LM(2)5145/46-Q1 DC-DC Controller Design Tool About = Input Box TERMS OF U ## Step 2: Filter Inductor | Recommended Filter Inductance | 9.4 | μН | |---|-----|--------------------| | Inductance, L _F | 10 | μΗ | | Inductor DCR | 2.8 | mΩ | | Pk-to-Pk Ripple Current at V _{IN(nom)} , ΔI _L | 2.4 | A _{PK-PK} | | Inductor Ripple Current as a % of Max Iout | 31 | % | | Estimate Core Loss at V | 0.4 | w | #### Step 3: R_{DS(on)} or Shunt-Based Current Limit | RDS (on) | sensing▼ | | , | |----------|----------|---|--------| | | Requir | red Current Limit Setpoint | 80 A | | | | rrent Limit Set Resistor, RILIM | 1300 Ω | | | Mir | n Inductor Sat Current, I _{L(SAT)} | 97.2 A | ## Step 4: Output Capacitance | Output Voltage Ripple Specification | 100 | mV _{PK-PK} | |--|-----|---------------------| | Minimum Ideal Output Capacitance | 12 | μF | | Total Output Capacitance (Derated), Cout | 110 | μF | | Maximum Permitted ESR | 42 | mΩ | | Output Capacitor ESR | 1 | mΩ | | Resulting Output Voltage Ripple | 11 | mV_{PK-PK} | | Output Canacitor Ripple Current | 0.7 | A | #### Step 5: Input Capacitance | p o. input oupucituries | | | |--|-----|---------------------| | Input Voltage Ripple Specification | 500 | mV _{PK-PK} | | Minimum Ideal Input Capacitance | 15 | μF | | Total Input Capacitance (Derated), C _{IN} | 50 | μF | | Maximum Permitted ESR | 41 | mΩ | | Input Capacitor ESR | 2 | mΩ | | Resulting Input Voltage Ripple | 164 | mV_{PK-PK} | | Innut Conseiter Dinale Correct | 2.7 | Δ | ## Step 6: Soft-start, UVLO | Soft-Start Time, t _{SS} | 4 | ms | |---|-----|----| | Soft-Start Capacitance, C _{SS} | 47 | nF | | Input Voltage UVLO Turn-On | 17 | V | | Input Voltage UVLO Turn-Off | 16 | V | | UVLO Upper Resistor, R _{UV1} | 100 | kΩ | | LIVII O Lauren Desisten D | | | UVLO Lower Resistor, R_{UV2} 7.68 k Ω If the SYNC feature is not required, connect SYNCIN to GND or VCC for DCM or CCM operation, respectively #### Step 7: Compensation Design | LC Complex Pole Frequency | 4.8 kHz | | |---|----------|--| | ESR Zero Frequency | 1447 kHz | | | Desired Crossover Frequency | 30 Ç kHz | | | Appropriate Midband Gain | 0.42 V/V | | | Upper Feedback Resistor, R _{FB1} | 22.1 kΩ | | | Lower Feedback Resistor, R _{FB2} | 1.58 kΩ | | | Actual Output Voltage, Volt | 11.990 V | | | Pole & Zero Placement | F _{Z1} | 3.4 | ‡ | kHz | |---------------------------|-----------------|------|----------|-----| | Baseline P/Z Frequencies: | F _{z2} | 4.3 | ¢ | kHz | | | F _{P1} | 1447 | ¢ | kHz | | | F | 128 | <u>_</u> | kH7 | ## Compensation Components | | C | alculated | / Std Values | Selected | d | Actual P/Z Frequenc | ie | |---|-----------------|-----------|--------------|----------|----|------------------------------|----| | F | ₹ _{C1} | 9.2 | 9.31 | 2.15 | kΩ | 9.0 kHz (F _{z1}) | | | c | C1 | 5144 | 4700 | 8200 | pF | 11.6 kHz (F _{z2}) | | | c | C2 | 139 | 150 | 560 | pF | 36777 kHz (F _{P1}) | | | F | R _{C2} | 66 | 66.5 | 6.98 | Ω | 141 kHz (F _{P2}) | | | c | | 1662 | 1800 | 620 | nF | | | ## Efficiency / Power Loss Analyzer ### Step 8: Efficiency | High-Side MOSFET (Q ₁) Specifications TPH4R008NH | | | | | | | | |--|---------|------|--|--|--|--|--| | On-State Resistance, R _{DS(on)} | 3.3 | mΩ | | | | | | | Total Gate Charge, Q _G | 59 | nC | | | | | | | Gate-Drain Charge, Q _{GD} | 12 | nC | | | | | | | Gate-Source Charge, Q _{GS} | 18 | nC | | | | | | | Output Capacitance, Coss | 890 | pF | | | | | | | Gate Resistance, R _G | 1.2 | Ω | | | | | | | Transconductance, g _{FS} | 100 | | | | | | | | Gate-Source Plateau Voltage, V _{GS(MP)} | 2.0-4.0 | V | | | | | | | Body Diode Forward Voltage, V _{BD1} | 0.8 | V | | | | | | | Thermal Resistance, θ _{JA} | 50 | °C/W | | | | | | | Low-Side MOSFET (Q2) Specifications | TPH4R0 | 08NH | |--|--------|------| | On-State Resistance, R _{DS(on)} | 3.3 | mΩ | | Total Gate Charge, Q _G | 59 | nC | | Output Charge, Qoss | 12 | nC | | Output Capacitance, Coss | 890 | pF | | Body Diode Forward Voltage, V _{BD2} | 0.9 | V | | Body Diode Recovery Charge, Q _{RR} | 111 | nC | | Thermal Resistance, θ _{JA} | 50 | °C/W | | Antiparallel Schottky Diode (if applicable) | | | | Ochombo Diodo Formand Valence V | _ | | #### tep 9: IC Power Loss | 5 | ep 3. 