TMS320x2803x Piccolo Control Law Accelerator (CLA)

Reference Guide

Literature Number: SPRUGE6B May 2009-Revised May 2010

Prefa	ace		6
1	Contro	bl Law Accelerator (CLA) Overview	8
2	CLA Ir	nterface	0
	2.1	CLA Memory 1	0
	2.2	CLA Memory Bus 1	0
	2.3	Shared Peripherals and EALLOW Protection 1	
	2.4	CLA Tasks and Interrupt Vectors 1	2
3	CLA C	onfiguration and Debug	3
	3.1	Building a CLA Application	3
	3.2	Typical CLA Initialization Sequence 1	
	3.3	Debugging CLA Code 1	
	3.4	CLA Illegal Opcode Behavior 1	
	3.5	Resetting the CLA 1	6
4	Regist	er Set 1	7
	4.1	Register Memory Mapping 1	7
	4.2	Task Interrupt Vector Registers 1	8
	4.3	Configuration Registers	8
	4.4	Execution Registers 2	9
5	Pipelir	ne 3	2
	5.1	Pipeline Overview	2
	5.2	CLA Pipeline Alignment 3	2
	5.3	Parallel Instructions 3	5
6	Instru	ction Set 3	7
	6.1	Instruction Descriptions 3	7
	6.2	Addressing Modes and Encoding 3	9
	6.3	Instructions 4	1
Арре	endix A	CLA and CPU Arbitration 15	1
	A.1	CLA and CPU Arbitration 15	1
Appe	endix B	Revision History 15	4

List of Figures

1	CLA Block Diagram	9
2	Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register	18
3	Control Register (MCTL)	18
4	Memory Configuration Register (MMEMCFG)	20
5	CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1)	21
6	Interrupt Enable Register (MIER)	22
7	Interrupt Flag Register (MIFR)	23
8	Interrupt Overflow Flag Register (MIOVF)	24
9	Interrupt Run Status Register (MIRUN)	25
10	Interrupt Force Register (MIFRC)	26
11	Interrupt Flag Clear Register (MICLR)	27
12	Interrupt Overflow Flag Clear Register (MICLROVF)	28
13	Program Counter (MPC)	29
14	CLA Status Register (MSTF)	29

List of Tables

1	CLA Module Control and Status Register Set	17
2	Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Field Descriptions	18
3	Control Register (MCTL) Field Descriptions	19
4	Memory Configuration Register (MMEMCFG) Field Descriptions	20
5	Peripheral Interrupt Source Select 1 (MPISRCSEL1) Register Field Descriptions	21
6	Interrupt Enable Register (MIER) Field Descriptions	22
7	Interrupt Flag Register (MIFR) Field Descriptions	23
8	Interrupt Overflow Flag Register (MIOVF) Field Descriptions	24
9	Interrupt Run Status Register (MIRUN) Field Descriptions	25
10	Interrupt Force Register (MIFRC) Field Descriptions	26
11	Interrupt Flag Clear Register (MICLR) Field Descriptions	27
12	Interrupt Overflow Flag Clear Register (MICLROVF) Field Descriptions	28
13	Program Counter (MPC) Field Descriptions	29
14	CLA Status (MSTF) Register Field Descriptions	30
15	Write Followed by Read - Read Occurs First	33
16	Write Followed by Read - Write Occurs First	33
17	ADC to CLA Early Interrupt Response	35
18	Operand Nomenclature	37
19	INSTRUCTION dest, source1, source2 Short Description	38
20	Addressing Modes	39
21	Shift Field Encoding	39
22	Condition Field Encoding	40
23	Instructions	41
24	Pipeline Activity For MBCNDD, Branch Not Taken	56
25	Pipeline Activity For MBCNDD, Branch Taken	56
26	Pipeline Activity For MCCNDD, Call Not Taken	62
27	Pipeline Activity For MCCNDD, Call Taken	62
28	Pipeline Activity For MMOV16 MARx, MRa , #16I	94
29	Pipeline Activity For MMOV16 MAR0/MAR1, mem16	97
30	Pipeline Activity For MMOVI16 MAR0/MAR1, #16I	110
31	Pipeline Activity For MRCNDD, Return Not Taken	132

www.ti.com		
32	Pipeline Activity For MRCNDD, Return Taken	132
33	Pipeline Activity For MSTOP	135
34	Revisions to this Document	154

The C28x Control Law Accelerator (CLA) is an independent, fully-programmable, 32-bit floating-point math processor that brings concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read ADC samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is free to perform other system tasks such as communications and diagnostics. This document provides an overview of the architectural structure and instruction set of the C28x Control Law Accelerator.

The Control Law Accelerator module described in this reference guide is a Type 0 CLA. See the *TMS320x28xx, 28xxx DSP Peripheral Reference Guide* (<u>SPRU566</u>) for a list of all devices with a CLA module of the same type, to determine the differences between the types, and for a list of device-specific differences within a type. This document describes the architecture, pipeline, instruction set, and interrupts of the C28x Control Law Accelerator.

About This Manual

The TMS320C2000[™] is part of the TMS320[™] family.

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following number is 40 hexadecimal (decimal 64): 40h or 0x40.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register.
 Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation

The following books describe the TMS320x28x and related support tools that are available on the TI website:

SPRS584 — TMS320F28032, TMS320F28033, TMS320F28034, TMS320F28035 Piccolo Microcontrollers Data Manual contains the pinout, signal descriptions, as well as electrical and timing specifications for the 2803x devices.

<u>SPRZ295</u> — TMS320F28032, TMS320F28033, TMS320F28034, TMS320F28035 Piccolo MCU Silicon Errata describes known advisories on silicon and provides workarounds.

CPU User's Guides—

SPRU430 — TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs.

Peripheral Guides—

<u>SPRUGL8</u> — TMS320x2803x Piccolo System Control and Interrupts Reference Guide describes the various interrupts and system control features of the 2803x microcontrollers (MCUs).

- <u>SPRU566</u> TMS320x28xx, 28xxx DSP Peripheral Reference Guide describes the peripheral reference guides of the 28x digital signal processors (DSPs).
- SPRUGO0 TMS320x2803x Piccolo Boot ROM Reference Guide describes the purpose and features of the boot loader (factory-programmed boot-loading software) and provides examples of code. It also describes other contents of the device on-chip boot ROM and identifies where all of the information is located within that memory.
- <u>SPRUGE6</u> TMS320x2803x Piccolo Control Law Accelerator (CLA) Reference Guide describes the operation of the Control Law Accelerator (CLA).
- <u>SPRUGE2</u> TMS320x2803x Piccolo Local Interconnect Network (LIN) Module Reference Guide describes the operation of the Local Interconnect Network (LIN) Module.
- <u>SPRUFK8</u> TMS320x2803x Piccolo Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide describes the operation of the Enhanced Quadrature Encoder Pulse (eQEP).
- <u>SPRUGL7</u> TMS320x2803x Piccolo Enhanced Controller Area Network (eCAN) Reference Guide describes the operation of the Enhanced Controller Area Network (eCAN).
- SPRUGE5 TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator Reference Guide describes how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.
- <u>SPRUGE9</u> TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module Reference Guide describes the main areas of the enhanced pulse width modulator that include digital motor control, switch mode power supply control, UPS (uninterruptible power supplies), and other forms of power conversion.
- <u>SPRUGE8</u> TMS320x2802x, 2803x Piccolo High-Resolution Pulse Width Modulator (HRPWM) describes the operation of the high-resolution extension to the pulse width modulator (HRPWM).
- <u>SPRUGH1</u> TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI) Reference Guide describes how to use the SCI.
- <u>SPRUFZ8</u> TMS320x2802x, 2803x Piccolo Enhanced Capture (eCAP) Module Reference Guide describes the enhanced capture module. It includes the module description and registers.
- <u>SPRUG71</u> TMS320x2802x, 2803x Piccolo Serial Peripheral Interface (SPI) Reference Guide describes the SPI - a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed bit-transfer rate.
- SPRUFZ9 TMS320x2802x, 2803x Piccolo Inter-Integrated Circuit (I2C) Reference Guide describes the features and operation of the inter-integrated circuit (I2C) module.

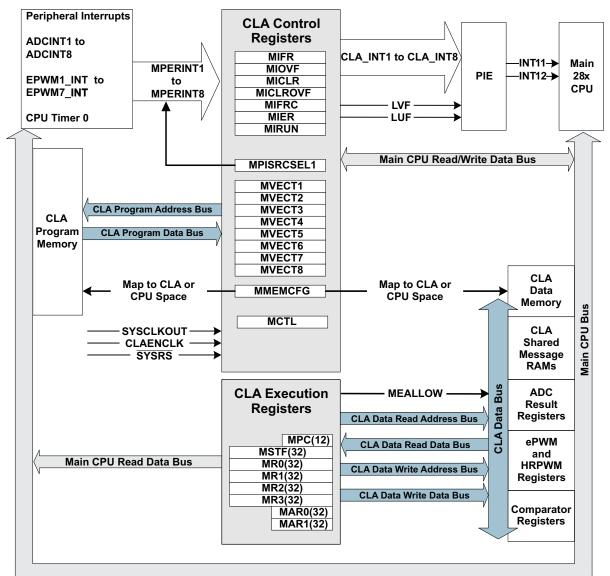
Tools Guides—

- SPRU513 TMS320C28x Assembly Language Tools v5.0.0 User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device.
- SPRU514 TMS320C28x Optimizing C/C++ Compiler v5.0.0 User's Guide describes the TMS320C28x[™] C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device.
- SPRU608 TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x[™] core.

TMS320C28x, C28x are trademarks of Texas Instruments.

TMS320x2803x Piccolo Control Law Accelerator (CLA)

The C28x Control Law Accelerator (CLA) is an independent, fully-programmable, 32-bit floating-point math processor that brings concurrent control-loop exceuction to the C28x family. The low interrupt-latency of the CLA allows it to read ADC samples "just-in-time". This significantly reduces the ADC sample to output delay to enable faster system response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is free to perform other system tasks such as communications and diagnostics. This chapter provides an overview of the arcitectural structure and components of the C28x Control Law Accelerator.


1 Control Law Accelerator (CLA) Overview

The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster system response and higher frequency control loops. Utilizing the CLA for time-critical tasks frees up the main CPU to perform other system and communication functions concurrently. The following is a list of major features of the CLA.

- Clocked at the same rate as the main CPU (SYSCLKOUT).
- An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.
 - Complete bus architecture:
 - Program address bus and program data bus
 - Data address bus, data read bus and data write bus
 - Independent eight stage pipeline.
 - 12-bit program counter (MPC)
 - Four 32-bit result registers (MR0-MR3)
 - Two 16-bit auxiliary registers (MAR0, MAR1)
 - Status register (MSTF)
- Instruction set includes:
 - IEEE single-precision (32-bit) floating point math operations
 - Floating-point math with parallel load or store
 - Floating-point multiply with parallel add or subtract
 - 1/X and 1/sqrt(X) estimations
 - Data type conversions.
 - Conditional branch and call
 - Data load/store operations
- The CLA program code can consist of up to eight tasks or interrupt service routines.
 - The start address of each task is specified by the MVECT registers.
 - No limit on task size as long as the tasks fit within the CLA program memory space.
 - One task is serviced at a time through to completion. There is no nesting of tasks.
 - Upon task completion a task-specific interrupt is flagged within the PIE.
 - When a task finishes the next highest-priority pending task is automatically started.
- Task trigger mechanisms:
 - C28x CPU via the IACK instruction
 - Task1 to Task7: the corresponding ADC or ePWM module interrupt. For example:
 - Task1: ADCINT1 or EPWM1_INT

- Task2: ADCINT2 or EPWM2_INT
- Task7: ADCINT7 or EPWM7_INT
- Task8: ADCINT8 or by CPU Timer 0.
- Memory and Shared Peripherals:
 - Two dedicated message RAMs for communication between the CLA and the main CPU.
 - The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.
 - The CLA has direct access to the ePWM+HRPWM, Comparator and ADC Result registers.

Figure 1. CLA Block Diagram

2 CLA Interface

This chapter describes how the C28x main CPU can interface to the CLA and vice versa.

2.1 CLA Memory

The CLA can access three types of memory: program, data and message RAMs. The behavior and arbitration for each type of memory is described in detail in Appendix A.

CLA Program Memory

At reset memory designated for CLA program is mapped to the main CPU memory and is treated like any other memory block. While mapped to CPU space, the main CPU can copy the CLA program code into the memory block. During debug the block can also be loaded directly by Code Composer Studio. Once the memory is initialized with CLA code, the main CPU maps it to the CLA program space by writing a 1 to the MMEMCFG[PROGE] bit. When mapped to the CLA program space, the block can only be accessed by the CLA for fetching opcodes. The main CPU can only perform debugger accesses when the CLA is either halted or idle. If the CLA is executing code, then all debugger accesses are blocked and the memory reads back all 0x0000.

CLA program memory is protected by the code security module. All CLA program fetches are performed as 32-bit read operations and all opcodes must be aligned to an even address. Since all CLA opcodes are 32-bits, this alignment naturally occurs.

CLA Data Memory

There are two CLA data memory blocks on the device. At reset, both blocks are mapped to the main CPU memory space and treated by the CPU like any other memory block. While mapped to CPU space, the main CPU can initialize the memory with data tables and coefficients for the CLA to use. Once the memory is initialized with CLA data the main CPU maps it to the CLA space. Each block can be individually mapped via the MMEMCFG[RAM0E] and MMEMCFG[RAM1E] bits. When mapped to the CLA data space, the memory can be accessed only by the CLA for data operations. The main CPU can only perform debugger accesses in this mode.

Both CLA data RAMs are protected by the code security module and emulation code security logic.

• CLA Shared Message RAMs

There are two small memory blocks for data sharing and communication between the CLA and the main CPU. The message RAMs are always mapped to both CPU and CLA memory spaces and are protected by the code security module. The message RAMs allow data accesses only; no program fetches can be performed.

- CLA to CPU Message RAM

The CLA can use this block to pass data to the main CPU. This block is both readable and writable by the CLA. This block is also readable by the main CPU but writes by the main CPU are ignored.

CPU to CLA Message RAM

The main CPU can use this block to pass data and messages to the CLA. This message RAM is both readable and writable by the main CPU. The CLA can perform reads but writes by the CLA are ignored.

2.2 CLA Memory Bus

The CLA has dedicated bus architecture similar to that of the C28x CPU where there is a program read, data read and data write bus. Thus there can be simultaneous instruction fetch, data read and data write in a single cycle. Like the C28x CPU, the CLA expects memory logic to align any 32-bit read or write to an even address. If the address-generation logic generates an odd address, the CLA will begin reading or writing at the previous even address. This alignment does not affect the address values generated by the address-generation logic.

CLA Program Bus

The CLA program bus has a access range of 2048 32-bit instructions. Since all CLA instructions are 32-bits, this bus always fetches 32-bits at a time and the opcodes must be even word aligned. The amount of program space available for the CLA is device dependent as described in the device-specific data manual.

CLA Data Read Bus

The CLA data read bus has a 64K x 16 address range. The bus can perform 16 or 32-bit reads and

will automatically stall if there are memory access conflicts. The data read bus has access to both the message RAMs, CLA data memory and the ePWM, HRPWM, Comparator and ADC result registers.

CLA Data Write Bus

The CLA data write bus has a 64K x 16 address range. This bus can perform 16 or 32-bit writes. The bus will automatically stall if there are memory access conflicts. The data write bus has access to the CLA to CPU message RAM, CLA data memory and the ePWM, HRPWM, and Comparator registers.

2.3 Shared Peripherals and EALLOW Protection

The ePWM, HRPWM, Comparator, and ADC result registers can be accessed by both the CLA and the main CPU. Appendix A describes in detail the CLA and CPU arbitration when both access these registers.

Several peripheral control registers are protected from spurious 28x CPU writes by the EALLOW protection mechanism. These same registers are also protected from spurious CLA writes. The EALLOW bit in the main CPU status register 1 (ST1) indicates the state of protection for the main CPU. Likewise the MEALLOW bit in the CLA status register (MSTF) indicates the state of write protection for the CLA. The MEALLOW CLA instruction enables write access by the CLA to EALLOW protected registers. Likewise the MEDIS CLA instruction will disable write access. This way the CLA can enable/disable write access independent of the main CPU.

The 2803x ADC offers the option to generate an early interrupt pulse when the ADC begins conversion. If this option is used to start a ADC triggered CLA task then the 8th instruction can read the result as soon as the conversion completes. The CLA pipeline activity for this scenario is shown in Section 5.

如果在ADC采样之后,转换之前触发这个脉冲 则第8条指令就可以来读ADC结果

2.4 CLA Tasks and Interrupt Vectors

The CLA program code is divided up into tasks or interrupt service routines. Tasks do not have a fixed starting location or length. The CLA program memory can be divided up as desired. The CLA knows where a task begins by the content of the associated interrupt vector (MVECT1 to MVECT8) and the end is indicated by the MSTOP instruction.

The CLA supports 8 tasks. Task 1 has the highest priority and task 8 has the lowest priority. A task can be requested by a peripheral interrupt or by software:

Peripheral interrupt trigger

Each task has specific interrupt sources that can trigger it. Configure the MPISRCSEL1 register to select from the potential sources. For example, task 1 (MVECT1) can be triggered by ADCINT1 or EPWM1_INT as specified in MPISRCSEL1[PERINT1SEL]. You can not, however, trigger task 1 directly using EPWM2_INT. If you need to trigger a task using EPWM2_INT then the best solution is to use task 2 (MVECT2). Another possible solution is to take EPWM2_INT with the main CPU and trigger a task with software.

To disable the peripheral from sending an interrupt request to the CLA set the PERINT1SEL option to no interrupt.

• Software trigger

Tasks can also be started by the main CPU software writing to the MIFRC register or by the IACK instruction. Using the IACK instruction is more efficient because it does not require you to issue an EALLOW to set MIFR bits. Set the MCTL[IACKE] bit to enable the IACK feature. Each bit in the operand of the IACK instruction corresponds to a task. For example IACK #0x0001 will set bit 0 in the MIFR register to start task 1. Likewise IACK #0x0003 will set bits 0 and 1 in the MIFR register to start task 1 and task 2.

The CLA has its own fetch mechanism and can run and execute a task independent of the main CPU. Only one task is serviced at a time; there is no nesting of tasks. The task currently running is indicated in the MIRUN register. Interrupts that have been received but not yet serviced are indicated in the flag register (MIFR). If an interrupt request from a peripheral is received and that same task is already flagged, then the overflow flag bit is set. Overflow flags will remain set until they are cleared by the main CPU.

If the CLA is idle (no task is currently running) then the highest priority interrupt request that is both flagged (MIFR) and enabled (MIER) will start. The flow is as follows

- 1. The associated RUN register bit is set (MIRUN) and the flag bit (MIFR) is cleared.
- 2. The CLA begins execution at the location indicated by the associated interrupt vector (MVECTx). MVECT is an offset from the first program memory location.
- 3. The CLA executes instructions until the MSTOP instruction is found. This indicates the end of the task.
- 4. The MIRUN bit is cleared.
- 5. The task-specific interrupt to the PIE is issued. This informs the main CPU that the task has completed.
- 6. The CLA returns to idle.

Once a task completes the next highest-priority pending task is automatically serviced and this sequence repeats.

3 CLA Configuration and Debug

This section discusses the steps necessary to configure and debug the CLA.

3.1 Building a CLA Application

The Control Law Accelerator is programmed in CLA assembly code using the instructions described in Section 6. CLA assembly code can, and should, reside in the same project with C28x code. The only restriction is the CLA code must be in its own assembly section. This can be easily done using the .sect assembly directive. This does not prevent CLA and C28x code from being linked into the same memory region in the linker command file.

System and CLA initialization are performed by the main CPU. This would typically be done in C or C++ but can also include C28x assembly code. The main CPU will also copy the CLA code to the program memory and, if needed, initialize the CLA data RAM(s). Once system initialization is complete and the application begins, the CLA will service its interrupts using the CLA assembly code (or tasks). Concurrently the main CPU can perform other tasks.

The C2000 codegen tools V5.2.x and higher support CLA instructions when the following switch is set: -- $cla_support = cla0$.

3.2 Typical CLA Initialization Sequence

A typical CLA initialization sequence is performed by the main CPU as described in this section.

1. Copy CLA code into the CLA program RAM

The source for the CLA code can initially reside in the flash or a data stream from a communications peripheral or anywhere the main CPU can access it. The debugger can also be used to load code directly to the CLA program RAM during development.

2. Initialize CLA data RAM if necessary

Populate the CLA data RAM with any required data coefficients or constants.

3. Configure the CLA registers

Configure the CLA registers, but keep interrupts disabled until later (leave MIER == 0):

• Enable the CLA clock in the PCLKCR3 register.

PCLKCR3 register is defined in the device-specific system control and interrupts reference guide.

• Populate the CLA task interrupt vectors: MVECT1 to MVECT8.

Each vector needs to be initialized with the start address of the task to be executed when the CLA receives the associated interrupt. This address is an offset from the first address in CLA program memory. For example, 0x0000 corresponds to the first CLA program memory address.

Select the task interrupt sources

For each task select the interrupt source in the PERINT1SEL register. If a task is going to be generated by software, select no interrupt.

• Enable IACK to start a task from software if desired

To enable the IACK instruction to start a task set the MCTL[IACKE] bit. Using the IACK instruction avoids having to set and clear the EALLOW bit.

Map CLA data RAM(s) to CLA space if necessary

Map either or both of the data RAMs to the CLA space by writing a 1 to the MMEMCFG[RAM0E] and MMEMCFG[RAM1E] bits. After the memory is mapped to CLA space the main CPU cannot access it. Allow two SYSCLKOUT cycles between changing the map configuration of this memory and accessing it.

Map CLA program RAM to CLA space

Map the CLA program RAM to CLA space by setting the MMEMCFG[PROGE] bit. After the memory is remapped to CLA space the main CPU will only be able to make debug accesses to the memory block. Allow two SYSCLKOUT cycles between changing the map configuration of these memories and accessing them.

4. Initialize the PIE vector table and registers

When a CLA task completes the associated interrupt in the PIE will be flagged. The CLA overflow and underflow flags also have associated interrupts within the PIE.

5. Enable CLA tasks/interrupts

Set appropriate bits in the interrupt enable register (MIER) to allow the CLA to service interrupts.

6. Initialize other peripherals

Initialize any peripherals (ePWM, ADC etc.) that will generate an interrupt to the CLA and be serviced by a CLA task.

The CLA is now ready to service interrupts and the message RAMs can be used to pass data between the CPU and the CLA. Typically mapping of the CLA program and data RAMs occurs only during the initialization process. If after some time the you want to re-map these memories back to CPU space then disable interrupts and make sure all tasks have completed by checking the MIRUN register. Always allow two SYSCLKOUT cycles when changing the map configuration of these memories and accessing them.

Texas

www.ti.com

3.3 Debugging CLA Code

Debugging the CLA code is a simple process that occurs independently of the main CPU.

1. Insert a breakpoint in CLA code

Insert a CLA breakpoint (MDEBUGSTOP instruction) into the code where you want the CLA to halt, then rebuild and reload the code. Because the CLA does not flush its pipeline when you single-step, the MDEBUGSTOP instruction must be inserted as part of the code. The debugger cannot insert it as needed.

If CLA breakpoints are not enabled, then the MDEBUGSTOP will be ignored and is treated as a MNOP. The MDEBUGSTOP instruction can be placed anywhere in the CLA code as long as it is not within three instructions of a MBCNDD, MCCNDD, or MRCNDD instruction.

2. Enable CLA breakpoints

First, enable the CLA breakpoints in the debugger. In Code Composer Studio V3.3, this is done by connecting the CLA debug window (debug->connect). Breakpoints are disabled when this window is disconnected.

3. Start the task

There are three ways to start the task:

- The peripheral can assert an interrupt
- The main CPU can execute an IACK instruction, or
- You can manually write to the MIFRC register in the debugger window

When the task starts, the CLA will execute instructions until the MDEBUGSTOP is in the D2 phase of the pipeline. At this point, the CLA will halt and the pipeline will be frozen. The MPC register will reflect the address of the MDEBUGSTOP instruction.

4. Single-step the CLA code

Once halted, you can single-step the CLA code one cycle at a time. The behavior of a CLA single-step is different than the main C28x. When issuing a CLA single-step, the pipeline is clocked only one cycle and then again frozen. On the 28x CPU, the pipeline is flushed for each single-step.

You can also run to the next MDEBUGSTOP or to the end of the task. If another task is pending, it will automatically start when you run to the end of the task.

NOTE: When CLA program memory is mapped to the CLA memory space, a CLA fetch has higher priority than CPU debug reads. For this reason, it is possible for the CLA to permanently block CPU debug accesses if the CLA is executing in a loop. This might occur when initially developing CLA code due to a bug that causes an infinite loop. To avoid locking up the main CPU, the program memory will return all 0x0000 for CPU debug reads when the CLA is running. When the CLA is halted or idle then normal CPU debug read and write access to CLA program memory can be performed.

If the CLA gets caught in a infinite loop, you can use a soft or hard reset to exit the condition. A debugger reset will also exit the condition.

There are special cases that can occur when single-stepping a task such that the program counter, MPC, reaches the MSTOP instruction at the end of the task.

MPC halts at or after the MSTOP with a task already pending

If you are single-stepping or halted in "task A" and "task B" comes in before the MPC reaches the MSTOP, then "task B" will start if you continue to step through the MSTOP instruction. Basically if "task B" is pending before the MPC reaches MSTOP in "task A" then there is no issue in "task B" starting and no special action is required.

• MPC halts at or after the MSTOP with no task pending

In this case you have single-stepped or halted in "task A" and the MPC has reached the MSTOP with no tasks pending. If "task B" comes in at this point, it will be flagged in the MIFR register but it may or may not start if you continue to single-step through the MSTOP instruction of "task A." It depends on exactly when the new task comes in. To reliably start "task B" perform a soft reset and reconfigure the MIER bits. Once this is done, you can start single-stepping "task B."

This case can be handled slightly differently if there is control over when "task B" comes in (for example using the IACK instruction to start the task). In this case you have single-stepped or halted

CLA Configuration and Debug

in "task A" and the MPC has reached the MSTOP with no tasks pending. Before forcing "task B," run free to force the CLA out of the debug state. Once this is done you can force "task B" and continue debugging.

5. If desired, disable CLA breakpoints

In CCS V3.3 you can disable the CLA breakpoints by disconnecting the CLA debug window. Make sure to first issue a run or reset; otherwise, the CLA will be halted and no other tasks will start.

3.4 CLA Illegal Opcode Behavior

If the CLA fetches an opcode that does not correspond to a legal instruction, it will behave as follows:

- The CLA will halt with the illegal opcode in the D2 phase of the pipeline as if it were a breakpoint. This will occur whether CLA breakpoints are enabled or not.
- The CLA will issue the task-specific interrupt to the PIE.
- The MIRUN bit for the task will remain set.

Further single-stepping ignored once execution halts due to an illegal op-code. To exit this situation, issue either a soft or hard reset of the CLA as described in Section 3.5.

3.5 Resetting the CLA

There may be times when you need to reset the CLA. For example, during code debug the CLA may enter an infinite loop due to a code bug. The CLA has two types of resets: hard and soft. Both of these resets can be performed by the debugger or by the main CPU.

Hard Reset

Writing a 1 to the MCTL[HARDRESET] bit will perform a hard reset of the CLA. The behavior of a hard reset is the same as a system reset (via XRS or the debugger). In this case all CLA configuration and execution registers will be set to their default state and CLA execution will halt.

Soft Reset

Writing a 1 to the MCTL[SOFTRESET] bit performs a soft reset of the CLA. If a task is executing it will halt and the associated MIRUN bit will be cleared. All bits within the interrupt enable (MIER) register will also be cleared so that no new tasks start.

4 Register Set

The CLA register set is independant from that of the main CPU. This chapter describes the CLA register set.

4.1 Register Memory Mapping

The table below describes the CLA module control and status register set.

Name	Offset	Size (x16)	EALLOW	CSM Protected	Description
		<u> </u>			Task Interrupt Vectors
MVECT1	0x0000	1	Yes	Yes	Task 1 Interrupt Vector
MVECT2	0x0001	1	Yes	Yes	Task 2 Interrupt Vector
MVECT3	0x0002	1	Yes	Yes	Task 3 Interrupt Vector
MVECT4	0x0003	1	Yes	Yes	Task 4 Interrupt Vector
MVECT5	0x0004	1	Yes	Yes	Task 5 Interrupt Vector
MVECT6	0x0005	1	Yes	Yes	Task 6 Interrupt Vector
MVECT7	0x0006	1	Yes	Yes	Task 7 Interrupt Vector
MVECT8	0x0007	1	Yes	Yes	Task 8 Interrupt Vector
					Configuration Registers
MCTL	0x0010	1	Yes	Yes	Control Register
MMEMCFG	0x0011	1	Yes	Yes	Memory Configuration Register
MPISRCSEL1	0x0014	2	Yes	Yes	Peripheral Interrupt Source Select 1 Register
MIFR	0x0020	1	Yes	Yes	Interrupt Flag Register
MIOVF	0x0021	1	Yes	Yes	Interrupt Overflow Flag Register
MIFRC	0x0022	1	Yes	Yes	Interrupt Force Register
MICLR	0x0023	1	Yes	Yes	Interrupt Flag Clear Register
MICLROVF	0x0024	1	Yes	Yes	Interrupt Overflow Flag Clear Register
MIER	0x0025	1	Yes	Yes	Interrupt Enable Register
MIRUN	0x0026	1	Yes	Yes	Interrupt Run Status Register
					Execution Registers ⁽¹⁾
MPC	0x0028	1	-	Yes	CLA Program Counter
MAR0	0x0029	1	-	Yes	CLA Auxiliary Register 0
MAR1	0x002A	1	-	Yes	CLA Auxiliary Register 1
MSTF	0x002E	2	-	Yes	CLA Floating-Point Status Register
MR0	0x0030	2	-	Yes	CLA Floating-Point Result Register 0
MR1	0x0034	2	-	Yes	CLA Floating-Point Result Register 1
MR2	0x0038	2	-	Yes	CLA Floating-Point Result Register 2
MR3	0x003C	2	-	Yes	CLA Floating-Point Result Register 3

 Table 1. CLA Module Control and Status Register Set

⁽¹⁾ The main C28x CPU only has read access to the CLA execution registers for debug purposes. The main CPU cannot perform CPU or debugger writes to these registers.

Register Set

4.2 Task Interrupt Vector Registers

Each CLA interrupt has its own interrupt vector (MVECT1 to MVECT8). This interrupt vector points to the first instruction of the associated task. When a task begins, the CLA will start fetching instructions at the location indicated by the appropriate MVECT register .

4.2.1 Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register

The task interrupt vector registers (MVECT1/2/3/4/5/6/7/8) are is shown in Section 4.2.1 and described in Figure 2.

Figure 2. Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register

15	12	11	0)
Reserve			MVECT	
R-0			R-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2. Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-12	Reserved		Any writes to these bit(s) must always have a value of 0.
11-0	MVECT	0000 - 0FFF	Offset of the first instruction in the associated task from the start of CLA program space. The CLA will begin instruction fetches from this location when the specific task begins.
			For example: If CLA program memory begins at CPU address 0x009000 and the code for task 5 begins at CPU address 0x009120, then MVECT5 should be initialized with 0x0120.
			There is one MVECT register per task. Interrupt 1 uses MVECT1, interrupt 2 uses MVECT2 and so forth.

⁽¹⁾ These registers are protected by EALLOW and the code security module.

4.3 Configuration Registers

The configuration registers are described here.

4.3.1 Control Register (MCTL)

The configuration control register (MCTL) is shown in Figure 3 and described in Table 3.

