
PCILynx 1394 to PCI Bus Interface
TSB12LV21BPGF

Functional Specification

SCPA020A
April 1999

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1999, Texas Instruments Incorporated

iii PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

Contents
1 Introduction 1.

1.1 Scope of Document 1.
1.2 Feature Set 1.
1.3 Applicable Documents 2.

2 Performance Requirements 3.

3 Mechanical Requirements 4.
3.1 Packaging Requirements 4.
3.2 Pin Assignment Requirements 4.

4 Hardware Functional Description 5.
4.1 System Overview 5.
4.2 ASIC Functional Partitioning 6.

4.2.1 PCI Bus Logic 7.
4.2.2 DMA Logic 21.
4.2.3 FIFO Overrun and Underrun 21.
4.2.4 FIFO Logic 49.
4.2.5 1394 Link Layer Logic 53.

5 Hardware Register Definitions 62.
5.1 Memory and Configuration Address Space Register Map 62.
5.2 PCI Configuration and Miscellaneous Register Definitions 66.

5.2.1 Device-Vendor ID @000 66.
5.2.2 Command – Status @004 66.
5.2.3 Class Code – Revision ID @008 67.
5.2.4 Header Type-Latency TImer-Cache LIne Size @00C 67.
5.2.5 Memory Access Base Address 0 – PCILynx Internal Registers @010 67.
5.2.6 Memory Access Base Address 1 – External RAM Port @014 68.
5.2.7 Memory Access Base Address 2 – AUX Port @018 68.
5.2.8 Subsystem ID @02C 68.
5.2.9 Expansion ROM Base Address @030 69.
5.2.10 Max_Latency–Min_Grant–Int__Pin–Int_Line Register @03C 69.
5.2.11 Miscellaneous Control @040 70.
5.2.12 Serial EEPROM Control @044 71.
5.2.13 PCI Interrupt Status @048 72.
5.2.14 PCI Interrupt Enable @04C 73.
5.2.15 PCI Test Register @050 74.
5.2.16 Local Bus Control Register @0B0 {ROM, RAM, AUX, and ZV registers} 75.
5.2.17 Local Bus Address Register @0B4 76.
5.2.18 PCI_GPIO[1–0] Control Register A @0B8 76.
5.2.19 PCI_GPIO[3–2] Control Register B @0BC 77.
5.2.20 PCI GPIO DATA Read-Write Ports @0C0 through @0FC 78.

5.3 DMA Control and Status Register Definitions 79.
5.3.1 DMA Channel 0 through 4 – Previous Packet Control List Address/Temp

@100, 120, 140, 160, 180 79.
5.3.2 DMA Channel 0 through 4 – Current Packet Control List Address

@104, 124, 144, 164, 184 79.
5.3.3 DMA Channel 0 through 4 – Current Data Buffer Address @108, 128, 148, 168, 188 80.
5.3.4 DMA Channel 0 through 4 – DMA Channel Status @10C, 12C, 14C, 16C, 18C 81.
5.3.5 DMA Channel 0 through 4 – DMA Channel Control @110, 130, 150, 170, 190 83.
5.3.6 DMA Channel 0 through 4 – DMA Ready Register @114, 134, 154, 174, 194 85.
5.3.7 DMA Channel 0 through 4 – Current DMA State @118, 138, 158, 178, 198 85.

Contents

iv

5.3.8 DMA Diagnostic Test Control @900 86.
5.3.9 Receive Packet Remaining Count Register @904 88.
5.3.10 Global Register @908 88.

5.4 FIFO Control and Status Register Definitions 89.
5.4.1 FIFO Size @A00 89.
5.4.2 PCI-Side FIFO Pointer Write-Read Port @A04 89.
5.4.3 Link-Side FIFO Pointer Write-Read port @A08 90.
5.4.4 FIFO Control Token Status Read-Port @A0C 90.
5.4.5 FIFO Control and Test Register @A10 91.
5.4.6 Asynchronous and Isochronous Transmit FIFO Threshold Control @A14 92.
5.4.7 General Receive FIFO Data and Control Token Push-Pop @A20, A24 92.
5.4.8 Asynchronous Transmit FIFO Data and Control Token Push-Pop Ports

@A30, A34 93.
5.4.9 Isochronous Transmit FIFO Data and Control Token Push-Pop Ports @A40, A44 94.

5.5 1394 Link Layer Control and Status Register Definitions 95.
5.5.1 DMA Channel 0 – 4 Word 0 Receive Packet Compare Value Register

@B00, B10, B20, B30, B40 95.
5.5.2 DMA Channel 0 – 4 Word 0 Receive Packet Compare Enable Register

@B04, B14, B24, B34, B44 96.
5.5.3 DMA Channel 0 – 4 Word 1 Receive Packet Compare Value Register

@B08, B18, B28, B38, B48 97.
5.5.4 DMA Channel 0 – 4 Word 1 Receive Packet Compare Enable Register

@B0C, B1C, B2C, B3C, B4C 98.
5.5.5 Bus Number and Node Number @F00 99.
5.5.6 1394 Link Layer Control @F04 100.
5.5.7 1394 Cycle Timer @F08 101.
5.5.8 1394 Physical Layer Access F0C 101.
5.5.9 1394 Diagnostic Test Control @F10 102.
5.5.10 1394 Link Layer Interrupt Status Register @F14 103.
5.5.11 1394 Link Layer Interrupt Enable Register @F18 104.
5.5.12 1394 Busy Retry Control Register @F1C 105.
5.5.13 Link Layer Controller State Machine Vector Monitor Port @F20 105.
5.5.14 Link Layer FIFO Under Flow – Over Flow Counters @F24 106.

Appendix A Signal to Package Assignments A-1.

Appendix B ASIC Package Outline Dimension Drawing B-1.

Appendix C FIFO Packet Organization Formats C-1.

Appendix D FIFO Control Word And Transmit ACK Formats D-1.

Appendix E Program Control List (PCL) Examples E-1.

Appendix F Serial EEPROM Data F-1.

Appendix G Power Supply Sequencing G-1.

Appendix H Device Changes H-1.

Appendix I Using SNOOP Mode I-1.

Appendix J Using the AV Port J-1.

Figures

v PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

List of Figures
1 PCILynx ASIC in a Typical System Configuration 5.
2 PCILynx Functional Partitioning 6.
3 PCI Configuration Space for PCILynx 9.
4 Local Bus Interface Block Diagram 11.
5 1394 Data Byte Addressing is Preserved on the PCI Bus 20.
6 1394 Data Byte Addressing not Preserved on the PCI Bus 20.
7 Typical Program Control List (PCL) 22.
8 Example PCL Queue 32.
9 State Machine Flowchart 34.
10 Isochronous Transmit Packet Framing 46.
11 FIFO High Level Functional Block Diagram 50.
12 High-Level 1394 Link Layer Controller Block Diagram 54.
13 High-Level Functional Block Diagram of DMA Channel Receive Packet Comparator Logic 58.
14 Memory and Configuration Address Space Map 62.
B–1 176-Pin Plastic Quad Flat Pack (S-PQFP-G176) B-1.

Tables

vi

List of Tables
1 1394 TRANSFER Packet Control List Format 24.
2 AUXILIARY Command Packet Control List Format 28.
3 DMA Channel Priority Assignments 33.
4 FIFO Assignments to a 1394 Transfer Mode 49.
5 PCI Address Offset Assignments for PCILynx Registers 63.
A–1 PCILynx I/O Signal Function Table A-2.
C–1 Asynchronous Transmit FIFO Single Data Quadlet Packet Format C-1.
C–2 Asynchronous Transmit FIFO Multiple Data Quadlet Format C-2.
C–3 Asynchronous Receive FIFO Single Data Quadlet Format C-3.
C–4 Asynchronous Receive FIFO Multiple Data Quadlet Format C-4.
C–5 General Receive FIFO Snoop Mode Packet Format C-5.
C–6 Isochronous Transmit FIFO Packet Format C-6.
C–7 Isochronous Receive FIFO Packet Format C-6.
D–1 General Receive FIFO Isochronous Packet Control Token Format Definition D-1.
D–2 General Receive FIFO Asynchronous Packet Control Token Format Definition D-2.
D–3 Isochronous Transmit FIFO Control Word Format D-3.
D–4 Isochronous Transmit FIFO Control Word Format D-3.
D–5 Asynchronous Transmit Acknowledge Codes Returned to DMA Channel After an

Asynchronous Packet Transmission Completes D-4.
E–1 PHY_CFG Packet (Big Endian Format) E-2.
E–2 PHY_CFG Packet (Little Endian Format) E-2.
F–1 Serial EEPROM Address Map F-1.

1

PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

1 Introduction

1.1 Scope of Document

This document describes the application specific integrated circuit (ASIC) which
uses Texas Instruments Inc TGC3000T ASIC technology. This device performs
the primary function of controlling the transfer of 1394 data packets between
devices operating in a PCI bus environment and devices operating in a IEEE
1394 bus environment.

1.2 Feature Set

The PCILynx device supports the following features:
• Compliant with IEEE 1394–1995
• Compliant with PCI Bus Specification Revision 2.1
• Performs function of 1394 cycle master
• Detects lost cycle start messages
• Generates 32-bit CRC for transmission of 1394 packets
• Performs 32-bit CRC checking on reception of 1394 packets
• Supports IEEE 1394 transfer rates of 100, 200 and 400 Mbps
• Provides 3 size-programmable FIFOs (asynchronous transmit +isochronous

transmit + general receive)
• 4K of FIFO memory
• Includes programmable 5-channel address comparator logic for receiving

incoming 1394 packets and assigning them to a DMA channel.
• Provides 5 scatter-gather DMA channels where the 1394 operation of each

channel can be programmed to support:
– Asynchronous packet transmit
– Isochronous packet transmit
– Asynchronous packet receive
– Isochronous packet receive

• Supports DMA transfers between 1394 and local bus RAM, ROM, AUX, or
ZV

• Provides PCI bus master function for supporting DMA operations
• Provides PCI slave function for read/write access of internal registers
• Implements a 32-bit PCI address-data path
• Provides PCI address-data parity checking
• Provides software control of interrupt events
• Supports plug and play specification
• Provides a programmable 8-/16-bit external local bus for implementing a

dedicated data path to external logic (i.e., SRAM, ROM, etc.)
• Provides an 8-/16-bit zoom video (ZV) port for the transferring of video data

directly to an external motion video memory area

Introduction

2 SCPA020A

• Operates from 3.3-V power while maintaining 5-V tolerant inputs

1.3 Applicable Documents

The following documents apply to the PCILynx ASIC.

• PCI Bus Specification Revision 2.1

• IEEE STD 1394–1995 High Performance Serial Bus

• IEEE STD 1212–1991, IEEE Standard Control and Status Register (CSR)
Architecture for Microcomputer Buses

• Texas Instruments Incorporated TGC3000T ASIC Design Manual

Performance Requirements

3 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

2 Performance Requirements
The following are the PCILynx device performance requirements:

• 1394 serial data transfer rates – 100 Mbps, 200 Mbps, 400 Mbps

• PHY Link interface clock frequency – 50 MHz

• PCI interface clock rate – 0 MHz to 33 MHz

The PCILynx requires a high performance PCI bus environment to ensure
minimum FIFO overrun or underrun conditions. The absolute maximum isolated
latency occurrence required to avoid FIFO over/under runs depends on several
things, including the PCILynx FIFO size settings, the cacheline size, the number
and size of separate data buffers, the number of any auxiliary commands, packet
sizes, and the access latencies once the PCILynx has acquired PCI bus
ownership.

Once the PCILynx has acquired the PCI bus, a 1394 data transfer is available at
every clock. The PCILynx is capable of transferring the maximum transfer rate
for the standard PCI bus (33 MHz).

In addition to data transfers, the PCILynx acquires and stores control information
for every packet.

Mechanical Requirements

4 SCPA020A

3 Mechanical Requirements

3.1 Packaging Requirements

The PCILynx ASIC is a 176-pin plastic quad flat pack (PQFP) package. The
outline dimensions for this package are provided in Appendix B – ASIC Package
Outline Dimension Drawing on page B–1.

3.2 Pin Assignment Requirements

The PCILynx ASIC implements the signal-to-pin assignments as shown in
Appendix A – Signal to Package Pin Assignments on page A–1.

Hardware Functional Description

5 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4 Hardware Functional Description

4.1 System Overview

The following diagram provides a system overview of the PCILynx ASIC as it
appears in a typical system configuration.

Serial
EEPROM

PCILynx
ASIC

PCI
Expansion

ROM
(ROM)

1394
3-Port

Physical
Layer I/F

DMA
Channel
Control
(SRAM)

User
Defined
Function

(AUX)

ZV
Port

(Video)

Personal Computer

PCI Host
Bridge

Host CPU
Local

Memory

PCI Agent

PCI Agent

Local Bus

PCI
1394

CD ROM

1394
Laser
Printer

1394
Desktop
Camera

1394
Digital
VCR

1394
Video Cable

Set_Top
Box

1394 Peripheral Devices

PCILynx
to PHY

Interface

Host Local Bus

Figure 1. PCILynx ASIC in a Typical System Configuration

Hardware Functional Description

6 SCPA020A

4.2 ASIC Functional Partitioning

The following is a block diagram that shows the functional partitioning of the
PCILynx ASIC.

RAM
ROM
AUX
 ZV

CYCLEOUT

FRAME AUX_OE

AUX_WR[1–0]

ZV_HSYNC, ZV_VSYNC, ZV_PIXEL_CLK

ZV_DATA_VALID

SERIAL
EPROM I/F

SEER_PROM_DATA

SEER_PROM_CLK

PCI
MASTER

PCI
SLAVE

LOCAL BUS
INTERFACE

LOGIC

PCI
CONFIGURATION
CONTROL AND

STATUS
REGISTERS

PCI
BUS LOGIC

CBE[3–0]

PAR

IRDY

IDSEL

PERR

SERR

REQ

GNT

PCICLK

PCIRST

INTA

AUX_CLK

AUX_RST

AUX_INT

GPIO_DATA[3–0]

AUX_ADR[15–0]

AUX_DATA[15–0]

AUX_RDY

AUX_CS_, ROM_CS, RAM_CS

DMA ENGINE DMA
CONTROL

AND
STATUS

REGISTERS

DMA LOGIC

DMA RDY

FIFO LOGIC

GENERAL
RECV FIFO

ASYNC
XMIT FIFO

ISO
XMIT FIFO

POINTER
ADDRESS

MAPPING LOGIC

FIFO CONTROL
AND STATUS
REGISTERS

1394 LINK LAYER CONTROL(LLC) LOGIC

1394LLC
CONTROL

AND
STATUS

REGISTERS

1394 PACKET
TRANSMIT

CONTROL LOGIC

CYCLE
TIME PHY-LINK

INTERFACE
LOGIC

PARALLEL-TO-
SERIAL

SERIAL-TO-
PARALLEL

CYCLE
MONITOR

CRC LOGIC

1394 PACKET
RECEIVE CONTROL

LOGIC

PLCTL[0–1]

PLD[0–7]

PLCLK50

PLREQ

ISOLATED

CYCLEIN

Figure 2. PCILynx Functional Partitioning

AD[31–0]

TRDY

DEVSEL

STOP

Hardware Functional Description

7 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4.2.1 PCI Bus Logic

This functional block implements the logic required to interface the PCILynx ASIC
to the PCI bus. The PCI bus logic meets the requirements of the PCI Bus
Specification (Revision 2.1). The functional partitioning of the PCI bus logic is as
follows:

• Read and write slave interface control logic for accessing all of the PCILynx
control and status registers, which are required by application software to
control the operation of the PCILynx and monitor its operational status.

• Bus master logic to provide the DMA logic with capability to initiate data
transfers over the PCI bus as a master device.

• PCI configuration registers for use by system and application software for
configuring and programming the PCILynx. This includes the PCI required
control and base registers as well as PCILynx interrupt control and status and
miscellaneous control and status registers.

• Auxiliary port to interface and control the RAM, ROM, AUX, ZV port, and
GPIO interfaces.

• Serial EEPROM interface for power-up PCI configuration data and constant
system control register information.

4.2.1.1 PCI Bus Specification (Revision 2.1) Compliance

The PCILynx complies with PCI Bus Specification (Revision 2.1). Some features
of the PCILynx require software to configure options and require external
hardware to meet certain criteria:

1. To meet the slave latency requirements, the user must design any external
logic on the PCILynx local bus so that any PCI slave access completes in less
than 16 PCI clocks. This can be accomplished by ensuring that the waitstate
field for any local bus address is equal to or less than 3 for 16-bit accesses
or equal to or less than 1 for 8-bit accesses. Thus, any external local bus
access from the PCI bus should complete in less than 8 clocks on the local
bus.

2. Software must set ENA_SLV_BURST = 0 in the miscellaneous control
register (PCI configuration space offset 0x040 or PCILynx registers memory
space offset 0x040).

4.2.1.2 PCI Master Logic

This logic function implements the control logic required for the PCILynx to
operate on the PCI bus as a master device. This logic function meets the
functional requirements for a PCI bus master device as specified in the PCI Bus
Specification (Revision 2.1). As bus master, the following PCI bus commands are
supported:

PCI BUS OPERATION CMD[3–0] PCILynx MASTER FUNCTIONS

Memory read 0110 DMA read from memory

Memory write 0111 DMA write to memory

Memory read line 1110 DMA read from memory

Memory write line and invalidate 1111 DMA write to memory

Hardware Functional Description

8 SCPA020A

4.2.1.3 PCI Slave Logic

This function implements the control logic required for the PCILynx device to
operate on the PCI bus as a slave device. The logic for this function meets the
functional requirements for a PCI slave device as specified in PCI Bus
Specification (Revision 2.1). As a slave device, the PCILynx does not decode the
I/O read and write commands. The following commands are supported:

PCI BUS OPERATION CMD[3–0] PCILynx SLAVE FUNCTIONS

Memory read 0110 Memory read of PCILynx addressed resource

Memory write 0111 Memory write to PCILynx addressed resource

Configuration read 1010 Configuration read of PCILynx addressed resource

Configuration write 1011 Configuration write to PCILynx addressed resource

Memory read multiple 1100 Memory read multiple to PCILynx addressed resource

Memory read line 1110 Memory read line to PCILynx addressed resource

Memory write line and invalidate 1111 Memory write to PCILynx addressed resource

The PCI slave logic performs burst slave transfers when enabled by the
ENA_SLV_BURST bit in the miscellaneous control register (at offset 0x40). The
PCI slave logic performs posted write operations when possible when enabled
by the ENA_POST_WR bit in the miscellaneous control register.

In Revision A and later PCILynx devices, the ENA_POST_WR bit in the
miscellaneous control register must be set to 0.

4.2.1.3.1 PCI Slave Address Space

The PCILynx implements the PCI configuration space as required by the PCI Bus
Specification (Revision 2.1) and 4 PCI memory spaces. These PCI memory slave
address spaces are specified by the base address registers contained in the PCI
configuration space as shown in Figure 3.

Hardware Functional Description

9 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

Device ID

Local Bus
RAM

Internal
Registers

PCI
Expansion

ROM

@base_adr0

Vendor ID

Status Command

BIST

Class Code

Hdr Lat Cache

Rev

Base Address 0

Base Address 1

Base Address 2

0

0

0

0

0

Expansion ROM Base

0

0

Max_Lat Min_Gnt Int_Pln Int_line

@base_adr1

@base_adr2

@rom_base

PCI Memory
Read and Write
Commands

Local Bus
AUX/ZOOM

Figure 3. PCI Configuration Space for PCILynx

4.2.1.3.2 PCI Configuration Control and Status Registers

The PCILynx PCI configuration register set is defined starting in section 5.2, PCI
Configuration and Miscellaneous Register Definitions. These registers provide
system and application software with the capability to program the PCI
operational configuration of the PCILynx. The functional behavior of these
registers conform to the requirements of the PCI Bus Specification.

4.2.1.4 Serial EEPROM Interface

The serial EEPROM interface provides communication between PCILynx and an
attached serial EEPROM. The serial EEPROM resides on an industry standard
2-wire serial bus at slave address 0. PCILynx is designed to be the only master
on the 2-wire serial bus and therefore does not perform arbitration.

At power up, the serial EEPROM interface initializes a small number of locations
in the PCI configuration registers from the EEPROM. While the serial EEPROM
state machine is accessing the EEPROM, any incoming PCI slave access is
terminated with retry status. A software reset will also initiate a reload of the PCI
configuration register values from the serial EEPROM.

Hardware Functional Description

10 SCPA020A

PCI configuration registers/fields initialized from the serial EEPROM:

• PCI subsystem ID

• PCI subsystem vendor ID

• PCI maximum latency

• PCI minimum grant

• ROM control

This serial EEPROM can also contain configuration data required by the 1394
command status registers as specified in Appendix F – Serial EEPROM and
optional manufacturing data. This information is read and written by the host
processor emulating the 2-wire serial bus protocol through the serial EEPROM
control register. The 2-wire serial bus is manipulated from the host processor by
setting the serial EEPROM output enable bit to a 1, and then accessing the DATA
and CLOCK bits to emulate the 2-wire serial bus protocol. Reference Phillips I2C
Peripherals Manual.

The 5-µs timer bit in the control register provides a timing reference for timing the
2-wire serial bus protocol events, if a more accurate source is not available. After
being written to 0, the timer bit will be set to 1 after the appropriate time delay. Host
software may poll this bit to determine when the required time has passed for
implementing the 2-wire serial bus protocol.

4.2.1.4.1 PCI Subsystem ID and Subsystem Vendor ID Registers

Alternately, the subsystem access register at PCI offset 58h can be used to load
values into the subsystem ID and subsystem vendor ID registers at PCI offset
2Ch. These registers at 2Ch are required by PC97 and later specifications to be
read-only. Using the subsystem access register at offset 58h, system BIOS can
write values that will be reflected back to the subsystem ID and subsystem vendor
ID registers at offset 2Ch. This method is useful when no EEPROM is
implemented.

4.2.1.5 Local Bus Interface Logic

The PCILynx local bus interface logic is a group of special I/O ports that share
common logic. These ports are accessible from either the PCI bus or the DMA
engine; these ports cannot function as master devices. These ports allow the
PCILynx to be connected to external devices or interfaces to provide for
autonomous data transfers to/from such devices.

Hardware Functional Description

11 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

PCI Config Registers

aux_adr_reg

GPIO (3–0)GPIO

ZV Decode

ZV Machine

PACK/UNPACK
State Machines

Address/Data/BE
Holding Registers

Local Bus
Interface

State Machine

slv_ack/Interrupt

zv_hsync
zv_vsync
zv_data_valid
zv_pixel_clk

aux_oe _o
aux_cs _o

ram_cs _o

rom_cs _o

aux_we _o (1–0)

aux_clk

aux_rdy_i
aux_int _i

aux_adr (15–0)

aux_data (15–8)
aux_data (7–0)

register_data (31–0)

aux_read_data (31–0)

GPIO_data (3–0)

aux_reg_data (31–0)

slv_wr

slv_rd

slv_cfg_sel

pci_data_in (31–0)

slv_be (3–0)

aux_adr_reg (17–16)

ext_clk
ext_clk/2

sclk/4
sclk/2

aux_sel

pciclk/2

slv_adr (15–4)

pciclk

rom_sel
ram_sel

slv_read_dir

slv_ack

slv_int

Figure 4. Local Bus Interface Block Diagram

All local bus interfaces, except the zoom video port (ZV port), are synchronous
to the AUX_CLK (a buffered version of PCI clock). The ZV port clock
(ZV_PIX_CLK) is programmed to be based on versions of the PCI clock, 1394
clock, or an external clock (ZV_EXT_CLK).

Hardware Functional Description

12 SCPA020A

The local bus provides the following I/O ports:
• PCI Expansion ROM

– 64 Kbytes of address space
– A 16-bit address bus and an 8-bit or 16-bit read or write data bus
– Byte addressable/writable
– Programmable wait-states/ready
– (ROM control parameters are initialized on power up from the serial

EEPROM)
• RAM

– 64 Kbytes of address space
– A 16-bit address bus and an 8-bit or 16-bit read or write data bus
– Byte addressable/writable
– Programmable wait states/ready

• AUX
– 64 Kbytes of address space
– A 16-bit address bus and an 8-bit or 16-bit read or write data bus
– Byte addressable/writable
– Programmable wait states/ready

• ZV output port
– Sync outputs (hsync and vsync)
– Data valid indicator
– 8-bit or 16-bit interface
– 8 bits of Y (luminance data)
– 8 bits of UV (chrominance data)
– Programmable pixel clock output

• General-purpose input/output (GPIO)
– 4 general-purpose I/O pins
– Programmable direction and polarity

• Miscellaneous signals
– Local bus clock output
– Reset output
– Interrupt input
– External ready input

The local bus operational configuration is programmable via control registers
specified in section 5.2.16, Local Bus Control Register @0B0 {ROM, RAM, AUX,
and ZV registers}.

4.2.1.5.1 Local Bus RAM, ROM, AUX

The RAM, ROM, and AUX interfaces on the local bus all behave similarly. These
interfaces are designed to allow common asynchronous RAM or ROM devices
to be simply interfaced to the PCILynx. For simple designs, the RAM or ROM may
be directly wired to the appropriate chip select, output enable, write enable,
address bus, and data bus. In this fashion, 64 Kbytes of RAM or ROM may be
directly addressed for each address space from the PCILynx.

Hardware Functional Description

13 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

Typical connection of a RAM device would be:

PCILynx

aux_adr (15–0)

aux_we (1–0)

aux_oe

xxx_cs

aux_data (15–0)
Data

WE

OE

CS

Adr

Data

WE

OE

CS

Adr

SRAM

4.2.1.5.2 PCI Expansion ROM Interface

The PCI expansion ROM provides the host system with the capability of reading
configuration data or executable code from an attached ROM. This allows the
system to boot from a 1394 device, even though the system may lack specific
1394 boot code at power-reset.

Additionally, this interface has been generalized to provide functionality beyond
PCI Expansion ROM access. This interface will support PCI slave and internal
DMA machine read/write access to devices such as EEPROM, FLASH, and other
ROM/RAM-like devices.

ROM access is controlled by the standard PCI configuration PCI expansion ROM
base address register (offset 0x30) and is enabled by writing a 1 to the LSB of this
register.

The ROM interface may be configured as either 8-bit or 16-bit wide data, a
specified number of wait-states or external ready paced. ROM options are
configured at power-reset via the serial EEPROM. See section 5.2.16, Local Bus
Control Register @0B0 {ROM, RAM, AUX, and ZV registers}.

PCI EXPANSION ROM CONTROL REGISTER [7–0]

BIT NO. BIT NAME DESCRIPTION

07–04 ROM_WS[3–0] Number of wait states, 1111 = Pace transfer based on AUX_RDY with timeout

02–03 reserved Return 0s when read.

01 ROM_WR_EN Write enable (writable nonvolatile memory)

00 ROM_16 Data width,
1 = 16-bit data
0 = 8-bit data

Hardware Functional Description

14 SCPA020A

4.2.1.5.3 Interface

The static RAM is accessed through a second PCI memory base address register
(offset 0x14). This memory may be used for DMA control structures or data
buffers or a shared memory interface to other functions such as a DSP.

The RAM interface may be configured as either 8-bit or 16-bit wide data, a
specified number of wait-states or external ready paced. See section 5.2.16,
Local Bus Control Register @0B0 {ROM, RAM, AUX, and ZV registers}.

RAM CONTROL REGISTER [15–8]

BIT NO. BIT NAME DESCRIPTION

15–12 RAM_WS[3–0] Number of wait states, 1111 = Pace transfer based on AUX_RDY with timeout

11–09 reserved Return 0s when read.

08 RAM_16 Data width,
1 = 16-bit data
0 = 8-bit data

4.2.1.5.4 AUX Interface

This generic I/O port is accessed through a third PCI memory base address
register (offset 0x18). This port may be used to implement a high speed data path
to external dedicated resources such as compression/decompression logic, or
video processor/frame buffers.

If the ZV port is enabled, then addresses between 0xF000 and 0xFFFF are
mapped to ZV port space; otherwise, this space is available as part of the AUX
address space.

The AUX interface may be configured as either 8-bit or 16-bit wide data, a
specified number of wait-states or external ready paced. See section 5.2.16,
Local Bus Control Register @0B0 {ROM, RAM, AUX, and ZV registers}.

