


								BQ2571X - Input Power Design
	APTER APTER		R10			R14		R2 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 Reserve Reser
PIN NAMI	E	REQUIREMENT	COMPONENT	MIN	TYP	MAX	DESCRIPTION	NPUT POWER - DESIGN CHECKLIST COMMENTS AND RELEVANT EQUATIONS
			C3+C4+C23+C24				Forward Mode: Ceramic high frequency	Input source to the charger For a 45 W to 65 W SYS load, use at least (4x) 10 uF capacitors with an extra (2x) 10 uF DNP.
		Required	C3+C4+C23+C24 +C44+C45	40 uF	60 uF		filtering input capacitors; <u>Reverse Mode</u> : Converter ceramic output filtering capacitors	For a 90 W to 65 W SYS load, use at least (6x) 10 uF capacitors with an extra (2x) 10 uF DNP. XTR capacitors are recommended.
		Required	C53		33 uF		Forward Mode: Tantalum polymer high frequency filtering input capacitor; <u>Reverse Mode</u> : Converter tantalum polymer outnut filtering capacitor	For > 65W SYS loads, with a 4S battery configuration, use at least (1x) 33 uF tantalum polymer capacitor.
			R3, R4		3.9 D			The system with high point calible or ratio inductions and the high user cases, and a generative high end off is calible to a star of the high user cases, and a generative high end off is calible to a star of the high end
ADAPTER+ / ADAPTER-	•	Recommended-DNP	C18		1 uF		Input hot-plug snubber circuit	$C_{\rm SLmin} = \frac{l_{\rm intradigress}}{(l_{\rm reguler} + \Delta^{\rm Verentant,max})} \cdot \frac{1}{\omega_{\rm input/resenant}} \\ where \\ \omega_{\rm input/resenant} = \frac{1}{2\pi \sqrt{L_{\rm Spynd} C_{\rm reguler}}}$
		Optional	Q5, Q6				Back-to-Back input protection P-Ch. MOSFETs	Size Q5 and Q6 appropriately to handle input power, optimize losses, and allow for smooth turn-on and turn off. Select delay and control circuits to avoid conflicts with charger timing.
		Optional	R10 R14 C22				Input protection turn-on/turn-off delay	Note: If the Q5 and Q6 input protection circuit and is to function correctly, R13 (See VBUS) must be connected to the Drain of Q5.
		Optional	R9 Q9A/Q9B Q10				Input protection turn-on/turn-off control	
		Optional	R17 Z1		10 kΩ		Input protection gate-source Zener clamping	Size to clamp maximum allowable VGS for QS and Q6
ACP-ACN	3-2	Required	R2 (R _{AC}) R11, R12	10 mí	10 mΩ 4.99 Ω	20 mQ	Input current sensing resistor. This is used for both input current limit regulation and for inductor current sensing of the average current mode control architecutre of the charger. Input current sense switching noise and	Differential input current enables in INDPM regulation, there so to FORM. This will impact the MOPT and PSPS pin measurements. In INDPM regulation, the input current limit is regulated as a differential voltage across $R_{\rm ex}$ such that: $V_{\rm exc} = R_{\rm ex}$ is Momunum (IM_HOST) Regulated Setting, IN_DPM() Register Setting, ILM_HOST pin setting).
		Recommended	C46, C47 C12		33 nF 10 nF	100 nF	common mode noise filtering High frequency switching currnet spike	Select R11 / C46 and R12 / C47 such that the filter time constant is between 47 ns and 200 ns Note Too high of a capacitance on this side of RAC could impact the converter stability. This is the reason for limiting the maximum capacitance to 100xF.
		Recommended-DNP	C17 C11		1 nF 0.01 uF	100 nF	filtering Differential mode noise filtering	
		Required	C25	0.47 u	0.47 uF		Input voltage noise decoupling capacitor	IC input voltage rail Placed close to the IC V8US pin.
VBUS	1	Recommended	R13		10		Input voltage rail inrush current limiting	XTR capacitor is recommended. Site appropriately to handle large input overshoots and current spikes.
REGN	28							Internal LDO output
REGIN	28	Required	C30	2.2 ul	2.2 uF		Internal LDO output stabilizing capacitor	Placed clone to the IC REGN pln. XTR capacitor is recommended. Internal reference bias
VDDA	7	Required	C29 818		1 uF		Noise decoupling capacitor	Piaced close to the IC VODA pin. XTR capacitor is recommended.