Figure 3. Control Register (MCTL)

15					8
		Reserved			
		R -0			
7		3	2	1	0
	Reserved		IACKE	SOFTRESET	HARDRESET
	R/W-0		R/W-0	R/W-0	R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Bits	Name	Value	Description ⁽¹⁾					
15-3	Reserved		Any writes to these bit(s) must always have a value of 0.					
2	IACKE		IACK enable					
		0	The CLA ignores the IACK instruction. (default)					
		1	Enable the main CPU to use the IACK #16bit instruction to set MIFR bits in the same manner as writing to the MIFRC register. Each bit in the operand, #16bit, corresponds to a bit in the MIFRC register. Using IACK has the advantage of not having to first set the EALLOW bit. This allows the main CPU to efficiently trigger a CLA task through software.					
			Examples IACK #0x0001 Write a 1 to MIFRC bit 0 to force task 1					
			IACK #0x0003 Write a 1 to MIFRC bit 0 and 1 to force task 1 and task 2					
1	SOFTRESET		Soft Reset					
		0	This bit always reads back 0 and writes of 0 are ignored.					
		1	Writing a 1 will cause a soft reset of the CLA. This will stop the current task, clear the MIRUN flag and clear all bits in the MIER register. After a soft reset you must wait at least 1 SYSCLKOUT cycle before reconfiguring the MIER bits. If these two operations are done back-to-back then the MIER bits will not get set.					
0	HARDRESET		Hard Reset					
		0	This bit always reads back 0 and writes of 0 are ignored.					
		1	Writing a 1 will cause a hard reset of the CLA. This will set all CLA registers to their default state.					

Table 3. Control Register (MCTL) Field Descriptions

⁽¹⁾ This register is protected by EALLOW and the code security module.

...

4.3.2 Memory Configuration Register (MMEMCFG)

The MMEMCFG register is used to map the CLA program and data RAMs to either the CPU or the CLA memory space. Typically mapping of the CLA program and data RAMs occurs only during the initialization process. If after some time the you want to re-map these memories back to CPU space then disable interrupts (MIER) and make sure all tasks have completed by checking the MIRUN register. Allow two SYSCLKOUT cycles between changing the map configuration of these memories and accessing them. Refer to Section A.1.3 for CLA and CPU access arbitration details.

Figure 4. Memory Configuration Register (MMEMCFG)

15							8
			Reser	ved			
			R -	0			
7	6	5	4	3		1	0
Rese	erved	RAM1E	RAM0E		Reserved		PROGE
R	-0	R/W-0	R/W-0		R-0		R/W-0
	Pood/Mrito P	- Pood only: n - y	alua after recet				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. Memory Configuration Register (MMEMCFG) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾	
15-6	Reserved		Any writes to these bit(s) must always have a value of 0.	
5	RAM1E		CLA Data RAM 1 Enable	
			Allow two SYSCLKOUT cycles between changing this bit and accessing the memory.	
		0	The CLA data SARAM block 1 is mapped to the main CPU program and data space. CLA reads will return zero. (default)	
		1	The CLA data SARAM block 1 is mapped to CLA data space. The main CPU can only make debug accesses to this block.	
4	RAM0E		CLA Data RAM 0 Enable	
			Allow two SYSCLKOUT cycles between changing this bit and accessing the memory.	
		0	The CLA data SARAM block 0 is mapped to the main CPU program and data space. CLA reads will return zero. (default)	
		1	The CLA data SARAM block 0 is mapped to CLA data space. The main CPU can only make debug accesses to this block.	
3 - 1	Reserved		Any writes to these bit(s) must always have a value of 0.	
0	PROGE		CLA Program Space Enable	
			Allow two SYSCLKOUT cycles between changing this bit and accessing the memory.	
		0	CLA program SARAM is mapped to the main CPU program and data space. If the CLA attempts a program fetch the result will be the same as an illegal opcode fetch as described in Section 3.4. (default)	
		1	CLA program SARAM is mapped to the CLA program space. The main CPU can only make debug accesses to this block.	
			In this state a CLA fetch has higher priority than CPU debug reads. It is, therefore, possible for the CLA to permanently block debug accesses if the CLA is executing in a loop. This might occur when initially developing CLA code due to a bug. To avoid this issue, the program memory will return all 0x0000 for CPU debug reads (ignore writes) when the CLA is running. When the CLA is halted or idle then normal CPU debug read and write access can be performed.	

⁽¹⁾ This register is protected by EALLOW and the code security module.

4.3.3 CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1)

Each task has specific peripherals that can start it. For example, Task2 can be started by ADCINT2 or EPWM2_INT. To configure which of the possible peripherals will start a task configure the MPISRCSEL1 register shown in Figure 5. Choosing the option "no interrupt source" means that only the main CPU software will be able to start the given task.

Register Set

Figure 5. CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1)											
31	28	27	24	23	20	19	16				
PER	INT8SEL	PERINT7SEL PERINT6SEL		PEI	PERINT5SEL						
F	R/W-0		R/W-0		R/W-0		R/W-0				
15	12	11	8	7	4	3	0				
PER	PERINT4SEL		PERINT3SEL		PERINT2SEL		RINT1SEL				
R/W-0		F	R/W-0		R/W-0		R/W-0				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. Peripheral Interrupt Source Select 1 (MPISRCSEL1) Register Field Descriptions

Bits	Field	Value (1)	Description ⁽²⁾
31 - 28	PERINT8SEL		Task 8 Peripheral Interrupt Input Select
		0000	ADCINT8 is the input for interrupt task 8. (default)
		0010	CPU Timer 0 is the input for interrupt task 8.
		xxx1	No interrupt source for task 8.
27 - 24	PERINT7SEL		Task 7 Peripheral Interrupt Input Select
		0000	ADCINT7 is the input for interrupt task 7. (default)
		0010	ePWM7 is the input for interrupt task 7. (EPWM7_INT)
		xxx1	No interrupt source for task 7.
23 - 20	PERINT6SEL		Task 6 Peripheral Interrupt Input Select
		0000	ADCINT6 is the input for interrupt task 6. (default)
		0010	ePWM6 is the input for interrupt task 6. (EPWM6_INT)
		xxx1	No interrupt source for task 6.
19 - 16	PERINT5SEL		Task 5 Peripheral Interrupt Input Select
		0000	ADCINT5 is the input for interrupt task 5. (default)
		0010	ePWM5 is the input for interrupt task 5. (EPWM5_INT)
		xxx1	No interrupt source for task 5.
15 - 12	PERINT4SEL		Task 4 Peripheral Interrupt Input Select
		0000	ADCINT4 is the input for interrupt task 4. (default)
		0010	ePWM4 is the input for interrupt task 4. (EPWM4_INT)
		xxx1	No interrupt source for task 4.
11 - 8	PERINT3SEL		Task 3 Peripheral Interrupt Input Select
		0000	ADCINT3 is the input for interrupt task 3. (default)
		0010	ePWM3 is the input for interrupt task 3. (EPWM3_INT)
		xxx1	No interrupt source for task 3.
7 - 4	PERINT2SEL		Task 2 Peripheral Interrupt Input Select
		0000	ADCINT2 is the input for interrupt task 2. (default)
		0010	ePWM2 is the input for interrupt task 2. (EPWM2_INT)
		xxx1	No interrupt source for task 2.
3 - 0	PERINT1SEL		Task 1Peripheral Interrupt Input Select
		0000	ADCINT1 is the input for interrupt task 1. (default)
		0010	ePWM1 is the input for interrupt task 1. (EPWM1_INT)
		xxx1	No interrupt source

⁽¹⁾ All values not shown are reserved.

⁽²⁾ This register is protected by EALLOW and the code security module.

. -

4.3.4 Interrupt Enable Register (MIER)

Setting the bits in the interrupt enable register (MIER) allow an incoming interrupt or main CPU software to start the corresponding CLA task. Writing a 0 will block the task, but the interrupt request will still be latched in the flag register (MIFLG). Setting the MIER register bit to 0 while the corresponding task is executing will have no effect on the task. The task will continue to run until it hits the MSTOP instruction.

When a soft reset is issued, the MIER bits are cleared. There should always be at least a 1 SYSCLKOUT delay between issuing the soft reset and reconfiguring the MIER bits.

Figure 6. Interrupt Enable Register (MIER)

15							8				
			Res	erved							
R -0											
7	6	5	4	3	2	1	0				
INT8	INT7	INT6	INT5	INT4	INT3	INT2	INT1				
R/W-0											

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Interrupt Enable
		0	Task 8 interrupt is disabled. (default)
		1	Task 8 interrupt is enabled.
6	INT7		Task 7 Interrupt Enable
		0	Task 7 interrupt is disabled. (default)
		1	Task 7 interrupt is enabled.
5	INT6		Task 6 Interrupt Enable
		0	Task 6 interrupt is disabled. (default)
		1	Task 6 interrupt is enabled.
4	INT5		Task 5 Interrupt Enable
		0	Task 5 interrupt is disabled. (default)
		1	Task 5 interrupt is enabled.
3	INT4		Task 4 Interrupt Enable
		0	Task 4 interrupt is disabled. (default)
		1	Task 4 interrupt is enabled.
2	INT3		Task 3 Interrupt Enable
		0	Task 3 interrupt is disabled. (default)
		1	Task 3 interrupt is enabled.
1	INT2		Task 2 Interrupt Enable
		0	Task 2 interrupt is disabled. (default)
		1	Task 2 interrupt is enabled.
0	INT1		Task 1 Interrupt Enable
		0	Task 1 interrupt is disabled. (default)
		1	Task 1 interrupt is enabled.

Table 6. Interrupt Enable Register (MIER) Field Descriptions

⁽¹⁾ This register is protected by EALLOW and the code security module.

4.3.5 Interrupt Flag Register (MIFR)

Each bit in the interrupt flag register corresponds to a CLA task. The corresponding bit is automatically set when the task request is received from the peripheral interrupt. The bit can also be set by the main CPU writing to the MIFRC register or using the IACK instruction to start the task. To use the IACK instruction to begin a task first enable this feature in the MCTL register. If the bit is already set when a new peripheral interrupt is received, then the corresponding overflow bit will be set in the MIOVF register.

The corresponding MIFR bit is automatically cleared when the task begins execution. This will occur if the interrupt is enabled in the MIER register and no other higher priority task is pending. The bits can also be cleared manually by writing to the MICLR register. Writes to the MIFR register are ignored.

15							8				
	Reserved										
	R -0										
7	6	5	4	3	2	1	0				
INT8	INT7	INT6	INT5	INT4	INT3	INT2	INT1				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				

Figure 7. Interrupt Flag Register (MIFR)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Interrupt Flag
		0	A task 8 interrupt is currently not flagged. (default)
		1	A task 8 interrupt has been received and is pending execution.
6	INT7		Task 7 Interrupt Flag
		0	A task 7 interrupt is currently not flagged. (default)
		1	A task 7 interrupt has been received and is pending execution.
5	INT6		Task 6 Interrupt Flag
		0	A task 6 interrupt is currently not flagged. (default)
		1	A task 6 interrupt has been received and is pending execution.
4	INT5		Task 5 Interrupt Flag
		0	A task 5 interrupt is currently not flagged. (default)
		1	A task 5 interrupt has been received and is pending execution.
3	INT4		Task 4 Interrupt Flag
		0	A task 4 interrupt is currently not flagged. (default)
		1	A task 4 interrupt has been received and is pending execution.
2	INT3		Task 3 Interrupt Flag
		0	A task 3 interrupt is currently not flagged. (default)
		1	A task 3 interrupt has been received and is pending execution.
1	INT2		Task 2 Interrupt Flag
		0	A task 2 interrupt is currently not flagged. (default)
		1	A task 2 interrupt has been received and is pending execution.
0	INT1		Task 1 Interrupt Flag
		0	A task 1 interrupt is currently not flagged. (default)
		1	A task 1 interrupt has been received and is pending execution.

Table 7. Interrupt Flag Register (MIFR) Field Descriptions

⁽¹⁾ This register is protected by the code security module.

4.3.6 Interrupt Overflow Flag Register (MIOVF)

Each bit in the overflow flag register corresponds to a CLA task. The bit is set when an interrupt overflow event has occurred for the specific task. An overflow event occurs when the MIFR register bit is already set when a new interrupt is received from a peripheral source. The MIOVF bits are only affected by peripheral interrupt events. They do not respond to a task request by the main CPU IACK instruction or by directly setting MIFR bits. The overflow flag will remain latched and can only be cleared by writing to the overflow flag clear (MICLROVF) register. Writes to the MIOVF register are ignored.

15							8					
	Reserved											
	R -0											
7	6	5	4	3	2	1	0					
INT8	INT7	INT6	INT5	INT4	INT3	INT2	INT1					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					

Figure 8. Interrupt Overflow Flag Register (MIOVF)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. Interrupt Overflow Flag Register (MIOVF) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Interrupt Overflow Flag
		0	A task 8 interrupt overflow has not occurred. (default)
		1	A task 8 interrupt overflow has occurred.
6	INT7		Task 7 Interrupt Overflow Flag
		0	A task 7 interrupt overflow has not occurred. (default)
		1	A task 7 interrupt overflow has occurred.
5	INT6		Task 6 Interrupt Overflow Flag
		0	A task 6 interrupt overflow has not occurred. (default)
		1	A task 6 interrupt overflow has occurred.
4	INT5		Task 5 Interrupt Overflow Flag
		0	A task 5 interrupt overflow has not occurred. (default)
		1	A task 5 interrupt overflow has occurred.
3	INT4		Task 4 Interrupt Overflow Flag
		0	A task 4 interrupt overflow has not occurred. (default)
		1	A task 4 interrupt overflow has occurred.
2	INT3		Task 3 Interrupt Overflow Flag
		0	A task 3 interrupt overflow has not occurred. (default)
		1	A task 3 interrupt overflow has occurred.
1	INT2		Task 2 Interrupt Overflow Flag
		0	A task 2 interrupt overflow has not occurred. (default)
		1	A task 2 interrupt overflow has occurred.
0	INT1		Task 1 Interrupt Overflow Flag
		0	A task 1 interrupt overflow has not occurred. (default)
		1	A task 1 interrupt overflow has occurred.

⁽¹⁾ This register is protected by the code security module.

4.3.7 Interrupt Run Status Register (MIRUN)

The interrupt run status register (MIRUN) indicates which task is currently executing. Only one MIRUN bit will ever be set to a 1 at any given time. The bit is automatically cleared when the task competes and the respective interrupt is fed to the peripheral interrupt expansion (PIE) block of the device. This lets the main CPU know when a task has completed. The main CPU can stop a currently running task by writing to the MCTL[SOFTRESET] bit. This will clear the MIRUN flag and stop the task. In this case no interrupt will be generated to the PIE.

Figure 9. Interrupt Run Status Register (MIRUN)

15							8				
			Rese	erved							
R -0											
7	6	5	4	3	2	1	0				
INT8	INT7	INT6	INT5	INT4	INT3	INT2	INT1				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
		Deed asky a su									

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. Interrupt Run Status Register (MIRUN) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Run Status
		0	Task 8 is not executing. (default)
		1	Task 8 is executing.
6	INT7		Task 7 Run Status
		0	Task 7 is not executing. (default)
		1	Task 7 is executing.
5	INT6		Task 6 Run Status
		0	Task 6 is not executing. (default)
		1	Task 6 is executing.
4	INT5		Task 5 Run Status
		0	Task 5 is not executing. (default)
		1	Task 5 is executing.
3	INT4		Task 4 Run Status
		0	Task 4 is not executing. (default)
		1	Task 4 is executing.
2	INT3		Task 3 Run Status
		0	Task 3 is not executing. (default)
		1	Task 3 is executing.
1	INT2		Task 2 Run Status
		0	Task 2 is not executing. (default)
		1	Task 2 is executing.
0	INT1		Task 1 Run Status
		0	Task 1 is not executing. (default)
		1	Task 1 is executing.

This register is protected by the code security module. (1)

4.3.8 Interrupt Force Register (MIFRC)

The interrupt force register can be used by the main CPU to start tasks through software. Writing a 1 to a MIFRC bit will set the corresponding bit in the MIFR register. Writes of 0 are ignored and reads always return 0. The IACK #16bit operation can also be used to start tasks and has the same effect as the MIFRC register. To enable IACK to set MIFR bits you must first set the MCTL[IACKE] bit. Using IACK has the advantage of not having to first set the EALLOW bit. This allows the main CPU to efficiently trigger CLA tasks through software.

Figure 10. Interrupt Force Register (MIFRC) 15 8 Reserved R -0 7 6 5 4 3 2 1 0 INT8 INT7 INT6 INT5 INT4 INT2 INT3 INT1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Interrupt Force Register (MIFRC) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 8 interrupt.
6	INT7		Task 7 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 7 interrupt.
5	INT6		Task 6 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 6 interrupt.
4	INT5		Task 5 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 5 interrupt.
3	INT4		Task 4 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 4 interrupt.
2	INT3		Task 3 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 3 interrupt.
1	INT2		Task 2 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 2 interrupt.
0	INT1		Task 1 Interrupt Force
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to force the task 1 interrupt.

¹⁾ This register is protected by EALLOW and the code security module.

4.3.9 Interrupt Flag Clear Register (MICLR)

Normally bits in the MIFR register are automatically cleared when a task begins. The interrupt flag clear register can be used to instead manually clear bits in the interrupt flag (MIFR) register. Writing a 1 to a MICLR bit will clear the corresponding bit in the MIFR register. Writes of 0 are ignored and reads always return 0.

15		Ū		U			8					
Reserved												
	R -0											
7	6	5	4	3	2	1	0					
INT8	INT7	INT6	INT5	INT4	INT3	INT2	INT1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					

Figure 11. Interrupt Flag Clear Register (MICLR)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Interrupt Flag Clear Register (MICLR) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 8 interrupt flag.
6	INT7		Task 7 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 7 interrupt flag.
5	INT6		Task 6 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 6 interrupt flag.
4	INT5		Task 5 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 5 interrupt flag.
3	INT4		Task 4 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 4 interrupt flag.
2	INT3		Task 3 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 3 interrupt flag.
1	INT2		Task 2 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 2 interrupt flag.
0	INT1		Task 1 Interrupt Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 1 interrupt flag.

⁽¹⁾ This register is protected by EALLOW and the code security module.

4.3.10 Interrupt Overflow Flag Clear Register (MICLROVF)

Overflow flag bits in the MIOVF register are latched until manually cleared using the MICLROVF register. Writing a 1 to a MICLROVF bit will clear the corresponding bit in the MIOVF register. Writes of 0 are ignored and reads always return 0.

Figure 12. Interrupt Overflow Flag Clear Register (MICLROVF)

15							8				
			Rese	erved							
R -0											
7	6	5	4	3	2	1	0				
INT8	INT7	INT6	INT5	INT4	INT3	INT2	INT1				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	Des IAA/Ste D	Dead and a star									

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. Interrupt Overflow Flag Clear Register (MICLROVF) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-8	Reserved		Any writes to these bit(s) must always have a value of 0.
7	INT8		Task 8 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 8 interrupt overflow flag.
6	INT7		Task 7 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 7 interrupt overflow flag.
5	INT6		Task 6 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 6 interrupt overflow flag.
4	INT5		Task 5 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 5 interrupt overflow flag.
3	INT4		Task 4 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 4 interrupt overflow flag.
2	INT3		Task 3 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 3 interrupt overflow flag.
1	INT2		Task 2 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 2 interrupt overflow flag.
0	INT1		Task 1 Interrupt Overflow Flag Clear
		0	This bit always reads back 0 and writes of 0 have no effect.
		1	Write a 1 to clear the task 1 interrupt overflow flag.

⁽¹⁾ This register is protected by EALLOW and the code security module.

4.4 Execution Registers

The CLA program counter is initialized by the appropriate MVECTx register when an interrupt is received and a task begins execution. The MPC points to the instruction in the decode 2 (D2) stage of the CLA pipeline. After a MSTOP operation, if no other tasks are pending, the MPC will remain pointing to the MSTOP instruction. The MPC register can be read by the main C28x CPU for debug purposes. The main CPU cannot write to MPC.

Register Set

4.4.1 MPC Register

The MPC register is described in Figure 13 and described in Table 13.

Figure 13. Program Counter (MPC)

15		12	11		0
F	Reserved			MPC	
	R-0			R-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Program Counter (MPC) Field Descriptions

Bits	Name	Value	Description ⁽¹⁾
15-12	Reserved		Any writes to these bit(s) must always have a value of 0.
11-0	MPC	0000 - 0FFF	Points to the instruction currently in the decode 2 phase of the CLA pipeline. The value is the offset from the first address in the CLA program space.

⁽¹⁾ This register is protected by the code security module. The main CPU can read this register for debug purposes but it can not write to it.

4.4.2 MSTF Register

The CLA status register (MSTF) reflects the results of different operations. These are the basic rules for the flags:

- Zero and negative flags are cleared or set based on:
 - floating-point moves to registers
 - the result of compare, minimum, maximum, negative and absolute value operations
 - the integer result of operations such as MMOV16, MAND32, MOR32, MXOR32, MCMP32, MASR32, MLSR32
- Overflow and underflow flags are set by floating-point math instructions such as multiply, add, subtract and 1/x. These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device. This can be useful for debugging underflow and overflow conditions within an application.

The MSTF register is shown in Figure 14 and described in Table 14.

				1.19			Julus	ricgiolo		,				
31						24	23							16
			Reserved							F	RPC			
R/W-0	R/W-0 R/W-0													
15	1	2	11	10	9	8	7	6	5	4	3	2	1	0
	RPC		MEALLOW	Reserved	RND32	Res	erved	TF	Res	erved	ZF	NF	LUF	LVF
	R/W-0		R/W-0	R-0	R/W-0	R	-0	R/W-0	R	-0	R/W-0	R/W-0	R/W-0	R/W-0

Figure 14. CLA Status Register (MSTF)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. CLA Status (MSTF) Register	Field Descriptions
--------------------------------------	--------------------

Bits	Field	Value	Description ⁽¹⁾
31 - 24	Reserved	0	Reserved for future use
23 - 12	RPC		Return program counter.
			The RPC is used to save and restore the MPC address by the MCCNDD and MRCNDD operations.
11	MEALLOW		This bit enables and disables CLA write access to EALLOW protected registers. This is independent of the state of the EALLOW bit in the main CPU status register. This status bit can be saved and restored by the MMOV32 STF instruction.
		0	The CLA cannot write to EALLOW protected registers. This bit is cleared by the MEDIS CLA instruction.
		1	The CLA is allowed to write to EALLOW protected registers. This bit is set by the MEALLOW CLA instruction.
10	Reserved	0	Any writes to these bit(s) must always have a value of 0.
9	RND32		Round 32-bit Floating-Point Mode
			Use the MSETFLG and MMOV32 MSTF instructions to change the rounding mode.
		0	If this bit is zero, the MMPYF32, MADDF32 and MSUBF32 instructions will round to zero (truncate).
		1	If this bit is one, the MMPYF32, MADDF32 and MSUBF32 instructions will round to the nearest even value.
8 - 7	Reserved	0	Reserved for future use
6	TF		Test Flag
			The TESTTF instruction can modify this flag based on the condition tested. The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.
		0	The condition tested with the TESTTF instruction is false.
		1	The condition tested with the TESTTF instruction is true.
5 - 4	Reserved		These two bits may change based on integer results. These flags are not, however, used by the CLA and therefore marked as reserved.
3	ZF		Zero Flag ^{(2) (3)}
			 Instructions that modify this flag based on the floating-point value stored in the destination register: MMOV32, MMOVD32, MOVDD32, ABSF32, MNEGF32
			 Instructions that modify this flag based on the floating-point result of the operation: MCMPF32, MMAXF32, and MMINF32
			 Instructions that modify this flag based on the integer result of the operation: MMOV16, MAND32, MOR32, MXOR32, MCMP32, MASR32, MLSR32 and MLSL32
			The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag
		0	The value is not zero.
		1	The value is zero.
2	NF	-	Negative Flag ⁽²⁾ ⁽³⁾
			 Instructions that modify this flag based on the floating-point value stored in the destination register: MMOV32, MMOVD32, MOVDD32, ABSF32, MNEGF32
			 Instructions that modify this flag based on the floating-point result of the operation:
			MCMPF32, MMAXF32, and MMINF32
			Instructions that modify this flag based on the integer result of the operation:
			MMOV16, MAND32, MOR32, MXOR32, MCMP32, MASR32, MLSR32 and MLSL32
			The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.
		0	The value is not negative.
		1	The value is negative.

⁽¹⁾ This register is protected by the code security module. The main CPU can read this register for debug purposes but it can not write to it.

⁽²⁾ A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

⁽³⁾ A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

Bits	Field	Value	Description ⁽¹⁾
1	LUF		Latched Underflow Flag
			The following instructions will set this flag to 1 if an underflow occurs: MMPYF32, MADDF32, MSUBF32, MMACF32, MEINVF32, MEISQRTF32
			The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.
		0	An underflow condition has not been latched.
		1	An underflow condition has been latched.
0	LVF		Latched Overflow Flag
			The following instructions will set this flag to 1 if an overflow occurs: MMPYF32, MADDF32, MSUBF32, MMACF32, MEINVF32, MEISQRTF32
			The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.
		0	An overflow condition has not been latched.
		1	An overflow condition has been latched.

Table 14. CLA Status (MSTF) Register Field Descriptions (co

TEXAS INSTRUMENTS

www.ti.com

Pipeline

5 Pipeline

This section describes the CLA pipeline stages and presents cases where pipeline alignment must be considered.

5.1 Pipeline Overview

The CLA pipeline is very similar to the C28x pipeline. The pipeline has eight stages:

• Fetch 1 (F1)

During the F1 stage the program read address is placed on the CLA program address bus.

• Fetch 2 (F2)

During the F2 stage the instruction is read using the CLA program data bus.

Decode 1 (D1)

During D1 the instruction is decoded.

• Decode 2 (D2)

Generate the data read address. Changes to MAR0 and MAR1 due to post-increment using indirect addressing takes place in the D2 phase. Conditional branch decisions are also made at this stage based on the MSTF register flags.

• Read 1 (R1)

Place the data read address on the CLA data-read address bus. If a memory conflict exists, the R1 stage will be stalled.

Read 2 (R2)

Read the data value using the CLA data read data bus.

• Execute (EXE)

Execute the operation. Changes to MAR0 and MAR1 due to loading an immediate value or value from memory take place in this stage.

Write (W)

Place the write address and write data on the CLA write data bus. If a memory conflict exists, the W stage will be stalled.

5.2 CLA Pipeline Alignment

The majority of the CLA instructions do not require any special pipeline considerations. This section lists the few operations that do require special consideration.

Write Followed by Read

In both the CLA pipeline the read operation occurs before the write. This means that if a read operation immediately follows a write, then the read will complete first as shown in Table 15. In most cases this does not cause a problem since the contents of one memory location does not depend on the state of another. For accesses to peripherals where a write to one location can affect the value in another location the code must wait for the write to complete before issuing the read as shown in Table 16. This behavior is different for the 28x CPU. For the 28x CPU any write followed by read to the same location is protected by what is called write-followed-by-read protection. This protection automatically stalls the pipeline so that the write will complete before the read. In addition some peripheral frames are protected such that a 28x CPU write to one location within the frame will always complete before a read to the frame. The CLA does not have this protection mechanism. Instead the code must wait to perform the read.

TEXAS INSTRUMENTS

www.ti.com

Pipeline

Instruction	F1	F2	D1	D2	R1	R2	E	w
I1 MMOV16 @Reg1, MR3	l1							
I2 MMOV16 MR2, @Reg2	12	11						
		12	11					
			12	I1				
				12	l1			
					12	11		
						12	11	
							12	11

		0						
Instruction	F1	F2	D1	D2	R1	R2	E	w
I1 MMOV16 @Reg1, MR3	l1							
12	12	l1						
13	13	12	l1					
14	14	13	12	l1				
I5 MMOV16 MR2, @Reg2	15	14	13	12	11			
		15	14	13	12	l1		
			15	14	13	12	11	
				15	14	13	12	l1
					15	14	13	
						15	14	
							15	

Table 16. Write Followed by Read - Write Occurs First

Delayed Conditional instructions: MBCNDD, MCCNDD and MRCNDD

Referring to Example 1, the following applies to delayed conditional instructions:

– **I1**

11 is the last instruction that can effect the CNDF flags for the branch, call or return instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a decision is made whether to branch or not when MBCNDD, MCCNDD or MRCNDD is in the D2 phase.

- I2, I3 and I4

The three instructions proceeding MBCNDD can change MSTF flags but will have no effect on whether the MBCNDD instruction branches or not. This is because the flag modification will occur after the D2 phase of the branch, call or return instruction. These three instructions must not be a MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

- I5, I6 and I7

The three instructions following a branch, call or return are always executed irrespective of whether the condition is true or not. These instructions must not be MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

For a more detailed description refer to the functional description for MBCNDD, MCCNDD and MRCNDD.

Pipeline

Example 1. Code Fragment For MBCNDD, MCCNDD or MRCNDD

<Instruction 1> ; Il Last instruction that can affect flags for ; the branch, call or return operation <Instruction 2> ; I2 Cannot be stop, branch, call or return ; I3 Cannot be stop, branch, call or return <Instruction 4> ; I4 Cannot be stop, branch, call or return <branch/call/ret> ; MBCNDD, MCCNDD or MRCNDD ; I5-I7: Three instructions after are always ; executed whether the branch/call or return is ; taken or not <Instruction 5> ; I5 Cannot be stop, branch, call or return <Instruction 7> ; I6 Cannot be stop, branch, call or return <Instruction 8> ; I8 <Instruction 9> ; I9

Stop or Halting a Task: MSTOP and MDEBUGSTOP

The MSTOP and MDEBUGSTOP instructions cannot be placed three instructions before or after a conditional branch, call or return instruction (MBCNDD, MCCNDD or MRCNDD). Refer to Example 1. To single-step through a branch/call or return, insert the MDEBUGSTOP at least four instructions back and step from there.

Loading MAR0 or MAR1

A load of auxiliary register MAR0 or MAR1 will occur in the EXE phase of the pipeline. Any post increment of MAR0 or MAR1 using indirect addressing will occur in the D2 phase of the pipeline. Referring to Example 2, the following applies when loading the auxiliary registers:

– I1 and I2

The two instructions following the load instruction will use the value in MAR0 or MAR1 before the update occurs.

– I3

Loading of an auxiliary register occurs in the EXE phase while updates due to post-increment addressing occur in the D2 phase. Thus I3 cannot use the auxiliary register or there will be a conflict. In the case of a conflict, the update due to address-mode post increment will win and the auxiliary register will not be updated with #_X.

- 14

Starting with the 4th instruction MAR0 or MAR1 will have the new value.

Example 2. Code Fragment for Loading MAR0 or MAR1

```
; Assume MAR0 is 50 and #_X is 20
MMOVI16 MAR0, #_X ; Load MAR0 with address of X (20)
<Instruction 1> ; I1 Will use the old value of MAR0 (50)
<Instruction 2> ; I2 Will use the old value of MAR0 (50)
<Instruction 3> ; I3 Cannot use MAR0
<Instruction 4> ; I4 Will use the new value of MAR0 (20)
<Instruction 5> ; I5 Will use the new value of MAR0 (20)
....
```

5.2.1 ADC Early Interrupt to CLA Response

The 2803x ADC offers the option to generate an early interrupt pulse when the ADC begins conversion.

This option is selected by setting the ADCCTL1[INTPULSEPOS] bit as documented in the TMS320x2802x, x2803x Piccolo Analog-to-Digital Converter and Comparator Reference Guide (<u>SPRUGE5</u>). If this option is used to start a CLA task then the CLA will be able to read the result as soon as the conversion completes and the ADC result register updates. This just-in-time sampling along with the low interrupt response of the CLA enable faster system response and higher frequency control loops.