AUX CONTROL REGISTER [23–16]

BIT NO. BIT NAME DESCRIPTION

23–20 AUX_WS[3–0] Number of wait states, 1111 = Pace transfer based on AUX_RDY with timeout

19 INVERT_ZV_CLK ZV clock polarity
1 = invert
0 = don’t invert

18 AUX_INT_POL Interrupt polarity
1 = invert
0 = don’t invert

17 AUX_RSTZ AUX port reset output (active low)

16 AUX_16 Data width,
1 = 16-bit data
0 = 8-bit data

4.2.1.5.5 ZV Interface

The zoom video (ZV) port is an output-only port designed to transfer data from
1394 video devices to an external device on the PCILynx ZV port. When correctly
programmed, this interface provides a method to receive 1394 digital camera
packets and transfer the payload data to an external ZV-compliant device. The
ZV port assumes quadlet data.

Hardware Functional Description

15 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

This port is accessed via a subset of the third PCI memory base address register
(offset 0x18). When the ZV port is enabled, AUX addresses between 0xF000 and
0xFFFF map into the ZV port. The ZV port is enabled when 1 of 6 available clock
sources is selected as the ZV pixel clock. If none of the 6 are selected, then ZV
is disabled and AUX claims the entire address space. When the ZV port is
disabled, all ZV-related outputs are high impedance with the exception of the data
bus which will still be driven during AUX, RAM, and ROM accesses.

A vertical sync output (ZV_VSYNC) is generated when a 1394 header quadlet is
written to AUX address 0xF000 with the header sync field equal to 0x1 (little
endian bits 27–24). The quadlet written to this address (0xF000) is not output on
the AUX_DATA bus.

A horizontal sync output (ZV_HSYNC) is generated when a data quadlet is
written to AUX address 0xF004 and the horizontal sync count is reached.
Whether or not a horizontal sync output is generated, the data quadlet written to
AUX address 0xF004 will be output on the AUX_DATA bus with the appropriate
control signals (i.e., ZV_DATA_VALID and ZV_PIX_CLK).

PCI Configuration Registers

Vsync

Hsync/Data

ZV Data

F000

F004

F008

F00C

F010

FFFC

Vsync output if (data (27–24) = = 01)

Hsync output (Hsync counter = = hsync_cnt)
and data output on AUX_DATA bus

Data output on AUX_DATA bus

Data quadlets transferred to all other zoom port addresses (i.e., AUX addresses
between 0xF008 and 0xFFFC) are output on the AUX_DATA bus.

1394 data output to the ZV port must be transferred in little endian mode for the
vertical sync field to be properly decoded, and for the data to be transferred in the
correct sequence.

By programming the PCLs to receive 1394 digital camera packets to AUX
address 0xF000, the header quadlet sync field will be evaluated to generate a
vertical sync, the first quadlet of the payload will conditionally generate a
horizontal sync, and the payload data will be transferred to the ZV port. See
section 5.2.16, Local Bus Control Register @0B0 {ROM, RAM, AUX, and ZV
registers}.

Hardware Functional Description

16 SCPA020A

ZV CONTROL REGISTER [31–24]

BIT NO. BIT NAME DESCRIPTION

31 GATE_PIXEL_CLK ZV pixel clock gating enable.
0 = free running pixel clock; zv_data_valid signal must be used to

determine when valid ZV data is present.
1 = gating enabled (gated mode); zv_pix_clk only toggles when valid

ZV data is present.

30–28 HSYNC_CNT[2–0] Horizontal sync count (HSYNC_CNT = 0 will still produce an hsync every
frame, i.e., during vsync)

27–25 ZV_CLK[2–0] ZV pixel clock select

24 ZV_16 Data width,
1 = 16-bit data
0 = 8-bit data

4.2.1.5.6 GPIO Interface

The general-purpose I/O (GPIO) port consists of 4 general-purpose input/output
ports. The operating modes of these 4 ports are independent and fully software
programmable via two 32-bit control registers (16 bits per GPIO port). See section
5.2.16, Local Bus Control Register @0B0 {ROM, RAM, AUX, and ZV registers}.

GPIO_IVERTx

GPIOx Rdy
(2, 3 Only)

GPIOx
I/O Port

QD

DQ DQ

GPIOx Read Data

0

31

GPIO
Write Data (31–0)

To DMA Rdy Logic

GPIOx SRCx

GPIO port 0’s control register bit definition is shown below.
GPIO[x] CONTROL REGISTER

BIT NAME DESCRIPTION

GPIO_[x]SRC[4–0] Data bit mux select for output on GPIO[x]

GPIO_POL[x] Input and output polarity control (0 = noninverted, 1 = inverted)

GIPI_OUT_EN[x] Output enable control (0 = 3-state, 1 = enabled)

Hardware Functional Description

17 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4.2.1.6 Autoboot Mode Option

When the autoboot pin is active (i.e., tied high), the autoboot mode is selected.
The autoboot mode enables a number of features which allow the PCILynx to
function autonomously:

1. After power reset, DMA channel 0 will fetch the address of the first PCL from
address 0x00000000.

2. After power reset, DMA master access to the external PCI expansion ROM
is enabled, with its base address set to 0x00000000, register reads
0x00000001.

3. After power reset, DMA master access to internal PCILynx registers is
enabled, with its internal register base address set to 0x00010000, register
reads 0x00010001.

4. Once enabled as master on the PCI bus, the PCILynx can issue PCI
configuration, I/O, and memory read and write commands on the PCI bus by
specifying the appropriate address range in the controlling PCL. In autoboot
mode, the external PCI address space is limited to 30 bits; the 2 MS address
bits are always 0. Internally, these 2 bits are used to select the PCI command.

AUTOBOOT = 1

INTERNAL PCI ADDRESS
FUNCTION

adr[31] adr[30]
FUNCTION

0 X PCI memory command

1 0 PCI I/O command

1 1 PCI configuration command

5. The state of the autoboot pin can be read from a special bit in the
miscellaneous control register for diagnostic purposes.

Thus, with the autoboot mode selected and an external ROM, the PCILynx can
perform as the local processor to set up all the internal PCILynx registers, to
initialize other devices on the PCI bus, and to build and queue other PCLs. The
various DMA channels can be enabled to execute these PCLs to transfer data
across the 1394 bus.

By adding external SRAM to the PCILynx, PCI slave memory is provided for
devices on the PCI bus to obtain control information and have local memory for
data transfers. PCL programs can then transfer device control/data via 1394 to
another system.

This environment could be used for peripheral devices, where there may not be
a suitable processor available to manage the PCILynx environment. Autoboot
allows this remote PCILynx environment to be controlled by another agent on the
1394 bus.

Hardware Functional Description

18 SCPA020A

PCILynx
PCI
Bus

PCI
Bus

1394
Bus

“1”

Autoboot

Local Bus

4.2.1.7 Interrupt Logic

The interrupt logic provides control for interrupts to set the PCI bus interrupt signal
INT from several sources. The PCI interrupt status register bits are each capable
of generating a PCI interrupt. Any one or more status bits, when set by PCILynx
hardware sources, will generate a PCI interrupt and set the INT_PEND bit if the
corresponding enable bit is set to 1 in the PCI interrupt enable. IEEE 1394–1995
status bits can also generate interrupts from the 1394 LLC interrupt status
register bits if enabled similarly by the corresponding bit in the 1394 LLC interrupt
enable register. If the hardware sets any one or more bits of the 1394 LLC
interrupt status register, then the P1394_INT status bit will set in the PCI interrupt
status register.

PCI
Interrupt

set Q

clr

D Q

Interrupt Status

Interrupt Enable

Interrupt Source[x]

Write Data[x]

Write Data[x] Other
Interrupts

Hardware Functional Description

19 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

When the hardware status bit is set in either the PCI or LLC interrupt status
registers, the status bit will set an interrupt if the corresponding enable bit is set
in the PCI or LLC interrupt enable registers. LLC status bits require that the
P1394_INT_EN bit also be set in order to generate an interrupt. Any status bit can
be reset by writing a 1 to that status register bit. Once a PCI interrupt is generated,
the PCI interrupt status register INT_PEND bit can be read to see if the interrupt
was caused by the PCILynx hardware. If INT_PEND is 1 (same bit can be read
in either the PCI interrupt enable register or PCI interrupt status register), then
one or more bits in the PCI interrupt status register is the source of the interrupt.
Each status bit set can be cleared by writing a 1 to that bit (multiple bits can be
written in one register simultaneously).

Int
Status

Int
Enable

LINK

PCI

LINK
interrupt
sources

Int
Status

Int
Enable

PCI
&

DMA
interrupt
sources

PCI
INT

If the P1394_INT bit is set, then the 1394 LLC interrupt status register must be
read to determine which LLC status bit(s) are set. When the appropriate LLC
interrupt status bits are cleared by writing with a 1, the LLC_INT_PEND bit in the
LLC interrupt status register will read 0 if no new interrupt sources have occurred.
Even so, the P1394_INT bit may still be set, so the P1394_INT bit must still be
written with a 1 to clear P1394_INT. If an LLC interrupt status bit is to be polled
and not interrupt enabled, then the status bit can be cleared by writing a 1, and
there is no need to also write the P1394_INT bit. In other words, it is not necessary
to access the PCI interrupt status register for any LLC interrupt enable bits that
are always 0.

The FRC_INT bit in the PCI interrupt status register can be used for testing
purposes. By setting the SET_FORCE_INT bit in the miscellaneous control
register, the FRC_INT bit will be set simulating a hardware interrupt condition.
This feature may be useful to check out interrupt software.

Some interrupt conditions occur very frequently (i.e., RXDTA) during normal
operation and typically should not be enabled. If all the interrupts are enabled,
then the CPU performance could be adversely affected on typical operating
systems.

Hardware Functional Description

20 SCPA020A

4.2.1.8 Byte Ordering (endian)

Access to the local bus resources and all PCILynx registers from the PCI bus is
always in little endian (PCI bus) byte ordering. This means the least significant
byte of a quadlet aligned quadlet is byte 0, and the most significant byte is byte 3.

The PCILynx is designed to accommodate 1394 transfers of either big or little
endian byte ordering on the PCI bus or the local bus. The control of this ordering
is specified by DMA control structures on a memory buffer basic using the big
endian control bit (see the DMA section of this spec). Only transfers to or from
the 1394 bus are controlled by this mechanism.

Byte 0 Byte 1 Byte 2 Byte 3

Byte 3 Byte 2 Byte 1 Byte 0

1394 Bus Spec
(Big Endian)

PCI Bus
(Little Endian)

Byte 3 Byte 2 Byte 1 Byte 0

MS Bit
0 7 8 15 16 23 24

LS Bit
31

MS Bit
31 24 23 16 15 8 7

LS Bit
0

PCILynx BIG_ENDIAN = 0

1394 Data
Transmitted

First

Byte 0 Byte 1 Byte 2 Byte 3

Figure 5. 1394 Data Byte Addressing is Preserved on the PCI Bus

Byte 0 Byte 1 Byte 2 Byte 3

Byte 3 Byte 2 Byte 1 Byte 0

1394 Bus Spec
(Big Endian)

PCI Bus
(Little Endian)

Byte 0 Byte 1 Byte 2 Byte 3

MS Bit
0 7 8 15 16 23 24

LS Bit
31

MS Bit
31 24 23 16 15 8 7

LS Bit
0

PCILynx BIG_ENDIAN = 1

1394 Data
Transmitted

First

Byte 0 Byte 1 Byte 2 Byte 3

Figure 6. 1394 Data Byte Addressing not Preserved on the PCI Bus

Hardware Functional Description

21 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4.2.2 DMA Logic

This function implements a 5-channel DMA controller which is used for
transferring 1394 data packets between the host memory and the PCILynx FIFO
memory or between host memory and the AUX bus (refer to AUX bus
description). The DMA logic uses the PCI master logic function to acquire the PCI
bus and function as a master device. The DMA logic is comprised of the following
blocks:

• DMA engine contains a common state machine which is priority-time
multiplexed over 5 DMA channels. This block also contains arbitration logic
for activating a channel based on its assigned priority level.

• Control and status registers for each DMA channel along with the PCI slave
data path control for accessing these registers from the PCI interface.

The DMA is controlled by data structures called packet control lists or PCLs. The
PCL contains command information which the DMA fetches from memory as
needed. These commands tell the DMA the sources and destinations for the data
and how many bytes it is to transfer. Some commands move chunks of data
between the 1394 transmit FIFOs and the PCI and between the general receive
FIFO or GRF and the PCI. Another command moves data between the PCI and
the AUX bus. Other commands are for secondary functions and are called
auxiliary commands. These auxiliary commands allow the DMA to peek and poke
quadlets of specified data to any PCI address and permit some conditional
branching (described in the section defining PCL queues). The intended use is
to permit the DMA to function as a stand-alone processor which can build PCLs
during an autoboot sequence (refer to section 4.2.1.6, Autoboot Mode Option).
The entire scope of this functionality is not regimented and further uses will evolve
over time as programming ensues.

4.2.3 FIFO Overrun and Underrun

An underrun is a condition where, due to PCI latencies, the transmit FIFO runs
out of PCI data (FIFO is empty) while sending data to the 1394 bus. The end result
is a truncated packet. For asynchronous transmits this will result in the receiver
getting a CRC error and reporting an ack_data_error back to the transmitter. The
software will see the data error in the PCL status and may retry it.

For isochronous (ISO) transmits underrun is a condition where there is no ack
status back to the transmitter so the packet is lost. The receiver software sees
the data error in the receive PCL so it knows the packet is corrupted and will
probably ignore the packet.

An overrun is a condition where the receive FIFO gets filled up with 1394 data
(FIFO is full). This can happen due to PCI latencies or because there is no PCL
program running for the incoming packet. The filter registers bind the incoming
packets to a particular DMA channel and hopefully software has started a PCL
program for it. For asynchronous packets this will cause an ack busy to be
returned to the transmitter. The transmitter can then re-send the packet. For
isochronous transmission packets are just dropped because there is no return
status.

Hardware Functional Description

22 SCPA020A

The PCILynx has a test register that logs overruns and underruns. They are at
offset F24. Reading these provides pretty good insight to PCI performance. If they
continue to increment, especially underruns, then PCI performance is suspect,
the FIFOs have been programmed too small, or the transmit threshold registers
have been programmed too small for the target PCI environment.

Buffer Adr

Command / xfr cnt

Buffer Adr

Command / xfr cnt

Buffer Adr

Command / xfr cnt

Buffer Adr

Command / xfr cnt

Next PCL Address

Remaining transfer cnt *

Next PCL Error Address

reserved

Status / transferred cnt

0

4

8

C

10

18

1C

20

24

28

28

30

34

Next PCL Address I0

Next PCL Error Address I0

reserved for use by software

31 08162428 20 12 4

CEMIS DMA chan spd ACK T 0 transferred count

Buffer Address

remaining count00000000 00000000 000

Buffer Address

0000 CMD 0 Wait I spdBWL IM Transfer Count

Buffer Address

Buffer Address

Next Buffer Adr *14 Next Buffer Address

0000 CMD 0 Wait I spdBWL IM Transfer Count

0000 CMD 0 Wait I spdBWL IM Transfer Count

0000 CMD 0 Wait I spdBWL IM Transfer Count

*updated on Receive and Update command only

Figure 7. Typical Program Control List (PCL)

Each DMA channel can execute several commands. A group of commands deal
with moving data between the 1394 bus and host memory. These transfer
commands are XMT, UNFXMT, RCV, and RCV AND UPDATE. By using these
commands with an address within the local bus address space, the PCI bus can
be bypassed and transfers can occur directly between 1394 and the local bus.
Two more commands deal with moving data between the PCI bus and the
auxiliary bus. Only one channel of the DMA can be assigned to asynchronous
transmits, due to complications arising from retries on the 1394 bus.

Transfer commands:
• XMT—Transmit data from host memory to the 1394 bus.
• UNFXMT—Same as XMT except that unformatted data is passed through

the link layer controller (LLC). This permits transmission of data with the CRC
as part of the payload data and not generated and appended by the LLC.

• RCV—Receive data from the 1394 bus and transfer it to host memory.
• RCV AND UPDATE—Same as RCV except that the remaining PCL transfer

count and next data buffer address for the current scatter table entry is
returned to the PCL in offsets 0x10 and 0x14. The state of the LSB of the

Hardware Functional Description

23 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

ready register will reflect the status of the last buff bit (bit 18) of the last PCL
scatter entry processed. This way one can determine whether or not the last
buffer of a multi-entry scatter table contains data.

• LBUS TO PCI—Move a block of data from local bus to host memory. The
beginning local bus address is specified by the contents of the local bus
address register and the beginning PCI address is specified by the data buffer
address pointer in the PCL. The remaining PCL transfer count and next data
buffer address for the current scatter table entry are returned to the PCL in
offsets 0x10 and 0x14. The state of the LSB of the ready register will reflect
the last buff bit (bit 18) of the last PCL scatter entry processed. This way one
can determine whether or not the last buffer of a multi-entry scatter table
contains data.

• PCI TO LBUS—Move a block of data from host memory to the local bus. The
beginning local bus address is specified by the contents of the local bus
address register and the beginning PCI address is specified by the data buffer
address pointer in the PCL. The remaining PCL transfer count and next data
buffer address for the current scatter table entry is returned to the PCL in
offsets 0x10 and 0x14. The state of the LSB of the ready register will reflect
the last buff bit (bit 18) of the last PCL scatter entry processed. This way one
can determine whether or not the last buffer of a multi-entry scatter table
contains data.

Other commands deal with branching and synchronization between DMA
channels if one wishes to do so. These auxiliary commands are:
• NOP – No operation. The DMA reads the command but performs no

operation.
• LOAD – @SOURCE => TEMP. Read quad data from a source address and

store it in a DMA temp location. This permits a DMA channel to queue another
DMA channel.

• STORE QUAD – 4 bytes from TEMP ≥ @DESTINATION. Move data from a
DMA temp location to an address. This permits a DMA channel to queue
another DMA channel.

• STORE DOUBLE – 2 bytes from TEMP ≥ @DESTINATION. Move data from
a DMA temp location to an address. This permits a DMA channel to move a
remaining transfer count from one PCL to the scatter table transfer count field
of another PCL without overwriting the command bits of the destination PCL.

• STORE0 – 00000000 ≥ @DESTINATION. Write all 0s to an address. This
allows 1 DMA channel to inform a waiting DMA channel to continue execution.

• STORE1 – FFFFFFFF ≥ @DESTINATION. Write all 1s to an address. This
allows 1 DMA channel to inform a waiting DMA channel to continue execution.

• BRANCH – DESTINATION ≥ NEXT PCL ADDRESS if condition true
conditional branch. Used to alter channel execution.

• COMPARE – Compare the current contents of the temp register to a 16-bit
immediate value with a 16-bit mask and store the equality result in the ready
register.

• SWAP & COMPARE – Swap the 16-bit halves of the temp register then
compare the contents to a 16-bit immediate value with a 16-bit mask and store
the equality result in the ready register. (PCILynx Rev A and higher only)

Hardware Functional Description

24 SCPA020A

• ADD – Add the current contents of the temp register to a 3-bit immediate value
and store the results back into the temp register.

The application software programs the operation of a DMA channel by using a
packet control list (PCL) data structure. This structure can reside in host PCI
memory or in any memory on the local bus. PCLs which reside in memory on the
local bus have the potential of executing faster because the PCI bus latency is
avoided. Local bus accesses can be slower however since the maximum data
width is 16 bits. Application software is responsible for constructing the PCLs and
allocating memory for their storage. A PCL is organized as a contiguous set of
memory locations that contains the commands, control parameters, and data
buffer pointers required by a DMA channel to transfer one 1394 data packet, to
move data between the PCI bus and auxiliary bus, or to execute one or more
auxiliary commands. The total number of memory locations required to construct
a PCL is limited to 32 quadlets. As a minimum requirement, the PCL starting
address is aligned to a quadlet boundary (2 address LSBs = 00). For optimal DMA
performance, the PCL start address is recommended to be aligned on a cache
line boundary. The data buffer pointers are, as a minimum requirement, address
aligned on a byte boundary. For optimum DMA performance, it is recommended
to align data buffer pointers on a cache line boundary. If this is not possible, then
align to a quadlet boundary. The active DMA channel fetches the commands and
control parameters from the PCL, and uses them to configure itself to perform the
command or transfer. Table 1 defines the format of a PCL for the transfer
commands. Table 2 defines the format of a PCL for auxiliary commands.

Table 1. 1394 TRANSFER Packet Control List Format

OFFSET PCL CONTENTS DMA CHANNEL ACCESS PERFORMED

0x0 Next PCL address Read

0x4 Next PCL address after an asynchronous transmit error. Read

0x8 Reserved for use by software Ignored

0xC PCL status and total transferred count Updated by the DMA upon completion of PCL

0x10 Remaining transfer count for the current scatter table entry. Updated by the DMA upon completion of PCL for RCV AND
UPDATE and LBUS commands. Ignored by the DMA for other
commands.

0x14 Next data buffer address for the current scatter table entry. Updated by the DMA upon completion of PCL for RCV AND
UPDATE commands. Ignored by the DMA for other commands.

0x18 PCL command Data buffer0 control and byte count Read

0x1C Data buffer0 address pointer Read

0x20 Data buffer1 control and byte count Read

0x24 Data buffer1 address pointer Read

0x28 Data buffer2 control and byte count Read

0x2C Data buffer2 address pointer Read

•
•
•

•
•
•

•
•
•

0x78 Data buffer12 control and byte count Read

0x7C Data buffer12 address pointer Read

Hardware Functional Description

25 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

NEXT PCL ADDRESS OFFSET 0X0

BIT NO. BIT NAME DESCRIPTION

31–04 Address of next PCL

03–02 These bits should equal 00 for maximum performance

01 0 The PCL is to be written on a 32-bit boundary, so this bit must be 0

00 Not Vld Next PCL address valid.
1 = Not valid, the DMA will pause after execution of this PCL. Resumption of the DMA is caused by writing

 a valid next PCL address and setting the link bit of the DMA control register.
0 = Valid, the DMA will chain to the PCL pointed to by bits 31–02 and continue.

ASYNCHRONOUS TRANSMIT ERROR ADDRESS OFFSET 0X4
Note: This PCL address points to an alternate PCL queue that an active DMA channel will branch to if an error occurs that sets the
Ack_Type bit in the status word during an asynchronous transmit command. The intent is to allow software to take some alternate
action in the event of an error which may require subsequent commands to this device to be skipped. These include retry overrun s,
FIFO underruns, CRC error on the returned ack (not the payload), internal FIFO errors, and a corrupted header.

BIT NO. BIT NAME DESCRIPTION

31–04 Address of next PCL

03–02 These bits should equal 00 for maximum performance

01 0 The PCL is to be written on a 32-bit boundary, so this bit must be 0

00 Not Vld Next PCL address valid.
1 = Not valid, the DMA will pause after execution of this PCL. Resumption of the DMA is caused by writing a valid

 next PCL address and setting the link bit of the DMA control register.
0 = Valid, the DMA will chain to the PCL pointed to by bits 31–04 and continue.

RESERVED FOR SOFTWARE USE OFFSET 0X8

BIT NO. BIT NAME DESCRIPTION

31–00 This word is ignored by the DMA. Software may, for example, use these locations for flags or pointers to the
previous PCL in a PCL queue.

STATUS AND TRANSFERRED COUNT OFFSET 0XC

BIT NO. BIT NAME DESCRIPTION

31 Self ID Set when a self ID packet has been received by this channel. Refer to the definition of the receive comparator
registers for how a channel is enabled for self ID reception.

30 ISO MODE The received packet was an isochronous packet.

29 Mst Err PCI master error. Set to a 1 by the DMA if it receives an error indication (parity error, timeout, etc.) from the PCI
master during execution of this PCL. In general, this is a fatal condition which will cause the channel to stop, the
LINK, BSY, and ENA bits are cleared in the DMA command register (see register definitions) and an DMA_HLT
interrupt (see interrupt status register) will be generated if enabled.

28 Pkt Err Packet error. Set to a 1 by the DMA for any transfer to or from the 1394 bus in which the transfer had an error. The
error can be determined from the Ack_Type and Acks fields. Pkt Err may not be set if Mst Err is set since it may be
impossible for the DMA to update the PCL.

27 Pkt Cmp Packet complete. Written by the DMA upon completion of this packet.

26–21 Receive
Dma_Cha[5–0]

Received DMA channel number. This is the channel number received from the link controller via the receive
FIFO control word. Valid only for channels programmed for receive operations. These bits return 0s for other
commands.

Receive Dma_Cha[5–0] DMA Channel Number

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 2

0 0 0 0 1 1 3

0 0 0 1 0 0
Others

4
reserved

Hardware Functional Description

26 SCPA020A

STATUS AND TRANSFERRED COUNT OFFSET 0XC (CONTINUED)

BIT NO. BIT NAME DESCRIPTION

20–19 Rcv_Speed[1–0] The speed at which the packet was received for asynchronous or isochronous transfers. Valid only for channels
programmed for receive operations. These bits return 0s for other commands.
00 = 100 Mbps
01 = 200 Mbps
10 = 400 Mbps

18–15 Acks Packet acknowledge. Ack status returned from the link layer controller for this packet. Written by the DMA upon
completion of this packet. These bits are written with 0s after completion of auxiliary commands. These bits are
written with 0x0001 after completion of an isochronous transmit or PCI to/from local bus transfers.
These bits also contain a special code for internally (non-1394) related errors when bit 14 (Ack_Type) is set. The
encoding for these errors are as follows:

0000 = Link reported a retry overrun
0001 = Link reported an ACK_TIMEOUT
0010 = Link reported a FIFO underrun
0011 = Link reported a CRC error on a received 1394 ack packet
0100 = DMA received an end of packet token while expecting a start of packet token. Catastrophic internal

error.
0101 = No expected end-of-receive packet
0110 = Pipelined asynchronous transmit command encountered a command other than another

asynchronous transmit.
1110 = Link reported a corrupted header before the packet was transmitted.

14 Ack_Type Acknowledge type returned by 1394 transmitter logic
Ack_Type = 0 indicates a normal 1394 ack code is returned in bits 18–15
Ack_Type = 1 indicates a special ack code is returned in bits 18–15. Refer to Ack definitions above.

13 Reserved Written with unknown data by the DMA.

12–00 Transferred
Count

For all RCV and isochronous XMT commands, the DMA will update these bits with the total number of bytes
transferred (header + payload) for this packet. These bits are indeterminate for asynchronous transmits due to
the potentially pipelined nature of asynchronous XMT commands. The count will also include any retried
packets during asynchronous receives. These bits are written with 0s after completion of auxiliary commands.

REMAINING TRANSFER COUNT OFFSET 0x10

BIT NO. BIT NAME DESCRIPTION

31–16 0 Written with 0s by the DMA for the RCV_AND_UPDATE command

15–13 Offset For a RCV_AND_UPDATE, LBUS _TO_PCI, and PCI_TO_LBUS commands, these bits will be updated by the
DMA with the remaining transfer count for whatever scatter table control, byte count(n) the DMA was last using
when the end of the incoming receive packet was encountered. The intention is to provide this information for
receiving packet data into a contiguous receive buffer.

12–00 Remaining count For a RCV_AND_UPDATE, LBUS _TO_PCI, and PCI_TO_LBUS commands, these bits will be updated by the
DMA with the remaining transfer count for whatever scatter table control, byte count(n) the DMA was last using
when the end of the incoming receive packet was encountered. The intention is to provide this information for
receiving packet data into a contiguous receive buffer.

NEXT BUFFER ADDRESS OFFSET 0x14

BIT NO. BIT NAME DESCRIPTION

31–00 Next Buffer
Address

For a RCV_AND_UPDATE, LBUS _TO_PCI, and PCI_TO_LBUS commands, these bits will be updated by the
DMA with the next address of whatever scatter table data buffer (n) the DMA was last using when the end of the
incoming receive packet was encountered. The intention is to provide this information for receiving packet data
into a contiguous receive buffer.

Hardware Functional Description

27 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

TRANSFER COMMAND DATA BUFFER0 CONTROL, BYTE COUNT

BIT NO. BIT NAME DESCRIPTION

31–28 reserved These bits are set to all 0s.

27–24 CMD3–0 CMD3 CMD2 CMD1 CMD0 Command

0 0 0 1 RCV. (1394 FIFO to memory)

1 0 1 0 RCV_AND_UPDATE

0 0 1 0 XMT. (Memory to 1394 FIFO)

1 1 0 0 UNFORMATTED XMT

1 0 0 0 PCI_TO_LBUS

1 0 0 1 LBUS_TO_PCI

A packet control list queue must have consistent RCV or XMT commands. i.e., the transfer direction must be
consistent.

23 reserved This bit is set to 0.

22–20 Wait Sel 2–0 Wait select. Written when the PCL is built. These bits control what conditions have to be met before execution
of the PCL will continue.

