
TI

TMS320F28335™ One-Day Workshop

Workshop Guide and Lab Manual

Technical Training

Organization

C28xodw
Revision 5.2
January 2009

Workshop Topics

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2003 – 2009 Texas Instruments Incorporated

Revision History
February 2003 – Revision 1.0

March 2003 – Revision 1.1

July 2004 – Revision 2.0

August 2005 – Revision 3.0

October 2005 – Revision 3.1

April 2007 – Revision 4.0

June 2008 – Revision 5.0

November 2008 – Revision 5.1

January 2009 – Revision 5.2

Mailing Address
Texas Instruments
Training Technical Organization
7839 Churchill Way
M/S 3984
Dallas, Texas 75251-1903

2 TMS320F28335 One-Day Workshop

 Workshop Topics

Workshop Topics
Workshop Topics...3
Workshop Introduction ...4
Architecture Overview ..7
Programming Development Environment...10

Code Composer Studio...10
Linking Sections in Memory ..12

Lab 1: Linker Command File..15
Peripheral Register Header Files ...19
Reset, Interrupts and System Initialization ...26

Reset ...26
Interrupts ..28
Peripheral Interrupt Expansion (PIE) ...29
Oscillator / PLL Clock Module ..31
Watchdog Timer Module..32
GPIO...33

Lab 2: System Initialization ..35
Control Peripherals ..39

ADC Module ..39
Pulse Width Modulation...40
ePWM...41
eCAP ..52
eQEP...54

Lab 3: Control Peripherals...56
Flash Programming ..62

Flash Programming Basics ...62
Programming Utilities and CCS Plug-in ..63
Code Security Module and Password ...64

Lab 4: Programming the Flash...66
The Next Step…...73

Training ..73
Development Tools...74
Development Support ...77

TMS320F28335 One-Day Workshop 3

Workshop Introduction

Workshop Introduction

TMS320C28x™ 1-Day Workshop

Texas Instruments
Technical Training

Copyright © 2009 Texas Instruments. All rights reserved.Technical Training
Organization

T TO
eZdsp is a trademark of Spectrum Digital, Inc.

eZdsp™ F28335 Starter Kit

C28x is a trademark of Texas Instruments.

C28x 1-Day Workshop Outline

Workshop Introduction
Architecture Overview
Programming Development Environment

Lab: Linker command file

Peripheral Register Header Files
Reset, Interrupts and System Initialization

Lab: Watchdog and interrupts

Control Peripherals
Lab: Generate and graph a PWM waveform

Flash Programming
Lab: Run the code from flash memory

The Next Step…

4 TMS320F28335 One-Day Workshop

 Workshop Introduction

Introductions

Name

Company

Project Responsibilities

DSP / Microcontroller Experience

TMS320 DSP Experience

Hardware / Software - Assembly / C

Interests

C
on

tr
ol

 P
er

fo
rm

an
ce

High-Precision Control

Multi-Function,
Appliance &
Consumer Control

High-end
Derivatives

Cost
optimized
versions

C2000 Portfolio Expanding with
Price/Performance Optimized Derivatives

24xTM

up to 40 MIPS
F2803x/2x

up to 60 MIPS

F281x
150 MIPS

F280x/xx
100 MIPS

F2834x/24x
up to 300 MIPS

F2833x/23x
150 MIPS

TMS320F28335 One-Day Workshop 5

Workshop Introduction

Optical Networking
Control of laser diode

Digital Power Supply
Provides control, sensing,
PFC, and other functions

Printer
Print head control
Paper path motor control

Other Segments
eg. Musical Instruments,
HDTV/Displays

Non-traditional
Motor Control
Many new cool
applications to
come

Broad C28x™ Application Base

Automotive

Appliances

Solar
Inverters

Industrial Motor
Control

Medical

High Performance Controllers
F2833x / F2823x

For details and information on other C28x family members refer to the “DSP Selection Guide” and specific “Data Manuals”

SPI, 2x SCI, I2C, McBSP,
2x CAN

SPI, 3x SCI, I2C, 2x
McBSP, 2x CAN

SPI, 3x SCI, I2C, 2x
McBSP, 2x CAN

SPI, 2x SCI, I2C, McBSP,
2x CAN

SPI, 3x SCI, I2C, 2x
McBSP, 2x CAN

SPI, 3x SCI, I2C, 2x
McBSP, 2x CAN

Communication
Ports

6/218/6Yes34256No150F28235

4/218/6Yes34128No150F28234

4/216/4Yes2664No100F28232

4/216/4Yes2664Yes100F28332

Yes

Yes

DMA

Yes

Yes

FPU

4/218/634128150F28334

6/218/634256150F28335

MHz
PWM/

HRPWM
CAP/
QEP

RAMFlash

• All devices above are 100% pin-compatible and 100% Software compatible

• All devices have 16/32-bit EMIF, 16 channel ADC at 12.5 MSPS, and 88 GPIO

6 TMS320F28335 One-Day Workshop

 Architecture Overview

Architecture Overview
C28x Block Diagram

32x32 bit
Multiplier

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

32-bit
Auxiliary
Registers

3
32-bit

Timers

Real-Time
JTAG

Emulation CPU
Register Bus

R-M-W
Atomic

ALU

PIE
Interrupt
Manager

eQEP

12-bit ADC

Watchdog

CAN 2.0B

I2C

SCI

SPI

GPIO

ePWM

eCAP

FPU

McBSP

DMA
6 Ch.

A(19-0)

D(31-0) X
IN

TF DMA Bus

TMS320F28335 Memory Map

XINTF Zone 6 (1Mw)

XINTF Zone 7 (1Mw)

0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)

Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)

XINTF Zone 0 (4Kw)

reserved

PF 1 (4Kw)
PF 2 (4Kw)

PF 3 (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)
L4 SARAM (4Kw)
L5 SARAM (4Kw)
L6 SARAM (4Kw)
L7 SARAM (4Kw)

reserved

0x000D00

0x002000

0x006000
0x007000
0x008000
0x009000
0x00A000

0x00C000

0x000E00

0x005000

0x00B000

0x00D000
0x00E000
0x00F000

0x004000

0x010000

0x010000
0x100000

0x200000

reserved

Data Program

FLASH (256Kw)

0x300000

0x33FFF8
0x340000 PASSWORDS (8w)

reserved

User OTP (1Kw)
0x380800

ADC calibration data0x380080
0x380090

reserved
0x380400

reserved
0x3F8000

Boot ROM (8Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

reserved

0x3F9000
0x3FA000
0x3FB000
0x3FC000
0x3FE000

0x3FFFFF

DMA Accessible:
L4, L5, L6, L7,

XINTF Zone 0, 6, 7

Dual Mapped:
L0, L1, L2, L3

CSM Protected:
L0, L1, L2, L3, OTP
FLASH, ADC CAL,
Flash Regs in PF0

0x3FFFC0
BROM Vectors (64w)

TMS320F28335 One-Day Workshop 7

Architecture Overview

C28x Fast Interrupt Response Manager

96 dedicated PIE
vectors
No software decision
making required
Direct access to RAM
vectors
Auto flags update
Concurrent auto
context save

28x CPU Interrupt logic

28x
CPUINTMIFR IER96

P
er

ip
he

ra
l I

nt
er

ru
pt

s
 1

2x
8

=
96

12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 96

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

Reset – Bootloader

Reset
OBJMODE = 0 AMODE = 0

ENPIE = 0 INTM = 1

Boot determined by
state of GPIO pins

Reset vector fetched
from boot ROM

0x3F FFC0

Execution
Entry Point
M0 SARAMNote:

Details of the various boot options will be
discussed in the Reset and Interrupts module

Bootloader sets
OBJMODE = 1

AMODE = 0

8 TMS320F28335 One-Day Workshop

 Architecture Overview

eZdsp™ F28335 Hardware

JTAG Interface (P1)

Power
Connector
(P6) +5V

USB JTAG
Controller
Interface

(J201)

LED
(DS1)
+5V

Analog
Interface
(P5/P9)

Bootloader
GPIO Pins

30 MHz
Clock

LED
(DS2)

GPIO32

I/O Interface
(P4/P8/P7)

SCI-A
(P12)

eCAN-A
(P11)

SCI-B
(J12)

eCAN-B
(J11)

Expansion
(P2/P10)

TMS320F28335
150 MIPS

On-Chip:
34Kw RAM

256Kw Flash
1Kw OTP

TMS320F28335 One-Day Workshop 9

Programming Development Environment

Programming Development Environment

Code Composer Studio

Code Composer Studio: IDE

Integrates: edit, code generation,
and debug

Single-click access using buttons

Powerful graphing/profiling tools

Automated tasks using GEL scripts
and CCS scripting

Built-in access to BIOS functions

Supports TI and 3rd party plug-ins

The CCS Project

List of files:
Source (C, assembly)
Libraries
DSP/BIOS configuration file
Linker command files

Project settings:
Build options (compiler,
Linker, assembler, and
DSP/BIOS)
Build configurations

Project (.pjt) files contain:

10 TMS320F28335 One-Day Workshop

 Programming Development Environment

Build Options GUI - Compiler

GUI has 8 pages of categories for code
generation tools
Controls many aspects of the build process,
such as:

Optimization level
Target device
Compiler/assembly/link options

Build Options GUI - Linker

GUI has 3 categories
for linking

Specify various link
options

.\Debug
means the directory
called Debug one
level below the .pjt
file directory
$(Proj_dir)\Debug
is an equivalent
expression

TMS320F28335 One-Day Workshop 11

Programming Development Environment

Linking Sections in Memory

Sections

All code consists of
different parts called
sections
All default section
names begin with “.”
The compiler has
default section
names for initialized
and uninitialized
sections

int x = 2;

int y = 7;

void main(void)

{

long z;

z = x + y;

}

Global vars (.ebss) Init values (.cinit)

Local vars (.stack) Code (.text)

Compiler Section Names

Name Description Link Location
.text code FLASH
.cinit initialization values for FLASH

global and static variables
.econst constants (e.g. const int k = 3;) FLASH
.switch tables for switch statements FLASH
.pinit tables for global constructors (C++) FLASH

Initialized Sections

Name Description Link Location
.ebss global and static variables RAM
.stack stack space low 64Kw RAM
.esysmem memory for far malloc functions RAM

Uninitialized Sections

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

12 TMS320F28335 One-Day Workshop

 Programming Development Environment

Placing Sections in Memory

.ebss

.cinit

.text

Memory
M0SARAM

(0x400)
0x00 0000

0x30 0000

0x00 0400 M1SARAM
(0x400)

FLASH
(0x40000)

Sections

.stack

Linking

Linker

Link.cmd

.map

.obj .out

Memory description
How to place s/w into h/w

TMS320F28335 One-Day Workshop 13

Programming Development Environment

Linker Command File
MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x300000, length = 0x40000

PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400

}
SECTIONS
{

.text:> FLASH PAGE = 0

.ebss:> M0SARAM PAGE = 1

.cinit:> FLASH PAGE = 0

.stack:> M1SARAM PAGE = 1
}

14 TMS320F28335 One-Day Workshop

 Lab 1: Linker Command File

Lab 1: Linker Command File
 Objective

Use a linker command file to link the C program file (Lab1.c) into the system described below.