The timing for the ADC conversion is shown in the ADC Reference Guide timing diagrams. From a CLA perspective, the pipeline activity is shown in Table 17. The 8th instruction is in the R2 phase just in time to read the result register. While the first 7 instructions in the task (I1 to I7) will enter the R2 phase of the pipeline too soon to read the conversion, they can be efficiently used for pre-processing calculations needed by the task.

ADC Activity	CLA Activity	F1	F2	D1	D2	R1	R2	Е	w
Sample									
Sample									
Sample									
Conversion (1)	Interrupt Received								
Conversion (2)	Task Startup								
Conversion (3)	Task Startup								
Conversion (4)	11	11							
Conversion (5)	12	12	l1						
Conversion (6)	13	13	12	11					
Conversion (7)	14	14	13	12	l1				
onversion (8)	15	15	14	13	12	11			
Conversion (9)	16	16	15	14	13	12	l1		
Conversion (10)	17	17	16	15	14	13	12		
Conversion (11)	18 Read ADC RESULT	18	17	16	15	14	13		
Conversion (12)			18	17	16	15	14		
Conversion (13)				18	17	16	15		
conversion Complete					18	17	16		
ESULT Latched						18	17		
RESULT Available							18		

Table 17. ADC to CLA Early Interrupt Response

5.3 Parallel Instructions

Parallel instructions are single opcodes that perform two operations in parallel. The following types of parallel instructions are available: math operation in parallel with a move operation, or two math operations in parallel. Both operations complete in a single cycle and there are no special pipeline alignment requirements.

Example 3. Math Operation with Parallel Load

```
; MADDF32 || MMOV32 instruction: 32-bit floating-point add with parallel move
; MADDF32 is a 1 cycle operation
    MADDF32 MR0, MR1, #2 ; MR0 = MR1 + 2,
    || MMOV32 MR1, @Val ; MR1 gets the contents of Val
    ; <-- MMOV32 completes here (MR1 is valid)
    ; <-- DDF32 completes here (MR0 is valid)
    ; Any instruction, can use MR1 and/or MR0
```

Example 4. Multiply with Parallel Add

SPRUGE6B-May 2009-Revised May 2010

Pipeline

www.ti.com

Example 4. Multiply with Parallel Add (continued)

ſ	;	MMPYF32 MADDF32 instruction	32-bit floating-point multiply with parallel add
	;	MMPYF32 is a 1 cycle operation	
	;	MADDF32 is a 1 cycle operation	
		MMPYF32 MR0, MR1, MR3	; MRO = MR1 * MR3
		MADDF32 MR1, MR2, MR0	; MR1 = MR2 + MR0 (Uses value of MR0 before MMPYF32)
			; < MMPYF32 and MADDF32 complete here (MR0 and MR1 are valid)
		MMPYF32 MR1, MR1, MR0	; Any instruction, can use MR1 and/or MR0

6 Instruction Set

This section describes the assembly language instructions of the control law accellerator. Also described are parallel operations, conditional operations, resource constraints, and addressing modes. The instructions listed here are independent from C28x and C28x+FPU instruction sets.

6.1 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following information:

- Operands
- Opcode
- Description
- Exceptions
- Pipeline
- Examples
- See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The example describes the kind of information you will find in each part of the individual instruction description and where to obtain more information. CLA instructions follow the same format as the C28x; the source operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the C28x CLA are given in Table 18.

Symbol	Description
#16FHi	16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value. Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex	16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value. Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex	A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex	32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F	Immediate float value represented in floating-point representation
#0.0	Immediate zero
#SHIFT	Immediate value of 1 to 32 used for arithmetic and logical shifts.
addr	Opcode field indicating the addressing mode
CNDF	Condition to test the flags in the MSTF register
FLAG	Selected flags from MSTF register (OR) 8 bit mask indicating which floating-point status flags to change
MAR0	auxiliary register 0
MAR1	auxiliary register 1
MARx	Either MAR0 or MAR1
mem16	16-bit memory location accessed using direct or indirect addressing modes
mem32	32-bit memory location accessed using direct or indirect addressing modes
MRa	MR0 to MR3 registers
MRb	MR0 to MR3 registers
MRc	MR0 to MR3 registers
MRd	MR0 to MR3 registers
MRe	MR0 to MR3 registers
MRf	MR0 to MR3 registers
MSTF	CLA Floating-point Status Register
shift	Opcode field indicating the number of bits to shift.
VALUE	Flag value of 0 or 1 for selected flag (OR) 8 bit mask indicating the flag value; 0 or 1

Table 18. Operand Nomenclature

Instruction Set

Each instruction has a table that gives a list of the operands and a short description. Instructions always have their destination operand(s) first followed by the source operand(s).

	Description
dest1	Description for the 1st operand for the instruction
source1	Description for the 2nd operand for the instruction
source2	Description for the 3rd operand for the instruction
Opcode	This section shows the opcode for the instruction
Description	Detailed description of the instruction execution is described. Any constraints on the operands imposed by the processor or the assembler are discussed.
Restrictions	Any constraints on the operands or use of the instruction imposed by the processor are discussed.
Pipeline	This section describes the instruction in terms of pipeline cycles as described in Section 5
Example	Examples of instruction execution. If applicable, register and memory values are given before and after instruction execution. Some examples are code fragments while other examples are full tasks that assume the CLA is correctly configured and the main CPU has passed it data.
Operands	Each instruction has a table that gives a list of the operands and a short description. Instructions always have their destination operand(s) first followed by the source operand(s).

Table 19. INSTRUCTION dest, source1, source2 Short Description

6.2 Addressing Modes and Encoding

The CLA uses the same address to access data and registers as the main CPU. For example if the main CPU accesses an ePWM register at address 0x00 6800, then the CLA will access it using address 0x6800. Since all CLA accessible memory and registers are within the low 64k x 16 of memory, only the low 16-bits of the address are used by the CLA.

To address the CLA data memory, message RAMs and shared peripherals, the CLA supports two addressing modes:

- Direct addressing mode: Uses the address of the variable or register directly.
- Indirect addressing with 16-bit post increment. This mode uses either XAR0 or XAR1.

The CLA does not use a data page pointer or a stack pointer. The two addressing modes are encoded as shown in Table 20.

Addressing Mode	'addr' Opcode Field Encode ⁽¹⁾	Description				
@dir	0000	Direct Addressing Mode				
		Example 1: MMOV32 MR1, @_VarA				
		Example 2: MMOV32 MR1, @_EPwm1Regs.CMPA.all				
		In this case the 'mmmm mmmm mmmm mmmm' opcode field will be populated with the 16-bit address of the variable. This is the low 16-bits of the address that you would use to access the variable using the main CPU.				
		For example @_VarA will populate the address of the variable VarA. and @_EPwm1Regs.CMPA.all will populate the address of the CMPA register.				
*MAR0[#imm16]++	0001	MAR0 Indirect Addressing with 16-bit Immediate Post Increment				
*MAR1[#imm16]++	0010	MAR1 Indirect Addressing with 16-bit Immediate Post Increment				
		addr = MAR0 (or MAR1)Access memory using the address stored in MAR0 (or MAR1).MAR0 (or MAR1) +=Then post increment MAR0 (or MAR1) by #imm16.#imm16				
		Example 1: MMOV32 MR0, *MAR0[2]++				
		Example 2: MMOV32 MR1, *MAR1[-2]++				
		For a post increment of 0 the assembler will accept both *MAR0 and *MAR0[0]++.				
		The 'mmmm mmmm mmmm' opcode field will be populated with the signed 16-bit pointer offset. For example if #imm16 is 2, then the opcode field will be 0x0002. Likewise if #imm16 is -2, then the opcode field will be 0xFFFE.				
		If addition of the 16-bit immediate causes overflow, then the value will wrap around on a 16-bit boundary.				

Table 20. Addressing Modes

⁽¹⁾ Values not shown are reserved.

Encoding for the shift fields in the MASR32, MLSR32 and MLSL32 instructions is shown in Table 21

Table 21. Shift Field Encoding

Shift Value	'shift' Opcode Field Encode	
1	0000	
2	0001	
3	0010	
32	1111	

Table 22 shows the condition field encoding for conditional instructions such as MNEGF, MSWAPF, MBCNDD, MCCNDD and MRCNDD

Encode (1)

0000

www.ti.com Table 22. Condition Field Encoding Description MSTF Flags Tested Not equal to zero ZF == 0 Equal to zero ZF == 1

0001	EQ	Equal to zero	ZF == 1
0010	GT	Greater than zero	ZF == 0 AND NF == 0
0011	GEQ	Greater than or equal to zero	NF == 0
0100	LT	Less than zero	NF == 1
0101	LEQ	Less than or equal to zero	ZF == 1 OR NF == 1
1010	TF	Test flag set	TF == 1
1011	NTF	Test flag not set	TF == 0
1100	LU	Latched underflow	LUF == 1
1101	LV	Latched overflow	LVF == 1
1110	UNC	Unconditional	None
1111	UNCF ⁽²⁾	Unconditional with flag modification	None

(1) Values not shown are reserved.

CNDF

NEQ

⁽²⁾ This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

6.3 Instructions

The instructions are listed alphabetically, preceded by a summary. Table 23. Instructions

Title

Page

MABSF32 MRa, MRb — 32-bit Floating-Point Absolute Value	43
MADD32 MRa, MRb, MRc — 32-bit Integer Add	44
MADDF32 MRa, #16FHi, MRb —32-bit Floating-Point Addition	45
MADDF32 MRa, MRb, MRc — 32-bit Floating-Point Addition	
MADDF32 MRd, MRe, MRf MMOV32 mem32, MRa - 32-bit Floating-Point Addition with Parallel Move	49
MADDF32 MRd, MRe, MRf MMOV32 MRa, mem32 - 32-bit Floating-Point Addition with Parallel Move	50
MAND32 MRa, MRb, MRc — Bitwise AND	52
MASR32 MRa, #SHIFT — Arithmetic Shift Right	53
MBCNDD 16BitDest {, CNDF} — Branch Conditional Delayed	54
MCCNDD 16BitDest {, CNDF} — Call Conditional Delayed	59
MCMP32 MRa, MRb — 32-bit Integer Compare for Equal, Less Than or Greater Than	63
MCMPF32 MRa, MRb — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than	64
MCMPF32 MRa, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than	65
MDEBUGSTOP — Debug Stop Task	67
MEALLOW — Enable CLA Write Access to EALLOW Protected Registers	68
MEDIS — Disable CLA Write Access to EALLOW Protected Registers	69
MEINVF32 MRa, MRb — 32-bit Floating-Point Reciprocal Approximation	70
MEISQRTF32 MRa, MRb — 32-bit Floating-Point Square-Root Reciprocal Approximation	72
MF32TOI16 MRa, MRb — Convert 32-bit Floating-Point Value to 16-bit Integer	74
MF32TOI16R MRa, MRb — Convert 32-bit Floating-Point Value to 16-bit Integer and Round	75
MF32TOI32 MRa, MRb — Convert 32-bit Floating-Point Value to 32-bit Integer	76
MF32TOUI16 MRa, MRb — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer	77
MF32TOUI16R MRa, MRb — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round	78
MF32TOUI32 MRa, MRb — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer	79
MFRACF32 MRa, MRb — Fractional Portion of a 32-bit Floating-Point Value	80
MI16TOF32 MRa, MRb — Convert 16-bit Integer to 32-bit Floating-Point Value	81
MI16TOF32 MRa, mem16 — Convert 16-bit Integer to 32-bit Floating-Point Value	82
MI32TOF32 MRa, mem32 — Convert 32-bit Integer to 32-bit Floating-Point Value	83
MI32TOF32 MRa, MRb — Convert 32-bit Integer to 32-bit Floating-Point Value	84
MLSL32 MRa, #SHIFT — Logical Shift Left	85
MLSR32 MRa, #SHIFT — Logical Shift Right	86
MMACF32 MR3, MR2, MRd, MRe, MRf MMOV32 MRa, mem32 - 32-bit Floating-Point Multiply and Accumulate wit	
MMAXF32 MRa, MRb — 32-bit Floating-Point Maximum	
MMAXF32 MRa, #16FHi — 32-bit Floating-Point Maximum	91
MMINF32 MRa, MRb — 32-bit Floating-Point Minimum	
MMINF32 MRa, #16FHi — 32-bit Floating-Point Minimum	
MMOV16 MARx, mem16 — Load MAR1 with 16-bit Value	
MMOV16 mem16, MARx — Move 16-bit Auxiliary Register Contents to Memory	
MMOV16 mem16, MRa — Move 16-bit Floating-Point Register Contents to Memory	100
MMOV32 mem32, MRa — Move 32-bit Floating-Point Register Contents to Memory	101
MMOV32 mem32, MSTF — Move 32-bit MSTF Register to Memory	102
MMOV32 MRa, mem32 {, CNDF} — Conditional 32-bit Move	103
MMOV32 MRa, MRb {, CNDF} — Conditional 32-bit Move	105
MMOV32 MSTF, mem32 — Move 32-bit Value from Memory to the MSTF Register	107
MMOVD32 MRa, mem32 — Move 32-bit Value from Memory with Data Copy	108

Table 23. Instructions (continued)

MMOVIZ MRa, #16FHi — Load the Upper 16-bits of a 32-bit Floating-Point Register	112
MMOVZ16 MRa, mem16 — Load MRx with 16-bit Value	113
MMPYF32 MRa, MRb, MRc — 32-bit Floating-Point Multiply	115
MMPYF32 MRa, #16FHi, MRb — 32-bit Floating-Point Multiply	116
MMPYF32 MRa, MRb, #16FHi — 32-bit Floating-Point Multiply	118
MMPYF32 MRa, MRb, MRc MADDF32 MRd, MRe, MRf — 32-bit Floating-Point Multiply with Parallel Add	120
MMPYF32 MRd, MRe, MRf MMOV32 MRa, mem32 — 32-bit Floating-Point Multiply with Parallel Move	122
MMPYF32 MRd, MRe, MRf MMOV32 mem32, MRa — 32-bit Floating-Point Multiply with Parallel Move	124
MMPYF32 MRa, MRb, MRc MSUBF32 MRd, MRe, MRf — 32-bit Floating-Point Multiply with Parallel Subtract	125
MNEGF32 MRa, MRb{, CNDF} — Conditional Negation	126
MNOP — No Operation	128
MOR32 MRa, MRb, MRc — Bitwise OR	129
MRCNDD {CNDF} — Return Conditional Delayed	130
MSETFLG FLAG, VALUE —Set or clear selected floating-point status flags	133
MSTOP — Stop Task	134
MSUB32 MRa, MRb, MRc — 32-bit Integer Subtraction	136
MSUBF32 MRa, MRb, MRc — 32-bit Floating-Point Subtraction	137
MSUBF32 MRa, #16FHi, MRb — 32-bit Floating Point Subtraction	138
MSUBF32 MRd, MRe, MRf MMOV32 MRa, mem32 — 32-bit Floating-Point Subtraction with Parallel Move	139
MSUBF32 MRd, MRe, MRf MMOV32 mem32, MRa — 32-bit Floating-Point Subtraction with Parallel Move	141
MSWAPF MRa, MRb {, CNDF} — Conditional Swap	142
MTESTTF CNDF — Test MSTF Register Flag Condition	144
MUI16TOF32 MRa, mem16 — Convert unsigned 16-bit integer to 32-bit floating-point value	146
MUI16TOF32 MRa, MRb — Convert unsigned 16-bit integer to 32-bit floating-point value	147
MUI32TOF32 MRa, mem32 — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value	148
MUI32TOF32 MRa, MRb — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value	149
MXOR32 MRa, MRb, MRc — Bitwise Exclusive Or	150

MABSF32 MRa, MRb 32-bit Floating-Point Absolute Value

Operands

oporanao									
	MRa	CL	A floating-point de	stination register (MF	R0 to MR3)				
	MRb	CL	A floating-point sou	urce register (MR0 to	o MR3)				
Opcode	LSW: 0000 MSW: 0111								
	MSW: UIII	1110 0010	0000						
Description			of MRb is loade 3SF32 instructio	d into MRa. Only n.	y the sign bit of	the operand is			
	if (MRb < e	0) {MRa = lse {MRa =	,						
Flags	This instru	iction mod	ifies the followir	ng flags in the M	STF register:				
	Flag	TF	ZF	NF	LUF	LVF			
	Modified	No	Yes	Yes	No	No			
	The MST	The MSTF register flags are modified as follows:							
	NF = 0;	- 0	- 9						
	ZF = 0; if (MRa(30:23) == 0) $ZF = 1;$								
	II (MRa(50.25) ==	$0) \Sigma F = 1$						
Pipeline	This is a s	ingle-cycle	e instruction.						
Example	MMOVIZ MR	0. #-2.0 ;	MR0 = -2.0 (0)	xC0000000)					
		,	•	40000000), ZF =	NF = 0				
	MMOVIZ MR	0, #5.0 ;	MR0 = 5.0 (0x)	40A00000)					
	MABSF32 M	R0, MR0 ;	MR0 = 5.0 (0x)	40A00000), ZF =	NF = 0				
			MR0 = 0.0						
	MABSF32 MI	R0, MR0 ;	MR0 = 0.0 ZF	= 1, NF = 0					
See also	MNEGF32	2 MRa, MR	kb {, CNDF}						

Instruction Set

MADD32 MRa, MRb, MRc 32-bit Integer Add

Operands

Operands								
	MRa	CL	A floating-point de	stination register (M	R0 to MR3)			
	MRb	CLA floating-point destination register (MR0 to MR3)						
	MRc	CL	A floating-point de	stination register (M	R0 to MR3)			
Opcode	LSW: 0000 000cc bbaa MSW: 0111 1110 1100 0000							
Description	32-bit integer addition of MRb and MRc. MARa(31:0) = MARb(31:0) + MRc(31:0);							
Flags	This instru	iction modif	ies the followi	ng flags in the M	STF register:			
	Flag	TF	ZF	NF	LUF	LVF		
	Modified	No	Yes	Yes	No	No		
Pipeline			<pre>ZF = 1; }; instruction.</pre>					
Example	<pre>; Given A = (int32)1 ; B = (int32)2 ; C = (int32)-7 ; ; Calculate Y2 = A + B + C ; _ClalTask1: MMOV32 MR0, @_A</pre>							
See also	MASR32 I MLSL32 M MLSR32 M MOR32 M MXOR32	MRa, MRb, MRa, #SHII MRa, #SHIF MRa, #SHIF Ra, MRb, MRa, MRb, MRa, MRb,	FT T FT MRc MRc					

MADDF32 MRa, #16FHi, MRb 32-bit Floating-Point Addition

Operands							
	MRa	CI	_A floating-point de	stination register (M	R0 to MR3)		
	#16FHi				the upper 16-bits of a mantissa are assur		
	MRb	CI	_A floating-point sc	urce register (MR0 to	o MR3)		
Opcode	LSW: IIII MSW: 0111						
Description	Add MRb to result of the			represented by	the immediate o	perand. Store the	
	floating-poi most usefu Some exar (0xBFC000 That is, the ^{MRa} = MRb	nt value. I for reprend nples are 000). The value -1 + #16FHi:	The low 16-bits esenting consta 2.0 (0x400000 assembler will 5 can be repre	of the mantissa nts where the lo 00), 4.0 (0x4080 accept either a h sented as #-1.5	are assumed to west 16-bits of th 0000), 0.5 (0x3F nex or float as the	of an IEEE 32-bit be all 0. #16FHi is ne mantissa are 0. 7000000), and -1.5 e immediate value.	
Flags	This instruc	tion mod	ifies the followi	ng flags in the M	STF register:		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	No	No	Yes	Yes	
	• LUF = 1	if MADE	•	ed as follows: an underflow co an overflow con			
Pipeline	This is a si	ngle-cycle	e instruction.				
Example	<pre>; Add to MR1 the value 2.0 in 32-bit floating-point format ; Store the result in MR0 MADDF32 MR0, #2.0, MR1 ; MR0 = 2.0 + MR1</pre>						
	; Add to M ; Store th MADDF32	e result	in MR2	2-bit floating-p 2 = -2.5 + MR3	point format		
	; Store th	e result	llue 0x3FC00000 in MR3 SFC0, MR3 ; MR3				
See also	MADDF32	MRa, MF MRd, MF MRd, MF	Rb, MRc Re, MRf MMC Re, MRf MMC	V32 MRa, mem V32 mem32, MR DF32 MRd, MR	Ra		

MADDF32 MRa, MRb, #16FHi

-1

Operands								
	MRa	CLA floating-point	destination register (MR	R0 to MR3)				
	MRb	CLA floating-point	source register (MR0 to	o MR3)				
	#16FHi		e value that represents t e. The low 16-bits of the					
Opcode	LSW: IIII III MSW: 0111 011							
Description		ne floating-point val ddition in MRa.	ue represented by t	the immediate c	perand. Store the			
	floating-point v most useful fo Some example (0xBFC00000	#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is most useful for representing constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x4000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value. That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.						
	This instructio	n can also be writte	en as MADDF32 MI	Ra, #16FHi, MR	b.			
Flags			wing flags in the MS	_				
	Flag T Modified N	F ZF	NF No	LUF	LVF Yes			
	 LUF = 1 if LVF = 1 if 	MADDF32 generat	es an underflow col es an overflow con					
Pipeline	This is a single	e-cycle instruction.						
Example 1	; Find the ma ; and store i ; _ClalTask1: MMOVI16	ay of 32-bit float ximum value in an t in Result MAR1,#_X 2 MR0, @_len MR1, *MAR1[2]++		load				
	MMOV32 MMAXF32 MADDF32 MCMPF32 MNOP MNOP MNOP MBCNDD LO	MR1, MR2 MR0, MR0, #-1.0 MR0 #0.0	<pre>; MR2 = next elem ; MR1 = MAX(MR1, ; Decrement the ; Set/clear flag; ; Branch if not of ; Always executed ; Always executed;</pre>	MR2) counter s for MBCNDD equal to zero d				
	MNOP MSTOP		; Always executed ; End of task					

Example 2	; Show the basic operation of MADDF32 ;
	; Add to MR1 the value 2.0 in 32-bit floating-point format ; Store the result in MR0 MADDF32 MR0, MR1, #2.0 ; MR0 = MR1 + 2.0
	<pre>; Add to MR3 the value -2.5 in 32-bit floating-point format ; Store the result in MR2 MADDF32 MR2, MR3, #-2.5 ; MR2 = MR3 + (-2.5)</pre>
	<pre>; Add to MR0 the value 0x3FC00000 (1.5) ; Store the result in MR0 MADDF32 MR0, MR0, #0x3FC0 ; MR0 = MR0 + 1.5</pre>
See also	MADDF32 MRa, #16FHi, MRb MADDF32 MRa, MRb, MRc MADDF32 MRd, MRe, MRf MMOV32 MRa, mem32 MADDF32 MRd, MRe, MRf MMOV32 mem32, MRa MMPYF32 MRa, MRb, MRc MADDF32 MRd, MRe, MRf

MADDF32 MRa, MRb, MRc 32-bit Floating-Point Addition

Operands

Operands								
	MRa	CL	CLA floating-point destination register (MR0 to MR3)					
	MRb	CL	A floating-point so					
	MRc	CL	A floating-point so	urce register (MR0	to MR3)			
Opcode		00 0000 00cc bbaa 111 1100 0010 0000						
Description	Add the co MRa = MRb		MRc to the con	tents of MRb ar	nd load the result	into MRa.		
Flags	This instru	ction modi	fies the followir	ng flags in the M	ISTF register:			
	Flag	TF	ZF	NF	LUF	LVF		
	Modified	No	No	No	Yes	Yes		
Pipeline			U III	an overflow cor	ndition.			
Pipeline Example	; Given M ; Calculat ; _ClalTask: MMOV32 MMOV32 MMPYF32 MMOV32	<pre>This is a single-cycle instruction. ; Given M1, X1 and B1 are 32-bit floating point numbers ; Calculate Y1 = M1*X1+B1 ;</pre>						
		2 MR1,MR1, @Y1,MR1	; Store th		re in MRl			
See also	MADDF32 MADDF32 MADDF32							

MADDF32 MRd, MRe, MRf||MMOV32 mem32, MRa 32-bit Floating-Point Addition with Parallel Move

Operands							
	MRd	CLA floating-point of	lestination register for	r the MADDF32 (MR0	to MR3)		
	MRe	CLA floating-point s	ource register for the	MADDF32 (MR0 to M	/IR3)		
	MRf	CLA floating-point s	ource register for the	MADDF32 (MR0 to M	/IR3)		
	mem32	32-bit memory loca destination of the M	•	direct or indirect addre	ssing. This will be the		
	MRa	CLA floating-point s	ource register for the	MMOV32 (MR0 to M	R3)		
Opcode	LSW: mmmm mmm MSW: 0101 ffe						
Description							
Flags	This instructio	n modifies the follow	ring flags in the M	ISTF register:			
	Flag T	F ZF	NF	LUF	LVF		
	Modified N	lo No	No	Yes	Yes		
Pipeline	 LUF = 1 if LVF = 1 if 	gister flags are modil MADDF32 generate MADDF32 generate 32 and MMOV32 cor	s an underflow co s an overflow cor	ndition.			
, ibeinie	Bott in EBI (oyolol			
Example	; Calculate Y ; Y ; _ClalTask2: MMOV32 M MMOV32 M MMPYF32 M MMOV32 M MADDF32 M MMOV32 @	; _ClalTask2: MMOV32 MR0, @_A ; Load MR0 with A MMOV32 MR1, @_B ; Load MR1 with B MMPYF32 MR1, MR1, MR0 ; Multiply A*B MMOV32 MR0, @_C ; and in parallel load MR0 with C MADDF32 MR1, MR1, MR0 ; Add (A*B) to C MMOV32 @_Y2, MR1 ; and in parallel store A*B MMOV32 @_Y3, MR1 ; Store the A*B + C					
See also	MADDF32 MF MADDF32 MF MMPYF32 MF	Ra, #16FHi, MRb Ra, MRb, #16FHi Ra, MRb, MRc Ra, MRb, MRc MA Rd, MRe, MRf MM					

MADDF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Addition with Parallel Move

Operands								
	MRd			ination register for me register as MR	the MADDF32 (MR0 a.) to MR3).		
	MRe	CLA floati	CLA floating-point source register for the MADDF32 (MR0 to MR3)					
	MRf	CLA floati	ng-point sour	ce register for the	MADDF32 (MR0 to I	MR3)		
	MRa			ination register for me register as MR	the MMOV32 (MR0 d.	to MR3).		
	mem32	32-bit mer for the MN		accessed using d	irect or indirect addre	essing. This is the source		
Opcode	LSW: mmmm mm MSW: 0001 ff							
Description		re the result in Ra. _{MRf ;}				Rf to the contents of te 32-bit location		
Restrictions		on register for Rd cannot be t			MMOV32 must b	e unique. That is,		
Flags	This instruction	on modifies th	e following	g flags in the M	ISTF register:			
	Flag	TF	ZF	NF	LUF	LVF		
	Modified	No	Yes	Yes	Yes	Yes		
	• LUF = 1 i	-	enerates a	d as follows: In underflow co In overflow con				
	NF = MRa(31) ZF = 0;			NF and ZF flag	gs as follows:			
Pipeline	The MADDF:	32 and the MM	MOV32 bo	th complete in	a single cycle.			
Example 1	<pre>The MADDF32 and the MMOV32 both complete in a single cycle. ; Given A, B and C are 32-bit floating-point numbers ; Calculate Y1 = A + 4B ; Y2 = A + C; ; _ClalTask1: MMOV32 MR0, @A ; Load MR0 with A MMOV32 MR1, @B ; Load MR1 with B MMPYF32 MR1, MR1, #4.0 ; Multiply 4 * B MMOV32 MR2, @C and in parallel load C MADDF32 MR3, MR0, MR1 ; Add A + 4B MADDF32 MR3, MR0, MR2 ; Add A + C MMOV32 @Y1, MR3 ; and in parallel store A+4B MMOV32 @Y2, MR3 ; store A + C MSTOP ; end of task</pre>							

Instruction Set

Example 2	<pre>; Given A, B and C are 32-bit floating-point numbers ; Calculate Y3 = (A + B) ; Y4 = (A + B) * C ; _ClalTask2:</pre>
	<pre>MADDF32 MR1, MR1, MR0 ; Add A+B MMOV32 MR0, @C ; and in parallel load MR0 with C MMPYF32 MR1, MR1, MR0 ; Multiply (A+B) by C MMOV32 @Y3, MR1 ; and in parallel store A+B MMOV32 @Y4, MR1 ; Store the (A+B) * C MSTOP ; end of task</pre>
See also	MADDF32 MRa, #16FHi, MRb MADDF32 MRa, MRb, #16FHi MADDF32 MRa, MRb, MRc MADDF32 MRd, MRe, MRf MMOV32 mem32, MRa MMPYF32 MRa, MRb, MRc MADDF32 MRd, MRe, MRf

MAND32 MRa, MRb, MRc Bitwise AND

Operands

Operands									
	MRa	CLA	A floating-point des	tination register (M	IR0 to MR3)				
	MRb CLA floating-point source register (MR0 to MR3)								
	MRc	CLA	A floating-point sou	rce register (MR0	to MR3)				
Opcode	LSW: 0000 MSW: 0111								
Description	Bitwise AN		with MRc.) AND MRc(31:0));					
Flags	This instruc	ction modif	ies the following	g flags in the N	/ISTF register:				
	Flag	TF	ZF	NF	LUF	LVF			
	Modified	No	Yes	Yes	No	No			
	The MSTF NF = MRa(3 ZF = 0; if(MRa(31:	1);	-	d based on the	integer results of	the operation.			
Pipeline	This is a si	ngle-cycle	instruction.						
Example			5555 ; MRO = AAAA	0x5555AAAA					
			5432 ; MR1 = FEDC	0x5432FEDC					
	; 0101 AND								
	; 0101 AND ; 0101 AND	0100 = 01 0011 = 00							
	; 0101 AND	0010 = 00	00 (0)						
	; 1010 AND ; 1010 AND	1111 = 10 1110 = 10							
		; 1010 AND 1101 = 1000 (8) ; 1010 AND 1100 = 1000 (8)							
	MAND32 MR2			0x5410AA88					
See also	MADD32 M MASR32 M MLSL32 M MLSR32 M MOR32 M MXOR32 M MXOR32 M	IRa, #SHIF Ra, #SHIF IRa, #SHIF Ra, MRb, M IRa, MRb,	T T T IRc MRc						

MASR32 MRa, #SHIFT Arithmetic Shift Right

Operands

Operands						
	MRa	0.1	ource/destination reg	ister (MR0 to MR3)		
	#SHIFT	Number of bits to sh	ift (1 to 32)			_
Opcode		000 Oshi ftaa 011 0100 0000				
Description	to 32.	hift right of MRa by the			mber of bits can be	1
		Arithmetic Shift(MA	· · · -			
Flags		on modifies the follow		-		_
	Flag	TF ZF	NF	LUF	LVF	
	Modified	No Yes	Yes	No	No	_
	NF = MRa(31) ZF = 0;	<pre>egister flags are modif ; == 0) { ZF = 1; }</pre>	ed based on the	integer results o	of the operation.	
Pipeline	This is a sing	gle-cycle instruction.				
Example	; b2 = ; ; Calculate ; m2 = ; x2 = ; b2 = ; _ClalTask2: MMOV32 MR MMOV32 MR MASR32 MR MASR32 MR MASR32 MR MMOV32 @	<pre>: (int32)64 : (int32)-128 : m2/2 : x2/4 : b2/8 : : : : : : : : : : : : : : : : : : :</pre>	0x00000040) (0xFFFFFF80) 0x00000010) 0x00000010) (0xFFFFFFF0)			
See also	MAND32 MF MLSL32 MR MLSR32 MR MOR32 MR MXOR32 MF	a, #SHIFT				

