

C2000™ Microcontroller Workshop
Workshop Guide and Lab Manual

F28xMcuMdw
Revision 5.0
May 2014

Technical Training
Organization

Important Notice

ii C2000 Microcontroller Workshop - Introduction

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright 2009 – 2014 Texas Instruments Incorporated

Revision History
September 2009 – Revision 1.0

May 2010 – Revision 2.0

December 2010 – Revision 2.1

July 2011 – Revision 3.0

September 2011 – Revision 3.1

October 2012 – Revision 4.0

May 2014 – Revision 5.0

Mailing Address
Texas Instruments
Training Technical Organization
6500 Chase Oaks Blvd Building 2
M/S 8437
Plano, Texas 75023

 C2000™ Microcontroller Workshop

C2000 Microcontroller Workshop - Introduction iii

C2000™ Microcontroller Workshop

C2000™ Microcontroller Workshop

Texas Instruments
Technical Training

Copyright © 2014 Texas Instruments. All rights reserved.C2000 is trademarks of Texas Instruments.

The objective of this workshop is to gain a fully understand and a complete working knowledge
of the C2000 microcontroller. This will be accomplished through detailed presentations and
hands-on lab exercises.

The workshop will start with the basic topics and progress to more advanced topics in a logical
flow such that each topic and lab exercise builds on the previous one presented. At the end of the
workshop, you should be confident in applying the skills learned in your product design.

C2000™ Microcontroller Workshop

iv C2000 Microcontroller Workshop - Introduction

C2000™ Microcontroller Workshop Outline

C2000™ Microcontroller Workshop Outline
1. Architecture Overview
2. Programming Development Environment Lab: Linker command file

3. Peripheral Register Header Files
4. Reset and Interrupts
5. System Initialization Lab: Watchdog and interrupts

6. Analog-to-Digital Converter Lab: Build a data acquisition system

7. Control Peripherals Lab: Generate and graph a PWM waveform

8. Numerical Concepts Lab: Low-pass filter the PWM waveform

9. Direct Memory Access (DMA) Lab: Use DMA to buffer ADC results

10. Control Law Accelerator (CLA) Lab: Use CLA to filter PWM waveform

11. Viterbi, Complex Math, CRC Unit (VCU)
12. System Design Lab: Run the code from flash memory

13. Communications
14. Support Resources

Required Workshop Materials

Required Workshop Materials
http://processors.wiki.ti.com/index.php/

C2000_Piccolo_Multi-Day_Workshop

F28069 Experimenter’s Kit (TMDXDOCK28069)

 Install Code Composer Studio v6.0.0

Run the workshop installer
C2000 Microcontroller Workshop-5.0-Setup.exe

Lab Files / Solution Files

Student Guide and Documentation

The materials required for this workshop are available using the links shown at the top of this
slide. An F28069 Experimenter’s Kit and a jumper wire will be needed for the lab exercises. The

 C2000™ Microcontroller Workshop

C2000 Microcontroller Workshop - Introduction v

lab directions are written based on the version of Code Composer Studio as shown on this slide.
The workshop installer will automatically install the lab files, solution files, workshop manual,
and documentation.

C2000™ Experimenter Kit

C2000™ Experimenter Kit

controlCARD

USB Docking Station

The development tool for this workshop will be the TMS320F28069 Experimenter’s Kit. The kit
consists of a controlCARD and USB Docking Station. It is a self-contained system that plugs
into a free USB port on your computer. The USB port provides power, as well as communicates
to the onboard JTAG emulation controller. LED LD1 on the Docking Station and LED LD1 on
the controlCARD illuminates when the board is powered. LED LD2 on the controlCARD is
connected to GPIO34. We will be using this LED as a visual indicator during the lab exercises.
The GPIO and ADC lines from the F28069 device are pinned out to the Docking Station headers.
We will be using a jumper wire to connect various GPIO and ADC lines on these headers.

C2000™ Microcontroller Workshop

vi C2000 Microcontroller Workshop - Introduction

C2000 Delfino / Piccolo Comparison

C2000 Delfino / Piccolo Comparison
F2833x F2803x F2806x

Clock 150 MHz 60 MHz 90 MHz
Flash / RAM 128Kw / 34Kw 64Kw / 10Kw 128Kw / 50Kw
On-chip Oscillators - 2 2
VREG / POR / BOR -

Watchdog Timer

12-bit ADC SEQ - based SOC - based SOC - based
Analog COMP w/ DAC -

FPU -

6-Channel DMA -

CLA -

VCU - -

ePWM / HR ePWM / / /
eCAP / HR eCAP / - / - /
eQEP

SCI / SPI / I2C

LIN - -
McBSP -

USB - -

External Interface - -

When comparing the Delfino and Piccolo product lines, you will notice that the Piccolo F2806x
devices share many features with the Delfino product line. The Delfino product line is shown in
the table by the F2833x column; therefore, the F28069, being the most feature-rich Piccolo
device, was chosen as the platform for this workshop. The knowledge learned from this device
will be applicable to all C2000 product lines.

C2000 Microcontroller Workshop - Architecture Overview 1 - 1

Architecture Overview

Introduction
This architectural overview introduces the basic architecture of the C2000™ Piccolo™ series of
microcontrollers from Texas Instruments. The Piccolo™ series adds a new level of general
purpose processing ability unseen in any previous DSP/MCU chips. The C2000™ is ideal for
applications combining digital signal processing, microcontroller processing, efficient C code
execution, and operating system tasks.

Unless otherwise noted, the terms C28x, F28x and F2806x refer to TMS320F2806x devices
throughout the remainder of these notes. For specific details and differences please refer to the
device data sheet and user’s guide.

Module Objectives
When this module is complete, you should have a basic understanding of the F28x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Module Objectives

Review the F28x block diagram and
device features

Describe the F28x bus structure and
memory map

 Identify the various memory blocks on
the F28x

 Identify the peripherals available on
the F28x

Module Topics

1 - 2 C2000 Microcontroller Workshop - Architecture Overview

Module Topics
Architecture Overview ...1-1

Module Topics ..1-2

What is the TMS320C2000™?...1-3
TMS320C2000™ Internal Bussing ...1-4

F28x CPU + FPU + VCU and CLA ..1-5
Special Instructions..1-6
Pipeline Advantage ..1-7
F28x CPU + FPU + VCU Pipeline ..1-8

Memory ..1-9
Memory Map ...1-9
Code Security Module (CSM) ...1-10
Peripherals ...1-10

Fast Interrupt Response ...1-11

Summary ..1-12

 What is the TMS320C2000™?

C2000 Microcontroller Workshop - Architecture Overview 1 - 3

What is the TMS320C2000™?
The TMS320C2000™ is a 32-bit fixed point microcontroller that specializes in high performance
control applications such as, robotics, industrial automation, mass storage devices, lighting,
optical networking, power supplies, and other control applications needing a single processor to
solve a high performance application.

TMS320F2806x Block Diagram

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

3
32-bit

Timers

PIE
Interrupt
Manager

eQEP

Watchdog

I2C

SCI

SPI

GPIO

eCAP

CLA

CAN 2.0B

12-bit ADCCLA Bus

32x32 bit
Multiplier

CPU
Register Bus

R-M-W
Atomic

ALU

FPU

VCU

DMA
6 Ch.

DMA Bus

McBSP

ePWM

USB 2.0

This block diagram represents an overview of all device features and is not specific to any one
device. The F28069 device is designed around a multibus architecture, also known as a modified
Harvard architecture. This can be seen in the block diagram by the separate program bus and data
bus, along with the link between the two buses. This type of architecture greatly enhances the
performance of the device.

In the upper left area of the block diagram, you will find the memory section, which consists of
the boot ROM, sectored flash, and RAM. Also, you will notice that the six-channel DMA has its
own set of buses.

In the lower left area of the block diagram, you will find the execution section, which consists of
a 32-bit by 32-bit hardware multiplier, a read-modify-write atomic ALU, a floating-point unit,
and a Viterbi complex math CRC unit. The control law accelerator coprocessor is an independent
and separate unit that has its own set of buses.

The peripherals are grouped on the right side of the block diagram. The upper set is the control
peripherals, which consists of the ePWM, eCAP, eQEP, and ADC. The lower set is the
communication peripherals and consists of the multichannel buffered serial port, I2C, SCI, SPI,
CAN, and USB.

The PIE block, or Peripheral Interrupt Expansion block, manages the interrupts from the
peripherals. In the bottom right corner is the general-purpose I/O. Also, the CPU has a watchdog
module and three 32-bit general-purpose timers available.

Dell
Highlight

Dell
Highlight

What is the TMS320C2000™?

1 - 4 C2000 Microcontroller Workshop - Architecture Overview

TMS320C2000™ Internal Bussing
As with many DSP-type devices, multiple busses are used to move data between the memories
and peripherals and the CPU. The F28x memory bus architecture contains:

• A program read bus (22-bit address line and 32-bit data line)

• A data read bus (32-bit address line and 32-bit data line)

• A data write bus (32-bit address line and 32-bit data line)

Program-read Data Bus (32)

F28x CPU Internal Bus Structure

Data-write Address Bus (32)

Program Address Bus (22)

Execution

R-M-W
Atomic

ALU

Real-Time
JTAG

Emulation

Program

Decoder
PC

XAR0
to

XAR7

SP
DP @X

ARAU MPY32x32

XT
P

ACC

ALU

Registers Debug

Register Bus / Result Bus

Data/Program-write Data Bus (32)

Data-read Address Bus (32)

Data-read Data Bus (32)

FPU
R0H-R7H

Program
Memory

Data
Memory

Peripherals

VCU
VR0-VR8

CLA
MR0-MR3

The 32-bit-wide data busses provide single cycle 32-bit operations. This multiple bus
architecture, known as a Harvard Bus Architecture, enables the F28x to fetch an instruction, read
a data value and write a data value in a single cycle. All peripherals and memories are attached to
the memory bus and will prioritize memory accesses.

Dell
Highlight

 F28x CPU + FPU + VCU and CLA

C2000 Microcontroller Workshop - Architecture Overview 1 - 5

F28x CPU + FPU + VCU and CLA
The F28x is a highly integrated, high performance solution for demanding control applications.
The F28x is a cross between a general purpose microcontroller and a digital signal processor,
balancing the code density of a RISC processor and the execution speed of a DSP with the
architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

F28x CPU + FPU + VCU and CLA
 MCU/DSP balancing code density &

execution time
16-bit instructions for improved code density
32-bit instructions for improved execution time

 32-bit fixed-point CPU + FPU
 32x32 fixed-point MAC, doubles as dual

16x16 MAC
 IEEE Single-precision floating point

hardware and MAC
 Floating-point simplifies software

development and boosts performance
 Viterbi, Complex Math, CRC Unit (VCU)

adds support for Viterbi decode, complex
math and CRC operations

 Parallel processing Control Law Accelerator
(CLA) adds IEEE Single-precision 32-bit
floating point math operations

 CLA algorithm execution is independent of
the main CPU

 Fast interrupt service time
 Single cycle read-modify-write instructions
 Unique real-time debugging capabilities

Data Bus

3
32-bit

Timers

CPU
Register Bus

Program Bus

32x32 bit
Multiplier

R-M-W
Atomic

ALU
CLA

CLA Bus

FPU

VCU

PIE

Watchdog

The F28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The F28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of
the F28x and its 64-bit processing capabilities, enable the F28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive solution. Along
with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). Also, some devices feature a floating-point unit.

The, F28x is source code compatible with the 24x/240x devices and previously written code can
be reassembled to run on a F28x device, allowing for migration of existing code onto the F28x.

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

F28x CPU + FPU + VCU and CLA

1 - 6 C2000 Microcontroller Workshop - Architecture Overview

Special Instructions

F28x Atomic Read/Modify/Write

Registers ALU / MPY

LOAD

STORE

WRITE

READ

CPU Mem

Atomic Instructions Benefits

 Simpler programming

 Smaller, faster code

 Uninterruptible (Atomic)

 More efficient compiler

AND *XAR2,#1234h

2 words / 1 cycles

Atomic Read/Modify/Write

MOV AL,*XAR2
AND AL,#1234h
MOV *XAR2,AL

DINT

EINT

6 words / 6 cycles

Standard Load/Store

Atomics are small common instructions that are non-interuptable. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually
execute several cycles faster than traditional coding.

Dell
Highlight

 F28x CPU + FPU + VCU and CLA

C2000 Microcontroller Workshop - Architecture Overview 1 - 7

Pipeline Advantage

F1 F2 D1 D2 R1 R2 E

F28x CPU Pipeline

Protected Pipeline

 Order of results are as written in
source code

 Programmer need not worry about
the pipeline

8-stage pipeline
F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

A
B
C

D
E
F
G

W

W

W

W

W

W

W

W

E & G Access
same address

R1 R2 E W

D2 R1 R2 E W

F1: Instruction Address
F2: Instruction Content
D1: Decode Instruction
D2: Resolve Operand Addr
R1: Operand Address
R2: Get Operand
E: CPU doing “real” work
W: store content to memory

H

The F28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the F28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional
discontinuities. Special store conditional operations further improve performance.

Dell
Highlight

F28x CPU + FPU + VCU and CLA

1 - 8 C2000 Microcontroller Workshop - Architecture Overview

F28x CPU + FPU + VCU Pipeline

F28x CPU + FPU + VCU Pipeline

 Floating Point Unit and VCU has an unprotected pipeline
 i.e. FPU/VCU can issue an instruction before previous instruction has

written results
 Compiler prevents pipeline conflicts
 Assembler detects pipeline conflicts
 Performance improvement by placing non-conflicting

instructions in floating-point pipeline delay slots

F1 F2 D1 D2 R1 R2 E WF28x Pipeline
Fetch Decode Read Exe Write

Floating-point math operations, conversions between integer and floating-
point formats, and complex MPY/MAC require 1 delay slot – everything else

does not require a delay slot (load, store, max, min, absolute, negative, etc.)

Load
Store

0 delay slot instruction
1 delay slot instruction

D R E1 E2/WVCU Instruction

D R E1 E2/WFPU Instruction

Floating-point and VCU operations are not pipeline protected. Some instructions require delay
slots for the operation to complete. This can be accomplished by insert NOPs or other non-
conflicting instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p’ after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guideslines for the FPU/VCU pipeline are:

Math MPYF32, ADDF32,
SUBF32, MACF32,
VCMPY

2p cycles
One delay slot

Conversion I16TOF32, F32TOI16,
F32TOI16R, etc…

2p cycles
One delay slot

Everything else* Load, Store, Compare,
Min, Max, Absolute and
Negative value

Single cycle
No delay slot

* Note: MOV32 between FPU and CPU registers is a special case.

Dell
Highlight

 Memory

C2000 Microcontroller Workshop - Architecture Overview 1 - 9

Memory
The memory space on the F28x is divided into program memory and data memory. There are
several different types of memory available that can be used as both program memory and data
memory. They include the flash memory, single access RAM (SARAM), OTP, and Boot ROM
which is factory programmed with boot software routines and standard tables used in math related
algorithms.

Memory Map
The F28x CPU contains no memory, but can access memory on chip. The F28x uses 32-bit data
addresses and 22-bit program addresses. This allows for a total address reach of 4G words (1
word = 16-bits) in data memory and 4M words in program memory. Memory blocks on all F28x
designs are uniformly mapped to both program and data space.

This memory map shows the different blocks of memory available to the program and data space.

TMS320F28069 Memory Map
0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)
Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)
reserved

PF 3 (4Kw)
PF 1 (4Kw)

L0 DPSARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

0x000D00

0x002000
0x005000
0x006000

0x008000
0x008800
0x008C00

0x00A000

0x000E00

0x009000

reserved

Data Program

FLASH (128Kw)

PASSWORDS (8w)

0x3D7CC0
0x3D7C80

0x3D8000

Boot ROM (32Kw)

0x3F7FF8
0x3F8000

0x3FFFFF

CSM Protected:
L0, L1, L2, L3, L4,

OTP, FLASH,
ADC CAL,

Flash Regs in PF0

0x3FFFC0 BROM Vectors (64w)

ADC / OSC cal. data

DPSARAM L0, L1, L2 & L3
accessible by CPU & CLA

PF 2 (4Kw)
0x007000

0x014000
0x3D7800
0x3D7C00

User OTP (1Kw)
reserved

reserved

L4 SARAM (8Kw)
L5 DPSARAM (8Kw)
L6 DPSARAM (8Kw)
L7 DPSARAM (8Kw)

0x00C000
0x00E000

0x012000
0x010000

L8 DPSARAM (8Kw)
0x014000

DPSARAM L5, L6, L7 & L8
accessible by DMA

The F28069 utilizes a contiguous memory map, also known as a von-Neumann architecture. This
type of memory map lends itself well to higher-level languages. This can be seen by the labels
located at the top of the memory map where the memory blocks extend between both the data
space and program space.

At the top of the map, we have two blocks of RAM called M0 and M1. Then we see PF0 through
PF3, which are the peripheral frames. This is the area where you will find the peripheral
registers. Also in this space, you will find the PIE block. Memory blocks L0 through L8 are
grouped together. L0 through L3 are accessible by the CPU and CLA. L5 through L8 are
accessible by the DMA.

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Memory

1 - 10 C2000 Microcontroller Workshop - Architecture Overview

The user OTP is a one-time, programmable, memory block. TI reserves a small space in the map
for the ADC and oscillator calibration data. The flash block contains a section for passwords,
which are used by the code security module. The boot ROM and boot ROM vectors are located
at the bottom of the memory map.

Code Security Module (CSM)

Code Security Module
 Prevents reverse engineering and protects

valuable intellectual property

 128-bit user defined password is stored in Flash
 128-bits = 2128 = 3.4 x 1038 possible passwords
 To try 1 password every 8 cycles at 80 MHz, it would

take at least 1.1 x 1024 years to try all possible
combinations!

L0 DPSARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

User OTP (1Kw)

ADC / OSC cal. data

reserved

reserved

FLASH (128Kw)
PASSWORDS (8w)

reserved

0x008000
0x008800
0x008C00

0x00A000
0x009000

0x3D7800
0x3D7C00
0x3D7C80
0x3D7CC0
0x3D8000
0x3F7FF8
0x3F8000

L4 DPSARAM (8Kw)
0x00C000

Peripherals
The F28x comes with many built in peripherals optimized to support control applications. These
peripherals vary depending on which F28x device you choose.

• ePWM • SPI

• eCAP • SCI

• eQEP • I2C

• Analog-to-Digital Converter • McBSP

• Watchdog Timer • eCAN

• CLA

• DMA

• USB

• GPIO

Dell
Highlight

 Fast Interrupt Response

C2000 Microcontroller Workshop - Architecture Overview 1 - 11

Fast Interrupt Response
The fast interrupt response, with automatic context save of critical registers, resulting in a device
that is capable of servicing many asynchronous events with minimal latency. F28x implements a
zero cycle penalty to do 14 registers context saved and restored during an interrupt. This feature
helps reduces the interrupt service routine overheads.

F28x Fast Interrupt Response Manager
 96 dedicated PIE

vectors
 No software decision

making required
 Direct access to RAM

vectors
 Auto flags update
 Concurrent auto

context save

28x CPU Interrupt logic

28x
CPUINTM96

Pe
rip

he
ra

l I
nt

er
ru

pt
s

 1
2x

8
=

96
12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 96

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

IFR IER

The C2000 devices feature a very fast interrupt response manager using the PIE block. This
allows up to 96 possible interrupt vectors to be processed by the CPU. More details about this
will be covered in the reset, interrupts, and system initialization modules.

Dell
Highlight

Dell
Highlight

Summary

1 - 12 C2000 Microcontroller Workshop - Architecture Overview

Summary

Summary
 High performance 32-bit CPU
 32x32 bit or dual 16x16 bit MAC
 IEEE single-precision floating point unit (FPU)
 Hardware Control Law Accelerator (CLA)
 Viterbi, complex math, CRC unit (VCU)
 Atomic read-modify-write instructions
 Fast interrupt response manager
 128Kw on-chip flash memory
 Code security module (CSM)
 Control peripherals
 12-bit ADC module
 Comparators
 Direct memory access (DMA)
 Up to 54 shared GPIO pins
 Communications peripherals

C2000 Microcontroller Workshop - Programming Development Environment 2 - 1

Programming Development Environment

Introduction
This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options
will be covered. Use and the purpose of the linker command file will be described.

Module Objectives

Module Objectives

Use Code Composer Studio to:
Create a Project
Set Build Options

Create a user linker command file which:
Describes a system’s available memory
Indicates where sections will be placed

in memory

Dell
Highlight

Module Topics

2 - 2 C2000 Microcontroller Workshop - Programming Development Environment

Module Topics
Programming Development Environment ...2-1

Module Topics ..2-2

Code Composer Studio ..2-3
Software Development and COFF Concepts ...2-3
Code Composer Studio ..2-4
Edit and Debug Perspective (CCSv6) ..2-5
Target Configuration ...2-6
CCSv6 Project ...2-7
Creating a New CCSv6 Project ...2-8
CCSv6 Build Options – Compiler / Linker ...2-9
CCSv6 Debug Environment ..2-10

Creating a Linker Command File ..2-12
Sections..2-12
Linker Command Files (.cmd) ...2-15
Memory-Map Description ...2-15
Section Placement..2-16
Summary: Linker Command File ..2-17

Lab File Directory Structure..2-18
Lab 2: Linker Command File ...2-19

Dell
Highlight

Dell
Highlight

Dell
Highlight

 Code Composer Studio

C2000 Microcontroller Workshop - Programming Development Environment 2 - 3

Code Composer Studio

Software Development and COFF Concepts
In an effort to standardize the software development process, TI uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of
all resources necessary for the proper operation of the module. Modules can be written using
Code Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output.
The expected extension of a source file is .ASM for assembly and .C for C programs.

Code Composer Studio

 Code Composer Studio includes:
 Integrated Edit/Debug GUI
Code Generation Tools
 TI-RTOS

Asm Link

Editor

Debug

Compile

Graphs,
Profiling

Code
Simulator

Development
Tool

External
Emulator

MCU
Board

Libraries

lnk.cmd
Build

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (.OUT), which runs on the device, and can include a .MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Code Composer Studio

2 - 4 C2000 Microcontroller Workshop - Programming Development Environment

The concept of COFF tools is to allow modular development of software independent of
hardware concerns. An individual assembly language file is written to perform a single task and
may be linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create a
new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio

Code Composer Studio: IDE

 Integrates: edit, code generation,
and debug

 Single-click access using buttons

 Powerful graphing/profiling tools

 Automated tasks using Scripts

 Built-in access to BIOS functions

 Based on the Eclipse open source
software framework

Code Composer Studio™ (CCS) is an integrated development environment (IDE) for Texas
Instruments (TI) embedded processor families. CCS comprises a suite of tools used to develop
and debug embedded applications. It includes compilers for each of TI's device families, source
code editor, project build environment, debugger, profiler, simulators, real-time operating system
and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar tools and interfaces allow users to get
started faster than ever before and add functionality to their application thanks to sophisticated
productivity tools.

CCS is based on the Eclipse open source software framework. The Eclipse software framework
was originally developed as an open framework for creating development tools. Eclipse offers an
excellent software framework for building software development environments and it is

Dell
Highlight

Dell
Highlight

 Code Composer Studio

C2000 Microcontroller Workshop - Programming Development Environment 2 - 5

becoming a standard framework used by many embedded software vendors. CCS combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from
TI resulting in a compelling feature-rich development environment for embedded developers.
CCS supports running on both Windows and Linux PCs. Note that not all features or devices are
supported on Linux.

Edit and Debug Perspective (CCSv6)
A perspective defines the initial layout views of the workbench windows, toolbars, and menus
that are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

Edit and Debug Perspective (CCSv6)
 Each perspective provides a set of functionality aimed

at accomplishing a specific task

 Edit Perspective
 Displays views used

during code development
 C/C++ project, editor, etc.

 Debug Perspective
 Displays views used for

debugging
 Menus and toolbars

associated with debugging,
watch and memory
windows, graphs, etc.

Code Composer Studio has “Edit” and “Debug” perspectives. Each perspective provides a set of
functionality aimed at accomplishing a specific task. In the edit perspective, views used during
code development are displayed. In the debug perspective, views used during debug are
displayed.

Code Composer Studio

2 - 6 C2000 Microcontroller Workshop - Programming Development Environment

Target Configuration
A Target Configuration tells CCS how to connect to the device. It describes the device using
GEL files and device configuration files. The configuration files are XML files and have a
*.ccxlm file extension.

Creating a Target Configuration

 File New Target
Configuration File

 Select connection type

 Select device

 Save configuration

 Code Composer Studio

C2000 Microcontroller Workshop - Programming Development Environment 2 - 7

CCSv6 Project
Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

CCSv6 Project

 List of files:
 Source (C, assembly)
 Libraries
 DSP/BIOS configuration file
 Linker command files

 Project settings:
 Build options (compiler,

assembler, linker, and TI-RTOS)
 Build configurations

Project files contain:

A project contains files, such as C and assembly source files, libraries, BIOS configuration files,
and linker command files. It also contains project settings, such as build options, which include
the compiler, assembler, linker, and BIOS, as well as build configurations.

To create a new project, you need to select the following menu items:

File New CCS Project

Along with the main Project menu, you can also manage open projects using the right-click
popup menu. Either of these menus allows you to modify a project, such as add files to a project,
or open the properties of a project to set the build options.

Code Composer Studio

2 - 8 C2000 Microcontroller Workshop - Programming Development Environment

Creating a New CCSv6 Project
A graphical user interface (GUI) is used to assist in creating a new project. The GUI is shown in
the slide below.

Creating a New CCSv6 Project

 File New CCS Project

1. Project Name, Location, and Device

2. Advanced Settings

3. Project Templates and Examples

After a project is created, the build options are configured.

 Code Composer Studio

C2000 Microcontroller Workshop - Programming Development Environment 2 - 9

CCSv6 Build Options – Compiler / Linker
Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options – called Configurations: one called Debug, the other Release (you might think of as
Optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’s a sample of the configuration options.

CCSv6 Build Options – Compiler / Linker

 Compiler
 20 categories for code

generation tools
 Controls many aspects of

the build process, such as:
 Optimization level
 Target device
 Compiler / assembly / link

options

 Linker
 11 categories for linking

 Specify various link
options

 ${PROJECT_ROOT}
specifies the current
project directory

There is a one-to-one relationship between the items in the text box on the main page and the GUI
check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.
• -o <filename> specifies the output (executable) filename.
• -m <filename> creates a map file. This file reports the linker’s results.
• -c tells the compiler to autoinitialize your global and static variables.

• -x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, TI provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with –o3 and disables source-level, symbolic debugging by omitting –g (which
disables some optimizations to enable debug).

Code Composer Studio

2 - 10 C2000 Microcontroller Workshop - Programming Development Environment

CCSv6 Debug Environment
The basic buttons that control the debug environment are located in the top of CCS:

The common debugging and program execution descriptions are shown below:

Start debugging

Image Name Description Availability

New Target
Configuration

Creates a new target configartion file. File New Menu
Target Menu

Debug Opens a dialog to modify existing debug configura-
tions. Its drop down can be used to access other
launching options.

Debug Toolbar
Target Menu

Connect
Target

Connect to hardware targets. TI Debug Toolbar
Target Menu

Debug View Context Menu

Terminate All Terminates all active debug sessions. Target Menu
Debug View Toolbar

 Code Composer Studio

C2000 Microcontroller Workshop - Programming Development Environment 2 - 11

Program execution

Image Name Description Availability

Halt Halts the selected target. The rest of the debug
views will update automatically with most recent
target data.

Target Menu
Debug View Toolbar

Run Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until a breakpoint is encountered.

Target Menu
Debug View Toolbar

Run to Line Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until the specific source/assembly line is
reached.

Target Menu
Disassembly Context Menu
Source Editor Context Menu

Go to Main Runs the programs until the beginning of function
main in reached. Debug View Toolbar

Step Into Steps into the highlighted statement. Target Menu
Debug View Toolbar

Step Over Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it
will continue in the method from which the current
method was called. The cursor jumps to the decla-
ration of the method and selects this line.

Target Menu
Debug View Toolbar

Step Return Steps out of the current method. Target Menu
Debug View Toolbar

Reset Resets the selected target. The drop-down menu
has various advanced reset options, depending on
the selected device.

Target Menu
Debug View Toolbar

Restart Restores the PC to the entry point for the currently
loaded program. If the debugger option "Run to
main on target load or restart" is set the target will
run to the specified symbol, otherwise the execu-
tion state of the target is not changed.

Target Menu
Debug View Toolbar

Assembly
Step Into

The debugger executes the next assembly instruc-
tion, whether source is available or not.

TI Explicit Stepping Toolbar
Target Advanced Menu

Assembly
Step Over

The debugger steps over a single assembly instruc-
tion. If the instruction is an assembly subroutine,
the debugger executes the assembly subroutine
and then halts after the assembly function returns.

TI Explicit Stepping Toolbar
Target Advanced Menu

Creating a Linker Command File

2 - 12 C2000 Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Sections
Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.). All code consists of different parts called sections. All default section names begin
with a dot and are typically lower case. The compiler has default section names for initialized
and uninitialized sections. For example, x and y are global variables, and they are placed in the
section .ebss. Whereas 2 and 7 are initialized values, and they are placed in the section called
.cinit. The local variables are in a section .stack, and the code is placed in a section called .txt.

Sections

 All code consists of
different parts called
sections

 All default section
names begin with “.”

 The compiler has
default section names
for initialized and
uninitialized sections

int x = 2;

int y = 7;

void main(void)

{

long z;

z = x + y;

}

Global vars (.ebss) Init values (.cinit)

Local vars (.stack) Code (.text)

In the TI code-generation tools (as with any toolset based on the COFF – Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:
• Global Variables
• Initial Values for global variables
• Local Variables (i.e. the stack)
• Code (the actual instructions)

 Creating a Linker Command File

C2000 Microcontroller Workshop - Programming Development Environment 2 - 13

Following is a list of the sections that are created by the compiler. Along with their description,
we provide the Section Name defined by the compiler. This is a small list of compiler default
section names. The top group is initialized sections, and they are linked to flash. In our previous
code example, we saw .txt was used for code, and .cinit for initialized values. The bottom group
is uninitialized sections, and they are linked to RAM. Once again, in our previous example, we
saw .ebss used for global variables and .stack for local variables.

Compiler Section Names

Name Description Link Location
.text code FLASH
.cinit initialization values for FLASH

global and static variables
.econst constants (e.g. const int k = 3;) FLASH
.switch tables for switch statements FLASH
.pinit tables for global constructors (C++) FLASH

Initialized Sections

Name Description Link Location
.ebss global and static variables RAM
.stack stack space low 64Kw RAM
.esysmem memory for far malloc functions RAM

Uninitialized Sections

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit – initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss – uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code during
runtime execution. Unlike program code or constants, uninitialized data or variables must reside

Creating a Linker Command File

2 - 14 C2000 Microcontroller Workshop - Programming Development Environment

in volatile memory, such as RAM. These memories can be modified and updated, supporting the
way variables are used in math formulas, high-level languages, etc. Each variable must be
declared with a directive to reserve memory to contain its value. By their nature, no value is
assigned, instead they are loaded at runtime by the program.

Next, we need to place the sections that were created by the compiler into the appropriate
memory spaces. The uninitialized sections, .ebss and .stack, need to be placed into RAM; while
the initialized sections, .cinit, and .txt, need to be placed into flash.

Placing Sections in Memory

.ebss

.cinit

.text

Memory
M0SARAM

(0x400)
0x00 0000

0x3E 8000

0x00 0400 M1SARAM
(0x400)

FLASH
(0x10000)

Sections

.stack

Linking code is a three step process:

1. Defining the various regions of memory (on-chip SARAM vs. FLASH vs. External Memory).

2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

 Creating a Linker Command File

C2000 Microcontroller Workshop - Programming Development Environment 2 - 15

Linker Command Files (.cmd)
The linker concatenates each section from all input files, allocating memory to each section based
on its length and location as specified by the MEMORY and SECTIONS commands in the linker
command file. The linker command file describes the physical hardware memory and specifies
where the sections are placed in the memory. The file created during the link process is a .out
file. This is the file that will be loaded into the microcontroller. As an option, we can generate a
map file. This map file will provide a summary of the link process, such as the absolute address
and size of each section.

Linking

Linker

Link.cmd

.map

.obj .out

 Memory description
 How to place s/w into h/w

Memory-Map Description
The MEMORY section describes the memory configuration of the target system to the linker.

The format is: Name: origin = 0x????, length = 0x????

For example, if you placed a 64Kw FLASH starting at memory location 0x3E8000, it would read:

MEMORY
{
 FLASH: origin = 0x3E8000 , length = 0x010000
}

Each memory segment is defined using the above format. If you added M0SARAM and
M1SARAM, it would look like:

Creating a Linker Command File

2 - 16 C2000 Microcontroller Workshop - Programming Development Environment

MEMORY
{
 M0SARAM: origin = 0x000000 , length = 0x0400
 M1SARAM: origin = 0x000400 , length = 0x0400
}

Remember that the MCU has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File

SECTIONS
{

.text:> FLASH PAGE = 0

.ebss:> M0SARAM PAGE = 1

.cinit:> FLASH PAGE = 0

.stack:> M1SARAM PAGE = 1
}

MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x3E8000, length = 0x10000

PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400

}

A linker command file consists of two sections, a memory section and a sections section. In the
memory section, page 0 defines the program memory space, and page 1 defines the data memory
space. Each memory block is given a unique name, along with its origin and length. In the
sections section, the section is directed to the appropriate memory block.

Section Placement
The SECTIONS section will specify how you want the sections to be distributed through
memory. The following code is used to link the sections into the memory specified in the
previous example:

 Creating a Linker Command File

C2000 Microcontroller Workshop - Programming Development Environment 2 - 17

SECTIONS
{
 .text:> FLASH PAGE 0
 .ebss:> M0SARAM PAGE 1
 .cinit:> FLASH PAGE 0
 .stack:> M1SARAM PAGE 1
}

The linker will gather all the code sections from all the files being linked together. Similarly, it
will combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

Summary: Linker Command File
The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

Memory Map Description
Name
Location
Size

Sections Description
Directs software sections into named

memory regions
Allows per-file discrimination
Allows separate load/run locations

Lab File Directory Structure

2 - 18 C2000 Microcontroller Workshop - Programming Development Environment

Lab File Directory Structure

Lab File Directory Structure

 All modified files are in the
Project Folder

 Original source files are
always available for reuse, if
a file becomes corrupted

Original Source Files
Source Files are “Added” to
the Project Folder

Supporting Files and Libraries

Note: CCSv6 will automatically add ALL files contained in the folder where the project is created

 Easier to make projects portable
 ${PROJECT_ROOT} provides

an anchor point for paths to files
that travel with the project

 Easier to maintain and update
supporting files and libraries

 Lab 2: Linker Command File

C2000 Microcontroller Workshop - Programming Development Environment 2 - 19

Lab 2: Linker Command File
 Objective

Use a linker command file to link the C program file (Lab2.c) into the system described below.

Lab 2: Linker Command File

System Description:
• TMS320F28069
• All internal RAM

blocks allocated

Placement of Sections:
• .text into RAM Block L4SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L4SARAM on PAGE 0 (program memory)
• .ebss into RAM Block M0SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

F28069

Memory

on-chip
memory

0x00 0000 M0SARAM
(0x400)

M1SARAM
(0x400)

L0DPSARAM
(0x800)

L1DPSARAM
(0x400)

L2DPSARAM
(0x400)

L3DPSARAM
(0x1000)

0x00 0400

0x00 8000

0x00 8800

0x00 8C00

0x00 9000

0x00 A000 L4SARAM
(0x2000)

L5DPSARAM
(0x2000)

L6DPSARAM
(0x2000)

L7DPSARAM
(0x2000)

L8DPSARAM
(0x2000)

0x00 C000

0x00 E000

0x01 0000

0x01 2000

 Initial Hardware Set Up
Insert the F28069 controlCARD into the Docking Station connector slot. Using the supplied
USB cable – plug the USB Standard Type A connector into the computer USB port and the USB
Standard Type B connector into the Docking Station. On the Docking Station move switch SW1
to the “USB” position. This will power the Docking Station and controlCARD using the power
supplied by the computer USB port. Additionally, this USB port will provide the JTAG
communication link between the device and Code Composer Studio.

 Initial Software Set Up
Code Composer Studio must be installed in addition to the workshop files. A local copy of the
required controlSUITE files is included with the lab files. This provides portability, making the
workshop files self-contained and independent of other support files or resources. The lab
directions for this workshop are based on all software installed in their default locations.

 Procedure

Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or

selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Use the default location for the workspace
and click OK.

Lab 2: Linker Command File

2 - 20 C2000 Microcontroller Workshop - Programming Development Environment

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed so that the same projects and settings will be available when CCS is
opened again. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens an introduction page appears. Close the page by clicking the X
on the “Getting Started” tab. You should now have an empty workbench. The term
workbench refers to the desktop development environment. Maximize CCS to fill your
screen.

The workbench will open in the “CCS Edit Perspective” view. Notice the CCS Edit
icon in the upper right-hand corner. A perspective defines the initial layout views of the
workbench windows, toolbars, and menus which are appropriate for a specific type of
task (i.e. code development or debugging). This minimizes clutter to the user interface.
The “CCS Edit Perspective” is used to create or build projects. A “CCS Debug
Perspective” view will automatically be enabled when the debug session is started. This
perspective is used for debugging projects.

Setup Target Configuration
3. Open the emulator target configuration dialog box. On the menu bar click:

File New Target Configuration File

In the file name field type F28069_ExpKit.ccxml. This is just a descriptive name
since multiple target configuration files can be created. Leave the “Use shared location”
box checked and select Finish.

4. In the next window that appears, select the emulator using the “Connection” pull-down
list and choose “Texas Instruments XDS100v1 USB Emulator”. In the
“Board or Device” box type F28069 to filter the options. In the box below, check the
box to select “Experimenter’s Kit – Piccolo F28069”. Click Save to save
the configuration, then close the “F28069_ExpKit.ccxml” setup window by clicking the
X on the tabs.

5. To view the target configurations, click:

View Target Configurations

and click the plus sign (+) to the left of User Defined. Notice that the
F28069_ExpKit.ccxml file is listed and set as the default. If it is not set as the
default, right-click on the .ccxml file and select “Set as Default”. Close the Target
Configurations window by clicking the X on the tab.

Create a New Project
6. A project contains all the files you will need to develop an executable output file (.out)

which can be run on the MCU hardware. To create a new project click:

File New CCS Project

A CCS Project window will open. At the top of this window, filter the “Target” options
by using the pull-down list on the left and choose “2806x Piccolo”. In the pull-

 Lab 2: Linker Command File

C2000 Microcontroller Workshop - Programming Development Environment 2 - 21

down list immediately to the right, choose the “Experimenter’s Kit – F28069
Piccolo”.

Leave the “Connection” box blank. We have already set up the target configuration.

7. The next section section selects the project settings. In the Project name field type Lab2.
Uncheck the “Use default location” box. Click the Browse… button and navigate to:

C:\C28x\Labs\Lab2\Project

Click OK.

8. Next, open the “Advanced setting” section and set the “Linker command file” to
“<none>”. We will be using our own linker command file rather than the one supplied
by CCS. Leave the “Runtime Support Library” set to “<automatic>”. This will
automatically select the “rts2800_fpu32.lib” runtime support library for floating-point
devices.

9. Then, open the “Project templates and examples” section and select the “Empty
Project” template. Click Finish.

10. A new project has now been created. Notice the Project Explorer window
contains Lab2. The project is set Active and the output files will be located in the
Debug folder. At this point, the project does not include any source files. The next step
is to add the source files to the project.

11. To add the source files to the project, right-click on Lab2 in the Project Explorer
window and select:
Add Files…

 or click: Project Add Files…

and make sure you’re looking in C:\C28x\Labs\Lab2\Files. With the “files of
type” set to view all files (*.*) select Lab2.c and Lab2.cmd then click OPEN. A “File
Operation” window will open, choose “Copy files” and click OK. This will add the
files to the project.

12. In the Project Explorer window, click the plus sign (+) to the left of Lab2 and
notice that the files are listed.

Project Build Options
13. There are numerous build options in the project. Most default option settings are

sufficient for getting started. We will inspect a couple of the default options at this time.
Right-click on Lab2 in the Project Explorer window and select Properties or
click:
Project Properties

14. A “Properties” window will open and in the section on the left under “Build” be sure that
the “C2000 Compiler” and “C2000 Linker” options are visible. Next, under “C2000
Linker” select the “Basic Options”. Notice that .out and .map files are being
specified. The .out file is the executable code that will be loaded into the MCU. The
.map file will contain a linker report showing memory usage and section addresses in
memory. Also notice the stack size is set to 0x300.

Lab 2: Linker Command File

2 - 22 C2000 Microcontroller Workshop - Programming Development Environment

15. Under “C2000 Compiler” select the “Processor Options”. Notice the “Use large
memory model” and “Unified memory” boxes are checked. Next, notice the “Specify
CLA support” is set to cla0, the “Specify floating point support” is set to fpu32, and
the “Specify VCU support” is set to vcu0. Select OK to close the Properties window.

Linker Command File – Lab2.cmd
16. Open and inspect Lab2.cmd by double clicking on the filename in the Project

Explorer window. Notice that the Memory{} declaration describes the system
memory shown on the “Lab2: Linker Command File” slide in the objective section of
this lab exercise. Memory blocks L3DPSARAM and L4SARAM have been placed in
program memory on page 0, and the other memory blocks have been placed in data
memory on page 1.

17. In the Sections{} area notice that the sections defined on the slide have been “linked”
into the appropriate memories. Also, notice that a section called .reset has been allocated.
The .reset section is part of the rts2800_fpu32.lib and is not needed. By putting the
TYPE = DSECT modifier after its allocation the linker will ignore this section and not
allocate it. Close the inspected file.

Build and Load the Project
18. Two buttons on the horizontal toolbar control code generation. Hover your mouse over

each button as you read the following descriptions:

 Button Name Description_____________________________________
 1 Build Full build and link of all source files

 2 Debug Automatically build, link, load and launch debug-session

19. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window (we have deliberately put an error in Lab2.c). When
you get an error, you will see the error message in the Problems window. Expand the
error by clicking on the plus sign (+) to the left of the “Errors”. Then simply double-click
the error message. The editor will automatically open to the source file containing the
error, with the code line highlighted with a question mark (?).

20. Fix the error by adding a semicolon at the end of the “z = x + y” statement. For
future knowledge, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

21. Build the project again. There should be no errors this time.
22. CCS can automatically save modified source files, build the program, open the debug

perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.
Click on the “Debug” button (green bug) or click RUN Debug

Notice the CCS Debug icon in the upper right-hand corner indicating that we are now in
the “CCS Debug Perspective” view. The program ran through the C-environment
initialization routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

 Lab 2: Linker Command File

C2000 Microcontroller Workshop - Programming Development Environment 2 - 23

Debug Environment Windows
It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory browser, and expressions.

23. Open a “Memory Browser” to view the global variable “z”.

Click: View Memory Browser on the menu bar.

Type &z into the address field, select “Data” memory page, and then select Go. Note
that you must use the ampersand (meaning “address of”) when using a symbol in a
memory browser address box. Also note that CCS is case sensitive.

Set the properties format to “Hex 16 Bit – TI Style Hex” in the browser. This will give
you more viewable data in the browser. You can change the contents of any address in
the memory browser by double-clicking on its value. This is useful during debug.

24. Notice the “Variables” window automatically opened and the local variables x and y are
present. The variables window will always contain the local variables for the code
function currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory browser by setting the address to “SP” after the code function has been
entered).

25. We can also add global variables to the “Expressions” window if desired. Let's add the
global variable “z”.

Click the “Expressions” tab at the top of the window. In the empty box in the
“Expression” column (Add new expression), type z and then enter. An ampersand is not
used here. The expressions window knows you are specifying a symbol. (Note that the
expressions window can be manually opened by clicking: View Expressions on
the menu bar).

Check that the expressions window and memory browser both report the same value for
“z”. Try changing the value in one window, and notice that the value also changes in the
other window.

Single-stepping the Code
26. Click the “Variables” tab at the top of the window to watch the local variables. Single-

step through main() by using the <F5> key (or you can use the Step Into button on
the horizontal toolbar). Check to see if the program is working as expected. What is the
value for “z” when you get to the end of the program?

Terminate Debug Session and Close Project
27. The Terminate button will terminate the active debug session, close the debugger and

return CCS to the “CCS Edit Perspective” view.

Click: Run Terminate or use the Terminate icon:

Lab 2: Linker Command File

2 - 24 C2000 Microcontroller Workshop - Programming Development Environment

28. Next, close the project by right-clicking on Lab2 in the Project Explorer window
and select Close Project.

End of Exercise

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 1

Peripherial Registers Header Files

Introduction
The purpose of the F2806x C-code header files is to simplify the programming of the many
peripherals on the F28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The F2806x C-code header files are part of a library consisting of C functions, macros, peripheral
structures, and variable definitions. Together, this set of files is known as the ‘header files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

 Module Objectives

Module Objectives

Understand the usage of the F2806x
C-Code Header Files

Be able to program peripheral
registers

Understand how the structures are
mapped with the linker command file

Module Topics

3 - 2 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Module Topics
Peripherial Registers Header Files ...3-1

Module Topics ..3-2

Traditional and Structure Approach to C Coding ...3-3

Naming Conventions ..3-7

F2806x C-Code Header Files ..3-9
Peripheral Structure .h File ..3-9
Global Variable Definitions File ...3-11
Mapping Structures to Memory ...3-12
Linker Command File ..3-12
Peripheral Specific Routines..3-13

Summary ..3-14

 Traditional and Structure Approach to C Coding

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 3

Traditional and Structure Approach to C Coding

Traditional Approach to C Coding
#define ADCCTL1 (volatile unsigned int *)0x00007100

...

void main(void)

{

*ADCCTL1 = 0x1234; //write entire register

*ADCCTL1 |= 0x4000; //enable ADC module

}

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

Advantages - Simple, fast and easy to type
- Variable names exactly match register names (easy

to remember)

In the traditional approach to C coding, we used a #define to assign the address of the register and
referenced it with a pointer. The first line of code on this slide we are writing to the entire
register with a 16-bit value. The second line, we are ORing a bit field.

