the true stack peak.

Depending on your worst case socket usage, you can reduce the buffers sizes using the Tcp.transmitBufSize, Tcp.receiveBufSize and Udp.receiveBufSize properties.

Once the above modifications are made, the heaps can be examined in ROV to see how much "extra" memory is present and not used. This heap size can then be reduced as needed.

Additional SYS/BIOS RAM usage reductions are discussed in the "Reducing Data Size" in the SYS/BIOS User's Guide (SPRUEX3).

Note: The NDK requires a heap for dynamic allocation. Do not remove heaps from SYS/BIOS.

{{

1. switchcategory:MultiCore=

Keystone=

For technical
support on
MultiCore devices,

C2000=For
technical
support on
the C2000

DaVinci=For
technical
support on
DaVincoplease

MSP430=For
technical
support on
MSP430

OMAP35x=For
technical
support on
OMAP please

OMAPL1=For
technical
support on
OMAP please

MAVRK=For
technical
support on
MAVRK

For technical su
please post you
questions at
http://e2e.ti.com

Nettool services

Tools services

How to reduce RAM usage

Reducing Task stack sizes

Reducing socket sizes

Final step in reducing dynamic memory usage

https://processors.wiki.ti.com/index.php/File:Udppacket.png
https://processors.wiki.ti.com/index.php/File:Ndktaskrov.png
http://www.ti.com/lit/pdf/spruex3
http://e2e.ti.com/


For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article NDK Dynamic
Memory Manager here.

please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article NDK Dynamic
Memory Manager here.

please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article
NDK
Dynamic
Memory
Manager
here.

post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article NDK
Dynamic
Memory
Manager here.

please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article NDK
Dynamic
Memory
Manager
here.

post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article NDK
Dynamic
Memory
Manager here.

post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article NDK
Dynamic
Memory
Manager
here.

please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article NDK
Dynamic
Memory
Manager
here.

Please post on
comments abou
article NDK Dy
Memory Mana
here.
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=NDK_Dynamic_Memory_Manager&oldid=148841"

This page was last edited on 28 April 2013, at 00:43.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003&sectionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=NDK_Dynamic_Memory_Manager&oldid=148841
http://creativecommons.org/licenses/by-sa/3.0/

