

Sitara Linux Training: Boot Time

Reduction

From Texas Instruments Wiki

Jump to: navigation, search

Contents

▪ 1 Lab Configuration

▪ 1.1 Hardware

▪ 1.1.1 Optional

▪ 1.2 Software

▪ 2 Setting up a Minimal System

▪ 2.1 Description

▪ 2.2 Key Points

▪ 2.3 Lab Steps

▪ 3 Measuring Boot Time

▪ 3.1 Description

▪ 3.2 Key Points

▪ 3.3 Lab Steps

▪ 4 Finding SPL/U-Boot Optimizations

▪ 4.1 Description

▪ 4.2 Key Points

▪ 4.3 Lab Steps

▪ 5 Finding Linux Kernel Optimizations

▪ 5.1 Description

▪ 5.2 Key Points

▪ 5.3 Lab Steps

▪ 6 Finding File System Optimizations

▪ 6.1 Description

▪ 6.2 Key Points

▪ 6.3 Lab Steps

▪ 7 Optimizing the Root File System

https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#mw-head
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#p-search
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Configuration
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Hardware
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Optional
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Software
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Setting_up_a_Minimal_System
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Measuring_Boot_Time
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_2
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_2
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_2
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Finding_SPL.2FU-Boot_Optimizations
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_3
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_3
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_3
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Finding_Linux_Kernel_Optimizations
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_4
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_4
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_4
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Finding_File_System_Optimizations
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_5
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_5
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_5
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Optimizing_the_Root_File_System
https://processors.wiki.ti.com/index.php/File:TIBanner.png

▪ 7.1 Description

▪ 7.2 Key Points

▪ 7.3 Lab Steps

▪ 8 Writing the File System to SD

▪ 8.1 Description

▪ 8.2 Key Points

▪ 8.3 Lab Steps

▪ 9 Optimizing the Linux Kernel

▪ 9.1 Description

▪ 9.2 Key Points

▪ 9.3 Lab Steps

▪ 10 Writing the Linux Kernel to SD

▪ 10.1 Description

▪ 10.2 Key Points

▪ 10.3 Lab Steps

▪ 11 Optimizing the U-Boot/SPL

▪ 11.1 Description

▪ 11.2 Key Points

▪ 11.3 Lab Steps

▪ 12 Writing the U-Boot/SPL to SD

▪ 12.1 Description

▪ 12.2 Key Points

▪ 12.3 Lab Steps

▪ 13 Measuring the Final Boot Time

▪ 13.1 Description

▪ 13.2 Key Points

▪ 13.3 Lab Steps

▪ 14 Further Notes

▪ 15 Additional Methods

▪ 15.1 Flashing the File System to NAND with UBIFS

▪ 15.1.1 Description

▪ 15.1.2 Key Points

▪ 15.1.3 Lab Steps

▪ 15.2 Flashing the Linux Kernel to NAND

▪ 15.2.1 Description

▪ 15.2.2 Key Points

▪ 15.2.3 Lab Steps

▪ 15.2.3.1 From Linux

▪ 15.2.3.2 From U-Boot

▪ 15.3 Flashing the U-Boot/SPL to NAND

▪ 15.3.1 Description

▪ 15.3.2 Key Points

▪ 15.3.3 Lab Steps

▪ 15.3.3.1 From Linux

▪ 15.3.3.2 From U-Boot

https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_6
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_6
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_6
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Writing_the_File_System_to_SD
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_7
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_7
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_7
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Optimizing_the_Linux_Kernel
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_8
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_8
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_8
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Writing_the_Linux_Kernel_to_SD
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_9
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_9
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_9
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Optimizing_the_U-Boot.2FSPL
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_10
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_10
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_10
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Writing_the_U-Boot.2FSPL_to_SD
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_11
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_11
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_11
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Measuring_the_Final_Boot_Time
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_12
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_12
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_12
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Further_Notes
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Additional_Methods
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Flashing_the_File_System_to_NAND_with_UBIFS
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_13
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_13
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_13
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Flashing_the_Linux_Kernel_to_NAND
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_14
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_14
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_14
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#From_Linux
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#From_U-Boot
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Flashing_the_U-Boot.2FSPL_to_NAND
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Description_15
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Key_Points_15
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#Lab_Steps_15
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#From_Linux_2
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction#From_U-Boot_2

Introduction

This lab is going to give you a hands on tutorial of how to reduce the boot time of a

Linux system. There are many techniques to reduce Linux boot time and not all of them

will be covered in this lab so please refer to the presentation for more ideas.

GOALS:

▪ Provide the user with a simple display on the LCD and await touchscreen input

▪ Provide the above in 3 seconds

FEEDBACK:
If you have questions or feedback please e-mail the sdk_feedback@list.ti.com mailing

list.

NOTE: In this guide commands to be executed for each

step will be marked in BOLD

Lab Configuration[edit]

The following are the hardware and software configurations for this lab. The steps in this

lab are written against this configuration. The concepts of the lab will apply to other

configurations but will need to be adapted accordingly.

Hardware[edit]

1. beaglebone (http://beagleboard.org/buy)

2. 7" LCD cape (http://circuitco.com/support/index.php?title=BeagleBone_Capes)

3. 5V power supply

mailto:sdk_feedback@list.ti.com
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=1
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=2
http://beagleboard.org/buy
http://circuitco.com/support/index.php?title=BeagleBone_Capes

Optional[edit]

1. 16-bit NAND cape

(http://circuitco.com/support/index.php?title=BeagleBone_Capes)

▪ This hardware is required if you wish to do the steps for flashing the

kernel or file system into NAND

IMPORTANT

In this use case the boards should be stacked as beaglebone -> NAND cape ->

LCD Cape. The NAND cape cannot be placed on the cape expander of the LCD

cape because it cannot pull the SYSBOOT pins to the right settings from there.

Software[edit]

1. A Linux host system configured as per the Linux Host Configuration page

2. Sitara Linux SDK installed. This lab assumes the SDK is installed in

/home/sitara. If you use a different location please modify the below steps

accordingly.

3. setup.sh script in the SDK run to configure the target device for NFS and TFTP.

▪ For help configuring the NFS and TFTP setup see Sitara Linux Training:

Hands on with the SDK

4. SD card with Sitara Linux SDK installed.

▪ For help creating a 2 partition SD card with the SDK conent see the

create_sdcard.sh script page

5. The Sitara Linux Training: Linux Board Port and Sitara Linux Training: U-Boot

Board Port lab trees built with support for the 16-bit NAND cape (tag

05.05.00.00-nand16). These files should be save in the /tftpboot directory as:

▪ uImage-board-port

▪ MLO-board-port

▪ u-boot-board-port

NOTE

If using a TI laptop during the labs these images are already created and saved in

the /tftpboot directory

Setting up a Minimal System[edit]

Description[edit]

This section will cover how to setup the Sitara Linux SDK and the target board to boot

the minimal base-rootfs-<machine>.tar.gz file system found in the Sitara Linux SDK.

During this lab you will also be using the Linux kernel and U-boot from the Linux board

port and U-Boot board port labs. These serve as a good starting point for optimization

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=3
http://circuitco.com/support/index.php?title=BeagleBone_Capes
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=4
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Linux_Host_Configuration
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Hands_on_with_the_SDK
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Hands_on_with_the_SDK
https://processors.wiki.ti.com/index.php/Sitara_Linux_SDK_create_SD_card_script
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Linux_Board_Port
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_UBoot_Board_Port
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_UBoot_Board_Port
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=5
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=6
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Linux_Board_Port
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Linux_Board_Port
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_UBoot_Board_Port

since many of the extra features enabled for development by the tisdk-rootfs-

<machine>.tar.gz file system and the default kernel and u-boot configurations are not

necessary in a boot time optimized system.

Key Points[edit]

▪ Configuring the system for a typical development environment. This includes:

▪ Loading the u-boot boot loader from MMC

▪ Transferring the kernel over TFTP

▪ Booting the target root file system via NFS

Lab Steps[edit]

1. Close any open minicom sessions you may have by pressing CTRL+A then Z

and then X. When prompted select Yes to exit minicom

2. Insert the Sitara Linux SDK SD card into the beaglebone and boot the board.

NOTE

You will not see output on the LCD because the SDK does not currently support

capes. This is why we will be using the board port kernel during this lab

3. Once the board boots you should see the "boot" partition mounted to your Linux

host. You can use the mount command to verify that the boot partition is

mounted and you should see output like:

/dev/sdb on /media/boot type vfat

(rw,nosuid,nodev,uid=1000,gid=1000,shortname=mixed,dmask=0077,utf8=1,showexec,flus

h,uhelper=udisks)

IMPORTANT

If the SD card you are using already has a uEnv.txt file on it for NFS boot

(possibly from a previous lab) and the board fails to boot (Perhaps because the

NFS server is no longer available) you will need to connect to the serial console

using minicom and can run the following commands to boot the board one time

from the SD card.

env default -f (This sets the default environment)

mmc rescan (This enables the mmc device)

run mmc_boot (This will boot from mmc)

You can now continue with the steps below which will reconfigure the NFS

settings

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=7
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=8

4. Copy the board port u-boot and MLO files (listed as prerequisites)to the SD card

boot partition. This is so that the default images on the MMC/SD card will have

support for the 16-bit NAND cape.