MBCNDD 16BitDest {, CNDF} Branch Conditional Delayed

Operands				
	16BitDest	16-bit	destination if condition is true	
	CNDF	Optior	nal condition tested	
Opcode		dest dest de 1001 1000 cr		
Description	MPC value around. Th	e. Otherwise, erefore a val Since the M	n is true, then branch by adding the continue without branching. If the lue of "0xFFFE" will put the MPC b IPC is only 12-bits, unused bits the	address overflows, it wraps back to the MBCNDD
			<pre>line section for important informatio += 16BitDest;</pre>	on regarding this instruction.
		,	owing conditions:	
			Description	MSTF Flags Tested
	0000	NEQ	Not equal to zero	ZF == 0
	0001	EQ	Equal to zero	ZF == 1
	0010	GT	Greater than zero	ZF == 0 AND NF == 0
	0010	GEQ	Greater than or equal to zero	NF == 0
	0100	LT	Less than zero	NF == 1
	0101	LEQ	Less than or equal to zero	ZF == 1 OR NF == 1
	1010	TF	Test flag set	TF == 1
	1011	NTF	Test flag not set	TF == 0
	1100	LU	Latched underflow	LUF == 1
	1101	LV	Latched overflow	LVF == 1
	1110	UNC	Unconditional	None
	1111	UNCF ⁽²⁾	Unconditional with flag modification	None
Restrictions	⁽²⁾ This is th be modifi The MBCN	ed when a cond IDD instructio	served. ion if no CNDF field is specified. This condi litional operation is executed. All other cond on is not allowed three instructions instruction. Refer to the pipeline s	ditions will not modify these flags.
Flags	This instru	ction does no	ot modify flags in the MSTF registe	er.
	Flag	TF	ZF NF	LUF LVF
	Modified	No	No No	No No
Pipeline	each brand and three a taken or no depends o effective no	ch 6 instruction after the bran ot taken depen n how many umber of cyc	on by itself is a single-cycle instruction slots are executed; three before ach instruction (I5-I7). The total nurends on the usage of these slots. The slots are filled with a MNOP as we les for a branch can, therefore, randoranch taken may not be the same	e the branch instruction (I2-I4) mber of cycles for a branch hat is, the number of cycles all as which slots are filled. The nge from 1 to 7 cycles. The

Referring to Table 24 and Table 25, the instructions before and after MBCNDD have the following properties:

• I1

- I1 is the last instruction that can effect the CNDF flags for the MBCNDD instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a decision is made whether to branch or not when MBCNDD is in the D2 phase.
- There are no restrictions on the type of instruction for I1.
- I2, I3 and I4
 - The three instructions proceeding MBCNDD can change MSTF flags but will have no effect on whether the MBCNDD instruction branches or not. This is because the flag modification will occur after the D2 phase of the MBCNDD instruction.
 - These instructions must not be the following: MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.
- 15, 16 and 17
 - The three instructions following MBCNDD are always executed irrespective of whether the branch is taken or not.
 - These instructions must not be the following: MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

```
<Instruction 1>
                     ; Il Last instruction that can affect flags for
                    ; the MBCNDD operation
<Instruction 2>
                   ; I2 Cannot be stop, branch, call or return
<Instruction 3> ; I3 Cannot be stop, branch, call or return
<Instruction 4> ; I4 Cannot be stop, branch, call or return
MBCNDD _Skip, NEQ ; Branch to Skip if not eqal to zero
                    ; Three instructions after MBCNDD are always
                    ; executed whether the branch is taken or not
<Instruction 5>
                   ; I5 Cannot be stop, branch, call or return
                   ; I7 Cannot be stop, branch, call or return
; I7 Cannot be stop, branch, call or return
; I8
<Instruction 6> ; I6 Cannot be stop, branch, call or return
<Instruction 7>
<Instruction 8>
<Instruction 9>
                   ; 19
. . . .
_Skip:
 <Destination 1> ; d1 Can be any instruction
 <Destination 2> ; d2
 <Destination 3> ; d3
. . . .
. . . .
MSTOP
. . . .
```

Texas Instruments

Instruction Set

Instruction	F1	F2	D1	D2	R1	R2	Е	w
11	l1							
12	12	11						
13	13	12	11					
14	14	13	12	l1				
MBCNDD	MBCNDD	14	13	12	l1			
15	15	MBCNDD	14	13	12	l1		
16	16	15	MBCNDD	14	13	12	11	
17	17	16	15	MBCNDD	14	13	12	
18	18	17	16	15	-	14	13	
19	19	18	17	16	15	-	14	
110	I10	19	18	17	16	15	-	
		I10	19	18	17	16	15	
			110	19	18	17	16	
				l10	19	18	17	
					l10	19	18	
						l10	19	
							110	

							110	
Table 25. Pipeline Activity For MBCNDD, Branch Taken								
Instruction	F1	F2	D1	D2	R1	R2	Е	w
11	11							
12	12	11						
13	13	12	11					
14	14	13	12	11				
MBCNDD	MBCNDD	14	13	12	11			
15	15	MBCNDD	14	13	12	I 1		
16	16	15	MBCNDD	14	13	12	11	
17	17	16	15	MBCNDD	14	13	12	
d1	d1	17	16	15	-	14	13	
d2	d2	d1	17	16	15	-	14	
d3	d3	d2	d1	17	16	15	-	
		d3	d2	d1	17	16	15	
			d3	d2	d1	17	16	
				d3	d2	d1	17	
					d3	d2	d1	
						d3	d2	
							d3	

www	.ti	.com	

Example 1

; if (State == 0.1) ; RampState = RampState ; else if (State == 0.01)		
; CoastState = CoastState		COASTMASK
; else ; SteadyState = SteadyStat		CTFA DYMA CK
;	-6	STEADTHASK
_ClalTask1:		
MMOV32 MR0, @State		Affects floor for lat MDONDD (1)
MCMPF32 MR0, #0.1 MNOP	'	Affects flags for 1st MBCNDD (A)
MNOP		
MNOP		
- · · · · ·	;	(A) If State != 0.1, go to Skipl
MNOP ; Always executed		
MNOP ; Always executed MNOP ; Always executed		
-	;	Execute if (A) branch not taken
		Execute if (A) branch not taken
		Execute if (A) branch not taken
MMOV32 @RampState, MR1	;	Execute if (A) branch not taken
MSTOP	;	end of task if (A) branch not taken
Skip1:		
	;	Affects flags for 2nd MBCNDD (B)
MNOP MNOP		
MNOP MNOP		
	;	(B) If State != 0.01, go to Skip2
MNOP ; Always executed		(_, 20000 1 000_, 30 00 000_
MNOP ; Always executed		
MNOP ; Always executed		
		Execute if (B) branch not taken
		Execute if (B) branch not taken
		Execute if (B) branch not taken Execute if (B) branch not taken
MMOV32 @COAStState, MRI MSTOP	'	Execute II (B) Drahen not taken
Skip2:		
-	;	Executed if (B) branch taken
		Executed if (B) branch taken
		Executed if (B) branch taken
	;	Executed if (B) branch taken
MSTOP		

Texas Instruments

www.ti.com

Example 2	; ; if (State == 0.1) ; RampState = RampState ; else if (State == 0.01) ; CoastState = CoastState ; else ; SteadyState = SteadyStat	take advantage of delay slots RAMPMASK COASTMASK
	MCMPF32 MR0, #0.01 MTESTTF EQ MNOP MBCNDD Skip1, NEQ MMOV32 MR1, @RampState MMOVXI MR2, #RAMPMASK MOR32 MR1, MR2	<pre>; Affects flags for 1st MBCNDD (A) ; Check used by 2nd MBCNDD (B) ; Store EQ flag in TF for 2nd MBCNDD (B) ; (A) If State != 0.1, go to Skip1 ; Always executed ; Always executed ; Always executed ; Execute if (A) branch not taken ; end of task if (A) branch not taken</pre>
	MMOV32 MR1, @CoastState MMOVXI MR2, #COASTMASK MOR32 MR1, MR2 MMOV32 @CoastState, MR1 MSTOP Skip2: MMOV32 @SteadyState, MR3	
See also	MSTOP MCCNDD 16BitDest, CNDF	

Instruction Set

MRCNDD CNDF

MCCNDD 16BitDest {, CNDF} Call Conditional Delayed

Operands

		on if condition is true ion to be tested						
SW: dest d		ion to be tested						
	lest dest dest							
	.001 1001 cndf							
nd make the ontinue co round. The onstruction.	he call by adding th de execution witho erefore a value of "(Since the MPC is c	e signed 16BitDest value to ut making the call. If the add 0xFFFE" will put the MPC ba	dress overflows, it wraps ack to the MCCNDD					
lease refe	r to the pipeline sec	ction for important information	on regarding this instruction.					
RPC = r	eturn address;							
CNDF is one of the following conditions:								
Encode ⁽³⁾	CNDF	Description	MSTF Flags Tested					
0000	NEQ	Not equal to zero	ZF == 0					
0001	EQ	Equal to zero	ZF == 1					
0010	GT	Greater than zero	ZF == 0 AND NF == 0					
0011	GEQ	Greater than or equal to zero	NF == 0					
0100	LT	Less than zero	NF == 1					
0101	LEQ	Less than or equal to zero	ZF == 1 OR NF == 1					
1010	TF	Test flag set	TF == 1					
1011	NTF	Test flag not set	TF == 0					
1100	LU	Latched underflow	LUF == 1					
1101	LV	Latched overflow	LVF == 1					
1110	UNC	Unconditional None						
1111	UNCF ⁽⁴⁾	Unconditional with flag modification	None					
	ontinue co round. The istruction. ddress are Please refe f (CNDF == RPC = r MPC += ; CNDF is on Encode ⁽³⁾ 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000	ontinue code execution withour ound. Therefore a value of "(istruction. Since the MPC is or ddress are ignored. Please refer to the pipeline set of (CNDF == TRUE) RPC = return address; MPC += 16BitDest; CNDF is one of the following c Encode ⁽³⁾ CNDF 0000 NEQ 0001 EQ 0010 GT 0011 GEQ 0100 LT 0101 LEQ 0100 LT 0101 LQ 0101 LV 1100 LV 1100 UNC	Please refer to the pipeline section for important information f (CNDF == TRUE) RPC = return address; MPC += 16BitDest; cNDF is one of the following conditions: Encode ⁽³⁾ CNDF Description 0000 NEQ Not equal to zero 0011 EQ EQ Equal to zero 0010 GT Greater than zero 0101 LEQ LEQ Less than or equal to zero 0101 LEQ LO11 NTF Test flag set 1011 NTF 1100 LU 1111 UNC 1111 UNCF ⁽⁴⁾					

The MCCNDD instruction is not allowed three instructions before or after a MBCNDD, MCCNDD, or MRCNDD instruction. Refer to the Pipeline section for more details.

Flags

This instruction does not modify flags in the MSTF register.

Flag	TF	ZF	NF	LUF	LVF	
Modified	No	No	No	No	No	

Instruction Set

Pipeline

The MCCNDD instruction by itself is a single-cycle instruction. As shown in Table 26, for each call 6 instruction slots are executed; three before the call instruction (I2-I4) and three after the call instruction (I5-I7). The total number of cycles for a call taken or not taken depends on the usage of these slots. That is, the number of cycles depends on how many slots are filled with a MNOP as well as which slots are filled. The effective number of cycles for a call can, therefore, range from 1 to 7 cycles. The number of cycles for a call taken may not be the same as for a call not taken.

Referring to the following code fragment and the pipeline diagrams in Table 26 and Table 27, the instructions before and after MCCNDD have the following properties:

- · 11
 - I1 is the last instruction that can effect the CNDF flags for the MCCNDD instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a decision is made whether to branch or not when MCCNDD is in the D2 phase.
 - There are no restrictions on the type of instruction for I1.
- 12, 13 and 14
 - The three instructions proceeding MCCNDD can change MSTF flags but will have no effect on whether the MCCNDD instruction makes the call or not. This is because the flag modification will occur after the D2 phase of the MCCNDD instruction.
 - These instructions must not be the following: MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.
- 15, 16 and 17
 - The three instructions following MBCNDD are always executed irrespective of whether the branch is taken or not.
 - These instructions must not be the following: MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

TEXAS INSTRUMENTS

www.ti.com

<instruction 1=""></instruction>	; Il Last instruction that can affect flags f	or
	; the MCCNDD operation	
<instruction 2=""></instruction>	; I2 Cannot be stop, branch, call or return	
<instruction 3=""></instruction>	; I3 Cannot be stop, branch, call or return	
<instruction 4=""></instruction>	; I4 Cannot be stop, branch, call or return	
MCCNDD _func, NEQ	; Call to func if not eqal to zero	
	; Three instructions after MCCNDD are always	
	; executed whether the call is taken or not	
<instruction 5=""></instruction>	; I5 Cannot be stop, branch, call or return	
<instruction 6=""></instruction>	; I6 Cannot be stop, branch, call or return	
<instruction 7=""></instruction>	; I7 Cannot be stop, branch, call or return	
<instruction 8=""></instruction>	; I8 The address of this instruction is saved	ł
	; in the RPC field of the MSTF register.	
	; Upon return this value is loaded into MP	ЪС
	; and fetching continues from this point.	
<instruction 9=""></instruction>	; 19	
_func:		
<destination 1=""></destination>	; dl Can be any instruction	
<destination 2=""></destination>	; d2	
<destination 3=""></destination>	; d3	
<destination 4=""></destination>	; d4 Last instruction that can affect flags f	or
	; the MRCNDD operation	
<destination 5=""></destination>	; d5 Cannot be stop, branch, call or return	
<destination 6=""></destination>	; d6 Cannot be stop, branch, call or return	
<destination 7=""></destination>	; d7 Cannot be stop, branch, call or return	
MRCNDD, UNC	; Return to <instruction 8="">, unconditional</instruction>	
Micened, one	, Recard to singeraction of, anconarcionar	
	; Three instructions after MRCNDD are always	
	; executed whether the return is taken or not	
<destination 8=""></destination>	; d8 Cannot be stop, branch, call or return	
<destination 9=""></destination>	; d9 Cannot be stop, branch, call or return	
<destination 10=""></destination>	; d10 Cannot be stop, branch, call or return	
<destination 11=""></destination>	; dl1	

MSTOP

Instruction Set

Instruction	F1	F2	D1	D2	R1	R2	Е	w
11	l1							
12	12	l1						
13	13	12	l1					
14	14	13	12	l1				
MCCNDD	MCCNDD	14	13	12	l1			
15	15	MCCNDD	14	13	12	l1		
16	16	15	MCCNDD	14	13	12	11	
17	17	16	15	MCCNDD	14	13	12	
18	18	17	16	15	-	14	13	
19	19	18	17	16	15	-	14	
110	110	19	18	17	16	15	-	
etc		l10	19	18	17	16	15	
			l10	19	18	17	16	
				I10	19	18	17	
					I10	19	18	
						l10	19	
							110	

Table 26. Pipeline Activity For MCCNDD, Call Not Taken

	Table 27. Pipeline Activity For MCCNDD, Call Taken								
Instruction	F1	F2	D1	D2	R1	R2	Е	w	
11	l1								
12	12	l1							
13	13	12	l1						
4	14	13	12	11					
MCCNDD	MCCNDD	14	13	12	l1				
5	15	MCCNDD	14	13	12	l1			
6	16	15	MCCNDD	14	13	12	l1		
7 ⁽¹⁾	17	16	15	MCCNDD	14	13	12		
11	d1	17	16	15	-	14	13		
12	d2	d1	17	16	15	-	14		
13	d3	d2	d1	17	16	15	-		
etc		d3	d2	d1	17	16	15		
			d3	d2	d1	17	16		
				d3	d2	d1	17		
					d3	d2	d1		
						d3	d2		
							d3		

⁽¹⁾ The RPC value in the MSTF register will point to the instruction following I7 (instruction I8).

Example

See also

MBCNDD #16BitDest, CNDF MMOV32 mem32, MSTF MMOV32 MSTF, mem32 MRCNDD CNDF

;

MCMP32 MRa, MRb 32-bit Integer Compare for Equal, Less Than or Greater Than

Operands										
	MRa	CL	A floating-point so	urce register (MR0 to	o MR3)					
	MRb	CLA floating-point source register (MR0 to MR3)								
Opcode	LSW: 0000 0000 bbaa MSW: 0111 1111 0010 0000									
Description	Set ZF and NF flags on the result of MRa - MRb where MRa and MRb are 32-bit integers. For a floating point compare refer to MCMPF32.									
Flags	This instru	ction mod	ifies the followin	ng flags in the M	STF register:					
	Flag	TF	ZF	NF	LUF	LVF				
	Modified	No	Yes	Yes	No	No				
Pipeline	If(MRa > If(MRa < This is a si	MRb) {ZF=	0; NF=1;}							
Pipeline Example	<pre>This is a single-cycle instruction. ; Behavior of ZF and NF flags for different comparisons ; ; Given A = (int32)1 ; B = (int32)2 ; C = (int32)-7 ; MMOV32 MR0, @_A ; MR0 = 1 (0x00000001) MMOV32 MR1, @_B ; MR1 = 2 (0x00000002) MMOV32 MR2, @_C ; MR2 = -7 (0xFFFFF9) MCMP32 MR2, MR2 ; NF = 0, ZF = 1 MCMP32 MR0, MR1 ; NF = 1, ZF = 0</pre>									
See also		MR1, MR0	; NF = 0, ZF , MRC							

MCMPF32 MRa, MRb 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands						
	MRa	CL	A floating-point s	ource register (MR0	to MR3)	
	MRb	CL	A floating-point s	ource register (MR0	to MR3)	
Opcode		0000 0000 1101 0000				
Description	as a logica	al compare	operation. Th	is is possible be	cause of the IEE	struction is performed E format offsetting floating-point value.
	Special ca	ises for inp	uts:			
	 Negati 	ve zero wil	l be treated as	s positive zero.		
				eated as positive	zero.	
	 Not-a-l 	Number (N	aN) will be tre	ated as infinity.		
Flags	This instru	ction modi	fies the follow	ing flags in the M	ISTF register:	
	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	Yes	Yes	No	No
	If(MRa == If(MRa > 1	-	F=1; NF=0;} ; NF=0;}	ied as follows:		
Pipeline	This is a s	ingle-cycle	instruction.			
Example	; Behavio	c of ZF and	d NF flags fc	r different com	parisons	
	MMOVI MMOVI MCMPF MCMPF MCMPF	Z MR0, 32 MR1, 1 32 MR0, 1	#5.0 ; MR0 MR0 ; ZF = MR1 ; ZF =	= -2.0 (0xC0000 = 5.0 (0x40A000 0, NF = 1 0, NF = 0 1, NF = 0		
See also	MMAXF32 MMAXF32 MMINF32	2 MRa, #16 2 MRa, #16 2 MRa, MR MRa, #16 MRa, MRt	iFHi b FHi			

MCMPF32 MRa, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands									
	MRa	CLA	floating-point sou	urce register (MR0 to	o MR3)				
	#16FHi			lue that represents the low 16-bits of the					
Opcode	LSW: IIII II MSW: 0111 10								
Description				floating-point va n (MRa - #16FH		by the immediate			
	floating-point addressing n are 0. Some -1.5 (0xBFC0	value. T node is m example 00000). T	he low 16-bits host useful for s are 2.0 (0x40 he assembler	of the mantissa constants where 0000000), 4.0 (0	are assumed to the lowest 16-b x40800000), 0.9 r a hex or float	s of an IEEE 32-bit be all 0. This bits of the mantissa 5 (0x3F000000), and as the immediate			
	The MCMPF32 instruction is performed as a logical compare operation. This is possible because of the IEEE floating-point format offsets the exponent. Basically the bigger the binary number, the bigger the floating-point value.								
	Special cases for inputs:								
	 Negative zero will be treated as positive zero. 								
	Denorma	lized valu	ie will be treate	ed as positive ze	ero.				
	 Not-a-Nul 	mber (Na	aN) will be trea	ted as infinity.					
Flags	This instructi	on modifi	ies the followin	g flags in the M	STF register:				
-	-	TF	ZF	NF	LUF	LVF			
	Modified	No	Yes	Yes	No	No			
	<pre>The MSTF re If(MRa == #1 If(MRa > #16 If(MRa < #16</pre>	6FHi:0) FHi:0) {							
Pipeline	This is a sing	gle-cycle	instruction						
Example 1	; Behavior o	f ZF and	NF flags for	different comp	arisons				
	MMOVIZ MMOVIZ MCMPF32 MCMPF32 MCMPF32	MR0, # MR1, #	5.0 ; MR0 = -2.2 ; ZF = 0 6.5 ; ZF = 0	0, NF = 1					

Instruction Set	
Example 2	<pre>; X is an array of 32-bit floating-point values ; and has len elements. Find the maximum value in ; the array and store it in Result ; ; Note: MCMPF32 and MSWAPF can be replaced with MMAXF32 ; _ClalTask1: MMOVI16 MAR1,#_X ; Start address MUI16TOF32 MR0, @_len ; Length of the array MNOP ; delay for MAR1 load MNOP ; delay for MAR1 load MMOV32 MR1, *MAR1[2]++ ; MR1 = X0</pre>
	LOOP MMOV32 MR2, *MAR1[2]++ ; MR2 = next element MCMPF32 MR2, MR1 ; Compare MR2 with MR1 MSWAPF MR1, MR2, GT ; MR1 = MAX(MR1, MR2) MADDF32 MR0, MR0, #-1.0 ; Decrement the counter MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP MNOP Stanch if not equal to zero MMOV32 @_Result, MR1 ; Always executed MNOP MNOP ; Always executed MNOP ; Always executed MSTOP ; End of task
See also	MCMPF32 MRa, MRb MMAXF32 MRa, #16FHi MMAXF32 MRa, MRb MMINF32 MRa, #16FHi MMINF32 MRa, MRb

TEXAS INSTRUMENTS

MDEBUGSTOP	Debug Ste	op Task					
Operands							
	none	Th	is instruction does	s not have any opera	nds		
Opcode	LSW: 0000 MSW: 0111	0000 0000 1111 0110	0000 0000				
Description	When CLA breakpoints are enabled, the MDEBUGSTOP instruction is used to halt a task so that it can be debugged. That is, MDEBUGSTOP is the CLA breakpoint. If CLA breakpoints are not enabled, the MDEBUGSTOP instruction behaves like a MNOP. Unlike the MSTOP, the MIRUN flag is not cleared and an interrupt is not issued. A single-step or run operation will continue execution of the task. The MDEBUGSTOP instruction cannot be placed 3 instructions before or after a						
	MBCNDD,	MCCNDE	or MRCNDD	instruction.			
Flags	This instru	ction does	not modify fla	gs in the MSTF I	register.		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	No	No	No	No	
Pipeline	This is a s	ingle-cycle	instruction.				
Example	;						
See also	MSTOP						

MEALLOW	Enable C	LA Write	Access to EAL	LOW Protecte	d Registers			
Operands								
	none	Т	his instruction does	s not have any oper	ands			
Opcode		0000 0000						
Description	set, the C	LA is allov	ved write acces	s to EALLOW p		STF. When this bit is s. To again protect n.		
	MEALLO the main main CPI	W has not CPU's EAI J's status r	been executed LOW/EDIS. The egister. The MI	. MEALLOW an his instruction de EALLOW bit in I	oes not modify th MSTF only contro	lowed even if o independant from e EALLOW bit in the ols access for the for the main CPU.		
				oit is overridden from Code Com		rt, allowing full control		
Flags	This instruction does not modify flags in the MSTF register.							
	Flag	TF	ZF	NF	LUF	LVF		
	Modified	No	No	No	No	No		
Pipeline	This is a	single-cycl	e instruction.					
Example	; the EPv ; ; The ePV ; _ClalTas} MEALLO	mlRegs st: M TZSEL ro .s C,LIST, :1: DW	egister is EAL "CLAShared.h"	LOW protected	A write access			
	MEDIS				/ CLA write acce	SS		
	MSTOP							

TEXAS INSTRUMENTS

MEDIS	Disable CL	A Write Acc	cess to EAL	LOW Protecte	ed Registers				
Operands									
•	none	This in	struction does r	not have any opera	ands				
Opcode	LSW: 0000 0000 0000 MSW: 0111 1111 1011 0000								
Description	This instruction clears the MEALLOW bit in the CLA status register MSTF. When this bit is clear, the CLA is not allowed write access to EALLOW protected registers. To enable CLA writes to protected registers, use the MEALLOW instruction.								
	MEALLOW the main C main CPU's	' has not bee PU's EALLO' s status regis	n executed. W/EDIS. Thi tter. The ME	MEALLOW an s instruction do ALLOW bit in f	ess; reads are allow d MEDIS are also in bes not modify the E MSTF only controls v controls access fo	ndependant from EALLOW bit in the access for the			
				t is overridden om Code Com		allowing full control			
Flags	This instruction does not modify flags in the MSTF register.								
	Flag	TF	ZF	NF	LUF	LVF			
	Modified	No	No	No	No	No			
Pipeline	This is a si	ngle-cycle ins	struction.						
Example	<pre>; C header file including definition of ; the EPwmlRegs structure ; ; The ePWM TZSEL register is EALLOW protected ; .cdecls C,LIST, "CLAShared.h" _ClalTaskl: MEALLOW ; Allow CLA write access MMOV16 @_EPwmlRegs.TZSEL.all, MR3 ; Write to TZSEL MEDIS ; Disallow CLA write access </pre>								
	MSTOP								
See also	MEALLOW								

MEINVF32 MRa, MRb 32-bit Floating-Point Reciprocal Approximation

Operands

	MRa CLA floating-point destination register (MR0 to MR3)								
	MRb CLA floating-point source register (MR0 to MR3)								
Opcode	LSW: 0000 0000 bbaa MSW: 0111 1111 0000 0000								
Description	This operation generates an estimate of 1/X in 32-bit floating-point format accurate to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a more accurate answer. That is: Ye = Estimate(1/X); Ye = Ye*(2.0 - Ye*X); Ye = Ye*(2.0 - Ye*X);								
	After two iterations of the Newton-Raphson algorithm, you will get an exact answer accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy approximately doubles. The MEINVF32 operation will not generate a negative zero, DeNorm or NaN value. MRa = Estimate of 1/MRb;								
Flags	This instruction modifies the following flags in the MSTF register:								
	Flag	TF	ZF	NF	LUF	LVF			
	Modified	No	No	No	Yes	Yes			
	 The MSTF register flags are modified as follows: LUF = 1 if MEINVF32 generates an underflow condition. LVF = 1 if MEINVF32 generates an overflow condition. 								
Pipeline	This is a s	ingle-cycle	e instruction.						

Example

<pre>; Calculate Num/Den using a ; Ye = Estimate(1/X) ; Ye = Ye*(2.0 - Ye*X) ; Ye = Ye*(2.0 - Ye*X) ;</pre>	. Newton-Raphson algorithum for 1/Den
_ClalTask1:	
MMOV32 MR1, @_Den	; MR1 = Den
MEINVF32 MR2, MR1	; MR2 = Ye = Estimate(1/Den)
MMPYF32 MR3, MR2, MR1	; MR3 = Ye*Den
MSUBF32 MR3, #2.0, MR3	; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3	; MR2 = Ye = Ye*(2.0 - Ye*Den)
MMPYF32 MR3, MR2, MR1	; MR3 = Ye*Den
MMOV32 MR0, @_Num	; MRO = Num
MSUBF32 MR3, #2.0, MR3	; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3	; MR2 = Ye = Ye* $(2.0 - Ye*Den)$
MMOV32 MR1, @_Den	; Reload Den To Set Sign
MNEGF32 MR0, MR0, EO	; if(Den == 0.0) Change Sign Of Num
MMPYF32 MR0, MR2, MR0	
MMOV32 @ Dest, MR0	
MSTOP	; end of task

See also

MEISQRTF32 MRa, MRb

MEISQRTF32 MRa, MRb 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands

	MRa CLA floating-point destination register (MR0 to MR3)							
	MRb CLA floating-point source register (MR0 to MR3)							
Opcode	LSW: 0000 0000 bbaa MSW: 0111 1110 0100 0000							
Description	This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a more accurate answer. That is:							
	Ye = Estimate(1/sqrt(X)); Ye = Ye*(1.5 - Ye*Ye*X/2.0); Ye = Ye*(1.5 - Ye*Ye*X/2.0);							
	After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy approximately doubles. The MEISQRTF32 operation will not generate a negative zero, DeNorm or NaN value. MRa = Estimate of 1/sqrt (MRb);							
Flags	This instruction modifies the following flags in the MSTF register:							
	Flag	TF	ZF	NF	LUF	LVF		
	Modified	No	No	No	Yes	Yes		
	 The MSTF register flags are modified as follows: LUF = 1 if MEISQRTF32 generates an underflow condition. LVF = 1 if MEISQRTF32 generates an overflow condition. 							
Pipeline	This is a si	ngle-cycle	instruction.					