Lab 1: Linker Command File

System Description:
• TMS320F28335
• All internal RAM

blocks allocated

Placement of Sections:
• .text into RAM Block L0123SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0123SARAM on PAGE 0 (program memory)
• .ebss into RAM Block L4SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

F28335

Memory

on-chip
memory

0x00 8000 L0SARAM
(0x1000)

0x00 0400 M1SARAM
(0x400)

0x00 C000 L4SARAM
(0x1000)

0x00 B000 L3SARAM
(0x1000)

0x00 0000 M0SARAM
(0x400)

0x00 9000 L1SARAM
(0x1000)

0x00 A000 L2SARAM
(0x1000)

0x00 D000 L5SARAM
(0x1000)

0x00 E000 L6SARAM
(0x1000)

0x00 F000 L7SARAM
(0x1000)

System Description
• TMS320F28335
• All internal RAM blocks allocated

Placement of Sections:
• .text into RAM Block L0123SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0123SARAM on PAGE 0 (program memory)
• .ebss into RAM Block L4SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

 Procedure

Open a Project
1. Double click on the Code Composer Studio icon on the desktop. Maximize Code

Composer Studio to fill your screen. Code Composer Studio has a Connect/Disconnect
feature which allows the target to be dynamically connected and disconnected. This will
reset the JTAG link and also enable “hot swapping” a target board. Connect to the target.

TMS320F28335 One-Day Workshop 15

Lab 1: Linker Command File

Click: Debug Connect

The menu bar (at the top) lists File ... Help. Note the horizontal tool bar below the menu
bar and the vertical tool bar on the left-hand side. The window on the left is the project
window and the large right-hand window is your workspace.

2. A project is all the files you will need to develop an executable output file (.out) which
can be run on the DSP hardware. A project named Lab1.pjt has been created for this
lab. Open the project by clicking:

Project Open…

and look in C:\C28x\LABS\LAB1. This .pjt file will invoke all the necessary tools
(compiler, assembler, linker) to build the project. It will also create a debug folder that
will hold immediate output files.

3. In the project window on the left, click the plus sign (+) to the left of Project. Now,
click on the plus sign next to Lab1.pjt. Notice that the Lab1.cmd file is listed.
Click on Source to see the current source file list (i.e. Lab1.c).

4. A test file named Lab1.c has been added to the project. This file will be used in this
exercise to demonstrate some features of Code Composer Studio.

Project Build Options
5. There are numerous build options in the project. The default option settings are sufficient

for getting started. We will inspect a couple of the default linker options at this time.

Click: Project Build Options…

6. Select the Linker tab. Notice that .out and .map files are being created. The .out file is
the executable code that will be loaded into the DSP. The .map file will contain a linker
report showing memory usage and section addresses in memory. The Stack Size has
been set to 0x200.

7. Select OK and the Build Options window will close.

Linker Command File – Lab1.cmd
8. Open and inspect Lab1.cmd by double clicking on the filename in the project window.

Notice that the Memory{} declaration describes the system memory shown on the
“Lab1: Linker Command File” slide in the objective section of this lab exercise.
Memory blocks L0SARAM, L1SARAM, L2SARM, and L3SARAM have been
combined into a single memory block called L0123SARAM. This combined memory
block has been placed in program memory on page 0, and the other memory blocks have
been placed in data memory on page 1.

9. In the Sections{} area notice that the sections defined on the slide have been “linked”
into the appropriate memories. Also, notice that a section called .reset has been allocated.
The .reset section is part of the rts2800_ml.lib, and is not needed. By putting the TYPE =

16 TMS320F28335 One-Day Workshop

 Lab 1: Linker Command File

DSECT modifier after its allocation, the linker will ignore this section and not allocate it.
Close the inspected file.

Build and Load the Project
10. The top four buttons on the horizontal toolbar control code generation. Hover your

mouse over each button as you read the following descriptions:
Button Name Description

 1 Compile File Compile, assemble the current open file
 2 Incremental Build Compile, assemble only changed files, then link
 3 Rebuild All Compile, assemble all files, then link
 4 Stop Build Stop code generation

11. Code Composer Studio can automatically load the output file after a successful build. On
the menu bar click: Option Customize… and select the
“Program/Project/CIO” tab, check “Load Program After Build”.

Also, Code Composer Studio can automatically connect to the target when started. Select
the “Debug Properties” tab, check “Connect to the target at
startup”, then click OK.

12. Click the “Build” button and watch the tools run in the build window. Check for
errors (we have deliberately put an error in Lab1.c). When you get an error, scroll the
build window at the bottom of the Code Composer Studio screen until you see the error
message (in red), and simply double-click the error message. The editor will
automatically open the source file containing the error, and position the mouse cursor at
the correct code line.

13. Fix the error by adding a semicolon at the end of the "z = x + y" statement. For
future knowlege, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

14. Rebuild the project (there should be no errors this time). The output file should
automatically load. The Program Counter should be pointing to _c_int00 in the
Disassembly Window.

15. Under Debug on the menu bar click “Go Main”. This will run through the DSP/BIOS
C-environment initialization routine and stop at main() in Lab1.c.

Debug Enviroment Windows
It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory windows, and watch windows.

16. Open a memory window to view the global variable “z”.

Click: View Memory… on the menu bar.

TMS320F28335 One-Day Workshop 17

Lab 1: Linker Command File

Type “&z” into the address field and then enter. Note that you must use the ampersand
(meaning “address of”) when using a symbol in a memory window address box. Also
note that Code Composer Studio is case sensitive.

Set the properties format to “Hex 16 Bit – TI style” at the bottom of the window. This
will give you more viewable data in the window. You can change the contents of any
address in the memory window by double-clicking on its value. This is useful during
debug.

17. Open the watch window to view the local variables x and y.

Click: View Watch Window on the menu bar.

Click the “Watch Locals” tab and notice that the local variables x and y are already
present. The watch window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory window by setting the address to “SP” after the code function has been
entered).

18. We can also add global variables to the watch window if desired. Let's add the global
variable “z”.

Click the “Watch 1” tab at the bottom of the watch window. In the empty box in the
“Name” column, type “z” and then enter. Note that you do not use an ampersand here.
The watch window knows you are specifying a symbol. Check that the watch window
and memory window both report the same value for “z”. Trying changing the value in
one window, and notice that the value also changes in the other window.

Single-stepping the Code
19. Click the “Watch Locals” tab at the bottom of the watch window. Single-step through

main() by using the <F11> key (or you can use the Single Step button on the
vertical toolbar). Check to see if the program is working as expected. What is the value
for “z” when you get to the end of the program?

End of Exercise

18 TMS320F28335 One-Day Workshop

 Peripheral Register Header Files

Peripheral Register Header Files
Traditional Approach to C Coding
#define ADCTRL1 (volatile unsigned int *)0x00007100

#define ADCTRL2 (volatile unsigned int *)0x00007101

...

void main(void)

{

*ADCTRL1 = 0x1234; //write entire register

*ADCTRL2 |= 0x4000; //reset sequencer #1

}

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in Watch window
- Will generate less efficient code in many cases

Advantages - Simple, fast and easy to type
- Variable names exactly match register names (easy

to remember)

Structure Approach to C Coding
void main(void)

{

AdcRegs.ADCTRL1.all = 0x1234; //write entire register

AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; //reset sequencer #1

}

Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Advantages - Easy to manipulate individual bits.
- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)

TMS320F28335 One-Day Workshop 19

Peripheral Register Header Files

The CCS Watch Window using #define

The CCS Watch Window using Structures

20 TMS320F28335 One-Day Workshop

 Peripheral Register Header Files

Structure Naming Conventions

The DSP2833x header files define:
All of the peripheral structures
All of the register names
All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all // Access full 16 or 32-bit register

PeripheralName.RegisterName.half.LSW // Access low 16-bits of 32-bit register

PeripheralName.RegisterName.half.MSW // Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by TI and found in the DSP2833x header files.
They are a combination of capital and small letters (i.e. CpuTimer0Regs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

Editor Auto Complete to the Rescue!

TMS320F28335 One-Day Workshop 21

Peripheral Register Header Files

DSP2833x Header File Package
(http://www.ti.com, literature # SPRC530)

Contains everything needed to use the
structure approach
Defines all peripheral register bits and
register addresses
Header file package includes:

\DSP2833x_headers\include .h files
\DSP2833x_headers\cmd linker .cmd files
\DSP2833x_headers\gel .gel files for CCS
\DSP2833x_examples ‘2833x examples
\DSP2823x_examples ‘2823x examples
\doc documentation

Peripheral Structure .h files (1 of 2)

/* ADC Individual Register Bit Definitions */
struct ADCTRL1_BITS { // bits description

Uint16 rsvd1:4; // 3:0 reserved
Uint16 SEQ_CASC:1; // 4 Cascaded sequencer mode
Uint16 SEQ_OVRD:1 // 5 Sequencer override
Uint16 CONT_RUN:1; // 6 Continuous run
Uint16 CPS:1; // 7 ADC core clock prescaler
Uint16 ACQ_PS:4; // 11:8 Acquisition window size
Uint16 SUSMOD:2; // 13:12 Emulation suspend mode
Uint16 RESET:1; // 14 ADC reset
Uint16 rsvd2:1; // 15 reserved

};

/* Allow access to the bit fields or entire register */
union ADCTRL1_REG {

Uint16 all;
struct ADCTRL1_BITS bit;

};

// ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

DSP2833x_Adc.h

#include “DSP2833x_Device.h”

Void InitAdc(void)
{

/* Reset the ADC module */
AdcRegs.ADCTRL1.bit.RESET = 1;

/* configure the ADC register */
AdcRegs.ADCTRL1.all = 0x0710;

};

Your C-source file (e.g., Adc.c)

Contain bits field structure definitions for each peripheral register

22 TMS320F28335 One-Day Workshop

 Peripheral Register Header Files

Peripheral Structure .h files (2 of 2)