Advantages? Simple, fast, and easy to type. The variable names can exactly match the register
names, so it's easy to remember. Disadvantages? Requires individual masks to be generated to
manipulate individual bits, it cannot easily display bit fields in the debugger window, and it will
generate less efficient code in many cases.

Traditional and Structure Approach to C Coding

3 - 4 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Structure Approach to C Coding
void main(void)

{

AdcRegs.ADCCTL1.all = 0x1234; //write entire register

AdcRegs.ADCCTL1.bit.ADCENABLE = 1; //enable ADC module

}

Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Advantages - Easy to manipulate individual bits
- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)

The structure approach to C coding uses the peripheral register header files. First, a peripheral is
specified, followed by a control register. Then you can modify the complete register or selected
bits. This is almost self-commented code.

The first line of code on this slide we are writing to the entire register. The second line of code
we are modifying a bit field. Advantages? Easy to manipulate individual bits, it works great with
our tools, and will generate the most efficient code. Disadvantages? Can be difficult to
remember the structure names and more to type; however, the edit auto complete feature of Code
Composer Studio will eliminate these disadvantages.

 Traditional and Structure Approach to C Coding

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 5

Built-in Register Window

With the traditional approach to coding using #define, we can only view the complete register
values. As an example, notice the control register ADCCTL1 has a value of 0x40E4. We would
need to refer to the reference guide to know the settings of the individual bit fields.

Expressions Window using Structures

With the structure approach, we can add the peripheral to an expressions window, allowing us to

Traditional and Structure Approach to C Coding

3 - 6 C2000 Microcontroller Workshop - Peripheral Registers Header Files

view, as well as modify individual bit fields in a register. No need for a reference guide to
identify the bit fields.

Is the Structure Approach Efficient?

You could not have coded this example any more efficiently with hand assembly!

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code
// Stop CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 1;

// Load new 32-bit period value
CpuTimer0Regs.PRD.all = 0x00010000;

// Start CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 0;

Generated Assembly Code*
MOVW DP, #0030
OR @4, #0x0010

MOVL XAR4, #0x010000
MOVL @2, XAR4

AND @4, #0xFFEF

5 words, 5 cycles- Easy to read the code w/o comments
- Bit mask built-in to structure

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

Compare with the #define Approach
The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code
// Stop CPU Timer0
*TIMER0TCR |= 0x0010;

// Load new 32-bit period value
*TIMER0TPRD32 = 0x00010000;

// Start CPU Timer0
*TIMER0TCR &= 0xFFEF;

Generated Assembly Code*
MOV @AL,*(0:0x0C04)
ORB AL, #0x10
MOV *(0:0x0C04), @AL

MOVL XAR5, #0x010000
MOVL XAR4, #0x000C0A
MOVL *+XAR4[0], XAR5

MOV @AL, *(0:0x0C04)
AND @AL, #0xFFEF
MOV *(0:0x0C04), @AL

9 words, 9 cycles- Hard to read the code w/o comments
- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

 Naming Conventions

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 7

Naming Conventions
The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions.

Structure Naming Conventions
 The F2806x header files define:

All of the peripheral structures
All of the register names
All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all // Access full 16 or 32-bit register

PeripheralName.RegisterName.half.LSW // Access low 16-bits of 32-bit register

PeripheralName.RegisterName.half.MSW // Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by TI and found in the F2806x header files.
They are a combination of capital and small letters (i.e. CpuTimer0Regs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

The header files define all of the peripheral structures, all of the register names, all of the bit field
names, and all of the register addresses. The most common naming conventions used are
PeripheralName.RegisterName.all, which will access the full 16 or 32-bit register; and
PeripheralName.RegisterName.bit.FieldName, which will access the specified bit fields of a
register.

Naming Conventions

3 - 8 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Editor Auto Complete to the Rescue!

The editor auto complete feature works as follows. First, you type AdcRegs. Then, when you
type a “.” a window opens up, allowing you to select a control register. In this example
ADCCTL1 is selected. Then, when you type the “.” a window opens up, allowing you to select
“all” or “bit”. In this example “bit” is selected. Then, when you type the “.” a window opens up,
allowing you to select a bit field. In this example RESET is selected. And now, the structure is
completed.

 F2806x C-Code Header Files

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 9

F2806x C-Code Header Files
The F2806x header file package contains everything needed to use the structure approach. It
defines all the peripheral register bits and register addresses. The header file package includes the
header files, linker command files, code examples, and documentation. The header file package
is available from controlSUITE.

F2806x Header File Package
(http://www.ti.com, controlSUITE)

Contains everything needed to use the
structure approach

Defines all peripheral register bits and
register addresses

Header file package includes:

\F2806x_headers\include .h files
\F2806x_headers\cmd linker .cmd files
\F2806x_examples CCS examples
\doc documentation

controlSUITE Header File Package located at C:\TI\controlSUITE\device_support\

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

Peripheral data structures can be added to the watch window by right-clicking on the structure
and selecting the option to add to watch window. This will allow viewing of the individual
register fields.

Peripheral Structure .h File

The F2806x_Device.h header file is the main include file. By including this file in the .c source
code, all of the peripheral specific .h header files are automatically included. Of course, each
specific .h header file can be included individually in an application that does not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

F2806x C-Code Header Files

3 - 10 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Peripheral Structure .h files (1 of 2)

 Contain bits field structure definitions for each peripheral register
F2806x_Adc.h

#include “F2806x_Device.h"

Void InitAdc(void)
{

/* Reset the ADC module */
AdcRegs.ADCCTL1.bit.RESET = 1;

/* configure the ADC register */
AdcRegs.ADCCTL1.all = 0x00E4;

};

Your C-source file (e.g., Adc.c)

// ADC Individual Register Bit Definitions:
struct ADCCTL1_BITS { // bits description

Uint16 TEMPCONV:1; // 0 Temperature sensor connection
Uint16 VREFLOCONV:1; // 1 VSSA connection
Uint16 INTPULSEPOS:1; // 2 INT pulse generation control
Uint16 ADCREFSEL:1; // 3 Internal/external reference select
Uint16 rsvd1:1; // 4 reserved
Uint16 ADCREFPWD:1; // 5 Reference buffers powerdown
Uint16 ADCBGPWD:1; // 6 ADC bandgap powerdown
Uint16 ADCPWDN:1; // 7 ADC powerdown
Uint16 ADCBSYCHN:5; // 12:8 ADC busy on a channel
Uint16 ADCBSY:1; // 13 ADC busy signal
Uint16 ADCENABLE:1; // 14 ADC enable
Uint16 RESET:1; // 15 ADC master reset

};
// Allow access to the bit fields or entire register:
union ADCCTL1_REG {

Uint16 all;
struct ADCCTL1_BITS bit;

};
// ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

Next, we will discuss the steps needed to use the header files with your project. The .h files
contain the bit field structure definitions for each peripheral register.

Peripheral Structure .h files (2 of 2)

 The header file package contains a .h file for
each peripheral in the device

 F2806x_Device.h
Main include file
Will include all other .h files
 Include this file (directly or indirectly)

in each source file:
#include “F2806x_Device.h”

F2806x_Adc.h F2806x_BootVars.h F2806x_Cla.h
F2806x_Comp.h F2806x_CpuTimers.h F2806x_DevEmu.h
F2806x_Device.h F2806x_Dma.h F2806x_ECan.h
F2806x_ECap.h F2806x_EPwm.h F2806x_EQep.h
F2806x_Gpio.h F2806x_I2c.h F2806x_Mcbsp.h
F2806x_NmiIntrupt.h F2806x_PieCtrl.h F2806x_PieVect.h
F2806x_Sci.h F2806x_Spi.h F2806x_SysCtrl.h
F2806x_Usb.h F2806x_XIntrupt.h

The header file package contains a .h file for each peripheral in the device. The
F2806x_Device.h file is the main include file. It will include all of the other .h files. There are

 F2806x C-Code Header Files

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 11

three steps needed to use the header files. The first step is to include this file directly or indirectly
in each source files.

Global Variable Definitions File
With F2806x_GlobalVariableDefs.c included in the project all the needed variable definitions are
globally defined.

Global Variable Definitions File
F2806x_GlobalVariableDefs.c

 Declares a global instantiation of the structure
for each peripheral

 Each structure is placed in its own section using
a DATA_SECTION pragma to allow linking to the
correct memory (see next slide)

 Add this file to your CCS project:
F2806x_GlobalVariableDefs.c

#include "F2806x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

F2806x_GlobalVariableDefs.c

The global variable definition file declares a global instantiation of the structure for each
peripheral. Each structure is placed in its own section using a DATA_SECTION pragma to allow
linking to the correct memory. The second step for using the header files is to add
F2806x_GlobalVariableDefs.c file to your project.

F2806x C-Code Header Files

3 - 12 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Mapping Structures to Memory
The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name via a DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
F2806x_nonBIOS.cmd and F2806x_BIOS.cmd

 Links each structure to
the address of the
peripheral using the
structures named
section

 non-BIOS and BIOS
versions of the .cmd file

 Add one of these files to
your CCS project:
F2806x_nonBIOS.cmd

or
F2806x_BIOS.cmd

MEMORY
{

PAGE1:
...
ADC: origin=0x007100, length=0x000080
...

}

SECTIONS
{

...
AdcRegsFile: > ADC PAGE = 1
...

}

F2806x_Headers_nonBIOS.cmd

#include "F2806x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

F2806x_GlobalVariableDefs.c

The header file package has two linker command file versions; one for non-BIOS projects and
one for BIOS projects. This linker command file is used to link each structure to the address of
the peripheral using the structures named section. The third and final step for using the header
files is to add the appropriate linker command file to your project.

Linker Command File
When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use a pre-configured linker command file
such as F28069.cmd. This file has the peripheral memory regions defined and tied to the
individual peripheral.

 F2806x C-Code Header Files

C2000 Microcontroller Workshop - Peripheral Registers Header Files 3 - 13

Peripheral Specific Routines
Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the
appropriate .c file to the project.

Peripheral Specific Examples
 Example projects for each peripheral
 Helpful to get you started

The peripheral register header file package includes example projects for each peripheral. This
can be very helpful to getting you started.

Summary

3 - 14 C2000 Microcontroller Workshop - Peripheral Registers Header Files

Summary

Peripheral Register Header Files
Summary

 Easier code development
 Easy to use
Generates most efficient code
 Increases effectiveness of CCS watch window
 TI has already done all the work!

Use the correct header file package for your device:

Go to http://www.ti.com and enter “controlSUITE” in the keyword search box

• F2806x
• F2803x
• F2802x
• F2833x and F2823x

• F280x and F2801x
• F2804x
• F281x

In summary, the peripheral register header files allow for easier code development, they are easy
to use, generates the most efficient code, works great with Code Composer Studio, and TI has
already done the work for you. Just make sure to use the correct header file package for your
device.

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 1

Reset and Interrupts

Introduction
This module describes the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) works.

Module Objectives

Module Objectives

 Describe the F28x reset process

 List the event sequence during an
interrupt

 Describe the F28x interrupt structure

Module Topics

4 - 2 C2000 Microcontroller Workshop - Reset and Interrupts

Module Topics
Reset and Interrupts ..4-1

Module Topics ..4-2

Reset ...4-3
Reset - Bootloader ...4-4
Emulation Boot Mode ...4-5
Stand-Alone Boot Mode ..4-6
Reset Code Flow – Summary ..4-6
Emulation Boot Mode using Code Composer Studio GEL ...4-7
Getting to main() ...4-8

Interrupts ...4-9
Interrupt Processing ...4-10
Interrupt Flag Register (IFR) ...4-11
Interrupt Enable Register (IER) ...4-11
Interrupt Global Mask Bit (INTM) ..4-12
Peripheral Interrupt Expansion (PIE) ..4-12
PIE Block Initialization ...4-14
Interrupt Signal Flow – Summary ...4-16
Interrupt Response and Latency ..4-17

 Reset

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 3

Reset

Reset Sources

 POR – Power-on Reset generates a device reset during
power-up conditions

 BOR – Brown-out Reset generates a device reset if the
power supply drops below specification for the device

Note: Devices support an on-chip voltage regulator (VREG) to
generate the core voltage

Watchdog Timer

XRS pin active
To XRS pin

F28x core

XRSPower-on Reset

Brown-out Reset

Missing Clock Detect

Logic shown is functional representation, not actual implementation

There are various reset sources available for this device: an external reset pin, watchdog timer
reset, power-on reset which generates a device reset during power-up conditions, brownout reset
which generates a device reset if the power supply drops below specifications for the device, as
well as a missing clock detect reset. Additionally, the device incorporates an on-chip voltage
regulator to generate the core voltage.

Reset

4 - 4 C2000 Microcontroller Workshop - Reset and Interrupts

Reset - Bootloader

Reset – Bootloader

TRST = JTAG Test Reset EMU_KEY & EMU_BMODE located in PIE at 0x0D00 & 0x0D01, respectively
OTP_KEY & OTP_BMODE located in OTP at 0x3D7BFB & 0x3D7BFE, respectively

Reset vector
fetched from

boot ROM
0x3F FFC0

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Stand-alone Boot
Boot determined by

2 GPIO pins and
2 OTP locations:

OTP_KEY and OTP_BMODE

TRST = 1 TRST = 0

Reset
ENPIE = 0
INTM = 1

YES NOEmulator
Connected ?

After reset, the PIE block is disabled and the global interrupt line is disabled. The reset vector is
fetched from the boot ROM and the bootloader process begins.

Then the bootloader determines if the emulator is connected by checking the JTAG test reset line.
If the emulator is connected, we are in emulation boot mode. The boot is then determined by two
RAM locations named EMU_Key and EMU_BMODE, which are located in the PIE block. If the
emulator is not connected, we are in stand-alone boot mode. The boot is then determined by two
GPIO pins and two OTP locations named OTP_KEY and OTP_BMODE, which are located in
the OTP.

 Reset

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 5

Emulation Boot Mode

Emulation Boot Mode (TRST = 1)

If either EMU_KEY or EMU_BMODE
are invalid, the “wait” boot mode is
used. These values can then be
modified using the debugger and a
reset issued to restart the boot process

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Emulator Connected

EMU_KEY = 0x55AA ? Boot Mode
Wait

Boot Mode
Parallel I/O
SCI
GetMode
SPI
I2C
OTP
CAN
M0 SARAM
FLASH
Wait

EMU_BMODE =
0x0000
0x0001
0x0003
0x0004
0x0005
0x0006
0x0007
0x000A
0x000B
other

Boot Mode
FLASH

Boot Mode
SCI
SPI
I2C
OTP
CAN
FLASH

OTP_BMODE =
0x0001
0x0004
0x0005
0x0006
0x0007
other

NO

NO

YES

YES

OTP_KEY = 0x005A ?

In emulation boot mode, first the EMU_KEY register is checked to see if it has a value of
0x55AA. If either EMU_KEY or EMU_BMODE are invalid, the wait boot mode is used. These
values can then be modified using the debugger and a reset issued to restart the boot process.
This can be considered the default on power-up. At this point, you would like the device to wait
until given a boot mode.

If EMU_KEY register has a value of 0x55AA, then the hex value in the EMU_BMODE register
determines the boot mode. The boot modes are parallel I/O, SCI, SPI, I2C, OTP, CAN,
M0SARAM, FLASH, and Wait. In addition, there is a GetMode, which emulates the stand-alone
boot mode.

Reset

4 - 6 C2000 Microcontroller Workshop - Reset and Interrupts

Stand-Alone Boot Mode

Stand-Alone Boot Mode (TRST = 0)

Stand-alone Boot
Boot determined by

2 GPIO pins and
2 OTP locations:

OTP_KEY and OTP_BMODE

Emulator Not Connected

Boot Mode
Parallel I/O
SCI
Wait
GetMode

GPIO GPIO
37 34
0 0
0 1
1 0
1 1

Boot Mode
FLASH

Boot Mode
SCI
SPI
I2C
OTP
CAN
FLASH

OTP_BMODE =
0x0001
0x0004
0x0005
0x0006
0x0007
other

NO

YES

Note that the boot behavior for
unprogrammed OTP is the
“FLASH” boot mode

OTP_KEY = 0x005A ?

In stand-alone boot mode, GPIO pins 37 and 34 determine if the boot mode is parallel I/O, SCI,
or wait. The default unconnected pins would set the boot mode to GetMode. In GetMode, first
the OTP_KEY register is checked to see if it has a value of 0x005A. An unprogrammed OTP is
set to the FLASH boot mode, as expected.

If the OTP_KEY register has a value of 0x005A, then the hex value in the OTP_BMODE register
determines the boot mode. The boot modes are SCI, SPI, I2C, OTP, CAN, and FLASH.

Reset Code Flow – Summary
In summary, the reset code flow is as follows: The reset vector is fetched from the boot ROM.
Then, the execution entry is determined by emulation boot mode or stand-alone boot mode. The
boot mode options are M0SARAM, OTP, FLASH, and boot loading routines.

 Reset

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 7

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (128Kw)

0x3F7FF6

0x3D7800

0x3D8000

0x000000

0x3F8000

0x3FFFC0

Boot ROM (32Kw)

BROM vector (64w)
0x3FF75C

Boot Code

•
•

•
•

RESET

Execution Entry
determined by

Emulation Boot Mode or
Stand-Alone Boot Mode

Bootloading
Routines

(SCI, SPI, I2C,
CAN, Parallel I/O)

0x3FF75C

0x000000

OTP (1Kw)
0x3D7800

Emulation Boot Mode using Code Composer Studio GEL
The CCS GEL file can be used to setup the boot mode for the device during debug. The
“OnReset()” GEL function is called each time the device is reset. This function can be modified
to include a call to set the device to “Boot to SARAM” emulation mode automatically, if desired.
OnReset(int nErrorCode)
{
 C28x_Mode();
 Unlock_CSM();
 Device_Cal();
 CLA_Clock_Enable(); /* Enable CLA clock */

// EMU_BOOT_SARAM(); /* Set EMU Boot Variables - Boot to SARAM */
// EMU_BOOT_FLASH(); /* Set EMU Boot Variables - Boot to flash */
}

The GEL file also provides a function to set the device to “Boot to Flash”:
/**/
/* EMU Boot Mode - Set Boot Mode During Debug */
/**/
menuitem "EMU Boot Mode Select"
hotmenu EMU_BOOT_SARAM()
{
 0xD00 = 0x55AA; / EMU_KEY = 0x 55AA */
 0xD01 = 0x000A; / Boot to SARAM */
}
hotmenu EMU_BOOT_FLASH()
{
 0xD00 = 0x55AA; / EMU_KEY = 0x 55AA */
 0xD01 = 0x000B; / Boot to FLASH */
}

To access the GEL file use: Tools Debugger Options Generic Debugger Options

Reset

4 - 8 C2000 Microcontroller Workshop - Reset and Interrupts

Getting to main()

After reset how do we get to main() ?
 At the code entry point, branch to _c_int00()

 Part of compiler runtime support library
 Sets up compiler environment
Calls main()

.sect “codestart”

LB _c_int00
CodeStartBranch.asm

MEMORY
{
PAGE 0:

BEGIN_M0 : origin = 0x000000, length = 0x000002
}

SECTIONS
{

codestart : > BEGIN_M0, PAGE = 0
}

Linker .cmd

Note: the above example is for boot mode set to M0 SARAM; to run out of Flash, the
“codestart” section would be linked to the entry point of the Flash memory block

After reset how do we get to main? When the bootloader process is completed, a branch to the
compiler runtime support library is located at the code entry point. This branch to _c_int00 is
executed, then the compiler environment is set up, and finally main is called.

 Interrupts

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 9

Interrupts

Interrupt Sources

ePWM, eCAP, eQEP,
ADC, SCI, SPI, I2C,

eCAN, McBSP,
DMA, CLA, WD

Internal Sources

External Sources

XINT1 – XINT3

TZx

XRS

NMI

F28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

•••

PIE
(Peripheral

Interrupt
Expansion)

TINT2
TINT1
TINT0

The internal interrupt sources include the general purpose timers 0, 1, and 2, and all of the
peripherals on the device. External interrupt sources include the three external interrupt lines, the
trip zones, and the external reset pin. The core has 14 interrupt lines. As you can see, the number
of interrupt sources exceeds the number of interrupt lines on the core. The PIE, or Peripheral
Interrupt Expansion block, is connected to the core interrupt lines 1 through 12. This block
manages and expands the 12 core interrupt lines, allowing up to 96 possible interrupt sources.

Interrupts

4 - 10 C2000 Microcontroller Workshop - Reset and Interrupts

Interrupt Processing

 A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

Maskable Interrupt Processing
Conceptual Core Overview

1

0

1

(IFR)
“Latch”

INT14

INT1

INT2

Core
Interrupt

F28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

 If the individual and global switches are turned “on” the
interrupt reaches the core

It is easier to explain the interrupt processing flow from the core back out to the interrupt sources.
The INTM is the master interrupt switch. This switch must be closed for any interrupts to
propagate into the core. The next layer out is the interrupt enable register. The appropriate
interrupt line switch must be closed to allow an interrupt through. The interrupt flag register gets
set when an interrupt occurs. Once the core starts processing an interrupt, the INTM switch
opens to avoid nested interrupts and the flag is cleared.

The core interrupt registers consists of the interrupt flag register, interrupt enable register, and
interrupt global mask bit. Notice that the interrupt global mask bit is zero when enabled and one
when disabled. The interrupt enable register is managed by ORing and ANDing mask values.
The interrupt global mask bit is managed using inline assembly.

 Interrupts

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 11

Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)
RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Pending : IFR Bit = 1
Absent : IFR Bit = 0

 Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
 If interrupt occurs when writing IFR, interrupt has priority
 IFR(bit) cleared when interrupt is acknowledged by CPU
 Register cleared on reset

/*** Manual setting/clearing IFR ***/
extern cregister volatile unsigned int IFR;

IFR |= 0x0008; //set INT4 in IFR
IFR &= 0xFFF7; //clear INT4 in IFR

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)
RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Enable: Set IER Bit = 1
Disable: Clear IER Bit = 0

 Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

 Register cleared on reset

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

Interrupts

4 - 12 C2000 Microcontroller Workshop - Reset and Interrupts

Interrupt Global Mask Bit (INTM)

Interrupt Global Mask Bit

 INTM used to globally enable/disable interrupts:
 Enable: INTM = 0
 Disable: INTM = 1 (reset value)

 INTM modified from assembly code only:

INTMST1
Bit 0

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

IF
R

IE
R

IN
TM 28x

Core

Core Interrupt logic

PIE module for 96 Interrupts

INT1.y interrupt group
INT2.y interrupt group
INT3.y interrupt group
INT4.y interrupt group
INT5.y interrupt group
INT6.y interrupt group
INT7.y interrupt group
INT8.y interrupt group
INT9.y interrupt group
INT10.y interrupt group
INT11.y interrupt group
INT12.y interrupt group

INT1 – INT12

12 Interrupts

96

INT1.1

INT1.2

INT1.8

1

0

1

•
•
•

•
•
•

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

(TINT1)
(TINT2)

INT13
INT14
NMI

Pe
rip

he
ra

l I
nt

er
ru

pt
s

12

 x
 8

 =
 9

6

We have already discussed the interrupt process in the core. Now we need to look at the

 Interrupts

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 13

peripheral interrupt expansion block. This block is connected to the core interrupt lines 1 through
12. The PIE block consists of 12 groups. Within each group, there are eight interrupt sources.
Each group has a PIE interrupt enable register and a PIE interrupt flag register.

As you can see, the interrupts are numbered from 1.1 through 12.8, giving us a maximum of 96
interrupt sources. Interrupt lines 13, 14, and NMI bypass the PIE block.

F2806x PIE Interrupt Assignment Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKEINT TINT0 ADCINT9 XINT2 XINT1 ADCINT2 ADCINT1

INT2 EPWM8
_TZINT

EPWM7
_TZINT

EPWM6
_TZINT

EPWM5
_TZINT

EPWM4
_TZINT

EPWM3
_TZINT

EPWM2
_TZINT

EPWM1
_TZINT

INT3 EPWM8
_INT

EPWM7
_INT

EPWM6
_INT

EPWM5
_INT

EPWM4
_INT

EPWM3
_INT

EPWM2
_INT

EPWM1
_INT

INT4 HRCAP2
_INT

HRCAP1
_INT

ECAP3
_INT

ECAP2
_INT

ECAP1
_INT

INT5 HRCAP4
_INT

HRCAP3
_INT

EQEP2
_INT

EQEP1
_INT

INT6 MXINTA MRINTA SPITX
INTB

SPIRX
INTB

SPITX
INTA

SPIRX
INTA

INT7 DINTCH6 DINTCH5 DINTCH4 DINTCH3 DINTCH2 DINTCH1

INT8 I2CINT2A I2CINT1A

INT9 SCITX
INTB

SCIRX
INTB

SCITX
INTA

SCIRX
INTA

INT10 ADCINT8 ADCINT7 ADCINT6 ADCINT5 ADCINT4 ADCINT3 ADCINT2 ADCINT1

INT11 CLA1
_INT8

CLA1
_INT7

CLA1
_INT6

CLA1
_INT5

CLA1
_INT4

CLA1
_INT3

CLA1
_INT2

CLA1
_INT1

INT12 LUF LVF XINT3

ECAN0
_INTA

ECAN1
_INTA

The interrupt assignment table tells us the location for each interrupt source within the PIE block.
Notice the table is numbered from 1.1 through 12.8, perfectly matching the PIE block.

The PIE registers consist of 12 PIE interrupt flag registers, 12 PIE interrupt enable registers, a
PIE interrupt acknowledge register, and a PIE control register. The enable PIE bit in the PIE
control register must be set during initialization for the PIE block to be enabled.

Dell
Rectangle

Dell
Rectangle

Interrupts

4 - 14 C2000 Microcontroller Workshop - Reset and Interrupts

PIE Registers

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1

0123456715 - 8

reserved

PIEIFRx register (x = 1 to 12)

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1

0123456715 - 8

reserved

PIEIERx register (x = 1 to 12)

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
124 356789 0101115 - 12

ENPIEPIEVECT

PIECTRL register 015 - 1

#include “F2806x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx2 = 1; //enable EPWM2_INT in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

PIE Block Initialization

PIE Block Initialization

•
•
•

// CPU Initialization

InitPieCtrl();
•
•
•

Main.c

•
•
•

// Initialize PIE_RAM

memcpy();
•
•
•

PieCtrl.c

// Enable PIE Block
PieCtrlRegs.
PIECTRL.bit.
ENPIE=1;

• • ••
•
•

// Base Vectors

PieVect.c

PIE_VECT_TABLE

•
•
•

// Core INT1 re-map

// Core INT12 re-map

PIE RAM
Vectors

256w
(ENPIE = 1)

Boot ROM
Reset Vector

1

2
2

3

Memory Map

The interrupt vector table, as mapped in the PIE interrupt assignment table, is located in the
PieVect.c file. During initialization in main, we have a function call to PieCtrl.c. In this file, a

 Interrupts

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 15

memory copy function copies the interrupt vector table to the PIE RAM and then sets ENPIE to
1, enabling the PIE block. This process is done to set up the vectors for interrupts.

PIE Initialization Code Flow - Summary
RESET

<0x3F FFC0>
Reset Vector

<0x3F F75C> = Boot Code

Flash Entry Point
<0x3F 7FF6> = LB _c_int00

M0SARAM Entry Point
<0x00 0000> = LB _c_int00

_c_int00:

CALL main()

•
•
•

OR

main()
{ initialization();

}

Initialization()
{
Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

}

PIE Vector Table
256 Word RAM

0x00 0D00 – 0DFF

•
•
•

Main.c

CodeStartBranch.asm

rts2800_fpu32.lib

Boot option determines
code execution entry point

interrupt void name(void)
{

}

•
•
•

DefaultIsr.c

Interrupt

.sect “codestart”

In summary, the PIE initialization code flow is as follows. After the device is reset and executes
the boot code, the selected boot option determines the code entry point. This figure shows two
different entry points. The one on the left is for memory block M0, and the one on the right is for
flash.

In either case, CodeStartBranch.asm has a “Long Branch” to the entry point of the runtime
support library. After the runtime support library completes execution, it calls main. In main, we
have a function call to initialize the interrupt process and enable the PIE block. When an
interrupt occurs, the PIE block contains a vector to the interrupt service routine located in
DefaultIsr.c.

Dell
Highlight

Interrupts

4 - 16 C2000 Microcontroller Workshop - Reset and Interrupts

Interrupt Signal Flow – Summary

Interrupt Signal Flow – Summary

Peripheral
Interrupt

PIEIFRx PIEIERx
INTx.y

PieCtrlRegs.PIEIERx.bit.INTxy = 1;

IER INTMIFR

asm(“ CLRC INTM”);IER |= 0x0001;
 0x0FFF;

1

1

Peripheral Interrupt Expansion (PIE) – Interrupt Group x

Core Interrupt Logic

PIE Vector Table

INTx.y name

interrupt void name(void)

{

}

•
•
•

DefaultIsr.c

Core
INTx

(For peripheral interrupts where x = 1 to 12, and y = 1 to 8)

In summary, the following steps occur during an interrupt process. First, a peripheral interrupt is
generated and the PIE interrupt flag register is set. If the PIE interrupt enable register is enabled,
then the core interrupt flag register will be set. Next, if the core interrupt enable register and
global interrupt mask is enabled, the PIE vector table will redirect the code to the interrupt service
routine.

 Interrupts

C2000 Microcontroller Workshop - Reset and Interrupts 4 - 17

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

Note: some actions occur simultaneously, none are interruptible

CPU Action Description

T ST0
AH AL
PH PL
AR1 AR0
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Registers → stack 14 Register words auto saved
0 → IFR (bit) Clear corresponding IFR bit
0 → IER (bit) Clear corresponding IER bit
1 → INTM/DBGM Disable global ints/debug events
Vector → PC Loads PC with int vector address
Clear other status bits Clear LOOP, EALLOW, IDLESTAT

Interrupt Latency

Latency

Depends on wait states, INTM, etc. Maximum latency:

Recognition
delay (3), SP
alignment (1),

interrupt
placed in
pipeline

4

 Minimum latency (to when real work occurs in the ISR):
 Internal interrupts: 14 cycles
 External interrupts: 16 cycles

Get vector
and place

in PC
(3 reg.
pairs

saved)

3
F1/F2/D1 of

ISR
instruction

(3 reg. pairs
saved)

3
Save
return

address

1
D2/R1/R2 of

ISR
instruction

3
Sync ext.

signal
(ext.

interrupt
only)

2
cycles

Assumes ISR in
internal RAM

Internal
interrupt
occurs
here

ext.
interrupt
occurs
here

ISR
instruction
executed
on next
cycle

Interrupts

4 - 18 C2000 Microcontroller Workshop - Reset and Interrupts

C2000 Microcontroller Workshop - System Initialization 5 - 1

System Initialization

Introduction
This module discusses the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital I/O ports, external interrups, various low power modes and the
EALLOW protected registers will be covered.

Module Objectives

Module Objectives

OSC/PLL Clock Module

Watchdog Timer

General Purpose Digital I/O

External Interrupts

Low Power Modes

Register Protection

Module Topics

5 - 2 C2000 Microcontroller Workshop - System Initialization

Module Topics
System Initialization ...5-1

Module Topics ..5-2

Oscillator/PLL Clock Module ..5-3

Watchdog Timer ...5-7

General-Purpose Digital I/O ...5-12

External Interrupts ...5-16
Low Power Modes..5-17

Register Protection ..5-19

Lab 5: System Initialization ...5-21

 Oscillator/PLL Clock Module

C2000 Microcontroller Workshop - System Initialization 5 - 3

Oscillator/PLL Clock Module

F2806x Oscillator / PLL Clock Module
(lab file: SysCtrl.c)

XCLKINOFF

X2 XT
A

L
O

SC

X1

XT
A

L

0*
10

XCLKIN

Internal
OSC 1

(10 MHz)

Internal
OSC 2

(10 MHz)

OSCCLKSRC2

0*
1

WDCLKSRCSEL

0*
1

OSCCLKSRCSEL

0*
1

10
11
01
00* CPU

Timer 2
SYSCLKOUT

TMR2CLKSRCSEL

PLL VCOCLK

OSCCLK

C28x
Core

CLKIN

SYSCLKOUT

LOSPCP

LSPCLK

(PLL bypass)

LSPCLK

DIV

SCI, SPI
All other peripherals

clocked by SYSCLKOUT

M
U

X

1/n

DIVSEL

OSC1CLK

OSC2CLK

EXTCLK

Watchdog
Module

WDCLK

CPUTMR2CLK

* = default

The oscillator/PLL clock module has two internal, 10 MHz oscillators, and the availability of an
external oscillator or crystal. This provides redundancy in case an oscillator fails, as well as the
ability to use multiple oscillators. The asterisks in the multiplexers show the default settings.
This module has the capability to clock the watchdog, core, and CPU timer 2 from independent
clock sources, if needed.

The on-chip oscillator and phase-locked loop (PLL) block provide all the necessary clocking
signals for the F2806x devices. The two internal oscillators (INTOSC1 and INTOSC2) need no
external components.

Dell
Highlight

Dell
Rectangle

Oscillator/PLL Clock Module

5 - 4 C2000 Microcontroller Workshop - System Initialization

F2806x PLL and LOSPCP
(lab file: SysCtrl.c)

DIV CLKIN
0 0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 0 1 OSCCLK x 1 / n
0 0 0 1 0 OSCCLK x 2 / n
0 0 0 1 1 OSCCLK x 3 / n
0 0 1 0 0 OSCCLK x 4 / n
0 0 1 0 1 OSCCLK x 5 / n
0 0 1 1 0 OSCCLK x 6 / n
0 0 1 1 1 OSCCLK x 7 / n
0 1 0 0 0 OSCCLK x 8 / n
0 1 0 0 1 OSCCLK x 9 / n
0 1 0 1 0 OSCCLK x 10 / n
0 1 0 1 1 OSCCLK x 11 / n
0 1 1 0 0 OSCCLK x 12 / n
0 1 1 0 1 OSCCLK x 13 / n
0 1 1 1 0 OSCCLK x 14 / n
0 1 1 1 1 OSCCLK x 15 / n
1 0 0 0 0 OSCCLK x 16 / n
1 0 0 0 1 OSCCLK x 17 / n
1 0 0 1 0 OSCCLK x 18 / n
1 x x 1 1 reserved

Input Clock Fail Detect Circuitry
PLL will issue a “limp mode” clock (1-4 MHz) if input
clock is removed after PLL has locked.
An internal device reset will also be issued (XRSn
pin not driven).

DIVSEL n

0x /4 *
10 /2
11 /1

* default

PLL VCOCLK

OSCCLK
C28x
Core

CLKIN SYSCLKOUT

LOSPCP

(PLL bypass)

LSPCLKM
U

X

1/n

SysCtrlRegs.PLLCR.bit.DIV

SysCtrlRegs.PLLSTS.bit.DIVSEL

SysCtrlRegs.LOSPCP.bit.LSPCLK

LSPCLK Peripheral Clk Freq
0 0 0 SYSCLKOUT / 1
0 0 1 SYSCLKOUT / 2
0 1 0 SYSCLKOUT / 4 *
0 1 1 SYSCLKOUT / 6
1 0 0 SYSCLKOUT / 8
1 0 1 SYSCLKOUT / 10
1 1 0 SYSCLKOUT / 12
1 1 1 SYSCLKOUT / 14

LSBs in reg. – others reserved

A clock source can be fed directly into the core or multiplied using the PLL. The PLL gives us
the capability to use the internal 10 MHz oscillator multiplied by 18/2, and run the device at the
full 90 MHz clock frequency. If the input clock is removed after the PLL is locked, the input
clock failed detect circuitry will issue a limp mode clock of 1 to 4 MHz. Additionally, an internal
device reset will be issued. The low-speed peripheral clock prescaler is used to clock some of the
communication peripherals.

The PLL has a 4-bit ratio control to select different CPU clock rates. In addition to the on-chip
oscillators, two external modes of operation are supported – crystal operation, and external clock
source operation. Crystal operation allows the use of an external crystal/resonator to provide the
time base to the device. External clock source operation allows the internal (crystal) oscillator to
be bypassed, and the device clocks are generated from an external clock source input on the
XCLKIN pin. The C28x core provides a SYSCLKOUT clock signal. This signal is prescaled to
provide a clock source for some of the on-chip communication peripherals through the low-speed
peripheral clock prescaler. Other peripherals are clocked by SYSCLKOUT and use their own
clock prescalers for operation.

Dell
Highlight

 Oscillator/PLL Clock Module

C2000 Microcontroller Workshop - System Initialization 5 - 5

Clock Control Register
SysCtrlRegs.CLKCTL (lab file: SysCtrl.c)

15 14 13 11 10 9 812
NMIRESET

SEL
XTAL

OSCOFF
INTOSC2

HALTI
INTOSC2

OFF
INTOSC1

HALTI
INTOSC1

OFFWDHALTIXCLKIN
OFF

Upper Register:

Internal
Oscillator 1 Off
0 = on
1 = off

Internal Oscillator 1
HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

Internal
Oscillator 2 Off
0 = on
1 = off

Internal Oscillator 2
HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

Watchdog
HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

XCLKIN
Off
0 = on
1 = off

Crystal
Oscillator
Off
0 = on
1 = off

NMI
Reset
0 = no delay
1 = delay

0 = default

Clock Control Register
SysCtrlRegs.CLKCTL (lab file: SysCtrl.c)

7 - 5 4 - 3 2 1 0

TMR2CLKSRCSEL WDCLK
SRCSEL

OSCCLK
SRC2SEL

OSCCLK
SRCSELTMR2CLKPRESCALE

Oscillator
Clock Source
0 = internal OSC1
1 = external or

internal OSC2

Oscillator 2
Clock Source
0 = external
1 = internal OSC2

Lower Register:

Watchdog
Clock Source
0 = internal OSC1
1 = external or

internal OSC2

CPU Timer 2
Clock Source
00 = SYSCLKOUT
01 = external
10 = internal OSC1
11 = internal OSC2

CPU Timer 2
Clock Prescale
000 = /1
001 = /2
010 = /4
011 = /8
100 = /16
1xx = reserved 0 = default

Oscillator/PLL Clock Module

5 - 6 C2000 Microcontroller Workshop - System Initialization

Peripheral Clock Control Registers
(lab file: SysCtrl.c)

Module Enable Clock Bit 0 = disable (default) 1 = enable

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0
SysCtrlRegs.
PCLKCR0

ECANA
ENCLK

SCIA
ENCLK

SPIA
ENCLK

I2CA
ENCLK

ADC
ENCLK

TBCLK
SYNCreservedreserved HRPWM

ENCLK

SPIB
ENCLKreserved reserved

reserved

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0

EQEP1
ENCLK

ECAP1
ENCLK

EPWM6
ENCLK

EPWM5
ENCLK

EPWM4
ENCLK

EPWM3
ENCLK

EPWM2
ENCLK

EPWM1
ENCLK

EPWM7
ENCLK

reserved reserved reserved
SysCtrlRegs.
PCLKCR1

reserved reserved reserved reserved reserved

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0
SysCtrlRegs.
PCLKCR2

SCIB
ENCLK

MCBSPA
ENCLK

reserved

ECAP2
ENCLK

ECAP3
ENCLK

EQEP2
ENCLK

EPWM8
ENCLK

reserved reserved reserved reserved HRCAP1
ENCLK

HRCAP2
ENCLK

HRCAP3
ENCLK

HRCAP4
ENCLK

reserved reserved reserved

15 14 13 11 10 9 812
CPUTIMER2

ENCLK
CPUTIMER1

ENCLK
CPUTIMER0

ENCLKreserved
7 6 5 4 3 2 1 0

reserved reserved reserved reserved reserved COMP1
ENCLK

COMP2
ENCLK

COMP3
ENCLK

CLA1
ENCLKSysCtrlRegs.

PCLKCR3

DMA
ENCLK

USB0
ENCLK reserved

The peripheral clock control register allows individual peripheral clock signals to be enabled or
disabled. If a peripheral is not being used, its clock signal could be disabled, thus reducing power
consumption.

Dell
Oval

Dell
Highlight

Dell
Highlight

 Watchdog Timer

C2000 Microcontroller Workshop - System Initialization 5 - 7

Watchdog Timer
The watchdog timer is a safety feature, which resets the device if the program runs away or gets
trapped in an unintended infinite loop. The watchdog counter runs independent of the CPU. If
the counter overflows, a reset or interrupt is triggered. The CPU must write the correct data key
sequence to reset the counter before it overflows.

Watchdog Timer

Resets the C28x if the CPU crashes
Watchdog counter runs independent of CPU
If counter overflows, a reset or interrupt is

triggered (user selectable)
CPU must write correct data key sequence

to reset the counter before overflow
Watchdog must be serviced or disabled

within 131,072 WDCLK cycles after reset
This translates to 13.11 ms with a 10 MHz

WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will revert the PWM outputs to a high-impedance state, which should turn off the power
converters in a properly designed system.

The watchdog timer is running immediately after system power-up/reset, and must be dealt with
by software soon after. Specifically, you have 13.11 ms (with a 10 MHz watchdog clock) after
any reset before a watchdog initiated reset will occur. This translates into 131,072 WDCLK
cycles, which is a seemingly tremendous amount! Indeed, this is plenty of time to get the
watchdog configured as desired and serviced. A failure of your software to properly handle the
watchdog after reset could cause an endless cycle of watchdog initiated resets to occur.

Watchdog Timer

5 - 8 C2000 Microcontroller Workshop - System Initialization

Watchdog Timer Module
(lab file: Watchdog.c)

WDCLK

System
Reset

8-bit Watchdog
Counter

CLR

Watchdog
Reset Key
Register

55 + AA
Detector

1 0 1
/
/3

3

WDDIS

WDCHK

Bad WDCHK Key

/512

Output
Pulse

WDRST

WDINT

WDOVERRIDE

Good Key

Watchdog
Prescaler

WDPS

The watchdog clock is divided by 512 and prescaled, if desired. The watchdog disable switch
allows the watchdog to be enabled and disabled. The watchdog override switch is a safety
mechanism, and once closed, it can only be open by resetting the device.

During initialization, “101” is written into the watchdog check bit fields. Any other values will
cause a reset or interrupt. During run time, the correct keys must be written into the watchdog
key register before the watchdog counter overflows and issues a reset or interrupt. Issuing a reset
or interrupt is user-selectable.

 Watchdog Timer

C2000 Microcontroller Workshop - System Initialization 5 - 9

WDPS FRC WD timeout period
Bits rollover @ 10 MHz WDCLK

00x: 1 13.11 ms *
010: 2 26.22 ms
011: 4 52.44 ms
100: 8 104.88 ms
101: 16 209.76 ms
110: 32 419.52 ms
111: 64 839.04 ms

Watchdog Period Selection

 Remember: Watchdog starts counting immediately after
reset is released!

 Reset default with WDCLK = 10 MHz computed as
(1/10 MHz) * 512 * 256 = 13.11 ms

* reset default

Watchdog Timer Control Register
SysCtrlRegs.WDCR (lab file: Watchdog.c)

WDFLAG WDDIS

7 6 5 - 3 2 - 0

WDPSWDCHK

Logic Check Bits
Write as 101 or reset
immediately triggered

WD Prescale
Selection Bits

Watchdog Disable Bit
Write 1 to disable

(Functions only if WD OVERRIDE
bit in SCSR is equal to 1)

reserved

15 - 8

WD Flag Bit
Gets set when the WD causes a reset

• Writing a 1 clears this bit
• Writing a 0 has no effect

WDPS WDCLK =
0 0 x OSCCLK / 512 / 1
0 1 0 OSCCLK / 512 / 2
0 1 1 OSCCLK / 512 / 4
1 0 0 OSCCLK / 512 / 8
1 0 1 OSCCLK / 512 / 16
1 1 0 OSCCLK / 512 / 32
1 1 1 OSCCLK / 512 / 64

Watchdog Timer

5 - 10 C2000 Microcontroller Workshop - System Initialization

Resetting the Watchdog
SysCtrlRegs.WDKEY (lab file: Watchdog.c)

WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

Writing any other value has no effect
Watchdog should not be serviced solely in an ISR

 If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

Could put the 55h WDKEY in the main code, and the
AAh WDKEY in an ISR; this catches main code crashes
and also ISR crashes

reserved
7 - 015 - 8

WDKEY

WDKEY Write Results
Sequential

Step

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Value Written
to WDKEY

AAh
AAh
55h
55h
55h
AAh
AAh
55h
AAh
55h
23h
AAh
55h
AAh

Result

No action
No action
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter is reset
No action
WD counter enabled for reset on next AAh write
WD counter is reset
WD counter enabled for reset on next AAh write
No effect; WD counter not reset on next AAh write
No action due to previous invalid value
WD counter enabled for reset on next AAh write
WD counter is reset

 Watchdog Timer

C2000 Microcontroller Workshop - System Initialization 5 - 11

System Control and Status Register
SysCtrlRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)
Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

• This bit is a clear-only bit (write 1 to clear)
• The reset default of this bit is a 1

01215 - 3

WDOVERRIDEWDENINTWDINTSreserved

WD Enable InterruptWD Interrupt Status
(read only)

0 = active
1 = not active

0 = WD generates a MCU reset
1 = WD generates a WDINT interrupt

General-Purpose Digital I/O

5 - 12 C2000 Microcontroller Workshop - System Initialization

General-Purpose Digital I/O

F2806x GPIO Grouping Overview
(lab file: Gpio.c)

GPIO Port A Mux1
Register (GPAMUX1)

[GPIO 0 to 15] GPIO Port A
Direction Register

(GPADIR)
[GPIO 0 to 31]

G
PIO

 Port A
G

PIO
 Port B

Internal B
us

GPIO Port A Mux2
Register (GPAMUX2)

[GPIO 16 to 31]

GPIO Port B Mux1
Register (GPBMUX1)

[GPIO 32 to 47] GPIO Port B
Direction Register

(GPBDIR)
[GPIO 32 to 63]

AN
ALO

G
 Port

ANALOG I/O Mux1
Register (AIOMUX1)

[AIO 0 to 15]

ANALOG Port
Direction Register

(AIODIR)
[AIO 0 to 15]

Input
Qual

Input
Qual

GPIO Port B Mux2
Register (GPBMUX2)

[GPIO 48 to 63]

Each general-purpose I/O pin has a maximum of four options, either general-purpose I/O or up to
three possible peripheral pin assignments. This is selected using the GPIO port multiplexer. If
the pin is set to GPIO, the direction register sets it as an input or an output. The input
qualification will be explained shortly.