Wait Sel 2 Wait Sel 1 Wait Sel 0 Wait condition

0 0 0 No wait. Continue execution.

0 0 1 Wait for DMA ready register = 1

0 1 0 Wait for DMA ready register = 0

0 1 1 Wait for external ready pin RDY = 1

1 0 0 Wait for external ready pin RDY = 0

1 0 1 Wait for GPIO port 2 to go active

1 1 0 Wait for GPIO port 3 to go active

Others Reserved, do not use.

19 Int Generate an interrupt. Written when the PCL is built. Is read by the DMA to determine if an interrupt is to be
posted when the DMA completes updating the status for this PCL. An interrupt will be generated by the DMA
regardless of the state of this bit in the case of an error which results in a termination of PCL execution by the
DMA. This bit should be set in the first transfer command data buffer control word of any PCL with multiple
scatter table entries if interrupts are to be generated. The interrupt bit location for subsequent scatter table
entries are a don’t care.

18 Last Buff Last buffer indicator. Written when the PCL is built. Is read by the DMA to determine the end of a packet during
transmits or the ending buffer for a PCI_TO_LBUS or LBUS_TO_PCI transfer.

17 Wait for Status Written when the PCL is built. Is used to single thread asynchronous transmits. Normally, transmits of
asynchronous transmits are pipelined to improve throughput. Setting this bit will cause the DMA to wait for
transmit completion status before continuing. This bit must be set in any asynchronous transmit PCL that
precedes a PCL with an auxiliary command.

16 Big Endian Byte ordering. Written when the PCL is built. Is read by the DMA to control the byte ordering of the data buffer
as it is read or written. This bit is only used for RCV and XMT commands. It is ignored by the DMA at other
times.
NOTE: The big endian flag may only be changed on quadlet boundaries, i.e., between header and payload
data.

0 = Little endian (3, 2, 1, 0)
1 = Big endian (0, 1, 2, 3)

15–14 xmt_spd_code[1–0] 1394 transmit speed code. Specifies the transmission speed of an asynchronous or isochronous transmit
packet.

xmt_spd_code[1–0] = 00–100 Mbps
xmt_spd_code[1–0] = 01–200 Mbps
xmt_spd_code[1–0] = 10–400 Mbps

The value of this field is only valid for DMA transmit commands and are ignored for commands other than XMT
or UNFORMATTED XMT.

Hardware Functional Description

28 SCPA020A

TRANSFER COMMAND DATA BUFFER0 CONTROL, BYTE COUNT (CONTINUED)

BIT NO. BIT NAME DESCRIPTION

13 Multi ISO packet
per cycle start

Written when the PCL is built. This bit is relevant for an isochronous transmit DMA channel (ISO Mode = 1).
0 = This isochronous packet should be sent with regard to cycle start bus boundaries. One isochronous

packet per isochronous DMA channel per cycle start period.
1 = This isochronous packet should be sent without regard to cycle start bus boundaries. This implies

multiple isochronous packets for the same DMA channel may be transmitted during a cycle start period.
This bit is ignored for commands other than XMT or UNFORMATTED XMT.

12 Transmit ISO mode Written when the PCL is built. If the command specified by bits 24–27 is a 1394 transmit, then:
0 = This DMA channel is to be configured for transmit asynchronous transfers.
1 = This DMA channel is to be configured for transmit isochronous transfers.

This bit is ignored for commands other than XMT or UNFORMATTED XMT.

11–00 Transfer count Data buffer transfer length in bytes. Written when the PCL is built. Is read by the DMA to determine the size of
this buffer. This count along with the last buff bit (bit 18) is used to determine the size of a transmitted packet.
For receives, the sum of the scatter entry counts should be equal to or greater than the entire packet size.

TRANSFER COMMAND DATA BUFFER (0 TO N) ADDRESS POINTER

BIT NO. BIT NAME DESCRIPTION

31–00 DATA_BUF Address of this data buffer. This address may begin on any byte boundary but for maximum PCI transfer rates
this address should begin on a cache line size boundary. For RCV and XMT commands this represents the ad-
dress of host data. For LBUS_TO_PCI and PCI_TO_LBUS transfers, this represents the address of the PCI bus
data. The address of the LOCAL bus source or destination is contained in the local bus base address register.

TRANSFER COMMAND DATA BUFFER (1 TO N) CONTROL, BYTE COUNT

BIT NO. BIT NAME DESCRIPTION

31–19 Reserved These bits are set to all 0s.

18 Last buff Last buffer indicator. Written when the PCL is built. Is read by the DMA to determine the end of a packet during
transmits or the ending buffer for a PCI_TO_LBUS or LBUS_TO_PCI transfer.

17 Reserved This bit is set to 0.

16 Big endian Byte ordering. Written when the PCL is built. Is read by the DMA to control the byte ordering of the data buffer as
it is read or written. This bit is only relevant for transfers between the 1394 bus and host memory.
NOTE: The big endian flag may only be changed on quadlet boundaries. i.e., between header and payload data.

0 = Little endian (3, 2, 1, 0)
1 = Big endian (0, 1, 2, 3)

15–12 Reserved These bits are set to all 0s.

11–00 Transfer count Data buffer transfer length in bytes. Written when the PCL is built. Is read by the DMA to determine the size of this
buffer. This count along with the last buff bit (bit 18) is used to determine the size of a transmitted packet. For
receives, the sum of the scatter entry counts should be equal to or greater than the entire packet size.

Table 2. AUXILIARY Command Packet Control List Format

OFFSET PCL CONTENTS DMA CHANNEL ACCESS PERFORMED

0x0 Next PCL address Read

0x4 Unused Ignored

0x8 Reserved for use by software Ignored

0xC PCL status Updated by the DMA upon completion of PCL

0x10 Unused Ignored

0x14 Unused Ignored

0x18 PCL auxiliary command 1 Read

Hardware Functional Description

29 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

OFFSET PCL CONTENTS DMA CHANNEL ACCESS PERFORMED

0x1C Parameter for auxiliary command 1 Read

•
•
•

Other auxiliary commands and parameters 2–13 (optional)
•
•
•

Read
•
•
•

0x78 PCL status & auxiliary command 13 (optional) Read

0x7C Parameter for auxiliary command 13 (optional) Read

AUXILIARY COMMAND OFFSET 0x18, 0x20... etc.

BIT NO. BIT NAME DESCRIPTION

31–28 0 These bits are set to all 0s.

27–24 CMD3–0 CMD3 CMD2 CMD1 CMD0 Command

0 0 0 0 NOP

0 0 1 1 LOAD (@DESTINATION => TEMP)

0 1 0 0 STORE QUAD
 (4 bytes TEMP => @SOURCE)

1 0 1 1 STORE DOUBLE
 (2 bytes TEMP => @SOURCE)

0 1 0 1 STORE0
 (00000000 => @DESTINATION)

0 1 1 0 STORE1
 (FFFFFFFF => @DESTINATION)

0 1 1 1 Conditional BRANCH to DESTINATION if the conditions are met as
specified in the condition field. Status is updated and an interrupt is
generated, if enabled, prior to the branch.

1 1 0 1 ADD (TEMP + BUFFER => TEMP)

1 1 1 0 COMPARE
 (TEMP ^ BUFFER => READY)

1 1 1 1 SWAP & COMPARE
TEMP[31–16] => TEMP[15–0]
TEMP[15–0] => TEMP[31–16]
 (TEMP ^ BUFFER => READY)
(PCILynx Rev A and higher only)

@DESTINATION, and @SOURCE addresses are contained in the next word.
TEMP is the DMA previous address register.

23 Reserved This bit is set to 0.

Hardware Functional Description

30 SCPA020A

AUXILIARY COMMAND OFFSET 0x18, 0x20... etc. (CONTINUED)

BIT NO. BIT NAME DESCRIPTION

22–20 Wait Sel 2–0 Wait select. Written when the PCL is built. These bits control what conditions have to be met before execution
of the PCL will continue for the data movement auxiliary commands of LOAD, STORE, STORE0, and STORE1.

Wait Sel 2 Wait Sel 1 Wait Sel 0 Wait condition

0 0 0 No wait. Continue execution.

0 0 1 Wait for DMA ready register = 1

0 1 0 Wait for DMA ready register = 0

0 1 1 Wait for external ready pin RDY = 1

1 0 0 Wait for external ready pin RDY = 0

1 0 1 Wait for GPIO port 2 to go active

1 1 0 Wait for GPIO port 3 to go active

Others Reserved, do not use.

22–20 Condition
codes 2–0

Branch command condition codes. Written when the PCL is built. These bits select what conditions have to be met
during the execution of the BRANCH command to cause the address contained in DESTINATION to be loaded into
the NEXT PCL ADDRESS and linked.

Condition
Code 2

Condition
Code 1

Condition
Code 0

Branch condition

0 0 0 Don’t branch

0 0 1 Branch if DMA ready register = 1

0 1 0 Branch if DMA ready register = 0

0 1 1 Branch if external ready pin RDY = 1

1 0 0 Branch if external ready pin RDY = 0

1 0 1 Branch if GPIO port 2 is active

1 1 0 Branch if GPIO port 3 is active

Others Reserved, do not use.

19 Int Generate an interrupt. Written when the PCL is built. Is read by the DMA to determine if an interrupt is to be posted
when the DMA completes updating the status for this auxiliary command PCL. An interrupt will be generated by the
DMA regardless of the state of this bit in the case of an error resulting in Mst Err status being set. This bit is valid for
any auxiliary command.

18 Last
Command

Last command indicator. Written when the PCL is built. Is read by the DMA to determine the last auxiliary command
in a PCL.

17–00 reserved These bits are set to all 0s.

AUXILIARY COMMAND PARAMETER OFFSET 0x1C, 0x24... etc.
These bits are loaded by the DMA into the current data buffer address register and are used by the DMA during the execution of the following
auxiliary commands as follows:

NOP [0]

BIT NO. BIT NAME DESCRIPTION

31–00 Don’t care Read but not used by the DMA

LOAD [3]

31–00 @SOURCE Address of the data that is to be stored in a temporary location in the DMA. This temporary location is the DMA’s
previous pointer/temp register.

STORE QUAD [4]

31–00 @DESTINATION Address where the data stored in the temporary location in the DMA will be written. This temporary location is the
DMA’s previous pointer/temp register.

STORE DOUBLE [B]

31–00 @DESTINATION Address where the data stored in the temporary location in the DMA will be written. This temporary location is the
DMA’s previous pointer/temp register.

Hardware Functional Description

31 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

STORE0 [5]

BIT NO. BIT NAME DESCRIPTION

31–00 @DESTINATION Address where data of 00000000 will be written.

STORE1 [6]

31–00 @DESTINATION Address where data of FFFFFFFF will be written.

COMPARE [E]

SWAP & COMPARE [F] †

31–16 Compare enable Each bit set to 1 here will enable the corresponding bit compare in bits 15–00 respectively. Each bit set to 0 here
will mask the corresponding bit compare in bits 15–00 respectively.

15–00 Compare value This value is bit-wise compared against bits 15–00 respectively of the current contents of the DMA’s previous
pointer/temp register. The logical result (1=equal, 0=not equal) is written to the ready register’s bit 0.

ADD [D]

31–03 Don’t care Read but unused

02–00 Addend Added to the current 32-bit contents of the DMA previous pointer/temp register and the result stored back into
the previous pointer/temp register.

BRANCH [7]

31–00 DESTINATION This address is loaded into the CURRENT PCL ADDRESS if the conditions are met as specified in the condition
code field.

† PCILynx Rev A and higher only

Application software programs a DMA channel to transfer multiple 1394 data
packets by chaining together multiple PCLs into a packet control list queue. A
queue is constructed by setting the next address field of each PCL to point to the
starting address in memory of the next PCL. The last PCL in the queue can be
programmed to either halt DMA processing, point back to the start of the queue,
or point to a new queue.

It is possible to combine auxiliary commands and transfer commands in the same
PCL with the following restrictions:

• All auxiliary commands must precede any transfer commands and
will be executed in sequence.

• If a 1394 busy ack status is sent by the asynchronous receiver or
detected by the asynchronous transmitter, then the ENTIRE PCL
including all auxiliary commands within the PCL will be re-executed.

• If any asynchronous transmit command is followed by a PCL with
any command other than another asynchronous transmit, then the
wait-for-status-before-continue bit in the command word must be
set.

• The status word and the DMA interrupt will reflect the last command
that was executed by the DMA in that PCL. For example, if a branch
command caused the DMA to exit the PCL, then the status and
interrupt would be based on the branch command.

Hardware Functional Description

32 SCPA020A

0x4

Data Buffer 0 Address

If True Destination Adr

Conditional Branch Cmd

0x28

0x24

0x20

0x18

0xC

Destination Address

Store 1 Command

Source Address

Load Command

0x4

0x20

0x18

0xC

0x8

0x4

Data Buffer 0 Address

data buf0 ctl/byte_cnt/cmd

Status

Reserved (SW)

Next Stream Adr

Data Buffer 13 Address

data buf13 ctl/byte_cnt

0x7C

0x78

0x28

0x24

0x20

0x18

0xC

0x8

0x4

data buf1 ctl/byte_cnt

Data Buffer 0 Address

Status

Reserved (SW)

Next Stream Adr

Start Address

Dummy Packet Control
List

Next List Adr0x0

Transfer Command Packet
Control List 0

Packet Control List 0

Next List Adr0x0

Next List Adr0x0 Next List Adr

data buff0 ctl/byte_cnt/cmd

Data Buffer 1 Address

Transfer Command Packet
Control List 2 if Branch

Condition is False

Next List Adr0x0 Next List Adr

Auxiliary Command(s)
Packet Control List 1

Next List Adr0x0 Next List Adr

0x8

0x7C

0x78

Transfer Command Packet
Control List 2 if Branch

Condition is True

Next List Adr0x0 Next List Adr

Data
Buffer

1

Data
Buffer

2

Data
Buffer

14

other PCL(s)

Data
Buffer

1

Data

DMA
Register

FFFFFFFF

Memory

Other PCL(s)

Data
Buffer

1

Reserved (SW)

Reserved (SW)

Status

Data Buffer 0 Address

data buf0 ctl/byte_cnt/cmd

Status

Reserved (SW)

Next Stream Adr

Data Buffer 0 Address

data buf0 ctl/byte_cnt/cmd

Status

Reserved (SW)

Next Stream Adr

data buf0 ctl/byte_cnt/cmd

Status

Reserved (SW)

Next Stream Adr

0xC

0x8

0x4

0x20

0x18

Next List Adr

Figure 8. Example PCL Queue

Hardware Functional Description

33 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4.2.3.1 DMA Engine

The DMA engine function implements the state machine logic for fetching the
control parameters and data buffer pointers from the PCL. The state machine
logic or packet processor uses these parameters to control the transfer of data
to or from the data buffers. Table 3 defines the DMA channel priority assignment.
Figure 9 defines the overall flow of each DMA channel.

Table 3. DMA Channel Priority Assignments

DMA CHANNEL PRIORITY 1394 TRANSFER TYPE

X (highest) Channel currently active on the 1394 bus

0 Transfer commands or auxiliary commands

1 Transfer commands or auxiliary commands

2 Transfer commands or auxiliary commands

3 Transfer commands or auxiliary commands

4 (lowest) Transfer commands or auxiliary commands

Hardware Functional Description

34 SCPA020A

Reset

This Channel’s RX FIFO have Threshold
Worth of Data or Packet Count > = 1?

Master Error Status ?
Y

Idle

CH ENA ?

Packet List Valid ?

Link = 1?

Get Next PCL Address

Valid ?

Get Packet Words 0 x 18, 0 x 1c

CMD = XMT?

CMD = Lbus to/from PCI?

DMA Packet Processor

N

N

N

N

Get_PCL

Cont_PCL

CMD = RCV?

CH ENA?

Y
XMIT

Y
Lbus<=>PCI

DO_AUX
N

N

Ready?

Begin of Packet Token?

N

N

Load Packet Count

DMA Buffer Transfer Count = 0?
Y

CH ENA?
N

END

N

0 = > Link

1 = > DMA Halt Interrupt

Master Error Status ?
Y

CH ENA ?

Packet List Valid ?

Link = 1?

Get Error PCL Address

N

N

N

Get_Error_ADR

Valid ?
N

Error PCL Add = > Curr PCL Add

Get_PCL

0 = > Link; 0 = > BSY

1 = > DMA Halt Interrupt

END

FIFO = > PCI

Data Buffer Address + Master Byte Count

Packet Count – Master Byte Count

N
End of Packet Token?

Last Buffer

Get Next Buffer and Count

Y

CH ENA?

Empty?

End of Packet Token?

FIFO = > Null

N
END

Y

1 = > Packet Error

Y

A
B

Next PCL Address = > Current PCL Address

1 = > BSY

Figure 9. State Machine Flowchart

Hardware Functional Description

35 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

Update Status and Ack

RCV and Update?

Data Buffer Address = > PCL Offset 0 x 14

Get_PCL

GO_LINK

Remaining PCL Transfer Account = > PCL Offset 0 x 10

Last Buffer Bit Set?

N

Y

Get Next PCL Address

1 = > Ready

Valid?

1 = > DMA Halt Interrupt
Next PCL Address = > Current

PCL Address

1 = > Packet CMP

INT = 1?

1 = > DMA Packet Interrupt

Return

END
N

A
B

Retry Status
Y

N

0 = > Ready

CHK_INT

0 = > Link

0 = > BSY

IDLE

Get_PCL

CHK_INT

Figure 9. State Machine Flowchart (Continued)

Hardware Functional Description

36 SCPA020A

This Channel’s TX FIFO have Threshold Size
Worth or Remainder Worth of Room?

Isochronous?
Y

XMIT

0 = > Retry

0 = > Previous Valid

Get Packet Words 0 x 18,0 x 1c

CMD = XMT?

Current DMA Buffer Transfer Count = 0?

ISO_XMIT

DO_AUX
N

Y

Retry?
Y

N

N

PCI = > FIFO

Transfer Count – Master Byte Count

Last Buffer

CNA ENA = 1?
N

Ready?
N

Send Begin of Packet Token

Current Data Buffer Address + Master Byte Count

Get Next Buffer and Count
Previous Valid?

CHA ENA = 1?

Packet Count = 1?

N

N

Y

Busy Status?
Y

P1394 Timeout or Retry Overrun?
N

1 = > Packet Error

Status and Ack = > Previous PCL

CHK_INT

Send End of Packet Token

DC E F

Figure 9. State Machine Flowchart (Continued)

Hardware Functional Description

37 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

IDLE

0 = > Retry

Y

Packet Count + 1

Current PCL Address = > Previous PCL Address

Status and Ack Field = > Current

CHK_INT

Master Error or P1394 Timeout?

DC E F

1 = > Previous Valid

Next PCL Address Valid?
N

Wait for Status?

Next PCL Address = > Current PCL Address

CH ENA = 1?

Busy Status?

Packet Count = 1?

Y

Busy Status?

1 = > Flush

Y

0 = > Flush

Previous PCL Addr = > Current
PCL Addr

Y
Packet Error?

1 = > Retry

0 = > Previous Valid

GET_ERROR_ADR

Y

Next PCL Address Valid?
Y

GO_Link

1 = > DMA Halt Interrupt

0 = > Link

0 = > BSY

N

Y

Figure 9. State Machine Flowchart (Continued)

Hardware Functional Description

38 SCPA020A

IDLE

N

Send Begin of Packet Token

ISO_XMIT

Current DMA Buffer Transfer Count = 0?

CH ENA = 1?

Cycle Start OK?

Ready?

N

Y

This Channel’s TX FIFO have
Threshold Size Worth or

Remainder Worth of Room?

PCI = > FIFO

Transfer Count – Master Byte Count

0 = > Link

N

N

Buffer Address + Master Byte Count

Last Buffer?

Send End of Packet Token

Packet Count + 1

Update Status = > Current PCL

CHK_INT

Next PCL Address Valid?

N

Next PCL Address = > Current PCL Address

GET_PCL

1 = > DMA Halt Interrupt

0 = > BSY

Get Next Buffer and Count

N

Figure 9. State Machine Flowchart (Continued)

Hardware Functional Description

39 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

G

N

1 = > Branch

DO_AUX

0 = > Branch

Condition = True?

CMD = Branch?

N

CMD = Address?

Wait?

CH_ENA?
N

Y

N

Temp + Buffer(2–0) = > Temp

CMD = Swap and Compare?
N

Temp (31–16) = > Temp (15–0), Temp (15–0) = > Temp (31–16)

CMD = Compare?
N

{[Temp (15–0) xnor Buff (15–0)] or~ Buff (31–16)} = FFFF?
N

1 = > Ready (0)

0 = > Ready (0)

CMD = Store 0?
N

00000000 = > @ Destination

CMD = Store 1?
N

FFFFFFFF = > @ Destination

CMD = Load?
N

@ Source = > Prev Addr Register

KH J L

Figure 9. State Machine Flowchart (Continued)

Hardware Functional Description

40 SCPA020A

G

CMD = Store?
N

Prev Addr Register = > @ Destination

KH J L

Last Command?
N

Update Status

CHK_INT

Branch = 1?
Y

Get Next Command

CONTINUE_PCL

Destination Address VALID?
Y

Next PCL Address Valid?
Y

Destination = > Current PCL

GET_PCL

1 = > DMA Halt Interrupt

0 = > Link

0 = > BSY

IDLE

GO_LINK

Figure 9. State Machine Flowchart (Continued)

Hardware Functional Description

41 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

CURRENT DMA BUFFER TRANSFER COUNT = 0?

TRANSFER COUNT – MASTER BYTE COUNT

BUFFER ADDRESS + MASTER BYTE COUNT

LAST BUFFER?

GET NEXT BUFFER & COUNT

Y

N

0 => LINK

0 => BSY

NEXT PCL ADD => CURR PCL ADD

NEXT PCL ADDRESS VALID?N

N CHA ENA = 1?

UPDATE STATUS => CURR PCL

CHK_INT

READY? N

GET_PCL

1 => DMA HALT INTERRUPT

LBUS <=> PCI

LBUS to PCI? N

PCI => LBUS LBUS => PCI

0001 => ACK STATUS

IDLE

DATA BUFFER ADDRESS => PCL OFFSET 0x14

REMAINING PCL TRANSFER COUNT => PCL OFFSET 0x10

LAST BUFFER BIT SET?

0 => READY

1 => READY

N

Hardware Functional Description

42 SCPA020A

One can think of the DMA packet processor as five independent DMA channels
all running concurrently. The actual implementation utilizes one main control
state machine which multiplexes between the five DMA channels over time.
Priority supervisor logic continuously examines the current context of all
channels and assigns the channel with the highest priority of pending activity to
the state machine for execution.

A DMA channel initializes after reset to a static condition where it is waiting for
a valid PCL pointer to be written to the current packet control list address register,
and the CH ENA and link bits to be set in the DMA control register. A valid PCL
pointer is determined by the state of bit 0 of the current packet control list address
register. A 1 indicates an invalid address, a 0 indicates a valid address.

The DMA will then go to the address pointed to by the current packet control list
address register, get the next address and, if valid, will make this the current PCL
address and begin execution. If this address is invalid, then the link bit is cleared
in the DMA control register, a DMA halted interrupt is generated, if enabled, for
this channel with associated status (DMA_HLT[x]) in the interrupt status register
(see configuration register definitions) and the channel goes inactive. This
mechanism provides a sanity check on the PCL memory structures as well as
provides a relatively easy way to continue channel PCL execution in the event a
next address link is missed.

When a valid next PCL address is detected the DMA will then set the BSY bit in
the DMA control register, get the words at PCL offset 0x18 and 0x1C. A check is
then made to determine whether the command is a receive, transmit, PCI to/from
LBUS, or auxiliary command.

4.2.3.1.1 DMA Receive Operation

A receive operation for isochronous and asynchronous data in the GRF will
proceed by checking to see if a wait condition exists. The wait condition is
determined by the wait select bits of the data buffer control word.

Once the wait condition no longer exists, the processor enters a data movement
phase. Here a loop is entered where the current transfer count is checked to see
if it has gone to zero. If so, then a check is made to see if this is the last data buffer
of the PCL buffer list. If it is the last buffer and a packet boundary has not been
indicated by the link layer controller writing a special control token word in the
GRF FIFO, then an error has occurred because more packet data is to be
transferred than the buffer can hold. In this case the PKT ERR bit is set in the DMA
status register and the DMA will flush the remaining data up to the packet
boundary.

If the current transfer count has decremented to zero and there is another buffer
in the PCL list, then the DMA will acquire the new buffer address and transfer
count and proceed with the transfer. While moving data from the receive FIFO to
the PCI interface, the DMA will wait for the FIFO to have sufficient data before
requesting the PCI bus master to perform a transfer. This transfer threshold is
reached whenever the number of bytes in the receive FIFO reaches a high water
mark. This high water mark is equal to the value specified in the lower bound field
of the DMA global register. Refer to the register definition for further details.

Hardware Functional Description

43 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

The DMA gets information of a packet’s data size from the link when the packet
is first being written into the FIFO by the link layer controller. It uses this transfer
count to determine if the data in the FIFO is the remaining data in the packet and,
if so and the size is less than the high water mark, it will request a transfer of the
PCI master where the transfer count is equal to this remainder. While the DMA
is transferring data, the data buffer start address register and the remaining data
buffer transfer length bits in the DMA control register are updated to reflect the
current state of the transfer.

When the link layer controller encounters the end of a packet, it writes a special
control token word into the FIFO to mark the end of a packet. Embedded in this
control word are status bits that indicate the completion state of the packet on the
bus. The DMA uses this end of packet marker to terminate the transfer of data
from the FIFO to the PCI bus. If the end-of-packet marker for an asynchronous
receive indicates a 1394 busy acknowledge, then the DMA reacquires the PCL’s
first buffer address and transfer count and starts the packet’s transfer all over. If
there was no busy status indicated from the end of packet marker, then the DMA
status register is loaded with the acknowledge status passed from the link layer
controller in the end of packet marker, the PKT CMP bit is set, and it is then written
to memory in the PCL status word at PCL offset 0xC along with the total number
of bytes (including retries) transferred for this PCL. If the INT bit is set in the data
buffer control word, then an interrupt is signaled and latched in the corresponding
(DMA_PCL[x]) bit in the interrupt status register. If the command was a RCV AND
UPDATE command, then the remaining transfer count and next buffer address
are written to PCL offsets 0x10 and 0x14, respectively.

The DMA then determines whether another PCL has been linked to the current
PCL by fetching the next list adr (PCL offset 0x00). If it is valid as indicated by
bit 0 = 0, then the DMA will make this the current PCL address and continue
execution as shown. If another PCL had not been linked to the current PCL as
indicated by bit 0 = 1, then the Link and BSY bits are cleared in the DMA control
register, a DMA halted interrupt is generated for this channel, if enabled, with
associated status (DMA_HLT[x]) in the interrupt status register, and the channel
becomes idle.

4.2.3.1.2 DMA Asynchronous Transmit Operation

Asynchronous transmits are determined after a valid PCL pointer has been
written to the current packet control list start address register and the CH ENA and
link bits have been set as shown in the flow chart. The overall goal of the
asynchronous packet processor is to remain 1 packet ahead of the current packet
being transferred from the FIFO to the 1394 bus by the link layer controller. From
the DMA’s point of view, this packet on the bus was the previous packet. Any
status reported by the link layer controller is assumed to be for this previous
packet however, setting the wait-for-status bit in the data buf0 ctl/byte_cnt/cmd
will prevent this pipelining operation. The DMA keeps the address of the previous
packet control list start address in the previous packet control list start
address/temp register. A flag called Previous PCL Valid is kept by the DMA in the
DMA global register to keep track of whether it has stored a valid address.

Hardware Functional Description

44 SCPA020A

A transmit operation for an asynchronous channel checks to see if a wait
condition exists. The wait condition is determined by the wait select bits of the
data buf0 ctl/byte_cnt/cmd. A flag called retry is kept by the DMA in the DMA
global register. This flag is used by the DMA to keep track of when the wait
conditions should be evaluated as these wait conditions are ignored during
retries.

Once the wait condition no longer exists, the processor writes a control token to
the FIFO indicating the beginning of a packet and enters a data movement phase.
Here a loop is entered where the current transfer count is checked to see if it has
gone to zero. If so, then a check is made to see if this is the last data buffer of the
PCL buffer list. If there is another buffer in the PCL list, then the DMA will acquire
the new buffer address and transfer count and proceed with the transfer. While
moving data into the asynchronous transmit FIFO from the PCI interface, the
DMA will wait for the FIFO to have sufficient room before requesting the PCI bus
master to perform a read transfer. The DMA will request a transfer of the PCI
master with the byte count equal to the high water mark as defined in the
aforementioned DMA receive operation. While the DMA is transferring data, the
data buffer start address register and the remaining data buffer transfer length
bits in the DMA control register are updated to reflect the current state of the
transfer.