Example

<pre>; Y = sqrt(X) ; Ye = Estimate(1/sqrt(X)); ; Ye = Ye*(1.5 - Ye*Ye*X*0.5) ; Ye = Ye*(1.5 - Ye*Ye*X*0.5) ; Y = X*Ye ; ClalTask3:</pre>	
	; MR0 = X ; MR1 = Ye = Estimate(1/sqrt(X))
MMOV32 MR1, @_x, EQ	; if(X == 0.0) Ye = 0.0
MMPYF32 MR3, MR0, #0.5 MMPYF32 MR2, MR1, MR3	; MR2 = Ye*X*0.5
MMPYF32 MR2, MR1, MR2 MSUBF32 MR2, #1.5, MR2	; MR2 = Ye*Ye*X*0.5 ; MR2 = 1.5 - Ye*Ye*X*0.5
MMPYF32 MR1, MR1, MR2 MMPYF32 MR2, MR1, MR3	<pre>; MR1 = Ye = Ye*(1.5 - Ye*Ye*X*0.5) ; MR2 = Ye*X*0.5</pre>
MMPYF32 MR2, MR1, MR2	
	; MR1 = Ye = Ye*(1.5 - Ye*Ye*X*0.5) ; MR0 = Y = Ye*X
MOIOP	/ CIIU UI LASK

See also

MEINVF32 MRa, MRb

MF32TOI16 MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Integer

eperanae											
	MRa	CLA flo	ating-point destinati	on register (MI	R0 to MR3)						
	MRb	MRb CLA floating-point source register (MR0 to MR3)									
			01	0 (
Opcode		0000 0000 bba									
	MSW: 0111	1101 1110 000	00								
Description	Convert a 3	32-bit floating	point value in M	IRb to a 16-	bit integer and t	runcate. The res	ult				
	Convert a 32-bit floating point value in MRb to a 16-bit integer and truncate. The result will be stored in MRa.										
	MRa(15:0)	= F32TOI16(MF	Rb);								
	MRa(31:16)	= sign exter	nsion of MRa(15);							
Flags	This instruc	tion does not	affect any flags								
Flags	Flag	TF	ZF	NF	LUF	LVF					
	Modified	No	No	No	No	No					
Pipeline	This is a si	ngle-cycle ins	truction.								
Example	MMOVIZ	MMOVIZ MR0, $\#5.0$; MR0 = 5.0 (0x40A00000)									
	MF32TOI16	MR1, MR0	; MR1(15:0)		$S(MR0) = 0 \times 0005$						
	MMOVIZ	MR2, #-5.0		= Sign exte = -5.0 (0xC	ension of MR1(1	ϕ = 0x0000					
	MF32TOI16	MR2, #-5.0 MR3, MR2		•	5(MR2) = -5(0x)	FFFB)					
			; MR3(31:16)	= Sign exte	ension of MR3(1	$5) = 0 \times FFFF$					
See also	ME32TOI1	6R MRa, MRt	`								
		16 MRa, MRt									
		16R MRa, MI									
	MI16TOF3	2 MRa, MRb									
	MI16TOF3	2 MRa, mem1	16								
		32 MRa, men									
	MUI16TOF	32 MRa, MRt	C								

MF32TOI16R MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operatios										
	MRa CLA	floating-point de	estination register (M	R0 to MR3)						
	MRb CLA	MRb CLA floating-point source register (MR0 to MR3)								
Opcode	LSW: 0000 0000 0000 1 MSW: 0111 1110 0110									
Description	Convert the 32-bit floa even value. The result	• •		6-bit integer and	d round to the near	est				
	. ,	MRa(15:0) = F32TOIl6round(MRb); MRa(31:16) = sign extension of MRa(15);								
Flags	This instruction does r	not affect any	flags:							
	Flag TF	ZF	NF	LUF	LVF					
	Modified No	No	No	No	No					
Pipeline	This is a single-cycle i	instruction.								
Example	MMOVIZ MR0, #0x3FD9 MMOVXI MR0, #0x999A									
	MF32TOI16R MR1, MR0	; MR1(15:0) = MF32TOI16rou							
	MMOVF32 MR2, #-1.7		6) = Sign exten: .7 (0xBFD9999A)	sion of MR1(15)	$= 0 \times 0000$					
	MF32TOI16R MR3, MR2	; MR3(15:0) = MF32TOI16rou							
		; MR3(31:10	6) = Sign extens	sion of MR2(15)	= 0xFFFF					
See also	MF32TOI16 MRa, MR									
	MF32TOUI16 MRa, M									
	MF32TOUI16R MRa,									
	MI16TOF32 MRa, MR MI16TOF32 MRa, me									
	MUI16TOF32 MRa, me									
	MUI16TOF32 MRa, M									
		-								

MF32TOI32 MRa, MRb Convert 32-bit Floating-Point Value to 32-bit Integer

Operands										
	MRa									
	MRb	CLA floating-po	bint source register (MR0 t	o MR3)						
Opcode	LSW: 0000 00 MSW: 0111 11									
Description	Convert the 3 Store the res MRa = F32TOI	ult in MRa.	it value in MRb to a 3	32-bit integer val	ue and truncate.					
Flags	This instruction	on does not affect	any flags:							
	Flag	TF ZF	NF	LUF	LVF					
	Modified	No No	No	No	No					
Pipeline	This is a sing	le-cycle instructio	n.							
Example 1	MMOVF32MR2, #11204005.0; MR2 = 11204005.0 (0x4B2AF5A5)MF32TOI32MR3, MR2; MR3 = MF32TOI32(MR2) = 11204005 (0x00AAF5A5)MMOVF32MR0, #-11204005.0; MR0 = -11204005.0 (0xCB2AF5A5)MF32TOI32MR1, MR0; MR1 = MF32TOI32(MR0) = -11204005 (0xFF550A5B)									
Example 2	<pre>; X = IQ24(+, ; M = IQ24(+, ; B = IQ24(-, ; ; Calculate ; ; ; Convert M, ; _ClalTask2: MI32TOF32 MI32TOF32 MMPYF32 MMPYF32 MMPYF32 MMPYF32 ; Convert Y ; MMPYF32 MM</pre>	MR1, @_X MR2, @_B MR0, MR0, #0x333 MR1, MR1, #0x333	0 0 24 to float ; MR0 = 0x4BC0000 ; MR1 = 0x4C20000 ; MR2 = 0xCB00000 80 ; M = 1/(1*2^24) 80 ; X = 1/(1*2^24) 80 ; B = 1/(1*2^24) ; M*X ; Y=MX+B = 3.25	00 * iqm = 1.5 (0: * iqx = 2.5 (0: * iqb =5 (0: (0x40500000)	x40200000)					
	MMOV32 @_` MSTOP	Y, MR2	; store result ; end of task							
See also	MF32TOUI32 MI32TOF32 I MI32TOF32 I MUI32TOF32 MUI32TOF32	MRa, MRb MRa, mem32								

MF32TOUI16 MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

operando										
	MRa	MRa CLA floating-point destination register (MR0 to MR3)								
	MRb	MRb CLA floating-point source register (MR0 to MR3)								
Opcode		0000 0000 bba .110 1010 000								
Description	truncate to a	zero. The res	ult will be s		o instead round	integer value and the integer to the				
	MRa(15:0) = MRa(31:16)	= F32TOUI16(M = 0x0000;	IRb);							
Flags	This instruction does not affect any flags:									
	Flag	TF	ZF	NF	LUF	LVF				
	Modified	No	No	No	No	No				
Pipeline	This is a sir	gle-cycle ins	truction.							
Example	MMOVIZ MF32TOUI16	MMOVIZ MR0, #9.0 ; MR0 = 9.0 (0x41100000) MF32TOUI16 MR1, MR0 ; MR1(15:0) = MF32TOUI16(MR0) = 9 (0x0009) ; MR1(31:16) = 0x0000								
	MMOVIZ	MR2, #-9.0		-9.0 (0xC110000	00)					
	MF32TOUI16	MR3, MR2	- 、 -	:0) = MF32TOUI :16) = 0x0000	16(MR2) = 0 (0x)	0000)				
See also	MF32TOUI MI16TOF32 MI16TOF32 MUI16TOF3	6 MRa, MRb 16R MRa, Mf 16R MRa, MR 2 MRa, MRb 2 MRa, mem 32 MRa, men 32 MRa, MRb	Rb Rb 6 116	.10) - 0x0000						

MF32TOUI16R MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

e p e l an ae											
	MRa	CLA	floating-p	point destination register (MF	R0 to MR3)						
	MRb	MRb CLA floating-point source register (MR0 to MR3)									
Opcode	LSW: 0000 0 MSW: 0111 1										
Description	the closest e	Convert the 32-bit floating-point value in MRb to an unsigned 16-bit integer and round to the closest even value. The result will be stored in MRa. To instead truncate the converted value, use the MF32TOUI16 instruction.									
	. ,	<pre>MRa(15:0) = MF32TOUI16round(MRb); MRa(31:16) = 0x0000;</pre>									
Flags	This instruction does not affect any flags:										
	Flag	TF	ZF	NF	LUF	LVF					
	Modified	No	No	No	No	No					
Pipeline	This is a sin	gle-cycle i	nstructio	on.							
Example	MMOVF32	MMOVXI MR0, #0xCCCD ; MR0 = 0xCCCD ; MR0 = 10.8 (0x412CCCCD) MF32TOUI16R MR1, MR0 ; MR1(15:0) = MF32TOUI16round(MR0) = 11 (0x000B) ; MR1(31:16) = 0x0000 ; MR1(31:16) = 0x0000									
See also	MF32TOI16 MF32TOI16 MF32TOUI1 MI16TOF32 MI16TOF32 MUI16TOF3 MUI16TOF3	R MRa, M 6 MRa, M MRa, MR MRa, me 32 MRa, me	Rb Rb b m16 em16								

MF32TOUI32 MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operanus										
	MRa	CLA	floating-point de	stination register (M	R0 to MR3)					
	MRb	MRb CLA floating-point source register (MR0 to MR3)								
Opcode	LSW: 0000 C MSW: 0111 1	0000 0000 b 101 1010 0								
Description	Convert the result in MF MRa = F32TC	Ra.	ing-point valı	ue in MRb to an	unsigned 32-bit	integer and store	the			
Flags			ot affect any	•						
	Flag	TF	ZF	NF	LUF	LVF				
	Modified	No	No	No	No	No				
Pipeline	This is a sir	ngle-cycle ir	struction.							
Example	MMOVIZ MF32TOUI32 MMOVIZ MF32TOUI32	MR0, #12. MR0, MR0 MR1, #-6. MR2, MR1	; MR0 = 5 ; MR1 =	-6.5 (0xC0D0000	(0) = 12 (0x00000)					
See also	MF32TOI32 MI32TOF32 MI32TOF32 MUI32TOF3 MUI32TOF3	2 MRa, MRt 2 MRa, men 32 MRa, MF	o n32 Rb							

MFRACF32 MRa, MRb Fractional Portion of a 32-bit Floating-Point Value

Operatius									
	MRa	MRa CLA floating-point destination register (MR0 to MR3)							
	MRb CLA floating-point source register (MR0 to MR3)								
Opcode		0000 0000 1110 0000							
Description	Returns in	MRa the f	ractional portio	n of the 32-bit fl	oating-point valu	ie in MRb			
Flags	This instruction does not affect any flags:								
	Flag	TF	ZF	NF	LUF	LVF			
	Modified	No	No	No	No	No			
Pipeline	This is a s	ingle-cycle	instruction.						
Example	MMOVIZ MFRACF32			.625 (0x419D000 RACF32(MR2) = (00)).625 (0x3F2000()0)0)			
See also									

MI16TOF32 MRa, MRb Convert 16-bit Integer to 32-bit Floating-Point Value

Operanus										
	MRa	MRa CLA floating-point destination register (MR0 to MR3)								
	MRb CLA floating-point source register (MR0 to MR3)									
Opcode	LSW: 0000 (MSW: 0111)									
Description	Convert the result in MF	•	ned inte	ger in MRb to a 32-bit	floating point va	alue and store the	Э			
	MRa = MI16	FOF32(MRb)	;							
Flags	This instruc	tion does	not affec	t any flags:						
	Flag	TF	ZF	NF	LUF	LVF				
	Modified	No	No	No	No	No				
Pipeline	This is a si	ngle-cycle	instructio	on.						
Example	MMOVIZ MMOVXI MI16TOF32	MMOVXI MR0, $\#0x0004$; MR0(15:0) = 4.0 (0x0004)								
	MMOVIZ MMOVXI MI16TOF32 MSTOP	MR2, #0x MR2, #0x MR3, MR2	FFFC	; MR2(31:16) = 0.0 (; MR2(15:0) = -4.0 (; MR3 = MI16TOF32 (N	0xFFFC)	20800000)				
See also	MF32TOI16 MF32TOI16 MF32TOUI MF32TOUI MI16TOF32 MUI16TOF MUI16TOF	6R MRa, N 16 MRa, N 16R MRa, 2 MRa, me 32 MRa, n	/Rb /Rb MRb em16 nem16							

MI16TOF32 MRa, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

Operanus									
	MRa	CL	A floating-point de	estination register (M	R0 to MR3)				
	mem16	16	-bit source memor	y location to be con	verted				
Opcode	LSW: mmmm MSW: 0111								
Description	floating-pc	Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit floating-point value and store the result in MRa. MRa = MI16TOF32[mem16];							
Flags	This instruction does not affect any flags:								
	Flag	TF	ZF	NF	LUF	LVF			
	Modified	No	No	No	No	No			
Pipeline	This is a s	ingle-cycle	instruction:						
Example	MI16TOP	3 = -4 (0x 732 MR0, @	FFFC) _A ; MR0 = MI1	l6TOF32(A) = 4. l6TOF32(B) = -4	· ,				
See also	MF32TOI1 MF32TOI1 MF32TOU MF32TOU MI16TOF3 MUI16TOF MUI16TOF	6R MRa, 116 MRa, 116R MRa 32 MRa, M 532 MRa, M	MRb MRb , MRb Rb mem16						

MI32TOF32 MRa, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value

Operands										
	MRa CLA floating-point destination register (MR0 to MR3)									
	mem32 32-bit memory source for the MMOV32 operation.									
Opcode	LSW: mmmm mmmm mmmm MSW: 0111 0100 01aa addr									
Description	store the r	e 32-bit signed esult in MRa. 2TOF32[mem32];	l integer	r indicated by mem	32 to a 32-bit flc	ating point value) and			
Flags	This instruction does not affect any flags:									
	Flag	TF	ZF	NF	LUF	LVF				
	Modified	No	No	No	No	No				
Pipeline	This is a s	ingle-cycle inst	ruction.							
Example	<pre>; X = IQ2 ; M = IQ2 ; B = IQ2 ; ; Calculat ; ; Convert ; ClalTask: MI32TOI MI32TOI MI32TOI MMPYF3: MMPYF3: MMPYF3: </pre>	F32 MR0, @_M F32 MR1, @_X F32 MR2, @_B 2 MR0, MR0, #0: 2 MR1, MR1, #0:	800000 800000 B om IQ24 x3380 x3380 x3380 1 3 2 to IQ x4B80	<pre>to float ; MR0 = 0x4BC00000; ; MR1 = 0x4C200000; ; MR2 = 0xCB000000; ; M = 1/(1*2^24); ; X = 1/(1*2^24); ; B = 1/(1*2^24); ; M*X; ; Y=MX+B = 3.25 (0) 24</pre>	0 * iqm = 1.5 (0x * iqx = 2.5 (0x * iqb =5 (0x) 0x40500000)	40200000)				
See also	MF32TOL MI32TOF3 MUI32TO	32 MRa, MRb 1132 MRa, MRb 32 MRa, MRb F32 MRa, MRb F32 MRa, mem	1	; end of task						

MI32TOF32 MRa, MRb Convert 32-bit Integer to 32-bit Floating-Point Value

Operatius										
	MRa	MRa CLA floating-point destination register (MR0 to MR3)								
	MRb									
Opcode	LSW: 0000 0000 bbaa MSW: 0111 1101 1000 0000									
Description	Convert the result in MI	•	2-bit integer ir	n MRb to a 32-bit	t floating-point va	lue and store the				
	MRa = MI32	TOF32(MRb);							
Flags	This instruction does not affect any flags:									
	Flag	TF	ZF	NF	LUF	LVF				
	Modified	No	No	No	No	No				
Pipeline	This is a si	ngle-cycle	instruction.							
Example	<pre>; Example1: ; MMOVIZ MR2, #0x1111 ; MR2(31:16) = 4369 (0x1111) MMOVXI MR2, #0x1111 ; MR2(15:0) = 4369 (0x1111) ; MR2 = +286331153 (0x1111111) MI32TOF32 MR3, MR2 ; MR3 = MI32TOF32 (MR2) = 286331153.0 (0x4D8888888)</pre>									
See also	MF32TOI3 MF32TOUI MI32TOF3 MUI32TOF MUI32TOF	32 MRa, 2 MRa, m 32 MRa,	VRb em32 VRb							

MLSL32 MRa, #SHIFT Logical Shift Left

Operands	MRa	CLA floating-pr	pint source/destination reg	nister (MR0 to MR3)	
	#SHIFT	01	to shift (1 to 32)		
Opcode		000 Oshi ftaa 011 1100 0000			
Description	Logical shift 32.	left of MRa by the	number of bits indic	ated. The numbe	er of bits can be 1 to
			eft(MARa(31:0) by #		
Flags			llowing flags in the N	¥	
	Flag Modified	TF ZF No Yes	NF Yes	LUF No	LVF No
	NF = MRa(31) ZF = 0; if(MRa(31:0)	; == 0) { ZF = 1;		e integer results o	of the operation.
Pipeline	This is a sing	gle-cycle instructio	n.		
Example	; b2 = ; ; Calculate: ; m2 = ; x2 = ; b2 = ; _ClalTask3: _MMOV32 MR	<pre>: (int32)64 : (int32)-128 : m2*2 : x2*4 : b2*8 20, @_m2 ; MR0 11, @_x2 ; MR1 12, @_b2 ; MR2 20, #1 ; MR0 21, #2 ; MR1 122, #3 ; MR2 m2, MR0 ; Stor x2, MR1 b2, MR2</pre>	= 32 (0x00000020) = 64 (0x0000040) = -128 (0xFFFFFF80) = 64 (0x00000040) = 256 (0x00000100) = -1024 (0xFFFFFC00 e results of task)	
See also	MASR32 MR MAND32 MR MLSR32 MR MOR32 MR MXOR32 MR	Ra, MRb, MRc a, #SHIFT			

MLSR32 MRa, #SHIFT Logical Shift Right

Operanus							
	MRa CLA floating-point source/destination register						
	#SHIFT	Number of bits to s	shift (1 to 32)				
Opcode	LSW: 0000 00 MSW: 0111 10						
Description	Logical shift right of MRa by the number of bits indicated. The number of bits can be 1 to 32. Unlike the arithmetic shift (MASR32), the logical shift does not preserve the number's sign bit. Every bit in the operand is moved the specified number of bit positions, and the vacant bit-positions are filled in with zeros						
		Logical Shift Righ	_				
Flags		on modifies the follow	ving flags in the M NF	ISTF register:	LVF		
		No Yes	Yes	No	No		
		== 0) { ZF = 1;}					
Pipeline	This is a sing	le-cycle instruction.					
Example	; Illustrate	the difference bet	ween MASR32 and M	ILSR32			
	MMOVIZ MR0, MMOVXI MR0,		XAAAA5555				
	MMOV32 MR1, 1 MMOV32 MR2, 1		xAAAA5555 xAAAA5555				
	MASR32 MR1, MLSR32 MR2,		xD5552AAA x55552AAA				
	MASR32 MR1, MLSR32 MR2,		xEAAA9555 x2AAA9555				
	MASR32 MR1, MLSR32 MR2,		xFFAAAA55 x00AAAA55				
See also	MASR32 MR MAND32 MR MLSL32 MRa MOR32 MRa	a, MRb, MRc a, #SHIFT , MRb, MRc a, MRb, MRc					

MMACF32 MR3, MR2, MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel Move

Operands							
MR3 floating-point destination/source register MR3 for the add operation							
	MR2 CLA floating-point source register MR2 for the add operation						
	MRd		0.	stination register (Mame register as MRa	R0 to MR3) for the m a	ultiply operation	
	MRe	CL	_A floating-point sou	urce register (MR0 t	o MR3) for the multip	ly operation	
	MRf	CL	_A floating-point sou	urce register (MR0 to	o MR3) for the multip	ly operation	
	MRa			stination register for or the same register	the MMOV32 operat as MRd.	ion (MR0 to MR3).	
	mem32	32	2-bit source for the N	MOV32 operation			
Opcode	LSW: mmmm MSW: 0011						
Description	Multiply and accumulate the contents of floating-point registers and move from register to memory. The destination register for the MMOV32 cannot be the same as the destination registers for the MMACF32. MR3 = MR3 + MR2; MRd = MRe * MRf; MRa = [mem32];						۲.
Restrictions					MMOV32 must register as MRd	be unique. That is	\$,
Flags	This instru	ction mod	ifies the followir	ng flags in the M	STF register:		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	Yes	Yes	Yes	Yes	
	 LUF = LVF = MMOV32 = NF = MRa (3 ZF = 0; 	1 if MMAC 1 if MMAC sets the N		ultiply) generate: ultiply) generate: as follows:	s an underflow c s an overflow coi		
Pipeline	MMACF32	and MM	OV32 complete	in a single cycle).		

Instruction	Set
111311 4611011	JEL

Example 1

; ;	Perform 5 multiply and accumulate	s op	perations:
	X and Y are 32-bit floating point	: ar	rays
; ; ;	1st multiply: A = X0 * Y0 2nd multiply: B = X1 * Y1 3rd multiply: C = X2 * Y2 4th multiply: D = X3 * Y3		
; ;	5th multiply: E = X3 * Y3		
	Result = $A + B + C + D + E$		
, _c	MMOVI16 MAR1, #_Y MNOP MNOP MMOV32 MR0, *MAR0[2]++	; M ; D ; D ; < ; M ; <	MARO points to X array MARI points to Y array Delay for MARO, MARI load Delay for MARO, MARI load C MARO valid MARO = XO, MARO += 2 C MARI valid MRI = YO, MARI += 2
		; I	IR2 = A = X0 * Y0 in parallel MR0 = X1, MAR0 += 2 IR1 = Y1, MAR1 += 2
	MMPYF32 MR3, MR0, MR1 MMOV32 MR0, *MAR0[2]++ MMOV32 MR1, *MAR1[2]++	; M ; I ; M	NR3 = B = X1 * Y1 in parallel MR0 = X2, MAR0 += 2 NR1 = Y2, MAR2 += 2
	MMACF32 MR3, MR2, MR2, MR0, MR1 MMOV32 MR0, *MAR0[2]++ MMOV32 MR1, *MAR1[2]++	; I	
		; I	MR3 = (A + B) + C, MR2 = D = X3 * Y3 In parallel MR0 = X4 MR1 = Y4
			IR2 = E = X4 * Y4 n parallel MR3 = (A + B + C) + D
		; S	MR3 = (A + B + C + D) + E Store the result and of task

SPRUGE6B-May 2009-Revised May 2010

Example 2	; sum = X0*B0 + X1*B1 + X2*B2 + Y1*A1 + Y2*B2 ;						
	$\begin{array}{ccc} & X2 &= X1 \\ & & & X1 & & X2 \end{array}$						
	; X1 = X0 ; Y2 = Y1 ; Y1 = sum						
	;						
	_ClaTask2: MMOV32 MR0, @_B2 ; MR0 = B2 MMOV32 MR1, @_X2 ; MR1 = X2 MMPYF32 MR2, MR1, MR0 ; MR2 = X2*B2 MMOV32 MR0, @_B1 ; MR0 = B1 MMOVD32 MR1, @_X1 ; MR1 = X1, X2 = X1 MMPYF32 MR3, MR1, MR0 ; MR3 = X1*B1 MMOV32 MR0, @_B0 ; MR0 = B0 MMOVD32 MR1, @_X0 ; MR1 = X0, X1 = X0 ; MR3 = X1*B1 + X2*B2, MR2 = X0*B0						
	; MR0 = A2 MMACF32 MR3, MR2, MR1, MR0 MMOV32 MR0, @_A2 M						
	MOV32 MR1, @_Y2 ; MR1 = Y2						
	; MR3 = X0*B0 + X1*B1 + X2*B2, MR2 = Y2*A2 ; MR0 = A1						
	MMACF32 MR3, MR2, MR2, MR1, MR0 MMOV32 MR0, @_A1						
	MMOVD32 MR1,@_Y1 ; MR1 = Y1, Y2 = Y1 MADDF32 MR3, MR3, MR2 ; MR3 = Y2*A2 + X0*B0 + X1*B1 + X2*B2 MMPYF32 MR2, MR1, MR0 ; MR2 = Y1*A1 MADDF32 MR3, MR3, MR2 ; MR3 = Y1*A1 + Y2*A2 + X0*B0 + X1*B1 + X2*B2 MMOV32 @_Y1, MR3 ; Y1 = MR3 MSTOP ; end of task						

See also

MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

MMAXF32 MRa, MRb 32-bit Floating-Point Maximum

Operands						
	MRa	CLA floating-poin	t source/destination regis	ter (MR0 to MR3)		
	MRb	CLA floating-poin	t source register (MR0 to	MR3)		
Opcode	LSW: 0000 0000 MSW: 0111 1101					
Description	if(MRa < MRb)	MRa = MRb;				
	Special cases	for the output fror	n the MMAXF32 ope	ration:		
	 NaN output 	will be converted	to infinity			
	A denormal	lized output will be	e converted to positiv	/e zero.		
Flags			owing flags in the MS			
	Flag TF		NF	LUF	LVF	
	Modified No	o Yes	Yes	No	No	
	The ZF and NF in the destinati		red on the result of	the operation, r	ot the result stored	
	if(MRa == MRb) if(MRa > MRb) if(MRa < MRb)	1 1				
Pipeline	This is a single	-cycle instruction				
Example 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Example 2	; Find the max ; and store it	ximum value in an	ting-point values array X			
	MUI16TOF32 N MNOP MNOP MMOV32 N LOOP MMOV32 N MADF32 N MADDF32 N MCMPF32 N MNOP MNOP MNOP MNOP	IR1, *MAR1[2]++ IR2, *MAR1[2]++ IR1, MR2 IR0, MR0, #-1.0 IR0 #0.0	<pre>; Start address ; Length of the ar ; delay for MAR1 1 ; delay for MAR1 1 ; MR1 = X0 ; MR2 = next eleme ; MR1 = MAX(MR1, M ; Decrement the co ; Set/clear flags ; Branch if not eq ; Address addre</pre>	oad oad mt MR2) Dunter for MBCNDD		
	MMOV32 @ MNOP MNOP MSTOP	_Result, MR1	<pre>; Always executed ; Always executed ; Always executed ; Always executed ; End of task</pre>			
See also	MCMPF32 MR MCMPF32 MR MMAXF32 MR MMINF32 MR MMINF32 MR	a, #16FHi a, #16FHi a, MRb				

MMAXF32 MRa, #16FHi 32-bit Floating-Point Maximum

Operands								
	MRa CLA floating-point source/destination register (MR0 to MR3)							
	#16FHi	A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0.						
Opcode	LSW: IIII II MSW: 0111 10							
Description	Compare MRa with the floating-point value represented by the immediate operand. If the immediate value is larger, then load it into MRa. if (MRa < #16FHi:0) MRa = #16FHi:0; #16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This addressing mode is most useful for constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x4000000), 4.0 (0x4080000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.							
	Special cases	s for the output from	he MMAXF32 ope	eration:				
	•	ut will be converted to alized output will be o	•	ve zero.				
Flags	This instruction	on modifies the follow	ing flags in the MS	STF register:				
	Flag	TF ZF	NF	LUF	LVF			
	Modified	No Yes	Yes	No	No			
	in the destina if(MRa == #10 if(MRa > #16)	NF flags are configure ation register. 6FHi:0) {ZF=1; NF=0; FHi:0) {ZF=0; NF=0; } FHi:0) {ZF=0; NF=1; }	; }	the operation, r	not the result stored			
Pipeline	This is a sing	le-cycle instruction.						
Example	MMOVIZ MR. MMOVIZ MR. MMAXF32 MR. MMAXF32 MR. MMAXF32 MR.	0, #5.0 ; MR0 = 5. 1, #4.0 ; MR1 = 4. 2, #-1.5 ; MR2 = -1. 0, #5.5 ; MR0 = 5. 1, #2.5 ; MR1 = 4. 2, #-1.0 ; MR2 = -1. 2, #-1.0 ; MR2 = -1.	0 (0x40800000) 5 (0xBFC00000) 5, ZF = 0, NF = 1 0, ZF = 0, NF = 0 0, ZF = 0, NF = 1) L				
See also	MMAXF32 M MMINF32 MF							

MMINF32 MRa, MRb 32-bit Floating-Point Minimum

Operands						
	MRa	CLA floating-	point source/destination reg	gister (MR0 to MR3)		
	MRb	CLA floating-	point source register (MR0	to MR3)		
Opcode		0000 0000 bbaa 1101 0100 0000				
Description	if(MRa > N	MRb) MRa = MRb;				
	Special ca	ses for the output f	rom the MMINF32 op	eration:		
	 NaN or 	utput will be conver	ted to infinity			
	A dence	ormalized output wil	Il be converted to posi	tive zero.		
Flags	This instru	ction modifies the f	ollowing flags in the N	/ISTF register:		
	Flag	TF ZF	NF	LUF	LVF	
	Modified	No Yes	s Yes	No	No	
	in the dest	ination register.	figured on the result o	of the operation, no	ot the result stored	
	if(MRa > M	MRb) {ZF=1; NF=0 MRb) {ZF=0; NF=0;} MRb) {ZF=0; NF=1;}	;}			
Pipeline	This is a s	ingle-cycle instructi	ion.			
Example 1	MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000) MMOVIZ MR1, #4.0 ; MR1 = 4.0 (0x40800000) MMOVIZ MR2, #-1.5 ; MR2 = -1.5 (0xBFC00000) MMINF32 MR0, MR1 ; MR0 = 4.0, ZF = 0, NF = 0 MMINF32 MR1, MR2 ; MR1 = -1.5, ZF = 0, NF = 0 MMINF32 MR2, MR1 ; MR2 = -1.5, ZF = 1, NF = 0 MMINF32 MR1, MR0 ; MR2 = -1.5, ZF = 0, NF = 1					
Example 2	; Find the ; and stor ; _ClalTask1 MMOVI16	e minimum value in ce it in Result L: MAR1,#_X 2 MR0, @_len MR1, *MAR1[2]++ MR2, *MAR1[2]++ MR1, MR2	; Start address ; Length of the arr ; delay for MAR1 lo ; delay for MAR1 lo	ay ad ad t 2) nter or MBCNDD		
	MBCNDD MMOV32 MNOP MNOP MSTOP	LOOP, NEQ @_Result, MR1	; Branch 1f not equ ; Always executed ; Always executed ; Always executed ; End of task	ai lu zero		
See also	MMAXF32	2 MRa, MRb 2 MRa, #16FHi MRa, #16FHi				

MMINF32 MRa, #16FHi 32-bit Floating-Point Minimum

Operands								
	MRa floating-point source/destination register (MR0 to MR3)							
	#16FHi	A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0.						
Opcode	LSW: IIII IIII IIII MSW: 0111 1001 0100 00aa							
Description	Compare MRa with the floating-point value represented by the immediate operand. If the immidate value is smaller, then load it into MRa. if(MRa > #16FHi:0) MRa = #16FHi:0;							
	#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This addressing mode is most useful for constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x4000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.							
	•		om the MMINF32 o	peration:				
	•	ut will be converte alized output will	ed to infinity be converted to po	sitive zero.				
Flags	This instruction	on modifies the fo	llowing flags in the	MSTF register:				
	Flag	TF ZF	NF	LUF	LVF			
	Modified	No Yes	Yes	No	No			
	<pre>in the destina if(MRa == #10 if(MRa > #16)</pre>	tion register.	NF=0;} =0;}	of the operation, n	ot the result stored			
Pipeline	This is a sing	le-cycle instructio	n.					
Example	MMOVIZ MR1 MMOVIZ MR2 MMINF32 MR0 MMINF32 MR1 MMINF32 MR2	, #2.5 ; MR1 = , #-1.0 ; MR2 =	4.0 (0x40800000	2) = 1 = 0 = 1				
See also	mmaxf32 m Mmaxf32 m Mminf32 mf	Ra, MRb						

MMOV16 MARx, MRa, #16I Load the Auxiliary Register with MRa + 16-bit Immediate Value

Operands								
	MARx	Auxiliar	y register MAR0	or MAR1				
	MRa	CLA Flo	pating-point regis	ster (MR0 to	MR3)			
	#16l	16-bit ir	nmediate value					
Opcode	LSW: IIII I MSW: 0111 1		I (opcode of A	MMOV16 M	IARO, MRa,	#16I)		
	LSW: IIII I MSW: 0111 1		I (opcode of A	MMOV16 M	MAR1, MRa,	#16I)		
Description		pipeline sec	er, MAR0 or I tion for impor					
Flags	This instruct	on does not	modify flags	in the MS	TF registe	er:		
	Flag	TF	ZF	NF		LUF	L	/F
	Modified	No	No	No		No	N)
Pipeline	phase of the	pipeline. Ar the D2 phas registers:	truction. The ny post increr e of the pipe	nent of MA	AR0 or MA	AR1 using	g indirect	addressing
	nstructions f	ollowing MM vo instruction						
	 I3 Loading of an auxiliary register occurs in the EXE phase while updates due to post-increment addressing occur in the D2 phase. Thus I3 cannot use the auxil register or there will be a conflict. In the case of a conflict, the update due to address-mode post increment will win and the auxiliary register will not be update with #_X. 					e auxiliary e to		
			nstruction M/	AR0 or MA	AR1 will be	e the new	value loa	aded with
	MMOVI1 ; Assume MAN	-	0 is 10, and	l # X is 2	20			
<pre>MMOV16 MAR0, MR0, #_X ; Load MAR0 with address of X (20) + 1 <instruction 1=""> ; I1 Will use the old value of MAR0 (50) <instruction 2=""> ; I2 Will use the old value of MAR0 (50) <instruction 3=""> ; I3 Cannot use MAR0 <instruction 4=""> ; I4 Will use the new value of MAR0 (30) <instruction 5=""> ; I5</instruction></instruction></instruction></instruction></instruction></pre>					(50) (50)	0 (10)		
	(Inder dee.		Pipeline Acti	vity For M	MOV16 I	MARx, M	Ra , #16I	
	Instruction	F1	F2	D1	D2	R1	R2	E W
	MMOV16 MAR0	MR0, #_X MM	OV16					
	11	11	MMOV16					
	12	12	11	MMOV16				
	13	13	12	1 2	MMOV16	MMOVAC		
	14 15	14 15	13 14	12 13	1 2	MMOV16 I1	MMOV16	
	16	15	14	13	12	12	11	MMOV1 6