NOTE

If you are using a TI laptop these files are already available at /tftpboot/MLO-

board-port and /tftpboot/u-boot-board-port

▪ cp /tftpboot/MLO-board-port /media/boot/MLO

▪ cp /tftpboot/u-boot-board-port /media/boot/u-boot.img

5. Change directory into the Sitara Linux SDK installation directory

cd /home/sitara/<SDK install>

6. Run the setup.sh script

./setup.sh

NOTE

These steps assume that you have already run the setup.sh script once before on

your host system and therefore already have an NFS share and kernel uImage

exported

7. When prompted provide the following responses

▪ If prompted enter your sudo password. If using a TI laptop the password is

sitara

▪ When prompted to select a directory to install the target filesystem press

ENTER to take the default

▪ When asked whether you want to rename, overwrite, or skip the file

system extraction enter s to skip the extraction

▪ Press ENTER until prompted for the TFTP directory

▪ When prompted for the tftp root directory press ENTER to accept the

default /tftpboot location

▪ When asked whether to rename, overwrite, or skip the copy of the uImage

enter s to skip the copy

▪ When prompted for the serial port to use press ENTER because the serial

port will be detected automatically

NOTE

The automatic detection only works on boards like the beaglebone and EVM-

SK. For the full EVM you should enter your serial port here

▪ When prompted to enter your host IP address press ENTER to take the

default

▪ When prompted to select the Linux kernel location press ENTER to take

the default of TFTP

▪ When prompted to select the root file system location press ENTER to

take the default of NFS

▪ When prompted for the kernel image to use press ENTER to take the

default value

▪ When asked if you are using a Beaglebone or EVM-SK enter y to

configure for a beaglebone (unless you are using a full EVM)

▪ When asked if you would like to restart the device now press ENTER to

restart the device.

8. You should now see a minicom terminal open and the device begin to boot. You

should see that the kernel is loaded over TFTP and the file system is booted from

NFS

▪ Your system is now configured for a TFTP kernel boot and and NFS root

file system

9. At the login prompt login as root with a blank password

10. Shutdown the board using the following command. This is done so that you can

swap the file system being used with the base image from the SDK.

init 0

IMPORTANT

Wait until you see the System halted message before going on

11. On your host go to the SDK directory and perform the following commands.

These commands will move the default NFS file system out of the way and

extract a new NFS file system using the base image.

1. cd /home/sitara/<sdk install dir>

2. sudo mv targetNFS targetNFS.orig

3. mkdir targetNFS

4. cd targetNFS

5. sudo tar xzf ../filesystem/base-rootfs-<machine>.tar.gz

NOTE

sudo is used when extracting the target file system because special files such as

device nodes require root permission to be created

NOTE

The steps above are done to preserve your original file system and so that you

can re-use the export created for the targetNFS file system with you new file

system

12. Now on the host you will change the TFTP kernel image to the image from the

Sitara Linux board port lab. If you have not already done this lab please refer to

the Sitara Linux board port lab for instructions on building the kernel.

https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Linux_Board_Port
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Linux_Board_Port

IMPORTANT

If you are using a training laptop provided by TI these images have already been

compiled and stored in the /tftpboot directory for you. The following

instructions will tell you how to copy these images. If you are not using a TI

laptop then you will need to build the kernel image yourself and overwrite the

existing image in the /tftpboot directory

0. cd /tftpboot

1. sudo cp uImage-am335x-evm.bin uImage-am335x-evm.bin.orig

2. sudo cp uImage-board-port uImage-am335x-evm.bin

13. Reboot the board. You should see the system come up to a login prompt. You

have now finished configuring your system to boot a minimal file system and

simple kernel which was ported to your hardware over NFS and TFTP.

14. Once the board is booted shut the board down with init 0

init 0

IMPORTANT

Wait until you see the System halted message before going on

15. Exit minicom by pressing CTRL+A then Z and then X. When prompted select

Yes to exit minicom

Measuring Boot Time[edit]

Description[edit]

This section will cover how to measure the boot time and the time used by different

components of the system during boot. This measurement will be used in the following

sections to help identify the areas that can be optimized.

Key Points[edit]

1. Use the tstamp.c program to measure boot time on Linux systems

▪ This program can be found in the sitara-training-helper-files git repository

available at https://gitorious.org/sitara-training and can be cloned by doing

git clone git://gitorious.org/sitara-training/sitara-training-helper-

files.git

2. After capturing the boot time output you can use that output to find areas to

optimize

Lab Steps[edit]

1. Checkout the sitara-training-helper-files repository.

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=9
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=10
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=11
https://gitorious.org/sitara-training
git://gitorious.org/sitara-training/sitara-training-helper-files.git
git://gitorious.org/sitara-training/sitara-training-helper-files.git
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=12

IMPORTANT

If you are using a TI training laptop this has already been done for you and you

can find the files in /home/sitara/sitara-training-helper-files

cd /home/sitara

git clone git://gitorious.org/sitara-training/sitara-training-helper-files.git

2. Compile the tstamp.c program

cd /home/sitara/sitara-training-helper-files

gcc tstamp.c -o tstamp

3. Copy the tstamp executable to the /usr/bin directory so it will be available in your

default PATH

sudo cp tstamp /usr/bin/

4. Set your serial port to the proper baud rate. For these instructions we will assume

/dev/ttyUSB1 but you may have a different port based on your setup.

IMPORTANT

If you are using a device like the beaglebone with a built in USB-to-Serial

adapter you can find the serial port by doing dmesg

stty -F /dev/ttyUSB1 115200

5. You can now use the tstamp program to measure boot times. To do this use the

command

cat /dev/ttyUSB1 | tstamp

6. Now press the Reset button on the beaglebone (located on at the top right corner

when using and LCD 7" cape) and let the system boot. You should see output on

the screen with timestamps for each line like

37.920 0.080: Starting thttpd.

IMPORTANT

The tstamp program works by capturing time elapsed between new lines on the

screen, which is why you do no see the login prompt. It also keeps the counter

from the first line which means that if you want to restart the base time counter

(the first field) you will need to use ctrl+c to exit the application and then restart

it running

git://gitorious.org/sitara-training/sitara-training-helper-files.git

7. The total boot time in this setup was around 39.252 seconds. We can do much

better than that and the rest of this lab will be focused on doing just that to hit our

3 second goal.

Finding SPL/U-Boot Optimizations[edit]

Description[edit]

Now that you have an output from the boot process we can go through that output by

scrolling back in history and reviewing the pieces of the boot that took the most time.

This section will highlight areas in the boot loaders that can be optimized as well as a

estimate of the difficulty in reducing that time.

The following difficulty classifications will be used during this lab:

▪ Easy: These changes can be as simple as modifying bootargs and environment

settings.

▪ Medium: These changes usually involve modifying/rebuilding a component but

do not require changing the system configuration

▪ Hard: These changes usually involve modifying/rebuilding a components and

changing the system configuration

Key Points[edit]

1. Identify steps in the boot loader that consume a large amount of time

2. Identify the begin and end of the boot loader steps

3. Build a list of the optimizations to make in later steps

Lab Steps[edit]

1. Identify the beginning of the boot loader in your output. This should be one of the

first lines and should look like the following

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=13
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=14
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=15
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=16

2. Scroll down in the output until you find the beginning of the U-Boot boot. This

should look like the following

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-spl-start.png
https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-spl-end.png

3. The lines located between this start line and end line represent the steps of the

SPL boot loader. We will now focus on those lines to identify optimizations.

4. We see that the OMAP SD/MMC device is being initialized

▪ Impact: This step is taking about 0.436 seconds

▪ Removable?: We are currently booting from SD card and would need to

find a different boot source to remove this initialization

▪ Difficulty: Hard. Making this change will require modifying the boot

loader and changing the system configuration to boot from a different

interface than SD/MMC.

5. We have now reached the end of the SPL boot loader and need to identify the start

of the U-Boot boot loader. This should look like the following

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-spl-mmcinit.png

6. Scroll down in the output until you find the beginning of the Linux kernel boot.

This should look like the following

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-spl-end.png
https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-uboot-end.png

7. As with the SPL the lines between these sections represent the U-Boot output and

where we will focus our optimizations

8. The first optimization point concerns reading the u-boot environment from

NAND. Because the NAND is blank this generates an ECC error.

▪ Impact: This step is taking about 0.764 seconds

▪ Removable?: When creating your own product you will may store your

environment in a persistent storage like NAND, but you can also modify

u-boot to code your default environment directly into the executable.

▪ Difficulty: Medium. To remove this you would need to modify u-boot to

set your default boot environment.