10 | FOWE | | 055 | | |----|----------|---------|------|------------------------|---------| | No | External | VCC | • | IC Power Dissipation | 0.77 W | | | | IC June | tion | Temperature Rise (est) | 38.5 °C | Schottky Diode Recovery Charge, Q_{RR2} ^{**} Tie SYNCIN to VCC and GND for CCM and DCM operation, respectively ** ## VIN = 24 V, VOUT = 12 V, IOUT = 7.5 A, Fsw = 255 kHz, Current Limit = 80 A # Wide V_{IN} , High Efficiency Synchronous Buck Regulator BOM | Count | Ref Des | Value | Description | | Size | | Part Number | MFR | |-------|--------------------|-----------------|---|-------------|-------------|----------|-------------|---------| | 1 | C _{BOOT} | 0.1µF | Capacitor, Ceramic, 0.1µF, 25V, X7R, 20% | | | • | Std | Std | | 1 | C _{C1} | 8200pF | Capacitor, Ceramic, 8200pF, 16V, X7R, 10% | | 0402 | • | Std | Std | | 1 | C _{C2} | 560pF | Capacitor, Ceramic, 560pF, 50V, NP0, 5% | | 0402 | • | Std | Std | | 1 | C _{C3} | 620pF | Capacitor, Ceramic, 620pF, 50V, NP0, 5% | | 0402 | ~ | Std | Std | | 1 | C _S | N/A | Capacitor, Ceramic, N/A, 100V, X7R, 20% | | 0603 | • | Std | Std | | 5 | C _{IN} | 4.7μF | Capacitor, Ceramic, 4.7µF, 100V, X7S, 10% | | 1210 | ▼ | Std | Std | | 5 | C _{OUT} | 22µF | Capacitor, Ceramic, 22µF, 16V, X7R, 10% | | 1210 | ▼ | Std | Std | | 1 | C _{ss} | 47nF | Capacitor, Ceramic, 47nF, 16V, X7R, 10% | | 0603 | • | Std | Std | | 1 | C _{VCC} | 2.2µF | Capacitor, Ceramic, 2.2µF, 25V, X7R, 20% | | 0805 | • | Std | Std | | 1 | C _{VIN} | 0.1µF | Capacitor, Ceramic, 0.1µF, 50V, X7R, 20% | | 0603 | • | Std | Std | | 1 | L _F | 10µH | Inductor, 10μH, 2.8mΩ, >98A | | 10mm x 10mm | - | Various | Various | | 1 | Q_1 | See description | MOSFET, N-CH, 80V/100V, 3.3mΩ | Quantity: 1 | SON 5 x 6 | • | TPH4R008NH | TI | | 1 | Q_2 | See description | MOSFET, N-CH, 80V/100V, 3.3mΩ | Quantity: 1 | SON 5 x 6 | | TPH4R008NH | TI | | | | | | | | | | | | 1 | R _{C1} | 2.15k | Resistor, Chip, 2.15kΩ, 1/16W, 1% | | 0402 | ▼ | Std | Std | | 1 | R _{C2} | 6.98 | Resistor, Chip, 6.98Ω, 1/16W, 1% | | 0402 | ▼ | Std | Std | | 1 | R _{ILIM} | 1300 | Resistor, Chip, 1300Ω, 1/16W, 1% | | 0805 | ▼ | Std | Std | | 1 | R _{RT} | 39.2k | Resistor, Chip, 39.2kΩ, 1/16W, 1% | | 0402 | ▼ | Std | Std | | 1 | R _{FB1} | 22.1k | Resistor, Chip, 22.1kΩ, 1/16W, 1% | | 0402 | ▼ | Std | Std | | 1 | R _{FB2} | 1.58k | Resistor, Chip, 1.58kΩ, 1/16W, 1% | | 0402 | ▼ | Std | Std | | 1 | R _{PGOOD} | 20k | Resistor, Chip, 20kΩ, 1/16W, 1% | | 0402 | • | Std | Std | | | | | | | | | | | | 1 | R _{UV1} | 100k | Resistor, Chip, 100kΩ, 1/16W, 1% | | 0603 | • | Std | Std | | 1 | R _{UV2} | 7.68k | Resistor, Chip, 7.68kΩ, 1/16W, 1% | | 0402 | • | Std | Std | | 1 | R _{VIN} | 2.2 | Resistor, Chip, 2.2Ω, 1/16W, 1% | | 0402 | • | Std | Std | | 1 | U₁ | LM5145 | IC, LM5145, PWM Controller, 6V-75V Input | | VQFN-20 | | LM5145RGYR | TI | **Total Solution Size (I** ## NOTES: ^{**} Inductor saturation current should be higher than the current limit setpoint at all operating temperatures ** ^{**} Effective output capacitance should be appropriately derated for applied voltage and temperature, particularly with ceramics ** # LM(2)5145/6/-Q1 Quickstart Calculator LM5145EVM -HD-20A PCB Layout Bottom