Texas Instruments

www.ti.com
Example 1

	alculate an offset into a sin/cos	s t	cable
, , ,	alTaskl:		
_010			
	MMOV32 MR0,@_rad		
	MMOV32 MR1,@_TABLE_SIZEDivTwoPi	;	MR1 = TABLE_SIZE/(2*Pi)
	MMPYF32 MR1,MR0,MR1	;	MR1 = rad* TABLE_SIZE/(2*Pi)
	MMOV32 MR2,@_TABLE_MASK	;	MR2 = TABLE_MASK
	MF32TOI32 MR3, MR1	;	<pre>MR3 = K=int(rad*TABLE SIZE/(2*Pi))</pre>
			MR3 = K & TABLE MASK
	MLSL32 MR3,#1		MR3 = K * 2
		'	MCS = K Z
	MMOV16 MAR0,MR3,# Cos0	;	MAR0 K*2+addr of table Cos0
	, ,=		II
	MMOV32 MR0,@_TwoPiDivTABLE_SIZE		
	MMPYF32 MR1, MR1, MR0	,	13
	MMOV32 MR0,@_Coef3		
	MMOV32 MR2,*MAR0[#-64]++	;	MR2 = *MAR0, MAR0 += (-64)
	MSTOP ; end of task		

Instruction Set			ww	w.ti.com
Example 2	; ADCRESULT1 val ; ; When the last ; filled, the ta ; the first elem ; ; Before startir ; Task 8 to init	s the last NUM_DATA_POINTS lues in the array VoltageCLA element in the array has be ask will go back to the ment. ng the ADC conversions, forc cialize the ConversionCount	en e	
	MMOV16 MAR1, MUI16TOF32 MADDF32 MF32TOUI16 MNOP MMOVZ16 MBCNDD	<pre>MR0, #_VoltageCLA MR0, MR0 MR0, MR0, #1.0 MR0, #NUM_DATA_POINTS.0 MR0, MR0 MR2, @_AdcResult.ADCRESULT1 *MAR1, MR2</pre>	<pre>;I1 Current Conversion ;I2 Next array location ;I3 Convert count to float32 ;I4 Add 1 to conversion count ;I5 Compare count to max ;I6 Convert count to Uint16 ;I7 Wait till I8 to read result ;I8 Read ADCRESULT1 ; Store ADCRESULT1 ; If count >= NUM_DATA_POINTS ; Always executed: MR1=0</pre>	
		<pre>@_ConversionCount, MR0 @_ConversionCount, MR1</pre>	<pre>; If branch not taken ; store current count ; If branch taken, restart count ; end of task</pre>	t
	; This task init ; to zero ; _ClalTask8: MMOVIZ MR0, ‡	ializes the ConversionCount #0.0 zersionCount, MR0		

See also

MMOV16 MARx, mem16 Load MAR1 with 16-bit Value

Operands

Operands													
	MARx	CLA auxilia	ry register I	MAR0 or MAR	81								
	mem16	16-bit destir	nation mem	ory accessed	using indire	ect or direct	addressing	g modes					
Opcode		mmm mmmmm mmmmm (.10 0000 addr	Opcode f	or MMOV16	MAR0, men	116)							
		mmm mmmm mmmm (.10 0100 addr	Opcode f	or MMOV16	MAR1, men	116)							
Description		or MAR1 with the second s					Refer to	the pip	eline				
Flags	No flags MS	TF flags are affe	ected.										
	Flag	TF ZF	=	NF		LUF	I	_VF					
	Modified	No No	о 	No		No	1	No					
Pipeline	 This is a single-cycle instruction. The load of MAR0 or MAR1 will occur in the EXE phase of the pipeline. Any post increment of MAR0 or MAR1 using indirect addressing will occur in the D2 phase of the pipeline. Therefore the following applies when loading the auxiliary registers: I1 and I2 The two instructions following MMOV16 will use MAR0/MAR1 before the update occurs. Thus these two instructions will use the old value of MAR0 or MAR1. I3 Loading of an auxiliary register occurs in the EXE phase while updates due to post-increment addressing occur in the D2 phase. Thus I3 cannot use the auxiliary register or there will be a conflict. In the case of a conflict, the update due to address-mode post increment will win snd the auxiliary register will not be updated 												
	with #_X. • 14												
	Starting v	Starting with the 4th instruction MAR0 or MAR1 will be the new value loaded with MMOV16.											
	; Assume MARO is 50 and @_X is 20												
	<instruction <instruction <instruction <instruction< th=""><th colspan="11"><pre>MMOV16 MAR0, @_X ; Load MAR0 with the contents of X (20) <instruction 1=""> ; I1 Will use the old value of MAR0 (50) <instruction 2=""> ; I2 Will use the old value of MAR0 (50) <instruction 3=""> ; I3 Cannot use MAR0 <instruction 4=""> ; I4 Will use the new value of MAR0 (20) <instruction 5=""> ; I5</instruction></instruction></instruction></instruction></instruction></pre></th></instruction<></instruction </instruction </instruction 	<pre>MMOV16 MAR0, @_X ; Load MAR0 with the contents of X (20) <instruction 1=""> ; I1 Will use the old value of MAR0 (50) <instruction 2=""> ; I2 Will use the old value of MAR0 (50) <instruction 3=""> ; I3 Cannot use MAR0 <instruction 4=""> ; I4 Will use the new value of MAR0 (20) <instruction 5=""> ; I5</instruction></instruction></instruction></instruction></instruction></pre>											
	•••••	Table 29. Pipeli	ine Activ	ity For MM	/OV16 M	AR0/MAF	R1, mem	16					
	Instruction	F1	F2	D1	D2	R1	R2	E	w				
	MMOV16 MAR0,	@_X MMOV1	6										
	l1	 I1	MMOV1	6									
	12	12	11	MMOV16									
	13	13	12	11	MMOV16								
	13	13	12	12	I1	MMOV16							
	14	14	10	12									

15

16

MMOV16

11

MMOV1 6

11

12

14

15

13

14

12

13

15

16

Instruction Set			www.ti.com
Example	; ADCRESULT1 va ; ; When the last	gs the last NUM_DATA_POINTS alues in the array VoltageCLA t element in the array has be task will go back to the ement.	
	; Task 8 to in: ;	ing the ADC conversions, forc itialize the ConversionCount	
	_ClalTask2: MMOVZ16 MMOV16 MUI16TOF32 MADDF32 MCMPF32 MF32TOUI16 MNOP MMOVZ16 MMOV16 MBCNDD MMOVIZ MNOP MNOP	<pre>MR0, MR0 MR0, MR0, #1.0 MR0, #NUM_DATA_POINTS.0 MR0, MR0 MR2, @_AdcResult.ADCRESULT1 *MAR1, MR2 _RestartCount, GEQ MR1, #0.0</pre>	<pre>; Store ADCRESULT1 ; If count >= NUM_DATA_POINTS ; Always executed: MR1=0</pre>
	MMOV16 _RestartCount	@_ConversionCount, MR0	; If branch not taken MSTOP ; store current count
	MMOV16 MSTOP	@_ConversionCount, MR1	; If branch taken, restart count ; end of task
	; This task in: ; to zero ; _ClalTask8:	itializes the ConversionCount	
	_Claffask8. MMOVIZ MMOV16 MSTOP _ClaT8End:	MR0, #0.0 @_ConversionCount, MR0	

See also

MMOV16 mem16, MARx Move 16-bit Auxiliary Register Contents to Memory

C	LA auxiliary register n mmmm (Opcode o addr n mmmm (Opcode o addr	for MMOV16 mem.		
amm mmmm mmm 111 0110 1000 amm mmmm mmmm 111 0110 1100 ne contents c 5.	n mmmm (Opcode) addr n mmmm (Opcode) addr	for MMOV16 mem: for MMOV16 mem	16, MAR1)	pointed to by
111 0110 1000 mmm mmmm mmmm 111 0110 1100 ne contents c 5.	0 addr n mmmm (Opcode 0 addr	for MMOV16 mem	16, MAR1)	pointed to by
111 0110 1100 ne contents c 3.	0 addr			pointed to by
ò.	of MAR0 or MAF	R1 in the 16-bit r	memory location	pointed to by
= MAR0;				
s MSTF flags	s are affected.			
TF	ZF	NF	LUF	LVF
d No	No	No	No	No
	TF d No		TF ZF NF d No No	TF ZF NF LUF d No No No

MMOV16 mem16, MRa Move 16-bit Floating-Point Register Contents to Memory

Operands	mem16	16 hit doctingtion moment of		ducing indirect or direct od	traccing modes						
	MRa	16-bit destination memory a CLA floating-point source re		•	nessing modes						
Oneede			<u> </u>	·							
Opcode	LSW: mmmm mmmm MSW: 0111 0101										
Description	Move 16-bit value location pointed [mem16] = MRa(1		of the	floating-point register	(MRa(15:0)) to the						
Flags	No flags MSTF	flags are affected.									
	Flag TF	ZF	NF	LUF	LVF						
	Modified No	No	No	No	No						
Pipeline	This is a single-	cycle instruction.									
Example		gs the last NUM_DATA_POI lues in the array Volta									
	; ; When the last element in the array has been ; filled, the task will go back to the ; the first element. ; ;										
	; Before starting the ADC conversions, force ; Task 8 to initialize the ConversionCount to zero ;										
	_ClalTask2: MMOVZ16 MMOV16 MUI16TOF32 MADDF32 MCMPF32 MF32TOUI16	MR0, @_ConversionCoun MAR1, MR0, #_VoltageC MR0, MR0 MR0, MR0, #1.0 MR0, #NUM_DATA_POINTS MR0, MR0	<pre>;I1 Current Conversion ;I2 Next array location ;I3 Convert count to float32 ;I4 Add 1 to conversion count ;I5 Compare count to max ;I6 Convert count to Uint16 ;I7 Wait till I8 to read result</pre>								
	MNOP MMOVZ16 MMOV16 MBCNDD MMOVIZ MNOP	MR2, @_AdcResult.ADCR *MAR1, MR2 _RestartCount, GEQ MR1, #0.0	ESULT1		- DATA_POINTS						
	MNOP MMOV16	@_ConversionCount, MR	.0	; If branch not taken MSTOP ; store current count							
	_RestartCount MMOV16 MSTOP	@_ConversionCount, MR	1	; If branch taken, ; end of task	restart count						
	; to zero ; _ClalTask8: MMOVIZ MR0,	tializes the Conversion #0.0 wersionCount, MR0	Count								
See also	MMOVIZ MRa, MMOVXI MRa,										

MMOV32 mem32, MRa Move 32-bit Floating-Point Register Contents to Memory

Operands

Operands					
	MRa	floating-point register (N	MR0 to MR3)		
	mem32	32-bit destination memory	ory accessed usin	g indirect or direct a	ddressing modes
Opcode	LSW: mmmm mmr MSW: 0111 010				
Description	[mem32] = MRa	Ra to 32-bit memory loc ^{a;}	ation indicated	l by mem32.	
Flags		on modifies the following	g flags in the M NF	STF register:	LVF
		No No	No	No	No
	No flags affect	cted.			
Pipeline	This is a sing	le-cycle instruction.			
Example	; Perform 5 r	nultiply and accumulate	e operations:		
	<pre>; 4th multip] ; 5th multip] ; Result = A ; _ClalTask1: MMOVI16 MMOV116 MNOP MMOV32 MMOV32 MMOV32 MMOV32 MMOV32 MMOV32 MMOV32 MMOV32 MMOV32 MMACF32 MMOV32 MADF32 MADF3 MAD</pre>	<pre>ly: C = X2 * Y2 ly: D = X3 * Y3 ly: E = X3 * Y3; + B + C + D + E MAR0, #_X MAR1, #_Y MR0, *MAR0[2]++ MR1, *MAR1[2]++ MR2, MR0, MR1 MR0, *MAR0[2]++ MR3, MR0, MR1 MR0, *MAR0[2]++ MR1, *MAR1[2]++ MR3, MR2, MR2, MR1 MR0, *MAR0[2]++ MR1, *MAR1[2]++ MR3, MR2, MR2, MR1 MR0, *MAR0 MR1, *MAR1 MR2, MR0, MR1 MR2, MR0, MR1 MR3, MR3, MR2</pre>	<pre>; MAR1 ; Delay ; MR0 = ; MR0 = ; MR1 = ; MR2 = ; In pa ; MR1 = 0, MR1 ; MR3 = ; In pa ; MR1 = 0, MR1 ; MR3 = ; In pa ; MR1 = ; MR2 = ; In pa ; MR1 = ; MR2 = ; in pa </pre>	arallel MRO = XX = Y3 = (A + B) + C, M arallel MRO = X4 = Y4 = E = X4 * Y4 arallel MR3 = (A	ray 1 load 1 load 1, MAR0 += 2 2, MAR0 += 2 C = X2 * Y2 3 MR2 = D = X3 * Y3 4 A + B + C) + D
	MMACF32 MMOV32 MMOV32 MMPYF32	MR3, MR2, MR2, MR MR0, *MAR0 MR1, *MAR1 MR2, MR0, MR1	0, MR1 ; MR3 = ; In pa ; MR1 = ; MR2 = ; in pa ; MR3 =	= (A + B) + C, M arallel MR0 = X4 = Y4 = E = X4 * Y4 arallel MR3 = (A = (A + B + C + M)	4 A + B + C) + D

See also

MMOV32 mem32, MSTF

MMOV32 mem32, MSTF Move 32-bit MSTF Register to Memory

Operands						
	MSTF	flo	ating-point status i	egister		
	mem32	32	-bit destination me	mory		
Opcode	LSW: mmmm MSW: 0111					
Description	Copy the ([mem32] =		ing-point statu	s register, MSTF	, to memory.	
Flags	This instru	ction does	not modify flag	gs in the MSTF	register:	
	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	No	No	No	No
Pipeline	This is a s	ingle-cycle	e instruction.			
Example						
See also	MMOV32	mem32, N	IRa			

MMOV32 MRa, mem32 {, CNDF} Conditional 32-bit Move

Operands MRa CLA floating-point destination register (MR0 to MR3) mem32 32-bit memory location accessed using direct or indirect addressing CNDF optional condition. Opcode LSW: mmmm mmmm mmmm MSW: 0111 00cn dfaa addr If the condition is true, then move the 32-bit value referenced by mem32 to the Description floating-point register indicated by MRa. if (CNDF == TRUE) MRa = [mem32]; CNDF is one of the following conditions: Encode ⁽¹⁾ CNDF **MSTF Flags Tested** Description 0000 NEQ Not equal to zero ZF == 0 0001 EQ Equal to zero ZF == 1 0010 GT Greater than zero ZF == 0 AND NF == 0 0011 GEQ Greater than or equal to zero NF == 0 0100 LT Less than zero NF == 1 0101 LEQ ZF == 1 OR NF == 1 Less than or equal to zero 1010 Test flag set TF == 1 TF 1011 NTF Test flag not set TF == 0 LUF == 1 1100 LU Latched underflow Latched overflow LVF == 1 1101 LV Unconditional 1110 UNC None UNCF⁽²⁾ Unconditional with flag 1111 None modification (1) Values not shown are reserved. (2) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to be modified when a conditional operation is executed. All other conditions will not modify these flags. Flags This instruction modifies the following flags in the MSTF register: Flag TF ZF NF LUF LVF Modified Yes Yes No No No if(CNDF == UNCF) NF = MRa(31);ZF = 0;

Pipeline

else No flags modified; This is a single-cycle instruction.

 $if(MRa(30:23) == 0) \{ ZF = 1; NF = 0; \}$

Instruction Set

Example	<pre>; Given A, B, X, M1 and M2 are 32-bit floating-point ; numbers ; ; if(A > B) calculate Y = X*M1 ; if(A < B) calculate Y = X*M2</pre>
	;
	_ClalTask5:
	MMOV32 MR0, @_A
	MMOV32 MR1, @_B
	MCMPF32 MR0, MRB
	$MMOV32$ MR2, @_M1, EQ ; if A > B, MR2 = M1
	; Y = M1*X
	MMOV32 MR2, @_M2, NEQ ; if A < B, MR2 = M2 ; Y = M2*X
	MMOV32 MR3, @_X
	MMPYF32 MR3, MR2, MR3 ; Calculate Y
	MMOV32 @_Y, MR3 ; Store Y
	MSTOP ; end of task
. .	

See also

MMOV32 MRa, MRb {, CNDF} MMOVD32 MRa, mem32

MMOV32 MRa, MRb {, CNDF} Conditional 32-bit Move

Operands

porunao											
	MRa	CLA floating-poi	int destination register (MR0 to MI	R3)							
	MRb	CLA floating-poi	int source register (MR0 to MR3)								
	CNDF	optional condition	on.								
Opcode		0000 cndf bbaa 1010 1100 0000									
Description		If the condition is true, then move the 32-bit value in MRb to the floating-point register indicated by MRa.									
	if (CNDF =	if (CNDF == TRUE) MRa = MRb;									
	CNDF is o	ne of the following co	onditions:								
	Encode ⁽³⁾	CNDF	Description	MSTF Flags Tested							
	0000	NEQ	Not equal to zero	ZF == 0							
	0001	EQ	Equal to zero	ZF == 1							
	0010	GT	Greater than zero	ZF == 0 AND NF == 0							
	0011	GEQ	Greater than or equal to zero	NF == 0							
	0100	LT	Less than zero	NF == 1							
	0101	LEQ	Less than or equal to zero	ZF == 1 OR NF == 1							
	1010	TF	Test flag set	TF == 1							
	1011	NTF	Test flag not set	TF == 0							
	1100	LU	Latched underflow	LUF == 1							
	1101	LV	Latched overflow	LVF == 1							
	1110	UNC	Unconditional	None							
	1111	UNCF ⁽⁴⁾	Unconditional with flag modification	None							

⁽⁴⁾ This is the default operation if no CNDF field is specified. This condition will allow the ZF, and NF flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags

This instruction modifies the following flags in the MSTF register:

Flag	TF	ZF	NF	LUF	LVF
Modified	No	Yes	Yes	No	No
f(CNDF =	- INCE)				
f (CNDF =	= UNCF)				
NF = M	Ra(31); ZF	= 0;			
		0) $\{ ZF = 1; N \}$	F = 0;		

}
else No flags modified;

Pipeline

This is a single-cycle instruction.

Example

;;;	_	7.0 2.0 5.0 MR3, MR0, MR1, MR1, MR1,	_ @_Y MR0 @_A, @_B, MR1,	GT LT GT	;;;;;	MR3 = X = 8.0 MR0 = Y = 7.0 ZF = 0, NF = 0, MR3 = 8.0 true, MR1 = A = 2.0 false, does not load MR1 true, MR2 = MR1 = 2.0 false, does not load MR2

See also

MMOV32 MRa, mem32{, CNDF}

MMOV32 MSTF, mem32 Move 32-bit Value from Memory to the MSTF Register

Operands							
	MSTF	CL	A status register				
	mem32	32	bit source memor	y location			
Opcode	LSW: mmmm n MSW: 0111 (nmmm mmmm D111 0000					
Description		ng functio	o the CLA's sta n calls (via MC		TF. This instruct	ion is most usefu	I
Flags	This instruc	tion modi	fies the followi	ng flags in the M	ISTF register:		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	Yes	Yes	Yes	Yes	Yes	
	Loading the is not affect		egister will over	write all flags ar	nd the RPC field.	The MEALLOW	field
Pipeline	This is a sir	ngle-cycle	instruction.				
Example							
See also	MMOV32 n	nem32, M	STF				

MMOVD32 MRa, mem32 Move 32-bit Value from Memory with Data Copy

Operands

Operands					
	MRa CLA floating-point register (MR0 to MR3) mem32 32-bit memory location accessed using direct or indirect addressing				
Opcode	LSW: mmmm mmmm mmmm MSW: 0111 0100 00aa addr				
Description	Move the 32-bit value referenced by mem32 to the floating-point register indicated by MRa.				
	MRa = [mem32 [mem32+2] =	-			
Flags	This instruction modifies the following flags in the MSTF register:				
		TF ZF	NF	LUF	
		No Yes	Yes	No	No
	NF = MRa(31); ZF = 0; if(MRa(30:23) == 0){ ZF = 1; NF = 0; }				
Pipeline	This is a single-cycle instruction.				
	MMOV32 M MMPYF32 MMOV32 M MMOVD32 MMOV32 M MMOVD32 ; MR3 = X1*B ; MR0 = A2 MMACF32 MMOV32 M MMOV32 M ; MR3 = X0*B ; MR0 = A1	X0 Y1 sum R0, @_B2 ; ; R1, @_X2 ; ; MR2, MR1, MR0 ; R0, @_B1 ; MR1, @_X1 ; MR3, MR1, MR0 ; R0, @_B0 ; MR1, @_X0 ; 1 + X2*B2, MR2 = MR3, MR2, MR2, MR R1, @_Y2 ; 0 + X1*B1 + X2*B2 MR3, MR2, MR2, MR R0, @_A1	MR0 = B1 MR1 = X1, X2 = X1 MR3 = X1*B1 MR0 = B0 MR1 = X0, X1 = X0 X0*B0 1, MR0 MR1 = Y2 , MR2 = Y2*A2 1, MR0 MR1 = Y1, Y2 = Y1	+ X1*B1 + X2*E	

See also

MMOV32 MRa, mem32 {,CNDF}

MMOVF32 MRa, #32F Load the 32-bits of a 32-bit Floating-Point Register

Operands		This instruction is an alias for MMOVIZ and MMOVXI instructions. The second operand is translated by the assembler such that the instruction becomes:								
	MMOVIZ MRa, #16FHiHex MMOVXI MRa, #16FLoHex									
	MRa C	CLA floating-point de	estination register (MI	R0 to MR3)						
	#32F i	mmediate float value	e represented in float	ing-point representat	ion					
Opcode	LSW: IIII IIII III MSW: 0111 1000 010 LSW: IIII IIII III MSW: 0111 1000 100	0 00aa I IIII (opcode								
Description	Note: This instruction representation. To point format) use the	specify the imm	ediate value as a	hex value (IEEE						
	Load the 32-bits of	MRa with the in	nmediate float va	lue represented	by #32F.					
		represented in	floating-point rep	resentation. That	e assembler will only at is, 3.0 can only be					
Flags	This instruction mo	difies the followi	ng flags in the M	STF register:						
	Flag TF	ZF	NF	LUF	LVF					
	Modified No	No	No	No	No					
Pipeline	Depending on #32F of the IEEE 32-bit f convert MMOVF32 floating-point forma into MMOVIZ and N	loating-point for into only MMO t of #32F are no	mat of #32F are : /IZ instruction. If ot zeros, then the	zeros, then the a the lower 16-bits	ssembler will of the IEEE 32-bit					
Example	MMOVF32 MR1, #3.0		(0x40400000) converts this i 1, #0x4040	nstruction as						
	MMOVF32 MR2, #0.0		(0x00000000) converts this i 2, #0x0	nstruction as						
	MMOVF32 MR3, #12.2		converts this i 3, #0x4144							
See also	MMOVIZ MRa, #16 MMOVXI MRa, #16 MMOVI32 MRa, #3	FLoHex								

MMOVI16 MARx, #16I Load the Auxiliary Register with the 16-bit Immediate Value

Operands

Operands								
	MARx	Auxiliary register	MAR0 or MAR1					
	#16l	16-bit immediate	value					
Opcode	LSW: IIII IIII MSW: 0111 1111	IIII IIII (opco 1100 0000	de of MMOVI16 1	MAR0, #16	I)			
	LSW: IIII IIII MSW: 0111 1111	IIII IIII (opco 1110 0000	de of MMOVI16 1	MAR1, #16	I)			
Description		ry register, MAR for important info				e value. I	Refer to	o the
Flags	This instruction	does not modify	flags in the MS	TF registe	er:			
	Flag TF	ZF	NF		LUF	L١	/F	
	Modified No	No	No		No	No	C	
Pipeline	 EXE phase of the addressing will of when loading the when loading the standard stand	cycle instruction. The pipeline. Any p occur in the D2 p e auxiliary regist ructions following these two instru- n auxiliary regist ent addressing oc ere will be a con de post incremen	bost increment of thase of the pipe ers: MMOVI16 will actions will use the court in the D2 p flict. In the case t will win snd th	of MAR0 of eline. The use MAR the old va EXE pha hase. Thu e of a cont ie auxiliar	or MAR1 t refore the 0/MAR1 t lue of MA se while t is I3 cann flict, the u y register	using ind e followin Defore the R0 or M. updates of not use the pdate du will not b	lirect g applie e updat AR1. due to he auxil he to be upda	es :e iary ted
	MMOVĬ16.	the 4th instruction is 50 and #_X i		.R1 will be	e the new	value loa	aded wi	th
	MMOVI16 MAR0, # <instruction 1=""></instruction>		; Load MAR0 with ill use the old					
	<instruction 2=""></instruction>		ill use the old					
	<instruction 3=""></instruction>		annot use MAR0	-	· ·			
	<instruction 4=""> <instruction 5=""></instruction></instruction>		ill use the new	w value o	I MARU (2	:0)		
	 Та	ble 30. Pipeline	Activity For M	MOVI16 I		R1 #16	1	
		-	-					
	Instruction	F1 F2	2 D1	D2	R1	R2	E	W
	MMOVI16 MAR0, #_>							
	11		MOVI16					
	12	l2 l1						
	13	I3 I2		MMOVI16				
	14	14 13	12	11	MMOVI16			

11

12

MMOVI16

11

MMOVI 16

12

13

14

15

13

14

15

16

15

16

MMOVI32 MRa, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands						
	MRa	floating-po	int register (MR0	to MR3)		
	#32FHex	A 32-bit im	mediate value th	at represents an IE	EE 32-bit floating-p	oint value.
		by the assemb		and MMOVXI in the instruction		second operand
Opcode	LSW: IIII II MSW: 0111 10		(opcode of MI	MOVIZ MRa, #16B	FHiHex)	
	LSW: IIII II MSW: 0111 10		(opcode of MI	MOVXI MRa, #161	FLoHex)	
Description					nmediate operate the MMOVF32	nd. To specify the MRa, #32F
	Load the 32-I	oits of MRa wi	th the immed	iate 32-bit hex v	alue represente	ed by #32Fhex.
	#32Fhex is a value of a floa	32-bit immedi ating-point nur an only be rep	iate hex value mber. The as	e that represent	s the IEEE 32-b	it floating-point mmediate value.
Flags			e following fla	igs in the MSTF	register:	
	-	TF Z	-	NF	LUF	LVF
	Modified	No N	0	No	No	No
Pipeline	16-bits of #32 instruction. If	2FHex are zer	os, then asse bits of #32FH	mbler will conve ex are not zeros	o cycles. If all o ert MOVI32 to th s, then assemble	e MMOVIZ
Example	MOVI32 MR1	, #0x40400000		converts this	instruction as	
	MOVI32 MR2,	#0x00000000	; MR2 = 0x00 ; Assembler ; MMOVIZ MR3	converts this	instruction as	
	MOVI32 MR3,	#0x40004001		converts this 3, #0x4000	instruction as	
	MOVI32 MR0,	#0x00004040		converts this D, #0x0000	instruction as	
See also	MMOVIZ MR MMOVXI MR MMOVF32 M	a, #16FLoHex	K			

MMOVIZ MRa, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands							
	MRa	flo	ating-point registe	r (MR0 to MR3)			
	#16FHi				s the upper 16-bits of ne mantissa are assu		
Opcode	LSW: IIII MSW: 0111						
Description	Load the ι 16-bits of		its of MRa with	the immediate	value #16FHi an	d clear the low	
	32-bit float assembler	ting-point v will only a	value. The low	16-bits of the m		6-bits of an IEEE med to be all 0. The is, -1.5 can be	е
	the lowest (0x408000	16-bits of 000), 0.5 ((a floating-	the mantissa a 0x3F000000), a point register to	are 0. Some exa and -1.5 (0xBFC	oint register with Imples are 2.0 (0 00000). If a cons hen use MMOVI.	stant requires all	I
	MRa(31:16 MRa(15:0)		;				
Flags	This instru	ction mod	ifies the follow	ng flags in the M	/ISTF register:		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	No	No	No	No	
Pipeline	This is a s	ingle-cycle	e instruction.				
Example	MMOV: MMOV:	IZ MR0, IZ MR1,	#-1.5	; MR0 = 0xBFC00 ; MR0 = -1.5 (0	, ,		
	; Load MR2 MMOV2 MMOV2	IZ MR2,		x40490FDB) ; MR0 = 0x40490 ; MR0 = 0x40490			
See also	MMOVF32 MMOVI32 MMOVXII	MRa, #32	Per				

MMOVZ16 MRa, mem16 Load MRx with 16-bit Value

	MRa	CL	A floating-point de	stination register (M	R0 to MR3)	
	mem16	16	-bit source memory	/ location		
Opcode		mmmm mmmm 0101 10aa				
Description	Move the MRa.	16-bit valu	e referenced by	y mem16 to the	floating-point reg	jister indicated by
	MRa(31:16 MRa(15:0)) = 0; = [mem16]	;			
Flags	This instru	uction modi	ifies the followir	ng flags in the M	ISTF register:	
-	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	Yes	Yes	No	No
	NF = 0;	U	lags are modifie { ZF = 1; }	ed based on the	integer results o	f the operation.
Pipeline	This is a s	single-cycle	e instruction.			