9. The next step taking a large amount of time is the boot delay

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-uboot-env-ecc.png

▪ Impact: This step takes about 3.004 seconds

▪ Removable?: Yes. Although if/when we set this to zero you will be unable

to stop the autoboot from the serial console

▪ Difficulty: Easy/Medium. This is given a rating of easy to medium

because you cannot change this value using the uEnv.txt file support on

the MMC card. You can change this value if you are using a NAND

environment. So for NAND this is easy because the value can be set and

saved. For MMC you will need to change the U-Boot configuration and

rebuild U-Boot.

10. The next large section is where the network interface is defined and the kernel is

transferred

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-boot-delay.png

▪ Impact: All told this step is taking about 21.7 seconds

▪ Removable?: Yes, although this will require transferring the kernel from

elsewhere

▪ Difficulty: Medium/Hard. This will require changing the boot

configuration which is why it has received a hard rating. However, since

changing where the kernel is loaded from is usually a trivial task and in

fact supported by many of the default environment commands such as

nand_boot and mmc_boot this is also listed as medium.

11. The next big time consumer is verifying the image checksum

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-uboot-network.png

▪ Impact: About 0.916 seconds

▪ Removable?: Maybe. Since we do nothing when an image checksum fails

to match then we can remove this. If however you had a fallback

mechanism for a bad kernel you would want to keep this in place.

▪ Difficulty: Easy. This verification can be controlled with a simple

environment flag so it is an easy one to make.

12. Next you will see that we are spending time loading the kernel image to the

proper location in DDR

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-image-checksum.png

▪ Impact: About 1.428 seconds

▪ Removable?: Yes. This step is being done because the default boot

command is configured to load the kernel at a different address then where

the kernel is configured to run from. Therefore u-boot must relocate the

kernel in memory before booting.

▪ Difficulty: Easy. This can be fixed by changing the environment variables

to use kloadaddr for the load address and bootm addresses rather than

loadaddr

13. All told we have identified about 27.812 seconds of time that we can optimize.

We will not get all of this time back because we will be trading some things like

the long network load time for booting from NAND which will still have a copy

time associated. But as a rough target this is a good estimate. If our total boot time

is about 39.2 seconds and we can remove almost 27.8 seconds we will already

have our boot time down to 11.4 seconds with just boot loader optimizations.

Additional Notes

▪ If you are using the default SDK u-boot you will see that u-boot scans for any

daughter cards on the I2C bus

▪ Impact: These step is taking about 0.352 seconds

▪ Removable?: When creating your own product you likely will not bother

with I2C EEPROMs to scan to identify daughter cards. So this should be

removable.

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-load-kernel.png

▪ Difficulty: Medium. We will need to remove the code that does the scan

from the bootloader and recompile.

NOTE

In this lab we use the U-Boot from the U-Boot Board Port lab which already has

this I2C scan removed.

Finding Linux Kernel Optimizations[edit]

Description[edit]

Now that you have an output from the boot process we can go through that output by

scrolling back in history and reviewing the pieces of the boot that took the most time.

This section will highlight areas in the Linux kernel that can be optimized as well as a

estimate of the difficulty in reducing that time.

Key Points[edit]

1. Identify steps in the Linux kernel that consume a large amount of time

2. Identify the begin and end of the Linux kernel steps

3. Build a list of the optimizations to make in later steps

4. initcall_debug is not used in this lab but can be used to help you better refine your

kernel boot time optimization search

5. This is not a comprehensive list of all the optimizations that are possible. We are

starting from a rather minimal kernel and it would be possible to cut this kernel

down even further if needed but for the sake of this lab we will leave most of the

kernel options alone and target the large ticket items and easy items.

Lab Steps[edit]

1. Scroll up in your output to identify the beginning of the kernel boot process. This

should look like the following

https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_UBoot_Board_Port
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=17
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=18
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=19
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=20

2. Scroll down in the output until you find the beginning of the end of the Linux

kernel boot. This should look like the following

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-uboot-end.png
https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-linux-end.png

3. You have now identified the kernel boot step and can begin to look for areas of

optimization.

IMPORTANT

Since the kernel uses some buffers during output sometimes the tstamp tool is

not optimal for finding the time taken by a kernel step since the tool tracks the

time between new lines being printed. Luckily the kernel also has time stamping

on its messages and you can use those time stamps to help you find the amount

of time taken by a step. However, if you see a large delay in tstamp that is still a

good area to focus you attention

4. The first optimization is the time taken to calibrate the delay loop

▪ Impact: About 0.000152 seconds

▪ Removable?: Yes

▪ Difficulty: Easy. This does not save much time as it did is some previous

devices, but this is a value that only needs to be calculated once in most

cases. So adding lpj=xxxxxxx to the kernel bootargs is an easy way to

save this time.

5. The next area of improvement is further down in the output and revolves around

the networking required for NFS

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-lpj.png

▪ Impact: About 4.2 seconds

▪ Removable?: Yes. By not bringing up the network interface in the kernel

this time can be saved. A static IP would at least save about 1.252 seconds

of time.

▪ Difficulty: Medium/Hard. This change is listed as hard because it requires

changing the system configuration to boot from something other than

NFS. It is given a medium rating as well because this is not too difficult of

a task depending on the location being used for the root file system. For

example using a MMC root file system is easier and takes very little

configuration vs. a NAND based root file system.

6. The final optimization is to observe how long the kernel took to print each line of

output.

▪ Impact: About 1.5 seconds

▪ Removable?: Yes. Using the quiet parameter

▪ Difficulty: Easy. Simple adding the quiet parameter to the kernel bootargs

will reduce the amount of kernel print messages.

NOTE

This is usually something you would do towards the end of your optimizations

since you will also lose a lot of useful messages once this option is enabled. You

can still see these messages using dmesg once the system is booted.

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-kernel-ip.png

7. Overall we can save about 5.7 seconds on the boot time with the optimizations

above. We will obviously not get back all of the time since it will take some

amount of time to initialize other types of file systems as well.

Finding File System Optimizations[edit]

Description[edit]

Now that you have an output from the boot process we can go through that output by

scrolling back in history and reviewing the pieces of the boot that took the most time.

This section will highlight areas in the root file system that can be optimized as well as a

estimate of the difficulty in reducing that time. We will also identify where we can inject

our own steps to perform a simple splash screen display and touchscreen read in the boot

process.

Key Points[edit]

1. Identify steps in the root file system that consume a large amount of time

2. Build a list of the optimizations to make in later steps

3. Identify where to place our init script to start our application early in the boot

process

▪ If you have not already done the Init Scripts Lab you should do this to

familiarize yourself with how init scripts work.

4. The root file system is the point at which we will add our splash screen

application and be ready to receive touchscreen event.

▪ The sooner we can add this in the boot process the sooner the system will

be "booted"

5. You will see that we can make the system "boot" (become "available") quickly

while continuing to load the rest of the system services in the background.

Lab Steps[edit]

1. Scroll up in your output to identify the beginning of the root file system boot

process. This should look like the following

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=21
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=22
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=23
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Init_Scripts
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=24

2. Scroll down in the output until you find the beginning of the end of the root file

sysetm boot. This should look like the following

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-linux-end.png
https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-rootfs-end.png

3. You have now identified the file system boot step and can begin to look for areas

of optimization.

4. The first are taking a large amount of time is the init process

▪ Impact: About 0.256 seconds

▪ Removable?: No. It is possible to modify the init process but usually not

required or recommended. This would require a rebuild of the entire init

process.

▪ Difficulty: Hard. Requires modifying the base process for the entire Linux

system.

5. The first process being run is S01psplash which is responsible for showing the TI

logo and progress bar on the screen. Instead we can replace this with our own

custom image and script to read touchscreen events. So we can mark this as the

location to add our application start script and remove the psplash script.

6. The following items are listed to give you an idea of other areas you can impact

boot time but not necessarily items we are going to optimize

IMPORTANT

The reason we are not optimizing these items is because it is OK for those items

to run in the background since the system is already "booted". If you wanted to

remove those items you would usually just remove the init script that calls the

process

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-init.png

7. The next step taking time is the initialization of the udev process.

▪ Impact: About 1.172 seconds

▪ Removable?: Maybe. You can remove udev or use a different manager

like mdev if you are working with a static system. However, if you are

wanting to be able to attach new devices to the system udev is

recommended.

▪ Difficulty: Medium. It is easy to not start udev but modifying your system

to handle all the attached devices can be difficult.

8. Next we see that caching the udev nodes is taking a good chunk of time.

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-udev.png

▪ Impact: About 0.520 seconds

▪ Removable?: Maybe. If we are not using udev you can remove the caching

of the udev nodes

▪ Difficulty: Easy. Just remove the init script

9. One of the last big consumers of time is the creation of the shell.

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-udev-cache.png

▪ Impact: About 1.288 seconds

▪ Removable?: Maybe. This too would require a modification to the init

program itself. Removing this would prevent the initial shell from being

launched and therefore prevent user login including debug login.