		Recommended	K18	+	10.0		Conve	rter (Forward Buck Mode) High-Side N-Channel MOSFET gate driver Recommended MOSFET is the CSD17578Q3A.
HIDRV1	31	Required	Q1				Converter (forward buck mode) active High- Side N-Channel MOSFET Q1 High-Side MOSFET gate drive strength	This is a loss the revents boot mode synchronous High-Side MOSTET. Refer to section. 10:2.2.5.7 Power MOSTET. Selection in the BQ325TJ calabaset for more details on the Power Stage MOSTET selection or iterrion. For non-deal larguest with DMI contraints, add an operimentally distribut resistance to slow down the Q1 turne on and turn off.
	-	Recommended	R _{HIDRV1}	0Ω		_	limiting resistor	erter (Forward Buck Mode) Low-Side N-Channel MOSFET gate driver
LODRV1	29	Required	Q2				Converter (forward buck mode) synchronous Low-Side N-Channel MOSFET Q2 Low-Side MOSFET gate drive strength	Recommended MODIFT to the COLITIZEIAN This is also the revent source active Look Sold MODIFT. That to active the revent stage MODIFT selection in the RQ2TIX database for more details on the Power Stage MODIFT selection criterion. The non-steal large with this for contrast, add an experimentally derived resistances to slow down the Q2 turn on and turn off.
		Recommended	R _{108V1} C19	00	150 pF		limiting resistor Low-Side MOSFET Gate-Source holding capacitor	Steed to increase the effective Cgs in comparison to the Cgd of Q2. This helps prevent the Miller capacitance from driving the MOSFET gate during a high dV/dt event. This is more important when Qgs and Qgd of Q2 are similar in magnitude.
		Required	11	1 uH	2.2 uH	3.3 uH	Converter Inductor	Boost smithing nodes and High SIGE MOSSEE BOOSTRap in Elvork SWI and SW2 should be connexed to minimize the inductor path from the IC pin to the inductor, 11. And for to section 12.2.2 inductor Selection in the GJS711 delatables for more details on the inductor selection criterion.
SW1-SW2, BTST1,	32-23,	Required	C15	L	47 nF		Converter bootstrap capacitor for Q1 High- Side N-Channel MOSFET gate driver	
BTST2	30, 25	Recommended	R _{ettst1}	0Ω	47 nF	-	Bootstrap capacitor discharge current limiting resistor Converter bootstrap capacitor for Q4 High-	For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q1 turn-on.
		Required	R _{atst2}	0 0	-7 05		Side N-Channel MOSFET gate driver Bootstrap capacitor discharge current limiting resistor	For non-ideal layouts with IMI contraints, add an experimentally derived resistance to slow down the Q4 turn on.
HIDRV2	24	Required	Q4				Converter (forward boost mode) synchronous High-Side N-Channel MOSFET	Recommended MODIFT is the COLITYRIAN This is also the revenue stance scalar work MODIFT. Refer to section 122.2.5 Power MODIFT. Selection in the BQ2571X datasheet for more details on the Power Stage MODIFT selection oriterion.
<u> </u>	-	Recommended	R _{HDRV1}	0Ω			Q4 High-Side MOSFET gate drive strength limiting resistor	For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q4 turn on and turn-off. rter (Forward Boost Mode) Low-Side N-Channel MOSFET gate driver
		Required	Q3				Converter (forward boost mode) active Low- Side N-Channel MOSFET	Recommended MOSFIT is the CDD1757823A. This is also the revense buck mode synchronous MOSFET. Refer to acction LD257 Sover MOSFET Solection in the BQ2571X datasheet for more details on the Power Stage MOSFET selection criterion.
LODRV2	26	Recommended	R _{LORV1}	٥Ω			Q3 Low-Side MOSFET gate drive strength limiting resistor	For non-ideal layouts with EMI contraints, add an experimentally derived resistance to slow down the Q3 turn-on and turn-off.
1		Recommended	C19		150 pF		Low-Side MOSFET Gate-Source holding capacitor	Sized to increase the effective Cgs in comparison to the Cgd of Q3. This helps prevent the Miller capacitance from driving the MOSFET gate during a high dV/dt event. This is more important when Qgs and Qgd of Q3 are similar in magnitude.