•

F2806x GPIO Pin Block Diagram
(lab file: Gpio.c)

• •
01

00
MUX Control Bits *
00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

Peripheral
1

I/O DAT
Bit (R/W) In

Out

I/O DIR Bit
0 = Input
1 = Output

GPxMUX1
GPxMUX2

GPxDIR

GPxDAT

GPxSET
GPxCLEAR

GPxTOGGLE

•• 10

11

Peripheral
2

Peripheral
3

Pin

Internal Pull-Up
0 = enable (default GPIO 12-58)
1 = disable (default GPIO 0-11)

GPxPUD

Input
Qualification

(GPIO 0-44) GPxQSEL1
GPxQSEL2
GPxCTRL

* See device datasheet for pin function selection matrices

Dell
Highlight

Dell
Highlight

 General-Purpose Digital I/O

C2000 Microcontroller Workshop - System Initialization 5 - 13

The GPIO pin block diagram shows a single GPIO pin. If the pin is set as a GPIO by the GPIO
multiplexer, the direction will be set by the GPIO direction register. The GPIO data register will
have the value of the pin if set as an input or write the value of the data register to the pin if set as
an output.

The data register can be quickly and easily modified using set, clear, or toggle registers. As you
can see, the GPIO multiplexer can be set to select up to three other possible peripheral pin
assignments. Also, the pin has an option for an internal pull-up.

F2806x GPIO Input Qualification

 Qualification available on ports A & B only
 Individually selectable per pin

 no qualification (peripherals only)
 sync to SYSCLKOUT only
 qualify 3 samples
 qualify 6 samples

 AIO pins are fixed as
‘sync to SYSCLKOUT’

Input
Qualificationpin

to GPIO and
peripheral
modules

SYSCLKOUT

T T T

samples taken

T = qual period

The GPIO input qualification feature allows filtering out noise on a pin. The user would select
the number of samples and qualification period. Qualification is available on ports A and B only
and is individually selectable per pin.

Dell
Highlight

Dell
Highlight

Dell
Highlight

General-Purpose Digital I/O

5 - 14 C2000 Microcontroller Workshop - System Initialization

F2806x GPIO Input Qual Registers
GpioCtrlRegs.register (lab file: Gpio.c)

00 = sync to SYSCLKOUT only *
01 = qual to 3 samples
10 = qual to 6 samples
11 = no sync or qual (for peripheral only; GPIO same as 00)

00h no qualification (SYNC to SYSCLKOUT) *
01h QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4
… … …
FFh QUALPRD = SYSCLKOUT/510

GPAQSEL1 / GPAQSEL2 / GPBQSEL1
16 pins configured per register

031

QUALPRD0QUALPRD1QUALPRD2QUALPRD3

GPACTRL / GPBCTRL
31 24 16 8 0

B: GPIO56-63 GPIO48-55 GPIO47-40 GPIO39-32
A: GPIO31-24 GPIO23-16 GPIO15-8 GPIO7-0

* reset default

F2806x GPIO Control Registers
GpioCtrlRegs.register (lab file: Gpio.c)

Register Description
GPACTRL GPIO A Control Register [GPIO 0 – 31]
GPAQSEL1 GPIO A Qualifier Select 1 Register [GPIO 0 – 15]
GPAQSEL2 GPIO A Qualifier Select 2 Register [GPIO 16 – 31]
GPAMUX1 GPIO A Mux1 Register [GPIO 0 – 15]
GPAMUX2 GPIO A Mux2 Register [GPIO 16 – 31]
GPADIR GPIO A Direction Register [GPIO 0 – 31]
GPAPUD GPIO A Pull-Up Disable Register [GPIO 0 – 31]
GPBCTRL GPIO B Control Register [GPIO 32 – 63]
GPBQSEL1 GPIO B Qualifier Select 1 Register [GPIO 32 – 47]
GPBQSEL2 GPIO B Qualifier Select 2 Register [GPIO 48 – 63]
GPBMUX1 GPIO B Mux1 Register [GPIO 32 – 47]
GPBMUX2 GPIO B Mux2 Register [GPIO 48 – 63]
GPBDIR GPIO B Direction Register [GPIO 32 – 63]
GPBPUD GPIO B Pull-Up Disable Register [GPIO 32 – 63]
AIOMUX1 ANALOG I/O Mux1 Register [AIO 0 – 15]
AIODIR ANALOG I/O Direction Register [AIO 0 – 15]

 General-Purpose Digital I/O

C2000 Microcontroller Workshop - System Initialization 5 - 15

F2806x GPIO Data Registers
GpioDataRegs.register (lab file: Gpio.c)

Register Description
GPADAT GPIO A Data Register [GPIO 0 – 31]
GPASET GPIO A Data Set Register [GPIO 0 – 31]
GPACLEAR GPIO A Data Clear Register [GPIO 0 – 31]
GPATOGGLE GPIO A Data Toggle [GPIO 0 – 31]
GPBDAT GPIO B Data Register [GPIO 32 – 63]
GPBSET GPIO B Data Set Register [GPIO 32 – 63]
GPBCLEAR GPIO B Data Clear Register [GPIO 32 – 63]
GPBTOGGLE GPIO B Data Toggle [GPIO 32 – 63]
AIODAT ANALOG I/O Data Register [AIO 0 – 15]
AIOSET ANALOG I/O Data Set Register [AIO 0 – 15]
AIOCLEAR ANALOG I/O Data Clear Register [AIO 0 – 15]
AIOTOGGLE ANALOG I/O Data Toggle [AIO 0 – 15]

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

External Interrupts

5 - 16 C2000 Microcontroller Workshop - System Initialization

External Interrupts

External Interrupts

 3 external interrupt signals: XINT1, XINT2
and XINT3

 XINT1, XINT2 and XINT3 can be mapped to
any of GPIO0-31

 XINT1, XINT2 and XINT3 also each have a
free-running 16-bit counter that measures
the elapsed time between interrupts
 The counter resets to zero each time the

interrupt occurs

External Interrupt Registers

 Pin Selection Register chooses which pin the signal comes out on
 Only one pin can be assigned to each interrupt signal

 Configuration Register controls the enable/disable and polarity

 Counter Register holds the interrupt counter

Interrupt Pin Selection Register Configuration Register Counter Register
(GpioIntRegs.register) (XIntruptRegs.register) (XIntruptRegs.register)

XINT1 GPIOXINT1SEL XINT1CR XINT1CTR
XINT2 GPIOXINT2SEL XINT2CR XINT2CTR
XINT3 GPIOXINT3SEL XINT3CR XINT3CTR

 Low Power Modes

C2000 Microcontroller Workshop - System Initialization 5 - 17

Low Power Modes

Low Power Modes

Low Power
Mode

CPU Logic
Clock

Peripheral
Logic Clock

Watchdog
Clock

PLL /
OSC

Normal Run

IDLE

STANDBY

HALT

on

off

off

off

on

on

off

off

on

on

on

off

on

on

on

off

See device datasheet for power consumption in each mode

Low Power Mode Control Register 0
SysCtrlRegs.LPMCR0 (lab file: SysCtrl.c)

1 - 07 - 214 - 8

LPM0WDINTE QUALSTDBYreserved

Low Power Mode Selection
00 = Idle (default)
01 = Standby
1x = Halt

Wake from STANDBY
GPIO signal qualification *

000000 = 2 OSCCLKs
000001 = 3 OSCCLKs

111111 = 65 OSCCLKS (default)

...

15

Watchdog Interrupt
wake device from

STANDBY
0 = disable (default)
1 = enable

Low Power Mode Entering
1. Set LPM bits
2. Enable desired exit interrupt(s)
3. Execute IDLE instruction
4. The power down sequence of the hardware

depends on LP mode

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

Low Power Modes

5 - 18 C2000 Microcontroller Workshop - System Initialization

Low Power Mode Exit

IDLE

STANDBY

HALT

RESET

yes

yes

yes

Any
Enabled
Interrupt

yes

no

no

yes

yes

no

Exit
Interrupt

Low Power
Mode

Watchdog
Interrupt

GPIO
Port A
Signal

yes

yes

yes

GPIO Low Power Wakeup Select
SysCtrlRegs.GPIOLPMSEL

Wake device from
HALT and STANDBY mode

(GPIO Port A)
0 = disable (default)
1 = enable

0

GPIO2

GPIO14 GPIO8GPIO11

GPIO5
1234567

89101112131415

GPIO0GPIO1GPIO4 GPIO3

GPIO9

GPIO6

GPIO10

GPIO7

GPIO12GPIO13GPIO15

16

GPIO18

GPIO30 GPIO24GPIO27

GPIO21
17181920212223

2425262728293031

GPIO16GPIO17GPIO20 GPIO19

GPIO25

GPIO22

GPIO26

GPIO23

GPIO28GPIO29GPIO31

 Register Protection

C2000 Microcontroller Workshop - System Initialization 5 - 19

Register Protection

Write-Read Protection
DevEmuRegs.DEVICECNF.bit.ENPROT

 CPU pipeline protects W-R order for the same address
 Write-Read protection mechanism protects W-R order for

different addresses
 Peripheral Frame 0 and Peripheral Frame 1 zones protected
 Write-read protection mode bit ENPROT located in the DEVICECNF

register is enabled by default

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral

(e.g., write to control, read from status register)?

Peripheral Frame Registers
PF0

eCAN
COMP
ePWM
eCAP
eQEP
LIN

GPIO

PF1
System Control

SPI
SCI

Watchdog
XINT
ADC
I2C

Protected address:
0x4000 - 0x7FFF

EALLOW Protection (1 of 2)

 EALLOW stands for Emulation Allow
 Code access to protected registers allowed

only when EALLOW = 1 in the ST1 register
 The emulator can always access protected

registers
 EALLOW bit controlled by assembly level

instructions
‘EALLOW’ sets the bit (register access enabled)
‘EDIS’ clears the bit (register access disabled)

 EALLOW bit cleared upon ISR entry, restored
upon exit

Register Protection

5 - 20 C2000 Microcontroller Workshop - System Initialization

EALLOW Protection (2 of 2)

asm(" EALLOW"); // enable protected register access

SysCtrlRegs.WDKEY=0x55; // write to the register

asm(" EDIS"); // disable protected register access

EALLOW register access C-code example:

Device Emulation
Flash
Code Security Module
PIE Vector Table
LIN (some registers)
eCANA/B (control registers only; mailbox RAM not protected)
ePWM1-7 and COMP1-3 (some registers)
GPIO (control registers only)
System Control

See device datasheet and peripheral users guides for detailed listings

The following registers are protected:

 Lab 5: System Initialization

C2000 Microcontroller Workshop - System Initialization 5 - 21

Lab 5: System Initialization
 Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

• Setup the clock module – PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

• Disable the watchdog – clear WD flag, disable watchdog, WD prescale = 1
• Setup the watchdog and system control registers – DO NOT clear WD OVERRIDE bit,

configure WD to generate a CPU reset
• Setup the shared I/O pins – set all GPIO pins to GPIO function (e.g. a "00" setting for GPIO

function, and a “01”, “10”, or “11” setting for a peripheral function)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the F2806x C-code header files to simplify the programming of the device, as well as
take care of the register definitions and addresses. Please review these files, and make use of
them in the future, as needed.

 Procedure

Create a New Project
1. Create a new project (File New CCS Project) for this lab exercise. The

top section should default to the options previously selected (setting the “Target” to
“Experimenter’s Kit – Piccolo F28069”, and leaving the “Connection” box blank). Name
the project Lab5. Uncheck the “Use default location” box. Using the Browse… button
navigate to: C:\C28x\Labs\Lab5\Project then click OK. Set the “Linker
Command File” to <none>, and be sure to set the “Project templetes and examples” to
“Empty Project”. Then click Finish.

2. Right-click on Lab5 in the Project Explorer window and add (copy) the
following files to the project (Add Files…) from C:\C28x\Labs\Lab5\Files:

CodeStartBranch.asm Lab.h
DelayUs.asm Lab_5_6_7.cmd
F2806x_DefaultIsr.h Main_5.c
F2806x_GlobalVariableDefs.c SysCtrl.c
F2806x_Headers_nonBIOS.cmd Watchdog.c
Gpio.c

Lab 5: System Initialization

5 - 22 C2000 Microcontroller Workshop - System Initialization

Do not add DefaultIsr_5.c, PieCtrl.c, and PieVect.c. These files will be
added and used with the interrupts in the second part of this lab exercise.

Project Build Options
3. Setup the build options by right-clicking on Lab5 in the Project Explorer window

and select Properties. We need to setup the include search path to include the
peripheral register header files. Under “C2000 Compiler” select “Include
Options”. In the lower box that opens (“Add dir to #include search
path”) click the Add icon (first icon with green plus sign). Then in the “Add directory
path” window type:

${PROJECT_ROOT}/../../F2806x_headers/include

Click OK to include the search path. Finally, click OK to save and close the Properties
window.

Modify Memory Configuration
4. Open and inspect the linker command file Lab_5_6_7.cmd. Notice that the user

defined section “codestart” is being linked to a memory block named BEGIN_M0.
The codestart section contains code that branches to the code entry point of the project.
The bootloader must branch to the codestart section at the end of the boot process. Recall
that the emulation boot mode "M0 SARAM" branches to address 0x000000 upon
bootloader completion.

Modify the linker command file Lab_5_6_7.cmd to create a new memory block
named BEGIN_M0: origin = 0x000000, length = 0x0002, in program memory. You will
also need to modify the existing memory block M0SARAM in data memory to avoid any
overlaps with this new memory block.

5. In the linker command file, notice that RESET in the MEMORY section has been defined
using the “(R)” qualifier. This qualifier indicates read-only memory, and is optional. It
will cause the linker to flag a warning if any uninitialized sections are linked to this
memory. The (R) qualifier can be used with all non-volatile memories (e.g., flash, ROM,
OTP), as you will see in later lab exercises.

Setup System Initialization
6. Modify SysCtrl.c and Watchdog.c to implement the system initialization as

described in the objective for this lab.

7. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function. Save your work and close the modified files.

Build and Load
8. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

 Lab 5: System Initialization

C2000 Microcontroller Workshop - System Initialization 5 - 23

9. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main().

10. After CCS loaded the program in the previous step, it set the program counter (PC) to
point to _c_int00. It then ran through the C-environment initialization routine in the
rts2800_fpu32.lib and stopped at the start of main(). CCS did not do a device
reset, and as a result the bootloader was bypassed.

In the remaining parts of this lab exercise, the device will be undergoing a reset due to the
watchdog timer. Therefore, we must configure the device by loading values into
EMU_KEY and EMU BMODE so the bootloader will jump to “M0 SARAM” at address
0x000000. Set the bootloader mode using the menu bar by clicking:

Scripts EMU Boot Mode Select EMU_BOOT_SARAM

If the device is power cycled between lab exercises, or within a lab exercise, be sure to
re-configure the boot mode to EMU_BOOT_SARAM.

Run the Code – Watchdog Reset
11. Place the cursor in the “main loop” section (on the asm(“ NOP”); instruction line)

and right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

12. Place the cursor on the first line of code in main() and set a breakpoint by double
clicking in the line number field to the left of the code line. Notice that line is
highlighted with a blue dot indicating that the breakpoint has been set. (Alternately, you
can set a breakpoint on the line by right-clicking the mouse and selecting Breakpoint
(Code Composer Studio) Breakpoint). The breakpoint is set to prove
that the watchdog is disabled. If the watchdog causes a reset, code execution will stop at
this breakpoint.

13. Run your code for a few seconds by using the “Resume” button on the toolbar, or by
using Run Resume on the menu bar (or F8 key). After a few seconds halt your
code by using the “Suspend” button on the toolbar, or by using Run Suspend on
the menu bar (or Alt-F8 key). Where did your code stop? Are the results as expected? If
things went as expected, your code should be in the “main loop”.

14. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Modify the InitWatchdog() function to enable the watchdog
(WDCR). This will enable the watchdog to function and cause a reset. Save the file.

15. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch
back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

16. Like before, place the cursor in the “main loop” section (on the asm(“ NOP”);
instruction line) and right click the mouse key and select Run To Line.

17. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as

Lab 5: System Initialization

5 - 24 C2000 Microcontroller Workshop - System Initialization

follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. Since the
device is in emulation boot mode (i.e. the emulator is connected) the bootloader read the
EMU_KEY and EMU_BMODE values from the PIE RAM. These values were
previously set for boot to M0 SARAM boot mode by CCS. Since these values did not
change and are not affected by reset, the bootloader transferred execution to the
beginning of our code at address 0x000000 in the M0SARAM, and execution continued
until the breakpoint was hit in main().

Setup PIE Vector for Watchdog Interrupt
The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

18. In the “CCS Edit Perspective” view add (copy) the following files to the project from
C:\C28x\Labs\Lab5\Files:

DefaultIsr_5.c
PieCtrl.c
PieVect.c

Check your files list to make sure the files are there.

19. In Main_5.c, add code to call the InitPieCtrl() function. There are no passed
parameters or return values, so the call code is simply:

 InitPieCtrl();

20. Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKEINT”. This will be used in the next step.

PIE group #: # within group:

21. Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:
- Enable the “WAKEINT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

22. In Watchdog.c modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKEINT rather than a reset. Save all changes to the files.

23. Open and inspect DefaultIsr_5.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOP0”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

 Lab 5: System Initialization

C2000 Microcontroller Workshop - System Initialization 5 - 25

24. Open and inspect PieCtrl.c. This file is used to initialize the PIE RAM and enable
the PIE. The interrupt vector table located in PieVect.c is copied to the PIE RAM to
setup the vectors for the interrupts. Close the modified and inspected files.

Build and Load
25. Click the “Build” button and select Yes to “Reload the program automatically”.

Switch to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code – Watchdog Interrupt
26. Place the cursor in the “main loop” section, right click the mouse key and select Run

To Line.

27. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOP0” instruction in the WAKEINT ISR.

Terminate Debug Session and Close Project
28. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

29. Next, close the project by right-clicking on Lab5 in the Project Explorer window
and select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

Lab 5: System Initialization

5 - 26 C2000 Microcontroller Workshop - System Initialization

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 1

Analog-to-Digital Converter and Comparator

Introduction
This module explains the operation of the analog-to-digital converter and comparator. The ADC
system consists of a 12-bit analog-to-digital converter with up to 16 analog input channels. The
analog input channels have a full range analog input of 0 to 3.3 volts or VREFHI/VREFLO
ratiometric. Two input analog multiplexers are available, each supporting up to 8 analog input
channels. Each multiplexer has its own dedicated sample and hold circuit. Therefore, sequential,
as well as simultaneous sampling is supported. The ADC system is start-of-conversion (SOC)
based where each independent SOCx (where x = 0 to 15) register configures the trigger source
that starts the conversion, the channel to convert, and the acquisition (sample) window size. Up
to 16 results registers are used to store the conversion values. Conversion triggers can be
performed by an external trigger pin, software, an ePWM or CPU timer interrupt event, or a
generated ADCINT1/2 interrupt.

Module Objectives

Module Objectives

Understand the operation of the
Analog-to-Digital converter (ADC)
and Comparator

Use the ADC to perform data acquisition

Module Topics

6 - 2 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Module Topics
Analog-to-Digital Converter and Comparator ..6-1

Module Topics ..6-2

Analog-to-Digital Converter ..6-3
ADC Block and Functional Diagrams ...6-3
ADC Triggering ...6-4
ADC Conversion Priority ..6-6
ADC Clock and Timing ...6-8
ADC Converter Registers ..6-9
Signed Input Voltages ...6-14
ADC Calibration and Reference ..6-15

Comparator ..6-17
Comparator Block Diagram ...6-17
Comparator Registers ..6-18

Lab 6: Analog-to-Digital Converter ..6-19

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 3

Analog-to-Digital Converter

ADC Block and Functional Diagrams

ADC Module Block Diagram

12-bit A/D
Converter

SOCx

EOCx

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
U

X

MUX
A

RESULT0
RESULT1
RESULT2

RESULT15

Result
MUX

MUX
B

ADC
Generation

Logic
ADC full-scale
input range is

0 to 3.3V

CHSEL ADC
Interrupt

Logic

SOC0 TRIGSEL CHSEL ACQPS
SOC1 TRIGSEL CHSEL ACQPS
SOC2 TRIGSEL CHSEL ACQPS
SOC3 TRIGSEL CHSEL ACQPS

SOC15 TRIGSEL CHSEL ACQPS SO
C

x
Tr

ig
ge

rs

ADCINT1-9

Software

External Pin
(GPIO/XINT2_ADCSOC)

EPWMxSOCA (x = 1 to 8)
EPWMxSOCB (x = 1 to 8)

CPU Timer (0,1,2)

SOCx Signal ADCINT1
ADCINT2

SOCx Configuration Registers

The ADC module is based around a 12-bit converter. There are 16 input channels and 16 result
registers. The SOC configuration registers select the trigger source, channel to convert, and the
acquisition prescale window size. The triggers include software by selecting a bit, CPU timers 0,
1 and 2, EPWMA and EPWMB 1 through 8, and an external pin. Additionally, ADCINT 1 and 2
can be fed back for continuous conversions.

The ADC module can operate in sequential sampling mode or simultaneous sampling mode. In
simultaneous sampling mode, the channel selected on the A multiplexer will be the same channel
on the B multiplexer. The ADC interrupt logic can generate up to nine interrupts. The results for
SOC 0 through 15 will appear in result registers 0 through 15.

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Analog-to-Digital Converter

6 - 4 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC SOCx Functional Diagram

This block diagram is replicated 16 times

Software Trigger
TINT0 (CPU Timer 0)
TINT1 (CPU Timer 1)
TINT2 (CPU Timer 2)

XINT2_ADCSOC (GPIO)
SOCA (ePWM1)
SOCB (ePWM1)

SOCA (ePWM8)
SOCB (ePWM8)

T
r
i
g
g
e
r

ADCINT1
ADCINT2

Re-Trigger

ADCINT1
ADCINT2
ADCINT3
ADCINT4
ADCINT5
ADCINT6
ADCINT7
ADCINT8
ADCINT9

Channel
Select

Sample
Window

Result
RegisterS

O
C
x

E
O
C
x

ADCSOCxCTL

ADCSOCFRC1

ADCINTSOCSEL1
ADCINTSOCSEL2

INTSELxNy

ADCRESULTx

ADC Triggering

Example – ADC Triggering (sequential sampling)

Sample A2 B3 A7 when ePWM1 SOCB is generated and then generate ADCINT1:

Channel
A2

Sample
7 cycles Result0

Channel
B3

Sample
10 cycles Result1

Channel
A7

Sample
8 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1

SOCB (ETPWM1)

Then after above, sample A0 B0 A5 continuously and generate ADCINT2:

Channel
A0

Sample
10 cycles Result3

Channel
B0

Sample
15 cycles Result4

Channel
A5

Sample
12 cycles Result5

SOC3

SOC4

SOC5

no interrupt

no interrupt

ADCINT2

ADCINT2

Software Trigger

The top example on this slide shows channels A2, B3, and A7 being converted with a trigger
from EPWM1SOCB. After A7 is converted, ADCINT1 is generated.

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 5

The bottom examples extends this with channels A0, B0, and A5 being converted initially with a
software trigger. After A5 is converted, ADCINT2 is generated, which is fed back as a trigger to
start the process again.

Example – ADC Triggering (simultaneous sampling)

Sample all channels continuously and provide Ping-Pong interrupts to CPU/system:

Channel
A0:B0

Sample
7 cycles

SOC0 no interrupt
ADCINT2

Software Trigger Result0
Result1

Channel
A1:B1

Sample
7cycles

SOC2 no interruptResult2
Result3

Channel
A2:B2

Sample
7 cycles

SOC4 no interruptResult4
Result5

Channel
A3:B3

Sample
7 cycles

SOC6 Result6
Result7

Channel
A4:B4

Sample
7 cycles

SOC8 no interruptResult8
Result9

Channel
A5:B5

Sample
7 cycles

SOC10 no interruptResult10
Result11

Channel
A6:B6

Sample
7 cycles

SOC12 no interruptResult12
Result13

Channel
A7:B7

Sample
7 cycles

SOC14 Result14
Result15

ADCINT1

ADCINT2

The example on this slide shows channels A/B 0 through 7 being converted in simultaneous
sampling mode, triggered initially by software. After channel A/B three is converted, ADCINT1
is generated. After channel A/B seven is converted, ADCINT2 is generated and fed back to start
the process again. ADCINT1 and ADCINT2 are being used as ping-pong interrupts.

Dell
Highlight

Dell
Highlight

Analog-to-Digital Converter

6 - 6 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC Conversion Priority

ADC Conversion Priority
When multiple SOC flags are set at the same

time – priority determines the order in which
they are converted

 Round Robin Priority (default)
 No SOC has an inherent higher priority than

another
 Priority depends on the round robin pointer

 High Priority
 High priority SOC will interrupt the round robin

wheel after current conversion completes and
insert itself as the next conversion

 After its conversion completes, the round robin
wheel will continue where it was interrupted

Conversion Priority Functional Diagram

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order
of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

SOC0
SOC1
SOC2
SOC3
SOC4
SOC5
SOC6
SOC7
SOC8
SOC9
SOC10
SOC11
SOC12
SOC13
SOC14
SOC15

R
ou

nd
 R

ob
in

H
ig

h
Pr

io
rit

y

SOCPRIORITY

RRPOINTER

AdcRegs.SOCPRICTL

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 7

Round Robin Priority Example

SOC
0 SOC

1
SOC

2

SOC
3

SOC
4

SOC
5

SOC
6

SOC
7SOC

8

SOC
9

SOC
10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC7 trigger received

SOC7 is converted;
RRPOINTER now points to SOC7;
SOC8 is now highest RR priority

SOC2 & SOC12 triggers received
simultaneously

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13 is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3 is now highest RR priority

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOC0 is highest RR priority

High Priority Example

SOC
4 SOC

5

SOC
0 SOC

6

SOC
7

SOC
8

SOC
9SOC

10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC
1

SOC
2

SOC
3

High PrioritySOC7 trigger received

SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

SOC2 is converted;
RRPOINTER stays pointing to SOC7

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13 is now highest RR priority

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOC2 & SOC12 triggers received
simultaneously

Analog-to-Digital Converter

6 - 8 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC Clock and Timing

ADC Clocking Flow
Internal
OSC1

(10 MHz)

ADCCLK (45 MHz)
To ADC
pipeline

sampling
windowACQ_PS

bits

ADCSOCxCTL

0110b

SYSCLKOUT
(90 MHz)

PLLSTS

DIVSEL
bits

10b (/2)

To CPU

sampling window = (ACQ_PS + 1)*(1/ADCCLK)

PCLKCR0.ADCENCLK = 1

PLLCR

DIV
bits

10010b (x18)

ADCCTL2

CLKDIV
bits

001b (/2)

ADC Timing – Sequential Sampling

7 Clocks
Sample

6 Clocks 7 Clocks
Convert

2 Clocks
Write

2 Clocks
Latch

Generate Early
Interrupt

Generate Late
Interrupt

Start Sampling Next Channel

Max Continuous Sampling:

45 MHz
13 cycles / 1 sample = 3.46 MSPS

Note: Sampling window of 7 cycles is minimum and it can be larger

Dell
Rectangle

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 9

ADC Timing – Simultaneous Sampling

7 Clocks
Sample

13 Clocks
Convert “A” Channel

2 Clocks
Write

2 Clocks
Latch

Generate Early
Interrupt “A” Channel Generate Late

Interrupt “A” Channel

Start Sampling Next Channel
&

Generate Early
Interrupt “B” Channel

6 Clocks 7 Clocks
Convert “B” Channel

2 Clocks
Write

Generate Late
Interrupt “B” Channel

Max Continuous Sampling:

45 MHz
26 cycles / 2 sample = 3.46 MSPS

Note: Sampling window of 7 cycles is minimum and it can be larger

ADC Converter Registers

Analog-to-Digital Converter Registers
AdcRegs.register (lab file: Adc.c)

ADCCTL1 Control 1 Register
ADCCTL2 Control 2 Register
ADCSOCxCTL SOC0 to SOC15 Control Registers
ADCINTSOCSELx Interrupt SOC Selection 1 and 2 Registers
ADCSAMPLEMODE Sampling Mode Register
ADCSOCFLG1 SOC Flag 1 Register
ADCSOCFRC1 SOC Force 1 Register
ADCSOCOVF1 SOC Overflow 1 Register
ADCSOCOVFCLR1 SOC Overflow Clear 1 Register
INTSELxNy Interrupt x and y Selection Registers
ADCINTFLG Interrupt Flag Register
ADCINTFLGCLR Interrupt Flag Clear Register
ADCINTOVF Interrupt Overflow Register
ADCINTOVFCLR Interrupt Overflow Clear Register
SOCPRICTL SOC Priority Control Register
ADCREFTRIM Reference Trim Register
ADCOFFTRIM Offset Trim Register
ADCREV Revision Register – reserved
ADCRESULTx ADC Result 0 to 15 Registers

Register Description

Note: ADCRESULTx header file coding is AdcResult.ADCRESULTx (not in AdcRegs)

Dell
Rectangle

Dell
Highlight

Analog-to-Digital Converter

6 - 10 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC Control Register 1
AdcRegs.ADCCTL1

ADC Enable
0 = ADC disable
1 = ADC enable

ADC Module Reset
0 = no effect
1 = reset (set back to 0

by ADC logic)

ADCENABLE ADCBSY ADCBSYCHNRESET
12 - 815

Upper Register:

14 13

ADC Busy
0 = ADC available
1 = ADC busy

ADC Busy Channel
When ADCBSY =
0: last channel converted
1: channel currently processing

00h = ADCINA0 08h = ADCINB0
01h = ADCINA1 09h = ADCINB1
02h = ADCINA2 0Ah = ADCINB2
03h = ADCINA3 0Bh = ADCINB3
04h = ADCINA4 0Ch = ADCINB4
05h = ADCINA5 0Dh = ADCINB5
06h = ADCINA6 0Eh = ADCINB6
07h = ADCINA7 0Fh = ADCINB7

ADC Control Register 1
AdcRegs.ADCCTL1

ADC Power Down
0 = analog circuitry

powered down
1 = analog circuitry

powered up

ADC Reference
Select
0 = internal
1 = external

(VREFHI/VREFLO)

ADCBGPWN ADCREFPWDADCPWN reserved
7

Lower Register:

VREFLO
CONV

INTPULSE
POS

6 5 4 3 2 0

ADC Bandgap
Power Down
0 = bandgap circuitry

powered down
1 = bandgap circuitry

powered up

ADC Reference
Power Down
0 = reference circuitry

powered down
1 = reference circuitry

powered up

TEMP
CONV

ADCREF
SEL

1

INT Pulse
Generation Control
0 = beginning of

conversion
1 = one cycle prior

to result

VREFLO Convert
0 = not connected
1 = connected (B5)

Temperature
Sensor Convert
0 = not connected
1 = connected (A5)

Dell
Rectangle

Dell
Rectangle

Dell
Rectangle

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 11

ADC Control Register 2
AdcRegs.ADCCTL2

reserved
15 - 3 2 0

CLKDIV4EN CLKDIV2ENADCNONOVERLAP
1

ADC Clock Divider
CLKDIV4EN CLKDIV2EN ADCCLK

x 0 SYSCLK
0 1 SYSCLK / 2
1 1 SYSCLK / 4

ADC Overlap Bit
0 = overlap of sample and conversion is allowed
1 = overlap of sample is not allowed

ADC SOC0 – SOC15 Control Registers
AdcRegs.ADCSOCxCTL

TRIGSEL reserved
15 - 11 10 9 - 6 5 - 0

CHSEL ACQPS

SOCx Trigger
Source Select

SOCx Channel
Select

SOCx Acquisition
Prescale (S/H window)

0h = ADCINA0 0h = ADCINA0/B0
1h = ADCINA1 1h = ADCINA1/B1
2h = ADCINA2 2h = ADCINA2/B2
3h = ADCINA3 3h = ADCINA3/B3
4h = ADCINA4 4h = ADCINA4/B4
5h = ADCINA5 5h = ADCINA5/B5
6h = ADCINA6 6h = ADCINA6/B6
7h = ADCINA7 7h = ADCINA7/B7
8h = ADCINB0 8h – Fh = invalid
9h = ADCINB1
Ah = ADCINB2
Bh = ADCINB3
Ch = ADCINB4
Dh = ADCINB5
Eh = ADCINB6
Fh = ADCINB7

Sequential S/M
(SIMULENx=0)

Simultaneous S/M
(SIMULENx=1)

00h = software
01h = CPU Timer 0
02h = CPU Timer 1
03h = CPU Timer 2
04h = XINT2SOC
05h = ePWM1SOCA
06h = ePWM1SOCB
07h = ePWM2SOCA
08h = ePWM2SOCB
09h = ePWM3SOCA
0Ah = ePWM3SOCB
0Bh = ePWM4SOCA
0Ch = ePWM4SOCB
0Dh = ePWM5SOCA
0Eh = ePWM5SOCB
0Fh = ePWM6SOCA
10h = ePWM6SOCB
11h = ePWM7SOCA
12h = ePWM7SOCB
13h = ePWM8SOCA
14h = ePWM8SOCB

00h – 05h = invalid
06h = 7 cycles long
07h = 8 cycles long
08h = 9 cycles long
09h = 10 cycles long

3Fh = 64 cycles long

Sampling Window

Dell
Highlight

Dell
Highlight

Dell
Line

Dell
Arrow

Duongtb
Typewriter
Not available in F2803x

Dell
Highlight

Duongtb
Typewriter
Not available in F2803x

Dell
Highlight

Analog-to-Digital Converter

6 - 12 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC Interrupt Trigger SOC Select
Registers 1 & 2

AdcRegs.ADCINTSOCSELx

15 - 14
SOC15 SOC14 SOC13 SOC12 SOC11 SOC10 SOC9 SOC8

13 - 12 11 - 10 9 - 8 7 - 6 5 - 4 3 - 2 1 - 0

15 - 14
SOC7 SOC6 SOC5 SOC4 SOC3 SOC2 SOC1 SOC0

13 - 12 11 - 10 9 - 8 7 - 6 5 - 4 3 - 2 1 - 0

ADCINTSOCSEL2

ADCINTSOCSEL1

SOCx ADC Interrupt Select
Selects which, if any, ADCINT triggers SOCx
00 = no ADCINT will trigger SOCx (TRIGSEL field determines SOCx trigger)
01 = ADCINT1 will trigger SOCx (TRIGSEL field ignored)
10 = ADCINT2 will trigger SOCx (TRIGSEL field ignored)
11 = invalid selection

ADC Sample Mode Register
AdcRegs.ADCSAMPLEMODE

reserved

15 - 8

7
SIMULEN14 SIMULEN12 SIMULEN10 SIMULEN8 SIMULEN6 SIMULEN4 SIMULEN2 SIMULEN0

6 5 4 3 2 1 0

Simultaneous Sampling Enable
Couples SOCx and SOCx+1 in simultaneous sampling mode
0 = single sample mode for SOCx and SOCx+1
1 = simultaneous sample mode for SOCx and SOCx+1

Dell
Highlight

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 13

SOC Priority Control Register
AdcRegs.SOCPRICTL

reserved
15 - 11 10 - 5 4 - 0

RRPOINTER SOCPRIORITY

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order
of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

00h = round robin mode for all channels
01h = SOC0 high priority, SOC1-15 round robin
02h = SOC0-1 high priority, SOC2-15 round robin
03h = SOC0-2 high priority, SOC3-15 round robin
04h = SOC0-3 high priority, SOC4-15 round robin
05h = SOC0-4 high priority, SOC5-15 round robin
06h = SOC0-5 high priority, SOC6-15 round robin
07h = SOC0-6 high priority, SOC7-15 round robin
08h = SOC0-7 high priority, SOC8-15 round robin
09h = SOC0-8 high priority, SOC9-15 round robin
0Ah = SOC0-9 high priority, SOC10-15 round robin
0Bh = SOC0-10 high priority, SOC11-15 round robin
0Ch = SOC0-11 high priority, SOC12-15 round robin
0Dh = SOC0-12 high priority, SOC13-15 round robin
0Eh = SOC0-13 high priority, SOC14-15 round robin
0Fh = SOC0-14 high priority, SOC15 round robin
10h = all SOCs high priority (arbitrated by SOC #)
1xh = invalid selection

00h = SOC0 last converted, SOC1 highest priority
01h = SOC1 last converted, SOC2 highest priority
02h = SOC2 last converted, SOC3 highest priority
03h = SOC3 last converted, SOC4 highest priority
04h = SOC4 last converted, SOC5 highest priority
05h = SOC5 last converted, SOC6 highest priority
06h = SOC6 last converted, SOC7 highest priority
07h = SOC7 last converted, SOC8 highest priority
08h = SOC8 last converted, SOC9 highest priority
09h = SOC9 last converted, SOC10 highest priority
0Ah = SOC10 last converted, SOC11 highest priority
0Bh = SOC11 last converted, SOC12 highest priority
0Ch = SOC12 last converted, SOC13 highest priority
0Dh = SOC13 last converted, SOC14 highest priority
0Eh = SOC14 last converted, SOC15 highest priority
0Fh = SOC15 last converted, SOC0 highest priority
1xh = invalid selection
20h = reset value (no SOC has been converted)

Interrupt Select x and y Register
AdcRegs.INTSELxNy

INTxE INTxSELINTxCONTreserved

7 4 - 056

INTyE INTySELINTyCONTreserved

15 12 - 81314
Where x/y = 1/2, 3/4, 5/6, 7/8, 9/10 and 10 is reserved

00h = EOC0 is trigger for ADCINTx/y
01h = EOC1 is trigger for ADCINTx/y
02h = EOC2 is trigger for ADCINTx/y
03h = EOC3 is trigger for ADCINTx/y
04h = EOC4 is trigger for ADCINTx/y
05h = EOC5 is trigger for ADCINTx/y
06h = EOC6 is trigger for ADCINTx/y
07h = EOC7 is trigger for ADCINTx/y
08h = EOC8 is trigger for ADCINTx/y
09h = EOC9 is trigger for ADCINTx/y
0Ah = EOC10 is trigger for ADCINTx/y
0Bh = EOC11 is trigger for ADCINTx/y
0Ch = EOC12 is trigger for ADCINTx/y
0Dh = EOC13 is trigger for ADCINTx/y
0Eh = EOC14 is trigger for ADCINTx/y
0Fh = EOC15 is trigger for ADCINTx/y
1xh = invalid value

ADCINTx/y EOC Source Select

ADCINTx/y
Interrupt Enable
0 = disable
1 = enable

ADCINTx/y
Continuous
Mode Enable
0 = one-shot pulse

generated (until flag
cleared by user)

1 = pulse generated for
each EOC

Dell
Highlight

Dell
Highlight

Analog-to-Digital Converter

6 - 14 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC Conversion Result Registers

 Sequential Sampling Mode (SIMULENx = 0)
 After ADC completes a conversion of an SOCx, the digital result is

placed in the corresponding ADCRESULTx register
 Simultaneous Sampling Mode (SIMULENx = 1)

 After ADC completes a conversion of a channel pair, the digital
results are found in the corresponding ADCRESULTx and
ADCRESULTx+1 registers

Input Digital AdcResult.
Voltage Result ADCRESULTx

3.3 FFFh 0000|1111|1111|1111
1.65 7FFh 0000|0111|1111|1111
0.00081 1h 0000|0000|0000|0001
0 0h 0000|0000|0000|0000

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AdcResult.ADCRESULTx, x = 0 - 15

Signed Input Voltages

How Can We Handle Signed Input Voltages?
Example: -1.65 V ≤ Vin ≤ +1.65 V

1) Add 1.65 volts to the
analog input

Vin

1.65V ADCINx

GND

ADCLO

-
+

R

R

R
-
+

R

R
C28x

#include “F2806x_Device.h”
#define offset 0x07FF
void main(void)
{

int16 value; // signed

value = AdcResult.ADCRESULT0 – offset;
}

2) Subtract “1.65” from the digital result

Dell
Highlight

 Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 15

ADC Calibration and Reference

Built-In ADC Calibration
 TI reserved OTP contains device specific calibration data

for the ADC and internal oscillators
 The Boot ROM contains a Device_cal() routine that copies

the calibration data to their respective registers
 Device_cal() must be run to meet the ADC and oscillator

specs in the datasheet
 The Bootloader automatically calls Device_cal() such that no

action is normally required by the user
 If the Bootloader is bypassed (e.g., during development)

Device_cal() should be called by the application:

 A GEL function using CCS is also available as part of the
Peripheral Register Header Files to accomplish this

#define Device_cal (void (*)(void))0x3D7C80

void main(void)

{

(*Device_cal)(); // call Device_cal()

}

Manual ADC Calibration
 If the offset and gain errors in the datasheet* are unacceptable for your

application, or you want to also compensate for board level errors (e.g.,
sensor or amplifier offset), you can manually calibrate

 Offset error
 Compensated in analog with

the ADCOFFTRIM register
 No reduction in full-scale range
 Configure input B5 to VREFLO, set

ADCOFFTRIM to maximum offset
error, and take a reading

 Re-adjust ADCOFFTRIM to
make result zero

 Gain error
 Compensated in software
 Some loss in full-scale range
 Requires use of a second ADC input pin and an upper-range reference

voltage on that pin; see “TMS320280x and TMS320F2801x ADC Calibration”
appnote #SPRAAD8 for more information

 Tip: To minimize mux-to-mux variation effects, put your most critical
signals on a single mux and use that mux for calibration inputs

* +/-15 LSB offset, +/-30 LSB gain. See device datasheet for exact specifications

CH

CH

M
U

X

VREFLOCONV
VREFLO

B5

ADCOFFTRIM

12-bit
ADC

Analog-to-Digital Converter

6 - 16 C2000 Microcontroller Workshop - Analog-to-Digital Converter

ADC Reference Selection
AdcRegs.ADCREFSEL

 The internal reference has temperature stability of ~50 PPM/°C*
 The internal reference (default) will convert an applied input voltage

to a fixed scale of 0 to 3.3 V range
 If this is not sufficient for your application, there is the option to use

an external reference*
 External reference will scale an input voltage range from VREFLO to

VREFHI (ratiometric)
 The reference value changes the 0 - 3.3 V full-scale range of the ADC

 The ADCREFSEL in ADCCTL1 controls the reference choice

* See device datasheet for exact specifications and ADC reference hardware connections

2 - 015 - 5
ADCREFSEL

ADC Reference Selection
0 = internal (default)
1 = external VREFHI/VREFLO pins

used for reference generation

reserved
4 3

 Comparator

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 17

Comparator

Comparator Block Diagram

Comparator

COMP110-bit
DAC

AIO2
AIO10

COMP1OUT

COMP310-bit
DAC

AIO6
AIO14

COMP3OUT

COMP210-bit
DAC

AIO4
AIO12

COMP2OUT
ADC

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

This device has three analog comparators that share the input pins with the analog-to-digital
converter module. If neither the ADC or comparator input pins are needed, the input pins can be
used as analog I/O pins. As you can see, one of the inputs to the comparator comes directly from
the input pin, and the other input can be taken from the input pin or the 10-bit digital-to-analog
converter. The output of the comparator is fed into the ePWM digital compare sub-module.

Comparator

6 - 18 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Comparator Block Diagram

DACVAL * (VDDA – VSSA)
1023

V =

DAC Reference Comparator Truth Table
Voltages Output
Voltage A < Voltage B 0
Voltage A > Voltage B 1

0

1
0

1

+

COMPx

-

ePWM
Event

Trigger
&

GPIO
MUX

Sync/
Qual

10-bit
DAC

COMPSTS

VDDA

VSSA

Input Pin B

Input Pin A

1

0

COMPSOURCE

DACVAL

CMPINV

COMPDACE

SYNCSEL

QUALSEL

SYSCLKOUT COMPxTRIPV

1 0 DACSOURCE

Ramp
Generator

PWMSYNC1
PWMSYNC2
PWMSYNC3
PWMSYNC4

00
01
10
11

RAMPSOURCE

Comparator Registers

Comparator Registers

reserved
15 - 10

DACVAL
9 - 0

Scales output of DAC from 0 – 1023
Value = 0 – 3FFh

AdcRegs.DACVAL – DAC Value Register

reserved
15 - 1

COMPSTS
0

AdcRegs.COMPSTS – Compare Output Status Register

Logical latched value of the comparator

reserved
15 - 9 7 - 3

SYNCSEL QUALSEL CMPINV COMPSOURCE COMPDACE
8 2 1 0

AdcRegs.COMPCTL – Compare Control Register

Synchronization Select
Output before being feed
to ETPWM/GPIO blocks
0 = Asynchronous
1 = Synchronous

Comparator/
DAC Enable
0 = disable
1 = enable

Comparator
Source
0 = DAC
1 = pin

Invert
0 = no invert
1 = inverted

Qualification
Period
0h = no qual
1h = 2 clocks… …
Fh = 16 clocks

reserved
13 - 5

DACSOURCE
4 - 1

DAC source (DACVAL or RAMP Generator) and RAMP source sync select

AdcRegs.DACCTL – DAC Control Register

RAMPSOURCEFREE:SOFT
15 - 14 0

 Lab 6: Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 19

Lab 6: Analog-to-Digital Converter
 Objective

The objective of this lab is to become familiar with the programming and operation of the on-chip
analog-to-digital converter. The MCU will be setup to sample a single ADC input channel at a
prescribed sampling rate and store the conversion result in a circular memory buffer.