The DMA knows that the end of a packet has been reached when the last byte
of data from a buffer has been transferred to the asynchronous transmit FIFO and
the buffer is the last of the PCL list as indicated by the last buff bit (bit 18) of the
ctl/byte_cnt PCL word. If the previous packet address is valid, then the DMA will
delay checking status until there is a full packet queued in the transmit FIFO. This
way returned status is always for the previous packet unless the wait-for-status
bit is set. If there is only one packet in the transfer, then the previous and current
packets are the same. If the previous packet address is valid, then the DMA will
look at the packet counter. When a packet has been transmitted to the 1394 bus
by the link layer controller and status for this packet is valid, the link layer
controller will decrement the packet counter. The DMA will spin waiting for packet
counter to go to zero indicating valid status is available for the previous packet.
If the status indicates that the previous packet is to be retried, then the DMA sets
a flush FIFO request to the link layer controller and then waits for the link layer
controller to indicate the completion of the FIFO flush by the removal of the retry
indication. The DMA then backs up to the previous packet and starts the transfer
all over. If no retry occurred, then the DMA will update the DMA status register
with the acknowledge status passed from the link layer controller, the PKT CMP
is set, and it is then written to memory in the previous PCL status word at PCL
offset 0xC along with the number of bytes transferred for the currently active PCL,
which may not be relevant for the previous PCL. If the INT bit is set in the data
buffer control word, then an interrupt is signaled and latched in the corresponding
(DMA_PCL[x]) bit in the interrupt status register.

Hardware Functional Description

45 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

When the status has been checked, the DMA will write a special control token to
the transmit FIFO to mark the end of the packet. The packet count is incremented
to 1 to indicate to the link layer controller that the end of packet has been written
by the DMA. The current PCL address is saved as the previous PCL address in
the previous packet control list start address register and a previous valid flag is
set in the DMA global register.

The DMA then determines whether another PCL has been linked to the current
PCL by fetching the next list adr (PCL offset 0x00). If it is valid as indicated by
bit 0 = 0, then the DMA will make this the current PCL address and continue
execution as shown. If it is not valid, or if the wait-for-status bit is set, then the DMA
waits for the current packet to be transferred by the link layer controller. When
valid status is available as indicated by the packet counter decrementing to zero,
the DMA will check to see if the packet is to be retried as indicated by a 1394 busy
status. If so, then the FIFO is flushed as aforementioned and the transmit is
attempted again.

If there was a PCI master error, 1394 transfer error, transmit timeout, retry
overrun, or FIFO underrun as indicated by the link layer controller, then the PKT
ERR bit is set in the DMA status register along with the acknowledge status and
the status is updated in the PCL (offset 0xC). In the event of an error that sets the
Ack_Type bit, it may be possible that the host software will want to take some
action other than continuing the transmit. The DMA provides for the capability in
this case to skip around the PCL(s) which form the stream of data to this device.
Software can set the asynchronous transmit error address entry of the PCL at
offset 0x4 to point to the first PCL of the next stream of transmit data (next
asynchronous transmit node) or to some other error processing PCL. If the
asynchronous transmit error address is valid, then the DMA will continue
execution with that PCL. If this address is not valid, then the DMA channel will go
idle the same way as any time it encounters a next PCL address marked invalid.
If this next stream feature is not to be used, then one should set this entry to the
same value as the next list adr (PCL offset 0x00).

Once a status with Ack_Type is set for an asynchronous transmit, the DMA must
be given a valid asynchronous transmit error address (offset 0x4) before it will
continue. This means that even if a different address is loaded into the current
PCL address register, offset 0x4 will still be used for fetching the next PCL. If one
changes the current PCL address register to point to say, for example, a dummy
PCL, then offset 0x4 of this dummy PCL must still contain a valid pointer.

If the DMA halts due to DMA_HLT[x], and the next PCL stream entry was invalid,
then rewriting the next PCL stream entry is necessary since the DMA is in the
GET_NEXT_STREAM state of Figure 9 and the DMA state machine is ignoring
the next list adr. Always setting the next list adr and the next PCL stream to the
same address is therefore required if the next stream feature is not to be used
to prevent a hang in any asynchronous XMT channel that invokes the next PCL
stream entry due to an error.

Hardware Functional Description

46 SCPA020A

If there was no retry, timeout, or FIFO underrun, then the DMA will update the
DMA status register with the 1394 acknowledge status passed from the link layer
controller, the PKT CMP bit is set, and it is then written to memory in the PCL
status word at PCL offset 0xC. If the INT bit is set in the data buffer control word,
then an interrupt is signaled and latched in the corresponding (DMA_PCL[x]) bit
in the interrupt status register.

If another PCL had not been linked to the current PCL as indicated by bit 0 = 1,
then the link and BSY bits are cleared in the DMA control register, a DMA halted
interrupt is generated, if enabled, for this channel with associated status
(DMA_HLT[x]) in the interrupt status register, and the channel becomes idle.

4.2.3.1.3 DMA Isochronous Transmit Operation

Isochronous transmits are determined after a valid PCL pointer has been written
to the packet control list start address register and the CH ENA and link bits have
been set as shown in the flow chart in Figure 9. The overall goal of the
isochronous packet processor is to keep the isochronous transmit FIFO full. This
means there may be a number of packets queued up in the FIFO especially if the
packets are small. Since isochronous packets are unreliable in that there is no
return status, the DMA will mark the packet complete as soon as it has been
transferred to the FIFO.

A transmit operation for isochronous will proceed by checking to see if a wait
condition exists. The wait condition is determined by the wait select bits of the
data buf0 ctl/byte_cnt/cmd. Since only one packet per channel is allowed during
a cycle start period on the bus, the DMA will also optionally wait for an indication
from a cycle start framer. Its job is to watch the isochronous transmit channels and
generate a FIFO control word used by the link layer controller to determine the
grouping of packets during a cycle start period. Figure 10 illustrates this concept.
The waiting for the cycle start framer can be disabled by the multi-isochronous
packet per cycle start bit in the PCL data buf0 ctl/byte_cnt/cmd word. The effect
of setting the multi-isochronous bit is global and can affect other isochronous
transmit channels so all isochronous channels should set the multi-isochronous
bit to the same value to prevent otherwise unpredictable behavior.

DMA
Control
Word

Last
ISO

Packet

Control
Word

End
of

Packet

Ch 1
Packet

Control
Word

End
of

Packet

Ch 2
Packet

Control
Word

Last
ISO

Packet

Ch 0
Packet

Control
Word

Last
ISO

Packet

Ch 3
Packet

Ch 0
Packet

Link Layer
Controller

Ch 0 Ch 3 Ch 0 Ch 2 Ch 1

Cycle
Start

Packet

Cycle
Start

Packet

Cycle
Start

Packet

Figure 10. Isochronous Transmit Packet Framing

When the wait conditions no longer exist, the DMA writes a beginning of packet
control word into the transmit DMA and enters a data transfer phase. Here a loop
is entered where the current transfer count is checked to see if it has gone to zero.

Hardware Functional Description

47 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

If so, then a check is made to see if this is the last data buffer of the PCL buffer
list. If there is another buffer in the PCL list, then the DMA will acquire the new
buffer address and transfer count and proceed with the transfer. While moving
data into the asynchronous transmit FIFO from the PCI interface, the DMA will
wait for the FIFO to have sufficient room before requesting the PCI bus master
to perform a read transfer. Refer to the aforementioned high water mark definition
in the receive operation description. While the DMA is transferring data, the data
buffer start address register and the remaining data buffer transfer length bits in
the DMA control register are updated to reflect the current state of the transfer.

When the last byte of data from a buffer has been transferred to the isochronous
transmit FIFO and the buffer is the last of the PCL list as indicated by the last buff
bit (bit 18) of the ctl/byte_cnt PCL word, then the DMA knows that the end of a
packet has been reached. The DMA will write a special control word token to the
transmit FIFO to mark the end of the packet. The packet count is incremented by
1 to indicate to the link layer controller that a full packet has been loaded into the
isochronous transmit FIFO by the DMA. The DMA will update the DMA status
register with status of 0x0001, the PKT CMP bit is set, and it is then written to the
PCL status word at PCL offset 0xC along with the number of bytes transferred.
If the INT bit is set in the data buffer control word, then an interrupt is signaled and
latched in the corresponding (DMA_PCL[x]) bit in the interrupt status register.

The DMA then determines whether another PCL has been linked to the current
PCL by fetching the next list adr (PCL offset 0x00). If it is valid as indicated by
bit 0 = 0, then the DMA will make this the current PCL address and continue
execution as shown. If another PCL had not been linked to the current PCL as
indicated by bit 0 = 1, then the link and BSY bits are cleared in the DMA control
register, a DMA halted interrupt is generated, if enabled, for this channel with
associated status (DMA_HLT[x]) in the interrupt status register, and the channel
becomes idle.

4.2.3.1.4 DMA PCI to Local Bus and Local Bus to PCI Transfers

PCI to/from local bus transfer commands transfers data between the PCI bus and
the local bus. The PCI address and the number of bytes to transfer is derived from
the PCL data buff ctl/byte_cnt/cmd word(s) in the PCL as for other transfer
commands such as transmits. The difference is that the destination or source of
the transfer is not the FIFO but rather the local bus. The local bus address is
generated from the AUX_ADR register (see hardware register definitions).

A PCI to/from local operation proceeds by checking to see if a wait condition
exists. The wait condition is determined by the wait select bits of the data buf0
ctl/byte_cnt/cmd word. When the wait conditions no longer exist, the DMA enters
a loop where the current transfer count is checked to see if it has gone to zero.
If so, then a check is made to see if this is the last data buffer of the PCL buffer
list. If there is another buffer in the PCL list, then the DMA will acquire the new
buffer address and transfer count and proceed with the transfer. While the DMA
is transferring data, the data buffer start address register and the remaining data
buffer transfer length bits in the DMA control register are updated to reflect the
current state of the transfer.

When the last byte of data from a buffer has been transferred to/from the local bus
and the buffer is the last of the PCL list as indicated by the last buff bit (bit 18) of

Hardware Functional Description

48 SCPA020A

the ctl/byte_cnt PCL word, then the DMA knows that the end of the transfer has
been reached. The remaining transfer count and next buffer address are written
to PCL offsets 0x10 and 0x14, respectively. The DMA will update the DMA status
register with status of 0x0001, the PKT CMP bit is set, and it is then written to the
PCL status word at PCL offset 0xC along with the number of bytes transferred.
If the INT bit is set in the data buffer control word, then an interrupt is signaled and
latched in the corresponding (DMA_PCL[x]) bit in the interrupt status register.

The DMA then determines whether another PCL has been linked to the current
PCL by fetching the next list adr (PCL offset 0x00). If it is valid as indicated by
bit 0 = 0, then the DMA makes this the current PCL address and continue
execution as shown. If another PCL had not been linked to the current PCL as
indicated by bit 0 = 1, then the link and BSY bits are cleared in the DMA control
register, a DMA halted interrupt is generated, if enabled, for this channel with
associated status (DMA_HLT[x]) in the interrupt status register, and the channel
becomes idle.

4.2.3.2 DMA Registers

This function implements a control and status register set for controlling and
monitoring the status of each DMA channel. The register set is implemented for
each DMA channel as specified in the register definition section of this
specification. The functionality of the register set is defined as follows:

• Previous packet control list start address/temp register—Updated by the
DMA as it processes a queue of packets during asynchronous transmits to
keep track of the previous PCL in order to post completion status. It is also
used during auxiliary commands as a temporary holding register for load and
store data.

• Packet control list start address register—Initialized by application software
to point to the start of the first (dummy) PCL in a PCL chain. The DMA will use
the next address loaded in this PCL to link to the first actual PCL. Updated
by the active DMA channel as PCLs are processed.

• Data buffer start address register—This register is loaded with the data buffer
pointers fetched from the PCL as the active DMA channel processes the PCL.

• DMA status register—Stores an ongoing count of the number of bytes
transferred during this PCL. Contains the completion status of the transfer.
After processing of the PCL is completed, the active DMA channel writes the
status information of this register back into PCL at offset 0xC.

• DMA control register—Contains control bits to allow application software to
enable or disable the operation of the DMA channel and refetch the next
address of a PCL for linkage. Stores the data buffer transfer control, transfer
byte count, and commands that are fetched from the PCL .

• DMA ready register—The LSB of this register can cause the DMA channel
to wait for a ready condition before it continues execution of a XMT, RCV,
LOAD, STORE, STORE0 or STORE1 command. This ready condition is
selected by the control word(s) of the PCL. The LSB of this register can cause
the DMA channel to conditional branch to during execution of a BRANCH
command. This condition is selected by the control word(s) of the PCL.

Hardware Functional Description

49 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

• Current DMA state—Stores the state vector of the DMA channel. This register
is updated during the active time of the DMA channel and maintains the last
state vector generated when the channel goes inactive.

• Receive packet count register—This is a global register that contains the
current received packet count. The DMA loads this register with the receive
packet count passed in the receive FIFO token words. This count is then
decremented as the data is transferred to the PCI bus.

• DMA global register—This is a global register that contains some state flags
used by the state machine to keep track of the execution of an asynchronous
transmit packet. It also stores the lower bound bits used in conjunction with
the cache line size register to determine the burst size requested of the PCI
master.

4.2.3.3 DMA Channel Global Issues

There are several global issues dealing with the DMA channel programming.
• If a DMA channel programmed for asynchronous receives errors with a

packet error or master error, then the asynchronous transmit error address
at PCL offset 0x4 must point to a valid PCL before that channel’s execution
can continue.

• Only one DMA channel may be programmed for asynchronous transmits due
to complications with 1394 retries.

• If any isochronous transmit channel has the multi-isochronous bit set in the
command word of any of its PCL’s, then all other isochronous transmit
channels should also have this bit set for proper operation.

• PCL_TO_AUX and AUX_TO_PCL commands use the same AUX address
register, so
– Only one channel should be permitted to use these commands
– PCL’s using these commands must reload the AUX address register as

necessary.

4.2.4 FIFO Logic
This function is designed around a single 1024 X 33 bits clocked dual-port RAM.
The RAM is partitioned into 3 logical FIFOs. Each FIFO is programmable in size
from 0 to 255 decimals. Each decimal value represents 4 quadlets (16 bytes). For
a given combination of FIFO sizes, the sum total of the 3 FIFO sizes is less than
or equal to 1024 quadlets. Each FIFO is assigned to a 1394 transfer mode as
shown in Table 4. Figure 11 provides a high level functional block diagram of the
FIFO.

Table 4. FIFO Assignments to a 1394 Transfer Mode
FIFO 1394 RECEIVER 1394 TRANSMITTER ACTIVE DMA CHANNEL

General receive FIFO
(GRF)

Writes asynchronous or isochro-
nous packets received from the
1394 bus to the FIFO

NOP Reads the asynchronous or iso-
chronous packets from the FIFO
and writes them to host memory

Asynchronous transmit
FIFO (ATF)

NOP Reads asynchronous packets
from the FIFO and transmits them
over the 1394 bus

Reads the asynchronous packets
from host memory and writes them
into the FIFO

Isochronous transmit FIFO
(ITF)

NOP Reads isochronous packets from
the FIFO and transmits them over
the 1394 bus

Reads the isochronous packets
from host memory and writes them
into the FIFO

Hardware Functional Description

50 SCPA020A

33

33

8

ctl from 1394
xmit/recv

link_clk
25MHz

data to 1394
transmit logic

data in from
1394 receive
logic

ctl from
1394
transmitter
and addr
mapping
logic

ctl from 1394
receiver and
addr mapping
logic

async_xmit
read pointer

RAM address mapping offsets
to FIFO read–write pointer
pairs

Pointer address
mapping logic

FIFO size, test
control and

status registers

slave write data

slave read data

read–write ctrl

1394 FIFO
transmitter
and
receiver
occupancy
status logic

FIFO status
to 1394
transmit–
receive
logic

PCI–to–link
clock domain

pointer
translation logic

pci_clk

link_clk

link–to–PCI
clock domain

pointer
translation logic

pci_clk

link_clk
DMA FIFO
occupancy
status logic

3(8)
FIFO

status to
DMA logic

3(8)

3(8)

LINK–SIDE CLOCK
DOMAIN

PCI–SIDE CLOCK
DOMAIN

general_recv
write pointer

3(8)

8

general_recv
write pointer
general_recv
write pointer

8

general_recv
write pointer

88

isoch_xmit
read pointer

8

mux

8

adrA adrB

dinA dinB

doutA doutB

clkA clkB

wr/rdA wr/rdB

33

mux

8

8

8

8

byte_pack

33
byte_unpack

DMA read data
from host

DMA write data
to host mem

pci_clk
0–33 MHz

ctl from DMA
logic

general_recv
read pointer

async_xmit
write pointer

isoch_xmit
write pointer

ctl from
DMA logic
and addr
mapping
logic

256 x 33
dual–port RAM

Figure 11. FIFO High Level Functional Block Diagram

4.2.4.1 General Receive FIFO

The general receive FIFO (GRF) is comprised of the read and write pointer pair
as shown in Figure 11. These pointers are used in accessing the dual-port RAM.
Each pointer counts in the range from 0 to its FIFO_size_value minus 1. The RAM
addressing range for each pointer is set by logic which generates an offset value.
The offset is added to the value of the pointer to map it to a unique range of RAM
addresses. The read pointer is used by the active DMA channel to read
asynchronous or isochronous packets from the PCI-side of the RAM, and write
them into host memory. The write pointer is used by the 1394 receiver to write
asynchronous or isochronous packets—received over the 1394 bus—into the
link-side of the RAM. The two pointers are connected to their respective sides of
the RAM through a multiplexer network.

Hardware Functional Description

51 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4.2.4.2 Asynchronous Transmit FIFO

The asynchronous transmit FIFO (ATF) is comprised of the read and write pointer
pair as shown in Figure 11. These pointers are used in accessing the dual-port
RAM. Each pointer counts in the range from 0 to its FIFO_size_value minus 1.
The RAM addressing range for each pointer is set by logic which generates an
offset value. The offset is added to the value of the pointer to map it to a unique
range of addresses. The write pointer is used by the active DMA channel to write
asynchronous packets—that it reads from host memory—into the PCI-side of the
RAM. The read pointer is used by the 1394 transmitter to read asynchronous
packets from the link-side of the RAM and transmit them over the 1394 bus. The
two pointers are connected to their respective sides of the RAM through a
multiplexer network.

4.2.4.3 Isochronous Transmit FIFO

The isochronous transmit FIFO (ITF) is comprised of the read and write pointer
pair as shown in Figure 11. These pointers are used in accessing the dual-port
RAM. Each pointer counts in the range from 0 to its FIFO_size_value minus 1.
The RAM addressing range for each pointer is set by logic which generates an
offset value. The offset is added to the value of the pointer to map it to a unique
range of addresses. The write pointer is used by the active DMA channel to write
isochronous packets—that it reads from host memory—into the PC-side of the
RAM. The read pointer is used by the 1394 transmitter to read isochronous
packets from the link-side of the RAM, and transmit them over the 1394 bus. The
two pointers are connected to their respective sides of the RAM through a
multiplexer network.

4.2.4.4 FIFO Status Logic

This function implements the logic required to generate an occupancy status for
each logical FIFO. In computing the PCI-side FIFO status, the link-to-PCI clock
domain translation logic samples the current value of each pointer on the link side
of the FIFO and translates these samples from the link clock domain over to the
PCI clock domain. Each translated link-side pointer is compared to its
corresponding PCI-side pointer to generate an occupancy status for each FIFO.
This status is used by the DMA logic to pace the transfer of data between host
memory and the FIFO. In computing the link-side FIFO status, the PCI-to-link
clock domain translation logic samples the current value of each pointer on the
PCI-side of the FIFO and translates these samples from the PCI clock domain
over to the link clock domain. Each translated PCI-side pointer is compared to its
corresponding link-side pointer to compute an occupancy status for each FIFO.
This status is used by the 1394 transmit-receive logic to pace the transfer of data
between the1394 bus and the FIFO.

4.2.4.5 Pointer Dual-Port Address Mapping Logic

This function uses the three size values from the FIFO size register, to map each
of the FIFO read/write pointer pairs, to a unique range of addresses in the
dual-port RAM. The pointer address mapping function is generated in
accordance with the equations as shown below.

Hardware Functional Description

52 SCPA020A

Let ITF = Isochronous transmit FIFO
Let ATF = Asynchronous transmit FIFO
Let GRF = General receive FIFO

ITF pointer RAM address = ITF _ pointer_ value(0 to (ITF_size – 1)) + 0x00
ATF pointer RAM address = ATF_ pointer _value(0 to (ATF_size – 1)) + ITF_ size
GRF pointer RAM address = GRF _pointer_ value(0 to (GRF_size – 1)) + (ITF_size + ATF_size)

4.2.4.6 Byte Pack Logic

This function implements the logic required to assemble a full quadlet using data
read from host memory on byte aligned addresses, by the active DMA channel.
The logic consists of four 8-bit wide registers and four 8-to-1 multiplexers. Each
register-mux pair corresponds to a byte lane. The input of each register connects
to an input byte lane which is switched by the active DMA channel to host memory.
The output of each mux connects to an output byte lane, which drives the FIFO.
For each 8-to-1 multiplexer, four inputs connect in a one-to-one correspondence
to each register output. The remaining four inputs connect in a one-to-one
correspondence to each register input. This configuration allows byte-aligned
DMA read data from the four input byte lanes, to be cross-point switched in a
different order to the four output byte lanes. The control of the byte lane
multiplexers is performed by the active DMA read channel.

4.2.4.7 Byte Unpack Logic

This function implements the logic required to disassemble the quadlet data read
from the FIFO into individually selectable bytes for writing to host memory on byte
aligned addresses by the active DMA channel. This logic consists of four 8-bit
wide registers and four 8-to-1 multiplexers. Each register-mux pair corresponds
to a byte lane. The input of each register connects to an input byte lane, which
is driven from the FIFO. The output of each multiplexer connects to an output byte
lane which is switched by the DMA channel to the host memory. For each of the
8-to-1 multiplexers, four inputs connect in a one-to-one correspondence to each
register output. The remaining four inputs connect in a one-to-one
correspondence to each register input. This configuration allows the quadlet read
from the FIFO to be cross-point switched in a different order onto the output byte
lanes. The control of the byte lane multiplexers is performed by the active DMA
write channel.

4.2.4.8 FIFO Control and Status Registers

This function implements the control and status register set of the FIFO logic.
These registers are implemented as specified in section 5.4, FIFO Control and
Status Register Definitions. The functionality of the register set is summarized as
follows:

• FIFO size register—Used by application software for setting the size of each
logical FIFO. This register provides three size parameters for programming
the size of the ITF, ATF, GRF. This register is accessed via a PCI-slave read
or write operation.

• PCI-side FIFO pointer write-read port—Provides a PCI-slave write-read port
for software to fetch the current value of the PCI-side pointers or write a value
to them.

Hardware Functional Description

53 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

• Link-side FIFO pointer write-read port—Provides a PCI-slave read port for
software to fetch the current value of the link-side pointers or write a value to
them.

• General receive FIFO POP-PUSH port—A 32-bit slave write to this port
causes the data quadlet to be pushed onto the top of the GRF. A 32-bit slave
read from this port causes a data quadlet to be popped off the top of the GRF.

• Asynchronous transmit FIFO POP-PUSH port—A 32-bit slave write to this
port causes the data quadlet to be pushed onto the top of the ATF. A 32-bit
slave read from this port causes a data quadlet to be popped off the top of the
ATF.

• Isochronous transmit FIFO POP-PUSH port—A 32-bit slave write to this port
causes the data quadlet to be pushed onto the top of the ITF. A 32-bit slave
read from this port causes a data quadlet to be popped off the top of the ITF.

• FIFO control token status read port—A slave read from this port returns the
value of bit 33 of the last data quadlet that was popped from one of the three
FIFOs that was previously accessed.

• FIFO diagnostic test and control register—Provides a PCI-slave read/write
port for software to configure the FIFO logic for diagnostic testing and control
its operation.

• Transmit FIFO threshold register—Provides a PCI-slave read/write port for
software to set the transmit threshold for the asynchronous and isochronous
transmit FIFOs.

4.2.5 1394 Link Layer Logic

This function implements the 1394 link layer control logic (LLC) as specified in
section 6.0 of the IEEE 1394–1995 standard. This function controls the
transmission and reception of 1394 packet data between the PCILynx FIFO and
other devices on the 1394 bus. Figure 12 provides a high level functional block
diagram of the link layer controller logic.

Hardware Functional Description

54 SCPA020A

XMIT Status to
DMA Control

1394
Transmitter

Logic

1394
Control

ANS
Status

Registers

33

Cycle
Timer

Cycle
Monitor

Transmitter
CRC

Generator

3232

1394 Receiver Logic
and

DMA Channel Address
Comparator Logic

32

PHY
Interface

Logic

PHY–Link
Interface
Signals

32

33

32

32

Receiver
CRC

Generator

3232

Data from FIFO
Dual–Port RAM

ASYNC XMIT FIFO CNTL

ISOCH XMIT FIFO CNTL

Slave Write
Data

Slave Read
Data

Slave Rd/Wr
Control

Data to FIFO
Dual-Port RAM

General Receiver
FIFO Control

Figure 12. High-Level 1394 Link Layer Controller Block Diagram

4.2.5.1 1394 Link Layer Control and Status Registers

This function implements the control and status register logic required by
application software to control the operation of the LLC and monitor its operation.
This register set is implemented as specified in section 5.5, 1394 Link Layer
Control and Status Register Definitions. The following register set is
implemented.

• 1394 bus number – node number register: Provides the interface for
application software to program the bus and node numbers.

• 1394 link layer control register: Provides the interface for application software
to control the operating mode of the LLC.

• 1394 link layer interrupt status register: Provides the interface for application
software to decode the cause of interrupts generated by the LLC and provide
a mechanism for clearing the interrupt status.

• 1394 link layer interrupt enable register: Provides the interface for application
software to selectively enable the status bits in the interrupt status register to
generate a LLC interrupt or disable them from generating a LLC interrupt.

• 1394 cycle timer register: Provides the interface for application software to
program the cycle timer with an initial value or to read its current value. When
the LLC is operating as a cycle master, this timer is used to time the
transmission of cycle start packets every 125 µs.

Hardware Functional Description

55 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

• 1394 physical layer access register: Provides the interface for application
software to write data to or read data from the physical layer control and status
registers.

• 1394 diagnostic test control: This register provides the interface for
application software to perform diagnostic testing of the 1394 LLC logic.

• DMA channel 4–0 word 0 receive packet compare value registers: There are
five of these registers. Each register is assigned to a DMA channel
comparator logic function. The DMA channel comparator matches a selected
set of bit positions in the compare value register to corresponding bit positions
of the first quadlet (word 0) of the incoming packet. The bit positions to match
are specified by the mask value contained in the word 0 receive packet
compare mask register.

• DMA channel 4–0 word 0 receive packet compare mask register: There are
five of these registers. Each register is assigned to corresponding DMA
channel comparator. The DMA channel compare logic uses the mask value
in this register to select the bit positions in word 0 that will be matched against
corresponding bit positions in the word 0 receive compare value register.

• DMA channel 4–0 word 1 receive packet compare value registers: There are
five of these registers. Each register is assigned to a DMA channel
comparator logic function. The DMA channel comparator matches a selected
set of bit positions in the compare value register to corresponding bit positions
of the first quadlet (word 1) of the incoming packet. The bit positions to match
are specified by the mask value contained in the word 1 receive packet
compare mask register.

• DMA channel 4–0 word 1 receive packet compare mask register: There are
five of these registers. Each register is assigned to corresponding DMA
channel comparator. The DMA channel compare logic uses the mask value
in this register to select the bit positions in word 1 that will be matched against
corresponding bit positions in the word 1 receive compare value register.

• Busy retry count register: The contents of this register specify the number of
times the 1394 transmitter should retry the transmission of an asynchronous
packet when a busy acknowledge is received from the destination node. This
register is read/write by application software via PCI slave access.

• Busy retry transmit time interval register: The contents of this register specify
the time interval that the transmitter must delay between successive retry
attempts, when a busy ack is received for each attempt. This register is
read/write by application software via PCI slave access.

• State machine vector register: The register provides software with the
capability to monitor the state vector of each state machine implemented in
the LLC.