L	ı			ı			L	

								BQ2571X - Output Power Design
								→ SYSTEM+
							L.	C41 * C48/C49 C8/C9/C7/ • SYSTEM- C8/C9/C8/C9/ C10/C21
				V1 1 BQ: BATPR 4Z YAP	LO HI /BA 2571X C ESZ C	PSYS C		R16 R16 R16 R16 R16 R16 R16 R16
PIN NAMI	E	REQUIREMENT		MIN	TYP	MAX		UTPUT POWER - DESIGN CHECKLIST COMMENTS AND RELEVANT EQUATIONS
								m output either from converter regulation of input source or battery For a 45 W to 65 W SYS lead, use at least (6x) 10 uF capacitors with an extra (2x) 10 uF DNP.
SYSTEM+ / SYSTEM+		Required	C5+C6+C7+C8+C 9+C10+C21 (C _{SHSTEM+})	60 uF	80 uF		filtering capacitors; <u>Reverse Mode</u> : Ceramic high frequency filterine input capacitors	For 39 W H0 65 W SYS load, use at least (8k) 10 uF capacitors with an extra (2x) 10 uF DNP. X7R capacitors are recommended.
		Required	C48+C49 (C _{SESTEM+})	33 uF	66 uF		Eorward Mode:Converter tantalum polymer output filtering capacitors; <u>Reverse Mode</u> : Tantalum polymer high frequency filtering input capacitor	For > SKW YSF loads, with a 45 battery configuration, use at least (1x) 33 of Eantalum polymer capacitor. For > SKW YSF loads, with a 45 battery configuration, use at least (1x) 33 of Eantalum polymer capacitors.
VSYS	22	Required						System output re-treliation sexting-goint. VSTs must be failed on the output filter stage connected to SYSTEM: The connection should be ted as close the output resonant filter portion of the system rail (C _{SUSDA}) as probable. Take precaution to not failed connect this pin significantly far away from the output filter and/or CSTS pin, such that a large R loss from the system load is sensed by VSTS.
		Recommended-DNP	C41		10 nF		Noise decoupling capacitor	Placed close to the IC VSYS pin.
BATTERY+/ BATTERY-		Required	C26	10 uF	10 uF		Charge current regulation stability and filtering capacitor	Extract bit SMR procession for the charger Concerted to the SMR pink capacitor is critic for accurate battering voltage saming. From the SMR pin, the Constant Voltage (X) phase of charging will regulate the voltage to the MacAurgorithmic (Voltage) Register saming, concept is above the MindpVoltage) Register setting, the sensed voltage on the SMR pin is also used as a reference to regulate the SYS pin voltage such active year. Voltage MM. XTR capacitor is recommended.
SRP-SRN	20-19	Required	RS (R _{S8})		10 mΩ	20 mΩ	Charge current sensing resistor	Differential charge current setuing For higher accuracy at light lock, increase to a mORm. This will impact the BAT and PSTs pin neasurements. In Charge current regulation for the constant Current (CC) phase of charging, the IDHG current is regulated as a differential voltage across R _{pin} such that V _{pin} = T _{Re} Charge(current) Register setting . If the charger is either in INOPM, VINDPM, Supplement Mode, or Thermal Foldback, the regulated charge current will be lower than the picegrammed volue.
		Required	C28	1 uF	1 uF		Noise filter capacitor	
		Recommended	C27 R15, R16		0.1 uF 10 Ω	10 O	Differential mode noise filterine Battery reverse polarity protection resistors	Sized with a low power rating such that in the event of a reverse polarity event with the battery pack, the resulting unintended current flow will damage RIS or RI6 first rather than the charger or the system. This acts as a cude form of reverse polarity protection.
							External battery to system power path P- Channel MOSFET (BATFET)	External battery MOSFET driver Recommended MOSFET is the CSD25402Q3A
/BATDRV	21	Required	Q7				O7 gate drive strength limiting registor	
/BATDRV	21	Required Recommended	Ramey		0.0		Q7 gate drive strength limiting resistor.	Converter external compensation networks
/BATDRV	21	Required Recommended Required Required			0 Ω 1800 pF		Q7 gate drive strength limiting resistor. Average current control outer loop	Place close to the IC COMP1 pin.