Lab 6: ADC Sampling

ADC

ADCINA0

RESULT0

...

data
memory

CPU copies result
to buffer during
ADC ISR

ePWM2

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

GND
+3.3 V

(GPIO20)
Toggle

(GPIO18)

connector
wire

View ADC
buffer PWM
Samples

Code Composer
Studio

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):
1. Using software

a. SOCx bit (where x = 0 to 15) in the ADC SOC Force 1 Register (ADCSOCFRC1) causes a
software initiated conversion

2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt
b. ePWMxSOCA / ePWMxSOCB (where x = 1 to 7)

- ePWM underflow (CTR = 0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR = 0 or PRD)

 - ePWM compare match (CTRU/D = CMPA/B)
c. ADC interrupt ADCINT1 or ADCINT2

- triggers SOCx (where x = 0 to 15) selected by the ADC Interrupt Trigger SOC Select1/2
Register (ADCINTSOCSEL1/2)

3. Externally triggered using a pin
a. ADCSOC pin (GPIO/XINT2_ADCSOC)

One or more of these methods may be applicable to a particular application. In this lab, we will
be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (ePWM period
match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used
to prompt the CPU to copy the results of the ADC conversion into a results buffer in memory.

Lab 6: Analog-to-Digital Converter

6 - 20 C2000 Microcontroller Workshop - Analog-to-Digital Converter

This buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GPIO18) high and low in the ADC
interrupt service routine. The ADC ISR will also toggle LED LD3 on the controlCARD as a
visual indication that the ISR is running. This pin will be connected to the ADC input pin, and
sampled. After taking some data, Code Composer Studio will be used to plot the results. A flow
chart of the code is shown in the following slide.

Lab 6: Code Flow Diagram

Start General Initialization
• PLL and clocks
• watchdog configure
• GPIO setup
• PIE initialization

ADC Initialization
• convert channel A0 on

ePWM2 period match
• send interrupt on EOC

to trigger ADC ISR
• setup a results buffer

in memory

ePWM2 Initialization
• clear counter
• set period register
• set to trigger ADC on

period match
• set the clock prescaler
• enable the timer

Main Loop
while(1)
{
}

ADC ISR
• read the ADC result
• write to result buffer
• adjust the buffer pointer
• toggle the GPIO pin
• return from interrupt

ADC interrupt

return

Notes
• Program performs conversion on ADC channel A0 (ADCINA0 pin)
• ADC conversion is set at a 50 kHz sampling rate
• ePWM2 is triggering the ADC on period match using SOCA trigger
• Data is continuously stored in a circular buffer
• GPIO18 pin is also toggled in the ADC ISR
• ADC ISR will also toggle the controlCARD LED LD3 as a visual indication that it is running

 Lab 6: Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 21

 Procedure

Open the Project
1. A project named Lab6 has been created for this lab. Open the project by clicking on

Project Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab6\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

Adc.c Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_6.c Lab_5_6_7.cmd
DelayUs.asm Main_6.c
EPwm_6.c PieCtrl.c
F2806x_DefaultIsr.h PieVect.c
F2806x_GlobalVariableDefs.c SysCtrl.c
F2806x_Headers_nonBIOS.cmd Watchdog.c

Setup ADC Initialization and Enable Core/PIE Interrupts
2. In Main_6.c add code to call InitAdc() and InitEPwm() functions. The

InitEPwm() function is used to configure ePWM2 to trigger the ADC at a 50 kHz rate.
Details about the ePWM and control peripherals will be discussed in the next module.

3. Edit Adc.c to configure SOC0 in the ADC as follows:
• SOC0 converts input ADCINA0 in single-sample mode
• SOC0 has a 7 cycle acquisition window
• SOC0 is triggered by the ePWM2 SOCA
• SOC0 triggers ADCINT1 on end-of-conversion
• All SOCs run round-robin

4. Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“ADCINT1” (high-priority) and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

5. Modify the end of Adc.c to do the following:
- Enable the “ADCINT1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

6. Open and inspect DefaultIsr_6.c. This file contains the ADC interrupt service
routine. Save your work and close the modified files.

Build and Load
7. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

Lab 6: Analog-to-Digital Converter

6 - 22 C2000 Microcontroller Workshop - Analog-to-Digital Converter

8. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main(). If the
device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code
9. In Main_6.c place the cursor in the “main loop” section, right click on the mouse

key and select Run To Line.

10. Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data”
memory page. Select GO to view the contents of the ADC result buffer.

Note: Exercise care when connecting any wires, as the power to the USB Docking Station is
on, and we do not want to damage the controlCARD!

11. Using a connector wire provided, connect the ADCINA0 (pin # ADC-A0) to “GND” (pin
GND) on the Docking Station. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of ~0x0000. Note that
you may not get exactly 0x0000 if the device you are using has positive offset error.

12. Adjust the connector wire to connect the ADCINA0 (pin # ADC-A0) to “+3.3V” (pin #
GPIO-20) on the Docking Station. (Note: pin # GPIO-20 has been set to “1” in Gpio.c).
Then run the code again, and halt it after a few seconds. Verify that the ADC results
buffer contains the expected value of ~0x0FFF. Note that you may not get exactly
0x0FFF if the device you are using has negative offset error.

13. Adjust the connector wire to connect the ADCINA0 (pin # ADC-A0) to GPIO18 (pin #
GPIO-18) on the Docking Station. Then run the code again, and halt it after a few
seconds. Examine the contents of the ADC results buffer (the contents should be
alternating ~0x0000 and ~0x0FFF values). Are the contents what you expected?

14. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools Graph Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit µs

 Select OK to save the graph options.

 Lab 6: Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 23

15. Recall that the code toggled the GPIO18 pin alternately high and low. (Also, the ADC
ISR is toggling the LED LD3 on the controlCARD as a visual indication that the ISR is
running). If you had an oscilloscope available to display GPIO18, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

16. Recall that the program toggled the GPIO18 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 µs. Confirm this by measuring the period of
the triangle wave using the “measurement marker mode” graph feature. In the graph
window toolbar, left-click on the ruler icon with the red arrow. Note when you hover
your mouse over the icon, it will show “Toggle Measurement Marker Mode”.
Move the mouse to the first measurement position and left-click. Again, left-click on the
Toggle Measurement Marker Mode icon. Move the mouse to the second
measurement position and left-click. The graph will automatically calculate the
difference between the two values taken over a complete waveform period. When done,
clear the measurement points by right-clicking on the graph and select Remove All
Measurement Marks (or Ctrl+Alt+M).

Using Real-time Emulation
Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a realtime system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

17. The memory and graph windows displaying AdcBuf should still be open. The connector
wire between ADCINA0 (pin # ADC-A0) and GPIO18 (pin # GPIO-18) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

Window Preferences…

and in the section on the left select the “Code Composer Studio” category. Click the plus
sign (+) to the left of “Code Composer Studio” and select “Debug”. In the section on the
right notice the default setting:

• “Continuous refresh interval (milliseconds)” = 500

Click OK.

Lab 6: Analog-to-Digital Converter

6 - 24 C2000 Microcontroller Workshop - Analog-to-Digital Converter

Note: Decreasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too
many windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

18. Next we need to enable the graph window for continuous refresh. Select the “Single
Time” graph. In the graph window toolbar, left-click on the yellow icon with the arrows
rotating in a circle over a pause sign. Note when you hover your mouse over the icon, it
will show “Enable Continuous Refresh”. This will allow the graph to
continuously refresh in real-time while the program is running.

19. Enable the Memory Browser for continuous refresh using the same procedure as the
previous step.

20. Code Composer Studio includes Scripts that are functions which automate entering and
exiting real-time mode. Four functions are available:
• Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)
• Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
• Full_Halt (exit real-time mode, halt CPU)
• Full_Halt_with_Reset (exit real-time mode, halt CPU, reset CPU)
These Script functions are executed by clicking:
Scripts Realtime Emulation Control Function

In the remaining lab exercises we will be using the first and third above Script functions
to run and halt the code in real-time mode.

21. Run the code and watch the windows update in real-time mode. Click:

Scripts Realtime Emulation Control Run_Realtime_with_Reset

22. Carefully remove and replace the connector wire from GPIO18. Are the values updating
in the Memory Browser and Single Time graph as expected?

23. Fully halt the CPU in real-time mode. Click:

Scripts Realtime Emulation Control Full_Halt

24. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.
• Open and inspect Main_6.c. Notice that the global variable DEBUG_TOGGLE is

used to control the toggling of the GPIO18 pin. This is the pin being read with the
ADC.

• Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression…” and then select OK. The global variable DEBUG_TOGGLE should
now be in the “Expressions” window with a value of “1”.

• Enable the “Expressions” window for continuous refresh

 Lab 6: Analog-to-Digital Converter

C2000 Microcontroller Workshop - Analog-to-Digital Converter 6 - 25

• Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

Terminate Debug Session and Close Project
25. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

26. Next, close the project by right-clicking on Lab6 in the Project Explorer window
and select Close Project.

Optional Exercise
If you finish early, you might want to experiment with the code by observing the effects of
changing the OFFTRIM value. Open a watch window to the AdcRegs.ADCOFFTRIM register
and change the OFFTRIM value. If you did not get 0x0000 in step 11, you can calibrate out the
offset of your device. If you did get 0x0000, you can determine if you actually had zero offset, or
if the offset error of your device was negative. (If you do not have time to work on this optional
exercise, you may want to try this after the class).

End of Exercise

Lab 6: Analog-to-Digital Converter

6 - 26 C2000 Microcontroller Workshop - Analog-to-Digital Converter

C2000 Microcontroller Workshop - Control Peripherals 7 - 1

Control Peripherals

Introduction
This module explains how to generate PWM waveforms using the ePWM unit. Also, the eCAP
unit, and eQEP unit will be discussed.

Module Objectives

Module Objectives

Pulse Width Modulation (PWM) review
Generate a PWM waveform with the

Pulse Width Modulator Module (ePWM)
Use the Capture Module (eCAP) to

measure the width of a waveform
Explain the function of Quadrature

Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F2806x
devices. See the device datasheet for more information.

Module Topics

7 - 2 C2000 Microcontroller Workshop - Control Peripherals

Module Topics

Control Peripherals ..7-1
Module Topics ..7-2

PWM Review ..7-3
ePWM ..7-5

ePWM Time-Base Sub-Module ..7-7
ePWM Compare Sub-Module ...7-11
ePWM Action Qualifier Sub-Module ..7-13
Asymmetric and Symmetric Waveform Generation using the ePWM ..7-19
PWM Computation Example ...7-20
ePWM Dead-Band Sub-Module ..7-21
ePWM Chopper Sub-Module ..7-24
ePWM Digital Compare and Trip-Zone Sub-Modules ..7-27
ePWM Event-Trigger Sub-Module ...7-33
Hi-Resolution PWM (HRPWM) ...7-36

eCAP ..7-37

eQEP ..7-43

Lab 7: Control Peripherals ..7-45

 PWM Review

C2000 Microcontroller Workshop - Control Peripherals 7 - 3

PWM Review

What is Pulse Width Modulation?

PWM is a scheme to represent a
signal as a sequence of pulses
fixed carrier frequency
fixed pulse amplitude
pulse width proportional to

instantaneous signal amplitude
PWM energy ≈ original signal energy

t

Original Signal
T

t

PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor
using PWM signals applied to the power converter. Although energy is input to the motor in
discrete packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor
motion is therefore similar to having applied the sinusoidal currents directly.

PWM Review

7 - 4 C2000 Microcontroller Workshop - Control Peripherals

Why use PWM with Power
Switching Devices?

 Desired output currents or voltages are known
 Power switching devices are transistors

Difficult to control in proportional region
 Easy to control in saturated region

 PWM is a digital signal ⇒ easy for MCU to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Gate Signal Gate Signal Known with PWM

PWM

Power-switching devices are difficult to control in the proportional region but are easy to control
in the saturation and cutoff region. Since PWM is a digital signal and easy for microcontrollers to
generate, it is ideal for use with power-switching devices.

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 5

ePWM

ePWM Module Signals and Connections

ePWMx

ePWMx+1

EPWMxSYNCI

EPWMxSYNCO

PIEEPWMxINT

EPWMxTZINT

ePWMx-1

EPWMxSOCB

EPWMxSOCA

ADCCOMP COMPxOUT

EMUSTOP – TZ6

CLOCKFAIL – TZ5

EQEP1ERR – TZ4

CPU

SYSCTRL

eQEP1
EPWMxA

EPWMxB
GPIO
MUX

TZ1 – TZ3GPIO
MUX

An ePWM module can be synchronized with adjacent ePWM modules. The generated PWM
waveforms are available as outputs on the GPIO pins. Additionally, the EPWM module can
generate ADC starter conversion signals and generate interrupts to the PIE block. External trip
zone signals can trip the output and generate interrupts, too. The outputs of the comparators are
used as inputs to the digital compare sub-module. Next, we will look at the internal details of the
ePWM module.

Dell
Highlight

Dell
Rectangle

ePWM

7 - 6 C2000 Microcontroller Workshop - Control Peripherals

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

The ePWM, or enhanced PWM block diagram, consists of a series of sub-modules. In this
section, we will learn about the operation and details of each sub-module.

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 7

ePWM Time-Base Sub-Module

ePWM Time-Base Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

In the time-base sub-module, the clock prescaler divides down the device core system clock and
clocks the 16-bit time-base counter. The time-base counter is used to generate asymmetrical and
symmetrical waveforms using three different count modes: count-up mode, countdown mode, and
count up and down mode. A period register is used to control the maximum count value.
Additionally, the time-base counter has the capability to be synchronized and phase-shifted with
other ePWM units.

Dell
Highlight

ePWM

7 - 8 C2000 Microcontroller Workshop - Control Peripherals

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

The upper two figures show the time-base counter in the count-up mode and countdown mode.
These modes are used to generate asymmetrical waveforms. The lower figure shows the time-
base counter in the count up and down mode. This mode is used to generate symmetrical
waveforms.

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 9

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=120°
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=240°
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=0°
Phase . EPWM1A

EPWM1B

φ=120°

φ=120°

φ=240°

Ext. SyncIn

To eCAP1
SyncIn

If needed, an ePWM module can be synchronized with adjacent ePWM modules.
Synchronization is based on a synch-in signal, time-base counter equals zero, or time-base
counter equals compare B register. Additionally, the waveform can be phase-shifted.

ePWM Time-Base Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
TBCTL Time-Base Control EPwmxRegs.TBCTL.all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

Dell
Oval

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

7 - 10 C2000 Microcontroller Workshop - Control Peripherals

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Upper Register:

FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
15 - 14 13 12 - 10 9 - 7

TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV)

TB Clock Prescale
000 = /1 (default)
001 = /2
010 = /4
011 = /8
100 = /16
101 = /32
110 = /64
111 = /128

High Speed TB
Clock Prescale
000 = /1
001 = /2 (default)
010 = /4
011 = /6
100 = /8
101 = /10
110 = /12
111 = /14

Emulation Halt Behavior
00 = stop after next CTR inc/dec
01 = stop when:

Up Mode; CTR = PRD
Down Mode; CTR = 0
Up/Down Mode; CTR = 0

1x = free run (do not stop)

Phase Direction
0 = count down after sync
1 = count up after sync

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Lower Register:

CTRMODESWFSYNC SYNCOSEL PRDLD PHSEN
6 5 - 4 3 1 - 02

Software Force Sync Pulse
0 = no action
1 = force one-time sync

Sync Output Select
(source of EPWMxSYNC0 signal)
00 = EPWMxSYNCI
01 = CTR = 0
10 = CTR = CMPB
11 = disable SyncOut

Counter Mode
00 = count up
01 = count down
10 = count up and down
11 = stop – freeze (default)

Period Shadow Load
0 = load on CTR = 0
1 = load immediately

Phase Reg. Enable
0 = disable
1 = CTR = TBPHS on

EPWMxSYNCI signal

Dell
Rectangle

Dell
Highlight

Dell
Highlight

Dell
Highlight

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 11

ePWM Compare Sub-Module

ePWM Compare Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

The compare sub-module uses two compare registers to detect time-base count matches. These
compare match events are fed into the action qualifier sub-module. Notice that the output of this
block feeds two signals into the action qualifier.

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Sub-Module

. . .
. . .

. . .
...

. .
...

.

.

ePWM

7 - 12 C2000 Microcontroller Workshop - Control Peripherals

The ePWM Compare Event Waveforms figures shows the compare matches that are fed into the
action qualifier. Notice that with the count up and countdown mode, there are matches on the up-
count and down-count.

ePWM Compare Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =

ePWM Compare Control Register
EPwmxRegs.CMPCTL

6 5 4 1 - 0

LOADBMODE LOADAMODEreserved

3 - 2

SHDWBMODE SHDWAMODE

CMPA and CMPB Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

CMPA and CMPB Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

SHDWBFULL

15 - 10 9 8

SHDWAFULL

7

reservedreserved

CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full
1 = shadow full

Dell
Highlight

Dell
Highlight

Dell
Highlight

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 13

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

The action qualifier sub-module uses the inputs from the compare logic and time-base counter to
generate various actions on the output pins. These first few modules are the main components
used to generate a basic PWM waveform.

ePWM Action Qualifier Actions
for EPWMA and EPWMB

Z
↓

Z
↑

Z
X

Z
T

CA
↓

CA
↑

CA
X

CA
T

CB
↓

CB
↑

CB
X

CB
T

P
↓

P
↑

P
X

P
T

SW
↓

SW
↑

SW
X

SW
T

Do Nothing

Clear Low

Set High

Toggle

S/W
Force

EPWM
Output
Actions

Time-Base Counter equals:

Zero CMPA CMPB TBPRD

ePWM

7 - 14 C2000 Microcontroller Workshop - Control Peripherals

This table shows the various action qualifier compare-match options for when the time-base
counter equals zero, compare A match, compare B match, and period match. Based on the
selected match option, the output pins can be configured to do nothing, clear low, set high, or
toggle. Also, the output pins can be forced to any action using software.

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

.
. . .

EPWMA

EPWMB

.

. .

. .
CMPA

CMPB

The next few figures show how the action qualifier uses the compare matches to modulate the
output pins. Notice that the output pins for EPWMA and EPWMB are completely independent.
Here, on the EPWMA output, the waveform will be set high on zero match and clear low on
compare A match. On the EPWMB output, the waveform will be set high on zero match and
clear low on compare B match.

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 15

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

EPWMA

EPWMB

TBCTR

TBPRD

.
CMPB

CMPA

. . .

This figure has the EPWMA output set high on compare A match and clear low on compare B
match, while the EPWMB output is configured to toggle on zero match.

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

TBCTR

TBPRD
CMPB
CMPA

. . .

Here you can see that we can have different output actions on the up-count and down-count using
a single compare register. So, for the EPWMA and EPWMB outputs, we are setting high on the

ePWM

7 - 16 C2000 Microcontroller Workshop - Control Peripherals

compare A and B up-count matches and clearing low on the compare A and B down-down
matches.

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

TBCTR

TBPRD

.
CMPB
CMPA

. . .

And finally, again using different output actions on the up-count and down-count, we have the
EPWMA output set high on the compare A up-count match and clear low on the compare B
down-count match. The EPWMB output will clear low on zero match and set high on period
match.

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 17

ePWM Action Qualifier Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register
EPwmxRegs.AQCTLy (y = A or B)

ZROCBU CAD CAU PRD
1 - 0

CBD
15 - 12

reserved

3 - 25 - 47 - 69 - 811 - 10

00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

Action when
CTR = CMPB

on DOWN Count

Action when
CTR = CMPB
on UP Count

Action when
CTR = CMPA

on DOWN Count

Action when
CTR = CMPA
on UP Count

Action when
CTR = 0

Action when
CTR = PRD

ePWM

7 - 18 C2000 Microcontroller Workshop - Control Peripherals

ePWM Action Qualifier S/W Force
Register

EPwmxRegs.AQSFRC

ACTSFARLDCSF OTSFB ACTSFB OTSFA
1 - 015 - 8

reserved

24 - 357 - 6

AQSFRC Shadow Reload Options
00 = load on event CTR = 0
01 = load on event CTR = PRD
10 = load on event CTR = 0 or CTR = PRD
11 = load immediately (from active reg.)

One-Time S/W Force on Output B / A
0 = no action
1 = single s/w force event

Action on One-Time S/W Force B / A
00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

ePWM Action Qualifier Continuous S/W
Force Register

EPwmxRegs.AQCSFRC

CSFACSFB
1 - 015 - 4

reserved

3 - 2

Continuous S/W Force on Output B / A
00 = forcing disabled
01 = force continuous low on output
10 = force continuous high on output
11 = forcing disabled

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 19

Asymmetric and Symmetric Waveform Generation using
the ePWM
PWM switching frequency:
The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: 1
periodtimer

period switchingregister period −

=

Symmetric PWM:
period)2(timer

period switchingregister period =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:
The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 210 = 1024 ≈ 1000

Symmetric PWM: approx. 9 bit resolution since 29 = 512 ≈ 500

PWM duty cycle:
Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TxPR cycle)duty - (100% = TxCMPR ∗

Symmetric PWM: TxPR cycle)duty - (100% = TxCMPR ∗

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

Dell
Rectangle

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

7 - 20 C2000 Microcontroller Workshop - Control Peripherals

PWM Computation Example

Symmetric PWM Computation Example
 Determine TBPRD and CMPA for 90 kHz, 25% duty

symmetric PWM from a 90 MHz time base clock

CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

TBPRD = fTBCLK
fPWM 22

11
90 kHz
90 MHz.. = 500=

Counter

Compare

Period

PWM Pin

fTBCLK = 90 MHz

CA
↑

CA
↓

..
fPWM = 90 kHz

(TPWM = 11.1 µs)

(TTBCLK = 11.1 ns)

Asymmetric PWM Computation Example
 Determine TBPRD and CMPA for 90 kHz, 25% duty

asymmetric PWM from a 90 MHz time base clock

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75*(999+1) - 1 = 749

TBPRD =
fTBCLK
fPWM 90 kHz

90 MHz - 1 = 999- 1 =

Counter

Compare
Period

PWM Pin

P
↓

CA
↑

fTBCLK = 90 MHz

..
fPWM = 90 kHz

(TPWM = 11.1 µs)

(TTBCLK = 11.1 ns)

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 21

ePWM Dead-Band Sub-Module

ePWM Dead-Band Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

The dead-band sub-module provides a means to delay the switching of a gate signal, thereby
allowing time for gates to turn off and preventing a short circuit.

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

Dell
Highlight

ePWM

7 - 22 C2000 Microcontroller Workshop - Control Peripherals

To explain further, power-switching devices turn on faster than they shut off. This issue would
momentarily provide a path from supply rail to ground, giving us a short circuit. The dead-band
sub-module alleviates this issue.

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same phase
of a power converter are open simultaneously. This condition shorts the power supply and results
in a large current draw. Shoot-through problems occur because transistors open faster than they
close, and because high-side and low-side power converter gates are typically switched in a
complimentary fashion. Although the duration of the shoot-through current path is finite during
PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power supply.

ePWM Dead-Band Block Diagram

Rising
Edge
Delay

In Out

(10-bit
counter)

Falling
Edge
Delay

In Out

(10-bit
counter)

°
° °
0

1

°
° °
0

1

°
° °
0

1

°
° °
1

0
°

°

.

.

.

.

PWMxA

PWMxB

PWMxB

PWMxAS1

S0

S2

S3 FED

RED

OUT-MODEPOLSEL

°
° °
0

1

°
° °
0

1

S4

S5

IN-MODE
HALFCYCLE

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from

PWM
signal

R

by-pass diode

Dell
Highlight

Dell
Rectangle

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 23

the gate via the by-pass diode and closing time is therefore not affected. While this passive
approach offers an inexpensive solution that is independent of the control microprocessor, it is
imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements. In addition, the dead time is typically specified with
a single program variable that is easily changed for different power converters or adapted on-line.

ePWM Dead-Band Sub-Module Registers
(lab file: EPwm.c)

Rising Edge Delay = TTBCLK x DBRED
Falling Edge Delay = TTBCLK x DBFED

Name Description Structure
DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBRED 10-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED 10-bit Falling Edge Delay EPwmxRegs.DBFED =

ePWM

7 - 24 C2000 Microcontroller Workshop - Control Peripherals

ePWM Dead Band Control Register
EPwmxRegs.DBCTL

Polarity Select
00 = active high
01 = active low complementary (RED)
10 = active high complementary (FED)
11 = active low

Out-Mode Control
00 = disabled (DBM bypass)
01 = PWMxA = no delay

PWMxB = FED
10 = PWMxA = RED

PWMxB = no delay
11 = RED & FED (DBM fully enabled)

In-Mode Control
00 = PWMxA is source for RED and FED
01 = PWMxA is source for FED

PWMxB is source for RED
10 = PWMxA is source for RED

PWMxB is source for FED
11 = PWMxB is source for RED and FED

OUT_MODEPOLSEL
1 - 014 - 6

reserved

3 - 2
IN_MODE

5 - 4

HALFCYCLE
15

Half Cycle Clocking
0 = full cycle clocking (TBCLK rate)
1 = half cycle clocking (TBCLK*2 rate)

ePWM Chopper Sub-Module

ePWM Chopper Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Dell
Highlight

Dell
Highlight

Dell
Highlight

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 25

The PWM chopper sub-module uses a high-frequency carrier signal to modulate the PWM
waveform. This is used with pulsed transformer-based gate drives to control power-switching
elements.

Purpose of the PWM Chopper

Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

Used with pulse transformer-based
gate drivers to control power
switching elements

As you can see in this figure, a high-frequency carrier signal is ANDed with the ePWM outputs.
Also, this circuit provides an option to include a larger, one-shot pulse width before the sustaining
pulses.

ePWM Chopper Waveform
EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

OSHT

EPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

ePWM

7 - 26 C2000 Microcontroller Workshop - Control Peripherals

ePWM Chopper Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
PCCTL PWM-Chopper Control EPwmxRegs.PCCTL.all =

ePWM Chopper Control Register
EPwmxRegs.PCCTL

CHPENCHPDUTY CHPFREQ OSHTWTH
015 - 11

reserved

4 - 17 - 510 - 8

Chopper Enable
0 = disable (bypass)
1 = enable

One-Shot Pulse Width
0000 = 1 x SYSCLKOUT/8 1000 = 9 x SYSCLKOUT/8
0001 = 2 x SYSCLKOUT/8 1001 = 10 x SYSCLKOUT/8
0010 = 3 x SYSCLKOUT/8 1010 = 11 x SYSCLKOUT/8
0011 = 4 x SYSCLKOUT/8 1011 = 12 x SYSCLKOUT/8
0100 = 5 x SYSCLKOUT/8 1100 = 13 x SYSCLKOUT/8
0101 = 6 x SYSCLKOUT/8 1101 = 14 x SYSCLKOUT/8
0110 = 7 x SYSCLKOUT/8 1110 = 15 x SYSCLKOUT/8
0111 = 8 x SYSCLKOUT/8 1111 = 16 x SYSCLKOUT/8

Chopper Clk Freq.
000 = SYSCLKOUT/8 ÷ 1
001 = SYSCLKOUT/8 ÷ 2
010 = SYSCLKOUT/8 ÷ 3
011 = SYSCLKOUT/8 ÷ 4
100 = SYSCLKOUT/8 ÷ 5
101 = SYSCLKOUT/8 ÷ 6
110 = SYSCLKOUT/8 ÷ 7
111 = SYSCLKOUT/8 ÷ 8

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)
001 = 2/8 (25.0%)
010 = 3/8 (37.5%)
011 = 4/8 (50.0%)
100 = 5/8 (62.5%)
101 = 6/8 (75.0%)
110 = 7/8 (87.5%)
111 = reserved

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 27

ePWM Digital Compare and Trip-Zone Sub-Modules

ePWM Digital Compare and Trip-Zone
Sub-Modules

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

The trip zone and digital compare sub-modules provide a protection mechanism to protect the
output pins from abnormalities, such as over-voltage, over-current, and excessive temperature
rise.

Purpose of the Digital Compare
Sub-Module

Generates ‘compare’ events that can:
 Trip the ePWM
Generate a Trip interrupt
 Sync the ePWM
Generate an ADC start of conversion

 The inputs to the digital compare module are:
Analog comparator outputs (COMP1, COMP2, COMP3)
 Trip-zone input pins (TZ1, TZ2, TZ3)

 A compare event is generated when one or more
of its selected inputs are either high or low (shown
on later slide)

Optional ‘Blanking’ can be used to temporarily
disable the compare action in alignment with
PWM switching to eliminate noise effects

Dell
Highlight

Dell
Highlight

ePWM

7 - 28 C2000 Microcontroller Workshop - Control Peripherals

Digital Compare Sub-Module Signals

TZ1

TZ2

TZ3

COMP1OUT

COMP2OUT

COMP3OUT

Digital Trip
Event A1
Compare

Digital Trip
Event A2
Compare

Digital Trip
Event B1
Compare

Digital Trip
Event B2
Compare

Generate PWM Sync
Time-Base Sub-Module

Generate SOCA
Event-Trigger Sub-Module

Trip PWMA Output

Generate Trip Interrupt

Trip-Zone Sub-Module

Generate PWM Sync
Time-Base Sub-Module

Generate SOCB
Event-Trigger Sub-Module

Trip PWMB Output

Generate Trip Interrupt

Trip-Zone Sub-Module

DCAH

DCAL

DCBH

DCBL

DCTRIPSEL TZDCSEL DCACTL / DCBCTL

DCAEVT1

DCAEVT2

DCBEVT1

DCBEVT2

blanking

blanking

The inputs to the digital compare sub-module are the trip zone pins and the analog comparator
outputs. This module generates compare events that can generate a PWM sync, generate an ADC
start of conversion, trip a PWM output, and generate a trip interrupt. Optional blinking can be
used to temporarily disable the compare action in alignment with PWM switching to eliminate
noise effects.

Digital Compare Events
 The user selects the input for each of

DCAH, DCAL, DCBH, DCBL
 Each A and B compare uses its

corresponding DCyH/L inputs (y = A or B)
 The user selects the signal state that

triggers each compare from the following
choices:

i. DCxH low DCxL don’t care

ii. DCxH high DCxL don’t care

iii. DCxL low DCxH don’t care

iv. DCxL high DCxH don’t care

v. DCxL high DCxH low

Dell
Oval

Dell
Highlight

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 29

The PWM trip zone has a fast, clock-independent logic path to the PWM output pins where the
outputs can be forced to high impedance. Two actions are supported: One-shot trip for major
short circuits or over-current conditions, and cycle-by-cycle trip for current limiting operation.

Trip-Zone Features
♦ Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
♦ Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
♦ Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

CPU
core P

W
M

O
U
T
P
U
T
S

EPWMxTZINT

TZ6
TZ5
TZ4
TZ3
TZ2
TZ1

Over
Current
Sensors

Cycle-by-Cycle
Mode

One-Shot
Mode

EPWMxA

EPWMxB

COMPxOUT Digital
Compare

CPU
SYSCTRL

eQEP1

EMUSTOP
CLOCKFAIL
EQEP1ERR

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of
motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in the high-
impedance state immediately after the pin is driven low. An interrupt will also be generated.

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

ePWM

7 - 30 C2000 Microcontroller Workshop - Control Peripherals

ePWM Digital Compare and Trip-Zone
Sub-Module Registers

(lab file: EPwm.c)
Name Description Structure
DCACTL DC A Control EPwmxRegs.DCACTL.all =
DCBCTL DC B Control EPwmxRegs.DCBCTL.all =
DCTRIPSEL DC Trip Select EPwmxRegs.DCTRIPSEL.all =
DCCAPCTL Capture Control EPWMxRegs.DCCAPCTL.all =
DCCAP Counter Capture EPwmxRegs.DCCAP =
DCFCTL DC Filter Control EPwmxRegs.DCFCTL.all =
DCFOFFSETCNT Filter Offset Ctr EPwmxRegs.DCOFFSETCNT =
DCFWINDOW Filter Window EPwmxRegs.DCFWINDOW =
DCFWINDOWCNT Filter Window Ctr EPwmxRegs.DCFWINDOWCNT =
TZDCSEL Digital Compare EPwmxRegs.TZDCSEL.all =
TZCTL Trip-Zone Control EPwmxRegs.TZCTL.all =
TZSEL Trip-Zone Select EPwmxRegs.TZSEL.all =
TZEINT Enable Interrupt EPwmxRegs.TZEINT.all =
TZFLG Trip-Zone Flag EPwmxRegs.TZFLG.all =
TZCLR Trip-Zone Clear EPwmxRegs.TZCLR.all =
TZFRC Trip-Zone Force EPwmxRegs.TZFRC.all =

ePWM Digital Compare Trip Select
Register

EPwmxRegs.DCTRIPSEL

DCBLCOMPSEL
15 - 12 11 - 8

7 - 4 3 - 0

DCBHCOMPSEL

DCALCOMPSEL DCAHCOMPSEL

Digital Compare B
Low Input Source Select

Digital Compare B
High Input Source Select

Digital Compare A
Low Input Source Select

Digital Compare A
High Input Source Select

0000 = TZ1 input
0001 = TZ2 input
0010 = TZ3 input
1000 = COMP1OUT input
1001 = COMP2OUT input
1010 = COMP3OUT input
other values reserved

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 31

ePWM Trip-Zone Digital Compare Event
Select Register

EPwmxRegs.TZDCSEL

2 - 015 - 12

reserved

5 - 3
DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1

8 - 611 - 9

000 = event disable
001 = DCBH low, DCBL don’t care
010 = DCBH high, DCBL don’t care
011 = DCBL low, DCBH don’t care
100 = DCBL high, DCBH don’t care
101 = DCBL high, DCBH low
11x = reserved

Digital Compare Output A
Event 2/1 Select

Digital Compare Output B
Event 2/1 Select

ePWM Digital Compare Control Register
EPwmxRegs.DCyCTL (y = A or B)

9 8 2 0
reserved

17 - 415 - 10
EVT1FRC
SYNCSEL

EVT2FRC
SYNCSEL

EVT2SRC
SEL

EVT1SRC
SEL

EVT1
SYNCE

EVT1
SOCEreserved

3

DCyEVT1 Source
Signal Select
0 = DCyEVT1 signal
1 = DCEVTFILT signal

DCyEVT2 Source
Signal Select
0 = DCyEVT2 signal
1 = DCEVTFILT signal

DCyEVT1 Source Force
Sync Signal Select
0 = synchronous
1 = asynchronous

DCyEVT1 SOC
Generation
0 = disable
1 = enable

DCyEVT1 SYNC
Generation
0 = disable
1 = enable

DCyEVT2 Source Force
Sync Signal Select
0 = synchronous
1 = asynchronous

ePWM

7 - 32 C2000 Microcontroller Workshop - Control Peripherals

ePWM Trip-Zone Control Register
EPwmxRegs.TZCTL

TZATZB
1 - 015 - 12

reserved

3 - 2

TZ1 to TZ6 Action on
EPWMxB / EPWMxA

DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1
5 - 47 - 69 - 811 - 10

00 = high impedance
01 = force high
10 = force low
11 = do nothing (disable)

Digital Compare Output
Event 2/1 Action

on EPWMxA

Digital Compare Output
Event 2/1 Action

on EPWMxB

ePWM Trip-Zone Select Register
EPwmxRegs.TZSEL

OSHT1OSHT5 OSHT4 OSHT3 OSHT2
8

OSHT6
15 910111213

CBC1CBC5 CBC4 CBC3 CBC2
0

CBC6
7 12345

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 = enable as trip source

One-Shot Trip Zone
(event only cleared under S/W
control; remains latched)
0 = disable as trip source
1 = enable as trip source

14

6

DCBEVT1

DCBEVT2 DCAEVT2

DCAEVT1

Dell
Rectangle

Dell
Highlight

Dell
Highlight

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 33

ePWM Trip-Zone Enable Interrupt
Register

EPwmxRegs.TZEINT

OST CBCreserved
15 - 7 02 1

reserved

Cycle-by-Cycle
Interrupt Enable
0 = disable
1 = enable

One-Shot
Interrupt Enable
0 = disable
1 = enable

DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1

Digital Compare
Output B Event 2/1
Interrupt Enable
0 = disable
1 = enable

3456

Digital Compare
Output A Event 2/1
Interrupt Enable
0 = disable
1 = enable

ePWM Event-Trigger Sub-Module

ePWM Event-Trigger Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

The event-trigger sub-module is used to provide a triggering signal for interrupts and the start of
conversion for the ADC.

Dell
Highlight

Dell
Highlight

ePWM

7 - 34 C2000 Microcontroller Workshop - Control Peripherals

ePWM Event-Trigger Interrupts and SOC
TBCTR
TBPRD

EPWMA

EPWMB

CMPB
CMPA

CTR = 0

CTR = PRD

CTRU = CMPA

CTRD = CMPA

CTRU = CMPB

CTRD = CMPB

CTR = 0 or PRD

. . .

. .

Event-trigger interrupts and start of conversions can be generated on counter equals zero, counter
equal period, counter equal zero or period, counter up equal compare A, counter down equal
compare A, counter up equal compare B, counter down equal compare B. Notice counter up and
down are independent and separate.

ePWM Event-Trigger Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
ETSEL Event-Trigger Selection EPwmxRegs.ETSEL.all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

Dell
Highlight

 ePWM

C2000 Microcontroller Workshop - Control Peripherals 7 - 35

ePWM Event-Trigger Selection Register
EPwmxRegs.ETSEL

15 11 7 - 4 2 - 0

INTEN INTSELreserved

3

SOCBSEL SOCASELSOCAENSOCBEN

10 - 814 - 12

Enable SOCB / A
0 = disable
1 = enable

EPWMxSOCB / A Select
000 = DCBEVT1 / DCAEVT1
001 = CTR = 0
010 = CTR = PRD
011 = CTR = 0 or PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

Enable EPWMxINT
0 = disable
1 = enable

EPWMxINT Select
000 = reserved
001 = CTR = 0
010 = CTR = PRD
011 = CTR = 0 or PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

ePWM Event-Trigger Prescale Register
EPwmxRegs.ETPS

15 - 14 11 - 10 7 - 4 1 - 0

INTCNT INTPRDreserved

2 - 3

SOCBPRD SOCAPRDSOCACNTSOCBCNT

9 - 813 - 12

EPWMxSOCB / A Counter
(number of events have occurred)
00 = no events
01 = 1 event
10 = 2 events
11 = 3 events

EPWMxSOCB / A Period
(number of events before SOC)
00 = disabled
01 = SOC on first event
10 = SOC on second event
11 = SOC on third event

EPWMxINT Counter
(number of events have occurred)
00 = no events
01 = 1 event
10 = 2 events
11 = 3 events

EPWMxINT Period
(number of events before INT)
00 = disabled
01 = INT on first event
10 = INT on second event
11 = INT on third event

ePWM

7 - 36 C2000 Microcontroller Workshop - Control Peripherals

Hi-Resolution PWM (HRPWM)

Hi-Resolution PWM (HRPWM)

 Significantly increases the resolution of conventionally derived digital PWM
 Uses 8-bit extensions to Compare registers (CMPxHR), Period register

(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control
 Typically used when PWM resolution falls below ~9-10 bits which occurs at

frequencies greater than ~180 kHz (with system clock of 90 MHz)
 Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 90 MHz)

Regular
PWM Step

(i.e. 11.1 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

The high-resolution PWM feature significantly increases the resolution of conventionally-derived
PWM. High-resolution PWM divides a clock cycle into smaller steps called micro steps. The
step size is approximately 150 picoseconds. This is typically used when PWM resolution falls
below approximately 9 or 10 bits, which occurs at frequencies greater than approximately 180
kHz with a system clock of 90 MHz.

 eCAP

C2000 Microcontroller Workshop - Control Peripherals 7 - 37

eCAP

Capture Module (eCAP)

 The eCAP module timestamps transitions
on a capture input pin

Timer

Timestamp
Values

Trigger

pin

The capture units allow time-based logging of external TTL signal transitions on the capture input
pins. The C28x has up to six capture units.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered,
and therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings
when computations are driven by an external event since the interrupt allows preliminary
calculations to begin at the start-of-conversion, rather than at the end-of-conversion using the
ADC end-of-conversion interrupt. The ADCSOC pin does not offer a start-of-conversion
interrupt. Rather, polling of the ADCSOC bit in the control register would need to be performed
to trap the externally initiated start of conversion.

eCAP

7 - 38 C2000 Microcontroller Workshop - Control Peripherals

Some Uses for the Capture Module

Problem: At low speeds, calculation of speed
based on a measured position change at
fixed time intervals produces large estimate
errors

Alternative: Estimate the speed using a measured time interval
at fixed position intervals

Signal from one
quadrature
encoder channel

 Low speed velocity estimation from incr. encoder:
 Measure the time width of a pulse

vk ≈ ∆x
tk - tk-1

vk ≈
∆t

xk - xk-1

∆x

 Auxiliary PWM generation

eCAP Module Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

Ev
en

t L
og

ic

ECAPx
pin

SYSCLKOUT

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

The capture module features a 32-bit time-stamp counter to minimize rollover. Each module has
four capture registers. Polarity can be set to trigger on rising or falling edge, and trigger events

 eCAP

C2000 Microcontroller Workshop - Control Peripherals 7 - 39

can be pre-scaled. The capture module can operate in absolute time-stamp mode or difference
mode where the counter resets on each capture.

eCAP Module Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

SYSCLKOUT

immediate
mode

shadow
mode

shadow
mode

immediate
mode

If the capture module is not used, it can be configured as an asynchronous PWM module.

eCAP Module Registers
(lab file: ECap.c)

Name Description Structure
ECCTL1 Capture Control 1 ECapxRegs.ECCTL1.all =
ECCTL2 Capture Control 2 ECapxRegs.ECCTL2.all =
TSCTR Time-Stamp Counter ECapxRegs.TSCTR =
CTRPHS Counter Phase Offset ECapxRegs.CTRPHS =
CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

eCAP

7 - 40 C2000 Microcontroller Workshop - Control Peripherals

eCAP Control Register 1
ECapxRegs.ECCTL1

CAPLDENFREE_SOFT PRESCALE
15 - 14 13 - 9 8

Upper Register:

Emulation Control
00 = TSCTR stops immediately
01 = TSCTR runs until equals 0
1X = free run (do not stop)

Event Filter Prescale Counter
00000 = divide by 1 (bypass)
00001 = divide by 2
00010 = divide by 4
00011 = divide by 6
00100 = divide by 8

11110 = divide by 60
11111 = divide by 62

CAP1 – 4 Load
on Capture Event
0 = disable
1 = enable

eCAP Control Register 1
ECapxRegs.ECCTL1

Lower Register:

CTRRST4 CAP4POL
7 3 02

CTRRST3 CAP3POL CTRRST2 CAP2POL CTRRST1 CAP1POL
1456

Counter Reset on Capture Event
0 = no reset (absolute time stamp mode)
1 = reset after capture (difference mode)

Capture Event Polarity
0 = trigger on rising edge
1 = trigger on falling edge

 eCAP

C2000 Microcontroller Workshop - Control Peripherals 7 - 41

eCAP Control Register 2
ECapxRegs.ECCTL2

Upper Register:

SWSYNCAPWMPOL CAP_APWM

10 815 - 11

reserved

9

APWM Output Polarity
(valid only in APWM mode)
0 = active high output
1 = active low output

Capture / APWM mode
0 = capture mode
1 = APWM mode

Software Force
Counter Synchronization
0 = no effect
1 = TSCTR load of current

module and other modules
if SYNCO_SEL bits = 00

eCAP Control Register 2
ECapxRegs.ECCTL2

Lower Register:

SYNCO_SEL SYNCI_EN

7 - 6 3 02 - 1

TSCTRSTOP REARM STOP_WRAP CONT_ONESHT

45

Sync-Out Select
00 = sync-in to sync-out
01 = CTR = PRD event

generates sync-out
1X = disable

Counter Sync-In
0 = disable
1 = enable

Time Stamp
Counter Stop
0 = stop
1 = run

Re-arm
(capture mode only)
0 = no effect
1 = arm sequence

Stop Value for One-Shot Mode/
Wrap Value for Continuous Mode
(capture mode only)
00 = stop/wrap after capture event 1
01 = stop/wrap after capture event 2
10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

Continuous/One-Shot
(capture mode only)
0 = continuous mode
1 = one-shot mode

eCAP

7 - 42 C2000 Microcontroller Workshop - Control Peripherals

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed as
soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed, the
capture registers to see if two captures have occurred, and proceed from there.

eCAP Interrupt Enable Register
ECapxRegs.ECEINT

CTR=CMP CTR=PRD
7 3 02

CTROVF CEVT4 CEVT3 CEVT2 CEVT1
1456

reserved

15 - 8

reserved

0 = disable as interrupt source
1 = enable as interrupt source

CTR = CMP
Interrupt Enable

CTR = PRD
Interrupt Enable

CTR = Overflow
Interrupt Enable

Capture Event 3
Interrupt Enable

Capture Event 1
Interrupt Enable

Capture Event 4
Interrupt Enable

Capture Event 2
Interrupt Enable

 eQEP

C2000 Microcontroller Workshop - Control Peripherals 7 - 43

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

The eQEP circuit, when enabled, decodes and counts the quadrature encoded input pulses. The
QEP circuit can be used to interface with an optical encoder to get position and speed information
from a rotating machine.