• FIFO error counters: These counters count the underruns that occur on the
asynchronous and isochronous transmit FIFOs during packet transmissions
and the overruns occurring on the GRF during packet reception.

Hardware Functional Description

56 SCPA020A

4.2.5.2 1394 Packet Transmit Control Logic

This function implements the logic required to control the movement of 1394
packets from either the ITF or ATF to the PHY interface logic for transmission over
the 1394 bus. The design of the transmit control logic conforms to the detail
functional requirements as specified in section 6.3 of the IEEE 1394–1995
standard. The transmit control logic is designed to format the transmit packet
formats listed in Appendix C and the FIFO control token formats listed in
Appendix D. The following is high-level summary of the functions.

• Unload quadlets from the asynchronous transmit FIFO and correctly format
them into a 32-bit parallel 1394 asynchronous packet stream as specified in
section 6.2 of the IEEE 1394–1995 standard.

• Unload quadlets from the isochronous transmit FIFO and correctly format
them into a 32-bit parallel 1394 isochronous packet stream as specified in
section 6.2 of the IEEE 1394–1995 standard.

• Use the CRC logic to compute a CRC code for the header and payload
sections of a packet and insert these codes into packet stream in the time slot
as required by the format of the packet being transmitted.

• Input the parallel packet streams to the PHY-interface logic for conversion
from a parallel to a serial data stream format for transmission to the PHY.

• Transmit the cycle start packet when the LLC is programmed to operate as
the cycle master.

• Send the 1394 transmit bus requests to the PHY. The PHY layer will arbitrate
for the bus and send the indication to the transmitter to start transmitting when
the BUS grant is received.

• Execute retry transmissions using the single phase retryX protocol as
specified in the IEEE 1394–1995 standard.

• Set the speed of packet transmission.

Hardware Functional Description

57 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

4.2.5.3 DMA Channel Receive Packet Comparator Logic

This function implements the logic required to determine if an incoming packet
is to be accepted and loaded into the general receive FIFO. Figure 13 provides
a high level functional block diagram of the comparator logic. This function
implements five software programmable comparators. Each comparator is
assigned to service a DMA channel. A comparator is comprised of a word 0 field
select register, a word 1 field select register, a word 0 compare value register, a
word 1 compare value register and the comparison logic. The two field select
mask registers specify the bit fields, in word 0 and word 1 of the incoming packet,
that will be matched to an expected value by the comparator logic. The two
compare value registers specify the expected bit patterns that will be matched
against the selected bit fields in word 0 and word 1 of the incoming packet. The
priority encoder collects the DMA channel match indication from each
comparator and generates a 5-bit code that maps the incoming packet to a DMA
channel. The OR gate combines the select indications from the five comparators
and generates a single comparator match indication to the 1394 receiver logic.
The 1394 receiver logic uses the 5-bit DMA channel number and comparator
match indication to determine if the incoming packet is to be received into the
GRF. Refer to section 5.5, 1394 Link Layer Control and Status Register
Definitions for a detailed definition of the compare value and field select mask
registers.

Hardware Functional Description

58 SCPA020A

Slave_WRDAT(31–0)
DMA_Channel 0
Receive Packet

Comparator Logic

32

DMA_Channel 1
Receive Packet

Comparator Logic

32

DMA_Channel 2
Receive Packet

Comparator Logic

32

DMA_Channel 3
Receive Packet

Comparator Logic

32

DMA_CH_SEL(0)

DMA_CH_SEL(1)

DMA_CH_SEL(2)

DMA_CH_SEL(3)

DMA_CH_SEL(0)

DMA_CH_SEL(1)

DMA_CH_SEL(2)

DMA_CH_SEL(3)

Priority
Encoder

DMA_CH_SEL(0)

DMA_CH_SEL(1)

DMA_CH_SEL(2)

DMA_CH_SEL(3)

OR

DMA_Channel (2–0)

Comparator Match
to Receiver
Control Logic

0 = No Match
1 = Match

1394
Receiver Logic

GRF
Logic

RECV_DATA

RECV FIFO
Control

323232-bit
Packet Data Stream

from PHY_LINK Logic

Slave_RDDAT(31–0)

Slave_RD/WR
Control

DMA_Channel 4
Receive Packet

Comparator Logic

32

DMA_CH_SEL(4)
DMA_CH_SEL(4)

DMA_CH_SEL(4)

Figure 13. High-Level Functional Block Diagram of DMA
Channel Receive Packet Comparator Logic

4.2.5.4 1394 CRC Logic

This function implements the logic for performing the following functions:

• Generate a 32-bit auto-DIN CRC error code on the header part of the packet
data stream generated by the transmitter logic. The transmitter inserts this
code into data stream after the header.

• For packets which have a data payload, generate a 32-bit auto-DIN CRC
error code on the data payload portion of the packet stream generated by the
transmitter logic. The transmitter inserts this code at the end of the packet
stream.

• Generate a 32-bit auto-DIN CRC error code on the header part of an incoming
packet data stream. If the computed code is equal to the header CRC code
sent with the packet, then the receiver considers the header correct.

Hardware Functional Description

59 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

• Generate a 32-bit auto-DIN CRC error code on the payload section of an
incoming packet data stream. If the computed code is equal to the data CRC
code sent with the packet, then the receiver considers the data payload
correct.

4.2.5.5 1394 Packet Receiver Control Logic

This function implements the logic required to receive incoming 1394 packets.
The design of the receiver control logic conforms to the detail functional
requirements as specified in section 6.0 of the IEEE 1394–1995 standard. The
following is high-level summary of the functions:

• Use the bus and node ID registers and/or the DMA channel receive packet
comparators to determine if an incoming asynchronous or isochronous
packet is to be accepted.

• Use the CRC logic function to verify correct reception of an incoming packet
by checking the header CRC. If the packet has a payload, then the data CRC
is checked.

• Load received packets into the general receive FIFO if the packet passes the
addressing and CRC checks.

• Generate acknowledge on nonbroadcast asynchronous receive packets.

• Snoop 1394 bus traffic when snoop mode is enabled.

• Receive cycle start packets.

• Receive self-ID packets and load them into the general receive FIFO.

4.2.5.5.1 Snoop Mode

When the SNOOP_ENABLE bit is set in the link layer control register, the
PCILynx enters a special mode where only DMA channel 0 is used for all received
packets. The RCV_COMP_VALID bit is ignored as well as various comparator
bits. All packets seen on the 1394 bus are received into DMA channel 0 PCLs.

The SNOOPED packet quadlets contain all data quadlets observed on the 1394
bus, including the 1394 header quadlets, header CRC quadlet, any payload
quadlets, and the payload CRC quadlet. These CRC quadlets are not normally
received into the FIFO. The header CRC follows the 1 quadlet isochronous
header or the 3 or 4 quadlet asynchronous header. The payload CRC follows the
last payload quadlet, and is aligned on a quadlet boundary. Runt packets, PHY
configuration, SELFID, and Link-on, do not have any additional CRCs that will
show up in the received packet.

A SNOOPED ACK quadlet containing the ACK information as seen on the 1394
bus is inserted into the FIFO following the received packet. If a SNOOPing node
is specifically addressed by an asynchronous packet, then the SNOOPing node
will never return an ACK on the 1394 bus and will insert a SNOOPED ACK of 0
into the receive FIFO. A SNOOPED ACK of 0 is always stored for isochronous
packets.

Hardware Functional Description

60 SCPA020A

4.2.5.6 Cycle Timer Logic

This function implements the logic for performing the cycle timer function. The
design of this function conforms to the requirements of a cycle timer function as
specified in section 8.0 of the IEEE 1394–1995 standard. The cycle timer
contains the cycle counter and the cycle offset timer. The offset timer is either free
running, or reloaded on a low-to-high transition on the CYCLEIN signal pin, or
takes a reload value from the receiver, based on the state of the CYCLEMASTER
and CYCLESOURCE bits in the 1394 LLC control register. This timer is also
enabled or disabled using the CYCLE_TIMER_ENABLE bit in the 1394 LLC
control registers. The cycle timer is used to support isochronous data transfers.
The cycle timer is 32 bits wide. The low order 12 bits count as a modulo 3072
counter, which increments once every 24.576 MHz clock period, or (40.69 ns).
The next 13 high order bits are a count of 8 kHz (or 125 µs), and the highest 7 bits
count in seconds.

4.2.5.7 Cycle Monitor Logic

This function implements the logic for performing the cycle monitor function. The
cycle monitor is used to support isochronous data transfers. It monitors the LLC
activity and handles the scheduling of isochronous activity.

When a cycle start packet is received or transmitted, the cycle monitor indicates
the occurrence of these events by generating a cycle started or cycle received
interrupt. The cycle monitor also detects missing cycle start packets and
generates a cycle lost interrupt. When an isochronous cycle is completed, the
cycle monitor asserts a cycle done interrupt. The cycle monitor signals the
transmitter to send a cycle start packet when the CYCLEMASTER enable bit is
asserted in the 1394 LLC control register.

4.2.5.8 PHY-Link Interface Logic

This function implements the logic for interfacing the PCILynx to the physical
layer chip. The design of this logic conforms to the requirements of the LINK-PHY
interface specification in annex J of the IEEE 1394–1995 standard. This function
provides the PCILynx with access to the physical layer services. The following
high level functions are performed:
• Use the packet speed code from the transmitter to select the number of serial

data streams to generate. If the speed code is set for 100 Mbps, then the
parallel data stream is converted into 2 serial data streams each running at
50 Mbps. For 200 Mbps, the parallel data stream is converted into 4 streams;
at 400 Mbps, the parallel data stream is converted into 8 streams; each
running at 50 Mbps.

• Use the PHY receive speed indication to convert the incoming serial data
streams from the PHY into a parallel data stream for input into the receiver
control logic. For any incoming packet, the PHY generates 2 serial data
streams to the PCILynx if it is receiving the packet at 100 Mbps, 4 streams at
200 Mbps, or 8 streams at 400 Mbps. The serial data streams are each
clocked at 50 Mbps.

• Detect and receive serial status responses from the PHY and convert them
into a parallel format. The status responses convey PHY interrupt indications
and/or return data in response to a PHY register read access request.

Hardware Functional Description

61 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

• Detect and receive serial acknowledge packets and convert them into a
parallel format.

• Accept transmitter packet transmit requests or PHY register read/write
access requests and format them into a serial request stream for
transmission to the PHY.

• Operate with an electrical isolation barrier between the PHY and PCILynx
devices.

4.2.5.9 PHY-Link Interface Electrical Isolation

The PCILynx implements the electrical isolation logic for the electrical isolation
mechanism specified in the IEEE 1394–1995 standard; however, the input
receivers for the PHY signals do not meet the hysteresis requirements.
Therefore, the link_iso pin must be held at a high level.

Hardware Register Definitions

62 SCPA020A

5 Hardware Register Definitions

5.1 Memory and Configuration Address Space Register Map

OFFSET PCI MEMORY ADDRESS SPACE 0 PCI CONFIGURATION ADDRESS SPACE

00

PCI Configuration, Miscellaneous, and Local
Bus Registers

PCI Configuration, Miscellaneous, and Local Bus Registers

FC

100

DMA Control and Status Registers

9FC

A00

FIFO Control and Status Registers

AFC

B00

1394 Link Layer and Physical Layer Status and
Control Registers

FCC

PCI Memory Address Space 1

00

PCILynx Local Bus RAM

FFFC

PCI Memory Address Space 2

00

PCILynx Local Bus AUX

FFFC

PCI Expansion ROM

00

PCILynx Local Bus ROM

FFFC

Figure 14. Memory and Configuration Address Space Map

Hardware Register Definitions

63 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

Table 5. PCI Address Offset Assignments for PCILynx Registers

PCI INTERFACE AND AUX PORT REGISTERS

000 Device ID = 8000 Vendor ID = 0x104C = TI

004 Status Command

008 Class Code = 0x0C0000 Revision ID

00C BIST Header type Latency timer Cache line size

010 Memory base address register 0 – Internal PCI–Lynx

014 Memory base address register 1 – External SRAM on local bus

018 Memory base address register 2 – AUX Port on local bus

01C Zero

020 Zero

024 Zero

028 Zero

02C Subsystem ID Subsystem vendor ID

030 PCI expansion ROM base address

034 Zero

038 Zero

03C Max_Latency Min_Grant Int_Pin Int_Line

040 Miscellaneous control

044 Serial EEPROM control

048 PCI interrupt status

04C PCI interrupt enable

050 PCI test

054 Zero

058 Subsystem access

|
0B0 Local bus control

0B4 Local bus address

0B8 PCI_GPIO[1–0] control register A

0BC PCI_GPIO[3–2] control register B

0C0 PCI_GPIO_DATA_0000 read–only port

0C4 PCI_GPIO_DATA_0001 read/write port

0C8 PCI_GPIO_DATA_0010 read/write port

0CC PCI_GPIO_DATA_0011 read/write port

0D0 PCI_GPIO_DATA_0100 read/write port

0D4 PCI_GPIO_DATA_0101 read/write port

0D8 PCI_GPIO_DATA_0110 read/write port

0DC PCI_GPIO_DATA_0111 read/write port

0E0 PCI_GPIO_DATA_1000 read/write port

0E4 PCI_GPIO_DATA_1001 read/write port

0E8 PCI_GPIO_DATA_1010 read/write port

0EC PCI_GPIO_DATA_1011 read/write port

0F0 PCI_GPIO_DATA_1100 read/write port

0F4 PCI_GPIO_DATA_1101 read/write port

0F8 PCI_GPIO_DATA_1110 read/write port

0FC PCI_GPIO_DATA_1111 read/write port

Hardware Register Definitions

64 SCPA020A

DMA CONTROLLER REGISTERS

100 DMA channel 0 previous packet control list address/temp

104 DMA channel 0 current packet control list address

108 DMA channel 0 current data buffer address

10C DMA channel 0 status

110 DMA channel 0 control

114 DMA channel 0 ready

118 DMA channel 0 current state

120 DMA channel 1 previous packet control list address/temp

124 DMA channel 1 current packet control list address

128 DMA channel 1 current data buffer address

12C DMA channel 1 status

130 DMA channel 1 control

134 DMA channel 1 ready

138 DMA channel 1 current state

140 DMA channel 2 previous packet control list address/temp

144 DMA channel 2 current packet control list address

148 DMA channel 2 current data buffer address

14C DMA channel 2 status

150 DMA channel 2 control

154 DMA channel 2 ready

158 DMA channel 2 current state

160 DMA channel 3 previous packet control list address/temp

164 DMA channel 3 current packet control list address

168 DMA channel 3 current data buffer address

16C DMA channel 3 status

170 DMA channel 3 control

174 DMA channel 3 ready

178 DMA channel 3 current state

180 DMA channel 4 previous packet control list address/temp

184 DMA channel 4 current packet control list address

188 DMA channel 4 current data buffer address

18C DMA channel 4 status

190 DMA channel 4 control

194 DMA channel 4 ready

198 DMA channel 4 current state

1A0 to
8E0

This range of address offsets is reserved for future use in implementing status and control
registers for DMA channels 5 through 63

900 DMA diagnostic test control

904 DMA receive FIFO packet count

908 DMA global

FIFO REGISTERS

A00 FIFO size

A04 PCI-side FIFO pointer write-read port

A08 Link-side FIFO pointer write-read port

A0C FIFO control token status read-port

Hardware Register Definitions

65 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

A10 FIFO control token enable and test mux control

A14 ATF-ITF transmit data ready threshold control

A20 General receive FIFO pop-push port 0 FIFO bit 32 set to 0 on write

A24 General receive FIFO pop-push port 1 FIFO bit 32 set to 1 on write

A28 Not used

A2C Not used

A30 Asynchronous transmit FIFO pop-push port 0 FIFO bit 32 set to 0 on write

A34 Asynchronous transmit FIFO pop-push port 1 FIFO bit 32 set to 1 on write

A38 Not used

A3C Not used

A40 Isochronous transmit FIFO pop-push port 0 FIFO bit 32 set to 0 on write

A44 Isochronous transmit FIFO pop-push port 1 FIFO bit 32 set to 1 on write

A48 to
AFC

Reserved

LINK LAYER CONTROLLER REGISTERS

B00 DMA channel 0 word 0 receive packet comparator value

B04 DMA channel 0 word 0 receive packet comparator mask

B08 DMA channel 0 word 1 receive packet comparator value

B0C DMA channel 0 word 1 receive packet comparator mask

B10 DMA channel 1 word 0 receive packet comparator value

B14 DMA channel 1 word 0 receive packet comparator mask

B18 DMA channel 1 word 1 receive packet comparator value

B1C DMA channel 1 word 1 receive packet comparator mask

B20 DMA channel 2 word 0 receive packet comparator value

B24 DMA channel 2 word 0 receive packet comparator mask

B28 DMA channel 2 word 1 receive packet comparator value

B2C DMA channel 2 word 1 receive packet comparator mask

B30 DMA channel 3 word 0 receive packet comparator value

B34 DMA channel 3 word 0 receive packet comparator mask

B38 DMA channel 3 word 1 receive packet comparator value

B3C DMA channel 3 word 1 receive packet comparator mask

B40 DMA channel 4 word 0 receive packet comparator value

B44 DMA channel 4 word 0 receive packet comparator mask

B48 DMA channel 4 word 1 receive packet comparator value

B4C DMA channel 4 word 1 receive packet comparator mask

B50 to
EF0

This range of address offsets is reserved for future use in implementing comparator con-
trol registers for DMA channels 5 through 63

F00 1394 bus number – node number

F04 1394 link layer control

F08 1394 cycle timer

F0C 1394 physical layer access control

F10 1394 diagnostic test control

F14 1394 link layer interrupt status

F18 1394 link layer interrupt enable

F1C 1394 busy retry count and retry interval

F20 LLC state machine vector monitor port 1

F24 FIFO overrun-underrun error counters

Hardware Register Definitions

66 SCPA020A

5.2 PCI Configuration and Miscellaneous Register Definitions

5.2.1 Device-Vendor ID @000

This register provides application software access to the vendor ID and device
ID numbers that are assigned to the PCILynx ASIC. This register is read-only.

Device ID = 0x8000 Vendor ID = 0x104C (TI)

048121620242831

00

BIT NO. BIT NAME DIR DESCRIPTION

31–16 DEVICE_ID[15–0] r Identification number for PCI LYNX = 0x8000 (fixed) read-only

15–00 VENDOR_ID[15–0] r Identification Number of Manufacturer = 0x104C = TI (fixed) read-only

5.2.2 Command – Status @004

This register provides application software with an interface for controlling the
PCILynx PCI operating behavior and monitoring the PCI slave and master
operation status. This register is initialized to 0x02000000 on power-up reset.
Status bits 31–16 are cleared by writing a 1 to the bit position to be cleared.

0000 0000 0000 000

048121620242831

04 PE SE MA MIA TTA DEV
SEL

status command

SERR 0 PERR 0 0 0MWI MSTR MEMMPE

BIT NO. BIT NAME DIR DESCRIPTION

31 PARERR r/w PCILynx detected a parity error. (parity_detected = 1, no_error = 0)

30 SYSERR r/w PCILynx asserted SERR# signal. (asserted = 1, not_asserted = 0)

29 MSTABT r/w PCILynx as master aborted PCI transaction. abort = 1

28 MST_TGTABT r/w PCILynx as master was aborted by the target. abort = 1

27 TGT_TGTABT r/w PCILynx asserted target abort as a target. abort = 1

26–25 DEVSEL[1–0] r Devsel# timing setting. 01=medium read-only

24 MSTR_PAR r/w PCILynx as master detected a data parity error or received a PERR signal from the target.
Data parity error = 1, no data parity error = 0

23 FST0 r Target fast back-to-back capable. not capable = 0 read-only

22–10 Reserved r Return 0s when read. read-only

09 FST r Enable fast back-to-back transaction. disabled = 0 read-only

08 SEER_ENA r/w Enable system error driver. (enable = 1, disable = 0)

07 WAIT r Address/data stepping enable. disabled = 0 read-only

06 PAR_ENA r/w Respond to parity error enable. (enable = 1 (MSTR_PAR), disable = 0)

05 VGA r VGA palette snooping enable. disabled = 0 read-only

04 MWI_ENA r/w Memory write-invalidate command enable. (enable = 1, disable = 0)

03 SPC r Special cycle operation enable. disabled = 0 read-only

02 MSTR_ENA r/w PCILynx bus master mode enable. (enable = 1, disable = 0)

01 MEM_ENA r/w Memory address space enable. (enable = 1, disable = 0)

00 I_O_ENA r I/O address space access enable. disabled = 0 read-only

Hardware Register Definitions

67 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.2.3 Class Code – Revision ID @008

This register provides an interface for application software to obtain the class and
revision code parameters assigned to the PCILynx.

Rev ID = 0x04*

048121620242831

08 Class Code = 0x0C0000
(serial bus/IEEE 1394)

*TSB12LV21B

BIT NO. BIT NAME DIR DESCRIPTION

31–08 CLASS_CD[23–0] r PCI class code = 0x0C0000 (serial bus / 1394) (fixed) read-only

07–00 REV_ID[7–0] r PCI revision code. (fixed) read-only

Revision ID: 0x00 = TSB12LV21PGF (production) [f643950],
0x01 = TSB12LV21APGF (prototype) [f643178]
0x02 = TSB12LV21APGF (production) [f643178A],
0x03 = Custom device
0x04 = TSB12LV21BPGF (production) [f711327]

5.2.4 Header Type-Latency TImer-Cache LIne Size @00C

This register provides an interface for application software to program the PCI
cache line size, PCI latency timer, PCI header type, and PCI built-in test
parameters. This register is set to 0x00000000 on power-up reset.

Cache Line Size

048121620242831

0C 0000 0000 0000 0000 Latency Timer

BIT NO. BIT NAME DIR DESCRIPTION

31–24 BIST[7–0] r PCI built-in-test (BIST) = 0x00 (no BIST) read-only

23–16 HDR_TYPE[7–0] r PCI header type parameter = 0x00 (fixed) read-only

15–08 LAT_TIMER[7–0] r/w PCI latency timer parameter

07–00 CACHE_LINE_SZ[7–0] r/w PCI cache line size parameter

5.2.5 Memory Access Base Address 0 – PCILynx Internal Registers @010

This register provides the interface for application software to set the memory
access base address of the internal PCILynx register set. This register is set to
0x00000000 on power-up reset (or 0x00010000 on power-up reset if autoboot is
enabled).

048121620242831

10 MEM_BASE_0 [31–12] 0000 0000 0000

BIT NO. BIT NAME DIR DESCRIPTION

31–12 MEMBASE0[31–12] r/w Memory access base address register. MEMBASE0[31–12] = PCI LYNX internal register
base address

11–00 MEMBASE0[11–0] r Memory access base address register. MEMBASE0[11–0] = 0x000

Hardware Register Definitions

68 SCPA020A

5.2.6 Memory Access Base Address 1 – External RAM Port @014

This register provides the interface for application software to set the memory
access base address of the external RAM attached to the LYNX local bus. This
register is set to 0x00000000 on power-up reset.

048121620242831

14 MEM_BASE_0 [31–16] 0000 0000 0000 0000

BIT NO. BIT NAME DIR DESCRIPTION

31–16 MEMBASE1[31–16] r/w Memory access base address register. MEMBASE1[31–16] = External RAM base ad-
dress

15–00 MEMBASE1[15–0] r Memory access base address register. MEMBASE1[15–0] = 0x0000

5.2.7 Memory Access Base Address 2 – AUX Port @018

This register provides the interface for application software to set the memory
access base address of the AUX port on the LYNX local bus. This register is set
to 0x00000000 on power-up reset. The ZV port occupies upper 4K
(0xF000–0xFFFF) of the AUX port address space when CLK is set to a valid clock
in local bus control register (@0B0).

048121620242831

18 MEM_BASE_2[31–16] 0000 0000 0000 0000

BIT NO. BIT NAME DIR DESCRIPTION

31–16 MEMBASE2[31–16] r/w Memory access base address register. MEMBASE1[31–16] = AUX port base address

15–00 MEMBASE2[15–0] r Memory access base address register. MEMBASE1[15–0] = 0x0000

5.2.8 Subsystem ID @02C

This register provides a method for the subsystem vendor to uniquely identify his
device. The subsystem vendor ID is assigned by the PCI SIG to ensure
uniqueness. This register is set to 0x00000000 on power-up reset and then these
ID’s are loaded from the serial EEPROM. Also see Appendix F – Serial EEPROM
Data.

048121620242831

2C SubSystem ID SubSystem Vendor ID

BIT NO. BIT NAME DIR DESCRIPTION

31–16 Subsystem_ID[15–0] r Unique subsystem ID (initialized from serial EEPROM)

15–00 Subsystem vendor ID[15–0] r Unique subsystem vendor ID (initialized from serial EEPROM)

Hardware Register Definitions

69 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.2.9 Expansion ROM Base Address @030

This register provides an interface for application software to set the memory
access base address of the PCILynx external expansion ROM. To access this
address space, both the base address should be set to an appropriate PCI
address and the ROM enable bit (bit 0) set to 1. This register is set to 0x00000000
on power-up reset when AUTOBOOT is inactive and this register is set to
0x00000001 on power up when AUTOBOOT is active.

048121620242831

30 ROM_BASE [31–16] 0000 0000 0000 0000 ENA

BIT NO. BIT NAME DIR DESCRIPTION

31–16 ROMBASE[31–16] r/w PCILynx expansion ROM base address

15–01 Reserved r Return 0s when read.

00 ROMEN r/w Enable expansion ROM access. (enable = 1, disable = 0)

5.2.10 Max_Latency–Min_Grant–Int__Pin–Int_Line Register @03C

This register provides the interface for application software to read values for the
Max_Latency, Min_Grant, and interrupt pin parameters, and to write/read values
for the interrupt line. The interrupt line register is set to 0x00 on power-up reset.
The interrupt pin register is read-only and fixed at a value of 0x01. The minimum
grant is set to 0x01, and maximum latency is set to 0x02 on power reset. After
power reset, the MAX_LAT and MIN_GNT registers are loaded from serial
EEPROM (if present). The PCI interface returns retry status to any accesses
while the serial EEPROM machine is active initializing these locations. Also see
Appendix F – Serial EEPROM Data.

048121620242831

3C MAX_LAT INT_PIN INT_LINEMIN_GNT

BIT NO. BIT NAME DIR DESCRIPTION

31–24 MAX_LAT[7–0] r Maximum latency (reset to 0x02, then initialized from serial EEPROM)

23–16 MIN_GNT[7–0] r Minimum grant time (reset to 0x01, then initialized from serial EEPROM)

15–08 INT_PIN[7–0] r Interrupt pin used. INTPIN = 0x01 = INTA

07–00 INT_LINE[7–0] r/w Interrupt line – indicates which interrupt PCILynx is connected to (set by system software)

Hardware Register Definitions

70 SCPA020A

5.2.11 Miscellaneous Control @040

This register provides an interface for application software to perform
miscellaneous control operations. This register also supplies operational status
information. This register is set to 0x00000000 on power-up reset.

0000 0000

048121620242831

40
000 000000 0000 MAX

RETRY

R
E

T
R

Y

P
O

S
T

B
U

R
S

T

P
A

U
S

E

A
U

T
O

F
R

_I
N

T

S
W

R
S

T

BIT NO. BIT NAME DIR DESCRIPTION

31–16 Reserved r Return 0x0000 on a read

15–12 MAXRTY_CNT[3–0] r/w Maximum no. of retries that PCILynx master will attempt when a retry termination status
occurs. (0 = infinite number of retries)

11 ENA_MST_RTY r/w Enable PCILynx master cycle retry count. (enable = 1, disable = 0)

10–08 Reserved r Return 0s when read.

07 ENA_POST_WR r/w Enable PCI slave posted writes. Operational software should set to 0 in PCILynx Rev A
and above. (enable = 1, disable = 0)

06 ENA_SLV_BURST r/w Enable PCI slave burst. Operational software should set to 0 in PCILynx Rev A and above
to ensure PCI Bus Specification, Revision 2.1 compliance. (enable = 1, disable = 0)

05–04 Reserved r Return 0s when read.

03 PAUSE_MSTR r/w Pause the PCI master on the next access (pause = 1, no pause = 0)

02 AUTOBOOT_IN r Read the value of the autoboot input pin.

01 SET_FORCE_INT w Set forced interrupt. set = 1. This bit always reads 0.

00 SWRST w Software reset. set to 1 to reset. This bit always reads 0.

Hardware Register Definitions

71 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.2.12 Serial EEPROM Control @044

This register provides an interface for application software to control the read of
the PCILynx external serial EEPROM. This register is set to 0x00000000 on
power-up reset. Since this register cannot be read until after the internal serial
EEPROM state machine has completed initializing configuration register
locations, the value read immediately after power up may not be 0.

