
Comprehensive Guide to BSLs

Luis Reynoso

MSP430 Applications

June, 2014

1



Agenda

• Introduction to BSL

• BSL Ecosystem

– ROM BSL

– Flash BSL

– vBoot

– vBSL

• Using the Factory BSL

– SW tools

– HW tools

2



Introduction to BSL

3



What is a bootloader?

� An application which executes before the main program 

� Typically used to allow field firmware updates, but can also 

be used for device initialization, self-check, etc.

� Uses communication interfaces which are common and 

easier to implement from the host side

4



Advantages of using a bootloader

� Production-line programming can use common interfaces 

like UART, USB or I2C

� Fewer connectors and external signals: the same interface 

used for application can be used to program the device

� Problems discovered after product release can be fixed

� Reduced need for tech support, because problems can 

often be solved by instructing the user to upgrade firmware

� Product returns can be reduced

� End users have a more positive experience with the 

product

5



Implemented by userAvailable from factory

Bootloaders for different MSP430 families

6

MSP430

Bootloaders

FRxxx

ROM BSL

Any MSP430Any MSP430

Flash BSL MSPBoot vBSL

4xx2xx1xx 6xx5xx



Available from factory

Factory BSL

7

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

FRxxx

ROM BSL

Any MSP430Any MSP430

Flash BSL MSPBoot vBSL

4xx2xx1xx 6xx5xx



Factory BSL

8

The Factory MSP430 BSL is:

�A TI supplied bootstrap loader which provides a method to 

program the MSP430 during development and in the field

�Designed to protect customer’s IP from read-out

�Designed to allow reading and writing to MSP430 memory

�Always available, when device is blank or corrupted

�Usable with little or no external peripheral requirements

�Source available for some derivatives…customers can 

customize their own



Factory BSL

9

The Factory MSP430 BSL is NOT:

• The same between MSP430 families

• Designed to stop foreign code from being written

• Resource unlimited



Factory BSL - Security

• Access to the BSL is granted via a BSL Password

– 32 byte password is contents of 0xFFE0 to 0xFFFF

– Some commands (such as MassErase) are available without the password

– See SLAU319 for additional details on which commands require password

• BSL access is not impacted by the JTAG Fuse status

– To render a device inaccessible, disable the BSL and blow the JTAG Fuse

10



ROM BSL- 1xx-2xx-4xx

11

Available from factory

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

FRxxx Any MSP430Any MSP430

Flash BSL MSPBoot vBSL

6xx5xx

ROM BSL

4xx2xx1xx

ROM BSL

4xx2xx1xx



ROM BSL- 1xx-2xx-4xx

12

• Original Bootstrap Loader (BSL)

• UART based

• Hardware entry sequence is fixed 

• Same protocol but different versions and capabilities depending on 

MSP430 derivative

• Cannot be modified, but patches can be applied to fix known bugs or 

upgrade BSL version

• Can be called from application software

• Not available in all devices (i.e. G2xx1/G2xx2)

• Can be disabled in some versions



ROM BSL- 1xx-2xx-4xx-
Common issues/questions

13

• Entry sequence is different between devices with 

dedicated vs shared JTAG:

• Initial baudrate is fixed to 9600bps and following format:

– Start bit, 8-bits (LSB first), even parity, 1 stop bit

• A SYNC character (0x80) must be sent before any and every command

• Handshake is performed by an acknowledge character:

– A DATA_ACK (0x90) is sent back to confirm successful reception and execution

– DATA_NACK (0xA0) indicates an error



ROM BSL- 1xx-2xx-4xx-
More Common issues/questions

14

• Some commands (i.e. BSL Version, Change Baudrate) are not 

supported in some versions

• BSL can be patched but some versions must be patched to eliminate 

ROM bugs

• The UART BSL is implemented as a Timer-based UART. This often 

means that the pins used for UART are not in the same location as 

Hardware UART (i.e. USCI RXD/TXD)

From SLAU319:



ROM BSL- FR5xx

15

Available from factory

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

Any MSP430Any MSP430

Flash BSL MSPBoot vBSL

6xx5xx4xx2xx1xx FR5xx

ROM BSL

FRxxx

ROM BSL



ROM BSL- FR5xx

16

• UART-based, except for some derivatives (for example, 

MSP430FR59xx1) which have I2C-based BSLs

• Hardware entry sequence is fixed (same as ROM BSL)