The header file package contains a .h file
for each peripheral in the device

DSP2833x_Device.h
Main include file (for ‘2833x and ‘2823x devices)
Will include all other .h files
Include this file in each source file:

#include “DSP2833x_Device.h”

DSP2833x_Device.h DSP2833x_DevEmu.h DSP2833x_SysCtrl.h
DSP2833x_PieCtrl.h DSP2833x_Adc.h DSP2833x_CpuTimers.h
DSP2833x_ECan.h DSP2833x_ECap.h DSP2833x_EPwm.h
DSP2833x_EQep.h DSP2833x_Gpio.h DSP2833x_I2c.h
DSP2833x_Sci.h DSP2833x_Spi.h DSP2833x_XIntrupt.h
DSP2833x_PieVect.h DSP2833x_DefaultIsr.h DSP2833x_DMA.h
DSP2833x_Mcbsp.h DSP2833x_Xintf.h

Global Variable Definitions File
DSP2833x_GlobalVariableDefs.c

Declares a global instantiation of the structure
for each peripheral
Each structure put in its own section using a
DATA_SECTION pragma to allow linking to
correct memory (see next slide)

Add this file to your CCS project:
DSP2833x_GlobalVariableDefs.c

#include "DSP2833x_Device.h“
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

DSP2833x_GlobalVariableDefs.c

TMS320F28335 One-Day Workshop 23

Peripheral Register Header Files

Linker Command Files for the Structures
DSP2833x_nonBIOS.cmd and DSP2833x_BIOS.cmd

Links each structure to
the address of the
peripheral using the
structures named
section

non-BIOS and BIOS
versions of the .cmd file

Add one of these files to
your CCS project:
DSP2833x_nonBIOS.cmd

or
DSP2833x_BIOS.cmd

MEMORY
{

PAGE1:
...
ADC: origin=0x007100, length=0x000020
...

}

SECTIONS
{

...
AdcRegsFile: > ADC PAGE = 1
...

}

DSP2833x_Headers_nonBIOS.cmd

#include "DSP2833x_Device.h“
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

DSP2833x_GlobalVariableDefs.c

Peripheral Specific Examples
Example(s) projects for each peripheral
Helpful to get you started
Seperate projects for ‘2833x and ‘2823x

‘2823x projects configured for no FPU

24 TMS320F28335 One-Day Workshop

 Peripheral Register Header Files

Peripheral Register Header Files
Summary

Easier code development
Easy to use
Generates most efficient code
Increases effectiveness of CCS watch window
TI has already done all the work!

Use the correct header file package for your device:

F2833x and F2823x # SPRC530
F280x and F2801x # SPRC191
F2804x # SPRC324
F281x # SPRC097

Go to http://www.ti.com and enter the literature number in the keyword search box

TMS320F28335 One-Day Workshop 25

Reset, Interrupts and System Initialization

Reset, Interrupts and System Initialization

Reset

Reset Sources

Watchdog Timer

XRS pin active

To XRS pin

XRS

C28x Core

Reset – Bootloader

Reset
OBJMODE = 0 AMODE = 0

ENPIE = 0 INTM = 1

Boot determined by
state of GPIO pins

Reset vector fetched
from boot ROM

0x3F FFC0

Execution Bootloading
Entry Point Routines

FLASH SCI-A / SPI-A
M0 SARAM I2C

OTP eCAN-A
XINTF McBSP-A

GPIO / XINTF

Bootloader sets
OBJMODE = 1

AMODE = 0

26 TMS320F28335 One-Day Workshop

 Reset, Interrupts and System Initialization

Bootloader Options

1 1 1 1 jump to FLASH address 0x33 FFF6
1 1 1 0 bootload code to on-chip memory via SCI-A
1 1 0 1 bootload external EEPROM to on-chip memory via SPI-A
1 1 0 0 bootload external EEPROM to on-chip memory via I2C
1 0 1 1 Call CAN_Boot to load from eCAN-A mailbox 1
1 0 1 0 bootload code to on-chip memory via McBSP-A
1 0 0 1 jump to XINTF Zone 6 address 0x10 0000 for 16-bit data
1 0 0 0 jump to XINTF Zone 6 address 0x10 0000 for 32-bit data
0 1 1 1 jump to OTP address 0x38 0400
0 1 1 0 bootload code to on-chip memory via GPIO port A (parallel)
0 1 0 1 bootload code to on-chip memory via XINTF (parallel)
0 1 0 0 jump to M0 SARAM address 0x00 0000
0 0 1 1 branch to check boot mode
0 0 1 0 branch to Flash without ADC calibration (TI debug only)
0 0 0 1 branch to M0 SARAM without ADC calibration (TI debug only)
0 0 0 0 branch to SCI-A without ADC calibration (TI debug only)

87 /
XA15

86 /
XA14

85 /
XA13

84 /
XA12

GPIO pins

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (256Kw)

OTP (1Kw)

0x33 FFF6

0x38 0400

0x30 0000

0x00 0000

0x3F E000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (64w)
0x3F F9A9

Boot Code

•
•

•
•

RESET

Execution Entry
Point Determined

By GPIO Pins

Bootloading
Routines

(SCI-A, SPI-A, I2C,
eCAN-A, McBSP-A

GPIO, XINTF)

0x3F F9A9

XINTF Zone 6
(x16 / x32)
0x10 0000

0x00 0000

TMS320F28335 One-Day Workshop 27

Reset, Interrupts and System Initialization

Interrupts

Interrupt Sources

ePWM, eCAP,
eQEP, ADC, SCI,
SPI, I2C, eCAN,

McBSP, DMA, WD

Internal Sources

External Sources

XINT1 – XINT7

TZx

XRS

XNMI_XINT13

NMI

C28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

••
•

PIE
(Peripheral

Interrupt
Expansion)

TINT2
TINT1
TINT0

A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

Maskable Interrupt Processing
Conceptual Core Overview

1

0

1

(IFR)
“Latch”

INT1

INT2

INT14

Core
Interrupt

C28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

If the individual and global switches are turned “on” the
interrupt reaches the core

28 TMS320F28335 One-Day Workshop

 Reset, Interrupts and System Initialization

Core Interrupt Registers

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Interrupt Flag Register (IFR)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Interrupt Enable Register (IER)

INTMST1
Bit 0Interrupt Global Mask Bit (INTM)

(enable = 0 / disable = 1)

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

(pending = 1 / absent = 0)

(enable = 1 / disable = 0)

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Pe
ri

ph
er

al
 In

te
rr

up
ts

12

x8
 =

 9
6

IF
R

IE
R

IN
TM 28x

Core

28x Core Interrupt logic

PIE module for 96 Interrupts

INT1.x interrupt group
INT2.x interrupt group
INT3.x interrupt group
INT4.x interrupt group
INT5.x interrupt group
INT6.x interrupt group
INT7.x interrupt group
INT8.x interrupt group
INT9.x interrupt group
INT10.x interrupt group

INT11.x interrupt group
INT12.x interrupt group

INT1 – INT12

12 Interrupts

96

INT1.1

INT1.2

INT1.8

1

0

1

•
•
•

•
•
•

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

INT13 (TINT1 / XINT13)
INT14 (TINT2)
NMI

TMS320F28335 One-Day Workshop 29

Reset, Interrupts and System Initialization

PIE Registers

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1
0123456715 - 8

reserved

PIEIFRx register (x = 1 to 12)

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1
0123456715 - 8

reserved

PIEIERx register (x = 1 to 12)

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
124 356789 0101115 - 12

ENPIEPIEVECT

PIECTRL register 015 - 1

#include “DSP2833x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx5 = 1; //enable EPWM5_INT in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

F2833x PIE Interrupt Assignment Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKEINT TINT0 ADCINT XINT2 XINT1 SEQ2INT SEQ1INT

INT2 EPWM6
_TZINT

EPWM5
_TZINT

EPWM4
_TZINT

EPWM3
_TZINT

EPWM2
_TZINT

EPWM1
_TZINT

INT3 EPWM6
_INT

EPWM5
_INT

EPWM4
_INT

EPWM3
_INT

EPWM2
_INT

EPWM1
_INT

INT4 ECAP6
_INT

ECAP5
_INT

ECAP4
_INT

ECAP3
_INT

ECAP2
_INT

ECAP1
_INT

INT5 EQEP2
_INT

EQEP1
_INT

INT6 MXINTA MRINTA MXINTB MRINTB SPITXINTA SPIRXINTA

INT7 DINTCH6 DINTCH5 DINTCH4 DINTCH3 DINTCH2 DINTCH1

INT8 SCITXINTCSCIRXINTC I2CINT2A I2CINT1A

INT9 ECAN1
_INTB

ECAN0
_INTB SCITXINTB SCIRXINTB SCITXINTA SCIRXINTA

INT10

INT11

INT12 LUF LVF XINT7 XINT6 XINT5 XINT4 XINT3

ECAN0
_INTA

ECAN1
_INTA

30 TMS320F28335 One-Day Workshop

 Reset, Interrupts and System Initialization

Vector Offset

Default Interrupt Vector Table at Reset

Memory
0

BROM Vectors
64w

ENPIE = 0

0x3F FFC0

0x3F FFFF

PIE Vectors
256w

0x00 0D00

DATALOG
RTOSINT
EMUINT
NMI

02
04
06
08
0A
0C
0E
10
12
14
16
18
1A
1C
1E
20
22
24
26
28-3E

ILLEGAL
USER 1-12

INT1
INT2
INT3
INT4
INT5
INT6
INT7
INT8
INT9
INT10
INT11
INT12
INT13
INT14

RESET 00 Default Vector Table
Re-mapped when

ENPIE = 1

PieVectTableInit{ }
Used to initialize PIE vectors

Oscillator / PLL Clock Module

F2833x Oscillator / PLL Clock Module
(lab file: SysCtrl.c)

PLL

XCLKIN

Watchdog
Module

VCOCLK

OSCCLK•

C28x
Core

CLKIN

SYSCLKOUT

HISPCP LOSPCP

HSPCLK LSPCLK

• •

DIV CLKIN
0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 1 OSCCLK x 1 / n
0 0 1 0 OSCCLK x 2 / n
0 0 1 1 OSCCLK x 3 / n
0 1 0 0 OSCCLK x 4 / n
0 1 0 1 OSCCLK x 5 / n
0 1 1 0 OSCCLK x 6 / n
0 1 1 1 OSCCLK x 7 / n
1 0 0 0 OSCCLK x 8 / n
1 0 0 1 OSCCLK x 9 / n
1 0 1 0 OSCCLK x 10 / n

(PLL bypass)

HSPCLK LSPCLK

Input Clock Fail Detect Circuitry
PLL will issue a “limp mode”
clock (1-4 MHz) if input clock is
removed after PLL has locked.
An internal device reset will also
be issued (XRSn pin not driven).