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

eQEP

7 - 44 C2000 Microcontroller Workshop - Control Peripherals

Using a quadrature decoder state machine, we can determine if the counter is incrementing or
decrementing, and therefore know if the disc is moving clockwise or counterclockwise.

eQEP Module Block Diagram

Quadrature
Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCLKOUT

Generate the direction and
clock for the position counter
in quadrature count modeGenerate a sync output

and/or interrupt on a
position compare match

Measure the elapsed time
between the unit position events;
used for low speed measurement

Generate periodic
interrupts for velocity
calculations

Monitors the quadrature
clock to indicate proper
operation of the motion
control system

Quadrature -
clock mode

Direction -
count mode

The QEP module features a direct interface to encoders. In addition to channels A and B being
used for rotational directional information, the index can be used to determine rotational speed,
and the strobe can be used for position from a homing sensor.

eQEP Module Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCLKOUT

Strobe
from homing sensor

 Lab 7: Control Peripherals

C2000 Microcontroller Workshop - Control Peripherals 7 - 45

Lab 7: Control Peripherals
 Objective

The objective of this lab is to become familiar with the programming and operation of the control
peripherals and their interrupts. ePWM1A will be setup to generate a 2 kHz, 25% duty cycle
symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-to-
digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ADC
RESULT0

...

data
memoryCPU copies

result to
buffer during
ADC ISR

ePWM2

connector
wire

Capture 1 Register
ADC-
INA0

TB Counter
Compare

Action Qualifier

ePWM1

eCAP1

Capture 2 Register

Capture 3 Register

Capture 4 Register
View ADC
buffer PWM
Samples

Code Composer
Studio

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

 Procedure

Open the Project
1. A project named Lab7 has been created for this lab. Open the project by clicking on

Project Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab7\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

Lab 7: Control Peripherals

7 - 46 C2000 Microcontroller Workshop - Control Peripherals

Adc.c Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_7.c Lab_5_6_7.cmd
DelayUs.asm Main_7.c
ECap_7_8_9_10_12.c PieCtrl.c
EPwm_7_8_9_10_12.c PieVect.c
F2806x_DefaultIsr.h SysCtrl.c
F2806x_GlobalVariableDefs.c Watchdog.c
F2806x_Headers_nonBIOS.cmd

Note: The ECap_7_8_9_10_12.c file will be added and used with eCAP1 to detect
the rising and falling edges of the waveform in the second part of this lab exercise.

Setup Shared I/O and ePWM1
2. Edit Gpio.c and adjust the shared I/O pin in GPIO0 for the PWM1A function.

3. In EPwm_7_8_9_10_12.c, setup ePWM1 to implement the PWM waveform as
described in the objective for this lab. The following registers need to be modified:
TBCTL (set clock prescales to divide-by-1, no software force, sync and phase disabled),
TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear
on down count for output A). Software force, deadband, PWM chopper and trip action
has been disabled. (Hint – notice the last steps enable the timer count mode and enable
the clock to the ePWM module). Either calculate the values for TBPRD and CMPA (as a
challenge) or make use of the global variable names and values that have been set using
#define in the beginning of Lab.h file. Notice that ePWM2 has been initialized earlier
in the code for the ADC lab. Save your work and close the modified files.

Build and Load
4. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

5. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code – PWM Waveform
6. Open a memory browser to view some of the contents of the ADC results buffer. The

address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data”
memory page. We will be running our code in real-time mode, and we will need to have
the memory window continuously refresh.

7. Using a connector wire provided, connect the PWM1A (pin # GPIO-00) to ADCINA0
(pin # ADC-A0) on the Docking Station.

8. Run the code (real-time mode) using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset. Watch the window
update. Verify that the ADC result buffer contains the updated values.

 Lab 7: Control Peripherals

C2000 Microcontroller Workshop - Control Peripherals 7 - 47

9. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools Graph Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit µs

Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 µs. You can confirm this by
measuring the period of the waveform using the “measurement marker mode” graph
feature. Disable continuous refresh for the graph before taking the measurements. In the
graph window toolbar, left-click on the ruler icon with the red arrow. Note when you
hover your mouse over the icon, it will show “Toggle Measurement Marker
Mode”. Move the mouse to the first measurement position and left-click. Again, left-
click on the Toggle Measurement Marker Mode icon. Move the mouse to the
second measurement position and left-click. The graph will automatically calculate the
difference between the two values taken over a complete waveform period. When done,
clear the measurement points by right-clicking on the graph and select Remove All
Measurement Marks. Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio
11. Code Composer Studio also has the ability to make frequency domain plots. It does this

by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools Graph FFT Magnitude and set the following values:

Lab 7: Control Peripherals

7 - 48 C2000 Microcontroller Workshop - Control Peripherals

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Data Plot Style Bar

FFT Order 10

Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Setup eCAP1 to Measure Width of Pulse
The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features of
Code Composer Studio.

14. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Add the following file to the project from
C:\C28x\Labs\Lab7\Files:

ECap_7_8_9_10_12.c

Check your files list to make sure the file is there.

15. In Main_7.c, add code to call the InitECap() function. There are no passed
parameters or return values, so the call code is simply:

InitECap();

16. Edit Gpio.c and adjust the shared I/O pin in GPIO5 for the ECAP1 function.

17. Open and inspect the eCAP1 interrupt service routine (ECAP1_INT_ISR) in the file
DefaultIsr_7.c. Notice that PwmDuty is calculated by CAP2 – CAP1 (rising to
falling edge) and that PwmPeriod is calculated by CAP3 – CAP1 (rising to rising edge).

18. In ECap_7_8_9_10_12.c, setup eCAP1 to calculate PWM_duty and PWM_period.
The following registers need to be modified: ECCTL2 (continuous mode, re-arm disable,
and sync disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity
without reseting the counter), and ECEINT (enable desired eCAP interrupt).

 Lab 7: Control Peripherals

C2000 Microcontroller Workshop - Control Peripherals 7 - 49

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“ECAP1_INT” and fill in the following information:

 PIE group #: # within group:

This information will be used in the next step.

20. Modify the end of ECap_7_8_9_10_12.c to do the following:
- Enable the “ECAP1_INT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

Build and Load
21. Save all changes to the files and click the “Build” button. Select Yes to “Reload the

program automatically”. Switch back to the “CCS Debug Perspective” view by clicking
the CCS Debug icon in the upper right-hand corner.

Run the Code – Pulse Width Measurement
22. Open a memory browser to view the address label PwmPeriod. (Type &PwmPeriod in

the address box). The address label PwmDuty (address &PwmDuty) should appear in the
same memory browser window.

23. Set the memory browser properties format to “32-Bit Unsigned Integer”. We will be
running our code in real-time mode, and we will need to have the memory browser
continuously refresh.

24. Using the connector wire provided, connect the PWM1A (pin # GPIO-00) to ECAP1 (pin
GPIO-05) on the Docking Station.

25. Run the code (real-time mode) by using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset. Notice the values for
PwmDuty and PwmPeriod.

26. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Questions:

• How do the captured values for PwmDuty and PwmPeriod relate to the compare register
CMPA and time-base period TBPRD settings for ePWM1A?

• What is the value of PwmDuty in memory?

• What is the value of PwmPeriod in memory?

• How does it compare with the expected value?

Lab 7: Control Peripherals

7 - 50 C2000 Microcontroller Workshop - Control Peripherals

Terminate Debug Session and Close Project
27. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

28. Next, close the project by right-clicking on Lab7 in the Project Explorer window
and select Close Project.

Optional Exercise
If you finish early, you might want to experiment with the code by observing the effects of
changing the ePWM1 CMPA register using real-time emulation. Be sure that the jumper wire is
connecting PWM1A (pin # GPIO-00) to ADCINA0 (pin # ADC-A0), and the Single Time graph
is displayed. The graph must be enabled for continuous refresh. Run the code in real-time
mode. Open an Expressions window to the EPwm1Regs.CMPA register – in EPwm.c highlight
the “EPwm1Regs” structure and right click, then select Add Watch Expression… and then OK.
In the Expressions window open “EPwm1Regs”, then open “CMPA” and open “half”. Under
“half” change the “CMPA” value. The Expressions window must be enabled for continuous
refresh. Notice the effect on the PWM waveform in the graph.

You have just modulated the PWM waveform by manually changing the CMPA value. Next, we
will modulate the PWM automatically by having the ADC ISR change the CMPA value. In
DefaultIsr.c notice the code in ADCINT1_ADC used to modulate the ePWM1A output between
10% and 90% duty cycle. In Main.c add “PWM_MODULATE” to the Expressions window
using the same procedure above. Then with the code running in real-time mode, change the
“PWM_MODULATE” from 0 to 1 and observe the PWM waveform in the graph. Also, in the
Expressions window notice the CMPA value being updated. (If you do not have time to work on
this optional exercise, you may want to try this after the class).

End of Exercise

C2000 Microcontroller Workshop - Numerical Concepts 8 - 1

Numerical Concepts

Introduction

In this module, numerical concepts will be explored. One of the first considerations concerns
multiplication – how does the user store the results of a multiplication, when the process of mul-
tiplication creates results larger than the inputs. A similar concern arises when considering accu-
mulation – especially when long summations are performed. Next, floating-point concepts will
be explored and IQmath will be described as a technique for implementing a “virtual floating-
point” system to simplify the design process.

The IQmath Library is a collection of highly optimized and high precision mathematical
functions used to seamlessly port floating-point algorithms into fixed-point code. These C/C++
routines are typically used in computationally intensive real-time applications where optimal
execution speed and high accuracy is needed. By using these routines a user can achieve
execution speeds considerable faster than equivalent code written in standard ANSI C language.
In addition, by incorporating the ready-to-use high precision functions, the IQmath library can
shorten significantly a DSP application development time. (The IQmath user's guide is included
in the application zip file, and can be found in the /docs folder once the file is extracted and
installed).

Module Objectives

Module Objectives

 Integers and Fractions

 IEEE-754 Floating-Point

 IQmath

 Format Conversion of ADC Results

Module Topics

8 - 2 C2000 Microcontroller Workshop - Numerical Concepts

Module Topics
Numerical Concepts ...8-1

Module Topics ..8-2

Numbering System Basics ..8-3
Binary Numbers ...8-3
Two's Complement Numbers ..8-3
Integer Basics ..8-4
Sign Extension Mode ...8-5

Binary Multiplication ...8-6

Binary Fractions ..8-8
Representing Fractions in Binary ..8-8
Fraction Basics ..8-8
Multiplying Binary Fractions ..8-9

Fraction Coding ...8-11

Fractional vs. Integer Representation ..8-12

Floating-Point ..8-13

IQmath ...8-16
IQ Fractional Representation ...8-16
Traditional “Q” Math Approach ..8-17
IQmath Approach ..8-19

IQmath Library ..8-24

Converting ADC Results into IQ Format ...8-26

AC Induction Motor Example ..8-28

IQmath Summary ...8-34
Lab 8: IQmath FIR Filter...8-35

 Numbering System Basics

C2000 Microcontroller Workshop - Numerical Concepts 8 - 3

Numbering System Basics
Given the ability to perform arithmetic processes (addition and multiplication) with the C28x, it is
important to understand the underlying mathematical issues which come into play. Therefore, we
shall examine the numerical concepts which apply to the C28x and, to a large degree, most
processors.

Binary Numbers
The binary numbering system is the simplest numbering scheme used in computers, and is the
basis for other schemes. Some details about this system are:

• It uses only two values: 1 and 0
• Each binary digit, commonly referred to as a bit, is one “place” in a binary number

and represents an increasing power of 2.
• The least significant bit (LSB) is to the right and has the value of 1.
• Values are represented by setting the appropriate 1's in the binary number.
• The number of bits used determines how large a number may be represented.

Examples:
01102 = (0 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 610
111102 = (1 * 16) + (1 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 3010

Two's Complement Numbers
Notice that binary numbers can only represent positive numbers. Often it is desirable to be able to
represent both positive and negative numbers. The two's complement numbering system modifies
the binary system to include negative numbers by making the most significant bit (MSB)
negative. Thus, two's complement numbers:

• Follow the binary progression of simple binary except that the MSB is negative — in
addition to its magnitude

• Can have any number of bits — more bits allow larger numbers to be represented

Examples:
01102 = (0 * -8) + (1 * 4) + (1 * 2) + (0 * 1) = 610
111102 = (1 * -16) + (1 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = -210

The same binary values are used in these examples for two's complement as were used above for
binary. Notice that the decimal value is the same when the MSB is 0, but the decimal value is
quite different when the MSB is 1.

Two operations are useful in working with two's complement numbers:
• The ability to obtain an additive inverse of a value
• The ability to load small numbers into larger registers (by sign extending)

Numbering System Basics

8 - 4 C2000 Microcontroller Workshop - Numerical Concepts

To load small two's complement numbers into larger registers:
The MSB of the original number must carry to the MSB of the number when represented in the
larger register.

1. Load the small number “right justified” into the larger register.

2. Copy the sign bit (the MSB) of the original number to all unfilled bits to the left in the
register (sign extension).

Consider our two previous values, copied into an 8-bit register:

Examples:
Original No. 0 1 1 02 = 610 1 1 1 1 02 = -210

1. Load low 0 1 1 0 1 1 1 1 0

2. Sign Extend 0 0 0 0 0 1 1 0 = 4 + 2 = 6 1 1 1 1 1 1 1 0 = -128 + 64 + ... + 2 = -2

Integer Basics

Integer Basics

Unsigned Binary Integers
0100b = (0*23)+(1*22)+(0*21)+(0*20) = 4
1101b = (1*23)+(1*22)+(0*21)+(1*20) = 13

Signed Binary Integers (2’s Complement)
0100b = (0*-23)+(1*22)+(0*21)+(0*20) = 4
1101b = (1*-23)+(1*22)+(0*21)+(1*20) = -3

23±2n-1 22 21 20

 Numbering System Basics

C2000 Microcontroller Workshop - Numerical Concepts 8 - 5

Sign Extension Mode
The C28x can operate on either unsigned binary or two's complement operands. The “Sign
Extension Mode” (SXM) bit, present within a status register of the C28x, identifies whether or
not the sign extension process is used when a value is brought into the accumulator. It is good
programming practice to always select the desired SXM at the beginning of a module to assure
the proper mode.

What is Sign Extension?
 When moving a value from a narrowed width location to a

wider width location, the sign bit is extended to fill the width
of the destination

 Sign extension applies to signed numbers only
 It keeps negative numbers negative!
 Sign extension controlled by SXM bit in ST0 register; When

SXM = 1, sign extension happens automatically

4 bit Example: Load a memory value into the ACC

1101memory = -23 + 22 + 20 = -3

ACC = -27 + 26 + 25 + 24 + 23 + 22 + 20

= -128 + 64 + 32 + 16 + 8 + 4 + 1
= -3

Load and sign extend

1111 1101

Binary Multiplication

8 - 6 C2000 Microcontroller Workshop - Numerical Concepts

Binary Multiplication
Now that you understand two's complement numbers, consider the process of multiplying two
two's complement values. As with “long hand” decimal multiplication, we can perform binary
multiplication one “place” at a time, and sum the results together at the end to obtain the total
product.

Note: This is not the method the C28x uses in multiplying numbers — it is merely a way of observing
how binary numbers work in arithmetic processes.

The C28x uses 16-bit operands and a 32-bit accumulator. For the sake of clarity, consider the
example below where we shall investigate the use of 4-bit values and an 8-bit accumulation:

Integer Multiplication (signed)

0100
x 1101

00000100
0000000
000100
11100
11110100

Accumulator

Data Memory

11110100

4
x -3

-12

?

In this example, consider the following:
• What are the two input values, and the expected result?
• Why are the “partial products” shifted left as the calculation continues?
• Why is the final partial product “different” than the others?
• What is the result obtained when adding the partial products?
• How shall this result be loaded into the accumulator?
• How shall we fill the remaining bit? Is this value still the expected one?
• How can the result be stored back to memory? What problems arise?

Note: With two’s complement multiplication, the leading “1” in the second multiplicand is a
sign bit. If the sign bit is “1”, then take the 2’s complement of the first multiplicand.
Additionally, each partial product must be sign-extended for correct computation.

 Binary Multiplication

C2000 Microcontroller Workshop - Numerical Concepts 8 - 7

Note: All of the above questions except the final one are addressed in this module. The last
question may have several answers:

• Store the lower accumulator to memory. What problem is apparent using this

method in this example?
• Store the upper accumulator back to memory. Wouldn't this create a loss of

precision, and a problem in how to interpret the results later?
• Store both the upper and lower accumulator to memory. This solves the above

problems, but creates some new ones:
− Extra code space, memory space, and cycle time are used
− How can the result be used as the input to a subsequent calculation? Is such a

condition likely (consider any “feedback” system)?

From this analysis, it is clear that integers do not behave well when multiplied. Might some other
type of number system behave better? Is there a number system where the results of a
multiplication are bounded?

Binary Fractions

8 - 8 C2000 Microcontroller Workshop - Numerical Concepts

Binary Fractions
Given the problems associated with integers and multiplication, consider the possibilities of using
fractional values. Fractions do not grow when multiplied, therefore, they remain representable
within a given word size and solve the problem. Given the benefit of fractional multiplication,
consider the issues involved with using fractions:

• How are fractions represented in two's complement?
• What issues are involved when multiplying two fractions?

Representing Fractions in Binary
In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for
integers). When one considers that the range of fractions is from -1 to ~+1, and that the only bit
which conveys negative information is the MSB, it seems that the MSB must be the “negative
ones position.” Since binary representation is based on powers of two, it follows that the next bit
would be the “one-halves” position, and that each following bit would have half the magnitude
again. Considering, as before, a 4-bit model, we have the representation shown in the following
example.

1 . 0 1 1 = -1 + 1/4 + 1/8 = -5/8

-1 1/2 1/4 1/8

Fraction Basics

Fraction Basics

-20 2-1 2-2 2-3

•
1101b = (1*-20)+(1*2-1)+(0*2-2)+(1*2-3)

= -1 + 1/2 + 1/8
= -3/8

Fractions have the nice property that
fraction x fraction = fraction

2-(n-1)

 Binary Fractions

C2000 Microcontroller Workshop - Numerical Concepts 8 - 9

Multiplying Binary Fractions
When the C28x performs multiplication, the process is identical for all operands, integers or
fractions. Therefore, the user must determine how to interpret the results. As before, consider the
4-bit multiply example:

Fraction Multiplication

0100
x 1101

00000100
0000000
000100
11100
11110100

11110100

1/2
x -3/8

-3/16

Accumulator

.

.

Data Memory -1/41110.

As before, consider the following:
• What are the two input values and the expected result?
• As before, “partial products” are shifted left and the final is negative.
• How is the result (obtained when adding the partial products) read?
• How shall this result be loaded into the accumulator?
• How shall we fill the remaining bit? Is this value still the expected one?
• How can the result be stored back to memory? What problems arise?

To “read” the results of the fractional multiply, it is necessary to locate the binary point (the base
2 equivalent of the base 10 decimal point). Start by identifying the location of the binary point in
the input values. The MSB is an integer and the next bit is 1/2, therefore, the binary point would
be located between them. In our example, therefore, we would have three bits to the right of the
binary point in each input value. For ease of description, we can refer to these as “Q3” numbers,
where Q refers to the number of places to the right of the point.

When multiplying numbers, the Q values add. Thus, we would (mentally) place a binary point
above the sixth LSB. We can now calculate the “Q6” result more readily.

Binary Fractions

8 - 10 C2000 Microcontroller Workshop - Numerical Concepts

As with integers, the results are loaded low and the MSB is a sign extension of the seventh bit. If
this value were loaded into the accumulator, we could store the results back to memory in a
variety of ways:

• Store both low and high accumulator values back to memory. This offers maximum
detail, but has the same problems as with integer multiply.

• Store only the high (or low) accumulator back to memory. This creates a potential for
a memory littered with varying Q-types.

• Store the upper accumulator shifted to the left by 1. This would store values back to
memory in the same Q format as the input values, and with equal precision to the
inputs. How shall the left shift be performed? Here’s three methods:
− Explicit shift (C or assembly code)
− Shift on store (assembly code)
− Use Product Mode shifter (assembly code)

 Fraction Coding

C2000 Microcontroller Workshop - Numerical Concepts 8 - 11

Fraction Coding
Although COFF tools recognize values in integer, hex, binary, and other forms, they understand
only integer, or non-fractional values. To use fractions within the C28x, it is necessary to describe
them as though they were integers. This turns out to be a very simple trick. Consider the
following number lines:

Coding Traditional 16-bit Q15 Fractions

 C-code example: y = 0.707 * x

Fraction

⇒
∗ 32768

(215)

void main(void)
{

int16 coef = 32768*707/1000; // 0.707 in Q15
int16 x, y;
y = (int16)((int32)coef * (int32)x) >> 15);

}

~1

½

0

-½

-1

0x7FFF

0x4000

0x0000

0xC000

0x8000

32767

16384

0

-16384

-32768
Integer

By multiplying a fraction by 32K (32768), a normalized fraction is created, which can be passed
through the COFF tools as an integer. Once in the C28x, the normalized fraction looks and
behaves exactly as a fraction. Thus, when using fractional constants in a C28x program, the coder
first multiplies the fraction by 32768, and uses the resulting integer (rounded to the nearest whole
value) to represent the fraction.

The following is a simple, but effective method for getting fractions past the assembler:

1. Express the fraction as a decimal number (drop the decimal point).

2. Multiply by 32768.

3. Divide by the proper multiple of 10 to restore the decimal position.

 Examples:
• To represent 0.62: 32768 x 62 / 100
• To represent 0.1405: 32768 x 1405 / 10000

This method produces a valid number accurate to 16 bits. You will not need to do the math
yourself, and changing values in your code becomes rather simple.

Fractional vs. Integer Representation

8 - 12 C2000 Microcontroller Workshop - Numerical Concepts

Fractional vs. Integer Representation

Integer vs. Fractions

 Integers grow when you multiply them
 Fractions have limited range

 Fractions can still grow when you add them
 Scaling an application is time consuming

Range Precision

Integer determined 1
by # of bits

Fraction ~+1 to -1 determined
by # of bits

Are there any other alternatives?

The C28x accumulator, a 32-bit register, adds extra range to integer calculations, but this
becomes a problem in storing the results back to 16-bit memory.

Conversely, when using fractions, the extra accumulator bits increase precision, which helps
minimize accumulative errors. Since any number is accurate (at best) to ± one-half of a LSB,
summing two of these values together would yield a worst case result of 1 LSB error. Four
summations produce two LSBs of error. By 256 summations, eight LSBs are “noisy.” Since the
accumulator holds 32 bits of information, and fractional results are stored from the high
accumulator, the extra range of the accumulator is a major benefit in noise reduction for long
sum-of-products type calculations.

 Floating-Point

C2000 Microcontroller Workshop - Numerical Concepts 8 - 13

Floating-Point

IEEE-754 Single Precision Floating-Point

Example: 0x41200000 = 0 100 0001 0 010 0000 0000 ... 0000 b
s e = 130 f = 2-2 = 0.25

⇒ Case 3 v = (-10)*2(130-127)*1.25 = 10.0

s eeeeeeee fffffffffffffffffffffff
031 30 23 22

23 bit mantissa (fraction)8 bit exponent1 bit sign

Case 1: if e = 255 and f ≠ 0, then v = NaN
Case 2: if e = 255 and f = 0, then v = [(-1)s]*infinity
Case 3: if 0 < e < 255, then v = [(-1)s]*[2(e-127)]*(1.f)
Case 4: if e = 0 and f ≠ 0, then v = [(-1)s]*[2(-126)]*(0.f)
Case 5: if e = 0 and f = 0, then v = [(-1)s]*0

Advantage ⇒ Exponent gives large dynamic range
Disadvantage ⇒ Precision of a number depends on its exponent

Normalized
values

Number Line Insight

Floating-Point:

0+∞ -∞0+∞ -∞

 Non-uniform distribution
 Precision greatest near zero
 Less precision the further you get from zero

Floating-Point

8 - 14 C2000 Microcontroller Workshop - Numerical Concepts

Using Floating-Point

 Adds the floating-point
RTS library(s) to the
CCS project
 standard RTS lib

(required)
 rts2800_fpu32.lib
 comes with compiler

 fast RTS lib (optional)
 C28x_FPU_FastRTS.lib
 on TI web, #SPRC664
 improved performance
 Strongly

Recommended
 Selects ‘fpu32’ support

in CCS build
configuration settings

 Set the “Specify floating point support” project option to ‘fpu32’

 When creating a new CCS project, choosing a device variant that
has the FPU will automatically select this option, so normally no
user action is required

#define AdcFsVoltage float(3.3) // ADC full scale voltage

float Result; // ADC result

void main(void)

{

// Convert unsigned 16-bit result to 32-bit float. Gives value of 0 to 4095.

// Scale result by 1/4096. Gives value of 0 to ~1.

// Scale result by AdcFsVoltage. Gives value of 0 to ~3.3.

Result = (AdcFsVoltage/4096.0)*(float)AdcResult.ADCRESULT0;

}

Getting the ADC Result into
Floating-Point Format

AdcResult.
ADCRESULTx

x x x xx x x xx x x x0 0 0 0

32-bit float
15 031

f f f ff f f ff f f ff f f fs e e e e f f fe e e e f f f f

ASM:
I16TOF32

C:
(float)

Compiler will pre-compute at build-time.
No runtime division!

 Floating-Point

C2000 Microcontroller Workshop - Numerical Concepts 8 - 15

Floating-Point Pros and Cons

Advantages
Easy to write code
No scaling required

Disadvantages
Somewhat higher device cost
May offer insufficient precision for some

calculations due to 23 bit mantissa and
the influence of the exponent

What if you don’t have the luxury of
using a floating-point C28x device?

IQmath

8 - 16 C2000 Microcontroller Workshop - Numerical Concepts

IQmath
Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any
other DSP capable processor, typically come across the following issues:
• Algorithms are typically developed using floating-point math
• Floating-point devices are more expensive than fixed-point devices
• Converting floating-point algorithms to a fixed-point device is very time consuming
• Conversion process is one way and therefore backward simulation is not always possible

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device, however because of cost reasons most likely a 16-bit or 32-bit fixed-
point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would
be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not an
easy task and the code is not easy to maintain or document.

IQ Fractional Representation
A new approach to fixed-point algorithm development, termed “IQmath”, can greatly simplify the
design development task. This approach can also be termed “virtual floating-point” since it looks
like floating-point, but it is implemented using fixed-point techniques.

IQ Fractional Representation

S IIIIIIII fffffffffffffffffffffff
031

32 bit mantissa

Advantage ⇒ Precision same for all numbers in an IQ format
Disadvantage ⇒ Limited dynamic range compared to floating-point

-2I + 2I-1 + … + 21 + 20 . 2-1 + 2-2 + … + 2-Q

I8Q24 Example: 0x41200000
= 0100 0001 . 0010 0000 0000 0000 0000 0000 b
= 26 + 20 + 2-3 = 65.125

 IQmath

C2000 Microcontroller Workshop - Numerical Concepts 8 - 17

The IQmath approach enables the seamless portability of code between fixed and floating-point
devices. This approach is applicable to many problems that do not require a large dynamic range,
such as motor or digital control applications.

IQ Fractions: uniform distribution (same precision everywhere)

0+∞ -∞

Number Line Insight
Distributions

 Both floating-point and IQ formats have 232 possible
values on the number line

 It’s how each distributes these values that differs

Floating-Point: non-uniform distribution (variable precision)

0+∞ -∞

Traditional “Q” Math Approach

Traditional 32-bit “Q” Math Approach
y = mx + b

Y = ((int64) M * (int64) X + (int64) B << Q) >> Q;in C:

Note: Requires support for 64-bit integer data type in compiler

<< 24 Align Binary
Point for Add

I8 Q24 M

X

B

Y

I8 Q24

I8 Q24

I16 Q48

ssssssssssssssssssI8 Q24

ssssI8 Q48

I16 Q48

sssssssssssssssssI16 Q24 I8 Q24

>> 24
Align Binary

Point for Store

IQmath

8 - 18 C2000 Microcontroller Workshop - Numerical Concepts

The traditional approach to performing math operations, using fixed-point numerical techniques
can be demonstrated using a simple linear equation example. The floating-point code for a linear
equation would be:

float Y, M, X, B;
Y = M * X + B;

For the fixed-point implementation, assume all data is 32-bits, and that the "Q" value, or location
of the binary point, is set to 24 fractional bits (Q24). The numerical range and resolution for a
32-bit Q24 number is as follows:

Q value Min Value Max Value Resolution

Q24 -2(32-24) = -128.000 000 00 2(32-24) – (½)24 = 127.999 999 94 (½)24 = 0.000 000 06

The C code implementation of the linear equation is:

int32 Y, M, X, B; // numbers are all Q24
Y = ((int64) M * (int64) X + (int64) B << 24) >> 24;

Compared to the floating-point representation, it looks quite cumbersome and has little resem-
blance to the floating-point equation. It is obvious why programmers prefer using floating-point
math.

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiplication, 64-bit addition and 64-bit shifts (logical and arithmetic) effi-
ciently.

The basic approach in traditional fixed-point "Q" math is to align the binary point of the operands
that get added to or subtracted from the multiplication result. As shown in the slide, the multipli-
cation of M and X (two Q24 numbers) results in a Q48 value that is stored in a 64-bit register.
The value B (Q24) needs to be scaled to a Q48 number before addition to the M*X value (low
order bits zero filled, high order bits sign extended). The final result is then scaled back to a Q24
number (arithmetic shift right) before storing into Y (Q24). Many programmers may be familiar
with 16-bit fixed-point "Q" math that is in common use. The same example using 16-bit numbers
with 15 fractional bits (Q15) would be coded as follows:

int16 Y, M, X, B; // numbers are all Q15
Y = ((int32) M * (int32) X + (int32) B << 15) >> 15;

In both cases, the principal methodology is the same. The binary point of the operands that get
added to or subtracted from the multiplication result must be aligned.

 IQmath

C2000 Microcontroller Workshop - Numerical Concepts 8 - 19

IQmath Approach

32-bit IQmath Approach
y = mx + b

I8 Q24
I16 Q48

M

X

B

Y

>> 24Align Binary
Point Of Multiply

I8 Q24

I8 Q24

sssssssssssssssssI16 Q24

I8 Q24I8 Q24

Y = ((int64) M * (int64) X) >> Q + B;in C:

In the "IQmath" approach, rather then scaling the operands, which get added to or subtracted
from the multiplication result, we do the reverse. The multiplication result binary point is scaled
back such that it aligns to the operands, which are added to or subtracted from it. The C code
implementation of this is given by linear equation below:

int32 Y, M, X, B;
Y = ((int64) M * (int64) X) >> 24 + B;

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiply, 32-bit addition/subtraction and 64-bit logical and arithmetic shifts
efficiently.

The key advantage of this approach is shown by what can then be done with the C and C++ com-
piler to simplify the coding of the linear equation example.

Let’s take an additional step and create a multiply function in C that performs the following oper-
ation:

int32 _IQ24mpy(int32 M, int32 X) { return ((int64) M * (int64) X) >> 24; }

The linear equation can then be written as follows:

Y = _IQ24mpy(M , X) + B;

Already we can see a marked improvement in the readability of the linear equation.

IQmath

8 - 20 C2000 Microcontroller Workshop - Numerical Concepts

Using the operator overloading features of C++, we can overload the multiplication operand "*"
such that when a particular data type is encountered, it will automatically implement the scaled
multiply operation. Let’s define a data type called "iq" and assign the linear variables to this data
type:

iq Y, M, X, B // numbers are all Q24

The overloading of the multiply operand in C++ can be defined as follows:

iq operator*(const iq &M, const iq &X){return((int64)M*(int64) X) >> 24;}

Then the linear equation, in C++, becomes:

Y = M * X + B;

This final equation looks identical to the floating-point representation. It looks "natural". The
four approaches are summarized in the table below:

Math Implementations Linear Equation Code
32-bit floating-point math in C Y = M * X + B;

32-bit fixed-point "Q" math in C Y = ((int64) M * (int64) X) + (int64) B << 24) >> 24;
32-bit IQmath in C Y = _IQ24mpy(M, X) + B;

32-bit IQmath in C++ Y = M * X + B;

Essentially, the mathematical approach of scaling the multiplier operand enables a cleaner and a
more "natural" approach to coding fixed-point problems. For want of a better term, we call this
approach "IQmath" or can also be described as "virtual floating-point".

 IQmath

C2000 Microcontroller Workshop - Numerical Concepts 8 - 21

IQmath Approach
Multiply Operation

Y = ((i64) M * (i64) X) >> Q + B;

_IQmpy(M,X) == ((i64) M * (i64) X) >> Q

Redefine the multiply operation as follows:

Y = _IQmpy(M,X) + B;

This simplifies the equation as follows:

MOVL XT,@M
IMPYL P,XT,@X ; P = low 32-bits of M*X
QMPYL ACC,XT,@X ; ACC = high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC = ACC:P << 32-Q

; (same as P = ACC:P >> Q)
ADDL ACC,@B ; Add B
MOVL @Y,ACC ; Result = Y = _IQmpy(M*X) + B
; 7 Cycles

C28x compiler supports “_IQmpy” intrinsic; assembly code generated:

IQmath Approach
It looks like floating-point!

float Y, M, X, B;

Y = M * X + B;

Floating-Point

long Y, M, X, B;

Y = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

Traditional
Fix-Point Q

_iq Y, M, X, B;

Y = _IQmpy(M, X) + B;

“IQmath”
In C

iq Y, M, X, B;

Y = M * X + B;

“IQmath”
In C++

“IQmath” code is easy to read!

IQmath

8 - 22 C2000 Microcontroller Workshop - Numerical Concepts

IQmath Approach
GLOBAL_Q simplification

#define GLOBAL_Q 18 // set in “IQmathLib.h” file

_iq Y, M, X, B;

Y = _IQmpy(M,X) + B; // all values are in Q = 18

GLOBAL_Q

User selects “Global Q” value for the whole application

based on the required dynamic range or resolution, for example:

The user can also explicitly specify the Q value to use:
_iq20 Y, M, X, B;

Y = _IQ20mpy(M,X) + B; // all values are in Q = 20

0.000 000 06-128.000 000 00127.999 999 9424
0.000 001-2048.000 0002047.999 99920

0.000 000 004-8.000 000 0007.999 999 99628
ResolutionMin ValMax ValGLOBAL_Q

The basic "IQmath" approach was adopted in the creation of a standard math library for the Texas
Instruments TMS320C28x DSP fixed-point processor. This processor contains efficient hardware
for performing 32x32 bit multiply, 64-bit shifts (logical and arithmetic) and 32-bit add/subtract
operations, which are ideally suited for 32 bit "IQmath".

Some enhancements were made to the basic "IQmath" approach to improve flexibility. They are:

Setting of GLOBAL_Q Parameter Value: Depending on the application, the amount of numerical
resolution or dynamic range required may vary. In the linear equation example, we used a Q val-
ue of 24 (Q24). There is no reason why any value of Q can't be used. In the "IQmath" library,
the user can set a GLOBAL_Q parameter, with a range of 1 to 30 (Q1 to Q30). All functions
used in the program will use this GLOBAL_Q value. For example:

#define GLOBAL_Q 18
Y = _IQmpy(M, X) + B; // all values use GLOBAL_Q = 18

If, for some reason a particular function or equation requires a different resolution, then the user
has the option to implicitly specify the Q value for the operation. For example:

Y = _IQ23mpy(M,X) + B; // all values use Q23, including B and Y

The Q value must be consistent for all expressions in the same line of code.

 IQmath

C2000 Microcontroller Workshop - Numerical Concepts 8 - 23

IQmath Provides Compatibility Between
Floating-Point and Fixed-Point

All “IQmath” operations have an equivalent floating-point operation

Compile & Run
on Fixed-Point

F2803x

Y = _IQmpy(M, X) + B;

#if MATH_TYPE == IQ_MATH #if MATH_TYPE == FLOAT_MATH

Y = (float)M * (float)X + (float)B;

1) Develop any mathematical function

2) Select math type in IQmathLib.h

3) Compiler automatically converts to:

Floating-Point
Math Code

Fixed-Point
Math Code

Compile & Run
on Floating-Point

F2806x *

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

Selecting FLOAT_MATH or IQ_MATH Mode: As was highlighted in the introduction, we would
ideally like to be able to have a single source code that can execute on a floating-point or fixed-
point target device simply by recompiling the code. The "IQmath" library supports this by setting
a mode, which selects either IQ_MATH or FLOAT_MATH. This operation is performed by
simply redefining the function in a header file. For example:

#if MATH_TYPE == IQ_MATH
#define _IQmpy(M , X) _IQmpy(M , X)
#elseif MATH_TYPE == FLOAT_MATH
#define _IQmpy(M , X) (float) M * (float) X
#endif

Essentially, the programmer writes the code using the "IQmath" library functions and the code
can be compiled for floating-point or "IQmath" operations.

IQmath Library

8 - 24 C2000 Microcontroller Workshop - Numerical Concepts

IQmath Library

IQmath Library: Math & Trig Functions

Accuracy of functions/operations approx ~28 to ~31 bits

IQsin(A),IQcos(A)
IQsinPU(A),IQcosPU(A)

IQasin(A),IQacos(A)
IQatan(A),IQatan2(A,B)

IQatan2PU(A,B)
IQsqrt(A),IQisqrt(A)

IQmag(A,B)
IQexp(A)

_IQsin(A), _IQcos(A)
_IQsinPU(A), _IQcosPU(A)

_IQasin(A),_IQacos(A)
_IQatan(A), _IQatan2(A,B)

_IQatan2PU(A,B)
_IQsqrt(A), _IQisqrt(A)

_IQmag(A,B)
_IQexp(A)

sin(A),cos(A)
sin(A*2pi),cos(A*2pi)

asin(A),acos(A)
atan(A),atan2(A,B)

atan2(A,B)/2pi
sqrt(A),1/sqrt(A)
sqrt(A*A + B*B)

exp(A)

trig
and

power
functions

IQsat(A,Pos,Neg)_IQsat(A,Pos,Neg)if(A > Pos) A = Pos
if(A < Neg) A = Neg

saturation

A – BA - BA - Bsubstract
>, >=, <, <=, ==, |=, &&, || >, >=, <, <=, ==, |=, &&, ||>, >=, <, <=, ==, |=, &&, ||boolean

A + BA + BA + Badd
A / B_IQdiv (A , B)A / B divide
A * B_IQmpy(A , B)A * Bmultiply

A = IQ(1.2345)A = _IQ(1.2345)A = 1.2345constant
iq A, B;_iq A, B;float A, B;type

“IQmath” in C++“IQmath” in CFloating-PointOperation

Additionally, the "IQmath" library contains DSP library modules for filters (FIR & IIR) and Fast
Fourier Transforms (FFT & IFFT).

IQmath Library: Conversion Functions

IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

atoIQ(char)_atoIQ(char)atof(char)string to iq
IQtoQN(A)_IQtoQN(A)Aiq to qN
QNtoIQ(A)_QNtoIQ(A)AqN to iq

IQmpyI32int(A,B)_IQmpyI32int(A,B)(long) (A * (float) B)integer(iq*long)
IQmpyI32frac(A,B)_IQmpyI32frac(A,B)A - (long) (A * (float) B)fraction(iq*long)

IQtoF(A)_IQtoF(A)AIQ to float

IQmpyI32(A,B)_IQmpyI32(A,B)A * (float) Biq = iq*long
IQfrac(A)_IQfrac(A)A – (long) Afraction(iq)
IQint(A)_IQint(A)(long) Ainteger(iq)

IQNtoIQ(A)_IQNtoIQ(A)AiqN to iq
IQtoIQN(A)_IQtoIQN(A)Aiq to iqN

“IQmath” in C++“IQmath” in CFloating-PointOperation

IQtoA(A,B,C)_IQtoA(A,B,C)sprintf(A,B,C)IQ to ASCII

 IQmath Library

C2000 Microcontroller Workshop - Numerical Concepts 8 - 25

16 vs. 32 Bits
The "IQmath" approach could also be used on 16-bit numbers and for many problems, this is suf-
ficient resolution. However, in many control cases, the user needs to use many different "Q" val-
ues to accommodate the limited resolution of a 16-bit number.

With DSP devices like the TMS320C28x processor, which can perform 16-bit and 32-bit math
with equal efficiency, the choice becomes more of productivity (time to market). Why bother
spending a whole lot of time trying to code using 16-bit numbers when you can simply use 32-bit
numbers, pick one value of "Q" that will accommodate all cases and not worry about spending
too much time optimizing.

Of course there is a concern on data RAM usage if numbers that could be represented in 16 bits
all use 32 bits. This is becoming less of an issue in today's processors because of the finer tech-
nology used and the amount of RAM that can be cheaply integrated. However, in many cases,
this problem can be mitigated by performing intermediate calculations using 32-bit numbers and
converting the input from 16 to 32 bits and converting the output back to 16 bits before storing
the final results. In many problems, it is the intermediate calculations that require additional ac-
curacy to avoid quantization problems.

Converting ADC Results into IQ Format

8 - 26 C2000 Microcontroller Workshop - Numerical Concepts

Converting ADC Results into IQ Format

#define AdcFsVoltage _IQ(3.3) // ADC full scale voltage

_iq Result, temp; // ADC result

void main(void)

{

// convert the unsigned 16-bit result to unsigned 32-bit

temp = AdcResult.ADCRESULT0;

// convert resulting IQ12 to Global IQ format

temp = _IQ12toIQ(temp);

// scale by ADC full-scale range (optional)

Result = _IQmpy(AdcFsVoltage, temp);

}

Getting the ADC Result into IQ Format
AdcResult.
ADCRESULTx

32-bit long
15 031

Do not sign extend

Notice that the 32-bit long is already in IQ12 format

//

//

//

Result = _IQmpy(AdcFsVoltage, _IQ12toIQ((_iq)AdcResult.ADCRESULT0));

x x x xx x x xx x x x0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

x x x xx x x xx x x x0 0 0 0

As you may recall, the converted values of the ADC are placed in the lower 12 bits of the
ADCRESULT0 register. Before these values are filtered using the IQmath library, they need to
to be put into the IQ format as a 32-bit long. For uni-polar ADC inputs (i.e., 0 to 3.3 V inputs), a
conversion to global IQ format can be achieved with:

IQresult_unipolar = _IQmpy(_IQ(3.3),_IQ12toIQ((_iq) AdcResult.ADCRESULT0));

How can we modify the above to recover bi-polar inputs, for example +-1.65 volts? One could
do the following to offset the +1.65V analog biasing applied to the ADC input:

IQresult_bipolar =
 _IQmpy(_IQ(3.3),_IQ12toIQ((_iq) AdcResult.ADCRESULT0)) - _IQ(1.65);

However, one can see that the largest intermediate value the equation above could reach is 3.3.
This means that it cannot be used with an IQ data type of IQ30 (IQ30 range is -2 < x < ~2). Since
the IQmath library supports IQ types from IQ1 to IQ30, this could be an issue in some applica-
tions.

The following clever approach supports IQ types from IQ1 to IQ30:

IQresult_bipolar =
_IQmpy(_IQ(1.65),_IQ15toIQ((_iq) ((int16) (AdcResult.ADCRESULT0 ^
0x8000))));

The largest intermediate value that this equation could reach is 1.65. Therefore, IQ30 is easily
supported.

 Converting ADC Results into IQ Format

C2000 Microcontroller Workshop - Numerical Concepts 8 - 27

#if MATH_TYPE == IQ_MATH

#define AdcFsVoltage _IQ(3.3) // ADC full scale voltage

#else // MATH_TYPE is FLOAT_MATH

#define AdcFsVoltage _IQ(3.3/4096.0) // ADC full scale voltage

#endif

_iq Result; // ADC result

void main(void)

{

Result = _IQmpy(AdcFsVoltage, _IQ12toIQ((_iq)AdcResult.ADCRESULT0));

}

Can a Single ADC Interface Code Line be
Written for IQmath and Floating-Point?

* does
nothing

FLOAT_MATH
behavior: float

AC Induction Motor Example

8 - 28 C2000 Microcontroller Workshop - Numerical Concepts

AC Induction Motor Example
AC Induction Motor Example

One of the more complex motor control algorithms

 Sensorless, ACI induction machine direct rotor flux control
 Goal: motor speed estimation & alpha-axis stator current estimation

The "IQmath" approach is ideally suited for applications where a large numerical dynamic range
is not required. Motor control is an example of such an application (audio and communication
algorithms are other applications). As an example, the IQmath approach has been applied to the
sensor-less direct field control of an AC induction motor. This is probably one of the most chal-
lenging motor control problems and as will be shown later, requires numerical accuracy greater
then 16-bits in the control calculations.

The above slide is a block diagram representation of the key control blocks and their interconnec-
tions. Essentially this system implements a "Forward Control" block for controlling the d-q axis
motor current using PID controllers and a "Feedback Control" block using back emf's integration
with compensated voltage from current model for estimating rotor flux based on current and volt-
age measurements. The motor speed is simply estimated from rotor flux differentiation and open-
loop slip computation. The system was initially implemented on a "Simulator Test Bench" which
uses a simulation of an "AC Induction Motor Model" in place of a real motor. Once working, the
system was then tested using a real motor on an appropriate hardware platform.

Each individual block shown in the slide exists as a stand-alone C/C++ module, which can be
interconnected to form the complete control system. This modular approach allows reusability
and portability of the code. The next few slides show the coding of one particular block, PARK
Transform, using floating-point and "IQmath" approaches in C:

 AC Induction Motor Example

C2000 Microcontroller Workshop - Numerical Concepts 8 - 29

AC Induction Motor Example
Park Transform – floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

AC Induction Motor Example
Park Transform - converting to “IQmath” C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

#include “IQmathLib.h”

_IQ(6.28318530717959)

_iq

_IQsin(_IQmpy(TWO_PI , v->ang));

_IQcos(_IQmpy(TWO_PI , v->ang));

_IQmpy(v->ds , cos_ang) + _IQmpy(v->qs , sin_ang);

_IQmpy(v->qs , cos_ang) - _IQmpy(v->ds , sin_ang);

The complete system was coded using "IQmath". Based on analysis of coefficients in the system,
the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic range of 7
bits (+/-64 range) was required. Therefore, this translated to a GLOBAL_Q value of 32-7 = 25
(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL_Q = 24 (Q24)

AC Induction Motor Example

8 - 30 C2000 Microcontroller Workshop - Numerical Concepts

value. The plots start from a step change in reference speed from 0.0 to 0.5 and 1024 samples are
taken.

