
NDK Static Network Buffers

About Ethernet frame buffers
How to reduce RAM usage

The NDK statically defines the network (packet) buffers. The Packet Buffer Manager (PBM) component is responsible for managing these buffers. There are two configuration

parameters that dictate the amount of RAM that is used:

Global.pktNumFrameBufs: Determines the number of network buffers are that present in the system
Global.pktSizeFrameBuf: Determines the size of each buffer

To set these parameters, first open the NDK settings in your application's configuration file (*.cfg) as described in Configuring NDK Memory Use. Once you see the TI-RTOS >
Products > NDK > Networking - Welcome configuration panel, choose the Buffers link.

Each frame buffer is used to store a single Ethernet frame.

Typically the size needed for an Ethernet frame is 1514 octets (bytes). This size allows for the 1500-byte Ethernet payload plus the 14-byte Ethernet header (6-byte destination MAC

address + 6-byte source MAC address + 2-byte protocol type field). On devices with the data cache enabled, the value of 1536 bytes is generally used to allow for proper cache line

alignment.

There are two main arrays: <syntaxhighlight lang='c'> INT8 ti_ndk_config_Global_pHdrMem[PKT_NUM_FRAMEBUF * sizeof(PBM_Pkt)] // PKT_NUM_FRAMEBUF =

Global.pktNumFrameBufs UINT8 ti_ndk_config_Global_pBufMem[PKT_NUM_FRAMEBUF * PKT_SIZE_FRAMEBUF] // PKT_SIZE_FRAMEBUF = Global.pktSizeFrameBuf

</syntaxhighlight> During startup, each of the PBM_Pkt entries in the ti_ndk_config_Global_pHdrMem array is initialized. Part of that initialization is to assign it a single packet buffer

from ti_ndk_config_Global_pBufMem. The size of the buffer is PKT_SIZE_FRAMEBUF.

Note: Each packet is the same size. The NDK does not support chaining multiple packet buffers to hold a single Ethernet packet.

When a PBM_alloc() occurs, a PBM_Pkt entry is dequeued from a linked list and given to the requester. PBM_alloc() is called for the following reasons:

NIMU Ethernet driver to receive incoming packets.
Stack to transmit an application or service (such as ICMP) packet.

Note: The NDK does support zero-copy and jumbo packets. These topics are not part of this discussion.

1. Reduce the number of packets: The number of packets (Global.pktNumFrameBufs) can be reduced to gain a significant RAM savings. However, if you reduce the number of
packets too much, packets may be dropped when an incoming burst occurs. If this occurs with a TCP packet, the protocol will correct this via retransmission. For UDP, the packet is
lost.

2. Decrease the size of a packet: The size of a packet (Global.pktSizeFrameBuf) can be reduced and significant RAM savings can occur. If you know there is a maximum size for
the packets that will be received and transmitted, you can reduce the size. There are two risks to consider if you reduce the size of the packet:

An incoming Ethernet packet may be larger than Global.pktSizeFrameBuf.
An outgoing packet may be larger than Global.pktSizeFrameBuf.

In both cases, the PBM_alloc() uses the Memory Manager (mmAlloc()) to allocate a PBM_Pkt entry and a large enough buffer to hold the packet. When PBM_free() is called, the
memory is returned to the Memory Manager (mmFree()). If no memory is available in the Memory Manager, the allocation fails. For most driver implementations, the incoming
packet will be dropped as a result.

Unfortunately, there is currently no way to query usage of the packet buffers (for example, to see the high-water mark) or the maximum size requested during the current run. We are

looking into the best way to add this enhancement.

{{

1. switchcategory:MultiCore=

Keystone= C2000=For
technical
support on

DaVinci=For
technical
support on

MSP430=For
technical
support on

OMAP35x=For
technical
support on

OMAPL1=For
technical
support on

MAVRK=For
technical
support on

For technical su
please post you
questions at

Contents

About Ethernet frame buffers

How to reduce RAM usage

https://processors.wiki.ti.com/index.php/TI-RTOS_Networking_Stack_Memory_Usage#Configuring_NDK_Memory_Use
https://processors.wiki.ti.com/index.php/File:Ndkbuffers.png


For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article NDK Static Network
Buffers here.

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article NDK Static
Network Buffers here.

the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article
NDK
Static
Network
Buffers
here.

DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article NDK
Static
Network
Buffers here.

MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article NDK
Static
Network
Buffers
here.

OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article NDK
Static
Network
Buffers here.

OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article NDK
Static
Network
Buffers here.

MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article NDK
Static
Network
Buffers
here.

http://e2e.ti.com
Please post on
comments abou
article NDK Sta
Network Buffe
here.
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=NDK_Static_Network_Buffers&oldid=182538"

This page was last edited on 28 July 2014, at 06:41.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003&sectionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=NDK_Static_Network_Buffers&oldid=182538
http://creativecommons.org/licenses/by-sa/3.0/