SysCtrlRegs.PLLSTS.bit.DIVSEL

•

SysCtrlRegs.PLLCR.bit.DIV ADC SCI, SPI, I2C,
McBSP

All other peripherals
clocked by SYSCLKOUT

crystal

X2

XT
A

L
O

SC

X1
1/nM

U
X

DIVSEL n

0x /4 *
10 /2
11 /1

* default
Note: /1 mode can
only be used when
PLL is bypassed

TMS320F28335 One-Day Workshop 31

Reset, Interrupts and System Initialization

Watchdog Timer Module

Watchdog Timer

Resets the C28x if the CPU crashes
Watchdog counter runs independent of CPU
If counter overflows, a reset or interrupt is
triggered (user selectable)
CPU must write correct data key sequence to
reset the counter before overflow

Watchdog must be serviced or disabled
within 131,072 instructions after reset
This translates to 4.37 ms with a 30 MHz
OSCCLK

Watchdog Timer Module (lab file: Watchdog.c)

6 - Bit
Free -
Running
Counter

CLR
/2
/4
/8
/16
/32
/64OSCCLK

System
Reset

101
100
011
010
001

000

111
110

•

•

•

•

8 - Bit Watchdog
Counter

CLR

One-Cycle
Delay

Watchdog
Reset Key
Register

55 + AA
Detector

•

1 0 1
• •••

/
/3

3

WDCR . 2 - 0

WDCR . 6

WDPS

WDDIS

WDCR . 7
WDFLAG

WDCNTR . 7 - 0

WDKEY . 7 - 0

WDCR . 5 - 3 WDCHK 2-0

Bad WDCR Key

/512

Output
Pulse

WDRST

WDINT
SCSR .1
WDENINT

•

• •

SCSR . 0
WDOVERRIDE

Good Key

32 TMS320F28335 One-Day Workshop

 Reset, Interrupts and System Initialization

GPIO

F2833x GPIO Grouping Overview

GPIO Port A Mux1
Register (GPAMUX1)

[GPIO 0 to 15] GPIO Port A
Direction Register

(GPADIR)
[GPIO 0 to 31]

G
PIO

 Port A
G

PIO
 P

ort B

Internal B
us

GPIO Port A Mux2
Register (GPAMUX2)

[GPIO 16 to 31]

GPIO Port B Mux1
Register (GPBMUX1)

[GPIO 32 to 47]

GPIO Port B Mux2
Register (GPBMUX2)

[GPIO 48 to 63]

GPIO Port B
Direction Register

(GPBDIR)
[GPIO 32 to 63]

G
PIO

 Port C

GPIO Port C Mux1
Register (GPCMUX1)

[GPIO 64 to 79]

GPIO Port C Mux2
Register (GPCMUX2)

[GPIO 80 to 87]

GPIO Port C
Direction Register

(GPCDIR)
[GPIO 64 to 87]

Input
Qual

Input
Qual

•

F2833x GPIO Pin Block Diagram

• •
01

00
MUX Control Bits *
00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

Peripheral
1

I/O DAT
Bit (R/W) In

Out

I/O DIR Bit
0 = Input
1 = Output

GPxMUX1
GPxMUX2

GPxDIR

GPxDAT

GPxSET
GPxCLEAR

GPxTOGGLE

•• 10

11

Peripheral
2

Peripheral
3

Pin

Internal Pull-Up
0 = enable (default GPIO 12-31)
1 = disable (default GPIO 0-11)

GPxPUD

Input
Qualification

(GPIO 0-63 only) GPxQSEL1
GPxQSEL2
GPxCTRL

* See device datasheet for pin function selection matrices

TMS320F28335 One-Day Workshop 33

Reset, Interrupts and System Initialization

Lab 2: System Initialization

LAB2 files have been provided
LAB2 consists of two parts:
Part 1

Test behavior of watchdog when disabled and enabled
Part 2

Initialize peripheral interrupt expansion (PIE) vectors
and use watchdog to generate an interrupt

Modify, build, and test code using Code
Composer Studio

34 TMS320F28335 One-Day Workshop

 Lab 2: System Initialization

Lab 2: System Initialization
 Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested. The system
initialization for this lab will consist of the following:

• Setup the clock module – PLL, HISPCP = /1, LOSPCP = /4, low-power modes to default
values, enable all module clocks

• Disable the watchdog – clear WD flag, disable watchdog, WD prescale = 1
• Setup watchdog system control register – DO NOT clear WD OVERRIDE bit, WD

generate a DSP reset
• Setup shared I/O pins – set all GPIO pins to GPIO function (e.g. a "00" setting for GPIO

function, and a “01”, “10”, or “11” setting for peripheral function.)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will tested by using the watchdog to generate an interrupt. This lab will make use of the
DSP2833x C-code header files to simplify the programming of the device, as well as take care of
the register definitions and addresses. Please review these files, and make use of them in the
future, as needed.

 Procedure

Project File
1. A project named Lab2.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\LABS\LAB2. All Build Options
have been configured. The files used in this lab are:
CodeStartBranch.asm Lab_2_3.cmd
DefaultIsr_2.c Main_2.c
DelayUs.asm PieCtrl.c
DSP2833x_GlobalVariableDefs.c PieVect.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
Gpio.c Watchdog.c

Note that include files, such as DSP2833x_Device.h and Lab.h, are automatically
added at project build time. (Also, DSP2833x_DefaultIsr.h is automatically
added and will be used with the interrupts in the second part of this lab exercise).

Modified Memory Configuration
2. Open and inspect the linker command file Lab_2_3.cmd. Notice that the user defined

section “codestart” is being linked to a memory block named BEGIN_M0. The

TMS320F28335 One-Day Workshop 35

Lab 2: System Initialization

codestart section contains code that branches to the code entry point of the project. The
bootloader must branch to the codestart section at the end of the boot process. Recall that
the "Jump to M0 SARAM" bootloader mode branches to address 0x000000 upon
bootloader completion.

The linker command file (Lab_2_3.cmd) has a new memory block named BEGIN_M0:
origin = 0x000000, length = 0x0002, in program memory. Additionally, the existing
memory block M0SARAM in data memory has been modified to avoid overlaps with this
new memory block.

System Initialization
3. Open and inspect SysCtrl.c. Notice that the PLL and module clocks have been

enabled.

4. Open and inspect Watchdog.c. Notice that watchdog control register (WDCR) is
configured to disable the watchdog, and the system control and status register (SCSR) is
configured to generate a reset.

5. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function, except for GPIO0 which will be used in the next lab exercise. Close the
inspected files.

Build and Load
6. Click the “Build” button and watch the tools run in the build window. The output file

should automatically load.

7. Under Debug on the menu bar click “Reset CPU”.

8. Under Debug on the menu bar click “Go Main”. You should now be at the start of
Main().

Run the Code – Watchdog Reset
9. Place the cursor on the first line of code in main() and set a breakpoint by right

clicking the mouse key and select Toggle Software Breakpoint. Notice that
line is highlighted with a red dot indicating that the breakpoint has been set. Alternately,
you can double-click in the gray field to the left of the code line to set the breakpoint.
The breakpoint is set to prove that the watchdog is disabled. If the watchdog causes a
reset, code execution will stop at this breakpoint.

10. Place the cursor in the “main loop” section (on the asm(“ NOP”); instruction line)
and right click the mouse key and select Run To Cursor. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

11. Run your code for a few seconds by using the <F5> key, or using the Run button on the
vertical toolbar, or using Debug Run on the menu bar. After a few seconds halt
your code by using Shift <F5>, or the Halt button on the vertical toolbar. Where did your

36 TMS320F28335 One-Day Workshop

 Lab 2: System Initialization

code stop? Are the results as expected? If things went as expected, your code should be
in the “main loop”.

12. Modify the InitWatchdog() function to enable the watchdog – in Watchdog.c
change the WDCR register value to 0x00A8. This will enable the watchdog to function
and cause a reset. Save the file and click the “Build” button. Then reset the CPU by
clicking on Debug Reset CPU. Under Debug on the menu bar click “Go
Main”.

13. Single-step your code off of the breakpoint.

14. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the breakpoint.

Setup PIE Vector for Watchdog Interrupt
The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

15. Notice that the following files are included in the project:
DefaultIsr_2.c
PieCtrl.c
PieVect.c

16. In Main_2.c, the following code is used to call the InitPieCtrl() function.
There are no passed parameters or return values, so the call code is simply:

 InitPieCtrl();

17. Using the “PIE Interrupt Assignment Table” shown in the slides find the location for the
watchdog interrupt, “WAKEINT”. This is used in the next step.

PIE group #: # within group:

18. In main() notice the code used to enable global interrupts (INTM bit), and in
InitWatchdog() the code used to enable the "WAKEINT" interrupt in the PIE
(using the PieCtrlRegs structure) and to enable core INT1 (IER register).

19. Modify the system control and status register (SCSR) to cause the watchdog to generate a
WAKEINT rather than a reset – in Watchdog.c change the SCSR register value to
0x0002. Save this modified file.

20. Open and inspect DefaultIsr_2.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOP0”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

TMS320F28335 One-Day Workshop 37

Lab 2: System Initialization

21. Open and inspect PieCtrl.c. This file is used to initialize the PIE RAM and enable
the PIE. The interrupt vector table located in PieVect.c is copied to the PIE RAM to
setup the vectors for the interrupts. Close the modified and inspected files.

Build and Load
22. Click the “Build” button. Then reset the CPU, and then “Go Main”.

Run the Code – Watchdog Interrupt
23. Place the cursor in the “main loop” section, right click the mouse key and select

Run To Cursor.

24. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOP0” instruction in the WAKEINT ISR.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

38 TMS320F28335 One-Day Workshop

 Control Peripherals

Control Peripherals

ADC Module

ADC Module Block Diagram (Cascaded Mode)

12-bit A/D
Converter

SOC EOC

Software

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
UX

MUX
A

RESULT0
RESULT1
RESULT2

RESULT15

Result
MUX

External Pin
(GPIO/XINT2_ADCSOC)

ePWM_SOC_A
ePWM_SOC_B

MUX
B

Ch Sel (CONV00)
Ch Sel (CONV01)
Ch Sel (CONV02)
Ch Sel (CONV03)

Ch Sel (CONV15)

MAX_CONV1

Autosequencer

Start Sequence
Trigger

SEQ1
ADC full-scale
input range is

0 to 3V

ADC Module Block Diagram (Dual-Sequencer mode)

RESULT8
RESULT9

RESULT15

Result
MUX

RESULT0
RESULT1

RESULT7

Result
MUX12-bit A/D

Converter

S/H
A

S/H
B

M
UX

Software
ePWM_SOC_A

External Pin

SOC1/
EOC1

Sequencer
Arbiter

SOC2/
EOC2

Software
ePWM_SOC_B

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

MUX
A

MUX
B

M
UX

MUX

Ch Sel (CONV00)
Ch Sel (CONV01)

Ch Sel (CONV07)

MAX_CONV1

Autosequencer

Start Sequence
Trigger

SEQ1

(GPIO/XINT2_ADCSOC)

Ch Sel (CONV08)
Ch Sel (CONV09)

Ch Sel (CONV15)

MAX_CONV2

Autosequencer

Start Sequence
Trigger

SEQ2
ADC full-scale
input range is

0 to 3V

TMS320F28335 One-Day Workshop 39

Control Peripherals

ADC Control Registers (file: Adc.c)
ADCTRL1 (ADC Control Register 1)

module reset
continuous run / stop EOS
sequencer mode (cascaded / dual)
acquisition time prescale (S/H)

ADCTRL2 (ADC Control Register 2)
ePWM SOC; start conversion (s/w trigger); ePWM SOC mask bit
reset SEQ
interrupt enable; interrupt mode: every EOS / every other EOS

ADCTRL3 (ADC Control Register 3)
ADC clock prescale
sampling mode (sequential / simultaneous)

ADCMAXCONV (ADC Maximum Conversion Register)
maximum number of autoconversions

ADCCHSELSEQx {x=1-4} (ADC Channel Select Register)
Channel select sequencing

ADCRESULTx {x=0-15} (ADC Results Register)
Note: refer to the reference guide for a complete listing of registers

Pulse Width Modulation

What is Pulse Width Modulation?

PWM is a scheme to represent a
signal as a sequence of pulses

fixed carrier frequency
fixed pulse amplitude
pulse width proportional to
instantaneous signal amplitude
PWM energy ≈ original signal energy

t

Original Signal
T

t

PWM representation

40 TMS320F28335 One-Day Workshop

 Control Peripherals

Why use PWM with Power
Switching Devices?

Desired output currents or voltages are known
Power switching devices are transistors

Difficult to control in proportional region
Easy to control in saturated region

PWM is a digital signal ⇒ easy for DSP to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Gate Signal Gate Signal Known with PWM

PWM

ePWM

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0

TZSEL . 15 - 0

EPWMxA

EPWMxBSYSCLKOUT

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

TMS320F28335 One-Day Workshop 41

Control Peripherals

ePWM Time-Base Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

42 TMS320F28335 One-Day Workshop

 Control Peripherals

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=120°
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=240°
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=0°
Phase . EPWM1A

EPWM1B

φ=120°

φ=120°

φ=240°

Ext. SyncIn
(optional)

To eCAP1
SyncIn

ePWM Compare Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCI

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

TMS320F28335 One-Day Workshop 43

Control Peripherals

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Module

ePWM Action Qualifier Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

44 TMS320F28335 One-Day Workshop

 Control Peripherals

ePWM Action Qualifier Actions
for EPWMA and EPWMB

Z
↓

Z
↑

Z
X

Z
T

CA
↓

CA
↑

CA
X

CA
T

CB
↓

CB
↑

CB
X

CB
T

P
↓

P
↑

P
X

P
T

SW
↓

SW
↑

SW
X

SW
T

Do Nothing

Clear Low

Set High

Toggle

S/W
Force

EPWM
Output
Actions

Time-Base Counter equals:

Zero CMPA CMPB TBPRD

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

TMS320F28335 One-Day Workshop 45

Control Peripherals

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B
TBCTR

TBPRD

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

46 TMS320F28335 One-Day Workshop

 Control Peripherals

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA
TBCTR

TBPRD

. .. .

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

ePWM Dead-Band Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

TMS320F28335 One-Day Workshop 47

Control Peripherals

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

ePWM PWM Chopper Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

48 TMS320F28335 One-Day Workshop

 Control Peripherals

ePWM Chopper Waveform

EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

Allows a high frequency carrier signal to
modulate the PWM waveform generated by the
Action Qualifier and Dead-Band modules
Used with pulse transformer-based gate drivers
to control power switching elements

ePWM Trip-Zone Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

TMS320F28335 One-Day Workshop 49

Control Peripherals

Trip-Zone Module Features
♦ Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
♦ Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
♦ Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

DSP
core P

W
M

O
U
T
P
U
T
S

EPWMxTZINT

EPWM1A

TZ6
TZ5
TZ4
TZ3
TZ2
TZ1

Over
Current
Sensors

Cycle-by-Cycle
Mode

One-Shot
Mode

EPWM1B
EPWM2A
EPWM2B
EPWM3A
EPWM3B
EPWM4A
EPWM4B
EPWM5A
EPWM5B
EPWM6A
EPWM6B

ePWM Event-Trigger Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0

AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

TZSEL . 15 - 0

EPWMxA

EPWMxB

TZy

50 TMS320F28335 One-Day Workshop

 Control Peripherals

ePWM Event-Trigger Interrupts and SOC
TBCTR

TBPRD

EPWMA

EPWMB

CMPB
CMPA

CTR = 0

CTR = PRD

CTRU = CMPA

CTRD = CMPA

CTRU = CMPB

CTRD = CMPB

Hi-Resolution PWM (HRPWM)

Significantly increases the resolution of conventionally derived digital PWM
Uses 8-bit extensions to Compare registers (CMPxHR) and Phase register
(TBPHSHR) for edge positioning control
Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~300 kHz (with system clock of 150 MHz)
Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 150 MHz)

Regular
PWM Step

(i.e. 6.67 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

TMS320F28335 One-Day Workshop 51

Control Peripherals

ePWM Control Registers (file: EPwm.c)

TBCTL (Time-Base Control)
counter mode (up, down, up & down, stop); clock prescale; period
shadow load; phase enable/direction; sync select

CMPCTL (Compare Control)
compare load mode; operating mode (shadow / immediate)

AQCTLA/B (Action Qualifier Control Output A/B)
action on up/down CTR = CMPA/B, PRD, 0 (nothing/set/clear/toggle)

DBCTL (Dead-Band Control)
in/out-mode (disable / delay PWMxA/B); polarity select

PCCTL (PWM-Chopper Control)
enable / disable; chopper CLK freq. & duty cycle; 1-shot pulse width

TZCTL (Trip-Zone Control)
enable /disable; action (force high / low / high-Z /nothing)

ETSEL (Event-Trigger Selection)
interrupt & SOCA/B enable / disable; interrupt & SOCA/B select

Note: refer to the reference guide for a complete listing of registers

eCAP

Capture Units (eCAP)

The eCAP module timestamps transitions on a
capture input pin

Timer

Timestamp
Values

Trigger

pin

52 TMS320F28335 One-Day Workshop

 Control Peripherals

eCAP Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

Ev
en

t L
og

ic

ECAPx
pin

SYSCLKOUT

TSCTR . 31 - 0

CAP1 . 31 - 0

CAP2 . 31 - 0

CAP3 . 31 - 0

CAP4 . 31 - 0

ECCTL . 13 - 9

ECCTL . 0

ECCTL . 2

ECCTL . 4

ECCTL . 6

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

eCAP Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

SYSCLKOUT

TSCTR . 31 - 0

CAP1 . 31 - 0

CAP2 . 31 - 0

CAP3 . 31 - 0

CAP4 . 31 - 0

immediate
mode

shadow
mode

shadow
mode

immediate
mode

TMS320F28335 One-Day Workshop 53

Control Peripherals

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

54 TMS320F28335 One-Day Workshop

 Control Peripherals

eQEP Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCL KOUT

Strobe
from homing sensor

TMS320F28335 One-Day Workshop 55

Lab 3: Control Peripherals

Lab 3: Control Peripherals
 Objective

The objective of this lab is to demonstrate the techniques discussed in this module and become
familiar with the operation of the on-chip analog-to-digital converter and ePWM. ePWM1A will
be setup to generate a 2 kHz, 25% duty cycle symmetric PWM waveform. The waveform will
then be sampled with the on-chip analog-to-digital converter and displayed using the graphing
feature of Code Composer Studio. The ADC has been setup to sample a single input channel at a
48 kHz sampling rate and store the conversion result in a buffer in the DSP memory. This buffer
operates in a circular fashion, such that new conversion data continuously overwrites older results
in the buffer.

Two ePWM modules have been configured for this lab exercise:

ePWM1A – PWM Generation

• Used to generate a 2 kHz, 25% duty cycle symmetric PWM waveform

ePWM2 – ADC Conversion Trigger

• Used as a timebase for triggering ADC samples (period match trigger SOC A)

Lab 3: Control Peripherals

ADC
RESULT0

...

data
memory

po
in

te
r

re
w

in
d

CPU copies
result to
buffer during
ADC ISR

ePWM2

connector
wire

ADC-
INA0

TB Counter
Compare

Action Qualifier

ePWM1

View ADC
buffer PWM
Samples

Code Composer
Studio

ePWM2 triggering
ADC on period match
using SOC A trigger
every 20.833 µs (48 kHz)

The software in this exercise configures the ePWM modules and the ADC. It is entirely interrupt
driven. The ADC end-of-conversion interrupt will be used to prompt the CPU to copy the results
of the ADC conversion into a results buffer in memory. This buffer pointer will be managed in a
circular fashion, such that new conversion results will continuously overwrite older conversion

56 TMS320F28335 One-Day Workshop

 Lab 3: Control Peripherals

results in the buffer. The ADC interrupt service routine (ISR) will also toggle LED DS2 on the
eZdsp™ as a visual indication that the ISR is running.