The 5-µsec timer may be used to time serial EEPROM accesses. Start the timer
by writing a 0 to the timer bit, then poll the register until the timer bit is 1, which
will be approximately 5 µsec after starting the timer.

NOTE: Whenever the EEPROM is driving EEPDAT and the
TIMER_5USEC pin is to be set, simply logical ORing the
TIMER_5USEC bit is not appropriate since performing a read of
this register when the EEPROM is just starting to drive EEPDAT
may produce either a logic 0 or 1 depending on the speed of the
EEPROM and CPU. It is better to write TIMER_5USEC ORed with
values of EEPCLK and EEPDATA as determined to be current
values if using the TIMER_5USEC inside serial EEPROM
programming protocol.

The 5-µsec timer is derived from the phy_clk50 clock from the 1394 physical layer
device since the PCI clock frequency is not guaranteed. This timer will not
function if the 1394 physical layer device is not present or is not providing a clock
output. Care should be used in writing software for this timer to avoid software
hang conditions in the event of phy_clk50 not running. For example, the system
clock could be used to escape from 5-µsec timer polling after 1 second has
expired on the system clock.

0000 0000

048121620242831

44
0000 0000

E
R

R

N
O

T
_P

C
LK

R
D 5

0000 00

C
K

E
R

R

E
N

A

D
A

TA 0 0

s
µ

BIT NO. BIT NAME DIR DESCRIPTION

31–10 Reserved r Return 0s when read.

09 EEPERR r Serial EEPROM format error

08 EEPCHKERR r Serial EEPROM checksum error

07 NOTPRS r Serial EEPROM is not present. (present = 0, not_present = 1)

06 EEPCLK r/w Write: output serial EEPROM clock. (only if EEPRNA = 1) high = 1, low = 0
Read: read value of serial EEPROM clock signal

05 EEPENA r/w Select serial EEPROM interface controlling outputs.
Serial EEPROM control register controls outputs = 1
PCILynx internal SEEPROM state machine controls outputs = 0

04 EEPDAT r/w Write: Output serial EEPROM data. (only if EEPRNA = 1) (high = 1, low = 0)
Read: read value of serial EEPROM data signal

03 Reserved r Returns 0 when read.

02 EEPSTARTRD w Restarts serial EEPROM read state machine

01 Reserved r Returns 0 when read.

00 TIMER_5USEC r/w 5-µsec timer. (Time expired = 1, Start timer = 0)

Hardware Register Definitions

72 SCPA020A

5.2.13 PCI Interrupt Status @048

This register provides the interface for application software to determine the
events which generate an INTA interrupt. This register is set to 0x00000000 on
power-up reset. Interrupt status is cleared by writing a 1 to the bit to be cleared;
the interrupt status bit is cleared only if the interrupting condition no longer exists.

048121620242831

48
0000

4P
C

L

3P
C

L

3H
LT

1H
LT

0H
LT0000 00

4H
LT

2P
C

L

2H
LT

1P
C

L

0P
C

L

P
E

N
D

0

S
A

E
R

R

F
R

_I
N

T

S
D

E
R

R

M
D

E
R

R

M
_T

O

IS
_T

O

R
T

_T
O

A
U

X
T

O

LI
N

K

A
U

X
IN

T

BIT NO. BIT NAME DIR DESCRIPTION

31 INT_PEND r Interrupt pending

30 FRC_INT r/w Forced interrupt set from miscellaneous force interrupt bit

29 Reserved r Returns 0 when read.

28 SLV_ADR_PERR r/w Slave address parity error

27 SLV_DAT _PERR r/w Slave data parity error

26 MST_DAT_PERR r/w Master data parity error

25 MST_DEV_TO r/w Master device timeout

24 MST_RETRY_TO r/w Master retry timeout

23 INTERNAL_SLV_TO r/w Internal slave bus access timeout

22–19 Reserved r Return 0s when read.

18 AUX_TO r/w Local bus time out

17 AUX_INT r/w Local bus interrupt

16 P1394_INT r/w 1394 interrupt from link layer

15–10 Reserved r Return 0s when read.

09 DMA4_PCL r/w DMA channel 4 packet control list caused interrupt. Interrupt = 1. Writing a 1 to this bit clears this inter-
rupt.

08 DMA4_HLT r/w DMA 4 channel was halted. Interrupt = 1. Writing a 1 to this bit clears this interrupt

07 DMA3_PCL r/w DMA channel 3 packet control list caused interrupt. Interrupt = 1. Writing a 1 to this bit clears this inter-
rupt.

06 DMA3_HLT r/w DMA 3 channel was halted. Interrupt = 1. Writing a 1 to this bit clears this interrupt

05 DMA2_PCL r/w DMA channel 2 packet control list caused interrupt. Interrupt = 1. Writing a 1 to this bit clears this inter-
rupt.

04 DMA2_HLT r/w DMA 2 channel was halted. Interrupt = 1. Writing a 1 to this bit clears this interrupt

03 DMA1_PCL r/w DMA channel 1 packet control list caused interrupt. Interrupt = 1. Writing a 1 to this bit clears this inter-
rupt.

02 DMA1_HLT r/w DMA 1 channel was halted. Interrupt = 1. Writing a 1 to this bit clears this interrupt

01 DMA0_PCL r/w DMA channel 0 packet control list caused interrupt. Interrupt = 1. Writing a 1 to this bit clears this inter-
rupt.

00 DMA0_HLT r/w DMA 0 channel was halted. Interrupt = 1. Writing a 1 to this bit clears this interrupt

Hardware Register Definitions

73 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.2.14 PCI Interrupt Enable @04C

This register provides an interface for application software to selectively enable
the events which can cause an interrupt to occur. This register is set to
0x00000000 on power-up reset.

048121620242831

4C
0000

4P
C

L

3P
C

L

3H
LT

1H
LT

0H
LT0000 00

4H
LT

2P
C

L

2H
LT

1P
C

L

0P
C

L

P
E

N
D

0

S
A

E
R

R

F
R

_I
N

T

S
D

E
R

R

M
D

E
R

R

M
_T

O

IS
_T

O

R
T

_T
O

A
U

X
T

O

LI
N

K

A
U

X
IN

T

BIT NO. BIT NAME DIR DESCRIPTION

31 INT_PEND r Interrupt pending

30 FRC_INT_EN r/w Enable forced interrupt

29 Reserved r Returns 0 when read.

28 SLV_ADR_PERR_EN r/w Enable slave address parity error interrupt

27 SLV_DAT _PERR_EN r/w Enable slave data parity error interrupt

26 MST_DAT_PERR_EN r/w Enable master data parity error interrupt

25 MST_DEV_TO_EN r/w Enable master device timeout interrupt

24 MST_RETRY_TO_EN r/w Enable master retry timeout interrupt

23 INT_SLV_TO_EN r/w Enable internal slave timeout interrupt

22–19 Reserved r Return 0s when read.

18 AUX_TO_EN r/w Enable local bus time out interrupt

17 AUX_INT_EN r/w Enable local bus interrupt

16 P1394_INT_EN r/w Enable link layer interrupt. Input fed by LINK_INT in 1394 interrupt status register, masked by
LLC_INT_EN in 1394 interrupt enable register.

15–10 Reserved r Return 0s when read

09 DMA4_PCL_EN r/w DMA ch4 packet control list interrupt enable. enable = 1, disable = 0

08 DMA4_HLT_EN r/w DMA ch4 halted interrupt enable. enable = 1, disable = 0

07 DMA3_PCL_EN r/w DMA ch3 packet control list interrupt enable. enable = 1, disable = 0

06 DMA3_HLT_EN r/w DMA ch3 halted interrupt enable. enable = 1, disable = 0

05 DMA2_PCL_EN r/w DMA ch2 packet control list interrupt enable. enable = 1, disable = 0

04 DMA2_HLT_EN r/w DMA ch2 halted interrupt enable. enable = 1, disable = 0

03 DMA1_PCL_EN r/w DMA ch1 packet control list interrupt enable. enable = 1, disable = 0

02 DMA1_HLT_EN r/w DMA ch1 halted interrupt enable. enable = 1, disable = 0

01 DMA0_PCL_EN r/w DMA ch0 packet control list interrupt enable. enable = 1, disable = 0

00 DMA0_HLT_EN r/w DMA ch0 halted interrupt enable. enable = 1, disable = 0

Hardware Register Definitions

74 SCPA020A

5.2.15 PCI Test Register @050

This register provides the interface for application software to enable various test
modes and functions in the LYNX. This register is set to 0x00000000 on power-up
reset. Normal application software should not write this register. The
TEST_ENABLE pin must be high and the TEST_REG_EN must be set before
TEST_STATUS, TEST_SEEPROM, SET_OUTPUT_EN, SET_OUTPUT_FF, or
DISABLE_DRIVERS are functional.

0000 0000

048121620242831

50
0000 0000

O
U

T

st
at

us

di
sa

b00

S
E

E
P

S
et

O
ut

S
et

E
na

E
N

ATEST MUX
SELECT

00

BIT NO. BIT NAME DIR DESCRIPTION

31–14 Reserved r Return 0s when read.

13 TEST_OUTPUT r Test output from test mux.

12–08 TEST_MUX_SEL r/w Test mux select.

07–06 Reserved r Return 0s when read.

05 TEST_STATUS r/w Interrupt status register test mode (R/W). Test mode = 1, normal = 0

04 TEST_SEEPROM r/w Serial EEPROM test mode. Test mode = 1, normal = 0

03 SET_OUTPUT_EN r/w Set output enables. set = 1, normal = 0

02 SET_OUTPUT_FF r/w Set output flip-flops. set = 1, normal = 0

01 DISABLE_DRIVERS r/w 3-states normally output-only drivers. 3-stated = 1, normal = 0

00 TEST_REG_EN r/w Test register enable. enable = 1, normal = 0

TEST_MUX_SELECT [4–0] SELECTED SIGNAL TEST_MUX_SELECT [4–0] SELECTED SIGNAL

0x00 test_nand_chain output 0x10 PCI module – internal_mstr_act

0x01 dma_test_mux output 0x11 PCI module – pci_mstr_st

0x02 fifo_test_mux output 0x12 PCI module – aux_pci_act

0x03 link_test_mux output 0x13 PCI module – m_addr

0x04 PCI module – mstr_act 0x14 PCI module – m_data

0x05 PCI module – mstr_err 0x15 PCI module – pci_mstr_xfrq

0x06 PCI module – mstr_req 0x16 PCI module – mstr_byte_cnt_eq_0

0x07 PCI module – mstr_xfr 0x17 PCI module – pci_xfr_cnt_eq_0

0x08 PCI module – mstr_ack 0x18 PCI module – in_buf_full

0x09 PCI module – mstr_internal_cyc 0x19 PCI module – wr_buf_full

0x0A PCI module – my_slv_cyc 0x1A PCI module – wr_buf_empty

0x0B PCI module – slv_data 0x1B PCI module – mstr_fifo_rdy

0x0C PCI module – slv_rd 0x1C PCI module – aux_busy

0x0D PCI module – slv_wr 0x1D PCI module – zv_busy

0x0E PCI module – int_slv_xfr 0x1E PCI module – retry_slv

0x0F PCI module – int_pci_slv_act 0x1F PCI module – reserved

Hardware Register Definitions

75 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.2.16 Local Bus Control Register @0B0 {ROM, RAM, AUX, and ZV registers}
This register provides an interface for application software to control the pacing
of data transferred on the local bus to/from attached external devices. This
register also specifies the data bus width required for each external device type
and the polarity of incoming interrupts. This register is initialized to 0x000000E0
on PCI reset and then loaded from SEEPROM. Each byte controls a different
area – ROM, RAM, AUX and ZV. In early devices (before PCILynx Rev A), GPIO
polarity control does not work as documented here. Also see Appendix F – Serial
EEPROM Data.

048121620242831

B0

W
E

16
 b

itROM

G
A

T
E HSYNC

 CNT
CLK
SEL 16

 b
it AUX

WS 16
 b

it

R
S

T
P

O
L

IN
V RAM

WS
000

16
 b

it

WS
00

BIT NO. BIT NAME DIR DESCRIPTION

31 GATE_PIXEL_CLK r/w ZV pixel clock gating enable. 0 = free running pixel clock; zv_data_valid signal must be used to
determine when valid ZV data is present. 1 = gating enabled (gated mode); zv_pix_clk only toggles
when valid ZV data is present.

30–28 HSYNC_CNT[2–0] r/w Horizontal sync count. Number of horizontal sync decodes (i.e., writes to zoom port at address 0xF004)
required for each horizontal sync actually asserted on the ZOOM port HSYNC signal. Useful for formats
having multiple packets per horizontal line.

0 0 0 hsync cnt = 0. A hsync will still be generated for every frame
0 0 1 hsync cnt = 1
0 1 0 hsync cnt = 2
0 1 1 hsync cnt = 4
1 0 0 hsync cnt = 6
1 0 1 hsync cnt = 8
1 1 0 hsync cnt = 10
1 1 1 hsync cnt = 12

27–25 ZV_CLK[2–0] r/w ZV pixel clock select, Note: ONLY those denoted with a * are valid selections for 8-bit mode, all others
are 16-bit mode only. AUX address space F000–FFFF is allocated to ZV (ZV is enabled) when one of the
six available ZV pixel clock sources are selected.

0 0 X ZV port disabled
0 1 0 external clock
0 1 1 external clock / 2*
1 0 0 sclk / 2 (25.0 MHz)
1 0 1 sclk / 4 (12.5 MHz)*
1 1 0 pci_clk
1 1 1 pci_clk / 2*

24 ZV_16 r/w Data width, 1 = ZV access is 16 bits wide, 0 = ZV access is 8 bits wide

23–20 AUX_WS[3–0] r/w Number of waitstates to insert for external AUX access. A value of 0xF causes waitstates to be inserted
until either the AUX_RDYz input pin is asserted or 0xF waitstates have occurred.

19 INVERT_ZV_CLK w 1 = invert, 0 = don’t invert

18 AUX_INT_POL r/w AUX interrupt polarity, 1= invert, 0=don’t invert

17 AUX_RST r/w AUX port reset output

16 AUX_16 r/w Data width, 1 = AUX access is 16 bits wide, 0 = AUX access is 8 bits wide

15–12 RAM_WS[3–0] r/w Number of waitstates to insert for external RAM access. A value of 0xF causes waitstates to be inserted
until either the AUX_RDY input pin is asserted or 0xF waitstates have occurred.

11–09 Reserved r Return 0s when read.

08 RAM_16 r/w Data width, 1 = RAM access is 16 bits wide, 0 = RAM access is 8 bits wide

07–04 ROM_WS[3–0] r/w Number of waitstates to insert for external ROM access. A value of 0xF causes waitstates to be inserted
until either the AUX_RDY input pin is asserted or 0xF waitstates have occurred.

03–02 Reserved r Return 0s when read.

01 ROM_WR_EN r/w ROM write enable (writable nonvolatile memory)

00 ROM_16 r/w Data width, 1 = ROM access is 16 bits wide, 0 = ROM access is 8 bits wide

Hardware Register Definitions

76 SCPA020A

5.2.17 Local Bus Address Register @0B4

This port provides application software with an interface to specify the local bus
address to be used for DMA transfers from the local bus to the PCI bus. This
address autoincrements every time it is used. This address must be specifically
written to reinitialize. This register is initialized to 0x00000000 on power-up reset.

048121620242831

B4 Local Bus Address 000000 0000 0000 00

17 16

00

01

10

11

Local Bus Select

RAM_SEL

ROM_SEL

AUX_SEL

ZV_SSEL

BIT NO. BIT NAME DIR DESCRIPTION

31–18 Reserved r Return 0s when read.

17–16 ADDR_SELECT[1–0] r/w 00 = SRAM, 01 = ROM, 10 = AUX, 11 = ZOOM

15–02 AUX_ADR[15–02] r/w AUX address to use during slave reads and writes. Address autoincrements every time it is used
and the high byte enable (3) is valid. Must be rewritten to reinitialize.

01–00 Reserved r Return 0s when read.

5.2.18 PCI_GPIO[1–0] Control Register A @0B8

This register provides application software with an interface for configuring the
operating mode of GPIO[1–0] port pins. This register is initialized to 0x00000000
on power-up reset. Each 16-bit register half is accessed separately (i.e., 8- or
16-bit write).

0000

048121620242831

B8 000

P
O

L1 0

E
N

1

P
O

L0

E
N

0GPIO
SRC0

00000
GPIO
SRC1 000 0

BIT NO. BIT NAME DIR DESCRIPTION

31–29 Reserved r Return 0s when read.

28–24 GPIO_SRC1[4–0] r/w Data bit mux select for output on GPIO[1]

23–19 Reserved r Return 0s when read.

18 GPIO_POL1 r/w GPIO[1] output polarity control (0 = noninverted, 1 = inverted)

17 Reserved r Returns 0 when read.

16 GPIO_OUT_EN1 r/w GPIO[1] output enable control (0 = 3-state, 1 = enabled)

15–13 Reserved r Return 0s when read.

12–08 GPIO_SRC0[4–0] r/w Data bit mux select for output on GPIO[0]

07–03 Reserved r Return 0s when read.

02 GPIO_POL0 r/w GPIO[0] output polarity control (0 = noninverted, 1 = inverted)

01 Reserved r Returns 0 when read.

00 GPIO_OUT_EN0 r/w GPIO[0] output enable control (0 = 3-state, 1 = enabled)

Hardware Register Definitions

77 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.2.19 PCI_GPIO[3–2] Control Register B @0BC

This register provides application software with an interface for configuring the
operating mode of GPIO[3–2] port pins. This register is initialized to 0x00000000
on power-up reset. Each 16-bit register half is accessed separately (i.e., 8- or
16-bit write).

00000

048121620242831

BC 000

P
O

L3 0

E
N

3

P
O

L2

E
N

2GPIO
SRC2

00000
GPIO
SRC3 000 0

BIT NO. BIT NAME DIR DESCRIPTION

31–29 Reserved r Return 0s when read.

28–24 GPIO_SRC3[4–0] r/w Data bit mux select for output on GPIO[3]

23–19 Reserved r Return 0s when read.

18 GPIO_POL_OUT3 r/w GPIO[3] output polarity control (0 = noninverted, 1 = inverted)

17 Reserved r Returns 0 when read.

16 GPIO_OUT_EN3 r/w GPIO[3] output enable control (0 = 3-state, 1 = enabled)

15–13 Reserved r Return 0s when read.

12–08 GPIO_SRC2[4–0] r/w Data bit mux select for output on GPIO[2]

07–03 Reserved r Return 0s when read.

02 GPIO_POL_OUT2 r/w GPIO[2] output polarity control (0 = noninverted, 1 = inverted)

01 Reserved r Returns 0 when read.

00 GPIO_OUT_EN2 r/w GPIO[2] output enable control (0 = 3-state, 1 = enabled)

Hardware Register Definitions

78 SCPA020A

5.2.20 PCI GPIO DATA Read-Write Ports @0C0 through @0FC

This register provides application software with an interface for reading and
writing the four general purpose input/output ports, GPIO[3–0].

0000 0000

048121620242831

C0–FC
0000 0000

G
P

IO
3

G
P

IO
0

0000 0000

G
P

IO
2

G
P

IO
1

0000

The PCI address offsets indicated in the following table, are used by the
application software to perform PCI read or writes from or to various combinations
of GPIO ports.

The PCI address offset written to determines exactly the combination of GPIO
ports that are actually written. PCI address bit 2 enables GPIO[0] writes, bit 3
enables GPIO[1] writes, bit 4 enables GPIO[2] writes, and address bit 5 enables
GPIO[3] writes. This allows the programmer to set a 4-bit mask of the GPIO ports
to be considered, shift this mask left 2, and use the result to add as an offset to
0xC0. For example, to write to only GPIO port 0, use offset 0xC0+ (0x01<<2) =
0xC4. To write to GPIO port 3 only, use offset 0xC0 + (0x08<<2) = 0xE0.

PCI slave writes to these address offsets must write 32 bits to write to any GPIO
port.

The data bit value that is written to a GPIO port is selected from the 32-bit PCI
slave write data value using a 32:1 data bit mux. There are four of these muxes,
one for each GPIO port. The bit select control for each of the muxes, is set by the
value of the GPIO_SRCx[4–0] mux select field. These fields are specified in the
GPIO[1–0] and GPIO[3–2] control registers.

A read of the GPIO register always returns the value read from all four GPIO
ports.

PCI Address Offset GPIO Ports Written to GPIO Ports Read

0C0 None – NOP GPIO[3–0]

0C4 GPIO[0] GPIO[3–0]

0C8 GPIO[1] GPIO[3–0]

0CC GPIO[1,0] GPIO[3–0]

0D0 GPIO[2] GPIO[3–0]

0D4 GPIO[2,0] GPIO[3–0]

0D8 GPIO[2,1] GPIO[3–0]

0DC GPIO[2,1,0] GPIO[3–0]

0E0 GPIO[3] GPIO[3–0]

0E4 GPIO[3,0] GPIO[3–0]

0E8 GPIO[3,1] GPIO[3–0]

0EC GPIO[3,1,0] GPIO[3–0]

0F0 GPIO[3,2] GPIO[3–0]

0F4 GPIO[3,2,0] GPIO[3–0]

0F8 GPIO[3,2,1] GPIO[3–0]

0FC GPIO[3,2,1,0] GPIO[3–0]

Hardware Register Definitions

79 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.3 DMA Control and Status Register Definitions

5.3.1 DMA Channel 0 through 4 – Previous Packet Control List Address/Temp
@100, 120, 140, 160, 180

This register contains the address of the previous packet control list which is
being processed by the active DMA channel when programmed for
asynchronous transmit operations. This register is also used during the execution
of auxiliary commands to temporarily hold data during a load or store command.
This register is initialized to 0x00000000 on power-up reset. The contents of this
register remain unchanged when the DMA chains to another PCL.

048121620242831

100 + N*20 Previous PCL Address / Temp

BIT NO. BIT NAME DIR DESCRIPTION

31–00 PPLADR[31–0] r/w Previous packet control list address or temporary data during auxiliary store or load commands.

5.3.2 DMA Channel 0 through 4 – Current Packet Control List Address
@104, 124, 144, 164, 184

This register specifies the address of the current packet control list which is being
processed by the active DMA channel. This register is initialized by application
software to point to a PCL with a valid next address pointing to the start of the first
packet control list, which is the first in a queue of control lists to be processed. The
active DMA channel updates this register with start of a packet control list as it
steps through the queue. This register is initialized to 0x00000001 on power-up
reset in non-autoboot mode. This register is initialized to 0x00000000 on
power-up reset in autoboot mode.

048121620242831

104 + N*20 Current PCL Address

BIT NO. BIT NAME DIR DESCRIPTION

31–04 CPLADR[31–4] r/w Packet control list address – high order address bits

03–01 CPLADR[3–1] r/w Packet control list boundary – set = 000 to be on cache line boundary

00 CPLVALID r/w Packet control list address not valid. (not_valid = 1, valid = 0)

Hardware Register Definitions

80 SCPA020A

5.3.3 DMA Channel 0 through 4 – Current Data Buffer Address
@108, 128, 148, 168, 188

This register contains the start address of the host memory data buffer that is
being processed by the active DMA channel. The active DMA channel loads this
register with the data buffer start address that is obtained from the current packet
control list. This register is used by the DMA to read in the next PCL address for
validation. As a result, it may change during a PCL link operation. This register
is initialized to 0x00000000 on power-up reset. The contents of this register are
lost when the DMA chains to another PCL as this register is used to evaluate the
validity of the next PCL pointer.

048121620242831

108 + N*20 Current Buffer Address

BIT NO. BIT NAME DIR DESCRIPTION

31–00 CDBADR[31–0] r/w Data buffer start address currently being processed by the active DMA channel.

Hardware Register Definitions

81 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.3.4 DMA Channel 0 through 4 – DMA Channel Status @10C, 12C, 14C, 16C, 18C

This register contains ongoing status and byte count logging during the execution
of a PCL. The active DMA channel stores status from this register back at packet
control list offset 0xC. This register is initialized to 0x000000000 on power-up
reset. This is roughly the same information as appears in the PCL’s status. The
PCL should be consulted instead if DMA is still running, since this register can be
changing as the DMA processes multiple PCL’s.

048121620242831

10C
DMA Chan

T
Y

P
E

S
el

fID

M
E

R
R

P
E

R
R

IS
O

P
C

M
P

+N*20 SPD ACK – Transferred Count

STATUS

BIT NO. BIT NAME DESCRIPTION

31 Self ID Set when a self ID packet has been received by this channel. Refer to the definition of the receive comparator
registers for how a channel is enabled for self ID reception.

30 ISO MODE The received packet was an isochronous packet.

29 Mst Err PCI master error. Set to a 1 by the DMA if it receives an error indication (parity error, timeout, etc.) from the PCI
Master during execution of this PCL.
In general this is a fatal condition which will cause the channel to stop, the LINK, BSY, and ENA bit are cleared in
the DMA command register (see register definitions) and an DMA_HLT interrupt (see interrupt status register)
will be generated if enabled. Cleared by writing a 1 by software. Also writable with the opposite of write data when
DMATESTEN is 1.

28 Pkt Err Packet error. Set to a 1 by the DMA for any transfer to or from the 1394 bus in which the transfer had an error. The
error can be determined from the Ack_Type and Acks fields. Pkt Err may not be set if Mst Err is set since it may be
impossible for the DMA to update the PCL.

27 Pkt Cmp Packet complete. Written by the DMA upon completion of this packet.

26–21 Receive
Dma_Cha[5–0]

Received DMA channel number. This is the channel number received from the link controller via the receive
FIFO control word. Valid only for channels programmed for receive operations. These bits return 0s for other
commands.

Dma_Cha[5–0] DMA Channel Number

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 2

0 0 0 0 1 1 3

0 0 0 1 0 0
Others

4
Reserved

20–19 Rcv_Speed[1–0] The speed at which the packet was received for asynchronous or isochronous transfers. Valid only for channels
programmed for receive operations. These bits return 0s for other commands.
00 = 100 Mbps
01 = 200 Mbps
10 = 400 Mbps

Hardware Register Definitions

82 SCPA020A

STATUS (Continued)

BIT NO. BIT NAME DESCRIPTION

18–15 Acks Packet acknowledge. Ack status returned from the link layer controller for this packet. Written by the DMA upon
completion of this packet. These bits are written with 0s after completion of auxiliary commands. These bits are
written with 0x0001 after completion of an isochronous transmit or PCI to/from local bus transfers.
These bit also contain a special code for internally (non 1394) related errors when bit 14 (Ack_Type) is set. The
encoding for these errors are as follows:
0000 = Link reported a retry overrun
0001 = Link reported an ACK_TIMEOUT
0010 = Link reported a FIFO underrun
0011 = Link reported a CRC error on a received 1394 ack packet
0100 = DMA received an end of packet token while expecting a start of packet token. Catastrophic internal error.
0101 = No expected end of receive packet
0110 = Pipelined asynchronous transmit command encountered a command other than another asynchronous

transmit.
1110 = Link reported a corrupted header before the packet was transmitted.

14 Ack_Type Acknowledge type returned by 1394 transmitter logic
Ack_Type = 0 indicates a normal 1394 ack code is returned in bits 18–15
Ack_Type = 1 indicates a special ack code is returned in bits 18–15

13 Reserved Written with unknown data by the DMA.

12–00 Transferred
count

For all RCV and isochronous XMT commands, the DMA will update these bits with the total number of bytes
transferred (header + payload) for this packet. These bits are indeterminate for asynchronous transmits due to
the potentially pipelined nature of asynchronous XMT commands. The count will also include any retried packets
during asynchronous receives. These bits are written with 0s after completion of auxiliary commands.

Hardware Register Definitions

83 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.3.5 DMA Channel 0 through 4 – DMA Channel Control @110, 130, 150, 170, 190

This register provides the interface for application software to initiate the
operation a DMA channel and to monitor its operational status. This register is
initialized to 0x000000000 on power-up reset in non-autoboot mode or
0xa0000000 (CH ENA and LINK) in autoboot mode. This is roughly the same
information as appears in the PCL’s control. The PCL should be consulted
instead if the DMA is still running since this register can be changing as the DMA
processes multiple PCLs.

