TPS40170EVM-578 评估板疑问

近期个人使用 TPS40170 芯片过程中,在环路补偿设计阶段,对于数据手册 DEMO 电路补偿网络参数取值有疑问。按照同样的设计要求,自己计算、使用 Ti 计算器 SLUC263、SIMPLIS 仿真 3 种方法得到的结果均与数据手册给出的结果不一致。希望官方工程师或者前辈帮忙看看问题出在哪里呢。

首先贴出全部的电路图、设计指标、器件选型。

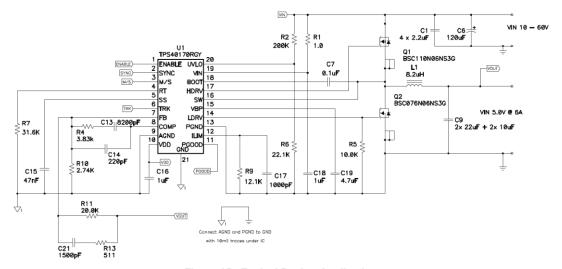


Figure 35. Typical Design Application

图 1 TPS40170 数据手册 DEMO 电路原理图

表 1 TPS40170 数据手册 DEMO 电路设计指标

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT	
V _{IN}	Input voltage		10		60		
V _{IN(ripple)}	Input ripple	I _{OUT} = 6 A			0.5	V	
V _{OUT}	Output voltage	0 A ≤ I _{OUT} ≤ 20 A	4.8	5.0	5.2		
	Line regulation	10 V ≤ V _{IN} ≤ 60 V			0.5%		
	Load regulation	0 A ≤ I _{OUT} ≤ 6 A			0.5%		
V _{RIPPLE}	Output ripple	I _{OUT} = 6 A			100		
V _{OVER}	Output overshoot	ΔI _{OUT} = 2.5 A		250		mV	
V _{UNDER}	Output undershoot	ΔI _{OUT} = -2.5 A		250			
I _{OUT}	Output current	10 V ≤ V _{IN} ≤ 60 V	0		6	Α	
t _{SS}	Soft-start time	V _{IN} = 24 V		4		ms	
I _{SCP}	Short circuit current trip point		8			Α	
η	Efficiency	V _{IN} = 24 V, I _{OUT} = 6 A		94%			
f _{SW}	Switching frequency			300		kHz	
	Size				1.5	in ²	

Table 1. Design Requirements

表 2 TPS40170 数据手册 DEMO 电路 BOM

Table 2. Design Example List of Materials

Tuble 2. Besign Example List of Materials							
REFERENCE DESIGNATOR	QTY	VALUE	DESCRIPTION	SIZE	PART NUMBER	MANUF	
C1	4	2.2 μF	Capacitor, Ceramic, 100 V, X7R, 15%	1210	Std	Std	
C6	1	120 µF	Capacitor, Aluminum, 63 √, 20%, KZE Series	0.315"	KZE63VB121M10X16LL	Chemi-con	
C7	1	0.1 μF	Capacitor, Ceramic, 50 V, X7R, 15%	603	Std	Std	
C9	2 ea	22 μF 10 μF	Capacitor, Ceramic, 16 V, X7R, 15%	1210	Std	Std	
C13	1	8200 pF	Capacitor, Ceramic, 50 V, X7R, 15%	603	Std	Std	
C14	1	220 pF	Capacitor, Ceramic, 50 V, X7R, 15%	603	Std	Std	
C15	1	47 nF	Capacitor, Ceramic, 50 V, X7R, 15%	603	Std	Std	
C16	1	1 μF	Capacitor, 1 6V, X7R, 15%	603	Std	Std	
C17	1	1000 pF	Capacitor, Ceramic, 50 V, X7R, 15%	603	Std	Std	
C18	1	1 μF	Capacitor, Ceramic, 100 V, X7R, 15%	1206	Std	Std	
C19	1	4.7 µF	Capacitor, Ceramic, 16 V, X5R, 15%	805	Std	Std	
C21	1	1500 pF	Capacitor, Ceramic, 50 V, X7R, 15%	603	Std	Std	
L1	1	8.2 µH	Inductor, SMT, 10 A, 16 mΩ	0.51"2	IHLP5050FDER8R2M01	∨ishay	
Q1	1		MOSFET, N-channel, 60 V, 50 A, 11 mΩ		BSC110N06NS3G	Infineon	
Q2	1		MOSFET, N-channel, 60 ∨, 50 A, 7.6 mΩ		BSC076N06NS3G	Infineon	
R10	1	2.74 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R4	1	3.83 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R5	1	10.0 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R9	1	12.1 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R11	1	20.0 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R6	1	22.1 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R7	1	31.6 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R2	1	200 kΩ	Resistor, Chip, 1/16W, 1%	603	Std	R603	
R13	1	511 kΩ	Resistor, Chip, 1/16W, 1%	603	Std R603		
U1			IC, 4.5 V - 60 V wide input sync. PWM buck controller		TPS40170RGY	Texas Instruments	