Notes
• ePWM1A is used to generate a 2 kHz PWM waveform
• Program performs conversion on ADC channel A0 (ADCINA0 pin)
• ADC conversion is set at a 48 kHz sampling rate
• ePWM2 is triggering the ADC on period match using SOC A trigger
• Data is continuously stored in a circular buffer
• Data is displayed using the graphing feature of Code Composer Studio
• ADC ISR will also toggle the eZdsp™ LED DS2 as a visual indication that it is running

 Procedure

Project File
1. A project named Lab3.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\LABS\LAB3. All Build Options
have been configured. The files used in this lab are:
Adc.c Gpio.c
CodeStartBranch.asm Lab_2_3.cmd
DefaultIsr_3_4.c Main_3.c
DelayUs.asm PieCtrl.c
DSP2833x_GlobalVariableDefs.c PieVect.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
EPwm.c Watchdog.c

Setup of Shared I/O, General-Purpose Timer1 and Compare1

Note: DO NOT make any changes to Gpio.c and EPwm.c – ONLY INSPECT

2. Open and inspect Gpio.c by double clicking on the filename in the project window.
Notice that the shared I/O pin in GPIO0 has been set for the ePWM1A function. Next,
open and inspect EPwm.c and see that the ePWM1 has been setup to implement the
PWM waveform as described in the objective for this lab. Notice the values used in the
following registers: TBCTL (set clock prescales to divide-by-1, no software force, sync
and phase disabled), TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set
on up count and clear on down count for output A). Software force, deadband, PWM
chopper and trip action has been disabled. (Note that the last steps enable the timer count
mode and enable the clock to the ePWM module). See the global variable names and
values that have been set using #define in the beginning of the Lab.h file. Notice that
ePWM2 has been initialized earlier in the code for the ADC. Close the inspected files.

TMS320F28335 One-Day Workshop 57

Lab 3: Control Peripherals

Build and Load
3. Click the “Build” button and watch the tools run in the build window. The output file

should automatically load.

4. Under Debug on the menu bar click “Reset CPU”.

5. Under Debug on the menu bar click “Go Main”. You should now be at the start of
Main().

Run the Code – PWM Waveform
6. Open a memory window to view some of the contents of the ADC results buffer. To

open a memory window click: View Memory… on the menu bar. The address label
for the ADC results buffer is AdcBuf.

Note: Exercise care when connecting any wires, as the power to the eZdsp™ is on, and we
do not want to damage the eZdsp™! Details of pin assignments can be found in
Appendix A.

7. Using a connector wire provided, connect the PWM1A (pin # P8-9) to ADCINA0 (pin #
P9-2) on the eZdsp™.

8. Run your code for a few seconds by using the <F5> key, or using the Run button on the
vertical toolbar, or using Debug Run on the menu bar. After a few seconds halt
your code by using Shift <F5>, or the Halt button on the vertical toolbar. Verify that the
ADC result buffer contains the updated values.

9. Open and setup a graph to plot a 48-point window of the ADC results buffer.
Click: View Graph Time/Frequency… and set the following values:

Start Address AdcBuf

Acquisition Buffer Size 48

Display Data Size 48

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 48000

Time Display Unit μs

 Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 μs. You can confirm this by
measuring the period of the waveform using the graph (you may want to enlarge the
graph window using the mouse). The measurement is best done with the mouse. The
lower left-hand corner of the graph window will display the X and Y-axis values.

58 TMS320F28335 One-Day Workshop

 Lab 3: Control Peripherals

Subtract the X-axis values taken over a complete waveform period (you can use the PC
calculator program found in Microsoft Windows to do this).

Frequency Domain Graphing Feature of Code Composer Studio
11. Code Composer Studio also has the ability to make frequency domain plots. It does this

by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: View Graph Time/Frequency… and set the following values:

Display Type FFT Magnitude

Start Address AdcBuf

Acquisition Buffer Size 48

FFT Framesize 48

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 48000

 Select OK to save the graph options.

12. On the plot window, left-click the mouse to move the vertical marker line and observe the
frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

Using Real-time Emulation
Real-time emulation is a special emulation feature that allows the windows within Code
Composer Studio to be updated at up to a 10 Hz rate while the DSP is running. This not only
allows graphs and watch windows to update, but also allows the user to change values in
watch or memory windows, and have those changes affect the DSP behavior. This is very
useful when tuning control law parameters on-the-fly, for example.

13. Reset the CPU, and then enable real-time mode by selecting:

Debug Real-time Mode

14. A message box may appear. Select YES to enable debug events. This will set bit 1
(DBGM bit) of status register 1 (ST1) to a “0”. The DBGM is the debug enable mask bit.
When the DBGM bit is set to “0”, memory and register values can be passed to the host
processor for updating the debugger windows.

TMS320F28335 One-Day Workshop 59

Lab 3: Control Peripherals

15. The memory and graph windows displaying AdcBuf should still be open. The connector
wire between PWM1A (pin # P8-9) and ADCINA0 (pin # P9-2) should still be
connected. In real-time mode, we would like to have our window continuously refresh.
Click:

View Real-time Refresh Options…

and check “Global Continuous Refresh”. Use the default refresh rate of 100
ms and select OK. Alternately, we could have right clicked on each window individually
and selected “Continuous Refresh”.

Note: “Global Continuous Refresh” causes all open windows to refresh at the
refresh rate. This can be problematic when a large number of windows are open, as
bandwidth over the emulation link is limited. Updating too many windows can cause the
refresh frequency to bog down. In that case, either close some windows, or disable
global refresh and selectively enable “Continuous Refresh” for individual
windows of interest instead.

16. Run the code and watch the windows update in real-time mode. Carefully remove and
replace the connector wire from PWM1A (pin # P8-9). Are the values updating as
expected?

17. Fully halting the DSP when in real-time mode is a two-step process. First, halt the
processor with Debug Halt. Then uncheck the “Real-time mode” to take the
DSP out of real-time mode (Debug Real-time Mode).

Real-time Mode using GEL Functions
18. Code Composer Studio includes GEL (General Extension Language) functions which

automate entering and exiting real-time mode. Four functions are available:
• Run_Realtime_with_Reset (reset DSP, enter real-time mode, run DSP)
• Run_Realtime_with_Restart (restart DSP, enter real-time mode, run DSP)
• Full_Halt (exit real-time mode, halt DSP)
• Full_Halt_with_Reset (exit real-time mode, halt DSP, reset DSP)
These GEL functions can be executed by clicking:
GEL Realtime Emulation Control GEL Function

If you would like, try repeating the previous step using the following GEL functions:
GEL Realtime Emulation Control Run_Realtime_with_Reset

GEL Realtime Emulation Control Full_Halt

Optional Exercise
You might want to experiment with this code by changing some of the values or just modify the
code. Try generating another waveform of a different frequency and duty cycle. Also, try to
generate complementary pair PWM outputs. Next, try to generate additional simultaneous
waveforms by using other ePWM modules. Hint: don’t forget to setup the proper shared I/O pins,

60 TMS320F28335 One-Day Workshop

 Lab 3: Control Peripherals

etc. (This optional exercise requires some further working knowledge of the ePWM.
Additionally, it may require more time than is allocated for this lab. Therefore, the student may
want to try this after the class).

End of Exercise

TMS320F28335 One-Day Workshop 61

Flash Programming

Flash Programming

Flash Programming Basics

Flash Programming Basics
The DSP CPU itself performs the flash programming
The CPU executes Flash utility code from RAM that reads the
Flash data and writes it into the Flash
We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

TMS320F2833x

JTAGEmulator

SPI

SCIRS232

Flash
Utility
Code

Flash
Data eCAN

XINTF

I2C

RO
M

Bo
ot

lo
ad

er

GPIO

Flash Programming Basics
Sequence of steps for Flash programming:

Minimum Erase size is a sector (32Kw or 16Kw)
Minimum Program size is a bit!
Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently locked!
Chance of this happening is quite small! (Erase
step is performed sector by sector)

1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Algorithm Function

62 TMS320F28335 One-Day Workshop

 Flash Programming

Programming Utilities and CCS Plug-in

Flash Programming Utilities
Code Composer Studio Plug-in (uses JTAG)
Third-party JTAG utilities

SDFlash JTAG from Spectrum Digital (requires SD emulator)
Signum System Flash utilities (requires Signum emulator)
BlackHawk Flash utilities (requires Blackhawk emulator)

SDFlash Serial utility (uses SCI boot)
Gang Programmers (use GPIO boot)

BP Micro programmer
Data I/O programmer

Build your own custom utility
Use a different ROM bootloader method than SCI
Embed flash programming into your application
Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

Code Composer Studio Flash Plug-In

TMS320F28335 One-Day Workshop 63

Flash Programming

Code Security Module and Password

Code Security Module (CSM)

Data reads and writes from restricted memory are only
allowed for code running from restricted memory
All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

Access to the following on-chip memory is restricted:

0x008000
0x009000
0x00A000

0x300000

0x340000

0x3F8000

0x3FA000

0x380400

0x3F9000

FLASH (256Kw)
128-Bit Password

OTP (1Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

0x00B000

0x3FB000

Dual
Mapped

Flash Registers0x000A80

CSM Password

0x33FFF8 - 0x33FFFF

CSM Password
Locations (PWL)

FLASH (256Kw)

0x300000

128-Bit Password0x33FFF8

Prevents reverse engineering and
protects valuable intellectual property

128-bit user defined password is stored in Flash
128-bit Key Register used to lock and unlock the device

Mapped in memory space 0x00 0AE0 – 0x00 0AE7
128-bits = 2128 = 3.4 x 1038 possible passwords
To try 1 password every 8 cycles at 150 MHz, it would
take at least 5.8 x 1023 years to try all possible
combinations!

64 TMS320F28335 One-Day Workshop

 Flash Programming

CSM Password Match Flow

Flash device
secure after

reset or runtime

Do dummy reads of PWL
0x33 FFF8 – 0x33 FFFF

Start Device permanently locked

Device unlocked
User can access on-
chip secure memory

Write password to KEY registers
0x00 0AE0 – 0x00 0AE7

(EALLOW) protected

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

TMS320F28335 One-Day Workshop 65

Lab 4: Programming the Flash

Lab 4: Programming the Flash
 Objective

The objective of this lab is to demonstrate the techniques discussed in this module and to program
and execute code from the on-chip flash memory. The TMS320F28335 device has been designed
for standalone operation in an embedded system. Using the on-chip flash eliminates the need for
external non-volatile memory or a host processor from which to bootload. In this lab, the steps
required to properly configure the software for execution from internal flash memory will be
covered.