▪ Difficulty: Hard. Requires modifying the base process for the entire Linux

system.

Optimizing the Root File System[edit]

This section will cover the simple modifications that can be made to reduce the large boot

time adders identified in the previous section.

Description[edit]

We will start with the root file system because it is the easiest to modify. The overall goal

is to have a splash screen up and awaiting touchscreen input in less than 3 seconds. For

this we will make a simple modification to the root file system to implement the splash

screen functionality early in the boot process, and then allow the rest of the system to

initialize in the background.

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=25
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=26
https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-init-shell.png

Key Points[edit]

1. Placement of the splash screen early in the boot process allows the system to be

"booted" quickly.

2. The rest of the system can continue to boot in the background while waiting for

the user to touch the screen.

Lab Steps[edit]

1. Start minicom using the following command

minicom -w

IMPORTANT

The above command launches minicom using the defaults and with line wrap

enabled. If you do not see output during the following steps you will likely need

to use minicom -s -w to allow reconfiguring the serial port to use

2. Press Enter to bring up the login prompt and login using:

Username: root

3. First we need to remove the existing psplash init script which is displaying the

progress bar during boot. This can be done by simply removing the symlink

S01psplash from /etc/rcS.d

▪ rm /etc/rcS.d/S01psplash

4. We now need to create our own script for doing the splash operation and waiting

for a touchscreen event

▪ vi /etc/init.d/mysplash.sh and type

#!/bin/sh
cat /home/root/startup.rawr16 > /dev/fb0

head -c 1 /dev/input/event0 > /dev/null

cat /dev/zero > /dev/fb0

NOTE

The above script does a raw write of a 16 bit per pixel to the frame buffer. It

then waits to read 1 byte of input from the input device node to determine when

the touchscreen is pressed. At that point it blanks the display.

NOTE

The startup.rawr16 image will be copied later

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=27
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=28

5. Because we want to run the above script and allow the rest of the system to

continue booting we will create a wrapper script that just calls this script and has

it run in the background.

▪ vi /etc/init.d/run-mysplash.sh and type

#!/bin/sh
echo "Starting splash screen and waiting for touchscreen"

/etc/init.d/mysplash.sh &

NOTE

In the above script the echo line is used so that we can get a timestamp of when

our splash operation started. The & is required to background the mysplash.sh

process

6. Make the scripts executable

▪ chmod +x /etc/init.d/mysplash.sh

▪ chmod +x /etc/init.d/run-mysplash.sh

7. On your Linux Host: Open a terminal window and copy the startup.rawr16 file

to the /home/root directory of the NFS share

▪ sudo cp /home/sitara/sitara-training-helper-

files/boot_time_optimization/startup.rawr16 /home/sitara/<SDK

install dir>/targetNFS/home/root

8. Now back in your target console link this script into the init process flow at the

location where psplash used to be.

cd /etc/rcS.d/

ln -s ../init.d/run-mysplash.sh S01run-mysplash.sh

9. This should now make this one of the first processes to run on system boot.

Reboot the board using the following command and observe where the splash

screen is started

▪ init 6

10. After the reboot you should see the splash screen up waiting for a touchscreen

press and on the serial console you should see that they system has continued to

boot in the background.

Writing the File System to SD[edit]

Description[edit]

Now that we have finished optimizing the root file system for this lab we can go ahead

and write the file system to the SD card partition reserved for the file system

(/dev/mmcblk0p2). In this case the beaglebone acts as our SD card reader rather than

having to use our Linux host system.

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=29
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=30

Key Points[edit]

▪ How to make a tarball of an existing NFS file system

▪ How to mount an SD card partition on the target board

▪ Extracting a file system to the SD card

▪ Modifying the bootargs to boot using the root file system on the SD card

Lab Steps[edit]

1. The first step is to make a tarball of our existing NFS image. Shutdown the board

using init 0 and use the following commands on the Linux Host to make a file

system tarball

▪ cd /home/sitara/<SDK install dir>/targetNFS

▪ sudo tar czf ../base-file-system.tar.gz *

IMPORTANT

The above command will make a file system tarball that extracts into the current

directory. The ../ is used so that the tarball being created is NOT picked up as

part of the tar process

2. Now copy the base-file-system.tar.gz tarball back into the NFS file system so it

will be available on the target

▪ sudo cp ../base-file-system.tar.gz .

3. Reset the target board. Once the board has booted, on the target console login

using root

4. Re-Format the SD card root file system partition. This will erase the SDK file

system and make room for our file minimal file system instead.

▪ mkfs.ext3 -L rootfs /dev/mmcblk0p2

NOTE

The "-L rootfs" option was used to give the file system volume a human

readable name

5. Mount the second partition of the SD card, which was reserved for the file system

to the /media/mmc1 mount point

▪ mount /dev/mmcblk0p2 /media/mmc1

6. Now cd to the mounted file system and extract the root file system tarball into the

blank file system.

▪ cd /media/mmc1

▪ tar xzf /base-file-system.tar.gz

7. Now you can unmount the file system and perform a sync operation to make sure

everything is flushed to the SD card

▪ cd ..

▪ umount mmc1

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=31
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=32

▪ sync

8. Now we will mount the SD card boot partition and modify the uEnv.txt so that we

can boot this new SD file system instead of the NFS.

▪ mount /dev/mmc0blk0p1 /media/mmc1

▪ vi /media/mmc1/uEnv.txt and make the following changes

▪ Delete the following line: (You can scroll to the line and press d +

d to delete the line)

tftp_nfs_boot=......

▪ Add the following line:

tftp_mmc_boot=dhcp ${loadaddr} ${bootfile}; run mmc_args; bootm

${loadaddr}

▪ Change the uenvcmd to

uenvcmd=tftp_mmc_boot

9. The resulting file should look like:

serverip=xxx.xxx.xxx.xxx

rootpath=/xxx/xxx/xxx/

bootfile=uImage-am335x-evm.bin

ip_method=dhcp

uenvcmd=run tftp_mmc_boot

tftp_mmc_boot=dhcp ${loadaddr} ${bootfile}; run mmc_args; bootm

${loadaddr}

10. Unmount the MMC device and reboot the board

▪ umount mmc1

▪ init 6

11. You should now see the board boot using the file system on the SD card.

Optimizing the Linux Kernel[edit]

Description[edit]

This section will cover making optimizations to the Linux kernel that will save on boot

time. This kernel is in some ways already reduced since many interfaces are not defined

in the board port kernel we are using but configuration options could be optimized further

depending on your target system. The optimizations done in this lab will mostly involve

changing the settings passed to the kernel during boot.

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=33
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=34

Key Points[edit]

▪ Many optimizations can be as simple as changing the kernel boot settings

▪ Setting lpj value

▪ Changing IP method

▪ Avoiding kernel message prints

Lab Steps[edit]

1. You should at this point have your board booted to the SD file system flashed in

the previous lab. Go ahead and login as root.

2. Mount the SD card boot partition so that we can modify the uEnv.txt file to affect

the parameters passed to the Linux kernel

▪ cd /media

▪ mount /dev/mmcblk0p1 mmc1

3. Make a copy of your uEnv.txt file for backup purposes

▪ cp mmc1/uEnv.txt mmc1/uEnv.txt.orig

4. Edit the mmc1/uEnv.txt file and make the following changes

▪ vi /media/mmc1/uEnv.txt

▪ Add the line

optargs=quiet lpj=3590144

▪ Delete following lines

ip_method=dhcp

rootpath=xxxxxx

▪ The resulting file should look like:

serverip=xxx.xxx.xxx.xxx

bootfile=uImage-am335x-evm.bin

uenvcmd=run tftp_mmc_boot

tftp_mmc_boot=dhcp ${loadaddr} ${bootfile}; run mmc_args; bootm

${loadaddr}

optargs=quiet lpj=3590144

5. NOTE

The above modifications set the quiet option to reduce kernel printing, pre-set

the loops per jiffie value to avoid needing to calculate this again, and most

importantly removed the NFS settings including the ip_method setting. This

means that the kernel will not request an IP while booting, but the file system

can request the IP during start up AFTER our splash screen has started

6. Un-mount the SD card and reboot the board

▪ umount mmc1

▪ init 6

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=35
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=36

7. This time you should notice that there was very little output once the kernel was

booting. You also did not have the delay associated with obtaining and IP address

in the kernel.

Writing the Linux Kernel to SD[edit]

Description[edit]

This section will cover how to place the Linux kernel on the SD card and configure u-

boot to read the kernel from the FAT partition on the SD card. This will allow us to stop

downloading the kernel over the ethernet connection, which is a time consuming

operation and instead load the kernel from the SD device which should be faster.