AC Induction Motor Example
GLOBAL_Q = 24, system stable

IQmath: speed IQmath: current

Floating-Point: speed Floating-Point: current

The speed eventually settles to the desired reference value and the stator current exhibits a clean
and stable oscillation. The block diagram slide shows at which points in the control system the
plots are taken from.

I8Q24 Fractions:

0+∞ -∞

What’s Happening Here?
Equal Precision in the Computation Region

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the I8Q24 format.

So, both produce similar results!

Floating-Point:

0+∞ -∞

Same precision as I8Q24

 AC Induction Motor Example

C2000 Microcontroller Workshop - Numerical Concepts 8 - 31

AC Induction Motor Example
GLOBAL_Q = 27, system unstable

IQmath: speed

IQmath: current

AC Induction Motor Example
GLOBAL_Q = 16, system unstable

IQmath: speed

IQmath: current

AC Induction Motor Example

8 - 32 C2000 Microcontroller Workshop - Numerical Concepts

With the ability to select the GLOBAL_Q value for all calculations in the "IQmath", an experi-
ment was conducted to see what maximum and minimum Q value the system could tolerate be-
fore it became unstable. The results are tabulated in the slide below:

AC Induction Motor Example
Q stability range

The developer must pick the right GLOBAL_Q value!

Unstable
(not enough resolution, quantization problems)Q18 to Q0

StableQ26 to Q19

Unstable
(not enough dynamic range)Q31 to Q27

Stability RangeQ range

The above indicates that, the AC induction motor system that we simulated requires a minimum
of 7 bits of dynamic range (+/-64) and requires a minimum of 19 bits of numerical resolution (+/-
0.000002). This confirms our initial analysis that the largest coefficient value being 33.33333
required a minimum dynamic range of 7 bits. As a general guideline, users using IQmath should
examine the largest coefficient used in the equations and this would be a good starting point for
setting the initial GLOBAL_Q value. Then, through simulation or experimentation, the user can
reduce the GLOBAL_Q until the system resolution starts to cause instability or performance deg-
radation. The user then has a maximum and minimum limit and a safe approach is to pick a mid-
point.

What the above analysis also confirms is that this particular problem does require some calcula-
tions to be performed using greater then 16 bit precision. The above example requires a mini-
mum of 7 + 19 = 26 bits of numerical accuracy for some parts of the calculations. Hence, if one
was implementing the AC induction motor control algorithm using a 16 bit fixed-point DSP, it
would require the implementation of higher precision math for certain portions. This would take
more cycles and programming effort.

The great benefit of using GLOBAL_Q is that the user does not necessarily need to go into de-
tails to assign an individual Q for each variable in a whole system, as is typically done in conven-
tional fixed-point programming. This is time consuming work. By using 32-bit resolution and the
"IQmath" approach, the user can easily evaluate the overall resolution and quickly implement a
typical digital motor control application without quantization problems.

 AC Induction Motor Example

C2000 Microcontroller Workshop - Numerical Concepts 8 - 33

AC Induction Motor Example
Performance comparisons

Benchmark C28x C C28x C C28x C
floating-point floating-point IQmath
std. RTS lib fast RTS lib v1.4d
(150 MHz) (150 MHz) (150 MHz)

B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%
(20 kHz control loop)

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -o3 (max. optimization)
fast RTS lib v1.0beta1
IQmath lib v1.4d

Using the profiling capabilities of the respective DSP tools, the table above summarizes the num-
ber of cycles and code size of the forward and feedback control blocks.

The MIPS used is based on a system sampling frequency of 20 kHz, which is typical of such sys-
tems.

IQmath Summary

8 - 34 C2000 Microcontroller Workshop - Numerical Concepts

IQmath Summary

IQmath Approach Summary

 Seamless portability of code between fixed and floating-point
devices
 User selects target math type in “IQmathLib.h” file

 #if MATH_TYPE == IQ_MATH
 #if MATH_TYPE == FLOAT_MATH

 One source code set for simulation vs. target device
 Numerical resolution adjustability based on application

requirement
 Set in “IQmathLib.h” file

 #define GLOBAL_Q 18
 Explicitly specify Q value

 _iq20 X, Y, Z;
 Numerical accuracy without sacrificing time and cycles
 Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from controlSUITE and TI website
http://www.ti.com/c2000

“IQmath” + fixed-point processor with 32-bit capabilities =

The IQmath approach, matched to a fixed-point processor with 32x32 bit capabilities enables the
following:

• Seamless portability of code between fixed and floating-point devices
• Maintenance and support of one source code set from simulation to target device
• Adjustability of numerical resolution (Q value) based on application requirement
• Implementation of systems that may otherwise require floating-point device
• Rapid conversion/porting and implementation of algorithms

 Lab 8: IQmath FIR Filter

C2000 Microcontroller Workshop - Numerical Concepts 8 - 35

Lab 8: IQmath FIR Filter
 Objective

The objective of this lab is to become familiar with IQmath programming. In the previous lab,
ePWM1A was setup to generate a 2 kHz, 25% duty cycle symmetric PWM waveform. The
waveform was then sampled with the on-chip analog-to-digital converter. In this lab the sampled
waveform will be passed through an FIR filter and displayed using the graphing feature of Code
Composer Studio. The filter math type is selected in the “IQmathLib.h” file.

Lab 8: IQmath FIR Filter

CPU copies
result to
buffer during
ADC ISR

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

...

data
memory

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

FIR Filter

 Procedure

Open the Project
1. A project named Lab8 has been created for this lab. Open the project by clicking on

Project Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab8\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

Lab 8: IQmath FIR Filter

8 - 36 C2000 Microcontroller Workshop - Numerical Concepts

Adc.c Filter.c
CodeStartBranch.asm Gpio.c
DefaultIsr_8.c Lab.h
DelayUs.asm Lab_8.cmd
ECap_7_8_9_10_12.c Main_8.c
EPwm_7_8_9_10_12.c PieCtrl.c
F2806x_DefaultIsr.h PieVect.c
F2806x_GlobalVariableDefs.c SysCtrl.c
F2806x_Headers_nonBIOS.cmd Watchdog.c

Project Build Options
2. To configure the build options, right-click on Lab8 in the Project Explorer

window and select Properties. We need to setup the include search path to include
the IQmath header file. Under “C2000 Compiler” select “Include Options”. In the
lower box that opens (“Add dir to #include search path”) click the Add
icon (first icon with green plus sign). Then in the “Add directory path” window type:

${PROJECT_ROOT}/../../IQmath/include

Click OK to include the search path.

3. Next, we need to setup the library search path to include the IQmath library. Under
“C2000 Linker” select “File Search Path”. In the top box (“Include
library file or command file as input”) click the Add icon. Then in the
“Add file path” window type:

IQmath.lib

Click OK to include the library file.

In the bottom box (“Add <dir> to library search path”) click the Add
icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../IQmath/lib

Click OK to include the library search path.

Finally, select OK to save and close the Properties window.

Include IQmathLib.h
4. In the Project Explorer window edit Lab.h and uncomment the line that includes

the IQmathLib.h header file. Next, in the Function Prototypes section, uncomment
the function prototype for IQssfir(), the IQ math single-sample FIR filter function. In the
Global Variable References section uncomment the four _iq references. Save the changes
and close the file.

Inspect Lab_8.cmd
5. Open and inspect Lab_8.cmd. First, notice that a section called “IQmath” is being

linked to L4SARAM. The IQmath section contains the IQmath library functions (code).
Second, notice that a section called “IQmathTables” is being linked to the

 Lab 8: IQmath FIR Filter

C2000 Microcontroller Workshop - Numerical Concepts 8 - 37

IQTABLES with a TYPE = NOLOAD modifier after its allocation. The IQmath tables
are used by the IQmath library functions. The NOLOAD modifier allows the linker to
resolve all addresses in the section, but the section is not actually placed into the .out
file. This is done because the section is already present in the device ROM (you cannot
load data into ROM after the device is manufactured!). The tables were put in the ROM
by TI when the device was manufactured. All we need to do is link the section to the
addresses where it is known to already reside (the tables are the very first thing in the
BOOT ROM, starting at address 0x3F8000). Close the inspected file.

Select a Global IQ value
6. In the Project Explorer window under the Includes folder open:

C:\C28x\Labs\IQmath\include\IQmathLib.h. Confirm that the GLOBAL_Q
type (near beginning of file) is set to a value of 24. If it is not, modify as necessary:
#define GLOBAL_Q 24

Recall that this Q type will provide 8 integer bits and 24 fractional bits. Dynamic range
is therefore -128 < x < +128, which is sufficient for our purposes in the workshop.

Notice that the math type is defined as IQmath by:
#define MATH_TYPE IQ_MATH

Close the file.

IQmath Single-Sample FIR Filter
7. Open and inspect DefaultIsr_8.c. Notice that the ADCINT1_ISR calls the IQmath

single-sample FIR filter function, IQssfir(). The filter coefficients have been defined in
the beginning of Main_8.c. Also, as discussed in the lecture for this module, the ADC
results are read with the following instruction:
*AdcBufIQPtr = _IQmpy(ADC_FS_VOLTAGE,
 _IQ12toIQ((_iq)AdcResult.ADCRESULT0));

The value of ADC_FS_VOLTAGE will be discussed in the next lab step.

8. Open and inspect Lab.h. Notice that, as discussed in the lecture for this module,
ADC_FS_VOLTAGE is defined as:

#if MATH_TYPE == IQ_MATH
 #define ADC_FS_VOLTAGE _IQ(3.3)
 #else // MATH_TYPE is FLOAT_MATH
 #define ADC_FS_VOLTAGE _IQ(3.3/4096.0)

#endif

9. Open and inspect the IQssfir() function in Filter.c. This is a simple, non-optimized
coding of a basic IQmath single-sample FIR filter. Close the inspected files.

Build and Load
10. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

Lab 8: IQmath FIR Filter

8 - 38 C2000 Microcontroller Workshop - Numerical Concepts

11. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code – Filtered Waveform
12. Open a memory browser to view some of the contents of the filtered ADC results buffer.

The address label for the filtered ADC results buffer is AdcBufFilteredIQ in the “Data”
memory page. Set the format to 32-Bit Signed Integer. Right-click in the memory
window, select Configure… and set the Q-Value to 24 (which matches the IQ format
being used for this variable). Then click OK to save the setting. We will be running our
code in real-time mode, and will need to have the window continuously refresh.

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

13. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
browser update. Verify that the ADC result buffer contains updated values.

14. Open and setup a dual-time graph to plot a 50-point window of the filtered and unfiltered
ADC results buffer. Click: Tools Graph Dual Time and set the following
values:

Acquisition Buffer Size 50

DSP Data Type 32-bit signed integer

Q Value 24

Sampling Rate (Hz) 50000

Start Address A AdcBufFilteredIQ

Start Address B AdcBufIQ

Display Data Size 50

Time Display Unit µs

Select OK to save the graph options.

15. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform
generated in the previous lab exercise in the Dual Time B display. Notice the shape and
phase differences between the waveform plots (the filtered curve has rounded edges, and
lags the unfiltered plot by several samples). The amplitudes of both plots should run
from 0 to 3.3.

 Lab 8: IQmath FIR Filter

C2000 Microcontroller Workshop - Numerical Concepts 8 - 39

16. Open and setup two (2) frequency domain plots – one for the filtered and another for the
unfiltered ADC results buffer. Click: Tools Graph FFT Magnitude and
set the following values:

 GRAPH #1 GRAPH #2

Acquisition Buffer Size 50 50

DSP Data Type 32-bit signed integer 32-bit signed integer

Q Value 24 24

Sampling Rate (Hz) 50000 50000

Start Address AdcBufFilteredIQ AdcBufIQ

Data Plot Style Bar Bar

FFT Order 10 10

Select OK to save the graph options.

17. The graphical displays should show the frequency components of the filtered and
unfiltered 2 kHz, 25% duty cycle symmetric PWM waveforms. Notice that the higher
frequency components are reduced using the Low-Pass FIR filter in the filtered graph as
compared to the unfiltered graph.

18. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Changing Math Type to Floating-Point
19. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper

right-hand corner. In the Project Explorer window under the Includes folder
open: C:\C28x\Labs\IQmath\include\IQmathLib.h. Edit IQmathLib.h
to define the math type as floating-point. Change #define

from: #define MATH_TYPE IQ_MATH

to: #define MATH_TYPE FLOAT_MATH

Save the change to the IQmathLib.h and close the file.

Build and Load
20. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch

back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Lab 8: IQmath FIR Filter

8 - 40 C2000 Microcontroller Workshop - Numerical Concepts

Run the Code – Floating-Point Filtered Waveform
21. Change the dual-time and FFT Magnitude graphs to display 32-bit floating-point rather

than 32-bit signed integer. Click the “Show the Graph Properties” icon for
each graph and change the DSP Data Type to 32-bit floating-point.

22. Run the code (real-time mode) by using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset.

23. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform in
the Dual Time B display. The FFT Magnitude graphical displays should show the
frequency components of the filtered and unfiltered 2 kHz, 25% duty cycle symmetric
PWM waveforms.

24. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Terminate Debug Session and Close Project
25. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

26. Next, close the project by right-clicking on Lab8 in the Project Explorer window
and select Close Project.

End of Exercise

 Lab 8: IQmath FIR Filter

C2000 Microcontroller Workshop - Numerical Concepts 8 - 41

Lab 8 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter

Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 50 kHz

Lab 8: IQmath FIR Filter

8 - 42 C2000 Microcontroller Workshop - Numerical Concepts

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 1

Direct Memory Access Controller

Introduction
This module explains the operation of the direct memory access (DMA) controller. The DMA
provides a hardware method of transferring data between peripherals and/or memory without
intervention from the CPU, thus freeing up bandwidth for other system functions. The DMA has
six channels with independent PIE interrupts.

Module Objectives

Module Objectives

Understand the operation of the
Direct Memory Access (DMA)
controller

Show how to use the DMA to transfer
data between peripherals and/or
memory without intervention from
the CPU

The DMA allows data to be transferred between peripherals and/or memory without intervention
from the CPU. The DMA can read data from the ADC result registers, transfer to or from
memory blocks L5 through L8, transfer to or from the McBSP, and also modify registers in the
ePWM. Triggers are used to initiate the transfers, and when completed the DMA can generate an
interrupt.

Module Topics

9 - 2 C2000 Microcontroller Workshop - Direct Memory Access Controller

Module Topics
Direct Memory Access Controller ..9-1

Module Topics ..9-2

Direct Memory Access (DMA) ...9-3
Basic Operation ...9-4
DMA Examples ...9-6
DMA Priority Modes ...9-8
DMA Throughput ..9-9
DMA Registers ..9-10

Lab 9: Servicing the ADC with DMA ...9-14

 Direct Memory Access (DMA)

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 3

Direct Memory Access (DMA)

DMA Triggers, Sources, and Destinations

McBSP-A

DMA
6-channelsL5 DPSARAM

L6 DPSARAM

L7 DPSARAM

L8 DPSARAM

ADC
Result 0-15

Triggers

ADCINT1 / ADCINT2
MXEVTA / MREVTA
XINT1-3 / TINT0-2

ePWM1-6 (SOCA-B)
USB0EP1-3RX/TX

software

PIE
DINTCH1-6

PWM1
PWM2
PWM3
PWM4
PWM5
PWM6

SysCtrlRegs.EPWMCNF.bit.CONCNF
(maps ePWM to DMA bus or CLA bus)

DMA Definitions
 Word

 16 or 32 bits
 Word size is configurable per DMA channel

 Burst
 Consists of multiple words
 Smallest amount of data transferred at one time

 Burst Size
 Number of words per burst
 Specified by BURST_SIZE register

 5-bit ‘N-1’ value (maximum of 32 words/burst)

 Transfer
 Consists of multiple bursts

 Transfer Size
 Number of bursts per transfer
 Specified by TRANSFER_SIZE register

 16-bit ‘N-1’ value - exceeds any practical requirements

Direct Memory Access (DMA)

9 - 4 C2000 Microcontroller Workshop - Direct Memory Access Controller

Basic Operation

Simplified State Machine Operation

Burst Size times

Transfer Size times

The DMA state machine at its most basic
level is two nested loops

End Transfer

Move Word

Start Transfer

DMA can be configured to
re-initialize at the end of the
transfer (continuous mode)

Basic Address Control Registers

SRC_ADDR

SRC_ADDR_SHADOW

DST_ADDR

DST_ADDR_SHADOW

SRC_BURST_STEP

SRC_TRANSFER_STEP

DST_BURST_STEP

DST_TRANSFER_STEP

Active pointers

Pointer shadow registers
copied to active pointers at
start of transfer

Signed value added to active
pointer after each word

Signed value added to active
pointer after each burst

32

 Direct Memory Access (DMA)

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 5

Simplified State Machine Example

3 words/burst
2 bursts/transfer

Read/Write Data

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event
to start/continue

transfer

Start Transfer

End Transfer

DMA Interrupts

 Each DMA channel has its
own PIE interrupt

 The mode for each
interrupt can be configured
individually

 The CHINTMODE bit in the
MODE register selects the
interrupt mode

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event
to start/continue

transfer

Start TransferMode #1:
Interrupt
at start of
transfer

Mode #2:
Interrupt
at end of
transfer

Direct Memory Access (DMA)

9 - 6 C2000 Microcontroller Workshop - Direct Memory Access Controller

DMA Examples

0x44440x0000

0x000040030x000040020x000040010x000040000x00000000

0x0000F0030x0000F0020x0000F0010x0000F0000x00000000

0x33330x0000
0x22220x0000

0x0000F000

0x11110x0000

Simple Example

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?
Y

Y

N

N

Wait for event
to start/continue

transfer

SRC_ADDR_SHADOW

SRC_ADDR

SRC_BURST_STEP
SRC_TRANSFER_STEP

BURST_SIZE*
TRANSFER_SIZE*

Addr Value
0x11110xF000
0x22220xF001
0x33330xF002
0x44440xF003

Source Registers

0x0001
0x0001

0x0001
0x0001

DST_ADDR_SHADOW

DST_ADDR

DST_BURST_STEP
DST_TRANSFER_STEP

Addr Value
0x4000
0x4001
0x4002
0x4003

Destination Registers

0x00004000
0x0001
0x0001

2 words/burst
2 bursts/transfer

* Size registers are N-1

Objective: Move 4 words from memory location 0xF000 to
memory location 0x4000 and interrupt CPU at end of transfer

Start Transfer

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

Interrupt to PIE

Data Binning Example

ADC Results

L7 SARAM

CH0
CH1
CH2
CH3
CH4

0x0B00 CH0
CH1
CH2
CH3
CH4

CH0
CH1
CH2
CH3
CH4

1st Conversion Sequence

0xF000

0xF003

0xF006

0xF009

0xF00C

0x0B01
0x0B02
0x0B03
0x0B04

0xF001

0xF004

0xF007

0xF00A

0xF00D

0xF002

0xF005

0xF008

0xF00B

0xF00E

2nd Conversion Sequence3rd Conversion Sequence

CH0

CH1

CH2

CH3

CH4

Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

 Direct Memory Access (DMA)

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 7

* Size registers are N-1

Data Binning Example Register Setup

BURST_SIZE*
TRANSFER_SIZE*

0x0004 5 words/burst
0x0002 3 bursts/transfer

SRC_ADDR_SHADOW
SRC_BURST_STEP

SRC_TRANSFER_STEP

0x00000B00
0x0001

DST_ADDR_SHADOW
DST_BURST_STEP

DST_TRANSFER_STEP
0x0003
0xFFF5 (-11)

0xFFFC (-4)

CH4
CH3
CH2
CH1
CH00x0B00

0x0B01
0x0B02

ADC Results

L7 SARAM

0xF000

0xF003

0xF006

0xF009

0xF00C

CH0
CH0
CH0

CH1
CH1
CH1

CH2
CH2
CH2

CH3
CH3
CH3

CH4
CH4
CH4

0xF001

0xF004

0xF007

0xF00A

0xF00D

0xF002

0xF005

0xF008

0xF00B

0xF00E

0x0B03
0x0B04

Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

SOC0 – SOC4 configured to CH0 – CH4, respectively,
ADC configured to re-trigger (continuous conversion)

ADC Registers:

DMA Registers:

0x0000F000 starting address**

** Typically use a relocatable symbol in your code, not a hard value

Ping-Pong Buffer Example

ADC Result Register

50 word
‘Ping’ buffer

50 word
‘Pong’ buffer

L5 DPSARAM
0x0B00

DMA
Interrupt

DMA
Interrupt

0xC140

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADCRESULT0

SOC0 configured to ADCINA0
with 1 conversion per trigger

Direct Memory Access (DMA)

9 - 8 C2000 Microcontroller Workshop - Direct Memory Access Controller

DMA configured to re-init after transfer (CONTINUOUS = 1)

Ping-Pong Example Register Setup

SRC_BURST_STEP
SRC_TRANSFER_STEP 0x0000

DST_BURST_STEP
DST_TRANSFER_STEP 0x0001

SRC_ADDR_SHADOW

DST_ADDR_SHADOW

BURST_SIZE*
TRANSFER_SIZE*

0x0000 1 word/burst
0x0031 50 bursts/transfer

* Size registers are N-1

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

don’t care since BURST_SIZE = 0

don’t care since BURST_SIZE = 0

0x00000B00 starting address

0x0000C140 starting address**

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer Step
to Address Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event to
start/continue transfer

Start Transfer

Convert ADC Channel ADCINA0 – 1 conversion per trigger (i.e. ePWM2SOCA)

DMA Registers:

ADC Registers:

Other:

** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

DMA Priority Modes

Channel Priority Modes

 Round Robin Mode:
 All channels have equal priority
 After each enabled channel has

transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

 Channel 1 High Priority Mode:
 Same as Round Robin except CH1

can interrupt DMA state machine
 If CH1 trigger occurs, the current

word (not the complete burst) on
any other channel is completed
and execution is halted

 CH1 is serviced for complete burst
 When completed, execution

returns to previous active channel
 This mode is intended primarily

for the ADC, but can be used by
any DMA event configured to
trigger CH1

DMA
event?

CH6 CH1

CH2CH5

CH4 CH3

Y

N

 Direct Memory Access (DMA)

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 9

Priority Modes and the State Machine

Read/Write Data

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Point where other
pending channels

are serviced
Wait for event

to start/continue
transfer

Point where
CH1 can

interrupt other
channels in

CH1 Priority Mode

Start Transfer

End Transfer

DMA Throughput

DMA Throughput
4 cycles/word (5 for McBSP reads)

1 cycle delay to start each burst
1 cycle delay returning from CH1

high priority interrupt
32-bit transfer doubles throughput

(except McBSP, which supports 16-bit transfers only)

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] = 520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

Direct Memory Access (DMA)

9 - 10 C2000 Microcontroller Workshop - Direct Memory Access Controller

DMA vs. CPU Access Arbitration
DMA has priority over CPU
If a multi-cycle CPU access is already in

progress, DMA stalls until current CPU
access finishes

The DMA will interrupt back-to-back CPU
accesses

Can the CPU be locked out?
Generally No!
DMA is multi-cycle transfer; CPU will sneak

in an access when the DMA is accessing the
other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

DMA Registers

DMA Registers
DmaRegs.name (lab file: Dma.c)

DMACTRL DMA Control Register
PRIORITYCTRL1 Priority Control Register 1
MODE Mode Register
CONTROL Control Register
BURST_SIZE Burst Size Register
BURST_COUNT Burst Count Register
SRC_BURST_STEP Source Burst Step Size Register
DST_BURST_STEP Destination Burst Step Size Register
TRANSFER_SIZE Transfer Size Register
TRANSFER_COUNT Transfer Count Register
SRC_TRANSFER_STEP Source Transfer Step Size Register
DST_TRANSFER_STEP Destination Transfer Step Size Register
SRC_ADDR_SHADOW Shadow Source Address Pointer Register
SRC_ADDR Active Source Address Pointer Register
DST_ADDR_SHADOW Shadow Destination Address Pointer Register
DST_ADDR Active Destination Address Pointer Register

Register Description

D
M

A
C

H
x

R
eg

is
te

rs

For a complete list of registers refer to the DMA Module Reference Guide

 Direct Memory Access (DMA)

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 11

DMA Control Register
DmaRegs.DMACTRL

HARDRESETPRIORITYRESET
015 - 2

reserved

1

Priority Reset
0 = writes ignored (always reads back 0)
1 = reset state-machine after any pending

burst transfer complete

Hard Reset
0 = writes ignored (always reads back 0)
1 = reset DMA module

Priority Control Register 1
DmaRegs.PRIORITYCTRL1

CH1PRIORITY
015 - 1

reserved

DMA CH1 Priority
0 = same priority as other channels
1 = highest priority channel

Direct Memory Access (DMA)

9 - 12 C2000 Microcontroller Workshop - Direct Memory Access Controller

Mode Register
DmaRegs.CHx.MODE

Upper Register:

15 11 10
CONTINUOUS ONESHOT

13 - 1214

Channel Interrupt
0 = disable
1 = enable

Data Size Mode
0 = 16-bit transfer
1 = 32-bit transfer

Continuous Mode
0 = DMA stops
1 = DMA re-initializes

One Shot Mode
0 = one burst transfer per trigger
1 = subsequent burst transfers

occur without additional trigger

CHINTE DATASIZE reserved

Mode Register
DmaRegs.CHx.MODE

Lower Register:

9 4 - 06 - 578

Channel Interrupt Generation
0 = at beginning of transfer
1 = at end of transfer

Peripheral
Interrupt Trigger
0 = disable
1 = enable

CHINTMODE PERINTE OVRINTE PERINTSELreserved

Overflow
Interrupt Enable
0 = disable
1 = enable

Peripheral Interrupt Source Select

Peripheral INT
0 none
1 ADCINT1
2 ADCINT2
3 XINT1
4 XINT2
5 XINT3
6 reserved
7 USB0EP1RX

Peripheral INT
16 reserved
17 Reserved
18 ePWM1SOCA
19 ePWM1SOCB
20 ePWM2SOCA
21 ePWM2SOCB
22 ePWM3SOCA
23 ePWM3SOCB

Peripheral INT
24 ePWM4SOCA
25 ePWM4SOCB
26 ePWM5SOCA
27 ePWM5SOCB
28 ePWM6SOCA
29 ePWM6SOCB
30 USB0EP3RX
31 USB0EP3TX

Peripheral INT
8 USB0EP1TX
9 USB0EP2RX

10 USB0EP2TX
11 TINT0
12 TINT1
13 TINT2
14 MXEVTA
15 MREVTA

 Direct Memory Access (DMA)

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 13

Control Register
DmaRegs.CHx.CONTROL

Upper Register:

reserved OVRFLG
15 11 810 - 9

RUNSTS BURSTSTS TRANSFERRST
121314

Overflow Flag *
0 = no overflow
1 = overflow

Run Status *
0 = channel disabled
1 = channel enabled

Burst Status *
0 = no activity
1 = servicing burst

Transfer Status *
0 = no activity
1 = transferring

Peripheral Interrupt Trigger Flag *
0 = no interrupt event trigger
1 = interrupt event trigger

* = read-only

PERINTFLGreserved

Control Register
DmaRegs.CHx.CONTROL

Lower Register:

7 3 02
PERINTCLR PERINTFRC SOFTRESET HALT RUN

146 - 5

Error Clear
0 = no effect
1 = clear SYNCERR

Peripheral Interrupt Clear
0 = no effect
1 = clears event and PERINTFLG

Peripheral Interrupt Force
0 = no effect
1 = sets event and PERINTFLG

Soft Reset
0 = no effect
1 = default state

Halt
0 = no effect
1 = halt

Run
0 = no effect
1 = run

ERRCLR reserved

Lab 9: Servicing the ADC with DMA

9 - 14 C2000 Microcontroller Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA
 Objective

The objective of this lab is to become familiar with operation of the DMA. In the previous lab,
the CPU was used to store the ADC conversion result in the memory buffer during the ADC ISR.
In this lab the DMA will be configured to transfer the results directly from the ADC result
registers to the memory buffer. ADC channel A0 will be buffered ping-pong style with 50
samples per buffer. As an operational test, the filtered 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 9: Servicing the ADC with DMA

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

data
memory

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

Objective:
Configure the DMA to buffer
ADC Channel A0 ping-pong
style with 50 samples per buffer

ping

CPU runs
data through
filter during
DMA ISR

FIR
Filter

pong

data
memory

DMA

 Procedure

Open the Project
1. A project named Lab9 has been created for this lab. Open the project by clicking on

Project Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab9\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

 Lab 9: Servicing the ADC with DMA

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 15

Adc.c Filter.c
CodeStartBranch.asm Gpio.c
DefaultIsr_9.c Lab.h
DelayUs.asm Lab_9.cmd
Dma.c Main_9.c
ECap_7_8_9_10_12.c PieCtrl.c
EPwm_7_8_9_10_12.c PieVect.c
F2806x_DefaultIsr.h SysCtrl.c
F2806x_GlobalVariableDefs.c Watchdog.c
F2806x_Headers_nonBIOS.cmd

Inspect Lab_9.cmd
2. Open and inspect Lab_9.cmd. Notice that a section called “dmaMemBufs” is being

linked to L5DPSARAM. This section links the destination buffer for the DMA transfer to
a DMA accessible memory space.

Setup DMA Initialization
The DMA controller needs to be configured to buffer ADC channel A0 ping-pong style with 50
samples per buffer. One conversion will be performed per trigger with the ADC operating in
single sample mode.

3. Edit Dma.c to implement the DMA operation as described in the objective for this lab
exercise. Configure the DMA Channel 1 Mode Register (MODE) so that the ADC
ADCINT1 is the peripheral interrupt source. Enable the peripheral interrupt trigger and
set the channel for interrupt generation at the start of transfer. Configure for 16-bit data
transfers with one burst per trigger and auto re-initialization at the end of the transfer. In
the DMA Channel 1 Control Register (CONTROL) clear the error and peripheral
interrupt bits. Enable the channel to run.

4. Open Main_9.c and add a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

 InitDma();

 at the desired spot in main().

Setup PIE Interrupt for DMA
Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC ISR. For
this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an interrupt
to the CPU. The CPU will implement the FIR filter in the DMA ISR.

5. Edit Adc.c to comment out the code used to enable the ADCINT1 interrupt in PIE group 1.
This is no longer being used. The DMA interrupt will be used instead.

6. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “DINTCH1” and fill in the following information:

PIE group #: # within group:

Lab 9: Servicing the ADC with DMA

9 - 16 C2000 Microcontroller Workshop - Direct Memory Access Controller

This information will be used in the next step.

7. Modify the end of Dma.c to do the following:
- Enable the “DINTCH1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

8. Open and inspect DefaultIsr_9.c. Notice that this file contains the DMA interrupt
service routine. Save and close all modified files.

Build and Load
9. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

10. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code – Test the DMA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

11. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
browser update. Verify that the ADC result buffer contains updated values.

12. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools Graph Dual Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 32-bit floating-point

Sampling Rate (Hz) 50000

Start Address – A AdcBufFilteredIQ

Start Address – B AdcBufIQ

Display Data Size 50

Time Display Unit µs

13. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. You should see that the
results match the previous lab exercise.

14. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

 Lab 9: Servicing the ADC with DMA

C2000 Microcontroller Workshop - Direct Memory Access Controller 9 - 17

Terminate Debug Session and Close Project
15. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

16. Next, close the project by right-clicking on Lab9 in the Project Explorer window
and select Close Project.

End of Exercise

Lab 9: Servicing the ADC with DMA

9 - 18 C2000 Microcontroller Workshop - Direct Memory Access Controller

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 1

Control Law Accelerator

Introduction
This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor that enables concurrent
execution into the C28x family. This extends the capabilities of the C28x CPU by adding parallel
processing. The CLA has direct access to the ADC result registers, and all ePWM, HRPWM,
eCAP, eQEP and comparator registers. This allows the CLA to read ADC samples “just-in-time”
and significantly reduces the ADC sample to output delay enabling faster system response and
higher frequency operation. Utilizing the CLA for time-critical tasks frees up the CPU to perform
other system and communication functions concurrently.

Module Objectives

Module Objectives

Explain the purpose and operation of the
Control Law Accelerator (CLA)

Describe the CLA initialization procedure

Review the CLA registers, instruction set,
and programming flow

The control law accelerator is an independent, 32-bit, floating-point, math accelerator. It
executes algorithms independently and in parallel with the CPU. It has direct access to the
ePWM, high-resolution PWM, eCAP, eQEP, ADC result and comparator registers. It responds to
peripheral interrupts independently of the CPU and frees up the CPU for other tasks, such as
communications and diagnostics.

Module Topics

10 - 2 C2000 Microcontroller Workshop - Control Law Accelerator

Module Topics
Control Law Accelerator ...10-1

Module Topics ..10-2

Control Law Accelerator (CLA) ..10-3
CLA Block Diagram ..10-3
CLA Memory and Register Access ...10-4
CLA Tasks ...10-4
Control and Execution Registers ...10-5
CLA Registers ...10-6
CLA Initialization ..10-9
CLA Task Programming ... 10-10
CLA C Language Implementation and Restrictions .. 10-10
CLA Assembly Language Implementation ... 10-13
CLA Code Debugging ... 10-16
controlSUITE™ - CLA Software Support .. 10-16

Lab 10: CLA Floating-Point FIR Filter ... 10-17

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 3

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

 An independent 32-bit floating-point math
accelerator

 Executes algorithms independently and in
parallel with the main CPU

 Direct access to ePWM / HRPWM, eCAP, eQEP,
ADC result and comparator registers

 Responds to peripheral interrupts
independent of the CPU

 Frees up the CPU for other tasks
(communications and diagnostics)

C28x CPU

CLA
PWM

ADC
&

CMP

CLA Block Diagram

CLA Block Diagram

MPERINT1-8 CLA_INT1-8
LVF, LUF PIE

C28x
CPU

INT11
INT12

CLA
Control & Execution

Registers

CLA Program Bus

CLA Data Bus

MSG RAMs
CPU to CLA
CLA to CPU

Program
RAM

Data
RAM0

Data
RAM1

Data
RAM2

Task Triggers
(Peripheral Interrupts)

ADCINT1 to
ADCINT8
EPWM1_INT to
EPWM8_INT
ECAP1_INT to
ECAP3_INT
EQEP1_INT to
EQEP2_INT
CPU Timer 0

Periph. Regs
ADC Results

ePWM
HRPWM

Comparator
eCAP
eQEP

Control Law Accelerator (CLA)

10 - 4 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Memory and Register Access

CLA Memory and Register Access

 Contains CLA program code
 Mapped to the CPU at reset
 Initialized by the CPU

CLA Program Memory
 Used to pass data between

the CPU and CLA
 Always mapped to both

the CPU and CLA

Message RAMs

 Contains variables and coefficients
used by the CLA program code

 Mapped to the CPU at reset
 Initialized by CPU

CLA Data Memory

L3 DPSARAM L1 DPSARAM L2 DPSARAM PF0 PF0 & PF1
MSG RAMs
CPU to CLA
CLA to CPU

Program
RAM

Data
RAM0

Data
RAM1

Data
RAM2

L0 DPSARAM
Periph. Regs
ADC Results

ePWM
HRPWM

Comparator
eCAP
eQEP

 ADC Results Regs
 ePWM (all regs)
 HRPWM (all regs)

Peripheral Reg Access
 Comparator (all regs)
 eCAP (all regs)
 eQEP (all regs)

(4Kw) (1Kw) (1Kw) (2Kw) (128w/128w)

CLA Tasks

CLA Tasks

 A Task is similar to an interrupt service routine
 CLA supports 8 Tasks (Task1-8)
 A task is started by a peripheral interrupt trigger

Triggers are enabled in the MPISRCSEL1 register
 When a trigger occurs the CLA begins execution at

the associated task vector entry (MVECT1-8)
 Once a task begins it runs to completion (no nesting)

MPERINT1-8 CLA_INT1-8
LVF, LUF PIE

C28x
CPU

INT11
INT12

CLA
Control & Execution

Registers

Task Triggers
(Peripheral Interrupts)

ADCINT1 to
ADCINT8
EPWM1_INT to
EPWM8_INT
ECAP1_INT to
ECAP3_INT
EQEP1_INT to
EQEP2_INT
CPU Timer 0

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 5

Software Triggering a Task
 Tasks can also be started by a software trigger

using the CPU

asm(" EALLOW"); //enable protected register access

Cla1Regs.MIFRC.bit.INT4 = 1; //start task 4

asm(" EDIS"); //disable protected register access

 Method #1: Write to Interrupt Force Register (MIFRC) register

INT2INT3INT4INT5INT6INT7INT8 INT1
0123456715 - 8

reserved

 Method #2: Use IACK instruction

asm(" IACK #0x0008"); //set bit 3 in MIFRC to start task 4

More efficient – does not require EALLOW
Note: Use of IACK requires Cla1Regs.MCTL.bit.IACKE = 1

Control and Execution Registers

CLA Control and Execution Registers

 MPISRCSEL1 – Peripheral Interrupt Source Select (Task 1-8)
 MVECT1-8 – Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8)
 MMEMCFG – Memory Map Configuration (RAM2E, RAM1E, RAM0E, PROGE)
 MPC – 12-bit Program Counter (initialized by appropriate MVECTx register)
 MR0-3 – CLA Floating-Point Result Registers (32-bit)
 MAR0-1 – CLA Auxiliary Registers (16-bit)

1

0

MIFR MIERMPISRCSEL1

CLA
Core

CLA Program Bus CLA Data Bus
Program
Memory

Data
Memory

MMEMCFG

MVECT1-8MPC

MAR0
MAR1

CLA_INT1-8
LVF, LUF

MR0
MR1
MR2
MR3

PIE C28x
CPU

INT11
INT12

S/W TriggerMIFRC

ADCINT1 to
ADCINT8
EPWM1_INT to
EPWM8_INT
ECAP1_INT to
ECAP3_INT
EQEP1_INT to
EQEP2_INT
CPU Timer 0
no source

•
•
•

•
•
•

•
•
•

•
•
•

Control Law Accelerator (CLA)

10 - 6 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Registers

CLA Registers
Cla1Regs.register (lab file: Cla.c)

MCTL Control Register
MMEMCFG Memory Configuration Register
MPISRCSEL1 Peripheral Interrupt Source Select 1 Register
MIFR Interrupt Flag Register
MIER Interrupt Enable Register
MIFRC Interrupt Force Register
MICLR Interrupt Flag Clear Register
MIOVF Interrupt Overflow Flag Register
MICLROVF Interrupt Overflow Flag Clear Register
MIRUN Interrupt Run Status Register
MVECTx Task x Interrupt Vector (x = 1-8)
MPC CLA 12-bit Program Counter
MARx CLA Auxiliary Register x (x = 0-1)
MRx CLA Floating-Point 32-bit Result Register (x = 0-3)
MSTF CLA Floating-Point Status Register

Register Description

CLA Control Register
Cla1Regs.MCTL

HARDRESETIACKE SOFTRESETreserved
15 - 3 02 1

Hard Reset
0 = no effect
1 = CLA reset

(registers set
to default state)

Soft Reset
0 = no effect
1 = CLA reset

(stop current task)

IACK Enable
0 = CPU IACK instruction ignored
1 = CPU IACK instruction triggers a task

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 7

CLA Memory Configuration Register
Cla1Regs.MMEMCFG

PROGE
07

reserved RAM1E RAM0E
45 3 - 1

reservedRAM2E

15 - 11

reserved RAM1CPUE RAM0CPUE
910

RAM2CPUE

6

8

CLA Data RAM2 / RAM1 / RAM0 Enable
0 = mapped to CPU program and data space
1 = mapped to CLA data space

CLA Program Space Enable
0 = mapped to CPU program and data space
1 = mapped to CLA program space

CLA Data RAM2 / RAM1 / RAM0 CPU Access Enable
0 = mapped as RAM2E / RAM1E / RAM0
1 = CPU access to RAM while mapped to CLA data space

CLA Peripheral Interrupt Source
Select 1 Register

Cla1Regs.MPISRCSEL1

PERINT8SEL
31 - 28 19 - 16

PERINT7SEL PERINT6SEL PERINT5SEL
27 - 24 23 - 20

0000 = DefaultNote: select ‘no source’ if task is generated by software

Upper Register:

Task 8 Peripheral
Interrupt Input
0000 = ADCINT8
0010 = CPU Timer 0
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Task 7 Peripheral
Interrupt Input
0000 = ADCINT7
0010 = ePWM7
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Task 6 Peripheral
Interrupt Input
0000 = ADCINT6
0010 = ePWM6
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Task 5 Peripheral
Interrupt Input
0000 = ADCINT5
0010 = ePWM5
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Control Law Accelerator (CLA)

10 - 8 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Peripheral Interrupt Source
Select 1 Register

Cla1Regs.MPISRCSEL1

PERINT4SEL
15 - 12 3 - 0

PERINT3SEL PERINT2SEL PERINT1SEL
11 - 8 7 - 4

0000 = DefaultNote: select ‘no source’ if task is generated by software

Lower Register:

Task 4 Peripheral
Interrupt Input
0000 = ADCINT4
0010 = ePWM4
0100 = eQEP1
0101 = eQEP2
1000 = eCAP1
1001 = eCAP2
1010 = eCAP3
other = no source

Task 3 Peripheral
Interrupt Input
0000 = ADCINT3
0010 = ePWM3
xxx1 = no source

Task 2 Peripheral
Interrupt Input
0000 = ADCINT2
0010 = ePWM2
xxx1 = no source

Task 1 Peripheral
Interrupt Input
0000 = ADCINT1
0010 = ePWM1
xxx1 = no source

CLA Interrupt Enable Register
Cla1Regs.MIER

INT2INT3INT4INT5INT6INT7INT8 INT1
0123456715 - 8

reserved

#include “F2806x_Device.h”

Cla1Regs.MIER.bit.INT2 = 1; //enable Task 2 interrupt

Cla1Regs.MIER.all = 0x0028; //enable Task 6 and 4 interrupts

0 = task interrupt disable (default)
1 = task interrupt enable

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 9

CLA Initialization

CLA Initialization

1. Copy CLA task code from flash to CLA program RAM

2. Initialize CLA data RAMs, as needed
 Populate with data coefficients, constants, etc.

3. Configure the CLA registers
 Enable the CLA clock (PCLKCR3 register)

 Populate the CLA task interrupt vectors (MVECT1-8 registers)

 Select the desired task interrupt sources (MPISRCSEL1 register)

 If desired, enable IACK to start task using software (avoids EALLOW)

 Map CLA program RAM and data RAMs to CLA space

4. Configure desired CLA task completion interrupts in the PIE

5. Enable CLA tasks triggers in the MIER register

6. Initialize the desired peripherals to trigger the CLA tasks

CLA initialization is performed by the CPU using C code
(typically done with the Peripheral Register Header Files)

Data is passed between the CLA and CPU via message RAMs

Enabling CLA Support in CCS

 Set the “Specify CLA support” project option to ‘cla0’

 When creating a new CCS project, choosing a device
variant that has the CLA will automatically select this
option, so normally no user action is required

Control Law Accelerator (CLA)

10 - 10 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Task Programming

CLA Task Programming

 Can be written in C or assembly code

 Assembly code will give best performance
for time-critical tasks

Writing in assembly may not be so bad!
 CLA programs in floating point

 Often not that much code in a task

 Commonly, the user will use assembly for
critical tasks, and C for non-critical tasks

CLA C Language Implementation and Restrictions

CLA C Language Implementation
 Supports C only (no C++ or GCC extension support)

 Different data type sizes than C28x CPU
 No support for 64-bit integer or 64-bit floating point

 CLA architecture is designed for 32-bit data types
 16-bit computations incur overhead for sign-extension
 Primarily used for reading and writing to 16-bit

peripheral registers

TYPE CPU CLA
char, short 16 bit 16 bit

int 16 bit 32 bit

long 32 bit 32 bit

long long 64 bit 32 bit

float, double 32 bit 32 bit

long double 64 bit 32 bit

pointers 32 bit 16 bit

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 11

CLA C Language Restrictions (1 of 2)

CLA C compiler does not support:
 Initialized global and static data

int x; // valid

int x=5; // not valid

 Initialized variables need to be manually
handled by an initialization task

More than 1 level of function nesting
 Task can call a function, but a function

cannot call another function
 Function with more than two arguments
Recursive function calls
 Function pointers

CLA C Language Restrictions (2 of 2)

CLA C compiler does not support:
Certain fundamental math operations

 integer division: z = x/y;
modulus (remainder): z = x%y;
 unsigned 32-bit integer compares

Uint32 i; if(i < 10) {…} // not valid

int32 i; if(i < 10) {…} // valid

Uint16 i; if(i < 10) {…} // valid

int16 i; if(i < 10) {…} // valid

float32 x; if(x < 10) {…} // valid

C Standard math library functions

Control Law Accelerator (CLA)

10 - 12 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Compiler Scratchpad Memory Area
 For local and compiler temporary variables
 Static allocation, used instead of a stack
 Defined in linker command file

CLA_SCRATCHPAD_SIZE = 0x100;
--undef_sym=__cla_scratchpad_end
--undef_sym=__cla_scratchpad_start

MEMORY
{

}

SECTIONS
{

Cla1Prog :> L3DPSARAM, PAGE = 0
RUN_START(_Cla1Prog_Start)

CLAscratch :{*.obj(CLAscratch
. += CLA_SCRATCHPAD_SIZE;
*.obj(CLAscratch_end)

} > L2DPSARAM, PAGE = 1
}

Lab.cmd Linker defined symbol
specifies size for
scratchpad area

 Scratchpad area
accessed directly
using symbols

 All CLA C code will be
placed in the section
Cla1Prog

 Symbol used to define
the start of CLA
program memory

 Must allocate to
memory section that
CLA has write access

CLA Task C Code Example
#include "Lab.h"

;-------------------------------------

interrupt void Cla1Task1 (void)

{

__mdebugstop();

xDelay[0] = (float32)AdcResult.ADCRESULT0;

Y = coeffs[4] * xDelay[4];

xDelay[4] = xDelay[3];

xDelay[1] = xDelay[0];

Y = Y + coeffs[0] * xDelay[0];

ClaFilteredOutput = (Uint16)Y;

}

;-------------------------------------

interrupt void Cla1Task2 (void)

{

}

;-------------------------------------

ClaTasks_C.cla

 .cla extension causes
the c2000 compiler to
invoke the CLA
compiler

 All code within this
file is placed in the
section “Cla1Prog”

 C Peripheral Register
Header File references
can be used in CLA C
and assembly code

 Closing braces are
replaced with MSTOP
instructions when
compiled

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 13

CLA Assembly Language Implementation

CLA Assembly Language
Implementation

 Same assembly instruction format as the
C28x and C28x+FPU
Destination operand is always on the left

 Same mnemonics as C28x+FPU but with a
leading “M”

CPU: MPY ACC, T, loc16

FPU: MPYF32 R0H, R1H, R2H

CLA: MMPYF32 MR0, MR1, MR2

Destination Source Operands

CLA Assembly Instruction Overview
Type Example Cycles
Load (Conditional) MMOV32 MRa,mem32{,CONDF} 1
Store MMOV32 mem32,MRa 1
Load with Data Move MMOVD32 MRa,mem32 1
Store/Load MSTF MMOV32 MSTF,mem32 1
Compare, Min, Max MCMPF32 MRa,MRb 1
Absolute, Negative Value MABSF32 MRa,MRb 1
Unsigned Integer to Float MUI16TOF32 MRa,mem16 1
Integer to Float MI32TOF32 MRa,mem32 1
Float to Integer & Round MF32TOI16R MRa,MRb 1
Float to Integer MF32TOI32 MRa,MRb 1
Multiply, Add, Subtract MMPYF32 MRa,MRb,MRc 1
1/X (16-bit Accurate) MEINVF32 MRa,MRb 1
1/Sqrt(x) (16-bit Accurate) MEISQRTF32 MRa,MRb 1
Integer Load/Store MMOV16 MRa,mem16 1
Load/Store Auxiliary Register MMOV16 MAR,mem16 1
Branch/Call/Return
Conditional Delayed

MBCNDD 16bitdest {,CNDF} 1-7

Integer Bitwise AND, OR, XOR MAND32 MRa,MRb,MRc 1
Integer Add and Subtract MSUB32 MRa,MRb,MRc 1
Integer Shifts MLSR32 MRa,#SHIFT 1
Write Protection Enable/Disable MEALLOW 1
Halt Code or End Task MSTOP 1
No Operation MNOP 1

Control Law Accelerator (CLA)

10 - 14 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Assembly Parallel Instructions
 Parallel bars indicate a parallel instruction
 Parallel instructions operate as a single instruction with

a single opcode and performs two operations

 Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1

|| MMOV32 @_Var, MR3

Instruction Example Cycles
Multiply
& Parallel Add/Subtract

MMPYF32 MRa,MRb,MRc
|| MSUBF32 MRd,MRe,MRf 1

Multiply, Add, Subtract
& Parallel Store

MADDF32 MRa,MRb,MRc
|| MMOV32 mem32,MRe 1

Multiply, Add, Subtract, MAC
& Parallel Load

MADDF32 MRa,MRb,MRc
|| MMOV32 MRe, mem32 1

Both operations complete in a single cycle

CLA Assembly Addressing Modes
 Two addressing modes: Direct and Indirect
 Both modes can access the low 64Kw of memory only:

 All of the CLA data space
 Both message RAMs
 Shared peripheral registers

 Direct – Populates opcode field with 16-bit address of the variable

example 1: MMOV32 MR1, @_VarA

example 2: MMOV32 MR1, @_EPwm1Regs.CMPA.all

 Indirect – Uses the address in MAR0 or MAR1 to access memory;
after the read or write MAR0/MAR1 is incremented by a
16 bit signed value

example 1: MMOV32 MR0, *MAR0[2]++

example 2: MMOV32 MR1, *MAR1[-2]++

 Control Law Accelerator (CLA)

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 15

CLA Task Assembly Code Example
.cdecls "Lab.h"

.sect "Cla1Prog"

_Cla1Prog_Start:

_Cla1Task1: ; FIR filter

MUI16TOF32 MR2, @_AdcResult.ADCRESULT0

MMPYF32 MR2, MR1, MR0

MADDF32 MR3, MR3, MR2

MF32TOUI16 MR2, MR3

MMOV16 @_ClaFilteredOutput, MR2

MSTOP ; End of task

;-------------------------------------

_Cla1Task2:

MSTOP

;-------------------------------------

_Cla1Task3:

MSTOP

ClaTasks.asm

 .cdecls directive used
to include the C
header file in the CLA
assembly file

 .sect directive used to
place CLA assembly
code in its own
section

 C Peripheral Register
Header File references
can be used in CLA
assembly code

 MSTOP instruction
used at the end of the
task

CLA Initialization Code Example

#include "F2806x_Cla_typedefs.h"

#include “F2806x_Device.h"

extern Uint16 Cla1Prog_Start;

extern interrupt void Cla1Task1();

extern interrupt void Cla1Task2();

extern interrupt void Cla1Task8();

Lab.h

#include "Lab.h"

// Symbols used to calculate vector address

Cla1Regs.MVECT1 =
(Uint16)((Uint32)&Cla1Task1 -

(Uint32)&Cla1Prog_Start);

Cla1Regs.MVECT2 =
(Uint16)((Uint32)&Cla1Task2 -

(Uint32)&Cla1Prog_Start);

Cla.c

 Defines data types and
special registers
specific to the CLA

 Defines register bit
field structures

 Symbol for start of CLA
program RAM defined
in Lab.cmd

 CLA task prototypes
are prefixed with the
‘interrupt’ keyword

 CLA task symbols are
visible to all C28x CPU
and CLA code

MVECTx contains the offset address from the start of the CLA Program RAM

Control Law Accelerator (CLA)

10 - 16 C2000 Microcontroller Workshop - Control Law Accelerator

CLA Code Debugging

CLA Code Debugging

1. Insert a breakpoint in CLA code
 Insert MDEBUGSTOP instruction to halt CLA and then rebuild/reload

2. Enable CLA breakpoints
 Enable CLA breakpoints in the debugger

3. Start the task
 Done by peripheral interrupt, software (IACK) or MIFRC register
 CLA executes instructions until MDEBUGSTOP
 MPC will the have address of MDEBUGSTOP instruction

4. Single step the CLA code
 Once halted, single step the CLA code
 Can also run to the next MDEBUGSTOP or to the end of task
 If another task is pending it will start at end of previous task

5. Disable CLA breakpoints, if desired

• The CLA can halt, single-step and run independently from the CPU
• Both the CLA and CPU are debugged from the same JTAG port

• CLA single step – CLA pipeline is clocked only one cycle and then frozen
• CPU single step – CPU pipeline is flushed for each single step

Note: When debugging C code, the _mdebugstop() intrinsic places the
MDEBUGSTOP instruction at that position in the generated assembly code

controlSUITE™ - CLA Software Support

controlSUITE™ - CLA Software Support

 TI provided functions to support floating-point math CLA operations

 Lab 10: CLA Floating-Point FIR Filter

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 17

Lab 10: CLA Floating-Point FIR Filter
 Objective

The objective of this lab is to become familiar with operation and programming of the CLA. In
the previous lab, the CPU was used to filter the ePWM1A generated 2 kHz, 25% duty cycle
symmetric PWM waveform. In this lab, the PWM waveform will be filtered using the CLA. The
CLA will directly read the ADC result register and a task will run a low-pass FIR filter on the
sampled waveform. The filtered result will be stored in a circular memory buffer. Note that the
CLA is operating concurrently with the CPU. As an operational test, the filtered and unfiltered
waveforms will be displayed using the graphing feature of Code Composer Studio.

Lab 10: CLA Floating-Point FIR Filter

CPU copies
result to
buffer during
CLA ISR

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

...

data
memory

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

CLA
Cla1Task1
Cla1Task2

Cla1Task8

Recall that a task is similar to an interrupt service routine. Once a task is triggered it runs to
completion. In this lab two tasks will be used. Task 1 contains the low-pass filter. Task 8
contains a one-time initialization routine that is used to clear (set to zero) the filter delay chain.
This must be done by the CLA since the CPU does not have access to this array.

Since there are tradeoffs between the conveniences of C programming and the performance
advantages of assembly language programming, three different task scenarios will be explored:

1. Filter and initialization tasks both in C
2. Filter task in assembly, initialization task in C
3. Filter and initialization tasks both in assembly

These three scenarios will highlight the flexibility of programming the CLA tasks, as well as
show the required configuration steps for each. Note that scenarios 1 and 2 are the most likely to
be used in a real application. There is little to be gained by putting the initialization task in
assembly with scenario 3, but it is shown here for completeness as an all-assembly CLA setup.

Lab 10: CLA Floating-Point FIR Filter

10 - 18 C2000 Microcontroller Workshop - Control Law Accelerator

 Procedure

Open the Project
1. A project named Lab10 has been created for this lab. Open the project by clicking on

Project Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab10\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:
Adc.c F2806x_GlobalVariableDefs.c
Cla_10.c F2806x_Headers_nonBIOS.cmd
ClaTasks.asm Filter.c
ClaTasks_C.cla Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_10_12.c Lab_10.cmd
DelayUs.asm Main_10.c
Dma.c PieCtrl.c
ECap_7_8_9_10_12.c PieVect.c
EPwm_7_8_9_10_12.c SysCtrl.c
F2806x_Cla_typedefs.h Watchdog.c
F2806x_DefaultIsr.h

Note: The ClaTasks.asm file will be added during the lab exercise.

Enabling CLA Support in CCS
2. Open the build options by right-clicking on Lab10 in the Project Explorer

window and select Properties. Then under “C2000 Compiler” select “Processor
Options”. Notice the “Specify CLA support” is set to cla0. This is needed to
compile and assemble CLA code. Click OK to close the Properties window.

Inspect Lab_10.cmd
3. Open and inspect Lab_10.cmd. Notice that a section called “Cla1Prog” is being

linked to L3DPSARAM. This section links the CLA program tasks to the CPU memory
space. This memory space will be remapped to the CLA memory space during
initialization. Additionally, we are defining a symbol (Cla1Prog_Start) with the
run-time start address of this memory block. This symbol will be used to calculate the
CLA task vector addresses. Also, notice the two message RAM sections used to pass
data between the CPU and CLA.

We are linking CLA code directly to the CLA program RAM because we are not yet
using the flash memory. CCS will load the code for us into RAM, and therefore the CPU
will not need to copy the CLA code into the CLA program RAM. In the flash
programming lab later in this workshop, we will modify the linking so that the CLA code
is loaded into flash, and the CPU will do the copy.

4. The CLA C compiler uses a memory section called CLAscratch for storing local and
compiler temporary variables. This scratchpad memory area is allocated using the linker
command file. It is accessed directly using the symbols __cla_scratchpad_start

 Lab 10: CLA Floating-Point FIR Filter

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 19

and __cla_scratchpad_end. The scratchpad size is designated using the linker
defined symbol CLA_SCRATCHPAD_SIZE. We are reserving a 0x100 word memory
hole to be used as the compiler scratchpad area. This value can be changed based on
your application. At the top of Lab_10.cmd notice the preprocessor option setting for
including the scratchpad. We will make use of this setting later in the lab exercise.

Setup CLA Initialization
During the CLA initialization, the CPU memory block L3DPSARAM needs to be configured as
CLA program memory. This memory space contains the CLA Task routines. A one-time force
of the CLA Task 8 will be executed to clear the delay buffer. The CLA Task 1 has been
configured to run an FIR filter. The CLA needs to be configured to start Task 1 on the ADCINT1
interrupt trigger. The next section will setup the PIE interrupt for the CLA.

5. Open ClaTasks_C.cla and notice Task 1 has been configured to run an FIR filter.
Within this code the ADC result integer (i.e. the filter input) is being first converted to
floating-point, and then at the end the floating-point filter output is being converted back
to integer. Also, notice Task 8 is being used to initialize the filter delay line. The .cla
extension is recognized by the compiler as a CLA C file, and the compiler will generate
CLA specific code. At the beginning of the file notice the line that includes the
F2806x_Cla_typedefs.h header file. This file is needed to make the CLA C
compiler work correctly with the peripheral register header files when unsupported data
types are used.

6. Edit Cla_10.c to implement the CLA operation as described in the objective for this
lab exercise. Configure the L3DPSARAM memory block to be mapped to CLA program
memory space. Configure the L2DPSARAM memory block to be mapped to CLA data
memory space for the CLA C compiler scratchpad. Set Task 1 peripheral interrupt
source to ADCINT1 and set the other Task peripheral interrupt source inputs to no
source. Enable CLA Task 1 interrupt. Enable the use of the IACK instruction to trigger
a task, and then enable Task 8 interrupt.

7. Open Main_10.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

 InitCla();

 at the desired spot in main().

8. In Main_10.c comment out the line of code in main() that calls the InitDma()
function. The DMA is no longer being used. The CLA will directly access the ADC
RESULT0 register.

Setup PIE Interrupt for CLA
Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the IQmath FIR Filter lab exercise,
the ADC generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC
ISR. Then in the DMA lab exercise, the ADC instead triggered the DMA, and the DMA
generated an interrupt to the CPU, where the CPU implemented the FIR filter in the DMA ISR.
For this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly read the
ADC result register and run a task implementing an FIR filter. The CLA will generate an

Lab 10: CLA Floating-Point FIR Filter

10 - 20 C2000 Microcontroller Workshop - Control Law Accelerator

interrupt to the CPU, which will store the filtered results to a circular buffer implemented in the
CLA ISR.

9. Remember that in Adc.c we commented out the code used to enable the ADCINT1
interrupt in PIE group 1. This is no longer being used. The CLA interrupt will be used
instead.

10. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1
interrupt “CLA1_INT1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

11. Modify the end of Cla_10.c to do the following:
- Enable the “CLA1_INT1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

12. Open and inspect DefaultIsr_10_12.c. Notice that this file contains the CLA
interrupt service routine. Save and close all modified files.

Build and Load
13. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

14. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to
configure the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code – Test the CLA Operation (Tasks in C)

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

15. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

16. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools Graph Dual Time and set the following values:

 Lab 10: CLA Floating-Point FIR Filter

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 21

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address A AdcBufFiltered

Start Address B AdcBuf

Display Data Size 50

Time Display Unit µs

17. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. You should see that the
results match the previous lab exercise.

18. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Change Task 1 to FIR Filter in Assembly
Previously, the initialization and filter tasks were implemented in C. In this part, we will not
be using the C implementation of the FIR filter located at Task 1 in ClaTasks_C.cla.
Instead, we will add ClaTasks.asm to the project and use the assembly implementation of
the FIR filter located at Task 1 in this file. The CLA setup code in Cla_10.c and the filter
initialization C-code located at Task 8 in ClaTasks_C.cla will not need to change.

19. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Open ClaTasks_C.cla and at the beginning of Task 1 change the
#if preprocessor directive from 1 to 0. The sections of code between the #if and #endif
will not be compiled. This has the same effect as commenting out this code. We need to
do this to avoid a conflict with the Task 1 in ClaTask.asm file.

20. Add ClaTasks.asm to project from C:\C28x\Labs\Lab10\Files.

21. Open ClaTasks.asm and notice that the .cdecls directive is being used to include the
C header file in the CLA assembly file. Therefore, we can use the Peripheral Register
Header File references in the CLA assembly code. Next, notice Task 1 has been
configured to run an FIR filter. Within this code special instructions have been used to
convert the ADC result integer (i.e. the filter input) to floating-point and the floating-
point filter output back to integer. Notice at Task 2 the assembly preprocessor .if
directive is set to 0. The assembly preprocessor .endif directive is located at the end of
Task 8. With this setting, Tasks 2 through 8 will not be assembled, again avoiding a
conflict with Task 2 through 8 in the ClaTasks_C.cla file. Save and close all
modified files.

Lab 10: CLA Floating-Point FIR Filter

10 - 22 C2000 Microcontroller Workshop - Control Law Accelerator

Build and Load
22. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch

back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code – Test the CLA Operation (Tasks in C and ASM)
23. Run the code in real-time mode using the Script function: Scripts Realtime

Emulation Control Run_Realtime_with_Reset, and watch the graph
window update. To confirm these are updated values, carefully remove and replace the
connector wire to ADCINA0. The results should be the same as before.

24. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Change All Tasks to Assembly
In this part, we will be using the assembly implementation of the FIR filter and filter delay
line initialization routine located at Task 1 and Task 8, respectively, in the ClaTasks.asm
file. The setup in Cla_10.c will remain the same. The ClaTasks_C.cla is no longer
needed and will be excluded from the build. As a result, the CLA C compiler is not used and
the CLA C compiler scratchpad area allocated by the linker command file will not be needed.

25. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Open ClaTasks.asm and at the beginning of Task 2 change the
assembly preprocessor .if directive to 1. Recall that the assembly preprocessor .endif
directive is located at the end of Task 8. Now Task 2 through Task 8 will be assembled,
along with Task 1.

26. Exclude ClaTasks_C.cla from the project to avoid conflicts with ClaTasks.asm.
In the Project Explorer window right-click on ClaTasks_C.cla and select:

Resource Configurations Exclude from Build…

click Select All (for Debug and Release) and then OK. This file is no longer needed
since all of the tasks are now in ClaTasks.asm.

27. Open Lab_10.cmd and at the beginning of the file change the preprocessor option
setting to 0 so that the scratchpad will not be used. This needs to be done to avoid linking
errors. Save and close all modified files.

Build and Load
28. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch

back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code – Test the CLA Operation (Tasks in ASM)
29. Run the code in real-time mode using the Script function: Scripts Realtime

Emulation Control Run_Realtime_with_Reset, and watch the graph

 Lab 10: CLA Floating-Point FIR Filter

C2000 Microcontroller Workshop - Control Law Accelerator 10 - 23

window update. To confirm these are updated values, carefully remove and replace the
connector wire to ADCINA0. The results should be the same as before.

30. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Terminate Debug Session and Close Project
31. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

32. Next, close the project by right-clicking on Lab10 in the Project Explorer
window and select Close Project.

End of Exercise

Lab 10: CLA Floating-Point FIR Filter

10 - 24 C2000 Microcontroller Workshop - Control Law Accelerator

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11 - 1

Viterbi, Complex Math, CRC Unit

Introduction
The Viterbi, Complex Math, CRC Unit (VCU) is a fully programmable block that greatly
increases the performance of communication, as well as signal processing algorithms. In
addition, the VCU eliminates the need for a second processor to manage the communication link.

Module Objectives

Module Objectives

Understand the purpose and operation
of the Viterbi, Complex Math and CRC
Unit (VCU)
VCU Overview
CRC Unit
Viterbi Unit
Complex Math Unit

The Viterbi complex math CRC unit extends the C2000 instruction set to support Viterbi
operations used in communications; complex math, which includes complex FFTs and complex
filters, and is used in power line communications and radar applications; and cyclical redundancy
check, which is used in communications and memory robustness checks.

Module Topics

11 - 2 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Module Topics
Viterbi, Complex Math, CRC Unit ...11-1

Module Topics ..11-2

Viterbi, Complex Math, CRC Unit ...11-3
VCU Overview ..11-3
CRC Unit ...11-5
Viterbi Unit ..11-6
Complex Math Unit ...11-8
VCU Summary .. 11-10

 Viterbi, Complex Math, CRC Unit

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11 - 3

Viterbi, Complex Math, CRC Unit

VCU Overview

VCU Overview
Extends C28x instruction set to support:

 Viterbi operations
Decode for communications

 Complex math
 16-bit fixed-point complex FFT (5 cycle butterfly)

 used in spread spectrum communications, and many signal processing
algorithms

Complex filters
 used to improve data reliability, transmission distance, and power

efficiency

 Power Line Communications (PLC) and radar
applications

 Cyclic Redundancy Check (CRC)
Communications and memory robustness checks

VCU Registers

Viterbi and Complex
Math general

purpose registers

Viterbi transition
registers

Status register

Accumulated
CRC result

VSTATUS

VCRC

VT0

VT1

VR0

VR1

VR2

VR3

VR5

VR6

VR7

VR4

VR8

32-Bit

Viterbi
Unit

Complex
Math
Unit

CRC
Unit

Viterbi, Complex Math, CRC Unit

11 - 4 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

VCU Instructions

 Same instruction format as the C28x and
C28x+FPU
Destination operand is always on the left

 Same mnemonics as C28x and FPU but with a
leading “V”

CPU: MPY ACC, T, loc16

FPU: MPYF32 R0H, R1H, R2H

VCU: VCMPY VR3, VR2, VR1, VR0

Destination Source Operands

Enabling VCU Support in CCS

 Set the “Specify VCU support” project option to ‘vcu0’

 When creating a new CCS project, choosing a device
variant that has the VCU will automatically select this
option, so normally no user action is required

 Viterbi, Complex Math, CRC Unit

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11 - 5

controlSUITE™ - VCU Software Support

 TI provided C-callable assembly functions (including
source code) to support VCU operation:
 plcSUITE
 Viterbi Decoder
 CRC Functions
 Complex FFT and Filters

 C28x Codegen Tools (v6.x) linker can generate a CRC of an
output section and automatically embed it into the .out file

CRC Unit

CRC Unit

Cyclic Redundancy Check (CRC) is an
error detecting code used to ensure data
integrity
Communication networks
Data storage (memory content check)

Supports 4 different CRC polynomials:
CRC Operation Polynomial Standard
CRC8 0x07 PRIME
CRC16 Poly 1 0x8005
CRC16 Poly 2 0x1021 G3-PLC, Zigbee
CRC32 0x4c11db7 PRIME, Ethernet, memory

PRIME = PoweRline Intelligent Metering Evolution

Viterbi, Complex Math, CRC Unit

11 - 6 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

CRC Instructions

 Polynomial used is determined by instruction

CRC Operation Example Instruction Cycles
Load CRC result register VMOV32 VCRC, mem32 1
Store CRC result register VMOV32 mem32,VCRC 1
Clear CRC result register VCRCCLR 1

CRC8 Poly: 0x07
VCRC8L_1 mem16

VCRC8H_1 mem16
1
1

CRC16 Poly 1: 0x8005
VCRC16P1L_1 mem16

VCRC16P1L_1 mem16
1
1

CRC16 Poly 2: 0x1021
VCRC16P2L_1 mem16

VCRC16P2L_1 mem16
1
1

CRC32 Poly: 0x04C11DB7
VCRC32L_1 mem16

VCRC32H_1 mem16
1
1

 CRC register (VCRC) contains current CRC value;
updated as CRC instructions read memory

Viterbi Unit

Viterbi Unit
 Viterbi – an error correcting decoder

 Encoder adds redundant data to a message
 Viterbi decoder used to detect and correct errors

Convolutional
Encoder Modulation

Viterbi F28x
Decoder

(VCU)

Transmit

Noise

 Commonly used in:
 Power line communications (PLC)
 Mobile communications
 Satellite communications
 Digital video and radio

 Viterbi, Complex Math, CRC Unit

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11 - 7

Viterbi Decoder

 VCU efficiently implements a software
Viterbi decoder
Allows flexibility and can change with evolving

standards
 Viterbi is a maximum likelihood decoding

algorithm
 Identifies the path taken through a Trellis

diagram
 Selects survivor paths for each state by using a

Hamming distance calculation

Viterbi F28x
Decoder

(VCU)

Viterbi Implementation
Decoder has 3 main parts:
Branch metrics calculation

Calculates local distance between every possible
state and the received symbol
Code Rate = 1/2 1 cycle
Code Rate = 1/3 2p cycles

Butterfly “add-compare-select” operation
Calculates path metrics to choose an optimal path
4 calculations done in a single cycle (VITDLADDSUB)

VCU: 2 cycles F28x: 15 cycles

Trace back
Reconstructs the original data using the maximum

likelihood path for the input sequence (VTRACE)
VCU: 3 cycles/stage F28x: 22 cycles/stage

Code Rate = number of inputs / number of outputs; VCU supports CR = 1/2 and CR = 1/3

Viterbi, Complex Math, CRC Unit

11 - 8 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Viterbi Instructions
Viterbi Operation Example Instruction Cycles

Clear Viterbi Transition
Registers (VT0, VT1) VTCLEAR 1

Double Add andSubtract
(low or high)

VITDLADDSUB VR4,VR3,VR2,VRa
VITDHADDSUB VR4,VR3,VR2,VRa

1
1

Double Subtract and Add
(low or high)

VITDLSUBADD VR4,VR3,VR2,VRa
VITDHSUBADD VR4,VR3,VR2,VRa

1
1

Branch Metrics Calculation
Code Rate = 1/2 or 1/3

VBITM2 VR0
VBITM3 VR0, VR1, VR2

1
2p

Viterbi Select
(low or high)

VITLSEL VRa, VRb, VR4, VR3
VITHSEL VRa, VRb, VR4, VR3

1
1

Trace Back VTRACE mem32, VR0, VT0, VT1
VTRACE VR1, VR0, VT0, VT1

1
1

Double Add and Subtract or
Subtract and Add
with Parallel Store

VITDLADDSUB VR4,VR3,VR2,VRa
||VMOV32 mem32,VRb 1/1

Branch Matric (CR=1/2 or 1/3)
with Parallel Load

VBITM3 VR0, VR1, VR2
||VMOV32 VR2, mem32 2p/1**

Viterbi Select
with Parallel Load

VITLSEL VRa,VRb,VR4,VR3
||VMOV32 VR2, mem32 1/1

** VBITM2 || VMOV32 (For CR = 1/2) cycles are 1/1

Complex Math Unit

Complex Math Unit

 Supports 16-bit complex number calculations
 Arithmetic, complex filters, and complex FFT

 Complex addition and subtraction (1-cycle)
 Complex multiplication

 16-bit x 16-bit = 32-bit real and imaginary parts (2
pipelined cycles)

 2-cycle Complex multiply and accumulate (MAC)
Repeat (RPT ||) complex MAC operation

Complex number: a + bj

a = real part
b = imaginary part j2 = -1

 Viterbi, Complex Math, CRC Unit

C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit 11 - 9

32-bit Complex Addition

(a + bj) + (c + dj) = (a + c) + (b + d)j

VCADD VR5, VR4, VR3, VR2

a
bj
c
dj

VR3

VR2

VR5

VR4

Input 1; VR3: 32-bit real
VR2: 32-bit imaginary

Input 2; VR5: 32-bit real
VR4: 32-bit imaginary

(a + c >> SHR)

(b + d >> SHR)j
VR5

VR4

Result; VR5: 32-bit real
VR4: 32-bit imaginary

Complex Multiply

VCMPY VR3, VR2, VR1, VR0

(a + bj)(c + dj) = ac + bcj + adj + bd(j)2

= (ac – bd) + (bc + ad)j

a bjVR0 Input 1; VR0H: 16-bit real
VR0L: 16-bit imaginary

Input 2; VR1H: 16-bit real
VR1L: 16-bit imaginary

c djVR1

(ac - bd)

(bc + ad)j
VR3

VR2

Result; VR3: 32-bit real
VR2: 32-bit imaginary

Viterbi, Complex Math, CRC Unit

11 - 10 C2000 Microcontroller Workshop - Viterbi, Complex Math, CRC Unit

Complex Math Instructions
Complex Math Operation Example Instruction Cycles
Negative VNEG VRa 1
Setup Shift Value
Left and Right

VSETSHR #5bit
VSETSHL #5bit 1

Saturation On/Off VSATON / VSATOFF 1
Rounding On/Off VRNDON / VRNDOFF 1
Clear Overflow Flag
Real & Imaginary

VCLROVFR
VCLROVFI 1

32+32=32-bit
Add or Subtract

VCADD VR5, VR4, VR3, VR2
VCSUB VR5, VR4, VR3, VR2

1
1

16+32=16-bit
Add or Subtract

VCDADD16 VR5, VR4, VR3, VR2
VCDSUB16 VR5, VR4, VR3, VR2

1
1

16x16 = 32-bit
Multiply VCMPY VR3, VR2, VR1, VR0 2p

Complex MAC VCMAC VR5, VR4, VR3, VR2, VR1, VR0 2p
RPT || MAC VCMAC VR7, VR6, VR5, VR4, mem32, XAR7++ 2p + N
Add/Sub/Multiply
with Parallel Load

VCADD VR5,VR4,VR3,VR2
||VMOV32 VR2, mem32 1/1

ADD16/SUB16
with Parallel Load

VCSUB16 VR6,VR4,VR3,VR2
||VMOV32 VR2, mem32 1/1

Multiply
with Parallel Store

VCMPY VR3, VR2, VR1, VR0
||VMOV32 mem32, VR2 2p/1

MAC
with Parallel Load

VMAC VR5, VR4, VR3, VR2, VR1, VR0
||VMOV32 VRa, mem32 2p/1

VCU Summary

VCU Summary
VCU extends the capability of the C28x

CPU with additional support for:
CRC operations
Viterbi decode
Complex math

 Instructions are an extension of the
current instruction set

Targeted towards specific algorithms
Communications and memory robustness

checking
Fast Viterbi decode for communications
Complex filters and FFT
PLC and radar applications

C2000 Microcontroller Workshop - System Design 12 - 1

System Design

Introduction
This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Module Objectives

Module Objectives

Emulation and Analysis Block

Flash Configuration and
Memory Performance

Flash Programming

Code Security Module (CSM)

Module Topics

12 - 2 C2000 Microcontroller Workshop - System Design

Module Topics
System Design ...12-1

Module Topics ..12-2

Emulation and Analysis Block ...12-3

Flash Configuration and Memory Performance ..12-6

Flash Programming ...12-9

Code Security Module (CSM) .. 12-11
Lab 12: Programming the Flash .. 12-14

 Emulation and Analysis Block

C2000 Microcontroller Workshop - System Design 12 - 3

Emulation and Analysis Block

JTAG Emulation System
(based on IEEE 1149.1 Boundary Scan Standard)

Some Available Emulators

XDS510 CLASS -
BlackHawk: USB2000
Signum System: JTAGjet-C2000
Spectrum Digital: XDS510LC

XDS100 CLASS -
BlackHawk: USB100
Olimex: TMS320-JTAG-USB
Spectrum Digital: XDS100

These emulators are C2000 specific,
and are much lower cost than emulators
that support all TI MCU/DSP platforms
(although those can certainly be used)

These emulators are much slower than
the ones listed above, but are also
available at a lower cost than XDS510
class and are NOT C2000 specific

H
E
A
D
E
R

System Under Test

SCAN IN

SCAN OUT
Emulator

Pod

TMS320C2000

XDS200 CLASS - offers a balance of low cost with good performance fitting between XDS100 and XDS510

Emulator Connections to the Device

TRST

TMS

TDI

TDO

TCK

EMU0

EMU1

TRST

TMS

TDI

TDO

TCK

TCK_RET

13

14

2

1

3

7

11

9
GND

PD

Vcc (3.3 V)

GND

GND

GND

GND

GND

5

4

6

8

10

12

Vcc (3.3 V)

TMS320F2806x Emulator Header

= If distance between device and header is greater than 6 inches

GND

Emulation and Analysis Block

12 - 4 C2000 Microcontroller Workshop - System Design

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Halt program execution after a
specific value is written to a variable

1 Address Watchpoint with Data

Halt on a specified instruction only
after some other specific routine has
executed

1 Pair Chained Breakpoints

Halt on a specified instruction
(for debugging in Flash)

2 Hardware Breakpoints

A memory location is getting
corrupted; halt the processor when
any value is written to this location

2 Address Watchpoints

Debug ActivityAnalysis Configuration

⇒

⇒

⇒

⇒

On-Chip Emulation Analysis Block:
Hardware Breakpoints and Watchpoints

View Breakpoints

Hardware Breakpoint
Properties

Hardware Watchpoint
Properties

 Emulation and Analysis Block

C2000 Microcontroller Workshop - System Design 12 - 5

On-Chip Emulation Analysis Block:
Online Stack Overflow Detection

 Emulation analysis registers are accessible to code as well!
 Configure a watchpoint to monitor for writes near the end of

the stack
 Watchpoint triggers maskable RTOSINT interrupt
 Works with DSP/BIOS and non-DSP/BIOS

 See TI application report SPRA820 for implementation details

Data Memory

Monitor for data
writes in region near
the end of the stack

Region of
memory

occupied
by the
stack

Stack grows
towards higher
memory
addresses

Flash Configuration and Memory Performance

12 - 6 C2000 Microcontroller Workshop - System Design

Flash Configuration and Memory Performance

Basic Flash Operation
 Flash is arranged in pages of 128 words
 Wait states are specified for consecutive accesses within a page,

and random accesses across pages
 OTP has random access only
 Must specify the number of SYSCLKOUT wait-states;

Reset defaults are maximum value (15)
 Flash configuration code should not be run from the Flash memory

FlashRegs.FBANKWAIT RANDWAITreserved

15 04 38 7

PAGEWAIT reserved

12 11

FlashRegs.FOTPWAIT OTPWAITreserved

15 05 4

*** Refer to the F2806x datasheet for detailed numbers ***
For 90 MHz, PAGEWAIT = 3, RANDWAIT = 3, OTPWAIT = 5

16 or 32
dispatched

16

64

Aligned
64-bit
fetch

2-level deep
fetch buffer

64
C28x Core

decoder unit

Speeding Up Code Execution in Flash
Flash Pipelining (for code fetch only)

Flash Pipeline Enable
0 = disable (default)
1 = enable

ENPIPEreserved
15 01
FlashRegs.FOPT.bit.ENPIPE = 1;

 Flash Configuration and Memory Performance

C2000 Microcontroller Workshop - System Design 12 - 7

Code Execution Performance

 Assume 90 MHz SYSCLKOUT, 16-bit instructions
(80% of instructions are 16 bits wide – Rest are 32 bits)

Internal RAM: 90 MIPS
Fetch up to 32-bits every cycle 1 instruction/cycle * 90 MHz = 90 MIPS

Flash (w/ pipelining): 90 MIPS
RANDWAIT = 3
Fetch 64 bits every 3 cycles, but it will take 4 cycles to execute them

4 instructions/4 cycles * 90 MHz = 90 MIPS
RPT will increase this; PC discontinuity will degrade this
Benchmarking in control applications has shown actual performance of about 81 MIPS

Data Access Performance

 Assume 90 MHz SYSCLKOUT

 Internal RAM has best data performance – put time critical data here
 Flash performance usually sufficient for most constants and tables
 Note that the flash instruction fetch pipeline will also stall during a

flash data access

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1

Flash 0.33 0.33 RANDWAIT = 2
Flash is read only!

Flash Configuration and Memory Performance

12 - 8 C2000 Microcontroller Workshop - System Design

Other Flash Configuration Registers
FlashRegs.name

Address Name Description
0x00 0A80 FOPT Flash option register
0x00 0A82 FPWR Flash power modes registers
0x00 0A83 FSTATUS Flash status register
0x00 0A84 FSTDBYWAIT Flash sleep to standby wait register
0x00 0A85 FACTIVEWAIT Flash standby to active wait register
0x00 0A86 FBANKWAIT Flash read access wait state register
0x00 0A87 FOTPWAIT OTP read access wait state register

 FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made

 FSTATUS: Various status bits (e.g. PWR mode)
 FSTDBYWAIT, FACTIVEWAIT: Specify # of delay cycles during

wake-up from sleep to standby, and from standby to active,
respectively. The delay is needed to let the flash stabilize.
Leave these registers set to their default maximum value.

See the “TMS320x2806x Piccolo Technical Reference Manual” – Systems
Control and Interrupts section in SPRUH18 for more information

 Flash Programming

C2000 Microcontroller Workshop - System Design 12 - 9

Flash Programming

Flash Programming Basics
 The device CPU performs the flash programming
 The CPU executes Flash utility code from RAM that reads the Flash

data and writes it into the Flash
 We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

TMS320F2806x

JTAGEmulator

SPI

Flash
Utility
Code

Flash
Data I2C

R
O

M
B

oo
tlo

ad
er

CAN

SCIRS232

GPIO

Flash Programming Basics
 Sequence of steps for Flash programming:

Minimum Erase size is a sector (8Kw or 16Kw)
Minimum Program size is a bit!
 Important not to lose power during erase step:

If CSM passwords happen to be all zeros, the
CSM will be permanently locked!

 Chance of this happening is quite small! (Erase
step is performed sector by sector)

1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Algorithm Function

Flash Programming

12 - 10 C2000 Microcontroller Workshop - System Design

Flash Programming Utilities
 JTAG Emulator Based

 Code Composer Studio on-chip Flash programmer
 BlackHawk Flash utilities (requires Blackhawk emulator)
 Elprotronic FlashPro2000
 Spectrum Digital SDFlash JTAG (requires SD emulator)
 Signum System Flash utilities (requires Signum emulator)

 SCI Serial Port Bootloader Based
 Code-Skin (http://www.code-skin.com)
 Elprotronic FlashPro2000

 Production Test/Programming Equipment Based
 BP Micro programmer
 Data I/O programmer

 Build your own custom utility
 Can use any of the ROM bootloader methods
 Can embed flash programming into your application
 Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

CCS On-Chip Flash Programmer
 On-Chip Flash programmer is integrated into the CCS debugger

 Tools On-Chip Flash

 Code Security Module (CSM)

C2000 Microcontroller Workshop - System Design 12 - 11

Code Security Module (CSM)

Code Security Module (CSM)

 Data reads and writes from restricted memory are only
allowed for code running from restricted memory

 All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

 Access to the following on-chip memory is restricted:
Flash Registers0x000A80

L0 DPSARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

User OTP (1Kw)

ADC / OSC cal. data

reserved

reserved

FLASH (128Kw)
PASSWORDS (8w)

reserved

0x008000
0x008800
0x008C00

0x00A000
0x009000

0x3D7800
0x3D7C00
0x3D7C80
0x3D7CC0
0x3D8000
0x3F7FF8
0x3F8000

L4 DPSARAM (8Kw)
0x00C000

CSM Password

 128-bit user defined password is stored in Flash

 128-bit KEY registers are used to lock and unlock
the device
Mapped in memory space 0x00 0AE0 – 0x00 0AE7
Registers “EALLOW” protected

0x3F7FF8 - 0x3F7FFF

CSM Password
Locations (PWL)

FLASH (128Kw)

0x3D8000

128-Bit Password0x3F7FF8

Code Security Module (CSM)

12 - 12 C2000 Microcontroller Workshop - System Design

CSM Registers
Address Name Description
0x00 0AE0 KEY0 Low word of 128-bit Key register
0x00 0AE1 KEY1 2nd word of 128-bit Key register
0x00 0AE2 KEY2 3rd word of 128-bit Key register
0x00 0AE3 KEY3 4th word of 128-bit Key register
0x00 0AE4 KEY4 5th word of 128-bit Key register
0x00 0AE5 KEY5 6th word of 128-bit Key register
0x00 0AE6 KEY6 7th word of 128-bit Key register
0x00 0AE7 KEY7 High word of 128-bit Key register
0x00 0AEF CSMSCR CSM status and control register

Key Registers – accessible by user; EALLOW protected

Address Name Description
0x3F 7FF8 PWL0 Low word of 128-bit password
0x3F 7FF9 PWL1 2nd word of 128-bit password
0x3F 7FFA PWL2 3rd word of 128-bit password
0x3F 7FFB PWL3 4th word of 128-bit password
0x3F 7FFC PWL4 5th word of 128-bit password
0x3F 7FFD PWL5 6th word of 128-bit password
0x3F 7FFE PWL6 7th word of 128-bit password
0x3F 7FFF PWL7 High word of 128-bit password

PWL in memory – reserved for passwords only

Locking and Unlocking the CSM

The CSM is always locked after reset
To unlock the CSM:
Perform a dummy read of each PWL

(passwords in the flash)
Write the correct password to each KEY

register
Passwords are all 0xFFFF on new devices
When passwords are all 0xFFFF, only a read of

each PWL is required to unlock the device
The bootloader does these dummy reads and

hence unlocks devices that do not have
passwords programmed

 Code Security Module (CSM)

C2000 Microcontroller Workshop - System Design 12 - 13

CSM Caveats
 Never program all the PWL’s as 0x0000

Doing so will permanently lock the CSM
 Flash addresses 0x3F7F80 to 0x3F7FF5,

inclusive, must be programmed to 0x0000 to
securely lock the CSM

 Remember that code running in unsecured
RAM cannot access data in secured memory
Don’t link the stack to secured RAM if you have

any code that runs from unsecured RAM
 Do not embed the passwords in your code!

Generally, the CSM is unlocked only for debug
Code Composer Studio can do the unlocking

CSM Password Match Flow

Flash device
secure after

reset or runtime

Do dummy reads of PWL
0x3F 7FF8 – 0x3F 7FFF

Start Device permanently locked

Device unlocked
User can access on-
chip secure memory

Write password to KEY registers
0x00 0AE0 – 0x00 0AE7

(EALLOW) protected

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

Lab 12: Programming the Flash

12 - 14 C2000 Microcontroller Workshop - System Design

Lab 12: Programming the Flash
 Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28069 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 12: Programming the Flash

Objective:

 Program system into Flash Memory

 Learn use of CCS Flash Programmer

 DO NOT PROGRAM PASSWORDS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

CPU copies
result to
buffer during
CLA ISR...

data
memory

Display
using CCS

CLA
_Cla1Task1
_Cla1Task2

_Cla1Task8

 Procedure

Open the Project
1. A project named Lab12 has been created for this lab. Open the project by clicking on

Project Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab12\Project and click OK. Then click Finish to
import the project. All build options have been configured the same as the previous lab.
The files used in this lab are:

 Lab 12: Programming the Flash

C2000 Microcontroller Workshop - System Design 12 - 15

Adc.c F2806x_Headers_nonBIOS.cmd
Cla_12.c Filter.c
ClaTasks.asm Flash.c
ClaTasks_C.cla Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_10_12.c Lab_12.cmd
DelayUs.asm Main_12.c
Dma.c Passwords.asm
ECap_7_8_9_10_12.c PieCtrl.c
EPwm_7_8_9_10_12.c PieVect.c
F2806x_Cla_typedefs.h SysCtrl.c
F2806x_DefaultIsr.h Watchdog.c
F2806x_GlobalVariableDefs.c

Note: The Flash.c and Passwords.asm files will be added during the lab exercise.

Link Initialized Sections to Flash
Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28069 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_12.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x3D8000, length =
0x01FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. Edit Lab_12.cmd to link the following compiler sections to on-chip flash memory
block FLASH_ABCDEFGH:

Compiler Sections:

.text .cinit .const .econst .pinit .switch

4. In Lab_12.cmd notice that the section named “IQmath” is an initialized section that
needs to load to and run from flash. Previously the “IQmath” section was linked to
L4SARAM. Edit Lab_12.cmd so that this section is now linked to
FLASH_ABCDEFGH. Save your work and close the file.

Lab 12: Programming the Flash

12 - 16 C2000 Microcontroller Workshop - System Design

Copying Interrupt Vectors from Flash to RAM
The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a
memory copy function called memcpy() which will be used to perform the copy.

5. Open and inspect InitPieCtrl() in PieCtrl.c. Notice the memcpy() function used to
initialize (copy) the PIE vectors. At the end of the file a structure is used to enable the
PIE.

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

6. Add Flash.c to the project.

7. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

8. The “secureRamFuncs” section will be linked using the user linker command file
Lab_12.cmd. Open and inspect Lab_12.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from L4SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load size, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
L4SARAM memory we are linking “secureRamFuncs” to, we are specifiying “PAGE
= 0” (which is program memory).

9. Open and inspect Main_12.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers.

10. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

 InitFlash();

 at the desired spot in main().

Code Security Module and Passwords
The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the L0, L1, L2, L3 and L4 RAM blocks. The CSM uses a 128-bit
password made up of 8 individual 16-bit words. They are located in flash at addresses 0x3F7FF8

 Lab 12: Programming the Flash

C2000 Microcontroller Workshop - System Design 12 - 17

to 0x3F7FFF. During this lab, dummy passwords of 0xFFFF will be used – therefore only
dummy reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM
ANY REAL PASSWORDS INTO THE DEVICE. After development, real passwords are
typically placed in the password locations to protect your code. We will not be using real
passwords in the workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x3F7F80
through 0x3F7FF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

11. Add Passwords.asm to the project.

12. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named “passwords”. It also creates an initialized section named “csm_rsvd”
which contains all 0x0000 values for locations 0x3F7F80 to 0x3F7FF5 (length of 0x76).

13. Open Lab_12.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset
The F28069 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will branch
to the instruction located at address 0x3F7FF6 in the flash. An instruction that branches to the
beginning of your program needs to be placed at this address. Note that the CSM passwords
begin at address 0x3F7FF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

14. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section needs to be linked to a block of memory named BEGIN_FLASH.

15. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_M0. Edit Lab_12.cmd so that the section “codestart” will be
directed to BEGIN_FLASH. Save your work and close the opened files.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If
the emulator is connected, the device will be in emulator boot mode and will use the EMU_KEY
and EMU_BMODE values in the PIE RAM to determine the boot mode. This mode was utilized
in an earlier lab. In this lab, we will be disconnecting the emulator and running in stand-alone
boot mode (but do not disconnect the emulator yet!). The bootloader will read the OTP_KEY
and OTP_BMODE values from their locations in the OTP. The behavior when these values have
not been programmed (i.e., both 0xFFFF) or have been set to invalid values is boot to flash boot
mode.

Lab 12: Programming the Flash

12 - 18 C2000 Microcontroller Workshop - System Design

Initializing the CLA
Previously, the named section “Cla1Prog” containing the CLA program tasks was linked
directly to the CPU memory block L3DPSARAM for both load and run purposes. At runtime, all
the code did was map the L3DPSARAM block to the CLA program memory space during CLA
initialization. For an embedded application, the CLA program tasks are linked to load to flash
and run from RAM. At runtime, the CLA program tasks must be copied from flash to
L3DPSARAM. The memory copy function memcpy() will once again be used to perform the
copy. After the copy is performed, the L3DPSARAM block will then be mapped to CLA program
memory space as was done in the earlier lab.