Lab 4: Programming the Flash

Objective:
Program system into Flash
Memory
Learn use of CCS Flash
Plug-in
DO NOT PROGRAM
PASSWORDS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering
ADC on period match
using SOC A trigger
every 20.833 µs (48 kHz)

...

data
memory

po
in

te
r

re
w

in
d

CPU copies
result to
buffer during
ADC ISR

View ADC
buffer PWM
Samples

Code Composer
Studio

 Procedure

Project File
1. A project named Lab4.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\Labs\Lab4. All Build Options
have been configured like the previous lab. The files used in this lab are:
Adc.c Gpio.c
CodeStartBranch.asm Lab_4.cmd
DefaultIsr_3_4.c Main_4.c
DelayUs.asm PieCtrl.c
DSP2833x_GlobalVariableDefs.c PieVect.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
EPwm.c Watchdog.c

66 TMS320F28335 One-Day Workshop

 Lab 4: Programming the Flash

Link Initialized Sections to Flash
Initialized sections, such as code and constants, must contain valid values at device power-up.
For a stand-alone embedded system with the F28335 device, these initialized sections must be
linked to the on-chip flash memory. Note that a stand-alone embedded system must operate
without an emulator or debugger in use, and no host processor is used to perform bootloading.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_4.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x300000, length =
0x03FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. In Lab_4.cmd the following compiler sections have been linked to on-chip flash
memory block FLASH_ABCDEFGH:

Compiler Sections

.text

.cinit

.const

.econst

.pinit

.switch

Copying Interrupt Vectors from Flash to RAM
The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a
memory copy function called memcpy() which will be used to perform the copy.

4. Open and inspect InitPieCtrl() in PieCtrl.c. Notice the memcpy() function used to
initialize (copy) the PIE vectors. At the end of the file a structure is used to enable the
PIE.

TMS320F28335 One-Day Workshop 67

Lab 4: Programming the Flash

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

5. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

6. The “secureRamFuncs” section will be linked using the user linker command file
Lab_4.cmd. Open and inspect Lab_4.cmd. The “secureRamFuncs” will load to
flash (load address) but will run from L0123SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load end, and run start
addresses.

While not a requirement from a DSP hardware or development tools perspective (since
the C28x DSP has a unified memory architecture), historical convention is to link code to
program memory space and data to data memory space. Therefore, notice that for the
L0123SARAM memory we are linking “secureRamFuncs” to, we are specifiying
“PAGE = 0” (which is program memory).

7. Open and inspect Main_4.c. Notice that the memory copy function memcpy() is being
used to copy the section “secureRamFuncs, which contains the initialization function
for the flash control registers.

8. The following line of code in main() is used call the InitFlash() function. Since
there are no passed parameters or return values the code is just:

 InitFlash();

 at the desired spot in main().

Code Security Module and Passwords
The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the L0, L1, L2 and L3 RAM blocks. The CSM uses a 128-bit password
made up of 8 individual 16-bit words. They are located in flash at addresses 0x33FFF8 to
0x33FFFF. During this lab, dummy passwords of 0xFFFF will be used – therefore only dummy
reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically
placed in the password locations to protect your code. We will not be using real passwords in the
workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x33FF80
through 0x33FFF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

68 TMS320F28335 One-Day Workshop

 Lab 4: Programming the Flash

9. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named “passwords”. It also creates an initialized section named
“csm_rsvd” which contains all 0x0000 values for locations 0x33FF80 to 0x33FFF5
(length of 0x76).

10. Open Lab_4.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset
The F28335 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection pins are set for “Jump to Flash” mode, the bootloader will
branch to the instruction located at address 0x33FFF6 in the flash. An instruction that branches
to the beginning of your program needs to be placed at this address. Note that the CSM
passwords begin at address 0x33FFF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

11. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section has been linked to a block of memory named BEGIN_FLASH.

12. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_M0. Open and inspect Lab_4.cmd and notice that the section
“codestart” will now be directed to BEGIN_FLASH. Close the inspected files.

13. The eZdsp™ board needs to be configured for “Jump to Flash” bootmode. Move switch
SW1 positions 1, 2, 3 and 4 to the “1” position (all switches to the Left) to accomplish
this. Details of switch positions can be found in Appendix A. This switch controls the
pullup/down resistor on the GPIO84, GPIO85, GPIO86 and GPIO87 pins, which are the
pins sampled by the bootloader to determine the bootmode. (For additional information
on configuring the “Jump to Flash” bootmode see the TMS320x2833x DSP Boot ROM
Reference Guide, and also the eZdsp F28335 Technical Reference).

Build – Lab.out
14. At this point we need to build the project, but not have CCS automatically load it since

CCS cannot load code into the flash! (the flash must be programmed). On the menu bar
click: Option Customize… and select the “Program/Project CIO” tab.
Uncheck “Load Program After Build”.

 CCS has a feature that automatically steps over functions without debug information.
This can be useful for accelerating the debug process provided that you are not interested

TMS320F28335 One-Day Workshop 69

Lab 4: Programming the Flash

in debugging the function that is being stepped-over. While single-stepping in this lab
exercise we do not want to step-over any functions. Therefore, select the “Debug
Properties” tab. Uncheck “Step over functions without debug
information when source stepping”, then click OK.

15. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash
Plug-in.

CCS Flash Plug-in
16. Open the Flash Plug-in tool by clicking :

Tools F28xx On-Chip Flash Programmer

17. A Clock Configuration window may open. If needed, in the Clock Configuration
window set “OSCCLK (MHz):” to 30, “DIVSEL:” to /2, and “PLLCR Value:” to 10.
Then click OK. In the next Flash Programmer Settings window confirm that the selected
DSP device to program is F28335 and all options have been checked. Click OK.

18. Notice that the eZdsp™ board uses a 30 MHz oscillator (located on the board near LED
DS1). Confirm the “Clock Configuration” in the upper left corner has the OSCCLK set
to 30 MHz, the DIVSEL set to /2, and the PLLCR value set to 10. Recall that the PLL is
divided by two, which gives a SYSCLKOUT of 150 MHz.

19. Confirm that all boxes are checked in the “Erase Sector Selection” area of the plug-in
window. We want to erase all the flash sectors.

20. We will not be using the plug-in to program the “Code Security Password”. Do not
modify the Code Security Password fields.

21. In the “Operation” block, notice that the “COFF file to Program/Verify” field
automatically defaults to the current .out file. Check to be sure that “Erase, Program,
Verify” is selected. We will be using the default wait states, as shown on the slide in this
module.

22. Click “Execute Operation” to program the flash memory. Watch the programming status
update in the plug-in window.

23. After successfully programming the flash memory, close the programmer window.

Running the Code – Using CCS
24. In order to effectively debug with CCS, we need to load the symbolic debug information

(e.g., symbol and label addresses, source file links, etc.) so that CCS knows where
everything is in your code. Click:

File Load Symbols Load Symbols Only…

and select Lab4.out in the Debug folder.

70 TMS320F28335 One-Day Workshop

 Lab 4: Programming the Flash

25. Reset the DSP. The program counter should now be at 0x3FF9A9, which is the start of
the bootloader in the Boot ROM.

26. Single-Step <F11> through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

27. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

28. Now do Debug Go Main. The code should stop at the beginning of your main()
routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, and that the bootloader is properly configured for jump to flash
mode, and that the codestart section has been linked to the proper address.

29. You can now RUN the DSP, and you should observe the LED on the board blinking. Try
resetting the DSP and hitting RUN (without doing all the stepping and the Go Main
procedure). The LED should be blinking again.

Running the Code – Stand-alone Operation (No Emulator)
30. Close Code Composer Studio.

31. Disconnect the USB cable (emulator) from the eZdsp™ board.

32. Remove the power from the board.

33. Re-connect the power to the board.

34. The LED should be blinking, showing that the code is now running from flash memory.

Return Switch SW1 Back to Default Positions
35. Remove the power from the board.

36. Please return the settings of switch SW1 back to the default positions “Jump to
M0SARAM” bootmode as shown in the table below (see Appendix A for switch position
details):

Position 4
GPIO87

Position 3
GPIO86

Position 2
GPIO85

Position 1
GPIO84

Boot
Mode

Right – 0 Left – 1 Right – 0 Right – 0 M0 SARAM

End of Exercise

TMS320F28335 One-Day Workshop 71

Lab 4: Programming the Flash

Lab 4 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
length = 0x8

page = 0

BEGIN_FLASH
length = 0x2

page = 0

CSM_RSVD
length = 0x76

page = 0

FLASH
length = 0x3FF80

page = 0

0x30 0000

0x33 FF80

0x33 FFF6

0x33 FFF8

origin =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_4.cmd

Startup Sequence from Flash Memory

0x33 7FF6

0x30 0000

0x3F F000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (32w)
0x3F F9A9

Boot Code

RESET

0x3F F9A9
{SCAN GPIO}

FLASH (256Kw)

Passwords (8w)
_c_int00

LB

“rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

72 TMS320F28335 One-Day Workshop

 The Next Step…

The Next Step…

Training

C28x Multi-day Training Course

TMS320C28x Workshop Outline
- Architectural Overview
- Programming Development Environment
- Peripheral Register Header Files
- Reset and Interrupts
- System Initialization
- Analog-to-Digital Converter
- Control Peripherals
- Numerical Concepts and IQmath
- Direct Memory Access (DMA)
- System Design
- Communications
- DSP/BIOS
- Support Resources

In-depth hands-on
TMS320F28335 Design

and Peripheral
Training

C2000 Digital Power Supply Workshop

C2000 DPS Workshop Outline
- Introduction to Digital Power

Supply Design
- Driving the Power Stage with

PWM Waveforms
- Controlling the Power Stage with

Feedback
- Tuning the Loop for Good

Transient Response
- Summary and Conclusion

Digital Power
Experimenter Kit

Provides hands-on
Introduction to Digital

Power Concepts

TMS320F28335 One-Day Workshop 73

The Next Step…

Development Tools

C2000 controlCARDs
New low cost single-board controllers
perfect for initial software development
and small volume system builds
Small form factor (9cm x 2.5cm) with
standard 100-pin DIMM interface

analog I/O, digital I/O, and JTAG signals
available at DIMM interface

Galvanically isolated RS-232 interface
Single 5V power supply required (not
included)
Available through TI authorized
distributors and on the TI web

Part Numbers:
TMDSCNCD2808 (100 MHz F2808)
TMDSCNCD28044 (100 MHz F28044)
TMDSCNCD28335 (150 MHz F28335)

C2000 Experimenter Kits
Experimenter Kits include

F2808 or F28335 controlCARD
Docking station (motherboard)
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB
5V DC power supply

Docking station features
Access to all controlCARD signals
Breadboard areas
RS-232 an JTAG connectors

Available through TI authorized
distributors and on the TI web

Part Numbers:
TMDSDOCK2808
TMDSDOCK28335

74 TMS320F28335 One-Day Workshop

 The Next Step…

C2000 Peripheral Explorer Kit
Experimenter Kit includes

F28335 controlCARD
Peripheral Explorer (motherboard)
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB
5V DC power supply