- 1	** ****	-	-				_		
	K _{PWM} ⁽¹⁾	PWM Gain	(V _{IN} / V _{RAMP})	4.5 V < V _{IN} ≤ 60 V	14	15	16	V/V	1

8.2.2.19 Compensation: (R4, R13, C13, C14, C21)

Using the TPS40k Loop Stability Tool for a 60 kHz bandwidth and a 50° phase margin with an R11 value of 20.0 k Ω , the following values are obtained. The tool is available from the TI website, SLUC263.

- C21 = C1 = 1500 pF
- C13 = C2 = 8200 pF
- C14 = C3 = 220 pF
- R13 = R2 = 511 Ω
- R4 = R3 = 3.83 kΩ

8.2.3 Application Curves

Figure 36 shows an input from 10 V to 60 V for an output of 5.0 V at 6 A, efficiency graph for this design. Figure 37 shows an input of 24 V for an output of 5.0 V at 6 A, loop response where V_{IN} = 24V and I_{OUT} = 6A, yielding 58 kHz bandwidth, 51° phase margin. Figure 38 shows the output ripple 20 mV/div, 2 µs/div, 20 MHz bandwidth.

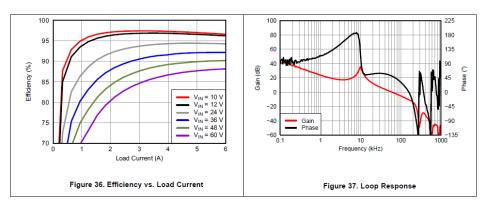


图 2 TPS40170 数据手册 DEMO 电路测试结果

在数据手册第 35 页给出了环路补偿元器件参数以及环路响应曲线。这里指出,设计要求是带宽 F_{CO} 为 60kHz,相位裕度 50°,数据手册第 5 页给出了其 $K_{PWM}=V_{in}/V_{RAMP}=15$, $R_{in}=R_{11}=20\mathrm{k}\Omega$, $f_{LC}=1/(2\pi\sqrt{LC})=6.947\mathrm{kHz}$ 。根据这些参数,按照穿越频率处开环增益为 0dB 的原则,计算误差放大器反馈电阻,方法参考《精通开关电源设计》第一版第 7 章,此外也参阅了 Intersil 的一篇技术文档 Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators,以及 Ti 的 switch mode power convert compensation 文档,方法一致如下:

$$\begin{split} R_{fb} &= \frac{f_{co}}{f_{LC}} \frac{V_{RAMP}}{V_{IN}} R_{in} \\ &= \frac{60}{6.947} \times \frac{1}{15} \times 20k\Omega \\ &= 11.5k\Omega \end{split} \tag{1-1}$$

