 struct CANMBOXn_DATA stTempTxMessage;
 //canID组合
 stTempTxMessage.u32MID.all = 0x1C000001;
 //can发送数据结构体赋值
 stTempTxMessage.Data_L.bit.Data_0 = 1;
 stTempTxMessage.Data_L.bit.Data_1 = 1;
 stTempTxMessage.Data_L.bit.Data_2 = 1;
 stTempTxMessage.Data_L.bit.Data_3 = 1;
 stTempTxMessage.Data_H.bit.Data_4 = 1;
 stTempTxMessage.Data_H.bit.Data_5 = 1;
 stTempTxMessage.Data_H.bit.Data_6 = 1;
 stTempTxMessage.Data_H.bit.Data_7 = 1;
 vEcanDrive_Push2TxDataBuffer(&stTempTxMessage,MBOX_COM2HMI_TX);

 //canID组合
 stTempTxMessage.u32MID.all = 0x1C000002;
 //can发送数据结构体赋值
 stTempTxMessage.Data_L.bit.Data_0 = 2;
 stTempTxMessage.Data_L.bit.Data_1 = 2;
 stTempTxMessage.Data_L.bit.Data_2 = 2;
 stTempTxMessage.Data_L.bit.Data_3 = 2;
 stTempTxMessage.Data_H.bit.Data_4 = 2;
 stTempTxMessage.Data_H.bit.Data_5 = 2;
 stTempTxMessage.Data_H.bit.Data_6 = 2;
 stTempTxMessage.Data_H.bit.Data_7 = 2;
 vEcanDrive_Push2TxDataBuffer(&stTempTxMessage,MBOX_COM2HMI_TX);
 //canID组合
 stTempTxMessage.u32MID.all = 0x1C000003;
 //can发送数据结构体赋值
 stTempTxMessage.Data_L.bit.Data_0 = 3;
 stTempTxMessage.Data_L.bit.Data_1 = 3;
 stTempTxMessage.Data_L.bit.Data_2 = 3;
 stTempTxMessage.Data_L.bit.Data_3 = 3;
 stTempTxMessage.Data_H.bit.Data_4 = 3;
 stTempTxMessage.Data_H.bit.Data_5 = 3;
 stTempTxMessage.Data_H.bit.Data_6 = 3;
 stTempTxMessage.Data_H.bit.Data_7 = 3;
 vEcanDrive_Push2TxDataBuffer(&stTempTxMessage,MBOX_COM2HMI_TX);
 stTempTxMessage.u32MID.all = 0x1C000004;
 //can发送数据结构体赋值
 stTempTxMessage.Data_L.bit.Data_0 = 4;
 stTempTxMessage.Data_L.bit.Data_1 = 4;
 stTempTxMessage.Data_L.bit.Data_2 = 4;
 stTempTxMessage.Data_L.bit.Data_3 = 4;
 stTempTxMessage.Data_H.bit.Data_4 = 4;
 stTempTxMessage.Data_H.bit.Data_5 = 4;
 stTempTxMessage.Data_H.bit.Data_6 = 4;
 stTempTxMessage.Data_H.bit.Data_7 = 4;
 vEcanDrive_Push2TxDataBuffer(&stTempTxMessage,MBOX_COM2HMI_TX);
这部分一次性放入多帧写在mainLoopInit函数中仅执行一次

 void vEcanDrive_TxDataBufferProcess(void)
 {
 static Uint16 u16FirstCnt = 0;
 Uint32 u32MailStatus;
 Uint32 u32temp = 1;

 if(u16TxDatalen > 0)
 {
 	 //(HWREGH(CANA_BASE + CAN_O_ES) & CAN_ES_TXOK) == CAN_ES_TXOK
 	 //u32MailStatus = CAN_getTxRequests(CANA_BASE);
 	 //u32MailStatus != (u32temp <<(stCanTxDataBufferMBOX[u16TxReadDataCnt] - 1)) &&
 	 if ((HWREGH(CANA_BASE + CAN_O_IF1CMD) & CAN_IF1CMD_BUSY) != CAN_IF1CMD_BUSY)
 	 {
 		 u16FirstCnt = 1;
 		 HAL_CANASEND1(&stCanTxDataBuffer[u16TxReadDataCnt],stCanTxDataBufferMBOX[u16TxReadDataCnt]);
 		 u16TxReadDataCnt++;
 		 u16TxDatalen--;
 		 if(u16TxReadDataCnt >= MTXDATAMAX)
 		 {
 			 u16TxReadDataCnt = 0;
 		 }
 	 }
 }
 }
vEcanDrive_TxDataBufferProcess在maiLoop主循环中调用当发送缓冲区大于零就发送
使用TxOk和BUSY、TxRqst和BUSY 在多台并机时会导致can总线关闭(多台测试时均使用了3个LAUNCHXL_F280049C)
如果仅使用BUSY时在并机时不会导致can关闭 但单台一次性在初始化中放入多帧时会丢帧在CAN盒上只能收到第一和第四帧

Uint16 HAL_CANASEND1(struct CANMBOXn_DATA *buf,Uint16 box)
 {
 Uint16 txMsgData[8];

// if ((HWREGH(CANA_BASE + CAN_O_IF1CMD) & CAN_IF1CMD_BUSY) != CAN_IF1CMD_BUSY && HWREGH(CANA_BASE + CAN_O_TXRQ_21) == 0) //
	 if ((HWREGH(CANA_BASE + CAN_O_IF1CMD) & CAN_IF1CMD_BUSY) != CAN_IF1CMD_BUSY)
 {
 CAN_setupMessageObject(CANA_BASE, box, buf->u32MID.all,
 CAN_MSG_FRAME_EXT, CAN_MSG_OBJ_TYPE_TX, 0,
 CAN_MSG_OBJ_NO_FLAGS, buf->Dlc);

 txMsgData[0] = buf->Data_L.bit.Data_0;
 txMsgData[1] = buf->Data_L.bit.Data_1;
 txMsgData[2] = buf->Data_L.bit.Data_2;
 txMsgData[3] = buf->Data_L.bit.Data_3;

 txMsgData[4] = buf->Data_H.bit.Data_4;
 txMsgData[5] = buf->Data_H.bit.Data_5;
 txMsgData[6] = buf->Data_H.bit.Data_6;
 txMsgData[7] = buf->Data_H.bit.Data_7;

 CAN_sendMessage(CANA_BASE, box, buf->Dlc, txMsgData);
 // CAN_sendMessage_updateDLC(CANA_BASE, box, len, txMsgData);

 return 0; // 正常
 } else {
 return 1; // 错误
 }
 }