• Same protocol as Flash BSL

• Cannot be modified, but can be patched

• Can be called from application software

FRxxx

ROM BSL



ROM BSL- FR5xx-
Common issues/questions

17

• The protocol for FR5xx BSL is the same as F5xx, 

not the 1xx-4xx ROM BSL

• The datasheet shows which devices support I2C BSL or UART BSL:

• Different pins are used for UART vs I2C

• MSP430FR59xx has Tags in TLV showing BSL information:

FRxxx

ROM BSL



Flash BSL

18

Available from factory

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

Any MSP430Any MSP430

MSPBoot vBSL

4xx2xx1xx

Flash BSL

6xx5xxFRxxx

ROM BSL Flash BSL

6xx5xx



Flash BSL

19

Flash BSL

6xx5xx
• Resides in a reserved, protected Flash area (2KB)

• Default entry sequence depends on BSL version

• Source code is available to allow for customizations

• Resource limited

• Can be disabled

• Uses UART, I2C or USB by default depending on the device

• Devices with dual voltage rails can use the default DVCC-based BSL, 

or a DVIO-based BSL.



Flash BSL - Customization

• Flash BSLs in F5xx/6xx devices can be over-written with a custom BSL

• BSL code space is limited

– 2KB BSL space on F5xx/6xx BSLs

– New features implemented must be limited to fit into this space

– Typically requires a tradeoff between feature set and code size

• Application Note SLAA450 contains additional information on 

customizing a Flash-based BSL

– http://www.ti.com/lit/pdf/slaa450\

• Project available in IAR (kickstart edition), but a CCS example is 

included
20

Flash BSL

6xx5xx



The Modular Structure of BSL

• The TI supplied Flash BSLs are very modular

• Makes customization easier as files can be reused or are easily 

replaced

• The 3 main sections of the BSL code are:

21

BSL Command 

Interpreter
BSL API

MSP430 

RAM/

FLASH

Flash BSL

6xx5xx



Flash BSL –
Entry sequence

22

Flash BSL

6xx5xx• The default entry sequence for non-USB BSLs is the same 

as ROM BSL

– Software checks a flag (SYSCTL.SYSBSLIND)

• The entry sequence for DVIO-based BSL is different:

• The entry sequence for USB BSL requires:

– Device is powered by USB AND reset vector is blank; OR

– The device powers up with PUR tied to VUSB

• The entry sequence can be customized as needed. Some examples:

– Check a GPIO

– Check Reset vector

– Validate the application by checking its CRC



Flash BSL –
Peripheral Interface

23

Flash BSL

6xx5xx• Non-USB devices are typically shipped with UART

– Dual-rail devices are shipped with DVCC-based BSL

– Typically, the UART BSL is implemented as a Timer-based UART. This often means 
that the pins used for BSL are not in the same location as the Hardware UART (i.e. 
USCI RXD, TXD)

– Some devices (i.e. MSP430F5259) are shipped with I2C BSL

• USB devices are shipped with USB BSL

– Due to the larger size of the USB stack, the Flash BSL contains a smaller set of 
instructions

– This BSL is used to download a fully-functional BSL to RAM

• Some possible customizations include:

– USCI-based UART (available in SLAA450)

– I2C (available in SLAA450)

– SPI Master or SPI Slave

– RF



Flash BSL –
Command Interpreter

24

Flash BSL

6xx5xx• The Flash BSL includes several protected and unprotected 

commands, such as:

– Mass Erase

– RX Data Block (Write data to memory)

– TX Data Block (Read data from memory)

– CRC Check

– Load PC

– etc.

• Some possible customizations include:

– Reset Device (force a BOR)

– Disable Read operations

– Change default password (i.e. use a predefined one instead of interrupt 

vectors)

– Avoid mass erasing device on incorrect password



Flash BSL –
API

25

Flash BSL

6xx5xx• The BSL API module takes care of reading/writing 

memory and calculating CRC

• Some possible customizations include:

– Implement a dual-image approach

– Prevent read/writes to some areas

– Decrypt data from host



Implemented by user

User-implemented BSLs

26

MSPBoot vBSL

Available from factory

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

FRxxx

ROM BSL

Any MSP430Any MSP430

Flash BSL

4xx2xx1xx 6xx5xx

MSPBoot vBSL



User-implemented bootloaders

27

• In some cases, the factory BSL is not an 

option:

– Some devices don’t have a factory BSL

– ROM BSL can’t be customized

– Flash BSL has a limit of 2KB

• MSPBoot and vBSL are two options which can be implemented in 

practically any MSP430

• Both options have a small footprint but they consume user space (info 

memory or main memory)

• There’s no hardware protection for main memory



MSPBoot

28

Available from factory

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

FRxxx Any MSP430Any MSP430

Flash BSL MSPBoot vBSL

6xx5xx

ROM BSL

4xx2xx1xx

MSPBoot



MSPBoot
MSPBoot is an main-memory resident bootloader for MSP430

• Small footprint typically from 1 to 3 Flash sectors
– Footprint can grow as needed

• Very flexible/customizable
– Configurable entry sequence

– Optional Dual-image support

– Optional CRC check of application

– Optional support for SMBus

• Capability to debug MSPBoot with the rest of the application

• Currently implemented on G2xx and FR57xx and using UART, I2C or SPI 

Slave
– Easily portable to any device or peripheral

• Bootloader is software-protected
– Can’t protect Bootloader area from accidental corruption generated by application

• Host and application examples provided

• Projects available for IAR and CCS

29

MSPBoot



MSPBoot – entry sequence

• After reset, MSPBoot determines 

if bootloader or application 

should run

• Bootloader can be forced

– Entry sequence

– Called by application

• Bootloader runs if application is 

not valid

– Reset vector invalid

– CRC CCITT checksum fails

– CRC-8 checksum fails

30

Is App Valid?

App Mode

Jump to 

Bootloader?

App execution

YN

NY

Application 

Validation

Boot forced?

TI_vBoot_AppMgr_ValidateApp

Boot Mode

Jump to 

App?

Boot execution

Y N

N

PUC

(Re-validates App)

Y

None

Reset Vector

CRC CCITT

CRC-8

MSPBoot



MSPBoot – dual image

• MSPBoot supports dual-image 

(aka image-copier)

• Code always run from the same 

“App Area”

• Updates are downloaded to a 

different “Download Area”

• Host can’t write directly to “App 

Area”

• After an initial download, a valid 

image is expected to be 

available always

31

MSPBoot



vBSL

32

Available from factory

Flash BSLROM BSL

Implemented by userAvailable from factory

MSP430

Bootloaders

FRxxx Any MSP430Any MSP430

Flash BSL MSPBoot vBSL

6xx5xx

ROM BSL

4xx2xx1xx

vBSL



vBSL

33

vBSL

The vBSL is a simple Bootloader targeted for the smallest G2xx value line 
devices

• Resides in Info Memory (only 256 Bytes)

• Customizable

• UART Based (software UART using TA0)

• Not compatible with other BSLs

• Limited functionality and commands

• Hardware entry sequence can be customized (i.e. push button)

• Uses main flash to store TA0CCR0 and Reset vectors

• The device can potentially get locked

• Projects available in CCS and IAR

• See AppNote slaa450 for more details

– http://www.ti.com/lit/pdf/slaa450



vBSL vBSL

• vBSL is extremely space constrained- 256 bytes

• vBSL needs to erase flash vectors, which erases Reset and TA0CCR0 

vectors

• Failure during this step (i.e. power cycle) will lock the MCU since the 

device can’t enter bootloader and there is no user code

– Recoverable via JTAG

34

BSL update 

sequence

Data in buffer

Erase Flash

Write data from 

buffer to flash, 

restoring BSL 

vectors

Data received

Failure in 

this step can 

lock the 

MSP430



Comparison Between Bootloaders

BSL Type Available 
from

Factory

Customizable Location BSL Area Protected Default HW 
Entry

SW Entry

ROM Yes No Dedicated

ROM Block

Yes TEST/RST 

or TCK/RST

Yes

Flash Yes Yes Dedicated 

BSL Flash

Yes Depends on 

device

Yes

vBSL No Yes (limited) Info Flash Yes (limited) GPIO on 

reset

No

MSPBoot No Yes Main Flash No GPIO on 

reset or

invalid 

application

Yes

35



Other options

36

• OpenBSL https://code.google.com/p/ti-txt-parser/downloads/list

– An open source, light-weight, customizable bootloader for MSP430G2xx 

devices

– Currently supports MSP430G2553 using UART (USCI)