而评估板上给出的 R_{fb} = R_4 =3.83k Ω ,此处出现疑问点,为进一步分析问题,使用 Ti 给出的 SLUC263 Excel 计算器进行了复核。完全按照 DEMO 设计的参数,填入计算器,得出的补偿网络穿越频率为 57kHz,相位裕度 44.4°,如图 3 所示,与设计要求相近,且 R_{fb} =22.3k Ω 。如果手动输入评估板补偿网络参数,得到的结果为穿越频率仅 28kHz,相位裕度达到了 62.6°,如图 4 所示,这与数据手册 8.2.3给出的 58kHz/51°相差太大。

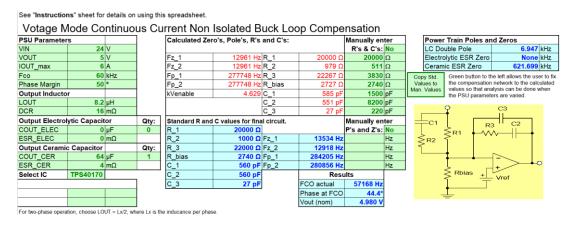


图 3 使用计算器 SLUC263 得出的结果, Fco=57kHz, PM=44°

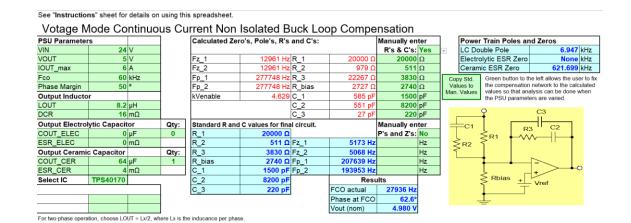


图 4 手动输入 DEMO 电路补偿网络参数, Fco=28kHz, PM=63°

如图 5 所示,电路参数完全使用 DEMO 电路,在 SIMPLIS 中仿真,得出的结果与上述相近。

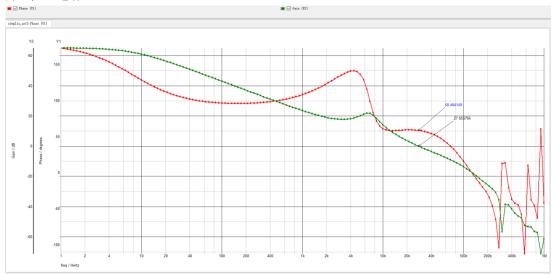


图 5 使用 SIMPLIS 仿真, 电路参数与 DEMO 电路一致, Fco≈28kHz, PM≈58°

此外,个人按照推导总结出的计算方法算出一套补偿参数,以下给出计算过程及结果,并附 SIMPLIS 仿真结果,不知此计算方法有何不妥。

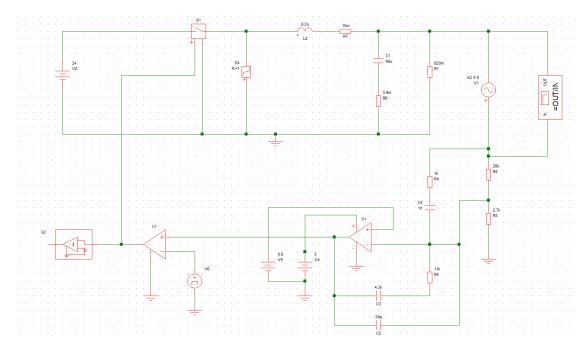


图 6 使用 SIMPLIS 仿真搭建的电路图

除补偿网络外,其余设计参数与 DEMO 完全一致。电源电压 24V,因 $K_{PWM}=V_{in}/V_{RAMP}=15$,故锯齿波峰值设置为 1.6V。

仿真电路如图 6 所示,式(1-1)中已经算得 R5=11.5k,仿真环境只能设置 11k,因此取 R5=11k,3 型补偿网络使用 Intersil 文档提供的计算方法[3]:

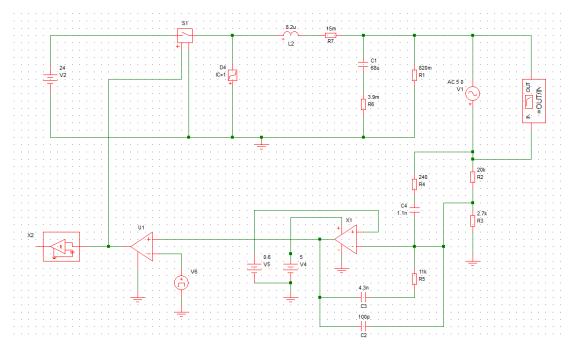
$$f_{z1} = 0.5 f_{LC} = 0.5 \times 6.947 kHz = 3.47 kHz$$
 (1-2)

$$f_{z2} = f_{LC} = 6.947kHz \tag{1-3}$$

$$f_{p1} = f_{esr} = \frac{1}{2\pi ESR \cdot C} = \frac{1}{2\pi \times 0.004 \times 64 \times 10^{-6}} Hz = 622kHz$$
 (1-4)

$$f_{p2} = \frac{1}{2} f_{sw} = \frac{1}{2} \times 300kHz = 150kHz$$
 (1-5)

故有


$$C_3 = \frac{1}{2\pi R_5 f_{c1}} = \frac{1}{2\pi \times 11000 \times 3470} F = 4.2nF$$
 (1-6)

$$C_4 = \frac{1}{2\pi R_2 f_{-2}} = \frac{1}{2\pi \times 20000 \times 6947} F = 1.1 nF$$
 (1-7)

$$R_4 = \frac{1}{2\pi f_{p1}C_4} = \frac{1}{2\pi \times 622000 \times 1.1 \times 10^{-9}} \Omega = 233\Omega$$
 (1-8)

$$C_2 = \frac{1}{2\pi f_{p2}R_5} = \frac{1}{2\pi \times 150000 \times 11000} F = 100 pF$$
 (1-9)

得到仿真结果:

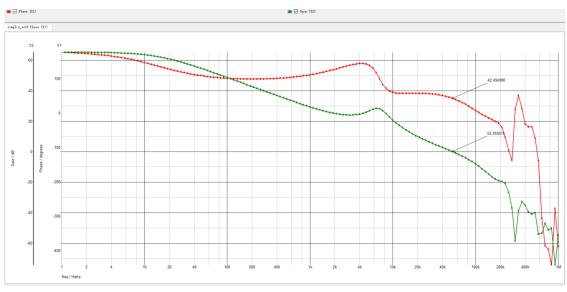


图 7 使用 SIMPLIS 仿真,Intersil 方法计算补偿网络,Fco≈52kHz,PM≈42°

仿真结果与设计要求仍然存在一定偏差,且没有网络分析仪做实际验证,不 知其中是否存在漏洞。问题总结如上,还望官方或者路过的前辈有时间看看,提 供一些参考建议,如工程上选取补偿网络 f_{p0} ,以及 $f_{z1,z2}$ 、 $f_{p1,p2}$ 相对 f_{LC} 、 f_{co} 、 f_{esr} 的位置建议。比如关于补偿零点的设置,各种资料上提供了不同的方法,有将 $f_{z1,z2}$ 设置在 f_{LC} 两侧的;或使 $f_{z1,z2} = f_{LC}$;或使 $f_{z1} = 0.5 f_{LC}$ 、 $f_{z2} = f_{LC}$;或使 $f_{z1,z2} = 0.75 f_{LC}$ 。 f_{p1} 大多数地方设置在 f_{esr} 点,也有的地方设置在 f_{esr} 之前。 f_{p2} 有设置在 f_{co} ~10 f_{co} 之间,调整相位裕度。

参考文献

- [1] 《精通开关电源设计》.
- [2] 《开关电源设计》.
- [3] Intersil: Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators.
- [4] Ti: switch mode power convert compensation.