048121620242831

110 CC /
Wait B

ig
E

nd

IS
OSPD

M
U

LT
I

E
N

A

LI
N

K

B
U

S
Y

IN
T

W
A

IT

LA
S

T

+N*20 – CMD – current buffer transfer count

BIT NO. BIT NAME DIR DESCRIPTION

31 CH ENA r/w Write 1: Starts the DMA packet processing engine.
Write 0: DMA packet processing engine will stop immediately.

30 BSY r 1 = DMA packet processing engine is currently processing a PCL queue.
0 = DMA packet processing engine is idle waiting for a valid PCL to process.

29 LINK r/w 1 = DMA is to fetch or refetch the next address entry of the current PCL and perform a check on the
valid bit. If the valid bit is set, then the DMA will make the next address entry the current PCL and
continue execution.
0 = The DMA clears this bit when it encounters an invalid next address or next stream address
entry in the current PCL. The DMA will stop at this point and wait for a valid current PCL address,
LINK set to a 1, and a valid next address entry in the current PCL.

28 Reserved r This bit is ignored when read and written with 0.

27–24 CMD3–0 r Command select. These bits control what command the DMA channel will execute.

CMD[3–0] Command

0000 NOP. (NOP parameter fetched but ignored)

0001 RCV. (1394 FIFO to memory)

0010 XMT. (Memory to 1394 FIFO)

0011 LOAD. (@DESTINATION => TEMP)

0100 STORE_QUAD (4 bytes TEMP => @SOURCE)

0101 STORE0. (00000000 => @DESTINATION)

0110 STORE1. (FFFFFFFF => @DESTINATION)

0111 Conditional branch to destination if the conditions are met as specified in the
condition field. Status is updated and an interrupt is generated, if enabled,
prior to the branch.

1000 PCI_TO_LBUS.

1001 LBUS_TO_PCI.

1010 RCV_AND_UPDATE.

1011 STORE_DOUBLE. (2 bytes TEMP => @SOURCE)

1100 UNFORMATTED_XMT.

1101 ADD.

1110 COMPARE.

1111 SWAP & COMPARE (PCILynx Rev A and higher)

23 Reserved r This bit is ignored when read and written with 0.

Hardware Register Definitions

84 SCPA020A

BIT NO. BIT NAME DIR DESCRIPTION

22–20 Condition codes 2–0
(branch command)

r Branch command condition codes. These bits select what conditions have to be met during the
execution of the branch command to cause the address contained in destination to be loaded into
the next PCL address and linked.

Condition code
[2–0]

Branch condition

000 Don’t branch

001 Branch if DMA ready register = 1 (this channel)

010 Branch if DMA ready register = 0 (this channel)

011 Branch if external ready pin RDY = 1 (this channel)

100 Branch if external ready pin RDY = 0 (this channel)

101 Branch if GPIO port 2 is active (this channel)

110 Branch if GPIO port 3 is active (this channel)

111 Reserved

22–20 Wait Sel 2–0
(all commands except
b h)

r Wait select. These bits control what conditions have to be met before execution of the PCL will
continue.

branch) Wait select [2–0] Wait condition

000 Don’t wait, continue execution.

001 Wait for DMA ready register = 1 (this channel)

010 Wait for DMA ready register = 0 (this channel)

011 Wait for external ready pin RDY = 1 (this channel)

100 Wait for external ready pin RDY = 0 (this channel)

101 Wait for GPIO port 2 to go active (this channel)

110 Wait for GPIO port 3 to go active (this channel)

111 Reserved

19 INT r Generate interrupt to host upon completion of packet control list. An interrupt will be generated by
the DMA regardless of the state of this bit in the case of an error resulting in Pkt Err or Mst Err status
being set. (interrupt enabled = 1, disabled = 0)

18 LAST BUFF r Last buffer indicator. Indicates the end of a packet.
Loaded by the DMA from the PCL.

17 WAIT FOR STATUS r Is used to single thread asynchronous transmits. Normally, transmits of asynchronous transmits
are pipelined to improve throughput. Setting this bit will cause the DMA to wait for transmit
completion status before continuing.

16 BIG ENDIAN r Byte ordering. Controls the byte ordering of the data buffer as it is read or written.
NOTE: The big endian flag may only be changed on quadlet boundaries, i.e., between header and
payload data.

0 = Little endian (3, 2, 1, 0)
1 = Big endian (0, 1, 2, 3)

15–14 xmt_spd_code[1–0] r 1394 transmit speed code. Specifies the transmission speed of an asynchronous or isochronous
transmit packet. xmt_spd_code[1–0] = 00–100 Mbps

xmt_spd_code[1–0] = 01–200 Mbps
xmt_spd_code[1–0] = 10–400 Mbps

The value of this field is only valid for DMA transmit commands.

13 Multi ISO packet per
cycle start

r This bit is relevant for an isochronous DMA channel (ISO mode = 1).
0 = This isochronous packet should be sent with regard to cycle start boundaries. One
isochronous packet per isochronous DMA channel per cycle start period.
1 = This isochronous packet should be sent without regard to cycle start boundaries. This implies
multiple isochronous packets for the same DMA channel may be transmitted during a cycle start
period. The effect of setting this bit is global and can affect other isochronous transmit channels so
all isochronous channels should set the multi-isochronous bit set to the same value to prevent
otherwise unpredictable behavior.

Hardware Register Definitions

85 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

BIT NO. BIT NAME DIR DESCRIPTION

12 Transmit ISO mode r 0 = This DMA channel is to be configured for transmit asynchronous transfers.
1 = This DMA channel is to be configured for transmit isochronous transfers.
Also must be written (1 or 0) whenever this channel’s link bit is set. This is required to insure proper
fairness of isochronous XMT’s if more than one DMA channel is to be used for isochronous XMT’s.

11–00 DBXXFRLEN[11–0] r Remaining count to be transferred of the current buffer. Loaded by the DMA from the PCL.

5.3.6 DMA Channel 0 through 4 – DMA Ready Register @114, 134, 154, 174, 194

This register is implemented to provide a mechanism for pacing the DMA. The
wait select bits in the PCL data buf0 ctl/byte_cnt/cmd can select the contents of
this register to be used in a decision to halt this channel until the wait condition
no longer exists. Writes to this register by software or by another channel’s
auxiliary store commands can modify the wait condition.

The auxiliary branch command can also use this register to conditionally branch.
The condition select bits in the PCL data buf0 ctl/byte_cnt/cmd can select the
contents of register to be used in a decision to branch to another PCL. This
register is set to 0x000000000 on power-up reset.

048121620242831

114
+N*20 C0 0 0 0 0 0 0

BIT NO. BIT NAME DIR DESCRIPTION

31–01 Unused r/w Return 0s when read, ignored when written

00 CONDITION r/w This bit is used for wait or branch conditional checks.

5.3.7 DMA Channel 0 through 4 – Current DMA State @118, 138, 158, 178, 198

This register provides an interface for application software to read the
state_vector of a DMA channel. The active DMA channel uses this register to
store its state vector and other flag bits used during its active or idle period. This
register is intended for debug purposes only.

048121620242831

118
+N*20

LO
C

K

DMA State 0 0 0 Offset

S
F

LA
G

0 0 0 0 0 0 0 0 0 current context

BIT NO. BIT NAME DIR DESCRIPTION

31–24 STATE_VEC[7–0] r State vector of the DMA channel. The current state of the main DMA control state machine.

23–21 Unused r Return 0s when read.

20 LOCK r The DMA state machine is executing a sequence of states which can not be interrupted by a
higher priority channel.

19–16 LIST_OFFSET[4–0] r/w Current list offset. When written to in test mode (test enable and channel n selected in the test
register) the current list offset will increment.

15 STATE FLAG r Miscellaneous flag used by the state machine.

14–06 Unused r Return 0s when read.

05–00 CURRENT CONTEXT r Current channel context selected by the priority encoder and executing by the state machine.

Hardware Register Definitions

86 SCPA020A

5.3.8 DMA Diagnostic Test Control @900

This register provides an interface for software to setup and perform diagnostic
testing of the DMA control logic.

048121620242831

900

A
dd

er

Master Byte Count High Water Mark

M
ux

O
ut

Test Mux Select DMA Channel
Select0

Te
st

E
na

0

BIT NO. BIT NAME DIR DESCRIPTION

31–24 MASTER BYTE COUNT r This is the computed number of bytes that the DMA will request during a PCI master cycle.
The master byte count is equal to the lesser of the current HIGH WATER MARK–4, the
current receive transfer count, and the DBXXFRLEN bits of the DMA channel control word.
The selected channel is determined by the channel select bits of this register.

23–16 HIGH WATER MARK r This is the computed FIFO threshold which must be met before the DMA will request a PCI
master cycle. It is equal to high water mark which is equal to the (lower bound field of the DMA
global register * 8) + 4. (PCILynx Rev A and higher)

15 0 r Returns 0 when read.

14 ADDERTEST r/w Puts the DMA in a mode where the adder logic for the complete count bits of the channel status
register, the list offset bits of the current state register, and the remaining count bits of the
receive packet count register are in a test mode. The behavior of the registers are as follows:
• Status register complete count bits: Any slave write to these bits while in the test mode

will cause the current master byte count to be added to the contents of this register.
• Current state list offset bits: Any slave write to these bits while in the test mode will cause

these bits to increment.
• Receive packet count register: Any slave write to these bits while in the test mode will

cause the current master byte count to be subtracted from the contents of this register.
The value of master byte count is the lesser of the high water mark – 4, the receive transfer
count register, and the DBXXFRLEN bits of the DMA channel control register.

13 DMA Test Mux Select Out r Read back of the signal selected by the above DMA test mux.

Hardware Register Definitions

87 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

BIT NO. BIT NAME DIR DESCRIPTION

12–08 DMA Test Mux Sel [4–0] r/w Select DMA signal for to drive input mux of PCI test register.

Sel 4 Sel 3 Sel 2 Sel 1 Sel 0 DMA Signal

0 0 0 0 0 rcv_link_active

0 0 0 0 1 itf_link_active

0 0 0 1 0 atf_link_active

0 0 0 1 1 async_xmt_pkt_cnt_1

0 0 1 0 0 rcv_pkt_cnt_gt_0

0 0 1 0 1 async_xmt_ok

0 0 1 1 0 iso_xmt_ok

0 0 1 1 1 iso_xmt_in_progress

0 1 0 0 0 rcv_fifo_empty

0 1 0 0 1 iso_xmt_wait

0 1 0 1 0 xmt_p1394rty

0 1 0 1 1 rcv_req

0 1 1 0 0 active_selq

0 1 1 0 1 idle_selq

0 1 1 1 0 async_xmt_flush *

0 1 1 1 1 rcv_start *

1 0 0 0 0 rcv_end *

1 0 0 0 1 pending_active_context_switch *

1 0 0 1 0 pending context_switch *

1 0 0 1 1 xmt_ack_type *

: rcv_link_active

1 1 1 1 1 rcv_link_active

07 Unused r Returns 0 when read.

06–01 CHANNEL SELECT[5–0] r/w Select the DMA channel for test. These bits select which channel context is selected when
bit 00 DMATESTEN is set. The priority selection logic forces the selected context. One may
then write to the current state bits of the current state register and force state machine execution
starting at the loaded state.

CHANNEL SELECT[5–0] DMA Channel Number

0 0 0 0 0 0 0

0 0 0 0 0 1 1

: :

0 0 0 1 0 0 4

others Reserved

00 DMATESTEN r/w Enable DMA diagnostic test mode. enable = 1, disable = 0. When enabled, all DMA channel
registers are readable and writable from the PCI bus.

* PCILynx Rev A and higher

Hardware Register Definitions

88 SCPA020A

5.3.9 Receive Packet Remaining Count Register @904

This register contains the current received packet count. The DMA loads this
register with the receive packet count passed in the receive FIFO token words.
This count is then decremented as the data is transferred to the PCI bus.

0000 0000

048121620242831

904 0000 0000 Remaining Packet Count000

BIT NO. BIT NAME DIR DESCRIPTION

31–13 Unused r Return 0s when read.

12–00 REMAINING PACKET COUNT r The current remaining packet count.

5.3.10 Global Register @908

This register contains the transfer threshold, some flags, and miscellaneous
information that the DMA uses during an asynchronous transmit operation.

0000 0000

048121620242831

908 Lower Bound 0000 0000

R
E

T
R

Y

P
V

A
L

00 0000 0

F
LU

S
H

BIT NO. BIT NAME DIR DESCRIPTION

31–29 Unused r Return 0s when read.

28–24 LOWER BOUND r/w This is the threshold (from the DMA’s PCI point of view) which must be reached before a transfer will
be requested of the PCI bus. For receives it is the amount of data which must be in the GRF (if less
than a full packet) before a PCI write will be requested of the PCI bus. For transmits it is the amount of
room available in the ITF or ATF before a read is requested of the PCI bus. The value represented
here is the number of double quadlets (8 bytes) plus 4. For example:
00 = 4-byte threshold
01 = 12-byte threshold
02 = 20-byte threshold
 :
1F = 252-byte threshold
These bits will be set to 0x2 upon reset.
Once the threshold has been reached, a request equal to the lesser of the cache line size register or
the lower bound register – 4 is made of the PCI bus.

23–03 Unused r Return 0s when read.

02 FIFO FLUSH r Request the link to flush the asynchronous transmit FIFO.

01 PREVIOUS VALID r A PCL is currently pipelined and awaiting a status update.

00 RETRY r An asynchronous transmit retry is in progress.

Hardware Register Definitions

89 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.4 FIFO Control and Status Register Definitions

5.4.1 FIFO Size @A00

This register provides the application software with an interface for programming
the size of each of the logical FIFOs described in section 4.2.3, FIFO Logic. Each
FIFO is programmable in size from 0 to 255. Each decimal value represents
4 quadlets (16 bytes). For example, 2 = 8 quadlets or 32 bytes, 10 = 40 quadlets
or 160 bytes, etc. For any given combination, the sum of all 3 FIFO sizes is less
than or equal to 256 (1024 quadlets). This register is initialized to 0x00000000
on power-up reset. The minimum usable FIFO size is equal to the cache line size
register times 2. The sizing of the FIFO depends on the application and PCI
latencies.

ITF FIFO size

048121620242831

A00 ATF FIFO size0 0 0 0 0 0 0 0 GRF FIFO size

BIT NO. BIT NAME DIR DESCRIPTION

31–24 Not used r Return 0s when read.

23–16 ITF_FIFOSZ[7–0] r/w Isochronous transmit FIFO size 0x00 <= size <= 0xFF (X 4 quadlets)

15–08 ATF_FIFOSZ[7–0] r/w Asynchronous transmit FIFO size 0x00 <= size <= 0xFF (X 4 quadlets)

07–00 GRF_FIFOSZ[7–0] r/w General receive FIFO size 0x00 <= size <= 0xFF (X 4 quadlets)

5.4.2 PCI-Side FIFO Pointer Write-Read Port @A04

This register is implemented to provide the application software with a PCI slave
access port for writing to or reading from the FIFO pointers which are used in
accessing the PCI-side of the FIFO.

PCI ITF Write Ptr

048121620242831

A04 PCI ATF Write Ptr0 0 0 0 0 PCI GRF Read Ptr

G
R

W
A

B

A
T

W
A

B

IT
W

A
B

BIT NO. BIT NAME DIR DESCRIPTION

31–27 Not used r Return 0s when read.

26 ITF_WAB_L r/w PCI-side ITF write pointer wraparound bit

25 ATF_WAB_L r/w PCI-side ATF write pointer wraparound bit

24 GRF_WAB_L r/w PCI-side GRF read pointer wraparound bit

23–16 PCI_ITF_WPTR[7–0] r/w PCI-side isochronous transmit FIFO write pointer value returned on read = itf pointer
contents

15–08 PCI_ATF_WPTR[7–0] r/w PCI-side asynchronous transmit FIFO write pointer value returned on read = atf pointer
contents + (ITF_size)

07–00 PCI_GRF_RPTR[7–0] r/w PCI-side general receive FIFO read pointer. value returned on read = grf pointer con-
tents + (ATF_size + ITF_size)

Hardware Register Definitions

90 SCPA020A

5.4.3 Link-Side FIFO Pointer Write-Read port @A08

This register provides the application software with a PCI slave access port for
writing to or reading from the FIFO pointers which are used in accessing the
link-side of the FIFO.

Link ITF Read Ptr

048121620242831

A08 Link ATF Read Ptr0 0 0 0 0 Link GRF Write Ptr
G

R
W

A
B

A
T

W
A

B

IT
W

A
B

BIT NO. BIT NAME DIR DESCRIPTION

31–27 Not used r Return 0s when read.

26 ITF_WAB_L r/w Link-side ITF read pointer wraparound bit

25 ATF_WAB_L r/w Link-side ATF read pointer wraparound bit

24 GRF_WAB_L r/w Link-side GRF write pointer wraparound bit

23–16 LINK_ITF_RPTR[7–0] r/w Link-side isochronous transmit FIFO read pointer value returned on read = ITF pointer con-
tents

15–08 LINK_ATF_RPTR[7–0] r/w Link-side asynchronous transmit FIFO read pointer value returned on read = ATF pointer
contents + (ITF_size)

07–00 LINK_GRF_WPTR[7–0] r/w Link-side general receive FIFO write pointer value returned on read = GRF pointer contents +
(ATF_ size + ITF_size)

5.4.4 FIFO Control Token Status Read-Port @A0C

This port provides an interface for application software to obtain the value of bit 32
(MSB) of the 33-bit data value from the last FIFO that was popped.

048121620242831

A0C
0 0 0 0 0 0

T
F

32

G
R

F
32

BIT NO. BIT NAME Function

31–02 Not used Return 0s when read.

01 GRF_FCT32 Bit 32 data value of last pop operation from the GRF

00 TF_FCT32 Bit 32 data value of last pop operation from the ITF or ATF

Hardware Register Definitions

91 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.4.5 FIFO Control and Test Register @A10

This register provides the application software with an interface for test control
and flushing of a selected FIFO. This register is initialized to 0x00000000 on
power-up reset.

048121620242831

A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
R

32

A
T

F
lu

shtest
mux sel

G
R

F
lu

sh

IT
F

lu
sh

B
ig

E
nd

0 0 0

BIT NO. BIT NAME DIR DESCRIPTION

31–10 not used r Return 0s when read.

11–08 TEST_MUX[3–0] r/w Selects 1 of 16 test points in the FIFO logic to appear at external TEST_OUT.

TEST_MUX[3–0] Internal Test Point Selected
0x00 rcv_ram_data[32]
0x01 atf_data_out[32]
0x02 itf_data_out[32]
0x03 atf_first_fct_rdy
0x04 itf_first_fct_rdy
0x05 grf_fct_rdy
0x06 force_itf_empty
0x07 grf_empty
0x08 grf_full
0x09 atf_empty
0x0a atf_thresh
0x0b itf_empty
0x0c itf_thresh
0x0d grf_6avail
0x0e grf_2avail
0x0f flush_apc

07–05 Not used r Return 0s when read.

04 GRF_FLUSH r/w GRF flush. When set to a 1, this bit will flush the contents of the GRF by setting the GRF read and
write pointers to 0. This bit is self-clearing.

03 ITF_FLUSH r/w ITF flush. When set to a 1, this bit will flush the contents of the ITF by setting the ITF read and write
pointers to 0. This bit is self-clearing.

02 ATF_FLUSH r/w ATF flush. When set to a 1, this bit will flush the contents of the ATF by setting the ATF read and
write pointers to 0. This bit is self-clearing.

01 FORCE_BIG_ENDIAN r/w When set to a 1, slave data written to the ATF or ITF will be stored in big endian byte order (bytes
are not swapped). When set to a 0, data will be stored in little endian order (bytes are swapped).

00 FCT33_WR r/w The 32-bit PCI slave write data that will be pushed onto a selected FIFO will be pushed to FIFO bit
positions (31–00). The current value of FCT33_WR will be pushed into bit position 32. When
FCT33_WR = 1, the data pushed to bits 31–00 will be interpreted as a FIFO control token.
FCT33_WR = 0 indicates that data pushed to bits 31–00 are normal data.

Hardware Register Definitions

92 SCPA020A

5.4.6 Asynchronous and Isochronous Transmit FIFO Threshold Control @A14

This register provides the application software with an interface for setting the
transmit threshold of the ATF or ITF. When the number of data quadlets written
into the ATF or ITF is greater than or equal to the number of quadlets specified
by the corresponding threshold register, the 1394 link transmitter begins
transmitting the packet from the FIFO whose threshold was triggered. This
register is initialized to 0x0000FFFF on power-up reset. Since this value is larger
than any possible FIFO size, no transfers will result. This register must therefore
be set lower before normal transfers will occur. If it is set too low, then FIFO
underruns or overruns will occur because the transmitter is triggered before
sufficient data is in the FIFO. In general, the threshold register should be set to
FIFO SIZE – CACHE LINE SIZE – 1.

048121620242831

A14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ITF ThresholdATF Threshold

BIT NO. BIT NAME DIR DESCRIPTION

31–16 Reserved r Return 0s when read.

15–08 ATF_TRSHLD[7–0] r/w ATF transmit ready threshold in quadlets. Valid range = 0x00 to 0xFF

07–00 ITF_TRSHLD[7–0] r/w ITF transmit ready threshold in quadlets. Valid range = 0x00 to 0xFF

5.4.7 General Receive FIFO Data and Control Token Push-Pop @A20, A24

This port provides an interface for diagnostic software to write or read 33-bit data
quadlets to or from the 33-bit wide general receive FIFO, via a PCI slave access.

048121620242831

A20 GRF Push (FCT = 0) / Pop

A24 GRF Push (FCT = 1) / Pop

A write (PUSH) to address offset 0xA20 causes the 32-bit data quadlet to be
written (pushed) to the 33-bit wide FIFO memory with MSB bit 32 set to a 0 and
the 32-bit data quadlet written to bits 31–00. A write (PUSH) to address offset
0xA24 causes the 32-bit data quadlet to be written (pushed) to the 33-bit wide
FIFO memory with MSB bit 32 set to a 1 and the 32-bit data quadlet written to
bits 31–00.

A read (POP) from either offset 0xA20 or 0xA24 returns the data quadlet popped
from bits 31–00 of the FIFO. The read also causes MSB bit 32 of the FIFO to be
stored in the FIFO control token status register at offset 0xA0C bit 1. Software can
then read the control token status register to determine the value that was last
read (popped) from bit 32 of the FIFO memory.

FIFO bit 32 can also be observed on the TEST_OUT pin by programming the
FIFO and PCI test muxes to select this bit. When the read (POP) is performed,
the value of bit 32 will appear at the test mux output of the PCILynx chip during
the active portion of the slave read cycle.

Hardware Register Definitions

93 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.4.8 Asynchronous Transmit FIFO Data and Control Token Push-Pop Ports
@A30, A34

This port provides an interface for diagnostic software to write or read 32-bit data
quadlets to or from the 33-bit wide asynchronous transmit FIFO via a PCI slave
access.

048121620242831

A30 ATF Push (FCT = 0) / Pop

A34 ATF Push (FCT = 1) / Pop

A write (PUSH) to address offset 0xA30 causes the 32-bit data quadlet to be
written (pushed) to the 33-bit wide FIFO memory with MSB bit 32 set to a 0 and
the 32-bit data quadlet written to bits 31–00. A write (PUSH) to address offset
0xA34 causes the 32-bit data quadlet to be written to the 33-bit wide FIFO
memory with MSB bit 32 set to a 1 and the 32-bit data quadlet written to
bits 31–00.

A read (POP) from either address offset will return the data quadlet stored in
bits 31–00 of FIFO. The read also causes MSB bit 32 of the FIFO to be stored
in the FIFO control token status register at offset 0xA0C bit 0. Software can then
read the control token status register to determine the value that was last read
(popped) from bit 32 of the FIFO memory.

FIFO bit 32 can also be observed on the TEST_OUT pin by programming the
FIFO and PCI test muxes to select this bit. When the read (POP) is performed,
the value of bit 32 will appear at the test mux output of the PCILynx chip during
the active portion of the slave read cycle.

Hardware Register Definitions

94 SCPA020A

5.4.9 Isochronous Transmit FIFO Data and Control Token Push-Pop Ports @A40, A44

This port provides an interface for diagnostic software to write or read 32-bit data
quadlets to or from the 33-bit wide isochronous transmit FIFO via a PCI slave
access.

048121620242831

A40 ITF Push (FCT = 0) / Pop

A44 ITF Push (FCT = 1) / Pop

A write (PUSH) to address offset 0xA40 causes the 32-bit data quadlet to be
written (pushed) to the 33-bit wide FIFO memory with MSB bit 32 set to a 0 and
the 32-bit data quadlet written to bits 31–00. A write (PUSH) to address offset
0xA44 causes the 32-bit data quadlet to be written to the 33-bit wide FIFO
memory with MSB bit 32 set to a 1 and the 32-bit data quadlet written to
bits 31–00.

A read (POP) from either address offset will return the data quadlet stored in
bits 31–00 of the FIFO. The read also causes MSB bit 32 of the FIFO to be stored
in the FIFO control token status register at offset 0xA0C bit 0. Software can then
read the control token status register to determine the previous value that was
read from bit 32 of the FIFO memory location.

FIFO bit 32 can also be observed on the TEST_OUT pin by programming the
FIFO and PCI test muxes to select this bit. When the read (POP) is performed,
the value of bit 32 will appear at the test mux output of the PCILynx chip during
the active portion of the slave read cycle.

Hardware Register Definitions

95 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.5 1394 Link Layer Control and Status Register Definitions

5.5.1 DMA Channel 0 – 4 Word 0 Receive Packet Compare Value Register
@B00, B10, B20, B30, B40

This register provides the interface for application software to program the
compare-to-value which is used by the channel address comparator logic to
match against the first word in the received packet. Bit 31 is the MSB.

048121620242831

B00
Cmp0_Field1 Field3

(Tcode)
Field2+N*10 Field4

BIT NO. BIT NAME DIR DESCRIPTION

31–16 CMP0_FIELD1[15–0] r/w Specifies a 16-bit value to match against the high order 16 bits of the first quadlet of a received
packet. For an asynchronous packet, this corresponds to the destination ID field; for an isochro-
nous packet this corresponds to the data length field. This field is ignored if any bits of
DEST_ID_SEL[4–0] are set.

15–08 CMP0_FIELD2[7–0] r/w Specifies an 8-bit value to match against the transaction label and retry fields on an incoming
asynchronous packet or the TAG/CHANNEL number field of an incoming isochronous packet.

07–04 CMP0_FIELD3[3–0] r/w Specifies an 4-bit value to match against the Tcode field on an incoming asynchronous or isochro-
nous packet.

03–00 CMP0_FIELD4[3–0] r/w Specifies a 4-bit value to match against the PRIORITY field of an incoming asynchronous packet
or the SYSTEM field of an incoming isochronous packet.

Hardware Register Definitions

96 SCPA020A

5.5.2 DMA Channel 0 – 4 Word 0 Receive Packet Compare Enable Register
@B04, B14, B24, B34, B44

This register provides the interface for software to program the address
comparator field enable register. This value is used to select the bit fields that are
checked by the comparator logic when matching the value of the word 0 compare
value registers to the first word of the incoming packet. Bit 31 is the MSB.

