ADS1262IPW A large number of checksum errors were found
Note: One day was normal yesterday. Special exception for today and the day before yesterday. The phenomenon is as follows Code for reading the data: In principle, the fifth 14 of the SPI _ RX _ Buff is a checksum. However, the checksum of 0F 3A 27 08 is calculated as: 49. So after the last discovery, a lot of checksum errors were found: According to figures 1 and figure 2: SPI _ RX _ Buff display: The status is: 08 Reading books is: 0F 3A 27 08 The CRC is: 14 But the CRC result of the 0F 3A 27 08 calculation is49 
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Code for reading the data:
void ReadFrom_ADS1262_B(float *mv)
[bookmark: _GoBack]{
volatile char ads1262_rx_Data[6];
volatile char SPI_RX_Buff[6];
int i;
float volt_V=0;
Dev_ADS1262_C.SPI_RX_Buff_Count = 0;
if(HAL_GPIO_ReadPin(DRDY2_GPIO_Port,DRDY2_Pin)==GPIO_PIN_RESET) 
 {
Dev_ADS1262_C.SPI_RX_Buff_Ptr=ads1262_Read_Data_B();          Dev_ADS1262_C.Responsebyte = 1 ; 
}
 if(Dev_ADS1262_C.Responsebyte == 1)
  {
    for(i = 0; i <6; i++)
    {
	SPI_RX_Buff[Dev_ADS1262_C.SPI_RX_Buff_Count++]= *(Dev_ADS1262_C.SPI_RX_Buff_Ptr + i);              
    }
    Dev_ADS1262_C.Responsebyte = 0;
  }
  
 if(Dev_ADS1262_C.SPI_RX_Buff_Count >= 5)
  {     
    ads1262_rx_Data[0]= (unsigned char)SPI_RX_Buff[1];  // read 4 bytes adc count
    ads1262_rx_Data[1]= (unsigned char)SPI_RX_Buff[2];
    ads1262_rx_Data[2]= (unsigned char)SPI_RX_Buff[3];
    ads1262_rx_Data[3]= (unsigned char)SPI_RX_Buff[4];
	char crc =  (unsigned char)SPI_RX_Buff[5];
	char crc2 = CRC8((uint8_t*)ads1262_rx_Data,4);
if(Dev_ADS1262_C.crcCount==0){Dev_ADS1262_C.crcErrCnt=0;Dev_ADS1262_C.crcCount++;}
if(crc==crc2){
 Dev_ADS1262_C.uads1262Count = (signed long) (((unsigned long)ads1262_rx_Data[0]<<24)|((unsigned long)ads1262_rx_Data[1]<<16)|(ads1262_rx_Data[2]<<8)|ads1262_rx_Data[3]);
Dev_ADS1262_C.sads1262Count = (signed long) (Dev_ADS1262_C.uads1262Count);      
Dev_ADS1262_C.resolution = (double)((double)VREF/2147483648.0);       
volt_V= (Dev_ADS1262_C.resolution)*(float)Dev_ADS1262_C.sads1262Count;    	
*mv=   volt_V*1000.0f;              
}else Dev_ADS1262_C.crcErrCnt++;
Dev_ADS1262_C.crcCount++;

   }
}
crc校验程序：
uint8_t CRC8(uint8_t *data, uint16_t length)
{
    uint8_t i;
    uint8_t crc = 0;    
    while(length--)
    {
        crc ^= *data++;      
        for ( i = 0; i < 8; i++ )
        {
            if ( crc & 0x80 )		//1号
                crc = (crc << 1) ^ 0x07;   //2号
            else
                crc <<= 1;
        }
    }
    return crc;
}


In our program, data with CRCj checksums errors are to be discarded. However, according to Figure 3, the total DC (220 data), and the wrong DA (218), is obviously problematic.[image: ]
图3
According to Figure 1, the stutus status type: 08 is shown as the PGAout put low. According to Figure 4, our Mode2 register is worth 04, and this value feels like it should be correct. Not a true false alarm. ADS1262IPW Chip settings for:
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V{'Oid ads1262_SOFT_Init (void)
=]

ads1262_Reset () ;

delay(100) ;

ads1262_Hard_Stop() ;

delay (350) ;

ads1262_Reg_Write (POWER, 0x1); // W &REGREF
ads1262_Reg_Write (INTERFACE, 0x06); //{istatus CRC
ads1262_Reg_Write (MODEO, 0x10); //$§4:if3( chopping
ads1262_Reg_Write (MODE1, 0x80); //FIR mode
ads1262_Reg_Write (MODE2, 0x04); // 60sps . F7#PGA
ads1262_Reg_Write (INPMUX, 0x1A); //Ch 1 enabled,
ads1262_Reg_Write (OFCALO, 0x00); //fZiE
ads1262_Reg_Write(OFCAL1, 0x00); //fZiE
ads1262_Reg_Write (OFCAL2, 0x00); //fZiE
ads1262_Reg_Write (FSCALO, 0x00); //full scalefZit
ads1262_Reg_Write (FSCALL, 0x00); //full scalefZIE
ads1262_Reg_Write (FSCAL2, 0x40); //full scalefZiF
ads1262_Reg_Write (IDACMUX, 0xBB) ; //le‘ﬁ_ﬂTfi
ads1262_Reg_Write (IDACMAG, 0x00); //HiyidiiHijii K/
ads1262_Reg_Write (REFMUX, 0x00); //WNifAEdEsiiH
ads1262_Reg_Write (TDACP, 0x00); //DAcilllif
ads1262_Reg_Write (TDACN, 0x00); //DAcilllif
ads1262_Reg_Write (GPIOCON, 0x00); //4|IHALE
ads1262_Reg_Write (GPIODIR, 0x00); //Jili
ads1262_Reg_Write (GPIODAT, 0x00): //
ads1262_Reg_Write (ADC2CFG, 0x00); //Ch 1 enabled, gain 6, connected to electrode in
ads1262_Reg_Write (ADC2MUX, 0x01); //ADC2
ads1262_Reg_Write (ADC20FCO, 0x00); ////ADC2
ads1262_Reg_Write (ADC20FC1, 0x00); //ADC2
ads1262_Reg_Write (ADC2FSCO, 0x00); //ADC2
ads1262_Reg_Write (ADC2FSC1, 0x40); //ADC2
ads1262_Enable_Start () ;
HAL_GPIO_WritePin(SPI4_CS_GPIO_Port, SPI4_CS_Pin, GPIO_PIN_SET);
HAL_GPIO WritePin(SPI6_CS_GPIO_Port, SP16_CS_Pin, GPI0_PIN SET):
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Figure 110. Status Byte
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Table 22. Status Byte Field Descriptions

Bit

Field

Type

Description

ADC2

Read Only

ADC2 Data("

This bit indicates the status of ADC2 conversion data

0: ADC2 data not new since the last ADC2 read operation
1: ADC2 data new since the last ADC2 read operation

ADC1

Read Only

ADC1 Data

This bit indicates the status of ADC1 conversion data

0: ADC1 data not new since the last ADC1 read operation
1: ADC1 data new since the last ADC1 read option

EXTCLK

Read Only

ADC Clock

This bit indicates the ADC clock source
0: ADC clock is internal

1: ADC clock is external

REF_ALM

Read Only

ADC1 Low Reference Alarm(?

This bit is the low reference voltage alarm of ADC1. The alarm bit is set if
Vger < 0.4V, typical.

0: No alarm
1: Low reference alarm

PGAL_ALM

Read Only

ADC1 PGA Output Low Alarm @

This bit is the ADC1 PGA absolute low voltage alarm. The bit is set if the
absolute voltage of either PGA output is less than Vayss + 0.2 V. See the
PGA Absolute Output-Voltage Monitor section.

0: No alarm
1: PGA low voltage alarm

PGAH_ALM

Read Only

ADC1 PGA Output High Alarm @

This bit is the ADC1 PGA absolute high voltage alarm. The bit is set if the
absolute voltage of either PGA output is greater than Vapp — 0.2 V. See
the PGA Absolute Output-Voltage Monitor section.

0: No alarm
1: PGA high voltage alarm

PGAD_ALM

Read Only

ADC1 PGA Differential Output Alarm @

This bit is the ADC1 PGA differential output range alarm. The bit is set if
the PGA differential output voltage exceeds +105% FS or —105% FS. See
the PGA Differential Output Monitor section.

0: No alarm
1: PGA differential range alarm

RESET

Read Only

RESET