– Resides in main memory (~2KB)

– Project available for CCS

• Flash Monitor http://www.ti.com/lit/pdf/slaa341

– Small program for F1xx-F4xx which provides the capability to examine and 

modify memory via UART

– Resides in main memory (~1KB) 

– Project available for IAR



Using the Factory BSL

37



BSL System Overview

38

BSL Host BSL Communication Interface BSL Target Device

USB I2CUART



BSL Host – PC SW tools

• MSPBSL_Library

– https://github.com/MSP-EricLoeffler/MSPBSL_Library

– An Open Source, Cross Platform, Object Oriented (C++) Library designed to allow for easy PC-

based communication with standard MSP430 BSLs.

• BSL_Scripter

– http://www.ti.com/lit/zip/slau319

– PC-based application and source code supporting Flash BSL and FRAM

• BSLDEMO2 

– http://www.ti.com/lit/zip/slau319

– PC-based application and source code supporting F1xx/2xx/4xx BSL.

• USB Field Firmware Updater 

– http://www.ti.com/tool/msp430usbdevpack

– This application allows for GUI controlled firmware download to an MSP430 device via the USB 

BSL.

• Python MSP430 tools 

– https://launchpad.net/python-msp430-tools

– An open source collection of Python MSP430 tools. Includes scripts to interface with standard 

MSP430 BSLs.

39



BSL Host – HW tools

• Olimex BSL Rocket tool

– https://www.olimex.com/Products/MSP430/BSL/MSP430-BSL/

– Small, affordable programmer

– Has support for UART and I2C

– Supports Flash BSL by default but can be modified to support ROM BSL

• Launchpad-based MSP430 UART BSL interface

– http://www.ti.com/lit/pdf/slaa535

– Low cost option using MSP-EXP430G2 acting as UART bridge

• Flying Camp MSP430 BSL Programmer 

– http://www.flyingcampdesign.com/msp430-bsl-programmer.html

– Open source USB to UART bridge

– Also available from Moteware (http://www.moteware.com/products.php) 

40



BSL Host – More HW tools

• MSP-GANG

– http://www.ti.com/tool/msp-gang

– JTAG/SBW/BSL programmer capable of programming 8 target 

devices simultaneously

– Standalone or PC-based

– Currently only supports UART, but I2C support is planned

• GangPro430

– http://www.elprotronic.com/gangpro430.html

– JTAG/SBW/BSL programmer capable of programming 6 target 

devices simultaneously

– Currently only supports UART, but I2C support is planned

• FlashPro430

– http://www.elprotronic.com/flashpro430.html

– JTAG/SBW/BSL programmer

– Currently only supports UART, but I2C support is planned

41



BSL documentation

SLAU319

• Explains factory BSLs (ROM and Flash) :

– Entry sequence

– Commands

– Password protection

– Patches for ROM BSL

– BSL Versions for all devices

– Known bugs 

http://www.ti.com/lit/pdf/slau319

SLAA450

• Explains how to customize the Flash BSL in F5xx/F6xx:

– Memory organization in BSL including Z-Area, JTAG Key, BSL signature

– Startup and entry sequence

– BSL_Protect function

– Relevant functions and definitions for BSL modules (API, PI, CI)

• Also Includes vBSL:

– How to build it and use it

– Connection to host

http://www.ti.com/lit/pdf/slaa450
42



BSL documentation

SLAA452:

• Explains the implementation of USB BSL:

– Invoking USB BSL

– Using the GUI

http://www.ti.com/lit/pdf/slaa452

SLAA600:

• Explains MSPBoot:

– Vector redirection

– Dual image implementation

– Protocol, peripherals

– Host implementation

http://www.ti.com/lit/pdf/slaa600

43



BSL documentation

SLAU550:

• Explains the implementation of FR59xx BSL. 

New format including:

– Entry sequence

– Protocol

– BSL versions, known bugs

– Examples for all commands

http://www.ti.com/lit/pdf/slau550

44



Questions?

45