16. Open and inspect Lab_12.cmd. Notice that the named section “Cla1Prog” will now
load to flash (load address) but will run from L3DPSARAM (run address). The linker will
also be used to generate symbols for the load start, load size, and run start addresses.

17. Open Cla_12.c and notice that the memory copy function memcpy() is being used to
copy the CLA program code from flash to L3DPSARAM using the symbols generated by
the linker. Just after the copy the Cla1Regs structure is used to configure the
L3DPSARAM block as CLA program memory space. Close the inspected files.

Build – Lab.out
18. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash

Programmer. Check for errors in the Problems window.

Programming the On-Chip Flash Memory
In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the
linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g.,
symbol and label addresses, source file links, etc.) will automatically load so that CCS knows
where everything is in your code. Clicking the “Debug” button in the “CCS Edit Perspective”
will automatically launch the debugger, connect to the target, and program the flash memory in a
single step.

19. Program the flash memory by clicking the “Debug” button (green bug). (If needed,
when the “Progress Information” box opens select “Details >>” in order to watch
the programming operation and status). After successfully programming the flash
memory the “Progress Information” box will close.

Running the Code – Using CCS
20. Reset the CPU using the “Reset CPU” button or click:

Run Reset Reset CPU

The program counter should now be at address 0x3FF75C in the “Disassembly” window,
which is the start of the bootloader in the Boot ROM. If needed, click on the “View
Disassembly…” button in the window that opens, or click View Disassembly.

 Lab 12: Programming the Flash

C2000 Microcontroller Workshop - System Design 12 - 19

21. Under Scripts on the menu bar click:
EMU Boot Mode Select EMU_BOOT_FLASH.
This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "Flash" at address 0x3F7FF6.

22. Single-Step by using the <F5> key (or you can use the Step Into button on the
horizontal toolbar) through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

23. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

24. Now do Run Go Main. The code should stop at the beginning of your
main()routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

25. You can now run the CPU, and you should observe the LED on the controlCARD
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting run (without doing all the stepping and the Go Main procedure). The LED should
be blinking again.

26. Halt the CPU.

Terminate Debug Session and Close Project
27. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

28. Next, close the project by right-clicking on Lab12 in the Project Explorer
window and select Close Project.

Running the Code – Stand-alone Operation (No Emulator)
Recall that if the device is in stand-alone boot mode, the state of GPIO34 and GPIO37 pins are
used to determine the boot mode. On the controlCARD switch SW1 controls the boot options for
the F28069 device. Check that switch SW1 positions 1 and 2 are set to the default “1 – on”
position (both switches up). This will configure the device (in stand-alone boot mode) to
GetMode. Since the OTP_KEY has not been programmed, the default GetMode will be boot
from flash. Details of the switch positions can be found in Appendix A.

29. Close Code Composer Studio.

30. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the controlCARD).

31. Re-connect the USB cable to the Docking Station to power the controlCARD. The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

Lab 12: Programming the Flash

12 - 20 C2000 Microcontroller Workshop - System Design

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
length = 0x8

page = 0

BEGIN_FLASH
length = 0x2

page = 0

CSM_RSVD
length = 0x76

page = 0

FLASH
length = 0x1FF80

page = 0

0x3D 8000

0x3F 7F80

0x3F 7FF6

0x3F 7FF8

origin =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_12.cmd

Startup Sequence from Flash Memory

0x3F 7FF6

0x3D 8000

0x3F 8000

0x3F FFC0

Boot ROM (32Kw)

BROM vector (32w)
0x3F F75C

Boot Code

RESET

0x3F F75C
{SCAN GPIO}

FLASH (128Kw)

Passwords (8w)
_c_int00

LB

“rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

C2000 Microcontroller Workshop - Communications 13 - 1

Communications

Introduction
The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Module Objectives

Module Objectives

Serial Peripheral Interface (SPI)
Serial Communication Interface (SCI)

Multichannel Buffered Serial Port (McBSP)

 Inter-Integrated Circuit (I2C)

Universal Serial Bus (USB)

Enhanced Controller Area Network (eCAN)

Note: Up to 2 SPI modules (A/B), 2 SCI module (A), 1 McBSP module (A), 1 I2C module (A),
1 USB (0), and 1 eCAN module (A) are available on the F2806x devices

Module Topics

13 - 2 C2000 Microcontroller Workshop - Communications

Module Topics
Communications ...13-1

Module Topics ..13-2

Communications Techniques ...13-3

Serial Peripheral Interface (SPI) ...13-4
SPI Registers ...13-7
SPI Summary ...13-8

Serial Communications Interface (SCI) ...13-9
Multiprocessor Wake-Up Modes ... 13-11
SCI Registers ... 13-14
SCI Summary .. 13-15

Multichannel Buffered Serial Port (McBSP) ... 13-16
Definition: Bit, Word, and Frame .. 13-16
Multi-Channel Selection .. 13-17
McBSP Summary .. 13-18

Inter-Integrated Circuit (I2C) .. 13-19
I2C Operating Modes and Data Formats ... 13-20
I2C Summary ... 13-21

Universal Serial Bus (USB) ... 13-22
USB Communication ... 13-23
Enumeration .. 13-23
F2806x USB Hardware ... 13-24
USB Controller Summary.. 13-24

Enhanced Controller Area Network (eCAN) ... 13-25
CAN Bus and Node ... 13-26
Principles of Operation .. 13-27
Message Format and Block Diagram ... 13-28
eCAN Summary .. 13-30

 Communications Techniques

C2000 Microcontroller Workshop - Communications 13 - 3

Communications Techniques
Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data rate
at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

 Synchronous
 Short distances (on-board)
 High data rate
 Explicit clock

 Asynchronous
 longer distances
 Lower data rate (≈ 1/8 of SPI)
 Implied clock (clk/data

mixed)
 Economical with reasonable

performance

C28x

U2

PCB

Port

C28x

PCB

Port
Destination

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the data
and address lines of the processor. The only overhead they require is to read/write new words
from/to the ports as each word is received/transmitted. This process can be performed as a short
interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

Serial Peripheral Interface (SPI)

13 - 4 C2000 Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)
The SPI module is a synchronous serial I/O port that shifts a serial bit stream of variable length
and data rate between the C28x and other peripheral devices. During data transfers, one SPI
device must be configured as the transfer MASTER, and all other devices configured as
SLAVES. The master drives the transfer clock signal for all SLAVES on the bus. SPI
communications can be implemented in any of three different modes:

• MASTER sends data, SLAVES send dummy data

• MASTER sends data, one SLAVE sends data

• MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

Simultaneous transmits and receive
SPI Master provides the clock signal

SPI Shift Register

SPI Device #1 - Master SPI Device #2 - Slave

shift shift

clock

SPI Shift Register

 Serial Peripheral Interface (SPI)

C2000 Microcontroller Workshop - Communications 13 - 5

SPI Block Diagram

SPIRXBUF.15-0

SPIDAT.15-0

SPICLK

SPISOMI

SPISIMO

LSPCLK baud
rate

clock
polarity

clock
phase

C28x - SPI Master Mode Shown

SPITXBUF.15-0

LSBMSB

TX FIFO_0

TX FIFO_3

RX FIFO_0

RX FIFO_3

SPI Transmit / Receive Sequence
1. Slave writes data to be sent to its shift register (SPIDAT)

2. Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

3. Completing Step 2 automatically starts SPICLK signal of the Master

4. MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

5. Step 4 is repeated until specified number of bits are transmitted

6. SPIDAT register is copied to SPIRXBUF register

7. SPI INT Flag bit is set to 1

8. An interrupt is asserted if SPI INT ENA bit is set to 1

9. If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

Serial Peripheral Interface (SPI)

13 - 6 C2000 Microcontroller Workshop - Communications

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits
of SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI Data Character Justification

 Programmable data
length of 1 to 16 bits

 Transmitted data of less
than 16 bits must be left
justified
MSB transmitted first

 Received data of less
than 16 bits are right
justified

 User software must
mask-off unused MSB’s

11001001XXXXXXXX

XXXXXXXX11001001

SPIDAT - Processor #1

SPIDAT - Processor #2

 Serial Peripheral Interface (SPI)

C2000 Microcontroller Workshop - Communications 13 - 7

SPI Registers

SPI Baud Rate Register
SpixRegs.SPIBRR

15-7 6-0

reserved SPI BIT RATE

SPICLK signal =

LSPCLK
(SPIBRR + 1)

LSPCLK
4

, SPIBRR = 3 to 127

, SPIBRR = 0, 1, or 2

Need to set this only when in master mode!

Baud Rate Determination: The Master specifies the communication baud rate using its baud rate
register (SPIBRR.6-0):

• For SPIBRR = 3 to 127: SPI Baud Rate =
)1(+SPIBRR

LSPCLK
 bits/sec

• For SPIBRR = 0, 1, or 2: SPI Baud Rate =
4

LSPCLK bits/sec

From the above equations, one can compute

Maximum data rate = 20 Mbps @ 80 MHz

Character Length Determination: The Master and Slave must be configured for the same
transmission character length. This is done with bits 0, 1, 2 and 3 of the configuration control
register (SPICCR.3-0). These four bits produce a binary number, from which the character length
is computed as binary + 1 (e.g. SPICCR.3-0 = 0010 gives a character length of 3).

Serial Peripheral Interface (SPI)

13 - 8 C2000 Microcontroller Workshop - Communications

Select SPI Registers
 Configuration Control SpixRegs.SPICCR

 Reset, Clock Polarity, Loopback, Character Length

Operation Control SpixRegs.SPICTL
 Overrun Interrupt Enable, Clock Phase, Interrupt Enable
 Master / Slave Transmit enable

 Status SpixRegs.SPIST
 RX Overrun Flag, Interrupt Flag, TX Buffer Full Flag

 FIFO Transmit SpixRegs.SPIFFTX
FIFO Receive SpixRegs.SPIFFRX
 FIFO Enable, FIFO Reset
 FIFO Over-flow flag, Over-flow Clear
 Number of Words in FIFO (FIFO Status)
 FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
 FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SPI Summary

SPI Summary

Synchronous serial communications
Two wire transmit or receive (half duplex)
Three wire transmit and receive (full duplex)

Software configurable as master or slave
C28x provides clock signal in master mode

Data length programmable from 1-16 bits
125 different programmable baud rates

 Serial Communications Interface (SCI)

C2000 Microcontroller Workshop - Communications 13 - 9

Serial Communications Interface (SCI)
The SCI module is a serial I/O port that permits Asynchronous communication between the C28x
and other peripheral devices. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCI is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and
data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

Transmitter-data
buffer register

SCI Device #1

SCIRXD

SCITXD SCITXD

SCIRXD

SCI Device #2

8

Receiver-data
buffer register

8

Transmitter-data
buffer register

Receiver
shift register

Transmitter
shift register

8

Receiver-data
buffer register

Receiver
shift register

Transmitter
shift register

8

(Full Duplex Shown)

RX FIFO_0

RX FIFO_3

RX FIFO_0

RX FIFO_3

TX FIFO_0

TX FIFO_3

TX FIFO_0

TX FIFO_3

Serial Communications Interface (SCI)

13 - 10 C2000 Microcontroller Workshop - Communications

SCI Data Format

This bit present only in Address-bit mode

NRZ (non-return to zero) format

Communications Control Register (ScixRegs.SCICCR)

0 = 1 Stop bit
1 = 2 Stop bits

0 = Odd
1 = Even

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

0 = Idle-line mode
1 = Addr-bit mode

of data bits = (binary + 1)
e.g. 110b gives 7 data bits

Stop
Bits

Even/Odd
Parity

Parity
Enable

Loopback
Enable

Addr/Idle
Mode

SCI
Char2

SCI
Char1

SCI
Char0

7 6 5 4 3 2 1 0

Start LSB 2 3 4 5 6 7 MSB Addr/
Data Parity Stop 1 Stop 2

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as determined
by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This
is done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a 0 to this
bit initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

 Serial Communications Interface (SCI)

C2000 Microcontroller Workshop - Communications 13 - 11

SCI Data Timing
 Start bit valid if 4 consecutive SCICLK periods of

zero bits after falling edge
 Majority vote taken on 4th, 5th, and 6th SCICLK cycles

Start Bit LSB of Data

Majority
Vote

Falling Edge Detected

SCIRXD

SCICLK
(Internal)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

 Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

 Idle-line or Address-bit modes
 Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT except
when an address frame is received

2. All transmissions begin with an address frame

3. Incoming address frame temporarily wakes up all SCIs on bus

4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

Serial Communications Interface (SCI)

13 - 12 C2000 Microcontroller Workshop - Communications

Idle-Line Wake-Up Mode
 Idle time separates blocks of frames

 Receiver wakes up when SCIRXD high for 10 or
more bit periods

 Two transmit address methods

 Deliberate software delay of 10 or more bits

 Set TXWAKE bit to automatically leave exactly 11 idle bits

Last Data ST SPST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle
Period
10 bits

or greater

Idle
Period
10 bits

or greater

Address frame
follows 10 bit
or greater idle

1st data frame

SPST Addr

Idle periods
of less than

10 bits

Address-Bit Wake-Up Mode
 All frames contain an extra address bit

 Receiver wakes up when address bit detected

 Automatic setting of Addr/Data bit in frame by setting
TXWAKE = 1 prior to writing address to SCITXBUF

Last Data STST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle Period
length of no
significance

First frame within
block is Address.

ADDR/DATA
bit set to 1

1st data frame

0 1 0 0 SPST Addr 1SP

no additional
idle bits needed
beyond stop bits

 Serial Communications Interface (SCI)

C2000 Microcontroller Workshop - Communications 13 - 13

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt
flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6).
TXRDY is set when a character is transferred to TXSHF and SCITXBUF is ready to receive the
next character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX
EMPTY flag (SCICTL2.6) is set. When a new character has been received and shifted into
SCIRXBUF, the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition
occurs. A break condition is where the SCIRXD line remains continuously low for at least ten
bits, beginning after a missing stop bit. Each of the above flags can be polled by the CPU to
control SCI operations, or interrupts associated with the flags can be enabled by setting the
RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTL1.6) bit is set.

Serial Communications Interface (SCI)

13 - 14 C2000 Microcontroller Workshop - Communications

SCI Registers

SCI Baud Rate Registers

BAUD15
(MSB) BAUD14

Baud-Select MSbyte Register (ScixRegs.SCIHBAUD)
7 6 5 4 3 2 1 0

BAUD13 BAUD12 BAUD11 BAUD10 BAUD9 BAUD8

BAUD6

Baud-Select LSbyte Register (ScixRegs.SCILBAUD)
7 6 5 4 3 2 1 0

BAUD5 BAUD4 BAUD3 BAUD2 BAUD1BAUD7 BAUD0
(LSB)

SCI baud rate =

LSPCLK
(BRR + 1) x 8

LSPCLK
16

, BRR = 1 to 65535

, BRR = 0

Baud Rate Determination: The values in the baud-select registers (SCIHBAUD and SCILBAUD)
concatenate to form a 16 bit number that specifies the baud rate for the SCI.

• For BRR = 1 to 65535: SCI Baud Rate =
8)1(×+BRR

LSPCLK
 bits/sec

• For BRR = 0: SCI Baud Rate =
16

LSPCLK
 bits/sec

Max data rate = 5 Mbps @ 80 MHz

Note that the CLKOUT for the SCI module is one-half the CPU clock rate.

 Serial Communications Interface (SCI)

C2000 Microcontroller Workshop - Communications 13 - 15

Select SCI Registers
 Control 1 ScixRegs.SCICTL1

Reset, Transmitter / Receiver Enable
 TX Wake-up, Sleep, RX Error Interrupt Enable

 Control 2 ScixRegs.SPICTL2
 TX Buffer Full / Empty Flag, TX Ready Interrupt Enable
RX Break Interrupt Enable

 Receiver Status ScixRegs.SCIRXST
 Error Flag, Ready, Flag Break-Detect Flag, Framing

Error Detect Flag, Parity Error Flag, RX Wake-up
Detect Flag

 FIFO Transmit ScixRegs.SCIFFTX
FIFO Receive ScixRegs.SCIFFRX
 FIFO Enable, FIFO Reset
 FIFO Over-flow flag, Over-flow Clear
Number of Words in FIFO (FIFO Status)
 FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
 FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SCI Summary

SCI Summary

 Asynchronous communications format
 65,000+ different programmable baud rates
 Two wake-up multiprocessor modes

 Idle-line wake-up & Address-bit wake-up

 Programmable data word format
 1 to 8 bit data word length
 1 or 2 stop bits
 even/odd/no parity

 Error Detection Flags
 Parity error; Framing error; Overrun error; Break detection

 Transmit FIFO and receive FIFO
 Individual interrupts for transmit and receive

Multichannel Buffered Serial Port (McBSP)

13 - 16 C2000 Microcontroller Workshop - Communications

Multichannel Buffered Serial Port (McBSP)

McBSP Block Diagram

16
DXR2 TX Buffer

XSR2

16
DXR1 TX Buffer

XSR1

16

DRR2 RX Buffer

RBR2 Register

16

DRR1 RX Buffer

RBR1 Register

16

RSR2

16

RSR1

MDXx

MDRx

MFSXx

MFSRx

MCLKXx

MCLKRx

Peripheral / DMA Bus

Peripheral / DMA Bus

16

16

16

16

CPU

Definition: Bit, Word, and Frame

Definition: Bit and Word

CLK

b7 b6 b5 b4 b3 b2 b1 b0

Word

FS

a1 a0

Bit

D

 “Word” or “channel” contains
number of bits (8, 12, 16, 20, 24, 32)

 “Bit” - one data bit per serial clock period

 Multichannel Buffered Serial Port (McBSP)

C2000 Microcontroller Workshop - Communications 13 - 17

Definition: Word and Frame

 “Frame” - contains one or multiple words

w0 w1 w2 w3 w4 w5 w6 w7

Frame
Word

w6 w7D

FS

 Number of words per frame: 1-128

Multi-Channel Selection

Multi-Channel Selection
Ch0-0
Ch0-1

Ch5-0
Ch5-1

Ch27-0
Ch27-1

 Multi-channel mode controlled primarily via two registers:

MCR
Multi-channel Control Reg

(enables Mc-mode)

R/XCER (A-H)
Rec/Xmt Channel Enable Regs

(enable/disable channels)

 Up to 128 channels can be enabled/disabled

C
O
D
E
C

M
c
B
S
P

Frame TDM Bit Stream

Ch0Ch1Ch31 ...0

Ch0Ch1Ch31 ...1

Transmit
&

Receive
only selected

Channels

Multi-channel

 Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable Ch0, 5, 27 for receive, then process via CPU)

 The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

Multichannel Buffered Serial Port (McBSP)

13 - 18 C2000 Microcontroller Workshop - Communications

McBSP Summary

McBSP Summary
 Independent clocking and framing for

transmit and receive
 Internal or external clock and frame sync
Data size of 8, 12, 16, 20, 24, or 32 bits
TDM mode - up to 128 channels
Used for T1/E1 interfacing

µ-law and A-law companding
SPI mode
Direct Interface to many codecs
Can be serviced by the DMA

 Inter-Integrated Circuit (I2C)

C2000 Microcontroller Workshop - Communications 13 - 19

Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C)
 Philips I2C-bus specification compliant, version 2.1
 Data transfer rate from 10 kbps up to 400 kbps
 Each device can be considered as a Master or Slave
 Master initiates data transfer and generates clock signal
 Device addressed by Master is considered a Slave
 Multi-Master mode supported
 Standard Mode – send exactly n data values (specified in register)
 Repeat Mode – keep sending data values (use software to initiate a

stop or new start condition)

28xx
I2C

I2C
Controller

I2C
EPROM

28xx
I2C

. .

.
Pull-up

Resistors

VDD

Serial Data (SDA)
Serial Clock (SCL)

I2C Block Diagram

TX FIFO

RX FIFO

I2CDXR

I2CDRR

I2CXSR

I2CRSR

Clock
Circuits

SDA

SCL

Inter-Integrated Circuit (I2C)

13 - 20 C2000 Microcontroller Workshop - Communications

I2C Operating Modes and Data Formats

I2C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode Module is a master and transmits to a slave
(all masters begin in this mode)

I2C Serial Data Formats

S Slave Address R/W ACK Data DataACK ACK P
1 7 1 1 n 1 n 1 1
7-Bit Addressing Format

S 11110AA R/W ACK AAAAAAAA DataACK ACK P
1 7 1 1 8 1 n 1 1
10-Bit Addressing Format

S Data ACK Data DataACK ACK P
1 n 1 n 1 n 1 1
Free Data Format

R/W = 0 – master writes data to addressed slave
R/W = 1 – master reads data from the slave
n = 1 to 8 bits
S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

 Inter-Integrated Circuit (I2C)

C2000 Microcontroller Workshop - Communications 13 - 21

I2C Arbitration
 Arbitration procedure invoked if two or more master-

transmitters simultaneously start transmission
 Procedure uses data presented on serial data bus (SDA) by

competing transmitters
 First master-transmitter which drives SDA high is overruled

by another master-transmitter that drives SDA low
 Procedure gives priority to the data stream with the lowest

binary value

1 0

1 0 0 1 0 1

1 0 0 1 0 1

SCL

SDA

Data from
device #1

Data from
device #2

Device #1 lost arbitration
and switches to slave-

receiver mode

Device #2
drives SDA

I2C Summary

I2C Summary

Compliance with Philips I2C-bus
specification (version 2.1)

7-bit and 10-bit addressing modes
Configurable 1 to 8 bit data words
Data transfer rate from 10 kbps up to

400 kbps
Transmit FIFO and receive FIFO

Universal Serial Bus (USB)

13 - 22 C2000 Microcontroller Workshop - Communications

Universal Serial Bus (USB)

Universal Serial Bus (USB) Controller
 Complies with USB 2.0 Implementers Forum certification standards
 Full-speed (12 Mbps) operation in Device mode; Full- /low-speed

(12 Mbps / 1.5 Mbps) operation in Host mode
 Integrated PHY
 Efficient transfers using direct memory access controller (DMA)

 All six endpoints can trigger separate DMA events
 Channel requests asserted when FIFO contains required

amount of data

USB
 Formed by the USB Implementers Forum (USB-IF)

 http://www.usb.org
 USB-IF has defined standardized interfaces for

common USB application, known as Device Classes
 Human Interface Device (HID)
 Mass Storage Class (MSC)
 Communication Device Class (CDC)
 Device Firmware Upgrade (DFU)

 Refer to USB-IF Class Specifications for more information

 USB is:
 Differential
 Asynchronous
 Serial
 NRZI Encoded
 Bit Stuffed

 USB is a HOST centric bus!

 Universal Serial Bus (USB)

C2000 Microcontroller Workshop - Communications 13 - 23

USB Communication

USB Communication
 A component on the bus is either a…

Host (the master)
Device (the slave) – also known as peripheral or

function
Hub (neither master nor slave; allows for expansion)

 Communication model is heavily master/slave
 As opposed to peer-to-peer/networking (i.e. 1394/Firewire)

Master runs the entire bus
 Only the master keeps track of other devices on bus
 Only the master can initiate transactions

 Slave simply responds to host commands
 This makes USB simpler, and cheaper to

implement

Enumeration

Enumeration

 USB is universal because of Enumeration
 Process in which a Host attempts to identify a Device

 If no device attached to a downstream port,
then the port sees Hi-Z

When full-speed device is attached, it pulls up
D+ line

When the Host see a Device, it polls for
descriptor information
 Essentially asking, “what are you?”

 Descriptors contain information the host can
use to identify a driver

Universal Serial Bus (USB)

13 - 24 C2000 Microcontroller Workshop - Communications

F2806x USB Hardware

F2806x USB Hardware
 The USB controller requires a total of three signals (D+, D-, and

VBus) to operate in device mode and two signals (D+, D-) to operate
in embedded host mode

 VBus implemented in software using external interrupt or polling
 GPIOs are NOT 5V tolerant
 Make them tolerant using 100k and internal device ESD diode clamps

Note: (1) VBus sensing is only required in self-powered applications
(2) Device pins D+ and D- have special buffers to support the high speed requirements

of USB; therefore their position on the device is not user-selectable

USB Controller Summary

USB Controller Summary

Complies with USB 2.0 specifications

Full-speed (12 Mbps) Device controller

Full- /Low-speed (12 Mbps/1.5 Mbps) Host
controller

Can be accessed via DMA

Full software library with application
examples is provided within ControlSUITE™

Only available on TMS320F2806xU devices

 Enhanced Controller Area Network (eCAN)

C2000 Microcontroller Workshop - Communications 13 - 25

Enhanced Controller Area Network (eCAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System

 CAN 2.0B Standard
 High speed (up to 1 Mbps)
 Add a node without disturbing the bus (number of nodes not

limited by protocol)
 Less wires (lower cost, less maintenance, and more reliable)
 Redundant error checking (high reliability)
 No node addressing (message identifiers)
 Broadcast based signaling

C

ED

A
B

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions – it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

Enhanced Controller Area Network (eCAN)

13 - 26 C2000 Microcontroller Workshop - Communications

CAN Bus and Node

CAN Bus
 Two wire differential bus (usually twisted pair)
Max. bus length depend on transmission rate

 40 meters @ 1 Mbps

CAN
NODE B

CAN
NODE A

CAN
NODE C

CAN_H

CAN_L
120Ω120Ω

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair
wire and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node
Wired-AND Bus Connection

RXTX

CAN Controller
(e.g. TMS320F28035)

CAN_L

CAN_H

120Ω120Ω

CAN Transceiver
(e.g. TI SN65HVD23x)

 Enhanced Controller Area Network (eCAN)

C2000 Microcontroller Workshop - Communications 13 - 27

Principles of Operation

Principles of Operation
 Data messages transmitted are identifier based, not

address based
 Content of message is labeled by an identifier that is

unique throughout the network
 (e.g. rpm, temperature, position, pressure, etc.)

 All nodes on network receive the message and each
performs an acceptance test on the identifier

 If message is relevant, it is processed (received);
otherwise it is ignored

 Unique identifier also determines the priority of the
message
 (lower the numerical value of the identifier, the higher the

priority)
 When two or more nodes attempt to transmit at the

same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration

 Bus arbitration resolved via arbitration with
wired-AND bus connections
Dominate state (logic 0, bus is high)
Recessive state (logic 1, bus is low)

Node A wins
arbitration

CAN Bus

Node A

Node B

Node C

Start
Bit

Node B loses
arbitration

Node C loses
arbitration

Enhanced Controller Area Network (eCAN)

13 - 28 C2000 Microcontroller Workshop - Communications

Message Format and Block Diagram

CAN Message Format
 Data is transmitted and received using Message Frames
 8 byte data payload per message
 Standard and Extended identifier formats

 Standard Frame: 11-bit Identifier (CAN v2.0A)

 Extended Frame: 29-bit Identifier (CAN v2.0B)

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACK
E
O
F

Arbitration
Field

Control
Field Data Field

Control
Field

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACKr1
18-bit

Identifier
S
R
R

E
O
F

Arbitration Field Data Field

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active – that is,
the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

 Enhanced Controller Area Network (eCAN)

C2000 Microcontroller Workshop - Communications 13 - 29

eCAN Block Diagram

Memory Management
Unit

CPU Interface,
Receive Control Unit

Timer Management Unit

eCAN Memory
(512 bytes)

Register and Message
Object Control

Mailbox RAM
(512 bytes)

32 Mailboxes
(4 x 32-bit words)

32 32

Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

CAN Bus

32

32

DataAddresseCAN0INT eCAN1INT

A message mailbox
Identifier – MID
Control – MCF
Data low – MDL
Data high - MDH

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
• configurable transmit/receive mailboxes
• configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
• MID – contains the identifier of the mailbox
• MCF (Message Control Field) – contains the length of the message (to transmit or

receive) and the RTR bit (Remote Transmission Request – used to send remote
frames)

• MDL and MDH – contains the data

The CAN module contains registers which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

• Control & Status Registers

• Local Acceptance Masks

• Message Object Time Stamps

• Message Object Timeout

• Mailboxes

Dell
Highlight

Dell
Highlight

Enhanced Controller Area Network (eCAN)

13 - 30 C2000 Microcontroller Workshop - Communications

eCAN Summary

eCAN Summary

 Fully compliant with CAN standard v2.0B
 Supports data rates up to 1 Mbps
 Thirty-two mailboxes

Configurable as receive or transmit
Configurable with standard or extended identifier
 Programmable receive mask
Uses 32-bit time stamp on messages
 Programmable interrupt scheme (two levels)
 Programmable alarm time-out

 Programmable wake-up on bus activity
 Self-test mode

C2000 Microcontroller Workshop - Development Support 14 - 1

Development Support

Introduction
This module contains various references to support the development process.

Module Objectives

Module Objectives

TI Workshops Download Site
controlSUITE™
TI Development Tools
Additional Resources
Product Information Center
On-line support

Module Topics

14 - 2 C2000 Microcontroller Workshop - Development Support

Module Topics
Development Support...14-1

Module Topics ..14-2

TI Support Resources ...14-3
C2000 Workshop Download Wiki ..14-3
controlSUITE™ ...14-4
C2000 Experimenter’s Kits ...14-5
F28335 Peripheral Explorer Kit ...14-6
C2000 controlSTICK Evaluation Tool ..14-7
C2000 LaunchPad Evaluation Kit ...14-8
C2000 controlCARD Application Kits ..14-9
Product Information Resources ... 14-10

 TI Support Resources

C2000 Microcontroller Workshop - Development Support 14 - 3

TI Support Resources

C2000 Workshop Download Wiki

C2000 Workshop Download Wiki

http://www.ti.com/hands-on-training

At the C2000 Workshop Download Wiki you will find all of the materials for the C2000 One-day
and Multi-day Workshops, as well as the C2000 archived workshops, which include support for
the F2407, F2812, F2808, and F28335 device families.

TI Support Resources

14 - 4 C2000 Microcontroller Workshop - Development Support

controlSUITE™

controlSUITE™

controlSUITE is a single portal for all C2000 software and has been designed to minimize
software development time. Included in controlSUITE are device-specific drivers and support
software, as well as complete system design examples used in sophisticated applications.

controlSUITE is a one-stop, single centralized location to find all of your C2000 software needs.
Download controlSUITE from the TI website.

 TI Support Resources

C2000 Microcontroller Workshop - Development Support 14 - 5

C2000 Experimenter’s Kits

C2000 Experimenter’s Kits
F28069, F28035, F28027, F28335, F2808, C28343, C28346, F28M35, F28377D

 Experimenter Kits include
 controlCARD
 USB docking station
 C2000 Applications Software CD

with example code and full
hardware details

 Code Composer Studio
 Docking station features

 Access to controlCARD signals
 Breadboard areas
 Onboard USB JTAG Emulation

 JTAG emulator not required

 Available through TI authorized
distributors and the TI eStore

 Part Number:
 TMDSDOCK28069
 TMDSDOCK28035
 TMDSDOCK28027
 TMDSDOCK28335
 TMDSDOCK2808
 TMDSDOCKH52C1
 TMDSDOCK28377D
JTAG emulator required for:
 TMDSDOCK28343
 TMDSDOCK28346-168

The C2000 development kits are designed to be modular and robust. These kits are complete,
open source, evaluation and development tools where the user can modify both the hardware and
software to best fit their needs.

The various Experimenter’s Kits shown on this slide include a specific controlCARD and
Docking Station. Most have onboard USB JTAG emulation and no external emulator or power
supply is required. However, where noted, the kits based on a DIMM-168 controlCARD include
a 5-volt power supply and require an external JTAG emulator.

TI Support Resources

14 - 6 C2000 Microcontroller Workshop - Development Support

F28335 Peripheral Explorer Kit

F28335 Peripheral Explorer Kit
 Experimenter Kit includes

 F28335 controlCARD
 Peripheral Explorer baseboard
 C2000 Applications Software CD with

example code and full hardware details
 Code Composer Studio

 Peripheral Explorer features
 ADC input variable resistors
 GPIO hex encoder & push buttons
 eCAP infrared sensor
 GPIO LEDs, I2C & CAN connection
 Analog I/O (AIC+McBSP)

 Onboard USB JTAG Emulation
 JTAG emulator not required

 Available through TI authorized
distributors and the TI eStoreTMDSPREX28335

The Peripheral Explorer Kit provides a simple way to learn and interact with all F28335
peripherals. It includes onboard USB JTAG emulation.

 TI Support Resources

C2000 Microcontroller Workshop - Development Support 14 - 7

C2000 controlSTICK Evaluation Tool

C2000 controlSTICK Evaluation Tool
F28069, F28027

 Low-cost USB evaluation tool
 Onboard JTAG Emulation

 JTAG emulator not required

 Access to controlSTICK signals
 C2000 Applications Software

CD with example code and full
hardware details

 Code Composer Studio
 Available through TI authorized

distributors and the TI eStore

 Part Number:
 TMDX28069USB
 TMDS28027USB

The controlSTICK is an entry-level evaluation kit. It is a simple, stand-alone tool that allows
users to learn the device and software quickly and easily.

TI Support Resources

14 - 8 C2000 Microcontroller Workshop - Development Support

C2000 LaunchPad Evaluation Kit

C2000 LaunchPad Evaluation Kit
F28027, F28027F

 Low-cost evaluation kit
 F28027 standard version
 F26027F version with InstaSPIN-FOC

 Various BoosterPacks available
 Onboard JTAG Emulation

 JTAG emulator not required

 Access to LaunchPad signals
 C2000 Applications Software

with example code and full
hardware details in available in
controlSUITE

 Code Composer Studio
 Available through TI authorized

distributors and the TI eStore

 Part Number:
 LAUNCHXL-F28027
 LAUNCHXL-F28027F

The LaunchPad is a low-cost evaluation kit. Like the controlSTICK, it is a simple, stand-alone
tool that allows users to learn the device and software quickly and easily. Additionally, various
BoosterPacks are available.

 TI Support Resources

C2000 Microcontroller Workshop - Development Support 14 - 9

C2000 controlCARD Application Kits

C2000 controlCARD Application Kits
 Developer’s Kit for – Motor Control,

PFC, High Voltage, Digital Power,
Renewable Energy, LED Lighting, etc.

 Kits includes
 controlCARD and application specific

baseboard
 Code Composer Studio

 Software download includes
 Complete schematics, BOM, gerber

files, and source code for board and
all software

 Quickstart demonstration GUI for
quick and easy access to all board
features

 Fully documented software specific to
each kit and application

 See www.ti.com/c2000 for other kits
and more details

 Available through TI authorized
distributors and the TI eStore

The controlCARD based Application Kits demonstrate the full capabilities of the C2000 device in
an application. All kits are completely open source with full documentation.

TI Support Resources

14 - 10 C2000 Microcontroller Workshop - Development Support

Product Information Resources

For More Information . . .
 USA – Product Information Center (PIC)

 Phone: 800-477-8924 or 512-434-1560
 E-mail: support@ti.com

 TI E2E Community (videos, forums, blogs)
 http://e2e.ti.com

 Embedded Processor Wiki
 http://processors.wiki.ti.com

 TI Training
 http://www.ti.com/training

 TI eStore
 http://estore.ti.com

 TI website
 http://www.ti.com

For more information and support, you can contact the product information center, visit the TI
E2E community, embedded processor Wiki, TI training web page, TI eStore, and the TI website.

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A - 1

Appendix A – Experimenter’s Kit

Module Topics

A - 2 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

Module Topics
Appendix A – Experimenter’s Kit ... A-1

Module Topics ... A-2

F28069 controlCARD ... A-3
F28069 PCB Outline (Top View) ... A-3
LD1 / LD2 / LD3 .. A-3
SW1 .. A-3
SW2 .. A-4

F28035 controlCARD ... A-5
F28035 PCB Outline (Top View) ... A-5
LD1 / LD2 / LD3 .. A-5
SW1 .. A-5
SW2 .. A-6
SW3 .. A-6

F28335 controlCARD ... A-7
F28335 PCB Outline (Top View) ... A-7
LD1 / LD2 / LD3 .. A-8
SW1 .. A-8
SW2 .. A-9

Docking Station ... A-10
SW1 / LD1 .. A-10
JP1 / JP2 ... A-10
J1 / J2 /J3 / J8 / J9 ... A-10
F2833x Boot Mode Selection ... A-11
F280xx Boot Mode Selection ... A-11
J3 – DB-9 to 4-Pin Header Cable ... A-12

 F28069 controlCARD

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A - 3

F28069 controlCARD

F28069 PCB Outline (Top View)

LD1 / LD2 / LD3

SW1

F28069 controlCARD

A - 4 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

SW2

 F28035 controlCARD

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A - 5

F28035 controlCARD

F28035 PCB Outline (Top View)

LD1 / LD2 / LD3

SW1

F28035 controlCARD

A - 6 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

SW2

SW3

 F28335 controlCARD

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A - 7

F28335 controlCARD

F28335 PCB Outline (Top View)

F28335 controlCARD

A - 8 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

LD1 / LD2 / LD3

SW1

 F28335 controlCARD

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A - 9

SW2

The boot options used in this workshop are shown below:
Position 1
(GPIO-84)

Position 2
(GPIO-85)

Position 3
(GPIO-86)

Position 4
(GPIO-87) Boot Mode

0 0 1 0 SARAM

1 1 1 1 FLASH

For a complete list of boot mode options see the F2833x Boot Mode
Selection table in the Docking Station section in this appendix.

Docking Station

A - 10 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

Docking Station

SW1 / LD1
SW1 – USB: Power from USB; ON – Power from JP1

LD1 – Power-On indicator

JP1 / JP2
JP1 – 5.0 V power supply input

JP2 – USB JTAG emulation port

J1 / J2 /J3 / J8 / J9
J1 – ControlCARD 100-pin DIMM socket

J2 – JTAG header connector

J3 – UART communications header connector

J8 – Internal emulation enable/disable jumper (NO jumper for internal emulation)

J9 – User virtual COM port to C2000 device (Note: ControlCARD would need to be
modified to disconnect the C2000 UART connection from header J3)

 Docking Station

C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit A - 11

Note: The internal emulation logic on the Docking Station routes through the FT2232 USB
device. By default this device enables the USB connection to perform JTAG
communication and in parallel create a virtual serial port (SCI/UART). As shipped, the
C2000 device is not connected to the virtual COM port and is instead connected to J3.

F2833x Boot Mode Selection

F280xx Boot Mode Selection

Docking Station

A - 12 C2000 Microcontroller Workshop - Appendix A - Experimenter's Kit

J3 – DB-9 to 4-Pin Header Cable

Note: This cable is NOT included with the Experimenter’s Kit and is only shown for reference.

	Important Notice
	Revision History
	Mailing Address

	C2000™ Microcontroller Workshop
	C2000™ Microcontroller Workshop Outline
	Required Workshop Materials
	C2000™ Experimenter Kit
	C2000 Delfino / Piccolo Comparison

	C28xm01.pdf
	Architecture Overview
	Module Topics
	What is the TMS320C2000™?
	TMS320C2000™ Internal Bussing

	F28x CPU + FPU + VCU and CLA
	Special Instructions
	Pipeline Advantage
	F28x CPU + FPU + VCU Pipeline

	Memory
	Memory Map
	Code Security Module (CSM)
	Peripherals

	Fast Interrupt Response
	Summary

	C28xm02.pdf
	Programming Development Environment
	Module Topics
	Code Composer Studio
	Software Development and COFF Concepts
	Code Composer Studio
	Edit and Debug Perspective (CCSv6)
	Target Configuration
	CCSv6 Project
	Creating a New CCSv6 Project
	CCSv6 Build Options – Compiler / Linker
	CCSv6 Debug Environment

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab File Directory Structure
	Lab 2: Linker Command File
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	Linker Command File – Lab2.cmd
	Build and Load the Project
	Debug Environment Windows
	Single-stepping the Code
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm03.pdf
	Peripherial Registers Header Files
	Module Topics
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2806x C-Code Header Files
	Global Variable Definitions File
	Mapping Structures to Memory
	Linker Command File
	Peripheral Specific Routines

	Summary

	C28xm04.pdf
	Reset and Interrupts
	Module Topics
	Reset
	Reset - Bootloader
	Emulation Boot Mode
	Stand-Alone Boot Mode
	Reset Code Flow – Summary
	Emulation Boot Mode using Code Composer Studio GEL
	Getting to main()

	Interrupts
	Interrupt Processing
	Interrupt Flag Register (IFR)
	Interrupt Enable Register (IER)
	Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	PIE Block Initialization
	Interrupt Signal Flow – Summary
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Module Topics
	Oscillator/PLL Clock Module
	Watchdog Timer
	General-Purpose Digital I/O
	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog-to-Digital Converter and Comparator
	Module Topics
	Analog-to-Digital Converter
	ADC Block and Functional Diagrams
	ADC Triggering
	ADC Conversion Priority
	ADC Clock and Timing
	ADC Converter Registers
	Signed Input Voltages
	ADC Calibration and Reference

	Comparator
	Comparator Block Diagram
	Comparator Registers

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Terminate Debug Session and Close Project
	Optional Exercise
	If you finish early, you might want to experiment with the code by observing the effects of changing the OFFTRIM value. Open a watch window to the AdcRegs.ADCOFFTRIM register and change the OFFTRIM value. If you did not get 0x0000 in step 11, you ca...
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	Module Topics
	PWM Review
	ePWM
	ePWM Time-Base Sub-Module
	ePWM Compare Sub-Module
	ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	PWM Computation Example
	ePWM Dead-Band Sub-Module
	ePWM Chopper Sub-Module
	ePWM Digital Compare and Trip-Zone Sub-Modules
	ePWM Event-Trigger Sub-Module
	Hi-Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Open the Project
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Terminate Debug Session and Close Project
	Optional Exercise
	End of Exercise

	C28xm08.pdf
	Numerical Concepts
	Module Topics
	Numbering System Basics
	Binary Numbers
	Examples:

	Two's Complement Numbers
	Examples:
	To load small two's complement numbers into larger registers:
	Examples:

	Integer Basics
	Sign Extension Mode

	Binary Multiplication
	Binary Fractions
	Representing Fractions in Binary
	Fraction Basics
	Multiplying Binary Fractions

	Fraction Coding
	Fractional vs. Integer Representation
	Floating-Point
	IQmath
	IQ Fractional Representation
	Traditional “Q” Math Approach
	IQmath Approach

	IQmath Library
	16 vs. 32 Bits

	Converting ADC Results into IQ Format
	AC Induction Motor Example
	IQmath Summary
	Lab 8: IQmath FIR Filter
	Open the Project
	Project Build Options
	Include IQmathLib.h
	Inspect Lab_8.cmd
	Select a Global IQ value
	IQmath Single-Sample FIR Filter
	Build and Load
	Run the Code – Filtered Waveform
	Changing Math Type to Floating-Point
	Build and Load
	Run the Code – Floating-Point Filtered Waveform
	Terminate Debug Session and Close Project
	End of Exercise

	Lab 8 Reference: Low-Pass FIR Filter

	C28xm09.pdf
	Direct Memory Access Controller
	Module Topics
	Direct Memory Access (DMA)
	Basic Operation
	DMA Examples
	DMA Priority Modes
	DMA Throughput
	DMA Registers

	Lab 9: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_9.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm10.pdf
	Control Law Accelerator
	Module Topics
	Control Law Accelerator (CLA)
	CLA Block Diagram
	CLA Memory and Register Access
	CLA Tasks
	Control and Execution Registers
	CLA Registers
	CLA Initialization
	CLA Task Programming
	CLA C Language Implementation and Restrictions
	CLA Assembly Language Implementation
	CLA Code Debugging
	controlSUITE™ - CLA Software Support

	Lab 10: CLA Floating-Point FIR Filter
	Open the Project
	Note: The ClaTasks.asm file will be added during the lab exercise.
	Enabling CLA Support in CCS
	Inspect Lab_10.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C)
	Change Task 1 to FIR Filter in Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C and ASM)
	Change All Tasks to Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in ASM)
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm11.pdf
	Viterbi, Complex Math, CRC Unit
	Module Topics
	Viterbi, Complex Math, CRC Unit
	VCU Overview
	CRC Unit
	Viterbi Unit
	Complex Math Unit
	VCU Summary

	C28xm12.pdf
	System Design
	Module Topics
	Emulation and Analysis Block
	Flash Configuration and Memory Performance
	Flash Programming
	Code Security Module (CSM)
	Lab 12: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	Programming the On-Chip Flash Memory
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	Lab 12 Reference: Programming the Flash

	C28xm13.pdf
	Communications
	Module Topics
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	SPI Registers
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	SCI Registers
	SCI Summary

	Multichannel Buffered Serial Port (McBSP)
	Definition: Bit, Word, and Frame
	Multi-Channel Selection
	McBSP Summary

	Inter-Integrated Circuit (I2C)
	I2C Operating Modes and Data Formats
	I2C Summary

	Universal Serial Bus (USB)
	USB Communication
	Enumeration
	F2806x USB Hardware
	USB Controller Summary

	Enhanced Controller Area Network (eCAN)
	CAN Bus and Node
	Principles of Operation
	Message Format and Block Diagram
	eCAN Summary

	C28xm14.pdf
	Development Support
	Module Topics
	TI Support Resources
	C2000 Workshop Download Wiki
	controlSUITE™
	C2000 Experimenter’s Kits
	F28335 Peripheral Explorer Kit
	C2000 controlSTICK Evaluation Tool
	C2000 LaunchPad Evaluation Kit
	C2000 controlCARD Application Kits
	Product Information Resources

	C28xmA.pdf
	Appendix A – Experimenter’s Kit
	Module Topics
	F28069 controlCARD
	F28069 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2

	F28035 controlCARD
	F28035 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2
	SW3

	F28335 controlCARD
	F28335 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2

	Docking Station
	SW1 / LD1
	JP1 / JP2
	J1 / J2 /J3 / J8 / J9
	F2833x Boot Mode Selection
	F280xx Boot Mode Selection
	J3 – DB-9 to 4-Pin Header Cable

