ADS1262IPW A large number of checksum errors were found
Note: One day was normal yesterday. Special exception for today and the day before yesterday. The phenomenon is as follows Code for reading the data: In principle, the fifth 14 of the SPI _ RX _ Buff is a checksum. However, the checksum of 0F 3A 27 08 is calculated as: 49. So after the last discovery, a lot of checksum errors were found: According to figures 1 and figure 2: SPI _ RX _ Buff display: The status is: 08 Reading books is: 0F 3A 27 08 The CRC is: 14 But the CRC result of the 0F 3A 27 08 calculation is49

[image:]
图1
[image:]
图2

Code for reading the data:
void ReadFrom_ADS1262_B(float *mv)
[bookmark: _GoBack]{
volatile char ads1262_rx_Data[6];
volatile char SPI_RX_Buff[6];
int i;
float volt_V=0;
Dev_ADS1262_C.SPI_RX_Buff_Count = 0;
if(HAL_GPIO_ReadPin(DRDY2_GPIO_Port,DRDY2_Pin)==GPIO_PIN_RESET)
 {
Dev_ADS1262_C.SPI_RX_Buff_Ptr=ads1262_Read_Data_B(); Dev_ADS1262_C.Responsebyte = 1 ;
}
 if(Dev_ADS1262_C.Responsebyte == 1)
 {
 for(i = 0; i <6; i++)
 {
	SPI_RX_Buff[Dev_ADS1262_C.SPI_RX_Buff_Count++]= *(Dev_ADS1262_C.SPI_RX_Buff_Ptr + i);
 }
 Dev_ADS1262_C.Responsebyte = 0;
 }

 if(Dev_ADS1262_C.SPI_RX_Buff_Count >= 5)
 {
 ads1262_rx_Data[0]= (unsigned char)SPI_RX_Buff[1]; // read 4 bytes adc count
 ads1262_rx_Data[1]= (unsigned char)SPI_RX_Buff[2];
 ads1262_rx_Data[2]= (unsigned char)SPI_RX_Buff[3];
 ads1262_rx_Data[3]= (unsigned char)SPI_RX_Buff[4];
	char crc = (unsigned char)SPI_RX_Buff[5];
	char crc2 = CRC8((uint8_t*)ads1262_rx_Data,4);
if(Dev_ADS1262_C.crcCount==0){Dev_ADS1262_C.crcErrCnt=0;Dev_ADS1262_C.crcCount++;}
if(crc==crc2){
 Dev_ADS1262_C.uads1262Count = (signed long) (((unsigned long)ads1262_rx_Data[0]<<24)|((unsigned long)ads1262_rx_Data[1]<<16)|(ads1262_rx_Data[2]<<8)|ads1262_rx_Data[3]);
Dev_ADS1262_C.sads1262Count = (signed long) (Dev_ADS1262_C.uads1262Count);
Dev_ADS1262_C.resolution = (double)((double)VREF/2147483648.0);
volt_V= (Dev_ADS1262_C.resolution)*(float)Dev_ADS1262_C.sads1262Count; 	
*mv= volt_V*1000.0f;
}else Dev_ADS1262_C.crcErrCnt++;
Dev_ADS1262_C.crcCount++;

 }
}
crc校验程序：
uint8_t CRC8(uint8_t *data, uint16_t length)
{
 uint8_t i;
 uint8_t crc = 0;
 while(length--)
 {
 crc ^= *data++;
 for (i = 0; i < 8; i++)
 {
 if (crc & 0x80)		//1号
 crc = (crc << 1) ^ 0x07; //2号
 else
 crc <<= 1;
 }
 }
 return crc;
}

In our program, data with CRCj checksums errors are to be discarded. However, according to Figure 3, the total DC (220 data), and the wrong DA (218), is obviously problematic.[image:]
图3
According to Figure 1, the stutus status type: 08 is shown as the PGAout put low. According to Figure 4, our Mode2 register is worth 04, and this value feels like it should be correct. Not a true false alarm. ADS1262IPW Chip settings for:
[image:]
图4

[image: 1710384689814]
图5

image1.png
=% SPLRX Buff
v
v m
v
LgE)
v
v 13
5% ads1262__Data
v
v m
v
L e
v
@15
<Enter expression>

0x24005094 '\bl:l '\bEI

0x08
OxOF
Ox3A "
0x27 ™
0x08
Ox14
0x2400509C “0:"\b,"
OxOF
Ox3A "
0x27 ™
0x08
ox2C”,'
0x1D

SRR
uchar{
uchar
uchar
uchar
uchar
uchar
uchar

uchar
uchar
uchar
uchar
uchar
uchar

image2.png
Cs @

()
SCLK
DIN i L OPCODE® N\

HIZ .
DOUT/DRDY { o X Don'tcare status X patat X pata2z X pata3 X Data4 X CRECHK X
ADC2 Data Bytes + ADC2 (00h)
Optional © ADC1 Data Bytes Optional ©
00 = Off
0=0ff 01 = Checksum
1=0n 10=CRC
STATUS bit 2 of INTERFACE CRC[1:0] bits 1:0 of INTERFACE
(register address = 02h) (register address = 02h)

(1) CS can be tied low. If CS is low, DOUT/DRDY asserts low with DRDY.

(2) In continuous conversion mode, DRDY returns high on the first SCLK falling edge of sending the opcode. For pulse
conversion mode, DRDY stays low until the next conversion is started.

(3) Read ADC1 command byte = 12h or 13h, Read ADC2 command byte = 14h or 15h

(4) DOUT/DRDY is driven low with DRDY. If a read operation occurs after DRDY falling edge, then DOUT can be high or
low.