NOTE

The current u-boot implementation for NAND is not optimized and yields a slow kernel

read (about 1MB/s). This is not what you would want for a fast boot so instead an SD

card is used which has a high speed driver available. There are instructions for flashing

the kernel to NAND at the end of this lab as an information item

Key Points[edit]

▪ How to write the kernel to SD

▪ Changing u-boot settings to boot the kernel from SD

Lab Steps[edit]

1. Assuming the system is booted login using root

2. Download the kernel image to your local file system. You can find the serverip to

use by running the ifconfig command on your host.

▪ tftp -g -r uImage-am335x-evm.bin <serverip>

NOTE

The serverip used is the same as the one used in your uEnv.txt file

3. Mount the SD card

▪ mount /dev/mmcblk0p1 /media/mmc1

4. Copy the downloaded uImage-am335x-evm.bin to the SD card as uImage

▪ cp uImage-am335x-evm.bin /media/mmc1/uImage

IMPORTANT

The kernel image should be named uImage because this is the default name that

u-boot will look to load from the SD card boot partition

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=37
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=38
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=39
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=40

▪ vi /media/mmc1/uEnv.txt and make the following changes

▪ Remove these lines

serverip=xxxx This is not needed because we will not be booting from tftp

bootfile=xxxx Again, we will not be booting from tftp so this is not required

tftp_mmc_boot Since we are now going to boot the kernel from the SD card and

use the file system from SD card we can now use the built in u-boot defaults

▪ Modify the uenvcmd line to look like

uenvcmd=run mmc_boot

▪ The resulting file should look like:

uenvcmd=run mmc_boot

optargs=quiet lpj=3590144

IMPORTANT

There is a subtle optimization here that will save you over a second. Using the

built in defaults for mmc_boot the board is now set to read the uImage from the

SD card to the address kloadaddr. This address is configured such that the

image is written into DDR at the proper kernel start location. This means that

the kernel does not need to be relocated from one place in DDR to another

which saves about 1.4 seconds as we identified in the labs above

5. Un-mount the SD card and reboot your board using the following commands

▪ umount /media/mmc1

▪ init 6

6. You should now see the device boot reading the kernel from the SD card

NOTE

You should no longer see the #'s that marked the tftp of the kernel which is a

good sign it is being read from elsewhere

Optimizing the U-Boot/SPL[edit]

Description[edit]

This section is going to cover making some of the optimizations that were identified

previously. Some of these optimizations were already done by modifying where the

kernel is loaded from and how it is booted. The rest of these optimization will be done

my modifying the actual u-boot sources and configuration for the desired result.

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=41
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=42

Key Points[edit]

▪ Disabling the NAND environment check

▪ Removing image verification

▪ Programming default U-boot environment

▪ Changing default boot command

▪ Reducing the boot delay

▪ Disabling ethernet intialization

Lab Steps[edit]

1. The following steps will walk through modifying the u-boot sources to optimize

your boot time. On you Linux Host go to the u-boot board-port tree

▪ cd /home/sitara/board-port/sitara-board-port-uboot

2. This step will modify the include/configs/am335x_evm.h to Disable the NAND

environment check. This step was identified as taking about 0.764 seconds of boot

time. Since we are going to modify the default boot arguments anyway there is no

need for the NAND environment to be saved.

▪ gedit include/configs/am335x_evm.h

▪ Search for the following lines (You can use ctrl+F to do a search

in gedit):

/* NAND support */

#ifdef CONFIG_NAND

#define CONFIG_CMD_NAND

▪ Just above these lines add the following lines:

#undef CONFIG_NAND_ENV

#define CONFIG_ENV_IS_NOWHERE

▪ Your file should now look like:

#undef CONFIG_NAND_ENV

#define CONFIG_ENV_IS_NOWHERE

/* NAND support */

#ifdef CONFIG_NAND

#define CONFIG_CMD_NAND

3. IMPORTANT

Adding this optimization will currently break reading Linux kernel images from

NAND in u-boot. The system needs to do the configuration of the NAND for the

environment to be ready to read the images such as the Linux kernel. This will

be addresses in the future.

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=43
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=44

4. IMPORTANT

The lines added were placed in the file near the NAND support structure for

convenience. The effect is to unset the U-boot environment being saved in

NAND. It is also important to tell u-boot that since the environment is not in

NAND that it is located NOWHERE

5. This next modification will disable the network driver initialization in u-boot.

Since we are no transferring the kernel over tftp this is the remainder of the

networking boot impact left to be removed.

NOTE

This does not prevent the kernel or file system from starting the network later

▪ Search for the following line

define CONFIG_DRIVER_TI_CPSW

▪ Remove that line from the configuration file

6. Next we are going to turn off the image verification. As mentioned in the steps

identifying the optimizations, the image verify takes about a second and since we

don't do anything with a failed image we will not bother to verify it.

▪ Search for the following lines:

#define CONFIG_EXTRA_ENV_SETTINGS \

"bootfile=uImage\0" \

"loadaddr=0x82000000\0" \

▪ Add the following line after bootfile=uImage

"verify=n\0" \

NOTE

This line can be added anywhere in the CONFIG_EXTRA_ENV_SETTINGS

variable, the location picked here was arbitrary.

7. The next modification to the default U-boot environment will allow us to no

longer depend on the uEnv.txt file for setting parameters. This means we will be

able to stop doing the read of that file from the SD card.

▪ Search for the following line:

"optargs=\0" \

▪ Modify this line to instead set:

"optargs=quiet lpj=3590144\0" \

8. Now we will configure BOOTDELAY to remove the 3 seconds we are seeing

during boot

▪ Search for the following lines:

#ifndef CONFIG_RESTORE_FLASH

/* set to negative value for no autoboot */

#define CONFIG_BOOTDELAY 3

▪ Change the CONFIG_BOOTDELAY line to:

#define CONFIG_BOOTDELAY 1

9. IMPORTANT

There are two definitions of CONFIG_BOOTDELAY in the default

configuration file. This is because for flashing/restore operations we want no

boot delay and to use a different boot command. This is why the #ifndef

CONFIG_RESTORE_FLASH flag is used to wrap the

CONFIG_BOOTDELAY and CONFIG_BOOTCOMMAND variables

10. IMPORTANT

You may be asking why we set the CONFIG_BOOTDELAY to 1 instead of 0.

This is because if we make any mistakes we still have a change to interrupt u-

boot and interact with the system. So for this lab we will end up taking the boot

time and subtracting 1 second. In your production environment once you are

happy with the system you would likely change this to a 0 to remove that one

second boot time impact

11. Lastly we will define the custom boot command so that we do not need to use the

uEnv.txt file anymore

▪ Search for the following lines

#define CONFIG_BOOTCOMMAND \

"if mmc rescan; then " \

"echo SD/MMC found on device ${mmc_dev};" \

▪ This whole indented block of code is one long string for the

CONFIG_BOOTCOMMAND variable. Delete this entire string and

replace it with the following lines:

#define CONFIG_BOOTCOMMAND \

"mmc rescan; run mmc_boot"

IMPORTANT

We had to add the mmc rescan to the boot command here because the rescan

had not happened before. In the uEnv.txt file the rescan had already happened

because of the default boot command and we did not need to perform the rescan

a second time

▪ You final code should look like:

/* set to negative value for no autoboot */

#define CONFIG_BOOTDELAY 1

#define CONFIG_BOOTCOMMAND \

"mmc rescan; run mmc_boot"

12. You can now save your file and exit gedit

13. Use the following commands to configure and compile a new u-boot.img and

MLO image

▪ make ARCH=arm CROSS_COMPILE=/home/sitara/ti-sdk-am335x-

evm-<sdk version>/linux-devkit/bin/arm-arago-linux-gnueabi-

am335x_evm_config

IMPORTANT

There is a space between arm-arago-linux-gnueabi- and am335x_evm_config

▪ make ARCH=arm CROSS_COMPILE=/home/sitara/ti-sdk-am335x-

evm-<sdk version>/linux-devkit/bin/arm-arago-linux-gnueabi-

14. When the build finishes you should now have a new MLO and u-boot.img file in

the /home/sitara/board-port/sitara-board-port-uboot/ directory.

15. For the next steps you should go ahead and copy these files to the /tftpboot

directory so they can be downloaded to the target device.

▪ cp MLO /tftpboot/MLO-optimized

▪ cp u-boot.img /tftpboot/u-boot-optimized

Writing the U-Boot/SPL to SD[edit]

Description[edit]

This section will cover transferring the new MLO and u-boot.img that you created to the

SD card

Key Points[edit]

▪ How to tftp the images to the target file system

▪ Using the target file system to access the SD card

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=45
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=46
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=47

Lab Steps[edit]

1. Your target board should be booted and you should login as root

2. TFTP you optimized boot loader files. Remember that you can get the TFTP

server address by using the ifconfig command on your Linux host.