Peripheral Explorer features
ADC input variable resistors
GPIO hex encoder & push buttons
eCAP infrared sensor
GPIO LEDs, I2C & CAN connection
Analog I/O (AIC+McBSP)

Available through TI authorized
distributors and on the TI web

Part Number:
TMDSPREX28335

C2000 Digital Power Experimenter Kit
DPEK includes

2-rail DC/DC EVM using TI
PowerTrain™ modules (10A)
F2808 controlCARD
On-board digital multi-meter
and active load for transient
response tuning
C2000 Applications Software
CD with example code and full
hardware details
Digital Power Supply Workshop
teaching material and lab
software
Code Composer Studio v3.3
with code size limit of 32KB
9V DC power supply

Available through TI
authorized distributors and
on the TI web

Part Number: TMDSDCDC2KIT

TMS320F28335 One-Day Workshop 75

The Next Step…

C2000 DC/DC Developer’s Kit

DC/DC Kit includes
8-rail DC/DC EVM using TI
PowerTrain™ modules (10A)
F28044 controlCARD
C2000 Applications Software
CD with example code and full
hardware details
Code Composer Studio v3.3
with code size limit of 32KB
9V DC power supply

Available through TI
authorized distributors and
on the TI web

Part Number: TMDSDCDC8KIT

C2000 AC/DC Developer’s Kit
AC/DC Kit includes

AC/DC EVM with interleaved PFC
and phase-shifted full-bridge
F2808 controlCARD
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB

AC/DC EVM features
12VAC in, 80W/10A output
Primary side control
Synchronous rectification
Peak current mode control
Two-phase PFC with current
balancing

Available through TI authorized
distributors and on theTI web

Part Number: TMDSACDCKIT

76 TMS320F28335 One-Day Workshop

 The Next Step…

Development Support

C28x Signal Processing Libraries
Signal Processing Libraries & Applications Software Literature #
ACI3-1: Control with Constant V/Hz SPRC194
ACI3-3: Sensored Indirect Flux Vector Control SPRC207
ACI3-3: Sensored Indirect Flux Vector Control (simulation) SPRC208
ACI3-4: Sensorless Direct Flux Vector Control SPRC195
ACI3-4: Sensorless Direct Flux Vector Control (simulation) SPRC209
PMSM3-1: Sensored Field Oriented Control using QEP SPRC210
PMSM3-2: Sensorless Field Oriented Control SPRC197
PMSM3-3: Sensored Field Oriented Control using Resolver SPRC211
PMSM3-4: Sensored Position Control using QEP SPRC212
BLDC3-1: Sensored Trapezoidal Control using Hall Sensors SPRC213
BLDC3-2: Sensorless Trapezoidal Drive SPRC196
DCMOTOR: Speed & Position Control using QEP without Index SPRC214
Digital Motor Control Library (F/C280x) SPRC215
Communications Driver Library SPRC183
DSP Fast Fourier Transform (FFT) Library SPRC081
DSP Filter Library SPRC082
DSP Fixed-Point Math Library SPRC085
DSP IQ Math Library SPRC087
DSP Signal Generator Library SPRC083
DSP Software Test Bench (STB) Library SPRC084
C28x FPU Fast RTS Library SPRC664
C2833x C/C++ Header Files and Peripheral Examples SPRC530

Available from TI DSP Website ⇒ http://www.ti.com/c2000

TI Workshops Download Site

http://www.tiworkshop.com/survey/downloadsort.asp

Login Name: c20001day
Password: tto2

TMS320F28335 One-Day Workshop 77

The Next Step…

Customers Are Using C2000TM

Products For …

Active suspension
Air conditioners
Aircraft A/C
Bonding machines
Building automation
Cameras
Car A/C
CD and DVD drives
Check readers
CNC control
Compressors
Copiers
Door openers
Elevator motor control
Encoders
Fan control
Food mixers
Fork lifts
Fuel pumps
Golf trainers
Hair removers

… and
many

more

Heart/lung machines
Human transporters
Industrial drives
Inverters
Lawn mowers
Magnetic bearings
Mass flow control
Medical pumps
Missile control
Plotters
Postal sorters
Power assisted steering
Power drills
Power generators
Printers
Refrigerators
Robot control
Sewing machines
Ship propulsion control
Stepper motor control
Textile machines
Toy trains
Treadmills

Vacuum cleaners
Vibration control
Wafer testers
Washing machines
Windmill control

Battery charging
Frequency converters
Fuel cell control
Server power control
Solar energy control
Uninterr. power supplies

TEC control
Optical switch control
Tunable laser control

Adaptive cruise control
Airbag control
Antitheft systems

Blood analyzers
Data encryption systems
E-meters
Gas sensors
GPS systems
Ignition control
Induction ovens
Park assist systems
Power line modems
Radar control
Reactor monitoring
RF ID systems
Spectrum analyzers
Telecom switches
Tire pressure sensing
Ultrasound scanners
Welding equipment
Wireless modems
Color/light sensors

Motor Control

Digital Power

Optical Networking

Others

For More Information . . .

Phone: 800-477-8924 or 972-644-5580
Email: support@ti.com

Information and support for all TI Semiconductor products/tools
Submit suggestions and errata for tools, silicon and documents

USA - Product Information Center (PIC)

Website: http://www.ti.com

FAQ: http://www-k.ext.ti.com/sc/technical_support/knowledgebase.htm
Device information my.ti.com
Application notes News and events
Technical documentation Training

Enroll in Technical Training: http://www.ti.com/sc/training

Internet

78 TMS320F28335 One-Day Workshop

 The Next Step…

Web: http://www-k.ext.ti.com/sc/technical_support/pic/euro.htm

Phone: Language Number
Belgium (English) +32 (0) 27 45 55 32
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 1800 949 0107 (free phone)
Italy 800 79 11 37 (free phone)
Netherlands (English) +31 (0) 546 87 95 45
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Finland (English) +358(0) 9 25 17 39 48

Fax: All Languages +49 (0) 8161 80 2045

Email: epic@ti.com

Literature, Sample Requests and Analog EVM Ordering
Information, Technical and Design support for all Catalog TI
Semiconductor products/tools
Submit suggestions and errata for tools, silicon and documents

European Product Information Center (EPIC)

TMS320F28335 One-Day Workshop 79

The Next Step…

80 TMS320F28335 One-Day Workshop

Appendix A – eZdsp™ F28335

Note: This appendix only provides a description of the eZdsp™ F28335 interfaces used in this
workshop. For a complete description of all features and details, please see the eZdsp™
F28335 Technical Reference manual.

 Appendix A - eZdsp F28335 A - 1

Appendix

Module Topics
Appendix A – eZdsp™ F28335...A-1

Module Topics... A-2
eZdsp™ F28335 .. A-3

eZdsp™ F28335 Connector / Header and Pin Diagram ..A-3
P2 – Expansion Interface..A-5
P4/P8/P7 – I/O Interface...A-6
P5/P9 – Analog Interface..A-8
P10 – Expansion Interface..A-9
SW1 – Boot Load Option Switch ...A-10
DS1/DS2 – LEDs ...A-11
TP1/TP2/TP3/TP4 – Test Points ..A-11

A - 2 Appendix A - eZdsp F28335

 Appendix

eZdsp™ F28335

eZdsp™ F28335 Connector / Header and Pin Diagram

 Appendix A - eZdsp F28335 A - 3

Appendix

A - 4 Appendix A - eZdsp F28335

 Appendix

P2 – Expansion Interface

 Appendix A - eZdsp F28335 A - 5

Appendix

P4/P8/P7 – I/O Interface

A - 6 Appendix A - eZdsp F28335

 Appendix

 Appendix A - eZdsp F28335 A - 7

Appendix

P5/P9 – Analog Interface

A - 8 Appendix A - eZdsp F28335

 Appendix

P10 – Expansion Interface

 Appendix A - eZdsp F28335 A - 9

Appendix

SW1 – Boot Load Option Switch

Position 4
GPIO87

Position 3
GPIO86

Position 2
GPIO85

Position 1
GPIO84

Boot
Mode

Right – 0 Left – 1 Right – 0 Right – 0 M0 SARAM

Left – 1 Left – 1 Left – 1 Left – 1 FLASH

A - 10 Appendix A - eZdsp F28335

 Appendix

DS1/DS2 – LEDs

TP1/TP2/TP3/TP4 – Test Points

 Appendix A - eZdsp F28335 A - 11

Appendix

A - 12 Appendix A - eZdsp F28335

	Important Notice
	Revision History
	Mailing Address
	Workshop Topics
	Workshop Introduction
	Architecture Overview
	Programming Development Environment
	Code Composer Studio
	 Linking Sections in Memory

	Lab 1: Linker Command File
	System Description
	Placement of Sections:
	Open a Project
	Project Build Options
	Linker Command File – Lab1.cmd
	Build and Load the Project
	Debug Enviroment Windows
	Single-stepping the Code
	End of Exercise

	Peripheral Register Header Files
	Reset, Interrupts and System Initialization
	Reset
	 Interrupts
	Peripheral Interrupt Expansion (PIE)
	Oscillator / PLL Clock Module
	 Watchdog Timer Module
	 GPIO

	Lab 2: System Initialization
	Project File
	Modified Memory Configuration
	System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	End of Exercise

	Control Peripherals
	ADC Module
	Pulse Width Modulation
	ePWM
	eCAP
	 eQEP

	Lab 3: Control Peripherals
	Notes
	Project File
	Setup of Shared I/O, General-Purpose Timer1 and Compare1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Using Real-time Emulation
	Real-time Mode using GEL Functions
	Optional Exercise
	End of Exercise

	Flash Programming
	Flash Programming Basics
	 Programming Utilities and CCS Plug-in
	 Code Security Module and Password

	Lab 4: Programming the Flash
	Project File
	Link Initialized Sections to Flash
	Compiler Sections
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Build – Lab.out
	CCS Flash Plug-in
	Running the Code – Using CCS
	Running the Code – Stand-alone Operation (No Emulator)
	Return Switch SW1 Back to Default Positions
	End of Exercise

	 Lab 4 Reference: Programming the Flash

	The Next Step…
	Training
	 Development Tools
	 Development Support

	C28xmA.pdf
	Appendix A – eZdsp™ F28335
	Module Topics
	eZdsp(F28335
	eZdsp(F28335 Connector / Header and Pin Diagram
	
	
	 P2 – Expansion Interface
	
	 P4/P8/P7 – I/O Interface
	 P5/P9 – Analog Interface
	 P10 – Expansion Interface
	 SW1 – Boot Load Option Switch
	 DS1/DS2 – LEDs
	TP1/TP2/TP3/TP4 – Test Points