(6) The STATUS and CRC/CHK bytes are optional.

image3.png
=% Dev_ADS1262.C

@ resetReady
% bsp_ad1262

@ SPI_RX_Buff_Ptr
@ Responsebyte
@ sads1262Count
@ uads1262Count
@ SPI_RX_Buff_Count
@ crcCount
@ crcEnCnt
@ resolution

0x240022B0 &Dev_AD...
0x00

0x240023A4 &bsp_AD...
0x2400004A "\bD:\bO...
0x00000000
0x00000000
0x00000000

0x00000006
0x000000DC
0x000000DA
1.164153218269€-09

image4.png
AW W W eE NeFWFWiIinmesriwy = W vww T i swawyY W W ey N Wiwm Swawy W R ww T8 we S

V{'Oid ads1262_SOFT_Init (void)
=]

ads1262_Reset () ;

delay(100) ;

ads1262_Hard_Stop() ;

delay (350) ;

ads1262_Reg_Write (POWER, 0x1); // W ®REF
ads1262_Reg_Write (INTERFACE, 0x06); //{istatus CRC
ads1262_Reg_Write (MODEO, 0x10); //$§4:if3(chopping
ads1262_Reg_Write (MODE1, 0x80); //FIR mode
ads1262_Reg_Write (MODE2, 0x04); // 60sps . F7#PGA
ads1262_Reg_Write (INPMUX, 0x1A); //Ch 1 enabled,
ads1262_Reg_Write (OFCALO, 0x00); //fZiE
ads1262_Reg_Write(OFCAL1, 0x00); //fZiE
ads1262_Reg_Write (OFCAL2, 0x00); //fZiE
ads1262_Reg_Write (FSCALO, 0x00); //full scalefZit
ads1262_Reg_Write (FSCALL, 0x00); //full scalefZIE
ads1262_Reg_Write (FSCAL2, 0x40); //full scalefZiF
ads1262_Reg_Write (IDACMUX, 0xBB) ; //le‘ﬁ_ﬂTfi
ads1262_Reg_Write (IDACMAG, 0x00); //HiyidiiHijii K/
ads1262_Reg_Write (REFMUX, 0x00); //WNifAEdEsiiH
ads1262_Reg_Write (TDACP, 0x00); //DAcilllif
ads1262_Reg_Write (TDACN, 0x00); //DAcilllif
ads1262_Reg_Write (GPIOCON, 0x00); //4|IHALE
ads1262_Reg_Write (GPIODIR, 0x00); //Jili
ads1262_Reg_Write (GPIODAT, 0x00): //
ads1262_Reg_Write (ADC2CFG, 0x00); //Ch 1 enabled, gain 6, connected to electrode in
ads1262_Reg_Write (ADC2MUX, 0x01); //ADC2
ads1262_Reg_Write (ADC20FCO, 0x00); ////ADC2
ads1262_Reg_Write (ADC20FC1, 0x00); //ADC2
ads1262_Reg_Write (ADC2FSCO, 0x00); //ADC2
ads1262_Reg_Write (ADC2FSC1, 0x40); //ADC2
ads1262_Enable_Start () ;
HAL_GPIO_WritePin(SPI4_CS_GPIO_Port, SPI4_CS_Pin, GPIO_PIN_SET);
HAL_GPIO WritePin(SPI6_CS_GPIO_Port, SP16_CS_Pin, GPI0_PIN SET):

image5.png
Figure 110. Status Byte

5

4

3 2 1 0

ADC2

ADC1

EXTCLK

REF_ALM PGAL_ALM PGAH_ALM PGAD_ALM RESET

Table 22. Status Byte Field Descriptions

Bit

Field

Type

Description

ADC2

Read Only

ADC2 Data("

This bit indicates the status of ADC2 conversion data

0: ADC2 data not new since the last ADC2 read operation
1: ADC2 data new since the last ADC2 read operation

ADC1

Read Only

ADC1 Data

This bit indicates the status of ADC1 conversion data

0: ADC1 data not new since the last ADC1 read operation
1: ADC1 data new since the last ADC1 read option

EXTCLK

Read Only

ADC Clock

This bit indicates the ADC clock source
0: ADC clock is internal

1: ADC clock is external

REF_ALM

Read Only

ADC1 Low Reference Alarm(?

This bit is the low reference voltage alarm of ADC1. The alarm bit is set if
Vger < 0.4V, typical.

0: No alarm
1: Low reference alarm

PGAL_ALM

Read Only

ADC1 PGA Output Low Alarm @

This bit is the ADC1 PGA absolute low voltage alarm. The bit is set if the
absolute voltage of either PGA output is less than Vayss + 0.2 V. See the
PGA Absolute Output-Voltage Monitor section.

0: No alarm
1: PGA low voltage alarm

PGAH_ALM

Read Only

ADC1 PGA Output High Alarm @

This bit is the ADC1 PGA absolute high voltage alarm. The bit is set if the
absolute voltage of either PGA output is greater than Vapp — 0.2 V. See
the PGA Absolute Output-Voltage Monitor section.

0: No alarm
1: PGA high voltage alarm

PGAD_ALM

Read Only

ADC1 PGA Differential Output Alarm @

This bit is the ADC1 PGA differential output range alarm. The bit is set if
the PGA differential output voltage exceeds +105% FS or —105% FS. See
the PGA Differential Output Monitor section.

0: No alarm
1: PGA differential range alarm

RESET

Read Only

RESET