▪ tftp -g -r MLO-optimized <server ip>

▪ tftp -g -r u-boot-optimized <server ip>

3. Mount the boot partition of the SD card

▪ mount /dev/mmcblk0p1 /media/mmc1

4. Copy the new boot loader files to the boot partition of the SD card.

▪ cp MLO-optimized /media/mmc1/MLO

▪ cp u-boot-optimized /media/mmc1/u-boot.img

5. Unmount the boot partition

▪ umount /media/mmc1

6. Reboot the board

▪ init 6

7. On this boot you should have noticed that the boot delay went down to only 1

second, that the network was not initialized, that the uEnv.txt file was not being

read from the SD card, and that the kernel image verify was disabled.

Measuring the Final Boot Time[edit]

Description[edit]

In this lab we will re-run the tstamp program and observe the change in boot time to get

to an initial splash screen

Key Points[edit]

▪ Measuring the changed boot time

▪ Observing the touch event being processed

Lab Steps[edit]

1. Assuming the target board is booted login as root

2. Shutdown the target board so that the root file system is cleanly un-mounted and

the target is ready for a reset

▪ init 0

3. Once you see the following message your board is shutdown

▪ [xxx.xxxxxx] System halted.'

4. Exit your minicom terminal using the following key commands

▪ Ctlr+A

▪ z

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=48
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=49
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=50
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=51
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=52

▪ x

▪ Select Yes to exit minicom

5. Make sure your serial port is properly configured using the stty command

▪ stty -F /dev/ttyUSB1 115200

6. You can now use the tstamp program to measure boot times. To do this use the

command

▪ cat /dev/ttyUSB1 | tstamp

7. Press the Reset button on the top-right corner of the LCD cape and let the system

boot

8. Look for the message we printed when we started the splash screen. You should

see output like:

IMPORTANT

Why is the boot time 3.736 seconds? Weren't we trying to get under 3 seconds?

Remember that we left a second delay in u-boot to allow us to get to a u-boot

prompt in case something went wrong. if you scroll back in the boot history you

will see that second delay is still there. So if you delete 1 second from the boot

time the total time is 2.736 Seconds, so we actually beat our goal.

9. Go ahead and touch the touchscreen. You should see the panel go blank.

10. Congratulations, you have managed to create a system that can boot in under 3

seconds.

11. In su

https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-final-boot.png

Further Notes[edit]

▪ In this lab we still left the OneNAND driver in the Linux kernel to enable NAND

support. If you are booting completely from SD card you could also remove this

driver from the Linux kernel configuration.

▪ Impact: About 0.212 seconds

▪ Removable?: Yes, if you do not plan on using NAND in Linux both as a

root file system or for additional persistent storage.

▪ Difficulty: Medium. You would need to re-configure to disable the Device

Drivers -> Memory Technology Device (MTD) support -> OneNAND

Device Support option and re-compile the kernel.

▪ There is currently work going on in the U-Boot community to allow the SPL

image to directly boot the Linux kernel without loading U-Boot first. This support

is not available today but in the future may enable saving another ~1.2 seconds

during boot.

Additional Methods[edit]

These methods can be used in place of the SD card methods above to flash the

components to the NAND rather than to the SD card. In this lab the SD card was chosen

because it has good throughput, particularly in u-boot in the which the NAND

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=53
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=54
https://processors.wiki.ti.com/index.php/File:Sitara-linux-training-one-nand.png

performance is not currently optimized. It is also worth noting that it takes about .5

seconds to scan and mount a 32MB UBI/UBIFS NAND volume. UBI is faster than

JFFS2 but it scales linearly (see http://www.linux-

mtd.infradead.org/doc/ubi.html#L_scalability). This is in part because unlike in an

MMC/SD card we are the controller and are responsible for scanning the NAND, etc

rather than relying on another controller to do this in parallel like what you see with a

MMC/SD card which is a Flash Translation Layer device.

Still, for completeness these steps were added here to provide a reference for how to

perform this lab with different media.

NOTE

The performance of SD cards can vary depending on the card. You should test multiple

cards and find the one with the best performance. This lab used the card that shipped

with the EVM

Flashing the File System to NAND with UBIFS[edit]

Description[edit]

Now that we have finished optimizing the root file system for this lab we can go ahead

and write the file system to the NAND partition reserved for the file system.

Key Points[edit]

▪ How to make a tarball of an existing NFS file system

▪ How to mount a NAND partition as a UBIFS file system

▪ Copying file to UBIFS

▪ Modifying the bootargs to boot using the root file system in UBIFS

▪ Additional information for creating UBIFS images and other methods for doing

so can be found at:

▪ http://processors.wiki.ti.com/index.php/UBIFS_Support

▪ http://www.sakoman.com/OMAP/how-to-write-an-ubifs-rootfs-image-to-

nand.html

Lab Steps[edit]

1. The first step is to make a tarball of our existing NFS image. Shutdown the board

using init 0 and use the following commands on the Linux Host to make a file

system tarball

▪ cd /home/sitara/<SDK install dir>/targetNFS

▪ sudo tar czf ../base-file-system.tar.gz *

http://www.linux-mtd.infradead.org/doc/ubi.html#L_scalability
http://www.linux-mtd.infradead.org/doc/ubi.html#L_scalability
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=55
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=56
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=57
http://processors.wiki.ti.com/index.php/UBIFS_Support
http://www.sakoman.com/OMAP/how-to-write-an-ubifs-rootfs-image-to-nand.html
http://www.sakoman.com/OMAP/how-to-write-an-ubifs-rootfs-image-to-nand.html
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=58

IMPORTANT

The above command will make a file system tarball that extracts into the current

directory. The ../ is used so that the tarball being created is NOT picked up as

part of the tar process

2. Now copy the base-file-system.tar.gz tarball back into the NFS file system so it

will be available on the target

▪ sudo cp ../base-file-system.tar.gz .

3. Reset the target board. Once the board has booted, on the target console login

using root

4. If you scroll back in the kernel boot messages you will see the partition

definitions the kernel is using for the NAND. In this case the output should look

like the output below which shows that the File System partition is the last

partition. Since the numbering is zero based this would make this partition 7.

Remember this for the next steps.

[x.xxxxxx] 0x000000000000-0x000000020000 : "SPL"

[x.xxxxxx] 0x000000020000-0x000000040000 : "SPL.backup1"

[x.xxxxxx] 0x000000040000-0x000000060000 : "SPL.backup2"

[x.xxxxxx] 0x000000060000-0x000000080000 : "SPL.backup3"

[x.xxxxxx] 0x000000080000-0x000000260000 : "U-Boot"

[x.xxxxxx] 0x000000260000-0x000000280000 : "U-Boot Env"

[x.xxxxxx] 0x000000280000-0x000000780000 : "Kernel"

[x.xxxxxx] 0x000000780000-0x000002780000 : "File System"

[x.xxxxxx] 0x000002780000-0x000002960000 : "U-Boot.backup"

[x.xxxxxx] 0x000002960000-0x000002e60000 : "Kernel.backup"

[x.xxxxxx] 0x000002e60000-0x000020000000 : "Extended File System"

5. First we will erase the flash partition

▪ flash_erase /dev/mtd7 0 0

NOTE

You may see some bad block messages or messages saying some blocks could

not be erased. This is OK

6. Next we will format the UBI mtd device for UBIFS with a sub page size of 512

▪ ubiformat /dev/mtd7 -s 512 -O 2048

IMPORTANT

Since we specify an sub page size of 512 which is used for writing erase blocks

we need to specify the VID header offset (using the -O option) as 2048 to make

sure it is in the next erase block and now in the first erase block

7. Next we tell UBI that we are going to be working with mtd device 7 using

ubiattach

▪ ubiattach /dev/ubi_ctrl -m 7 -O 2048

NOTE

Specifying /dev/ubi_ctrl is not strictly necessary as this is the default but is used

here for safety sake.

IMPORTANT

The UBI device number is assigned automatically and will be used in the next

step. This is assigned starting from 0 and incrementing by 1. So for the first UBI

device this will be /dev/ubi0 and the second will be /dev/ubi1, and so forth. You

can find which ubi device this has been attached to in the first line of output

from the ubiattach command

IMPORTANT

We use the -O 2048 option to match the location of the VID header given when

we formatted the UBIFS

8. You may need to press Enter to return to a command prompt

9. Now we will create a UBIFS volume using ubimkvol

▪ ubimkvol /dev/ubi0 -N rootfs -m'

NOTE

The above command makes a UBI volume on UBI device ubi0 with a label of

rootfs and taking up the full size of the device

IMPORTANT

If you use a different label than rootfs you will also need to change the default

u-boot environment to use this new label since it uses rootfs by default.

10. Now you will create a mount point for the UBIFS NAND file system and mount

the file system

▪ mkdir /mnt/nand

▪ mount -t ubifs ubi0:rootfs /mnt/nand

NOTE

You may see some read errors during the mount operation. These can be ignored

11. You may need to press Enter to return to a command prompt

12. Now cd to the mounted file system and extract the rootfs tarball into the UBIFS

mount.

▪ cd /mnt/nand

▪ tar xzf /base-file-system.tar.gz

13. Now you can unmount the file system and perform a sync operation to make sure

everything is flushed to NAND

▪ cd ..

▪ umount nand

▪ sync

14. Now we will mount the SD card and modify the uEnv.txt so that we can boot this

new NAND file system.

▪ mkdir /mnt/mmc

▪ mount /dev/mmc0blk0p1 /mnt/mmc

▪ vi /mnt/mmc and make the following changes

▪ Add the following line:

tftp_nand_boot=dhcp ${loadaddr} ${bootfile}; run nand_args; bootm

${loadaddr}

▪ Change the uenvcmd to

uenvcmd=tftp_nand_boot

15. Unmount the MMC device and reboot the board

▪ umount mmc

▪ init 6

16. You should now see the board boot using the file system in the NAND flash. You

can verify this using the mount command and looking for a line like:

ubi0:rootfs on / type ubifs (rw,relatime)

Flashing the Linux Kernel to NAND[edit]

Description[edit]

This section will cover how to place the Linux kernel into the NAND flash. This will

allow us to stop downloading the kernel over the ethernet connection, which is a time

consuming operation and instead load the kernel from the NAND device which should be

faster.

Key Points[edit]

▪ How to flash the kernel to NAND

▪ Changing u-boot settings to reflect the actual image size

▪ Copying and booting the kernel from NAND

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=59
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=60
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=61

Lab Steps[edit]

From Linux[edit]

1. Assuming the system is booted login using root

2. Determine the Kernel flash partition.

▪ cat /proc/mtd

You should expect output like:

mtd6: 00500000 00020000 "Kernel"

NOTE

You will see the full list of the mtd partition when using doing cat /proc/mtd

and can use the output to find the /dev/mtd device node corresponding to each

partition

3. Erase the Kernel flash partition.

▪ flash_erase /dev/mtd6 0 0

IMPORTANT

The device node to erase was based on the mtd device found for the "Kernel"

partition in the /proc/mtd output

4. Download the kernel image to your local file system. You can find the serverip to

use by running the ifconfig command on your host.

▪ tftp -g -r uImage-am335x-evm.bin <serverip>

NOTE

The serverip used is the same as the one used in your uEnv.txt file

5. Write the kernel image using the following command

▪ nandwrite -p /dev/mtd6 uImage-am335x-evm.bin

IMPORTANT

You need to use the -p option to pad the kernel image to a full page size or else

you will see write errors

6. The result of the write operation is that the last line will tell you the offset of the

last page written. i.e.:

Writing data to block 24 at offset 0x300000

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=62
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=63

7. If you take this last offset and add one page size (0x20000) you will have the size

of the kernel image that needs to be copied from NAND. In this case 0x320000.

Remember this number for the following steps.

8. In u-boot the default size of the kernel to load is 0x500000. We do not need to

actually copy this much data from the NAND to the DDR so any extra data copy

is actually a waste of time. So now you will update the uEnv.txt file to overwrite

the default value with the 0x320000 value we found above.

▪ mount /dev/mmcblk0p1 /media/mmc1

▪ vi /media/mmc1/uEnv.txt and make the following changes

▪ Remove these lines

serverip=xxxx This is not needed because we will not be booting from tftp

bootfile=xxxx Again, we will not be booting from tftp so this is not required

tftp_nand_boot Since we are now going to boot the kernel from NAND and use

the file system from NAND we can now use the built in u-boot defaults

▪ Modify the uenvcmd line to look like

uenvcmd=run nand_boot

▪ Add the following line to change the size of the kernel loaded

nand_img_siz=0x320000

9. Un-mount the SD card and reboot your board using the following commands

▪ umount /media/mmc1

▪ init 6

10. You should now see the device boot reading the kernel from NAND

NOTE

You should no longer see the #'s that marked the tftp of the kernel which is a

good sign it is being read from elsewhere

From U-Boot[edit]

1. Assuming the system is booted login using root

2. Determine the Kernel flash partition.

▪ cat /proc/mtd

You should expect output like:

mtd5: 00020000 00020000 "U-Boot Env"

mtd6: 00500000 00020000 "Kernel"

mtd7: 02000000 00020000 "File System"

NOTE

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=64

You will see the full list of the mtd partition when using doing cat /proc/mtd

and can use the output to find the /dev/mtd device node corresponding to each

partition

3. Make note of the offset and size for the kernel partition. In this case that is:

▪ OFFSET: 0x280000

▪ SIZE: 0x500000

IMPORTANT

The OFFSET can be found by either adding up the size of all the mtd devices

before the kernel, or if you scroll back in your kernel boot history (You can use

the dmesg command to see the kernel boot log even with the quiet option set)

you will see a line like

0x000000280000-0x000000780000 : "Kernel"

This line is in the format <start of partition (offset)> - <end of partition> which

means you could use this to get both the partition, and with some simple math

the size as well.

4. Reboot the board and stop the auto boot by pressing any key when prompted

▪ init 6

5. Set the NAND ECC mode to match the Linux kernel which is BCH8

▪ nandecc hw 2

6. Erase the Kernel flash partition.

▪ nand erase 0x280000 0x500000

7. Download the kernel image to DDR. You can find the serverip to use by running

the ifconfig command on your host.

▪ mw.b ${loadaddr} 0xFF 0x500000

NOTE

This command will write all 1's to the memory address where we are going to

transfer the kernel image. This is a nice to do not a strict requirement

▪ setenv serverip <your server ip>

▪ setenv autoload n

▪ dhcp

▪ tftp ${loadaddr} uImage-am335x-evm.bin

IMPORTANT

The kernel image is downloaded to the address stored in loadaddr. In this case

that is 0x82000000 but you can always look for the Load address in the tftp

output

NOTE

The serverip used is the same as the one used in your uEnv.txt file

8. Make a note of the actual kernel image size shown as the last line out output. i.e.

Bytes transferred = 3154760 (302348 hex)

9. Write the kernel image using the following command

▪ nand write ${loadaddr} 0x280000 0x500000

IMPORTANT

For help with the various nand command you can just type nand on the u-boot

prompt and you will be given the help output for the nand system

10. Using the tftp transfer size from above you can find the size of the kernel image

that needs to be copied from NAND by rounding it to the next erase size

(0x20000). In this case 0x320000. Remember this number for the following steps.

NOTE

You can find the erase size using the nand info command and looking for the

sector size

11. In u-boot the default size of the kernel to load is 0x500000. We do not need to

actually copy this much data from the NAND to the DDR so any extra data copy

is actually a waste of time. So now you will update the uEnv.txt file to overwrite

the default value with the 0x320000 value we found above. To do this boot your

board using the following commands and modify the uEnv.txt (remember that we

are using the target board as our SD card reader as well for this lab)

▪ boot

▪ Once the target boots login as root

▪ mount /dev/mmcblk0p1 /media/mmc1

▪ vi /media/mmc1/uEnv.txt and make the following changes

▪ Remove these lines

serverip=xxxx This is not needed because we will not be booting from tftp

bootfile=xxxx Again, we will not be booting from tftp so this is not required

tftp_nand_boot Since we are now going to boot the kernel from NAND and use

the file system from NAND we can now use the built in u-boot defaults

▪ Modify the uenvcmd line to look like

uenvcmd=run nand_boot

▪ Add the following line to change the size of the kernel loaded

nand_img_siz=0x320000 This is the value you found above

12. Un-mount the SD card and reboot your board using the following commands

▪ umount /media/mmc1

▪ init 6

13. You should now see the device boot reading the kernel from NAND

NOTE

You should no longer see the #'s that marked the tftp of the kernel which is a

good sign it is being read from elsewhere

Flashing the U-Boot/SPL to NAND[edit]

Description[edit]

This section will cover how to place the boot loaders into the NAND flash. This will

allow us get rid of the SD card altogether.

Key Points[edit]

▪ How to flash the boot loaders to NAND

Lab Steps[edit]

From Linux[edit]

1. Assuming the system is booted login using root

2. As with the Linux kernel you will need to determine the boot loader flash

partition. In this case there are two, the SPL and U-Boot partitions

▪ cat /proc/mtd

NOTE

You may wonder why there are multiple partitions for the SPL. This is because

the ROM boot loader will try looking into the first 4 sectors on the flash to find

a valid SPL image in case the first sector is bad

You should expect output like:

mtd0: 00020000 00020000 "SPL"

mtd0: 00020000 00020000 "SPL.backup1"

mtd0: 00020000 00020000 "SPL.backup2"

mtd0: 00020000 00020000 "SPL.backup3"

mtd0: 001e0000 00020000 "U-Boot"

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=65
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=66
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=67
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=68
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=69

NOTE

You will see the full list of the mtd partition when using doing cat /proc/mtd

and can use the output to find the /dev/mtd device node corresponding to each

partition

3. Erase the SPL and U-Boot flash partitions.

▪ flash_erase /dev/mtd0 0 0

▪ flash_erase /dev/mtd4 0 0

IMPORTANT

The device node to erase was based on the mtd device found for the "SPL" and

"U-Boot" partitions in the /proc/mtd output

4. Download the SPL and U-Boot images to your local file system. You can find the

serverip to use by running the ifconfig command on your host.

▪ tftp -g -r MLO-optimized <serverip>

▪ tftp -g -r u-boot-optimized <serverip>

NOTE

The serverip used is the same as the one used in your uEnv.txt file

5. Write the SPL and U-Boot images using the following commands

▪ nandwrite -p /dev/mtd0 MLO-optimized

▪ nandwrite -p /dev/mtd4 u-boot-optimized

IMPORTANT

You need to use the -p option to pad the kernel image to a full page size or else

you will see write errors

6. The beaglebone with the 16bit NAND cape is already configured to try to boot

from NAND first. So all you need to do now is reboot your board using:

▪ init 6

7. You should now see the device boot reading the u-boot.img from NAND instead

of SD. You should notice that the MMC initialization that was happening before

the u-boot.img read is no longer being done because you are now booted from

NAND.

From U-Boot[edit]

1. Assuming the system is booted login using root

2. Determine the SPL and U-Boot flash partitions.

▪ cat /proc/mtd

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit§ion=70

You should expect output like:

mtd0: 00020000 00020000 "SPL"

mtd0: 00020000 00020000 "SPL.backup1"

mtd0: 00020000 00020000 "SPL.backup2"

mtd0: 00020000 00020000 "SPL.backup3"

mtd0: 001e0000 00020000 "U-Boot"

NOTE

You will see the full list of the mtd partition when using doing cat /proc/mtd

and can use the output to find the /dev/mtd device node corresponding to each

partition

3. Make note of the offset and size for the SPL and U-Boot partitions. In this case

they are:

▪ SPL:

▪ OFFSET: 0x0

▪ SIZE: 0x20000

▪ U-Boot:

▪ OFFSET: 0x80000

▪ SIZE: 0x1e0000

IMPORTANT

The OFFSET can be found by either adding up the size of all the mtd devices

before the partition you are interested in, or if you scroll back in your kernel

boot history (You can use the dmesg command to see the kernel boot log even

with the quiet option set) you will see lines like

0x000000000000-0x000000020000 : "SPL"

0x000000080000-0x000000260000 : "U-Boot"

This line is in the format <start of partition (offset)> - <end of partition> which

means you could use this to get both the partition, and with some simple math

the size as well.

4. Reboot the board and stop the auto boot by pressing any key when prompted

▪ init 6

5. Set the NAND ECC mode to match the Linux kernel which is BCH8

▪ nandecc hw 2

6. Erase the SPL and U-Boot flash partitions.

▪ nand erase 0x0 0x20000

▪ nand erase 0x80000 0x1e0000

7. Download the SPL image to DDR. You can find the serverip to use by running

the ifconfig command on your host.

▪ mw.b ${loadaddr} 0xFF 0x20000

NOTE

This command will write all 1's to the memory address where we are going to

transfer the kernel image. This is a nice to do not a strict requirement

▪ setenv serverip <your server ip>

▪ setenv autoload n

▪ dhcp

▪ tftp ${loadaddr} MLO-optimized

IMPORTANT

The SPL image is downloaded to the address stored in loadaddr. In this case

that is 0x82000000 but you can always look for the Load address in the tftp

output

NOTE

The serverip used is the same as the one used in your uEnv.txt file

8. Make a note of the actual image size shown as the last line out output. i.e.

Bytes transferred = 79953 (13851)

9. Write the SPL image using the following command

▪ nand write ${loadaddr} 0x0 0x20000

10. Download the U-Boot image to DDR.

▪ mw.b ${loadaddr} 0xFF 0x1e0000

NOTE

This command will write all 1's to the memory address where we are going to

transfer the kernel image. This is a nice to do not a strict requirement

▪ tftp ${loadaddr} u-boot-optimized

IMPORTANT

The U-Boot image is downloaded to the address stored in loadaddr. In this case

that is 0x82000000 but you can always look for the Load address in the tftp

output

11. Make a note of the actual kernel image size shown as the last line out output. i.e.

Bytes transferred = 228144 (37b30 hex)

12. Write the kernel image using the following command

▪ nand write ${loadaddr} 0x80000 0x1e0000

IMPORTANT

For help with the various nand command you can just type nand on the u-boot

prompt and you will be given the help output for the nand system

13. You can now type the following command at the u-boot prompt to see if you have

flashed your images to NAND successfully.

▪ reset

{{

1. switchcategory:MultiCore=

▪ For technical support on

MultiCore devices, please

post your questions in the

C6000 MultiCore Forum

▪ For questions related to the

BIOS MultiCore SDK

(MCSDK), please use the

BIOS Forum

Please post only comments related

to the article Sitara Linux

Training: Boot Time Reduction

here.

Keystone=

▪ For

technical

support on

MultiCore

devices,

please post

your

questions

in the

C6000

MultiCore

Forum

▪ For

questions

related to

the BIOS

MultiCore

SDK

(MCSDK),

please use

the BIOS

Forum

Please post only

comments related

to the article

Sitara Linux

Training: Boot

Time Reduction

here.

C2000=For

technical

support on

the C2000

please post

your

questions

on The

C2000

Forum.

Please post

only

comments

about the

article

Sitara

Linux

Training:

Boot Time

Reduction

here.

Links

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:E2e.jpg

Amplifiers

& Linear

Audio

Broadband

RF/IF &

Digital

Radio

Clocks &

Timers

Data

Converters

DLP &

MEMS

High-

Reliability

Interface

Logic

Power

Management

Processors

▪ ARM Processors

▪ Digital Signal

Processors

(DSP)

▪ Microcontrollers

(MCU)

▪ OMAP

Applications

Processors

Switches &

Multiplexers

Temperature

Sensors &

Control ICs

Wireless

Connectivity

Retrieved from

"https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Red

uction&oldid=157984"

Categories:

▪ AM437x

▪ AM335x

▪ AM35x

▪ AM37x

▪ AM1x

▪ AM18x

Navigation menu

Personal tools

▪ Log in

▪ Request account

Namespaces

▪ Page

▪ Discussion

Variants

Views

▪ Read

▪ View source

http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&oldid=157984
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&oldid=157984
https://processors.wiki.ti.com/index.php/Special:Categories
https://processors.wiki.ti.com/index.php/Category:AM437x
https://processors.wiki.ti.com/index.php/Category:AM335x
https://processors.wiki.ti.com/index.php/Category:AM35x
https://processors.wiki.ti.com/index.php/Category:AM37x
https://processors.wiki.ti.com/index.php/Category:AM1x
https://processors.wiki.ti.com/index.php/Category:AM18x
https://processors.wiki.ti.com/index.php?title=Special:UserLogin&returnto=Sitara+Linux+Training%3A+Boot+Time+Reduction
https://processors.wiki.ti.com/index.php/Special:RequestAccount
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction
https://processors.wiki.ti.com/index.php?title=Talk:Sitara_Linux_Training:_Boot_Time_Reduction&action=edit&redlink=1
https://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Boot_Time_Reduction
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=edit
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png

▪ View history

More

Search

Search Go

Navigation

▪ Main Page

▪ All pages

▪ All categories

▪ Recent changes

▪ Random page

▪ Help

Toolbox

▪ What links here

▪ Related changes

▪ Special pages

▪ Printable version

▪ Permanent link

▪ Page information

▪ This page was last edited on 31 July 2013, at 16:57.

▪ Content is available under Creative Commons Attribution-ShareAlike unless

otherwise noted.

▪ Privacy policy

▪ About Texas Instruments Wiki

▪ Disclaimers

▪ Terms of Use

▪

▪

https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=history
https://processors.wiki.ti.com/index.php/Main_Page
https://processors.wiki.ti.com/index.php/Special:AllPages
https://processors.wiki.ti.com/index.php/Special:Categories
https://processors.wiki.ti.com/index.php/Special:RecentChanges
https://processors.wiki.ti.com/index.php/Special:Random
https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents
https://processors.wiki.ti.com/index.php/Special:WhatLinksHere/Sitara_Linux_Training:_Boot_Time_Reduction
https://processors.wiki.ti.com/index.php/Special:RecentChangesLinked/Sitara_Linux_Training:_Boot_Time_Reduction
https://processors.wiki.ti.com/index.php/Special:SpecialPages
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&printable=yes
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&oldid=157984
https://processors.wiki.ti.com/index.php?title=Sitara_Linux_Training:_Boot_Time_Reduction&action=info
http://creativecommons.org/licenses/by-sa/3.0/
https://processors.wiki.ti.com/index.php/Project:Privacy_policy
https://processors.wiki.ti.com/index.php/Project:About
https://processors.wiki.ti.com/index.php/Project:General_disclaimer
https://processors.wiki.ti.com/index.php/Project:Terms_of_Service
http://creativecommons.org/licenses/by-sa/3.0/
https://www.mediawiki.org/