MMOVXI MRa, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

operanas						
	MRa	CI	A floating-point re	gister (MR0 to MR3)		
	#16FLoHex			ex value that repres The upper 16-bits wi	ents the lower 16-bit Il not be modified.	s of an IEEE 32-bit
Opcode	LSW: IIII MSW: 0111	IIII IIII 1000 1000				
Description	represents MRa will n	the lower	16-bits of an I	EEE 32-bit floati can be combine		#16FLoHex The upper 16-bits of WIZ instruction to
	MRa(15:0) MRa(31:16)					
Flags						
	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	No	No	No	No
Pipeline	This is a s	ingle-cycle	e instruction.			
Example	; Load MR(MMOVI2 MMOVX3	z MRC	,	x40490FDB) MR0 = 0x40490000 MR0 = 0x40490FDF	-	
See also	MMOVIZ	MRa, #16F	-Hi			

MMPYF32 MRa, MRb, MRc 32-bit Floating-Point Multiply

Operands					
	MRa	• ·	int destination regist		
	MRb	CLA floating-po	int source register (N	/IR0 to MR3)	
	MRc	CLA floating-po	int source register (N	/R0 to MR3)	
Opcode	LSW: 0000 00 MSW: 0111 11				
Description	Multiply the c MRa = MRb *	contents of two floa MRC;	ating-point regist	ers.	
Flags	-	on modifies the fol			
		TF ZF	NF	LUF	LVF
	Modified	No No	No	Yes	Yes
	The MSTF re	gister flags are m	odified as follows	S:	
	• LUF = 1 if	f MMPYF32 gener	ates an underflo	w condition.	
	• LVF = 1 if	MMPYF32 gener	ates an overflow	condition.	
Pipeline	This is a sing	le-cycle instruction	۱.		
Example	<pre>; Calculate ; Ye = Estim ; Ye = Ye*(2 ; Ye = Ye*(2 ; _ClalTask1:</pre>	.0 - Ye*X) .0 - Ye*X) MR1, @_Den MR2, MR1 MR3, MR2, MR1 MR3, #2.0, MR3 MR2, MR2, MR3 MR3, MR2, MR1 MR0, @_Num	<pre>; MR1 = Den ; MR2 = Ye = ; MR3 = Ye*De ; MR3 = 2.0 - ; MR2 = Ye = ; MR3 = Ye*De ; MR0 = Num ; MR3 = 2.0 - ; MR2 = Ye = ; Reload Den</pre>	Estimate(1/Den) m Ye*Den Ye*(2.0 - Ye*Den m Ye*(2.0 - Ye*Den Ye*(2.0 - Ye*Den To Set Sign .0) Change Sign te*Num)
See also	MMPYF32 M MMPYF32 M MMPYF32 M MMPYF32 M	Ra, #16FHi, MRb Ra, MRb, MRc I Rd, MRe, MRf N Rd, MRe, MRf N Ra, MRb, MRc I IR3, MR2, MRd, N	/MOV32 MRa, n /MOV32 mem32 /ISUBF32 MRd,	nem32 2, MRa MRe, MRf	2

MMPYF32 MRa, #16FHi, MRb 32-bit Floating-Point Multiply

Operands						
	MRa	CL	A floating-point de	stination register (MF	R0 to MR3)	
	#16FHi			alue that represents t The low 16-bits of the		
	MRc	CL	A floating-point so	urce register (MR0 to	o MR3)	
Opcode	LSW: IIII MSW: 0111					
Description			e floating-point tion in MRa.	value represente	ed by the immed	liate operand. Store
	floating-po most usefu Some exar (0xBFC000	int value. Il for repre mples are 000). The value -1.	The low 16-bits senting consta 2.0 (0x400000 assembler will 5 can be repre	of the mantissa nts where the lov 00), 4.0 (0x4080	are assumed to west 16-bits of th 0000), 0.5 (0x3F lex or float as th	s of an IEEE 32-bit be all 0. #16FHi is ne mantissa are 0. 7000000), and -1.5 e immediate value.
	This instrue	ction can a	also be written	as MMPYF32 M	Ra, MRb, #16FF	Hi.
Flags	This instrue	ction modi	fies the followi	ng flags in the M	STF register:	
J	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	No	No	Yes	Yes
	• LUF = ²	1 if MMPY	•	ed as follows: an underflow co an overflow con		
Pipeline	This is a si	ngle-cycle	instruction.			
Example 1	; Same as MMOVIZ MMPYF3 MMOV32	MR3, 2 MR0,	#2.0 ; MF #3.0, MR3 ; MF	a represented in 13 = 2.0 (0x4000 10 = 3.0 * MR3 = 10 ve the result i	0000) 6.0 (0x40C0000	0)
Example 2	; Same as MMOVIZ MMPYF3 MMOV32	MR3, 2 MR0,	#2.0 ; #0x4040, MR3 ;	R represented in MR3 = 2.0 (0x4 MR0 = 0x4040 * Save the resul	0000000) MR3 = 6.0 (0x4	

Example 3	<pre>; Given X, M and B are IQ24 numbers: ; X = IQ24(+2.5) = 0x02800000 ; M = IQ24(+1.5) = 0x01800000 ; B = IQ24(-0.5) = 0xFF800000 ; ; Calculate Y = X * M + B ; ; _ClalTask2: ;</pre>
	<pre>; Convert M, X and B from IQ24 to float MI32TOF32 MR0, @_M ; MR0 = 0x4BC00000 MI32TOF32 MR1, @_X ; MR1 = 0x4C200000 MI32TOF32 MR2, @_B ; MR2 = 0xCB000000 MMPYF32 MR0, MR0, #0x3380 ; M = 1/(1*2^24) * iqm = 1.5 (0x3FC00000) MMPYF32 MR1, MR1, #0x3380 ; X = 1/(1*2^24) * iqx = 2.5 (0x40200000) MMPYF32 MR2, MR2, #0x3380 ; B = 1/(1*2^24) * iqb =5 (0xBF000000) MMPYF32 MR3, MR0, MR1 ; M*X MADDF32 MR2, MR2, MR3 ; Y=MX+B = 3.25 (0x40500000) ; Convert Y from float32 to IQ24</pre>
	MMPYF32 MR2, MR2, #0x4B80 ; Y * 1*2^24 MF32TOI32 MR2, MR2 ; IQ24(Y) = 0x03400000 MMOV32 @_Y, MR2 ; store result MSTOP ; end of task
See also	MMPYF32 MRa, MRb, #16FHi MMPYF32 MRa, MRb, MRc MMPYF32 MRa, MRb, MRc MADDF32 MRd, MRe, MRf

MMPYF32 MRa, MRb, #16FHi 32-bit Floating-Point Multiply

Operands							
	MRa	CL	A floating-point de	stination register (MI	R0 to MR3)		
	MRb	CL	A floating-point so	urce register (MR0 to	o MR3)		
	#16FHi			alue that represents The low 16-bits of the			
Opcode	LSW: IIII MSW: 0111						
Description			e floating-point tion in MRa.	value represente	ed by the immed	liate operand. St	ore
	floating-po most usefu Some exan (0xBFC000 That is, the MRa = MRb	int value ul for repre mples are 000). The a e value -1. * #16FHi:	The low 16-bits senting consta 2.0 (0x400000 assembler will 5 can be repre	that represents to of the mantissants where the low 00), 4.0 (0x4080) accept either a h sented as #-1.5	are assumed to west 16-bits of th 0000), 0.5 (0x3F nex or float as th or #0xBFC0.	be all 0. #16FH he mantissa are 7000000), and -1 e immediate valu	i is 0. .5
Flags	This instru Flag	ction modi	fies the followi	ng flags in the M	STF register:.	LVF	
	Modified	No	No	No	Yes	Yes	
	• LUF = 1	1 if MMPY	-	ed as follows: an underflow co an overflow con			
Pipeline	This is a si	ingle-cycle	instruction.				
Example 1	;Same as e MMOVIZ MMPYF3 MMOV32	MR3, = 32 MR0, 1	#2.0 ; MR3, #3.0 ; M	represented in IR3 = 2.0 (0x400 IR0 = MR3 * 3.0 Gave the result	00000) = 6.0 (0x40C000	00)	
Example 2	;Same as a MMOVIZ MMPYF3	Z MR3,	#2.0	is represented ; MR3 = 2.0 (0x ; MR0 = MR3 * 0	4000000)	4000000	

Example 3	<pre>; Given X, M and B are IQ24 numbers: ; X = IQ24(+2.5) = 0x02800000 ; M = IQ24(+1.5) = 0x01800000 ; B = IQ24(-0.5) = 0xFF800000 ; ; Calculate Y = X * M + B ; _ClalTask2: ;</pre>
	; Convert M, X and B from IQ24 to float
	MI32TOF32 MR0, $@_M$; MR0 = 0x4BC00000
	MI32TOF32 MR1, @_X ; MR1 = 0x4C200000
	MI32TOF32 MR2, @_B ; MR2 = 0xCB000000
	MMPYF32 MR0, $\#0x3380$, MR0 ; M = $1/(1*2^{24})$ * iqm = 1.5 (0x3FC00000)
	MMPYF32 MR1, $\#0x3380$, MR1 ; X = $1/(1*2^{24}) * iqx = 2.5 (0x40200000)$
	MMPYF32 MR2, #0x3380, MR2 ; B = 1/(1*2^24) * iqb =5 (0xBF000000)
	MMPYF32 MR3, MR0, MR1 ; M*X
	MADDF32 MR2, MR2, MR3 ; Y=MX+B = 3.25 (0x40500000)
	; Convert Y from float32 to IQ24
	MMPYF32 MR2, #0x4B80, MR2; Y * 1*2^24
	MF32TOI32 MR2, MR2 ; $IQ24(Y) = 0x03400000$
	MMOV32 @_Y, MR2 ; store result
	MSTOP ; end of task
See also	MMPYF32 MRa, #16FHi, MRb MMPYF32 MRa, MRb, MRc

MMPYF32 MRa, MRb, MRc||MADDF32 MRd, MRe, MRf 32-bit Floating-Point Multiply with Parallel Add

Operands						
	MRa		pating-point destinati annot be the same re	on register for MMP egister as MRd	YF32 (MR0 to MR3))
	MRb	CLA flo	ating-point source r	egister for MMPYF3	2 (MR0 to MR3)	
	MRc	CLA flo	ating-point source r	egister for MMPYF3	2 (MR0 to MR3)	
	MRd		ating-point destinati	on register for MADI egister as MRa	DF32 (MR0 to MR3)	
	MRe	CLA flo	ating-point source r	egister for MADDF3	2 (MR0 to MR3)	
	MRf	CLA flo	ating-point source r	egister for MADDF3	2 (MR0 to MR3)	
Opcode Description Restrictions	MRa = MRb * MRd = MRe + The destina	010 0000 000 contents of t MRc; MRf; tion register	wo floating-poin	32 and the MAD		of two registers. nique. That is,
Flags	This instruct	ion modifies	the following fla	as in the MSTF	register:	
-	Flag	TF	ZF	NF	LUF	LVF
-		TF No	ZF No			LVF Yes

www	.ti.com
** ** **	

Example		ltiply and accumulate op	erations:
	; ; X and Y are ;	32-bit floating point ar	rays
	<pre>; 1st multiply ; 2nd multiply ; 3rd multiply ; 4th multiply ; 5th multiply</pre>	: B = X1 * Y1 : C = X2 * Y2 : D = X3 * Y3	
		- B + C + D + E	
	; Claimachi:		
	_ClalTaskl: MMOVI16 MMOVI16 MNOP MNOP	MAR0, #_X MAR1, #_Y	; MAR0 points to X array ; MAR1 points to Y array ; Delay for MAR0, MAR1 load ; Delay for MAR0, MAR1 load ; < MAR0 valid
	MMOV32	MR0, *MAR0[2]++	; MRO = XO, MARO += 2 ; < MAR1 valid
	MMOV32	MR1, *MAR1[2]++	; MR1 = Y0, MAR1 += 2
	MMPYF32 MMOV32 MMOV32		; MR2 = A = X0 * Y0 ; In parallel MR0 = X1, MAR0 += 2 ; MR1 = Y1, MAR1 += 2
	MMPYF32 MMOV32 MMOV32	MR3, MR0, MR1 MR0, *MAR0[2]++ MR1, *MAR1[2]++	; In parallel MRO = X2, MARO += 2
	MMACF32 MMOV32 MMOV32	MR3, MR2, MR2, MR0, MR1 MR0, *MAR0[2]++ MR1, *MAR1[2]++	; MR3 = A + B, MR2 = C = X2 * Y2 ; In parallel MR0 = X3 ; MR1 = Y3
	MMACF32 MMOV32 MMOV32	MRO, *MARO	; MR3 = (A + B) + C, MR2 = D = X3 * Y3 ; In parallel MR0 = X4 ; MR1 = Y4
	MMPYF32	MR2, MR0, MR1 MR3, MR3, MR2	; MR2 = E = X4 * Y4 ; in parallel MR3 = (A + B + C) + D
	MADDF32 MMOV32 MSTOP		; MR3 = (A + B + C + D) + E ; Store the result ; end of task

See also

MMACF32 MR3, MR2, MRd, MRe, MRf || MMOV32 MRa, mem32

MMPYF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands					
	MRd	01	oint destination register for e the same register as MR	,	D to MR3)
	MRe	CLA floating-p	oint source register for the	MMPYF32 (MR0 to	MR3)
	MRf	CLA floating-p	oint source register for the	MMPYF32 (MR0 to	MR3)
	MRa	01	oint destination register for e the same register as MR	· ·	to MR3)
	mem32	32-bit memory source of the	location accessed using d MMOV32.	irect or indirect addre	essing. This will be the
Opcode		mm mmmm mmmm Tee ddaa addr			
Description	Multiply the o MRd = MRe * MRa = [mem32	MRf;	pating-point registers a	and load another	
Restrictions		ion register for the be the same regi	e MMPYF32 and the l ster as MRd.	MMOV32 must b	e unique. That is,
Flags	This instructi	on modifies the fo	ollowing flags in the M	ISTF register:.	
	Flag	TF ZF	NF	LUF	LVF
	Modified	No Yes	Yes	Yes	Yes
	• LUF = 1	f MMPYF32 gene	nodified as follows: erates an underflow co erates an overflow cor		
	The MMOV3	2 Instruction will	set the NF and ZF flag	gs as follows:	
	NF = MRa(31) ZF = 0;	;			
	if(MRa(30:23	3) == 0) { ZF = 1	; NF = 0; }		
Pipeline	Both MMPYI	-32 and MMOV32	2 complete in a single	cycle.	
Example 1		X1 and B1 are 32 Y1 = M1*X1+B1	-bit floating point		
	_ClalTask1: MMOV32 MMOV32 MMPYF32 MMOV32 MADDF32 MMOV32 MSTOP	MR0, @M1 MR1, @X1 MR1, MR1, MR(MR0, @B1 MR1, MR1, MR(@Y1, MR1	; and in paralle	K1 l load MR0 with and store in MR	

Instruction Set

Example 2	; Given A, B and C are 32-bit floating-point numbers ; Calculate Y2 = (A $*$ B)
	; $Y3 = (A * B) * C$
	i
	_Cla1Task2:
	MMOV32 MRO, @A ; Load MRO with A
	MMOV32 MR1, @B ; Load MR1 with B
	MMPYF32 MR1, MR1, MR0 ; Multiply A*B
	MMOV32 MR0, @C ; and in parallel load MR0 with C
	MMPYF32 MR1, MR1, MR0 ; Multiply (A*B) by C
	MMOV32 @Y2, MR1 ; and in parallel store A*B
	MMOV32 @Y3, MR1 ; Store the result
	MSTOP ; end of task

MMPYF32 MRd, MRe, MRf ||MMOV32 mem32, MRa 32-bit Floating-Point Multiply with Parallel Move

Operands					
-	MRd	CLA floating-p	oint destination register for	the MMPYF32 (MR) to MR3)
	MRe	CLA floating-p	oint source register for the	MMPYF32 (MR0 to	MR3)
	MRf	CLA floating-p	oint source register for the	MMPYF32 (MR0 to	MR3)
	mem32	32-bit memory destination of	location accessed using d the MMOV32.	lirect or indirect addre	essing. This will be the
	MRa	CLA floating-p	oint source register for the	MMOV32 (MR0 to M	1R3)
Opcode	LSW: mmmm mmn MSW: 0100 ffe				
Description	Multiply the constant MRd = MRe * M [mem32] = MRa	Rf;	ating-point registers	and move from n	nemory to register.
Flags	-		bllowing flags in the N	-	
	Flag 7 Modified N	F ZF	NF	LUF	LVF
Pipeline	 LUF = 1 if LVF = 1 if 	MMPYF32 gene MMPYF32 gene	nodified as follows: erates an underflow co erates an overflow cor e complete in a single	ndition.	
i ipeille				cycle.	
Example	; Calculate Y	2 = (A * B) 3 = (A * B) * C MR0, @A MR1, @B MR1, MR1, MR0 MR0, @C	<pre>t floating-point nur ; ; Load MR0 with A ; Load MR1 with B ; Multiply A*B ; and in parallel ; Multiply (A*B) B ; and in parallel ; Store the result ; end of task</pre>	load MR0 with C by C store A*B	2
See also			MMOV32 MRa, mem MRe, MRf MMOV32		

MMPYF32 MRa, MRb, MRc ||MSUBF32 MRd, MRe, MRf 32-bit Floating-Point Multiply with Parallel Subtract

Operands						
	MRa			estination register for ame register as MR	MMPYF32 (MR0 to I	MR3)
	MRb	CLA flo	pating-point sc	ource register for MM	PYF32 (MR0 to MR3	3)
	MRc	CLA flo	pating-point sc	ource register for MM	PYF32 (MR0 to MR3	3)
	MRd		01	estination register for ame register as MRa	MSUBF32 (MR0 to M	MR3)
	MRe	CLA flo	pating-point sc	ource register for MS	UBF32 (MR0 to MR3	b)
	MRf	CLA flo	pating-point sc	ource register for MS	UBF32 (MR0 to MR3	i)
Opcode		fee ddcc bba 1010 0100 000				
Description	Multiply the registers.	contents of	two floating	-point registers v	vith parallel subti	raction of two
	MRa = MRb * MRd = MRe -					
Restrictions		ation register t be the sam			MSUBF32 must b	be unique. That is,
Flags	This instruc	tion modifies	the followi	ng flags in the M	STF register:.	
-	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	No	No	Yes	Yes
	The MSTE	register flags	are modifi	ed as follows:		
					n underflow cond	lition
				-	n overflow conditi	
				0		
Pipeline	MMPYF32	and MSUBF	32 both cor	nplete in a single	e cycle.	
Example		B and C are e Y2 = (A * 1 Y3 = (A - 1	В)	oating-point num	bers	
	, ClalTask2: MMOV32 MMOV32	2 MR0, @A		Load MR0 with A Load MR1 with B		
		32 MR2, MR0 32 MR3, MR0		Multiply (A*B) and in parallel	Sub (A-B)	
	MMOV32	2 @Y2, MR2	; ;	Store A*B	bub (A b)	
	MMOV32 MSTOP	2 @Y3, MR3		Store A-B end of task		
See also	MSUBF32 I	MRa, MRb, N	ИRc			
	MSUBF32	MRd, MRe, N	MRf MMC	V32 MRa, mem3 V32 mem32, MF		

MNEGF32 MRa, MRb{, CNDF} Conditional Negation

Operands

Operands						
	MRa	CLA f	loating-poir	t destination register (MR0 to M	R3)	
	MRb	CLA f	loating-poir	at source register (MR0 to MR3)		
	CNDF	condi	tion tested			
)pcode		0000 cndf b 1010 1000 0				
escription	if (CNDF = else {MRa	= true) {MR; = MRb; }	a = - MRŁ	o;		
	CNDF is o	ne of the foll	owing co	nditions:		
	Encode ⁽⁵⁾	CNDF		Description	MSTF Flags 1	ested
	0000	NEQ		Not equal to zero	ZF == 0	
	0001	EQ		Equal to zero	ZF == 1	
	0010	GT		Greater than zero	ZF == 0 AND	NF == 0
	0011	GEQ		Greater than or equal to zero	NF == 0	
	0100	LT		Less than zero	NF == 1	
	0101	LEQ		Less than or equal to zero	ZF == 1 OR N	F == 1
	1010	TF		Test flag set	TF == 1	
	1011	NTF		Test flag not set	TF == 0	
	1100	LU		Latched underflow	LUF == 1	
	1101	LV		Latched overflow	LVF == 1	
	1110	UNC		Unconditional	None	
	1111	UNCF ⁽⁶⁾		Unconditional with flag modification	None	
	⁽⁶⁾ This is th be modif	ed when a cond	tion if no CN ditional ope	NDF field is specified. This condi ration is executed. All other conc	litions will not mo	
lags	Flag	Ction modifie	s the folic ZF	owing flags in the MSTF re NF	egister: LUF	LVF

Flag	TF	ZF	NF	LUF	LVF
Modified	No	Yes	Yes	No	No

Pipeline

Example 1

This is a single-cycle instruction.

; Show the basic operation of $\ensuremath{\mathsf{MNEGF32}}$

MMOVIZ	MR0, #5.0	; $MR0 = 5.0 (0 \times 40 \land 0000)$
MMOVIZ	MR1, #4.0	
MMOVIZ	MR2, #-1.5	; MR2 = -1.5 (0xBFC00000)
MMPYF32	MR3, MR1, MR2	; MR3 = -6.0
MMPYF32	MRO, MRO, MR1	; MRO = 20.0
MMOVIZ	MR1, #0.0	
MCMPF32	MR3, MR1	; NF = 1
MNEGF32	MR3, MR3, LT	; if NF = 1, MR3 = 6.0
MCMPF32	MRO, MR1	; NF = 0
MNEGF32	MRO, MRO, GEQ	; if NF = 0, MR0 = -20.0

;

Example 2	<pre>; Calculate Num/Den using a Newton-Raphson algorithum for 1/Den ; Ye = Estimate(1/X) ; Ye = Ye*(2.0 - Ye*X) ; Ye = Ye*(2.0 - Ye*X) ; ClalTask1:</pre>
	MMOV32 MR1, @_Den ; MR1 = Den
	MEINVF32 MR2, MR1 ; MR2 = Ye = Estimate(1/Den) MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den
	MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
	MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den) MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den
	<pre> MMOV32 MR0, @_Num ; MR0 = Num MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)</pre>
	MMP1F32MR2, MR2, MR3, MR2 - 1e - 1e (2.0 - 1e bell) MMOV32MR1, @_Den; Reload Den To Set SignMNEGF32MR0, MR0, EQ; if(Den == 0.0) Change Sign Of NumMMPYF32MR0, MR2, MR0; MR0 = Y = Ye*NumMMOV32@_Dest, MR0; Store resultMSTOP; end of task

See also

MABSF32 MRa, MRb

Instruction Se	et
----------------	----

INOP	No Operation	on					
perands							
	none	This instruction	n does not have any opera	nds			
ocode		000 0000 0000 111 1010 0000					
escription		Do nothing. This instruction is used to fill required pipeline delay slots when other instructions are not available to fill the slots.					
lags	This instruct	ion does not modi	fy flags in the MSTF	register.			
	Flag	TF ZF	NF	LUF	LVF		
	Modified	No No	No	No	No		
	; _ClalTask1: MMOVI16	MAR1,#_X	; Start address	array			
		F32 MR0, @_len MR1, *MAR1[2]	; Length of the ; delay for MAR ; delay for MAR ++ ; MR1 = X0	l load			

See also

MOR32 MRa, MRb, MRc Bitwise OR

Operands											
	MRa	CLA flo	pating-point dest	ination register (M	R0 to MR3)						
	MRb	CLA flo	pating-point sour	ce register (MR0 te	o MR3)						
	MRc	CLA flo	pating-point sour	ce register (MR0 to	o MR3)						
Opcode		0000 00cc bb 1100 1000 00									
Description	Bitwise OR	of MRb with	MRc.								
	MARa(31:0)	= MARb(31:0) OR MRc(31:	0);							
Flags	This instruc	This instruction modifies the following flags in the MSTF register:									
	Flag	TF	ZF	NF	LUF	LVF					
	Modified	No	Yes	Yes	No	No					
Pipeline Example		o) == 0) { z	,								
Liample		MRO, #0x5555 MRO, #0xAAAA	; MR0 = 0x5	555AAAA							
		MR1, #0x5432 MR1, #0xFEDC	; MR1 = 0x5	432FEDC							
	MOR32 MR2,	MR1, MR0	; 0101 OR 0 ; 0101 OR 0 ; 0101 OR 0 ; 1010 OR 1 ; 1010 OR 1 ; 1010 OR 1	101 = 0101 (5) 100 = 0101 (5) 011 = 0111 (7) 010 = 0111 (7) 111 = 1111 (F) 110 = 1110 (E) 101 = 1111 (F) 100 = 1110 (E) 555FEFE							
See also	MAND32 M	IRa, MRb, M IRa, MRb, M	Rc								

MRCNDD {CNDF} Return Conditional Delayed

CNDF

Operands

Description

optional condition.

Opcode	LSW:	0000	0000	0000	0000	
	MSW:	0111	1001	1010	cndf	

If the specified condition is true, then the RPC field of MSTF is loaded into MPC and fetching continues from that location. Otherwise program fetches will continue without the return.

Please refer to the pipeline section for important information regarding this instruction. if (CNDF == TRUE) MPC = RPC;

CNDF is one of the following conditions:

Encode (7)	CNDF	Description	MSTF Flags Tested
0000	NEQ	Not equal to zero	ZF == 0
0001	EQ	Equal to zero	ZF == 1
0010	GT	Greater than zero	ZF == 0 AND NF == 0
0011	GEQ	Greater than or equal to zero	NF == 0
0100	LT	Less than zero	NF == 1
0101	LEQ	Less than or equal to zero	ZF == 1 OR NF == 1
1010	TF	Test flag set	TF == 1
1011	NTF	Test flag not set	TF == 0
1100	LU	Latched underflow	LUF == 1
1101	LV	Latched overflow	LVF == 1
1110	UNC	Unconditional	None
1111	UNCF ⁽⁸⁾	Unconditional with flag modification	None

⁽⁷⁾ Values not shown are reserved.

⁽⁸⁾ This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags

This instruction does not modify flags in the MSTF register.

Flag	TF	ZF	NF	LUF	LVF	
Modified	No	No	No	No	No	

Pipeline

Instruction Set The MRCNDD instruction by itself is a single-cycle instruction. As shown in Table 31, for each return 6 instruction slots are executed; three before the return instruction (d5-d7) and three after the return instruction (d8-d10). The total number of cycles for a return taken or not taken depends on the usage of these slots. That is, the number of cycles depends on how many slots are filled with a MNOP as well as which slots are filled. The effective number of cycles for a return can, therefore, range from 1 to 7 cycles. The number of cycles for a return taken may not be the same as for a return not taken. Referring to the following code fragment and the pipeline diagrams in Table 31 and Table 32, the instructions before and after MRCNDD have the following properties: ; <Instruction 1> ; Il Last instruction that can affect flags for ; the MCCNDD operation <Instruction 2> <Instruction 3> ; I2 Cannot be stop, branch, call or return ; I3 Cannot be stop, branch, call or return <Instruction 4> ; I4 Cannot be stop, branch, call or return MCCNDD _func, NEQ ; Call to func if not eqal to zero ; Three instructions after MCCNDD are always ; executed whether the call is taken or not <Instruction 5> ; I5 Cannot be stop, branch, call or return <Instruction 6> ; I6 Cannot be stop, branch, call or return <Instruction 7> ; I7 Cannot be stop, branch, call or return <Instruction 8> ; I8 The address of this instruction is saved ; in the RPC field of the MSTF register. ; Upon return this value is loaded into MPC ; and fetching continues from this point. <Instruction 9> ; I9 <Instruction 10> ; I10 func: <Destination 1> ; dl Can be any instruction <Destination 2> ; d2 <Destination 3> ; d3 <Destination 4> ; d4 Last instruction that can affect flags for ; the MRCNDD operation <Destination 5> ; d5 Cannot be stop, branch, call or return
<Destination 6> ; d6 Cannot be stop, branch, call or return <Destination 7> ; d7 Cannot be stop, branch, call or return ; Return to <Instruction 8> if not equal to zero MRCNDD, NEO ; Three instructions after MRCNDD are always constinuation 8> ; executed whether the return is taken or not constinuation 8> ; d8 Cannot be stop, branch, call or return constinuation 9> ; d9 Cannot be stop, branch, call or return <Destination 10> ; d10 Cannot be stop, branch, call or return <Destination 11> ; d11 <Destination 12> ; d11

MSTOP

• • • •

• d4

- d4 is the last instruction that can effect the CNDF flags for the MRCNDD instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a decision is made whether to return or not when MRCNDD is in the D2 phase.
- There are no restrictions on the type of instruction for d4.
- d5, d6 and d7
 - The three instructions proceeding MRCNDD can change MSTF flags but will have no effect on whether the MRCNDD instruction makes the return or not. This is because the flag modification will occur after the D2 phase of the MRCNDD instruction.
 - These instructions must not be the following: MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

• d8, d9 and d10

- The three instructions following MRCNDD are always executed irrespective of whether the return is taken or not.
- These instructions must not be the following: MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

Instruction	F1	F2	D1	D2	R1	R2	Е	w
d4	d4	d3	d2	d1	17	16	15	
d5	d5	d4	d3	d2	d1	17	16	
d6	d6	d5	d4	d3	d2	d1	i7	
d7	d7	d6	d5	d4	d3	d2	d1	
MRCNDD	MRCNDD	d7	d6	d5	d4	d3	d2	
d8	d8	MRCNDD	d7	d6	d5	d4	d3	
d9	d9	d8	MRCNDD	d7	d6	d5	d4	
d10	d10	d9	d8	MRCNDD	d7	d6	d5	
d11	d11	d10	d9	d8	-	d7	d6	
d12	d12	d11	d10	d9	d8	-	d7	
etc		d12	d11	d10	d9	d8	-	
			d12	d11	d10	d9	d8	
				d12	d11	d10	d9	
					d12	d11	d10	
						d12	d11	
							d12	

Table 32. Pipeline Activity For MRCNDD, Return Taken

		-	-					
Instruction	F1	F2	D1	D2	R1	R2	E	w
d4	d4	d3	d2	d1	17	16	15	
d5	d5	d4	d3	d2	d1	17	16	
d6	d6	d5	d4	d3	d2	d1	i7	
d7	d7	d6	d5	d4	d3	d2	d1	
MRCNDD	MRCNDD	d7	d6	d5	d4	d3	d2	
8	d8	MRCNDD	d7	d6	d5	d4	d3	
96	d9	d8	MRCNDD	d7	d6	d5	d4	
d10	d10	d9	d8	MRCNDD	d7	d6	d5	
8	18	d10	d9	d8	-	d7	d6	
9	19	18	d10	d9	d8	-	d7	
10	110	19	18	d10	d9	d8	-	
etc		l10	19	18	d10	d9	d8	
			l10	19	18	d10	d9	
				I10	19	18	d10	
					l10	19	18	
						l10	19	
							I10	

Example

See also

MBCNDD #16BitDest, CNDF MCCNDD 16BitDest, CNDF MMOV32 mem32, MSTF MMOV32 MSTF, mem32

;

MSETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands										
	FLAG	8	bit mask in	dicating whi	ch floating-p	oint status f	lags to chang	e.		
	VALUE	8	bit mask in	dicating the	flag value; 0) or 1.				
Opcode			F VVVV VVVV 1 1100 0000							
Description	the MSTF changed.	register. That is, if	The FLA a FLAG I	G field is a bit is set to	an 11-bit v 5 1 it indic	alue that ates that	floating-po indicates v flag will be eld is show	vhich flags changed;	will be	
	reserved	RNDF32	TF	reserved	reserved	ZF	NF	LUF	LVF	
	8	7	6	5	4	3	2	1	0	
Flags				e value th following f	•		et to; 0 or 1 egister:			
	Flag	TF	ZF		NF		LUF	LVF		
	Modified	Yes	Ye	s	Yes		Yes	Yes		
	Any flag can be modified by this instruction. The MEALLOW and RPC fields cannot be modified with this instruction.									
Pipeline	This is a s	single-cyc	le instruct	tion.						
Example	To make it easier and legible, the assembler accepts a FLAG=VALUE syntax for the MSTFLG operation as shown below: MSETFLG RNDF32=0, TF=0, NF=1; FLAG = 11000100; VALUE = 00XXX1XX;							or the		
See also	MMOV32 MMOV32									

Instruction Set						www.ti.com		
MSTOP	Stop Task	ſ						
Operands								
	none	Т	his instruction does	not have any operar	nds			
Opcode	LSW: 0000 MSW: 0111							
Description	placing MS for debugg of the pipe	STOP in u ing and i line, the	unused memory preventing run a	locations within way CLA code.	the CLA progra When MSTOP (task. In addition, Im RAM can be useful enters the D2 phase ciated interrupt is		
	There are three special cases that can occur when single-stepping a task such that the MPC reaches the MSTOP instruction.							
	 If you are single-stepping or halted in "task A" and "task B" comes in before the MPC reaches the MSTOP, then "task B" will start if you continue to step through the MSTOP instruction. Basically if "task B" is pending before the MPC reaches MSTOP in "task A" then there is no issue in "task B" starting and no special action is required. 							
	the MS in the N the MS in. To r	TOP with /IFR regi TOP inst eliably st	n no tasks pendi ister but it may o ruction of "task art "task B" perf	ng. If "task B" co or may not start i A". It depends or	mes in at this p f you continue t n exactly when and reconfigure	he MPC has reached point, it will be flagged o single-step through the new task comes the MIER bits. Once		
	in (for e single-s tasks p	example stepped of ending. E	using the IACK or halted in "task Before forcing "t	instruction to stat A" and the MPC	rt the task). In the task). In the task is the task reached the task of the CLA	when "task B" comes his case you have he MSTOP with no out of the debug bugging.		
Restrictions			ction cannot be	placed 3 instructi	ions before or a	fter a MBCNDD,		
Flags	This instru	ction doe	s not modify fla	gs in the MSTF r	egister.			
	Flag	TF	ZF	NF	LUF	LVF		
	Modified	No	No	No	No	No		
Pipeline	instruction	. The MS				vior of the MSTOP tions of a MBCNDD,		

