1, SBL Boot Process
The SDK also provides a method for using SBL to boot PSDKRA + PSDKLA.
The boot process of Jacinto7 is relatively complex. SBL (Secondary Bootloader) is a very lightweight bootloader written by TI, which can configure peripheral devices, such as DDR, and load and boot other cores. In order to meet the requirements of fast boot and execute related applications, MCU can be booted first and then use BOOT APP to boot other applications. In the SBL boot process, SBL can directly load the Linux kernel and DTB. The process is shown in the following figure:
[image:]
1. System power-on
2. Soc PORZ
3. DMSC&MCU BIST (optional)
4. DMSC ROM starts execution
5. MCU R5 ROM starts execution
6. MCU R5 ROM loads and runs SBL
7. MCU R5 SBL (tiboot3.bin) loads SYSFW
8. DMSC authenticates and starts SYSFW
9. MCU R5 SBL loads MCU Boot App, runs Sciclient Server.
10. MCU R5 Boot App loads Main R5F, DSP, ATF, DTB, Kernel Image respectively.
11. Main R5F 0 starts running
12. Main R5F 1 starts running
13. C66x, C7x start running
14. ATF starts running
15. Kernel Image starts executing and then mounts the file system to run to the Linux console.
16. Run the application.
Above is the boot process of SBL. In the next section, we will introduce how to run TI Demo based on the above boot process to run PSDKRA.
2, RUN PSDKRA Demo
The previous section described the SBL boot process of TI PSDKLA+PSDKRA, and the MCU R5 BOOT APP is responsible for loading and starting the other cores, as shown in Figure 7. It is worth noting that in the above boot process, for the Linux boot process on A72, we directly load the DTB, ATF, and Kernel Image of Linux from the BOOT APP. This is different from the SPL boot process (which does not load and run the SPL and Uboot.img images for A72). In terms of the boot process, this process optimizes the boot process of A72 Linux and reduces the boot time. Another thing to note is the DTB. The dtb in it needs to update the bootargs, and if you need to run the Demo of PSDKRA, you also need to make corresponding modifications to DTB.
[image:]
1. Compile SBL: Compile PSDKRA PDK sbl_mmcsd_img to generate sbl_mmcsd_img_mcu1_0_release.bin, and then copy it to the boot partition tiboot3.bin of the SD card. The compilation method is as follows:
[image:]

2， Compile CAN Boot App: Compile the Image in PSDKRA MCUSW (starting from SDK 8.1, you can also compile the image from the vision_app, and the command is sbl_mcusw_bootimage_sd. The compiled image is in $PATH_VISION_SDK_BUILD/out/sbl_bootfiles/app): can_boot_app_mcu_rtos_mcu1_0_release.appimage, and then copy it to the app partition of the SD card boot.（copy can_boot_app_mcu_rtos_mcu1_0_release.appimage to SD as app） The compilation method is as follows:
[image:]

3, Compile DTB: To directly boot Linux with SBL + BOOT APP, you need to update the bootargs of DTB and add the content of k3-j721e-vision-apps.dts in k3-j721e-common-proc-board.dts, and finally compile it into a single dtb to support the running environment of PSDKRA demo. Compile k3-j721e-common-proc-board.dtb and copy it to PSDKRA/board-support/prebuilt-images/base-board.dtb. The bootargs configuration for k3-j721e-common-proc-board.dts is as follows:
[image:]
Update to
[image:]

4, Convert the Linux ATF, dtb, and kernel Image.
[image:]
After conversion, you will get atf_optee.appimage, tidtb_linux.appimage, tikernelimage_linux.appimage, and these images also need to be copied to the boot partition of the SD card

5, Combine C66/C7x/R5F Core Image: Combine the images of MCU2_0 and MCU2_1 to form lateapp1. Combine C6x_1, C6x_2, and C7x to form lateapp2.
[image:]

After the above steps, we have prepared the files required for SBL boot. Next, we need to copy these images to the SD card for verification:
[image:]

MCU BOOT LOG:
[bookmark: _GoBack][image:]
image7.png
Ubuntul8$ cd PSDKRA/mcusw/mcuss_demos/boot_app_mcu_rtos/main_domain_apps/scripts/hlos/ && ./

constructappimageshlos.sh j72le_evm

image8.png
Ubuntul8$ cd PSDKRA/vision_apps

Ubuntul8$ make sbl_vision_apps_bootimage

image9.png
Ubuntul8$ cp $PATH_VISION_SDK_BUILD/out/sbl_bootfiles/tiboot3.bin $SD_BOOT
Ubuntul8$ cp $PATH_VISION_SDK BUILD/out/sbl bootfiles/tifs.bin $SD_BOOT

Ubuntul8$ cp $PATH_VISION_SDK_BUILD/out/sbl_bootfiles/app $SD_BOOT
Ubuntul8$ cp $PATH VISION SDK BUILD/out/sbl_combined bootfiles/atf optee.appimage
$SD_BOOT

Ubuntul8$ cp $PATH _VISION SDK BUILD/out/sbl combined bootfiles/tidtb_linux.appimage $SD_BOOT
Ubuntul8$ cp $(SJ_PATH_VISION_SDK_BUILD)/out/sbl_combined bootfiles/tikernelimage_linux.appi
mage $SD_BOOT

Ubuntul8$ cp $PATH_VISION_SDK BUILD/out/sbl_bootfiles/lateappl $SD_BOOT

Ubuntul8$ cp $PATH_VISION_SDK_BUILD/out/sbl_bootfiles/lateapp2 $SD_BOOT

image10.png
MCU ¥1/53h log & F+

SBL Revision: 01.00.10.01 (Mar 30 2022 - 08:00:22)
TIFS ver: 21.9.1--v2021.09a (Terrific Lla
Starting Sciserver..... PASSED

MCU RSF App started at 0 usecs
Calling Sciclient_procBootRequestProcessor, ProcId 0x6...
Calling Sciclient_procBootRequestProcessor, ProcId 0x7...

Loading BootImage
MMCBoot ImageLate: fp Ox 0x41cb£300, fileName is 0:/lateappl

Called SBL_MulticoreImageParse, status = 0
BootImage completed, status = 0
Sciclient_procBootReleaseProcessor, ProcId 0x6...
Sciclient_procBootReleaseProcessor, ProcId 0x7...
SBL_SlaveCoreBoot completed for Core ID#6, Entry point is 0x0
SBL_SlaveCoreBoot completed for Core ID#7, Entry point is 0x0
Calling Sciclient_procBootRequestProcessor, ProcId 0x8...
Calling Sciclient_procBootRequestProcessor, ProcId 0x9...
Calling Sciclient_procBootRequestProcessor, ProcId 0x3...
Calling Sciclient_procBootRequestProcessor, ProcId Oxd...
Calling Sciclient_procBootRequestProcessor, ProcId 0x30...

Loading BootImage

MMCBootImageLate: fp Ox 0x41cb£300, fileName is 0:/lateapp2

image1.png
Boot Media /
Peripherul

eMMC / UFS

image2.png
Configure Main Domain C66x_1, C7x_0)

Clocks and DDR

Boot core i Stage3 { Stage2 Stage 1
(i.e.MCU1_0 { Main Domain | Main Domain Main Domain
. ‘ osp i Cores | Cores Cores
mmcs H H
Vsl Domain i (e.g. MPU1_0) | (e.g. MCU3_0, (e.g. MCU2_0,
MMCSD Filesystem i McCuU3_1, Mcu2_1)
I ation i C66x_0,

¥
Parse Stage 1Image and
Boot Stage 1 Main Cores
I
Parse Stage 2 Image and
Boot Stage 2 Main Cores
Y
Parse Stage 3 Image and
Boot Stage 3 Main Cores

Core Main
H rt
Core Main
Core Main T\ st
start

[Firmware Client and]

Firmware Client and
Board Initialization

Firmware Client and
Board Initialization
y
(Print Core Timestamps)
to Main UART2

Board Initialization

Print Boot Timestamps to
Main UARTO

(or HLOS boot on Print Core Timestamps Print Core Timestamps
. UART1) J to Main UART2 to Main UART2

[])

Core Main Core Main Core Main
end end end

End

image3.png
Ubuntul8$ cd $PDK_PATH/packages/ti/build
Ubuntul8$ make BOARD=j72le_evm CORE=mcul_0 BUILD_PROFILE= release pdk_libs -sj
Ubuntul8$ make BOARD=j72le_evm CORE=mcul_0 BUILD_PROFILE= release sbl_mmcsd_img -sj

image4.png
Ubuntul8$ cd $MCUSW_PATH/build
Ubuntul8$ make -C can_boot_app_mcu_rtos HLOSBOOT=linux BOOTMODE=mmcsd SOC=j72le BOARD=j72le_
evm CORE=mcul_0 BUILD_OS_TYPE=freertos CANFUNC=disabled BUILD_PROFILE=release -sj

image5.png
bootargs = "console=ttyS$2,115200n8 earlycon=ns16550a,mmio32,0x02800000";

image6.png
bootargs = "console=ttyS2,115200n8 earlycon=nsl6550a,mmio32,0x02800000 root=/dev/mmcblklp2 r

w rootfstype=extd rootwai