		Recommended Required Required	R _{astnov} C33		0.0		Q7 gate drive strength limiting resistor. Average current control outer loop compensation network Average current control outer loop high	
	21 16, 17	Required Recommended Required Required Required Required	RatTory C33 R22 C31 C32		0 Ω 1800 pF 40.2 kΩ 33 pF 680 pF		Q7 gate drive strength limiting resistor. Average current control outer loop compensation network Average current control outer loop high frequency filtering casacitor	Nace does to be In COMP4 pin. Make does not be In COMP4 pin. Make does not be In COMP4 pin. Make does not be In COMP4 pin.
/BATDRV COMP1, COMP2		Recommended Required Required	R ₁₄₁₇₀₇ C33 R22 C31		0 Ω 1800 pF 40.2 kΩ 33 pF		Q7 gate drive strength limiting resistor. Average current control outer loop compensation network Average current control outer loop high	Flace close to the IC COMPE pin. Ideally convert the ground return of these components to a signal ground, rather than a power ground. If not possible, convect the ground return as close to the IC PGND pin as possible.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{1}{100^{10}} \frac{1}{100^{10}} \frac{1}$	
$\frac{1}{10000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	
$\frac{1}{100^{10}} + \frac{1}{100^{10}} + \frac{1}$	
FRI NAME COMPONENT MNN TY MAX COMMUNICATION AND ISSUE VICTOR TO COMPONENT MAN TAKE MALE VALUE VICTOR TO COMPONENT MAN TAKE MALE VALUE VICTOR V	
$\frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{10000000000000000000000000000000000$	
$\frac{1}{10000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	
$\frac{1}{10000000000000000000000000000000000$	
$\frac{1}{ V_{LADT} ^2} = \frac{1}{ V_{LADT} ^2} \frac{1}{ V_{$	
$\frac{1}{ $	
Image: Section of the section of th	
$\frac{1}{ V_{ADPT} } = \frac{1}{ V_{AD$	
WILLIP Weight of the Council of the Councouncil of the Council of the Councouncil of the Counce	
$\frac{1}{100} + \frac{1}{100} + \frac{1}$	
VPULLUP Rag Communication	
VPULLUP Rag Communication	
$\frac{1}{ V_{IADPT} } = \frac{1}{ V_{IADPT} } + \frac{1}$	
VPULLUP Common and a state of the common and a state of	
Image: Control of the Contrel of the Control of the Control of the Control of the Control o	
COMMUNICATION NOM MISS INPUT/OUTPUT SIGNAL - DESIGN FIELD PIN NAME REQUIREMENT COMPONENT MAN PT MAX DESCRIPTION COMMUNICATION NOM MISS INPUT/OUTPUT SIGNAL - DESIGN FIELD OTG VAP 5 Optional - - OTG VAP node PAI HOLE service node Character Model Cha	
COMMUNICATION AND RELEVANT GOAD PH NAME ROQUREMENT COMMUNICATION AND RELEVANT GOAD COMMUNICATION AND RELEVANT GOAD 0T6/v3# 3 Optional - - 0 TG or V3# mode - <td< th=""><th></th></td<>	
COMMUNICATION AND MISC INPUT/OUTPUT SIGNAL - DESIGN CHECKUST PIN NAME REQUIREMENT COMPONENT INIT TP MAX DESCRIPTION COMMUNICATION AND MISC INPUT/OUTPUT SIGNAL - DESIGN CHECKUST OTEQ.VAR 3 Optional - - OTEG or VAP mode Analy Component of the ChargeOptional (), OTEONERg(), and OTECurrent() registers. UKOPT A - OTEG or VAP mode Name of the ChargeOptional (), OTEONERg(), and OTECurrent() registers. UKOPT A - OTEG or VAP mode Name of the ChargeOptional (), OTEONERg(), and OTECurrent() registers. UKOPT A Required 8.50 35. "O -338. Rection used indicate inductor	
COMMUNICATION AND MISC INPUT/OUTPUT SIGNAL - DESIGN CHECKUST PIN NAME REQURRMENT COMPONINT MIN TY MAX COMMUNICATION AND MISC INPUT/OUTPUT SIGNAL - DESIGN CHECKUST COMMINISAND RULEVANT EQUATIONS 0 TE(VAR 3 Optional - 0 TOTE or VAP mode PAIL Status status Direction (VDD mode EXD/D) COMMINISAND RULEVANT EQUATIONS ACDIT 8 Required 3.3 - - 0 TOTE or VAP mode PAIL Status status Direction (VDD mode EXD/D) MADE Required 3.3 - - - Indicate mode Direction Status Direction (VDD mode EXD/D) MADE Required 3.3 - <th></th>	
PRI NAME RQUIRENTY COMPONENT MN PT MAX DESCRIPTION COMMINIST AND RELEVANT QUATIONS OTE(VAP 3 Optional . <th></th>	
PRI NAME RQUIRENTY COMPONENT MN PT MAX DESCRIPTION COMMINIST AND RELEVANT QUATIONS OTE(VAP 3 Optional . <th></th>	
OTG/VAP 5 Optical - - - OTG or VAP mode PAIL Hold to enable OTG or VAP mode. PAIL Hold to enable OTG or VAP mode. MUTT A TG or VAP mode PAIL Hold to enable OTG or VAP mode. MUTT A Regured R-30 3% "0 -3% Restor used to indicate inductor setting on analysis of tables of Digot ourrent enablements output VFADPT = IADPT_GAIN VFADPT Feastor used to indicate inductor setting on analysis of tables of Digot ourrent enablements output VFADPT = IADPT_GAIN VFADPT Feastor used to indicate inductor setting on analysis of Digot ourrent enablements output VFADPT = IADPT_GAIN VFADPT Feastor used to indicate inductor setting on analysis of Digot ourrent enables	
Optical · </th <th></th>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$IN \times V_{ACP-ACN}$, when inforward mode
LUD T B Interview Image: superserved measurement Image: supersummable in the ChargeOptionO() Register.	
Image: Control of Accompany	× V _{ACN-ACP} , when in reverse OTG mode
Nomenandation CB 100 pF Note decoupling (capacitor Independent comparison reference vitrage, plant) and durgit CMPHL CMPUT 14,35 100 bit Full presenter for CMPUT open dam cutput independent comparison reference vitrage, plant) and durgits the programmable in the ChargeOption1) register. SCI, 10A 13,12 Reguined R32,835 100 bit Full presentor for the open dam Core LC ePMBls Optional communication is register and durgits SCI, 10A 13,12 Reguined R32,835 100 bit Pullage resistors for the open dam Dir unit with the independent comparators is full communication is register and durgits IBAT 9 Optional C17 100 pF Analege vitrage register and exciput Pullage resistors for the open dam Dir unit with the information is reguined and durgits IBAT 9 Optional C17 100 pF Analege vitrage output representing the interview of the disc of the interview of the disc of	ach acr
OutFig. Optimal Rp 13 In 0 Pulip resume for OVPCUT game durin organization in the programmable in the DargeOptimal) independent comparator in femeres what pp, puling and durin organization in the programmable in the DargeOptimal) independent comparator in femeres what pp, puling and durin Optimal communication in programmable in the DargeOptimal) independent comparator in the Optimal communication in programmable in the DargeOptimal) independent comparator in the Optimal communication in programmable in the Optimal communication in programmable in the Optimal Comparator	
Control Control <t< th=""><th></th></t<>	
Sci. 10A 13.12 Regured R32, R35 10 kD Fullup resistors for the open-dum ID cor MBlue sciences and due communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and data communication is required for charge to operate on this device as intended. This is a host controlled of MBlue science and the immediation of the science and the immediation of the science and the immediation measurement. Ville at the immediation of the science and the immediation of the science and the immediation of the charge optical (Register. Ville at the immediation (Ville at the immediation) (Ville at the immediation of the charge optical (Register.	
SG, 15A 13, 12 Required R12, R35 10 kD Pulsar statutes for the span due to CD- SMBes cended and SCD- MBes cende and data communication bas without be care to the span due to CD- MBes cende and data communication bas without be care to the span due to CD- mesoure mean. ICC or SMBes cenderations in required for charging to operate on this device as intended. This a a host controlled of without be care to the span due to CD- mesoure mean. IBAT 9 Optional C37 100 pF Analog voltage output representing the mesoure mean. ICC or SMBes center due to the charge option(0) Register. V _{IBAT} = IBAT_GAIN VIBAT 100 pF Statury charge or durating carriest mesoure mean. ICC or SMBes center due to the CBAR pin. V _{IBAT} = IBAT_GAIN VIBAT 100 pF Analog voltage output representing the mesoure mean. ICC or SMBes center due to the CBAR pin. V _{IBAT} = IBAT_GAIN VIBAT 100 pF Analog voltage output representing the mesoure mean. ICC or SMBes center due to the CBAR pin. V _{IBAT} = IBAT_GAIN VIBAT IBAT 9 Optional ICC or SMBes center due to the CBAR pin. V _{IBAT} = IBAT_GAIN	
Regard R32, 433 10 kD SMBus clock and data communication bus window flow information. IBAT 9 Optional C17 100 pF Addag voltage output representing the networked output. Face clock to bit at CMA give. VIBAT = IBAT_GAIN IBAT 9 Optional C17 100 pF Addag voltage output representing the networked output. Face clock to bit at CMA give. VIBAT = IBAT_GAIN VIBAT 100 pF Addag voltage output representing the networked to the ChargeOptionO() Register. VIBAT = IBAT_GAIN VIBAT 100 pF Addag voltage output representing the networked to the ChargeOptionO() Register. VIBAT = IBAT_GAIN VIBAT 100 pF Addag voltage output representing to poor annual to the ChargeOptionO() Register. VIBAT	narging buck-boost controller. Charging is not autonomous
IBAT 9 Optional CI7 100 pF Actiog voltage output representing the backurg output appendix output representing the measurement Image: Content output represente Image: Content output representing the measurement<	
IBAT 9 Optional C37 100 pF Analog voltage output representing the battery charge or programmable in the ChargeOptionO[] Register. $V_{IBAT} = IBAT_GAIN$ IBAT 9 Optional C37 100 pF battery charge or programmable in the ChargeOptionO[] Register. $V_{IBAT} = IBAT_GAIN$ IBAT 9 Optional C37 100 pF battery charge or programmable in the ChargeOptionO[] Register. $V_{IBAT} = IBAT_GAIN$ IBAT 0 P Analog voltage output representing the programmable in the ChargeOptionO[] Register. $V_{IBAT} = IBAT_GAIN$ IBAT 0 P Analog voltage output representing the programmable in the ChargeOptionO[] Register. Image: P	
HAT 9 Optional C17 100 pF balance compared and propressing the state of the state o	
Optional C17 100 pF battery charge or dicharge current measurement ViBAT = IBAT_GAIN ViBAT = IBAT_GAIN Analog system power measurement of option The PSS_BATO setting is programmable in the ChargeOption[] Register.	$N \times V_{SRP-SRN}$, when battery is charging
Analog system power measurement on port Analog system power measurement on port Pherson and the strength of the charged plant and the strength of the streng	
The PSYS_RATIO setting is programmble in the ChargeOption1) Register.	× V _{SRN-SRP} , when battery is discharging
The PSYS_RATIO setting is programmble in the ChargeOption1) Register.	
Analog current output representing the solution of the solutio	
PSYS 10 Optional R34 30.1 kD system power, measured as a voltage across in reverse OTG mode, PSYS either measure the total battery output power or the system	
R34. power, which can be set in the Chargodynical grigiter. Vp _{SYS} = R: The PSYS calculation assumes 100% efficiency.	$34 \times PSYS_RATIO \times (V_{ACP}I_{IN} + V_{SRN}I_{BAT})$
Priced by 100 king depending and the Place close to the IC PSYS pin.	
Cipatina Cipas 200 pri Noise decorpring capacitor	
Active LOW open-drain output signal for Processor Hot flags /PROCHOT 11 Octional R25 10 kg Pullup resistor for/PROCHOT open drain	
Upplonal A.3 au su ostout Active HiGH open-drain output signal of input source status	
Pulls HIGH when 3.2 V < VBUS < 26 V and no Faults are present.	
CHRG_0K 4	
R36 CHR_G OK LED indication control D4 CHRG_OK LED indication control	
Q11 IC Thermal dissipation pad	
PwrPad -	
Required • Main point of heat dissipation for the IC Connect to a large Power Ground plane(s) and/or layer(s) with at exact s-point via connections	