TEXAS INSTRUMENTS

www.ti.com

Instruction	F1	F2	D1	D2	R1	R2	Е	١
11	l1							
12	12	11						
13	13	12	11					
MSTOP	MSTOP	13	12	l1				
14	14	MSTOP	13	12	I1			
15	15	14	MSTOP	13	12	l1		
16	16	15	14	MSTOP	13	12	11	
New Task Arbitrated and Piroitized	-	-	-	-	-	13	12	
New Task Arbitrated and Piroitized	-	-	-	-	-	-	13	
11	11	-	-	-	-	-	-	
12	12	11	-	-	-	-	-	
13	13	12	11	-	-	-	-	
14	14	13	12	l1	-	-	-	
15	15	14	13	12	l1	-	-	
16	16	15	14	13	12	l1	-	
17	17	16	15	14	13	12	l1	
etc								

; C =	(int32)-7		
;			
; Calculate	Y2 = A - B - C	7	
_ClalTask3:			
MMOV32	MR0, @_A	;	$MR0 = 1 (0 \times 00000001)$
MMOV32	MR1, @_B	;	MR1 = 2 (0x0000002)
MMOV32	MR2, @_C	;	MR2 = -7 (0xFFFFFFF9)
MSUB32	MR3, MR0, MR1	;	A + B
MSUB32	MR3, MR3, MR2	;	$A + B + C = 6 (0 \times 0000006)$
MMOV32	@_y2, MR3	;	Store y2
MSTOP		;	End of task

See also

MDEBUGSTOP

Instruction Set

MSUB32 MRa, MRb, MRc 32-bit Integer Subtraction

Operands							
	MRa	CLA	A floating-point	destination register (M	IR0 to MR3)		
	MRb	CLA	A floating-point	destination register (M	IR0 to MR3)		
	MRc	CLA	A floating-point	destination register (M	IR0 to MR3)		
Opcode		0000 00cc 1100 1110					
Description		-	of MRb and				
Flags	This instru	ction modif	ies the follov	ving flags in the N	/ISTF register:		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	Yes	Yes	No	No	
	NF = MRa(3) ZF = 0;	-		fied as follows:			
Pipeline	This is a si	ingle-cycle	instruction.				
Example	; B ; C ; ;	<pre>= (int32)1 = (int32)2 = (int32)- Y2 = A - B MR0, @_A MR1, @_B MR2, @_C MR3, MR0 MR3, MR3 @_Y2, MR</pre>	7 7 7 , MR1 , MR2 , 3 ,	MR0 = 1 (0x0000 MR1 = 2 (0x0000 MR2 = -7 (0xFFF A + B A + B + C = 6 (Store y2 End of task	0002) FFFF9)		
See also	MAND32 M MASR32 M MLSL32 M MLSR32 M MOR32 M	MRa, MRb, MRa, MRb, MRa, #SHIF IRa, #SHIF MRa, #SHIF Ra, MRb, M	MRc =T T =T MRc				

MSUBF32 MRa, MRb, MRc 32-bit Floating-Point Subtraction

	-				
Operands					
	MRa	CLA floating-point d	estination register (M	R0 to R1)	
	MRb	CLA floating-point se	ource register (MR0 t	to R1)	
	MRc	CLA floating-point se	ource register (MR0 t	to R1)	
Opcode	LSW: 0000 00 MSW: 0111 11	00 00cc bbaa 00 0100 0000			
Description	Subtract the MRa = MRb -	contents of two floatin	g-point registers		
Flags	This instruction	on modifies the follow	ing flags in the N	1STF register:	
	Flag	TF ZF	NF	LUF	LVF
	Modified	No No	No	Yes	Yes
Pipeline	This is a sing	le-cycle instruction.			
Pipeline Example	; Given A, B	and C are 32-bit fl Y2 = A + B - C MR0, @_A ; Loa MR1, @_B ; Loa MR0, MR1, MR0 ; Add	d MRO with A d MR1 with B A + B nd in parallel :	load C	
See also	MMOV32 MSTOP MSUBF32 M MSUBF32 M MSUBF32 M	@Y, MRO ; (A+	B) - C of task DV32 MRa, mem DV32 mem32, MI	32 Ra	

MSUBF32 MRa, #16FHi, MRb 32-bit Floating Point Subtraction

n	pe	ra	n	Ч	c
J	De	1 0		u	-

Operands					
	MRa	CLA floating-poin	t destination register (M	IR0 to R1)	
	#16FHi		te value that represents ie. The low 16-bits of th		
	MRb	CLA floating-poin	t source register (MR0 t	to R1)	
Opcode	LSW: IIII II MSW: 0111 10				
Description		o from the floating-p he addition in MRa		nted by the imme	ediate operand. Store
	floating-point most useful f Some examp (0xBFC00000	or representing con les are 2.0 (0x4000 0). The assembler v alue -1.5 can be re	bits of the mantissa stants where the lo 00000), 4.0 (0x4080 vill accept either a	a are assumed to owest 16-bits of th 00000), 0.5 (0x3F hex or float as th	be all 0. #16FHi is he mantissa are 0. -000000), and -1.5
Flags	This instruction	on modifies the follo	owing flags in the N	ISTF register:	
		TF ZF	NF	LUF	LVF
	Modified	No No	No	Yes	Yes
Pipeline Example	This is a sing ; Y = sqrt(X			ndition.	
	; Ye = Ye*(1	ate(1/sqrt(X)); .5 - Ye*Ye*X*0.5) .5 - Ye*Ye*X*0.5)			
	MMOV32	MR0, @_x 2 MR1, MR0 MR1, @_x, EQ MR3, MR0, #0.5 MR2, MR1, MR3 MR2, MR1, MR2 MR1, MR1, MR2 MR1, MR1, MR2 MR2, MR1, MR2 MR2, #1.5, MR2 MR1, MR1, MR2 MR1, MR1, MR0 @_y, MR0	<pre>; if(X == 0.0) ; MR3 = X*0.5 ; MR2 = Ye*X*0 ; MR2 = Ye*Ye*2 ; MR2 = 1.5 - 7 ; MR1 = Ye = Ye ; MR2 = Ye*X*0 ; MR2 = Ye*X*0 ; MR2 = Ye*Ye*2 ; MR2 = 1.5 - 7</pre>	.5 X*0.5 Ye*Ye*X*0.5 e*(1.5 - Ye*Ye*X .5 X*0.5 Ye*Ye*X*0.5 e*(1.5 - Ye*Ye*X *X	(*0.5)
See also	MSUBF32 M MSUBF32 M	Ra, MRb, MRc Rd, MRe, MRf MI Rd, MRe, MRf MI Ra, MRb, MRc M	MOV32 mem32, MI	Ra	

MSUBF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Subtraction with Parallel Move

Operands						
	MRd			stination register (M me register as MR	R0 to MR3) for the N a	ISUBF32 operation
	MRe	CLA float	ing-point sou	irce register (MR0 t	o MR3) for the MSU	BF32 operation
	MRf	CLA float	ing-point sou	rce register (MR0 t	o MR3) for the MSU	BF32 operation
	MRa			tination register (M me register as MR	R0 to MR3) for the M d	IMOV32 operation
	mem32		mory location	n accessed using d	irect or indirect addre	essing. Source for the
Opcode	LSW: mmmm mm MSW: 0010 ff					
Description	Subtract the floating-point MRd = MRe - MRa = [mem32	register.	vo floating	-point registers	and move from r	memory to a
Restrictions	The destinati MRa cannot				MOV32 must b	e unique. That is,
Flags	This instruction	on modifies th	ne followin	g flags in the M	ISTF register:	
	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	Yes	Yes	Yes	Yes
	The MSTF re	aistor flags a	ro modifio	d as follows:		
					adition	
				an underflow co an overflow con		
	The MMOV3	2 Instruction	will set the	NF and ZF flag	gs as follows:	
Pipeline	Both MSUBF	32 and MMC	V32 comp	olete in a single	cycle.	

Instruction Set

Example

NF = MRa(31); ZF = 0; if(MRa(30:23) == 0) { ZF = 1; NF = 0; }

See also MSUBF32 MRa, MRb, MRc MSUBF32 MRa, #16FHi, MRb MMPYF32 MRa, MRb, MRc || MSUBF32 MRd, MRe, MRf

MSUBF32 MRd, MRe, MRf ||MMOV32 mem32, MRa 32-bit Floating-Point Subtraction with Parallel Move

Operands						
oporanao	MRd	CLA f	loating-point d	estination register (M	R0 to MR3) for the M	SUBF32 operation
	MRe	CLA f	loating-point s	ource register (MR0 t	o MR3) for the MSUE	3F32 operation
	MRf	CLA f	loating-point s	ource register (MR0 t	o MR3) for the MSUE	3F32 operation
	mem32	32-bit	destination m	emory location for the	e MMOV32 operation	
	MRa	CLA f	loating-point s	ource register (MR0 t	o MR3) for the MMO	√32 operation
Opcode		mmmm mmmm mn ffee ddaa ac				
Description	Subtract the register to r MRd = MRe [mem32] = 1	memory. - MRf;	f two floatin	g-point registers	and move from a	ı floating-point
Flags	This instruc	ction modifie	s the follow	ing flags in the N	ISTF register:	
	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	No	No	Yes	Yes
	• LUF = 1	if MSUBF3	2 generates	ied as follows: s an underflow co s an overflow con		
Pipeline	Both MSUE	3F32 and M	MOV32 con	nplete in a single	cycle.	
Example						
See also	MSUBF32 MSUBF32		li, MRb MRf MMC)V32 MRa, mem JBF32 MRd, MR		

MSWAPF MRa, MRb {, CNDF} Conditional Swap

Operands

)perands						
	MRa	CLA	floating-poi	nt register (MR0 to MR3)		
	MRb	CLA	floating-poi	nt register (MR0 to MR3)		
	CNDF	Opti	onal conditio	on tested based on the MSTF flag	js	
pcode		0000 CNDF 1 1011 0000				
escription	Conditiona	I swap of N	IRa and M	IRb.		
	if (CNDF =	= true) swa	ap MRa an	d MRb;		
	CNDF is o	ne of the fo	llowing co	onditions:		
	Encode ⁽¹⁾	CNDF	-	Description	MSTF Flags T	ested
	0000	NEQ		Not equal to zero	ZF == 0	
	0001	EQ		Equal to zero	ZF == 1	
	0010	GT		Greater than zero	ZF == 0 AND	NF == 0
	0011	GEQ		Greater than or equal to zero	NF == 0	
	0100	LT		Less than zero	NF == 1	
	0101	LEQ		Less than or equal to zero	ZF == 1 OR N	F == 1
	1010	TF		Test flag set	TF == 1	
	1011	NTF		Test flag not set	TF == 0	
	1100	LU		Latched underflow	LUF == 1	
	1101	LV		Latched overflow	LVF == 1	
	1110	UNC		Unconditional	None	
	1111	UNCF ⁽²⁾		Unconditional with flag modification	None	
ags	⁽²⁾ This is the be modified This instruction	ed when a cor ction modifi	ation if no C nditional ope es the foll	NDF field is specified. This condi eration is executed. All other cond lowing flags in the MSTF re	litions will not mo egister:	odify these flags.
	Flag	TF	ZF		LUF	LVF
	Modified	No	No	No	No	No

No flags affected

Pipeline

This is a single-cycle instruction.

Example	; and has len ; the array an ;	d store it in Res	e maximum value in
	MMOVI16	MAR1,#_X	; Start address
	MUI16TOF32	MRO, @_len	; Length of the array
	MNOP		; delay for MAR1 load
	MNOP		; delay for MAR1 load
	MMOV32	MR1, *MAR1[2]++	; MR1 = X0
	LOOP	MD0 +MAD1[0]	· MDO
	MMOV32		; MR2 = next element
	MCMPF32		; Compare MR2 with MR1
	MSWAPF		; $MR1 = MAX(MR1, MR2)$
	MADDF32	MR0, MR0, #-1.0	; Decrememt the counter
	MCMPF32 MNOP MNOP MNOP	MR0 #0.0	; Set/clear flags for MBCNDD
	MBCNDD	LOOP, NEQ	; Branch if not equal to zero
	MMOV32	@_Result, MR1	; Always executed
	MNOP		; Always executed
	MNOP		; Always executed
	MSTOP		; End of task

See also

MTESTTF CNDF Test MSTF Register Flag Condition

Operands

	CNDF	condition to test based on MSTF flags
Opcode	LSW: 0000 0000 0 MSW: 0111 1111 0	

Description

Test the CLA floating-point condition and if true, set the MSTF[TF] flag. If the condition is false, clear the MSTF[TF] flag. This is useful for temporarily storing a condition for later use.

if (CNDF == true) TF = 1; else TF = 0;

CNDF is one of the following conditions:

Encode (3)	CNDF	Description	MSTF Flags Tested
0000	NEQ	Not equal to zero	ZF == 0
0001	EQ	Equal to zero	ZF == 1
0010	GT	Greater than zero	ZF == 0 AND NF == 0
0011	GEQ	Greater than or equal to zero	NF == 0
0100	LT	Less than zero	NF == 1
0101	LEQ	Less than or equal to zero	ZF == 1 OR NF == 1
1010	TF	Test flag set	TF == 1
1011	NTF	Test flag not set	TF == 0
1100	LU	Latched underflow	LUF == 1
1101	LV	Latched overflow	LVF == 1
1110	UNC	Unconditional	None
1111	UNCF ⁽⁴⁾	Unconditional with flag modification	None

(3) Values not shown are reserved.

(4) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags

This instruction modifies the following flags in the MSTF register:

Flag	TF	ZF	NF	LUF	LVF
Modified	Yes	No	No	No	No

if (CNDF == true) TF = 1;

Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.

Pipeline

This is a single-cycle instruction.

www	.tı.	.com	

eadyState = SteadyState STEADYMASK
3k2: 32 MR0, @_State 32 MR0, #0.1 ; Affects flags for 1st MBCNDD (A) 32 MR0, #0.01 ; Check used by 2nd MBCNDD (B) 32 Feq ; Store EQ flag in TF for 2nd MBCNDD (B) 33 MR1, NEQ ; (A) If State != 0.1, go to Skip1 34 MR1, @_RampState ; Always executed 35 MR1, MR2 ; Always executed 36 MR1, MR2 ; Always executed 37 MR1, MR2 ; Always executed 38 MR1, MR2 ; Always executed 39 MR1, MR2 ; Always executed 30 MR1, MR2 ; Always executed 31 @_RampState, MR1 ; Execute if (A) branch not taken ; end of task if (A) branch not taken
MR3, @_SteadyState MR2, #STEADYMASK MR3, MR2 DD _Skip2, NTF ; (B) if State != .01, go to Skip2 MR1, @_CoastState ; Always executed MR2, #COASTMASK ; Always executed MR1, MR2 ; Always executed @_CoastState, MR1 ; Execute if (B) branch not taken ; end of task if (B) branch not taken 32 @ SteadyState, MR3 ; Executed if (B) branch taken

See also

MUI16TOF32 MRa, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

MRa	CL	A floating-point de	estination register (N	R0 to MR3)		
mem16	16	-bit source memor	y location			
LSW: mmmm	mmmm mmmm	mmmm				
MSW: 0111	0101 01aa	addr				
						S
MRa = UI16	5TOF32[mem	16];				
This instru	ction does	not affect any	flags:			
Flag	TF	ZF	NF	LUF	LVF	
Modified	No	No	No	No	No	
This is a s	ingle-cycle	instruction.				
MF32TOI1 MF32TOU MF32TOU MI16TOF3 MI16TOF3	6R MRa, 1 116 MRa, 1 116R MRa, 1 32 MRa, M 32 MRa, m	MRb MRb , MRb Rb em16				
	mem16 LSW: mmmm MSW: 0111 When con to zero wh MRa = UI16 This instru Flag Modified This is a s MF32T011 MF32T011 MF32T011 MF32T010 M	mem1616LSW: mmmm mmmm mmmmMSW: 0111 0101 01aaWhen converting F32to zero while the MFMRa = UI16TOF32[memThis instruction doesFlagTFModifiedNoThis is a single-cycleMF32TOI16 MRa, MMF32TOI16 MRa, MMF32TOUI16 MRa, MMI16TOF32 MRa, MMI16TOF32 MRa, m	mem1616-bit source memorLSW: mmmm mmmm mmmm mmmmMSW: 0111 0101 01aa addrWhen converting F32 to I16/UI16 d to zero while the MF32TOI16R/UI1 MRa = UI16TOF32[mem16];This instruction does not affect any FlagFlagTFZF	mem16 16-bit source memory location LSW: mmmm mmmm mmmm mmmm MSW: 0111 0101 01aa addr When converting F32 to I16/UI16 data format, the N to zero while the MF32TOI16R/UI16R operation will MRa = UI16TOF32[mem16]; This instruction does not affect any flags: Flag TF ZF NF Modified No No No This is a single-cycle instruction. MF32TOI16 MRa, MRb MF32TOI16 MRa, MRb MF32TOI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MF32TOUI16 MRa, MRb MI16TOF32 MRa, MRb MI16TOF32 MRa, mem16 MRa	mem1616-bit source memory locationLSW: mmmm mmmm mmmm mmmmMSW: 0111 0101 01aa addrWhen converting F32 to 116/UI16 data format, the MF32TOI16/UI16 to zero while the MF32TOI16R/UI16R operation will round to neared MRa = UI16TOF32[mem16];This instruction does not affect any flags:Tis instruction does not affect any flags:MRa = UI16TOF32[mem16];This instruction does not affect any flags:This is a single-cycle instruction.MF32TOI16 MRa, MRb MF32TOI16 MRa, MRb MF32TOU16 MRa, MRb MI6TOF32 MRa, MRb MI16TOF32 MRa, mem16	mem1616-bit source memory locationLSW: mmmm mmmm mmmmMSW: 0111 0101 01aa addrWhen converting F32 to 116/U116 data format, the MF32TOI16/UI16 operation truncates to zero while the MF32TOI16R/UI16R operation will round to nearest (even) value.MRa = UI16TOF32[mem16];This instruction does not affect any flags:FlagTFZFNFLUFLVFModifiedNoNoNoNoThis is a single-cycle instruction.MF32TOI16 MRa, MRbMF32TOI16 MRa, MRbMF32TOI16R MRa, MRbMF32TOU16R MRa, MRbMI16TOF32 MRa, mem16MRa, mem16

MUI16TOF32 MRa, MRb Convert unsigned 16-bit integer to 32-bit floating-point value

• • • • • • • • • • • • • • • • • • • •						
	MRa	CI	A floating-point de	estination register (M	IR0 to MR3)	
	MRb	CI	A floating-point sc	ource register (MR0	to MR3)	
Opcode	LSW: 0000	0000 0000	bbaa			
	MSW: 0111	. 1110 1110	0000			
Description	float32 to the MF32	116/UI16 d	lata format, the 16R operation	MF32TOI16/UI		When converting ncates to zero while e.
Flags			s not affect any	0		
	Flag	TF	ZF	NF	LUF	LVF
	Modified	No	No	No	No	No
Pipeline	This is a	single-cycle	e instruction.			
Example				= 32783 (0x800F FOF32 (MR1(15:0 (0x47000F00)	,	
See also	MF32TOI MF32TOI MF32TOI MI16TOF MI16TOF	16 MRa, M 16R MRa, JI16 MRa, JI16R MRa 32 MRa, M 32 MRa, m 9532 MRa,	MRb MRb a, MRb IRb nem16			

MUI32TOF32 MRa, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

operanas							
	MRa	CL	A floating-poin	t destination register (MR0 to MR3)		
	mem32	32	-bit memory loo	cation accessed using	direct or indirect addr	essing	
Oracida							
Opcode	LSW: mmmm						
	MSW: 0111	0100 10aa	addr				
Description	MRa = UI32	2TOF32[mem	32];				
Flags	This instru		not affect a				
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	No	No	No	No	
Pipeline	This is a s	ingle-cycle	instruction.				
Example	; ; x2 = Uir ; m2 = Uir ; b2 = Uir ; ; Calculat ; ClalTaskJ MUI32TC	ht32(2) = ht32(1) = ht32(3) = ce y2 = x2 l: DF32 MR0, DF32 MR1, DF32 MR2, 2 MR3, JI32 MR3,	@_x2 @_b2 MR0, MR1 MR2, MR3 MR3	; MR0 = 1.0 (0x3) ; MR1 = 2.0 (0x4) ; MR2 = 3.0 (0x4)	0000000) 0400000) 0x40A00000)		
See also	MF32TOI3 MF32TOU MI32TOF3 MI32TOF3 MUI32TOF	1132 MRa, 1 32 MRa, m 32 MRa, M	MRb em32 Rb				

MUI32TOF32 MRa, MRb Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

MRa	CL	A floating-point de	estination register (M	R0 to MR3)	
MRb	CL	A floating-point so	ource register (MR0 t	o MR3)	
LSW: 0000	0000 0000	bbaa			
MSW: 0111	. 1101 1100	0000			
MRa = UI3	2TOF32 [MR	b];			
This instru	uction does	not affect any	flags:		
Flag	TF	ZF	NF	LUF	LVF
Modified	No	No	No	No	No
This is a s	single-cycle	e instruction.			
MMOVIZ MMOVXI		1111 ; MR3(15	:0) = 0x1111		
MUI32TOF3	32 MR3, MR3			= 2147488017.0	(0x4F000011)
MF32TOL MI32TOF MI32TOF	JI32 MRa, 32 MRa, m 32 MRa, M	MRb em32 Rb			
	MRb LSW: 0000 MSW: 0111 MRa = UI3 This instr Flag Modified This is a s MMOVIZ MI32TOF MI32TOF MI32TOF	MRb CL LSW: 0000 0000 0000 MSW: 0111 1101 1100 MRa = UI32TOF32 [MR This instruction does Flag TF Modified No MOUTZ MR3, #0x MMOVIZ MR3, #0x MUI32TOF32 MR3, #0x MUI32TOF32 MR3, MR3 MF32TOI32 MRa, MR3 MF32TOU32 MRa, MI32TOF32 MRa, MI32TOF32 MRa, MI32TOF32	MRb CLA floating-point sc LSW: 0000 0000 0000 bbaa MSW: 0111 1101 1100 0000 MRa = UI32TOF32 [MRb]; This instruction does not affect any Flag TF Modified No MOVIZ MR3, #0x8000 ; MR3(31 MMOVIZ MR3, #0x1111 ; MR3(15 j j MI32TOF32 MR3, MR3 j MF32TOUI32 MRa, MRb MI32TOF32 MRa, MRb MI32TOF32 MRa, MRb MI32TOF32 MRa, MRb MI32TOF32 MRa, MRb	MRb CLA floating-point source register (MR0 t LSW: 0000 0000 0000 bbaa MSW: 0111 1101 1100 0000 MRa = UI32TOF32 [MRb]; This instruction does not affect any flags: Flag TF ZF NF Modified No NMOVIZ MR3, #0x8000 ; MR3(31:16) = 0x8000 MMOVIZ MR3, #0x8000 ; MR3(31:16) = 0x8000 MMOVXI MR3, #0x1111 ; MR3(15:0) = 0x1111 ; MR3 = 2147488017 MUI32TOF32 MR3, MR3 ; MR3 = MUI32TOF32 (MR3) MF32TOI32 MRa, MRb MF32TOUI32 MRa, MRb MF32TOUI32 MRa, MRb MI32TOF32 MRa, mem32	MRb CLA floating-point source register (MR0 to MR3) LSW: 0000 0000 0000 bbaa MSW: 0111 1101 1100 0000 MRa = UI32TOF32 [MRb]; This instruction does not affect any flags: Flag TF ZF NF Modified No No No This is a single-cycle instruction. MMOVIZ MR3, #0x8000 ; MR3(31:16) = 0x8000 MMOVXI MR3, #0x1111 ; MR3(15:0) = 0x1111 ; MR3 = 2147488017 MUI32TOF32 MR3, MR3 ; MR3 = MUI32TOF32 (MR3) = 2147488017.0 MF32TOI32 MRa, MRb MF32TOU32 MRa, MRb MI32TOF32 MRa, MRb

Instruction Set

MXOR32 MRa, MRb, MRc Bitwise Exclusive Or

Operands							
	MRa	CL	A floating-point de	stination register (M	IR0 to MR3)		
	MRb CLA floating-point source register (MR0 to MR3)						
	MRc	CL	A floating-point so	urce register (MR0 t	to MR3)		
Opcode	LSW: 0000 000c bbaa MSW: 0111 1100 1010 0000						
Description	Bitwise XC	OR of MRb	with MRc.				
	MARa(31:0)) = MARb(3)	1:0) XOR MRc(3	1:0);			
Flags	This instru	ction modi	fies the followir	ng flags in the M	1STF register:		
	Flag	TF	ZF	NF	LUF	LVF	
	Modified	No	Yes	Yes	No	No	
Pipeline			{ ZF = 1; } instruction.				
Example	MMOVIZ MR(MMOVXI N), #0x5555 MR0, #0xAA	; MR0 = 0x5	555AAAA			
	<pre>MMOVIZ N MMOVXI N ; 0101 2 ; 0101 2 ; 0101 2 ; 0101 2 ; 0101 2 ; 1010 2 ; 1010 2 ; 1010 2 ; 1010 2 ; 1010 2</pre>	MR1, #0x54,MR1, #0xFEKOR 0101 =KOR 0011 =KOR 0011 =KOR 1111 =KOR 1110 =KOR 1101 =KOR 1100 =	32 ; MR1 = 0 DC 0000 (0) 0001 (1) 0110 (6) 0111 (7) 0101 (5) 0100 (4) 0111 (7) 0110 (6)	x5432FEDC			
	MXOR32 N	MR2, MR1, I	MRO ; MR3 = 0	x01675476			
See also		MRa, MRb Ra, MRb, I					

Appendix A CLA and CPU Arbitration

Typically, CLA activity is independent of the CPU activity. Under the circumstance where both the CLA and the CPU are attempting to access memory or a peripheral register within the same interface concurrently, an arbitration procedure will occur. This appendix describes this arbitration.

A.1 CLA and CPU Arbitration

Typically, CLA activity is independent of the CPU activity. Under the circumstance where both the CLA and the CPU are attempting to access memory or a peripheral register within the same interface concurrently, an arbitration procedure will occur. The one exception is the ADC result registers which do not create a conflict when read by both the CPU and the CLA simultaneously even if different addresses are accessed. Any combined accesses between the different interfaces, or where the CPU access is outside of the interface that the CLA is accessing do not create a conflict.

The interfaces that can have conflict arbitration are:

- CLA Message RAMs
- CLA Program Memory
- CLA Data RAMs

A.1.1 CLA Message RAMs

Message RAMs consist of two blocks. These blocks are for passing data between the main CPU and the CLA. No opcode fetches are allowed from the message RAMs. The two message RAMs have the following characteristics:

• CLA to CPU Message RAM:

The following accesses are allowed:

- CPU reads
- CLA reads and writes
- CPU debug reads and writes
- The following accesses are ignored
- CPU writes
- Priority of accesses are (highest priority first):
- 1. CLA write
- 2. CPU debug write
- 3. CPU data read, program read, CPU debug read
- 4. CLA data read

CPU to CLA Message RAM:

The following accesses are allowed:

- CPU reads and writes
- CLA reads
- CPU debug reads and writes
- The following accesses are ignored
- CLA writes

Priority of accesses are (highest priority first):

- 1. CLA read
- 2. CPU data write, program write, CPU debug write
- 3. CPU data read, CPU debug read
- 4. CPU program read

CLA and CPU Arbitration

A.1.2 CLA Program Memory

The behavior of the program memory depends on the state of the MMEMCFG[PROGE] bit. This bit controls whether the memory is mapped to CLA space or CPU space.

• MMEMCFG[PROGE] == 0

In this case the memory is mapped to the CPU. The CLA will be halted and no tasks shoud be incoming.

- Any CLA fetch will be treated as an illegal opcode condition as described in Section 3.4. This
 condition will not occur if the proper procedure is followed to map the program memory.
- CLA reads and writes cannot occur

The memory block behaves as any normal SRAM block mapped to CPU memory space.

Priroty of accesses are (highest priority first):

- 1. CPU data write, program write, debug write
- 2. CPU data read, program read, debug read
- 3. CPU fetch, program read

MMEMCFG[PROGE] == 1

In this case the memory block is mapped to CLA space. The CPU can only make debug accesses.

- CLA reads and writes cannot occur
- CLA fetches are allowed
- CPU fetches return 0 which is an illegal opcode and will cause an ITRAP interrupt.
- CPU data reads and program reads return 0
- CPU data writes and program writes are ignored

Priroty of accesses are (highest priority first):

- 1. CLA fetch
- 2. CPU debug write
- 3. CPU debug read
- **NOTE:** Because the CLA fetch has higher priority than CPU debug reads, it is possible for the CLA to permanently block debug accesses if the CLA is executing in a loop. This might occur when initially developing CLA code due to a bug. To avoid this issue, the program memory will return all 0x0000 for CPU debug reads (ignore writes) when the CLA is running. When the CLA is halted or idle then normal CPU debug read and write access can be performed.

A.1.3 CLA Data Memory

There are two independent data memory blocks. The behavior of the data memory depends on the state of the MMEMCFG[RAM0E] and MMEMCFG[RAM1E] bits. These bits determine whether the memory blocks are mapped to CLA space or CPU space.

• MMEMCFG[RAMxE] == 0

In this case the memory block is mapped to the CPU.

- CLA fetches cannot occur to this block.
- CLA reads return 0
- CLA writes are ignored
- The memory block behaves as any normal SARAM block mapped to the CPU memory space.

Priroty of accesses are (highest priority first):

- 1. CPU data write, program write, debug write
- 2. CPU data read, program read, debug read
- 3. CPU fetch, program read

• MMEMCFG[RAMxE] == 1

In this case th ememory block is mapped to CLA space. The CPU can only make debug accesses.

- CLA fetches cannot occur to this block.
- CLA read and CLA writes are allowed.
- CPU fetches return 0
- CPU data reads and program reads return 0
- CPU data writes and program writes are ignored

Priroty of accesses are (highest priority first):

- 1. CLA write
- 2. CPU debug write
- 3. CPU debug read
- 4. CLA read

A.1.4 Peripheral Registers (ePWM, HRPWM, Comparator)

Accesses to the registers follow these rules:

- If both the CPU and CLA request access at the same time, then the CLA will have priority and the main CPU is stalled.
- If a CPU access is in progress and another CPU access is pending, then the CLA will have priority over the pending CPU access. In this case the CLA access will begin when the current CPU access completes.
- While a CPU access is in progress any incoming CLA access will be stalled.
- While a CLA access is in progress any incoming CPU access will be stalled.
- A CPU write operation has priority over a CPU read operation.
- A CLA write operation has priority over a CLA read operation.
- If the CPU is performing a read-modify-write operation and the CLA performs a write to the same location, the CLA write may be lost if the operation occurs in-between the CPU read and write. For this reason, you should not mix CPU and CLA accesses to same location.

Appendix B Revision History

This document has been revised because of the following technical change(s).

Table 34. Revisions to this Document

Location	Edits, Deletes, Additions
Section 4.3.3	For bits 15-12, value 0010, changed ePWM5 to ePWM4 is the input for interrupt task 4. (EPWM4_INT) for bit 15-12 description.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated