
LM(2)5145/46-Q1 DC-DC Controller Design Tool

About = Input Box TERMS OF U

Step 2: Filter Inductor

Recommended Filter Inductance	8.8	μН
Inductance, Lo	10	μΗ
Inductor DCR	16.5	mΩ
Pk-to-Pk Ripple Current at V _{IN(nom)} , ΔI _L	4.8	A _{PK-PK}
Inductor Ripple Current as a % of Max Iout	30	%
Estimate Core Loss at V	0.2	w

Step 3: R_{DS(on)} or Shunt-Based Current Limit

RDS (on)	sensing▼		
	Requi	red Current Limit Setpoint	30 A
		rrent Limit Set Resistor, RILIM	453 Ω
	Mir	n Inductor Sat Current, I _{L(SAT)}	38.4 A

Step 4: Output Capacitance

Output Voltage Ripple Specification	200	mV _{PK-PK}
Minimum Ideal Output Capacitance	12	μF
Total Output Capacitance (Derated), Cout	480	μF
Maximum Permitted ESR	42	mΩ
Output Capacitor ESR	37	mΩ
Resulting Output Voltage Ripple	176	mV_{PK-PK}
Output Capacitor Ripple Current	1.4	A _{RMS}

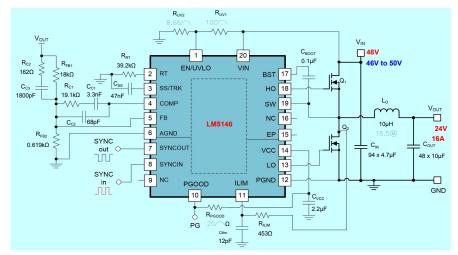
Step 5: Input Capacitance

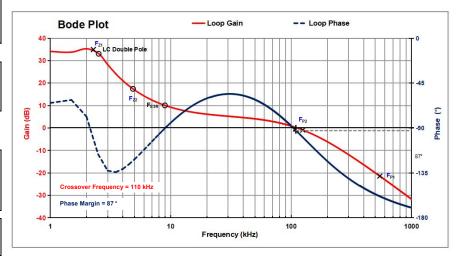
Input Voltage Ripple Specification	480	mV _{PK-PK}
Minimum Ideal Input Capacitance	33	μF
Total Input Capacitance (Derated), C _{IN}	440	μF
Maximum Permitted ESR	24	mΩ
Input Capacitor ESR	3	mΩ
Resulting Input Voltage Ripple	91	mV_{PK-PK}
Input Capacitor Ripple Current	8.0	Anuc

Step 6: Soft-start, UVLO

Soft-Start Time, t _{ss}	4	ms
Soft-Start Capacitance, C _{SS}	47	nF
Input Voltage UVLO Turn-On	15	V
Input Voltage UVLO Turn-Off	14	V
UVLO Upper Resistor, R _{UV1}	100	kΩ
LIVI O Lower Posister P	0.00	l ₁ O

If the SYNC feature is not required, connect SYNCIN to GND or VCC for diode emulation or FPWM modes, respectively


Step 7: Compensation Design

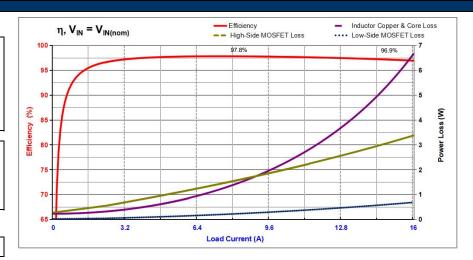

inpensation besign		
LC Complex Pole Frequency	2.3 kHz	Ī
ESR Zero Frequency	9 kHz	
Desired Crossover Frequency	36 ♀ kHz	
Appropriate Midband Gain	1.05 V/V	
Upper Feedback Resistor, R _{FB1}	18 kΩ	
Lower Feedback Resistor, R _{FB2}	0.619 kΩ	
Actual Output Voltage, Vout	24.063 V	

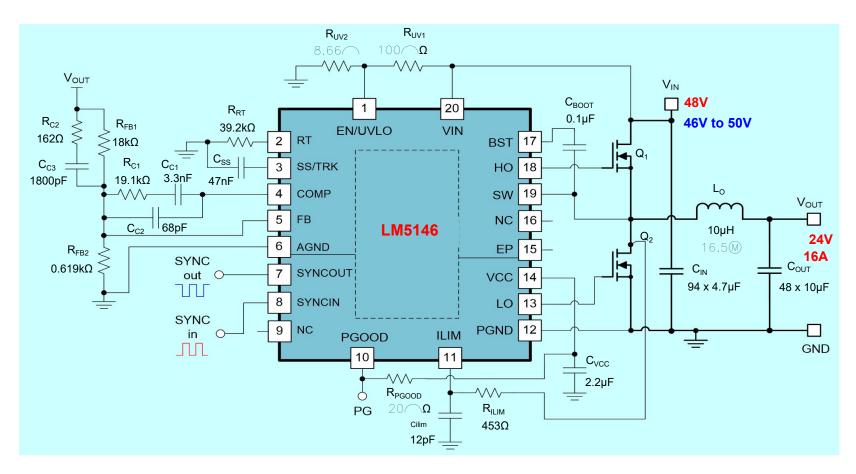
Pole & Zero Placement	F _{Z1}	2.5	‡	kHz
Baseline P/Z Frequencies:	F _{z2}	4.8	¢	kHz
	F _{P1}	536	¢	kHz
	F _{P2}	128	¢	kHz

Compensation Components

(alculated	/ Std Values	Selecter	1	Actual P/Z Frequenc	ie
R _{C1}	18.9	19.1	19.1	kΩ	2.5 kHz (F _{z1})	
C _{C1}	3363	3300	3300	рF	4.9 kHz (F _{z2})	
Cc2	67	68	68	pF	546 kHz (F _{P1})	
R _{C2}	163	162	162	Ω	125 kHz (F _{P2})	
Cas	1826	1800	1800	пF		

Efficiency / Power Loss Analyzer


Step 8: Efficiency


High-Side MOSFET (Q ₁) Specifications	TPH4R0	08NH
On-State Resistance, R _{DS(on)}	3.3	mΩ
Total Gate Charge, Q _G	59	nC
Gate-Drain Charge, Q _{GD}	12	nC
Gate-Source Charge, Q _{GS}	18	nC
Output Capacitance, Coss	890	pF
Gate Resistance, R _G	1.2	Ω
Transconductance, g _{FS}	45	s
Gate-Source Plateau Voltage, V _{GS(MP)}	3	V
Body Diode Forward Voltage, V _{BD1}	0.8	V
Thermal Resistance, θ _{JA}	55	°C/W

Low-Side MOSFET (Q₂) Specifications TPH4R008NH On-State Resistance, R_{OS(en)} Total Gate Charge, Q₀ Output Charge, Q_{0ss} 12 nC Output Charge, Q_{0ss} Body Diode Forward Voltage, V_{0ss} Body Diode Recovery Charge, Q_{Re} Thermal Resistance, Q_{Re} 40 °C/W 40 °C/W 40 °C/W 40 °C/W

tep 9: IC Power Loss

Step 9: IC Power	LOSS	
External VCC Appli▼	IC Power Dissipation	0.32 W
IC lunctic	n Temperature Rice (ect)	16 1 °C

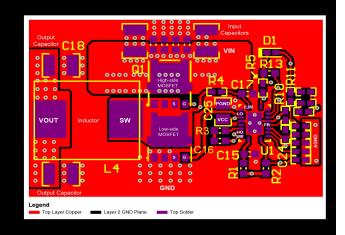
^{**} Tie SYNCIN to VCC and GND for CCM and DCM operation, respectively ** $\,$

VIN = 48V, VOUT = 24V, IOUT = 16A, Fsw = 255kHz, Current Limit = 30A

Wide V_{IN} , High Efficiency Synchronous Buck Regulator BOM

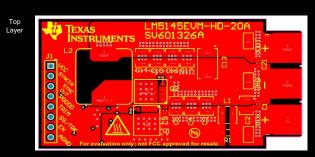
Count	Ref Des	Value	Description		Size		Part Number	MFR
1	C _{BOOT}	0.1µF	Capacitor, Ceramic, 0.1µF, 25V, X7R, 20%		0603	•	Std	Std
1	C _{C1}	3300pF	Capacitor, Ceramic, 3300pF, 16V, X7R, 10%		0402	•	Std	Std
1	C _{C2}	68pF	Capacitor, Ceramic, 68pF, 50V, NP0, 5%		0402	•	Std	Std
1	C _{C3}	1800pF	Capacitor, Ceramic, 1800pF, 50V, NP0, 5%		0402	~	Std	Std
1	Cs	12pF	Capacitor, Ceramic, 12pF, 100V, X7R, 20%		0603	•	Std	Std
44	C _{IN}	4.7μF	Capacitor, Ceramic, 4.7µF, 100V, X7S, 10%		1210	~	Std	Std
48	C _{OUT}	10µF	Capacitor, Ceramic, 10µF, 50V, X7R, 10%		1210	~	Std	Std
1	C _{ss}	47nF	Capacitor, Ceramic, 47nF, 16V, X7R, 10%		0603	•	Std	Std
1	C _{VCC}	2.2µF	Capacitor, Ceramic, 2.2µF, 25V, X7R, 20%		0805	•	Std	Std
1	C _{VIN}	0.1μF	Capacitor, Ceramic, 0.1µF, 50V, X7R, 20%		0603	•	Std	Std
1	Lo	10µH	Inductor, 10μH, 16.5mΩ, >39A		10mm x 10mm	•	Various	Various
1	Q_1	See description	MOSFET, N-CH, 80V/100V, 3.3mΩ	Quantity: 1	SON 5 x 6		TPH4R008NH	TI
1	Q_2	See description	MOSFET, N-CH, 80V/100V, 3.3mΩ	Quantity: 1	SON 5 x 6		TPH4R008NH	TI
1	R _{C1}	19.1k	Resistor, Chip, 19.1kΩ, 1/16W, 1%		0402	▼	Std	Std
1	R _{C2}	162	Resistor, Chip, 162Ω, 1/16W, 1%		0402	▼	Std	Std
1	R _{ILIM}	453	Resistor, Chip, 453Ω, 1/16W, 1%		0805	▼	Std	Std
1	R _{RT}	39.2k	Resistor, Chip, 39.2kΩ, 1/16W, 1%		0402	▼	Std	Std
1	R _{FB1}	18k	Resistor, Chip, 18kΩ, 1/16W, 1%		0402	▼	Std	Std
1	R _{FB2}	0.619k	Resistor, Chip, 0.619kΩ, 1/16W, 1%		0402	▼	Std	Std
1	R _{PGOOD}	20k	Resistor, Chip, 20kΩ, 1/16W, 1%		0402	•	Std	Std
1	R _{UV1}	100k	Resistor, Chip, 100kΩ, 1/16W, 1%		0603	—	Std	Std
1	R _{UV2}	8.66k	Resistor, Chip, 8.66kΩ, 1/16W, 1%		0402	•	Std	Std
1	R _{VIN}	2.2	Resistor, Chip, 2.2Ω, 1/16W, 1%		0402	•	Std	Std
1	U ₁	LM5146	IC, LM5146 PWM Controller, 5.5V-100V Input		VQFN-20		LM5146RGYR	TI

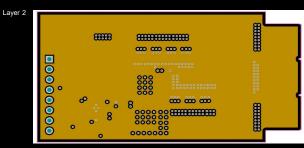
Total Solution Size (I

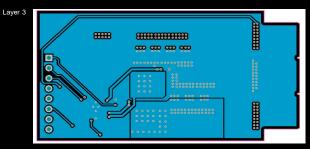

NOTES:

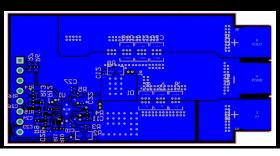
^{**} Inductor saturation current should be higher than the current limit setpoint at all operating temperatures **

** Effective output capacitance should be appropriately **derated** for applied voltage and temperature, particularly with **ceramics** **


LM(2)5145/6/-Q1 Quickstart Calculator




LM5145EVM -HD-20A PCB Layout



Bottom