048121620242831

B04
Ena0_Field1 Field3

f(Tcode)
Field2+N*10 Field4

BIT NO. BIT NAME DIR DESCRIPTION

31–16 CMP0_FIELD1_
ENABLE[15–0]

r/w Specifies a 16-bit enable value for selecting the bit positions in the high order 16 bits of the first quadlet of
a received packet to be compared to the value contained in the CMP0_FIELD1 register for a match. For
an asynchronous packet, the field compared is the destination ID field; for an isochronous packet, the
field compared is the data length field. A value of 1 in any bit position of the enable register, enables
comparison for that bit position. A value of 0 disables comparison. This field is ignored if any bits of
DEST_ID_SEL[4–0] are set.
EXAMPLES:
0xFFXX of destination ID is selected to be compared against 0xFFXX in compare value register.
 –––
1st Quadlet of incoming packet FF50_0040 destination ID field = 0xFF50
 CMP0_FIELD1 compare value register FF20
 CMP0_FIELD1_ENABLE FF00 comparison is MATCH

0xXX50 of destination ID is selected to be compared against 0xXX20 of compare value register
 –––
1st Quadlet of incoming packet FF50_0040 destination ID field = 0xFF50
 CMP0_FIELD1 compare value register FE20
 CMP0_FIELD1_ENABLE register 00FF comparison is NOT MATCH

15–08 CMP0_FIELD2
_ENABLE[7–0]

r/w Specifies an 8-bit enable register for selecting the bit positions in the transaction label/retry field of an
incoming asynchronous packet that is compared against the corresponding bit positions of the
CMP0_FIELD2 compare value register. If the incoming packet is isochronous then the TAG/CHANNEL
number field in 1st quadlet of the packet is examined. A value of 1 in any bit position of the enable regis-
ter, enables comparison for that bit position. A value of 0 disables comparison.
EXAMPLES:
 0x12 of on transaction/retry field is selected to be compared against 0x12 in compare value register
 –––
1st Quadlet of incoming packet FFC0_1240 transaction/retry field = 0x12
 CMP0_FIELD2 compare value register 12
 CMP0_FIELD2_ENABLE FF comparison is MATCH

0x1X of transaction/retry field is selected to be compared against 0x1X of compare value register
 –––
1st Quadlet of incoming packet FFC1_1240 transaction/retry field = 0x12
 CMP0_FIELD2 compare value register 12
 CMP0_FIELD2_ENABLE register F0 comparison is MATCH

Hardware Register Definitions

97 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

BIT NO. BIT NAME DIR DESCRIPTION

07–04 CMP0_FIELD3
_ENABLE[3–0]

r/w Specifies a 4-bit code for programming the Tcode compare function mode which selects the GRF for
receiving the incoming packet.
0000 = Reserved. Tcode compare is always true.
0001 = Reserved. Tcode compare is always true.*
0010 = Reserved. Tcode compare is always true.*
0011 = Compare Tcode of incoming packet for equality to CMP0_FIELD3[3–0].
0100 = Compare Tcode of incoming packet for NOT equal to CMP0_FIELD3[3–0].
0101 = Reserved. Tcode compare is always true.*
0110 = Compare Tcode of incoming packet for equality to CMP0_FIELD3[3–0] or that it is a 1394

asynchronous encoding except a cycle start Tcode.*
0111 = Reserved. Tcode compare match always true.*
1000 = Compare Tcode of incoming packet for not equal to CMP0_FIELD3[3–0] or that it is a 1394 async

encoding except a cycle start Tcode.*
1001 = Compare Tcode of incoming packet for equal to 1394 isochronous encoding.
1010 = Compare Tcode of incoming packet for equal to any 1394 asynchronous Tcode encoding expect

a cycle start Tcode.
1011 = 1111 Reserved. Tcode compare match always true.

03–00 CMP0_FIELD4
_ENABLE[3–0]

r/w Specifies a 4-bit enable register for selecting the bit positions in the priority field of an incoming asyn-
chronous packet that will be compared against the corresponding bit positions of the CMP0_FIELD4
compare value register. A value of 1 in any bit position of the enable register, enables comparison for
that bit position. A value of 0 disables comparison.
EXAMPLES:
 0x1 of priority field is selected to be compared against 0x2 in compare value register
 –––
1st Quadlet of incoming packet FFC0_1241 priority field = 0x1
 CMP0_FIELD4 compare value register 2
 CMP0_FIELD4_ENABLE F comparison is NOT MATCH

0x2 of priority field is selected to be compared against 0x2 of compare value register
 –––
1st Quadlet of incoming packet FFC1_1242 priority field = 0x2
 CMP0_FIELD4 compare value register 2
 CMP0_FIELD4_ENABLE register F comparison is MATCH

* Definition different for PCILynx before Rev A

5.5.3 DMA Channel 0 – 4 Word 1 Receive Packet Compare Value Register
@B08, B18, B28, B38, B48

This register provides the interface for application software to program a
compare-to-value which is used by the channel address comparator logic to
match against the second word in an incoming packet. This register is initialized
to 0x00000000 on power-up reset. Bit 31 is the MSB.

048121620242831

B08
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Cmp1_Field1+N*10

BIT NO. BIT NAME DIR DESCRIPTION

31–16 CMP1_FIELD1[15–0] r/w Specifies a 16-bit value to match against the source ID field of an incoming asynchronous packet

15–00 Reserved r Return 0s when read.

Hardware Register Definitions

98 SCPA020A

5.5.4 DMA Channel 0 – 4 Word 1 Receive Packet Compare Enable Register
@B0C, B1C, B2C, B3C, B4C

This register provides the interface for software to program the address
comparator field select mask. This value is used to specify the bit fields that will
be checked by the comparator logic when matching the value of the word 1
comparator register to the second word of the incoming packet.
EN_CH_COMPARE and WRITE_REQ_ACK_SEL bits are initialized to 0s on
power-up reset. Bit 31 is the MSB.

048121620242831

B0C 0 0 0 0 0 0 0

C
m

pE
na

Ena1_Field1

S
el

fID
D

irA
dr

A
ck

C
m

p

+N*10
Dest_ID
Select

BIT NO. BIT NAME DIR DESCRIPTION

31–16 CMP1_FIELD1_MASK[15–0] r/w Specifies a 16-bit mask value to select the CMP1_FIELD1[15–0] bits for matching against
the source ID field of an incoming asynchronous packet. This provides a first filter which all
packets must get through if all bits of DEST_ID_SEL[4–0] are 0s. If any bit in
DEST_ID_SEL[4–0] is set, then this value is ignored.

15–11 DEST_ID_SEL[4–0] r/w Specifies the operating mode of the destination ID comparator logic.
packet_wdo[31–0] is the first quadlet of the incoming packet.

xxxx1 match packet_wd0[31–22] to Bus_Number register and
packet_wd0[21–16] to Node_Number register

xxx1x match packet_wd0[31–22] to 3FF and
packet_wd0[21–16] to Node_Number register

xx1xx match packet_wd0[31–22] to Bus_Number register and
packet_wd0[21–16] to 3F

x1xxx match packet_wd0[31–22] to 3FF
packet_wd0[21–16] to 3F

1xxxx match packet_wd0[31–22] to not equal to Bus_Number register and
packet_wd0[31–22] to not equal to 0x03FF

10 RCV_SELF_ID_EN r/w Enable reception of self-ID packets. Enable = 1, Disable = 0. When enabled, a packet will
match a comparator if it is a self-ID or it matches any other programmed value.

09 EN_DIRECT_ADR r/w If this bit is set, then bits 15–0 of second quadlet received (quadlet 1) in a packet must be all
0s in order for the packet to match. Normally, this bit is set when the destination offset
specified in quadlet 2 will be used by the DMA controller as the starting address in PCI
memory space for the data transfer operation specified by the incoming asynchronous
packet. See Appendix E – Program Control List (PCL) Examples. (enable = 1, disable = 0)

08 EN_CH_COMPARE r/w Channel comparator master enable.
Enable = 1 channel comparator is enabled for normal operation.
Disable = 0 channel comparator always returns a no-match indication on incoming packet.

07 WRITE_REQ_ACK_SEL r/w Write request acknowledge select. When set to 1 an incoming nonbroadcast write request
packet will be ack’ed with an ack complete (0x0001). When set to 0, ack pending will be
used (0x0010).

06–00 Reserved r/w Return 0s when read.

Hardware Register Definitions

99 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.5.5 Bus Number and Node Number @F00

This register provides the interface for application software to program the 1394
bus and node identification numbers that are assigned to the PCILynx by the 1394
bus management layer. This register initializes to 0x00000000 on power-up
reset. Bit 31 is the MSB.

048121620242831

F00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0BUS_ID NODE_ID

BIT NO. BIT NAME DIR DESCRIPTION

31–22 BUS_ID[9–0] r/w 1394 bus identification number

21–16 NODE_ID[5–0] r/w 1394 node identification number

15–00 Reserved r Return 0s when read.

Hardware Register Definitions

100 SCPA020A

5.5.6 1394 Link Layer Control @F04

This register provides the interface for application software to program the
operation of the 1394 link layer control logic for controlling the transmission and
reception of 1394 data packets. This register initializes to 0x00000000 on
power-up reset. Bit 31 is the MSB.

048121620242831

F04
R

xA
sy

nc

C
yc

S
rc

C
yc

M
st

r

C
yc

T
m

R
cv

V
ld

T
xI

S
O

T
xA

sy
nc

R
xI

S
O

B
sy

C
tl

0 0 0 0 0 0 0 0 0 0 0 00

R
st

R
x

Ts
tT

x

0

S
no

op

0 0 0 0 0 0

BIT NO. BIT NAME DIR DESCRIPTION

31–30 Reserved r Return 0s when read.

29 BUSY_CNTRL r/w Controls what busy status the LLC will return on incoming packets that cannot be received.
0 = Use single phase busy protocol to busy incoming packets addressed to this node only when the

GRF is unavailable.
1 = Use single phase busy protocol to unconditionally busy all incoming packets addressed to this

node until software sets this bit to 0.

28–27 Reserved r Return 0s when read.

26 TX_ISO_EN r/w Enable transmitter to send 1394 isochronous packets. enable = 1, disable = 0

25 RX_ISO_EN r/w Enable receiver to receive 1394 isochronous packets. enable = 1, disable = 0

24 TX_ASYNC_EN r/w Enable transmitter to send 1394 asynchronous packets. enable = 1, disable = 0
This bit is set to 0 when a bus reset event is detected by the link layer.

23 RX_ASYNC_EN r/w Enable receiver to receive 1394 asynchronous packets. enable = 1, disable = 0
This bit is set to 0 when a bus reset event is detected by the link layer.

22 Reserved r Returns 0 when read.

21 RSTTX r/w Reset 1394 transmitter. Reset = 1 causes synchronous reset of transmitter logic. This bit is self-clear-
ing.

20 RSTRX r/w Reset 1394 receiver. Reset = 1 causes synchronous reset of receiver logic. This bit is self-clearing.

19–12 Reserved r Return 0s when read.

11 CYCMASTER r/w Enable PCILynx to be the cycle master. When set to 1, the LLC 1394 transmit logic sends a cycle start
packet each time the cycle count field of the cycle timer register enable increments. Application soft-
ware must not turn this bit on if the PCILynx is not attached to the ROOT PHY.
This bit will automatically clear after a 1394 bus reset if the attached PHY is no longer ROOT.*

10 CYCSOURCE r/w Enable cycle source. When set to 1, the cycle count field of the cycle timer register will increment and
the cycle offset field will reset for each rising edge of transition applied to the CYCLIN pin of the PCI-
Lynx ASIC. When set to 0. the cycle_count field will increment when the cycle_offset field rolls over.

09 CYCTIMEREN r/w Enable cycle timer to increment. enable = 1, disable = 0. This bit must be set to 1 in order for packet
transmissions to occur.

08 Not used r/w Returns 0 when read.

07 RCV_COMP_VALID r/w RCV_COMP_VALID = 1. Bus number-node number register and rcv comparator registers have been
programmed with valid data. This bit must set to 1 in order for packet reception to occur.

06 SNOOP_ENABLE r/w When set to 1 the link receiver is placed in the SNOOP operating mode. In this mode, the address
comparator logic is disabled. All 1394 packets (asynchronous, isochronous, and ack’s) that are being
transmitted on the bus by other nodes will be received and mapped to DMA channel 0.*

05–00 not used r Return 0s when read.

* PCILynx Rev A and higher

Hardware Register Definitions

101 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.5.7 1394 Cycle Timer @F08

This register provides the interface for application software to program 1394
cycle timer counters with an initial value or read the current state of the counters.
This register initializes to 0x00000000 on power-up reset. Bit 31 is the MSB.

048121620242831

F08 CYCLE_NUMBER CYCLE_OFFSET

BIT NO. BIT NAME DIR DESCRIPTION

31–25 CYCLE_SECONDS[6–0] r/w Seconds portion of isochronous cycle number

24–12 CYCLE_COUNT[12–0] r/w Cycle count portion of isochronous cycle number. Increments every 125 µsec.

11–00 CYCLE_OFFSET[11–0] r/w 24.576 MHz cycle timer counter – cycle offset rolls over every 125 µsec.

5.5.8 1394 Physical Layer Access F0C

This register provides the interface for application software to access the control
and status registers located in the physical layer chip. This register is initialized
to 0x000000000 on power-up reset. Bit 31 is the MSB.

048121620242831

F0C 0 0 0 0 0 0 PHY_Read_DataWR PHY R/W
Reg Adr PHY_Write_Data PHY Rd Adr

BIT NO. BIT NAME DIR DESCRIPTION

31 RDPHY r/w Read PHY register request. When set to 1, the LLC logic sends a read request to the PHY to
return the value of the PHY register whose address is specified by bits 27–24 of this register. This
bit is self-clearing.

30 WRPHY r/w Write PHY register request. When set to a 1, the LLC logic sends a write request to the PHY layer
to write the 8-bit data specified in bits 23–16 of this register to the PHY address specified in
bits 27–24. This bit is self-clearing.

29–28 not used r Return 0s when read.

27–24 PHY_REG_ADR[3–0] r/w Address of the PHY register to be written to or read

23–16 PHY_REG_DAT[7–0] r/w Data to be written to the PHY register address specified in bits 27–24 of this register.

15–12 not used r Return 0s when read.

11–08 PHY_REGRD_ADR[3–0] r/w Address of PHY register which was read. This address is returned by the PHY in the status mes-
sage in sends in response to a PHY register read request.

07–00 PHY_REGRD_DAT[7–0] r/w Data read from a selected PHY register. This data is returned by the PHY in the status message it
sends in response to a PHY register read request. This data was read from the address reported
in bits 11–8 of this register. When reading a PHY register, software must verify that the returned
address is the desired PHY register address before using this PHY read data.

Hardware Register Definitions

102 SCPA020A

5.5.9 1394 Diagnostic Test Control @F10

This register provides the interface for application software to perform diagnostic
testing of the 1394 LLC functionality. This register initializes to 0x00000000 on
power-up reset.

048121620242831

F10 test
muxATGTchan_num0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M TEIT

BIT NO. BIT NAME DIR DESCRIPTION

31–15 Reserved r Return 0s when read.

14 CH_MATCH r This test point is the channel match indication generated by the link core address comparator
logic.

13–08 DMA_CH_NO[5–0] r This test point is the 6 bit DMA channel number generated by the link core address comparator
logic.

07 GRF_OFLOW_TST_STB r/w GRF overflow counter test increment. When a 1 is written to the bit, a one clock wide pulse is
generated to the GRF overflow counter. This pulse causes the counter to increment by 1. This bit
is self-clearing.

06 ATF_UFLOW_TST_STB r/w ATF underflow counter test increment. When a 1 is written to the bit, a one clock wide pulse is
generated to the ATF underflow counter. This pulse causes the counter to increment by 1. This bit
is self-clearing.

05 ITF_UFLOW_TST_STB r/w ITF underflow counter test increment. When a 1 is written to the bit, a one clock wide pulse is
generated to the ITF underflow counter. This pulse causes the counter to increment by 1. This bit
is self-clearing.

04–01 TESTMUXSEL[3–0] r/w Select internal test point for observation at the external TEST_OUT pin

TESTMUXSEL[3–0] Link core signal selected
0x0000 rxDataRdy
0x0001 rxDataErr
0x0010 rxDataEnd
0x0011 busReqIso
0x0100 busReqPri
0x0101 busReqFair
0x0110 busGrant
0x0111 busBusy
0x1000 txdDataEn
0x1000 txMore
0x1010 sendAck
0x1011 ackSent
0x1100 readyAck
0x1101 ch_match
0x1110 arb_gap
0x1111 sub_action_gap

00 DIAG1394EN r/w Enable 1394 diagnostic test mode. When set to 1, the 1394 diagnostic test mode is enabled. Set
to 0 to enable normal operating mode. The setting of this bit to 1 enables the specific diagnostic
test modes defined in this register definition.

Hardware Register Definitions

103 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.5.10 1394 Link Layer Interrupt Status Register @F14

This register provides the interface for application software to determine the
interrupt that is caused by a 1394 link event. This register is set to 0x00000000
on power-up reset. An interrupt bit is asserted when it is set to a logic 1. The
interrupt status bits defined in the following table is cleared by writing a 1 to a
selected interrupt bit. The bits defined in this register will not set if the
corresponding interrupt enable bit is set to 0. Bit 31 is the MSB.

048121620242831

F14 GOCFIS IURRTO PR RRTR TELI 0 0 0 0 AS 0 SR HE TE 0 0 0 CDCC CPCC CL 0 0 IFAU

BIT NO. BIT NAME DIR DESCRIPTION

31 LINK_INT r/w Link logic interrupt. This signal is the logical OR of all link interrupt sources.

30 PHY_TIME_OUT r/w The PHY has stayed in a particular state for too long.

29 PHY_REG_RCVD r/w The contents of a PHY register has been received from the Phy.

28 PHY_BUSRESET r/w The PHY has entered the bus reset state.

27 Reserved r Returns 0 when read.

26 TX_RDY r/w The transmitter has completed sending a packet.

25 RX_DATA_RDY r/w The receiver has received a packet.

24–21 Reserved r Return 0s when read.

20 IT_STUCK r/w Transmitter stuck on isochronous transfer from ITF.

19 AT_STUCK r/w Transmitter stuck on asynchronous transfer from ATF.

18 Reserved r Returns 0 when read.

17 SNTRJ r/w The receiver was forced to send a busy acknowledge to a packet addressed to this node because
the GRF overflowed.

16 HDR_ERR r/w The receiver detected a header CRC error on an incoming packet that may have been addressed to
this node.

15 TC_ERR r/w The transmitter detected an invalid transaction code in the packet that it was attempting to transmit.

14–12 Reserved r Return 0s when read.

11 CYC_SEC r/w Cycle timer in seconds has incremented.

10 CYC_STRT r/w Cycle start packet was sent or received.

09 CYC_DONE r/w A sub-action gap has been detected on the bus after the transmission or reception of a cycle start
packet. This indicates that the isochronous cycle is over.

08 CYC_PEND r/w Cycle pending is asserted when cycle timer offset is set to 0 (rolled over or reset) and stays asserted
until the isochronous cycle has ended.

07 CYC_LOST r/w Cycle timer has rolled over twice without receiving a cycle start packet.

06 CYC_ARB_FAILED r/w The arbitration to send the cycle start packet has failed.

05 GRF_OVER_FLOW r/w The GRF_OVER_FLOW counter at offset 0xF24 reached 0xFF. Counter is incremented with each
GRF overflow detected during packet reception. Writing a 1 to this bit also clears the
GRF_OVER_FLOW counter at offset 0xF24 bits 7–0.

04 ITF_UNDER_FLOW r/w The ITF_UNDER_FLOW counter at offset 0xF24 reached 0xFF. Counter is incremented with each
ITF under flow detected during isochronous packet transmission. Writing a 1 to this bit also clears
the ITF_UNDER_FLOW counter at offset 0xF24 bits 23–16.

03 ATF_UNDER_FLOW r/w The ITF_UNDER_FLOW counter at offset 0xF24 reached 0xFF. Counter is incremented with each
ATF underflow detected during asynchronous packet transmission. Writing a 1 to this bit also clears
the ITF_UNDER_FLOW counter at offset 0xF24 bits 23–16.

02–01 Reserved r/w Return 0s when read.

00 IARB_FAILED r/w Arbitration to send an isochronous packet has failed.

Hardware Register Definitions

104 SCPA020A

5.5.11 1394 Link Layer Interrupt Enable Register @F18

This register provides the interface for application software to enable the interrupt
specified in the 1394 link layer interrupt status register. This register is set to
0x00000000 on power-up reset. Bit 31 is the MSB. Setting an enable bit to a logic
1 enables the interrupt. Setting the enable bit to logic 0 disables the interrupt.

048121620242831

F18 GOCFIS IURRTO PR RRTR TE0 0 0 0 0 AS 0 SR HE TE 0 0 0 CDCS CPCS CL 0 0 IFAU

BIT NO. BIT NAME DIR DESCRIPTION

31 Reserved r Returns 0 when read.

30 PHY_TIME_OUT_EN r/w Enable PHY time out interrupt.

29 PHY_REG_RCVD_EN r/w Enable PHY register data received interrupt.

28 PHY_BUSRESET_EN r/w Enable PHY bus reset interrupt.

27 Reserved r Returns 0 when read.

26 TX_RDY_EN r/w Enable transmitter sent packet interrupt.

25 RX_DATA_RDY_EN r/w Enable receiver received packet interrupt.

24–21 Reserved r Return 0s when read.

20 IT_STUCK_EN r/w Enable transmitter stuck on isochronous interrupt.

19 AT_STUCK_EN r/w Enable transmitter stuck on isochronous interrupt.

18 Reserved r Returns 0 when read.

17 SNTRJ_EN r/w Enable receiver sent busy ack interrupt

16 HDR_ERR_EN r/w Enable receiver header error interrupt

15 TC_ERR_EN r/w Enable transmitter invalid Tcode interrupt

14–12 Reserved r Return 0s when read.

11 CYC_SEC_EN r/w Enable cycle timer seconds interrupt.

10 CYC_STRT_EN r/w Enable cycle start interrupt

09 CYC_DONE_EN r/w Enable cycle done interrupt

08 CYC_PEND_EN r/w Enable cycle pending interrupt

07 CYC_LOST_EN r/w Enable cycle lost interrupt.

06 CYC_ARB_FAILED_EN r/w Enable cycle start arbitration failed interrupt.

05 GRF_OVER_FLOW_EN r/w Enable GRF over flow interrupt

04 ITF_UNDER_FLOW_EN r/w Enable ITF under flow interrupt

03 ATF_UNDER_FLOW_EN r/w Enable ATF under flow interrupt

02–01 Reserved r Return 0s when read.

00 IARB_FAILED_EN r/w Enable isochronous arb failed interrupt

Hardware Register Definitions

105 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF

5.5.12 1394 Busy Retry Control Register @F1C

This register provides the interface for application software to set the number of
times that the 1394 transmitter is to retry an asynchronous packet that was
acknowledged with a busy or error condition. This register also provides the
means to program the time interval to delay between successive retries. Bit 31
is the MSB. This register is cleared to all 0s on power-up reset.

048121620242831

F1C busy_retry_countbusy_retry_delay0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NO. BIT NAME DIR DESCRIPTION

31–16 Reserved r Return 0s when read.

15–08 BUSY_RETRY_DLY[7–0] r/w A number between 0 and 255 that specifies the time that the 1394 transmitter must delay be-
tween successive retries. This time is equal to BUSY_RETRY_DLY[7–0] times ISO_INTER-
VAL (125 µsec). Any nonzero value in this register requires that CYCTIMEREN be set other-
wise a retried cycle will hang.

07–00 BUSY_RETRY_CNT[7–0] r/w A number between 0 and 255 that specifies the maximum number of times to re-transmit a
packet, when the destination node continues to return busy acknowledge status. The 1394
transmitter notifies the active DMA channel when the maximum number of transmit retries have
been attempted without a successful transmission occurring.

5.5.13 Link Layer Controller State Machine Vector Monitor Port @F20

This register provides application software with an I/O port to read the value of
the state vector for each state machine in the link layer control logic. This register
is read-only.

048121620242831

F20 rcv stat Ireq state transmit statexmt state00 rcv data rcv ack receive state cm
state

BIT NO. BIT NAME DIR DESCRIPTION

31–30 Not Used r Return 0s when read.

29–26 TRANSMIT_IFC_STATE[3–0] r TransmitIfc state machine vector

25–24 RXSTATUS_IFC_STATE[1–0] r RxdStatIfc state machine vector

23–21 RXDDATA_IFC_STATE[2–0] r RxdDataIfc state machine vector

20–18 RCV_ACK_STATE[2–0] r RcvAck state machine vector

17–14 LREQ_STATE[3–0] r Request state machine vector

13–09 RECEIVE_STATE[3–0] r Receive state machine vector

08–03 TRANSMIT_STATE[5–0] r Transmit state machine vector

02–00 CM_STATE[2–0] r CycleMonitor state machine vector

Hardware Register Definitions

106 SCPA020A

5.5.14 Link Layer FIFO Under Flow – Over Flow Counters @F24

These counters provide application software with an I/O port to monitor the
number of ATF and ITF underflows that have occurred during packet
transmissions and the number of over flows that have occurred during packet
reception. These counters are cleared to logic 0s on power-up reset, and are also
cleared by writing a 1 to the appropriate bit GRF_OVER_FLOW,
ITF_UNDER_FLOW or ATF_UNDER_FLOW bit in the link layer interrupt status
register. Bit 31 is the MSB.

048121620242831

F24 ITF Underflow GRF Overflow0 0 0 0 0 0 0 0 ATF Underflow

BIT NO. BIT NAME DIR DESCRIPTION

31–24 Not used r Return 0s when read.

23–16 ITF_UNDER_FLOW[7–0] r/w Increments by 1 on each ITF underflow detected by the 1394 transmitter or when a 1 is
written to the ITF_UFLOW_TST_STB bit in the 1394 diagnostic test control @F10. When
0xFF is reached, the ITF_UNDER_FLOW interrupt bit of the 1394 link layer interrupt status
register @F14 is set and counting stops and holds at 0xFF. Subsequent underflows will not
increment the counter. The counter is enabled when software loads it with any value that is
less than 0xFF. Counting will proceed from that value until 0xFF is reached. This counter is
cleared when the ITF_UNDER_FLOW interrupt bit is cleared.

15–08 ATF_UNDER_FLOW[7–0] r/w Increments by 1 on each ATF underflow detected by the 1394 transmitter or when a 1 is
written to the ATF_UFLOW_TST_STB bit in the1394 diagnostic test control @F10. When
0xFF is reached, the ATF_UNDER_FLOW interrupt bit of the 1394 link layer interrupt sta-
tus register @F14 is set and counting stops and holds at 0xFF. Subsequent underflows will
not increment the counter. The counter is enabled when software loads it with any value
that is less than 0xFF. Counting will proceed from that value until 0xFF is reached. This
counter is cleared when the ATF_UNDER_FLOW interrupt bit is cleared.

07–00 GRF_OVER_FLOW[7–0] r/w Increments by 1 on each GRF overflow detected by the 1394 receiver or when a 1 is written
to the GRF_OFLOW_TST_STB bit in the 1394 diagnostic test control @F10. When 0xFF is
reached, the GRF_OVER_FLOW interrupt bit of the 1394 link layer interrupt status register
@F14 is set and counting stops and holds at 0xFF. Subsequent overflows will not incre-
ment the counter. The counter is enabled when software loads it with any value that is less
than 0xFF. Counting will proceed from that value until 0xFF is reached. This counter is
cleared when the GRF_OVER_FLOW interrupt bit is cleared.

Signal to Package Assignments

A-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix A Signal to Package Assignments

GROUND PINS = 22; 3.3 V VCC PINS = 21; 5 V REFERENCE PINS = 8;
SIGNAL PINS = 121; NOT CONNECTED = 4; TOTAL PINS = 176

Signal Name Pin # Signal Name Pin # Signal Name Pin # Signal Name Pin #

 3.3V VCC 1 GND 45 GND 89 seeprom_clk 133

N/C (spare) 2 N/C (reserved) 46 aux_data5 90 seeprom_data 134

 pci_ad25 3 pci_ad8 47 aux_data4 91 5.0V VCC 135

 pci_ad24 4 pci_cbez0 48 aux_data3 92 link_isoz 136

 pci_cbez3 5 3.3V VCC 49 3.3V VCC 93 link_cyclein 137

 GND 6 pci_ad7 50 aux_data2 94 3.3V VCC 138

 pci_idsel 7 GND 51 GND 95 link_cycleout 139

 3.3V VCC 8 pci_ad6 52 aux_data1 96 test_out 140

 pci_ad23 9 pci_ad5 53 aux_data0 97 GND 141

 pci_ad22 10 pci_ad4 54 aux_adr15 98 phy_ctl0 142

 pci_ad21 11 pci_ad3 55 aux_adr14 99 phy_ctl1 143

 5.0V VCC 12 3.3V VCC 56 3.3V VCC 100 phy_lreq 144

 pci_ad20 13 pci_ad2 57 aux_adr13 101 3.3V VCC 145

 GND 14 pci_ad1 58 GND 102 phy_data0 146

 pci_ad19 15 pci_ad0 59 aux_adr12 103 phy_data1 147

 pci_ad18 16 5.0V VCC 60 aux_adr11 104 phy_data2 148

 pci_ad17 17 aux_intz 61 aux_adr10 105 phy_data3 149

 pci_ad16 18 aux_rdyz 62 aux_adr9 106 GND 150

 3.3 VCC 19 5.0V VCC 63 3.3 VCC 107 phy_data4 151

 pci_cbez2 20 aux_clk 64 aux_adr8 108 phy_data5 152

 GND 21 GND 65 5.0V VCC 109 phy_data6 153

 pci_framez 22 aux_rstz 66 aux_adr7 110 phy_data7 154

 pci_irdyz 23 ram_csz 67 aux_adr6 111 GND 155

 pci_trdyz 24 rom_csz 68 aux_adr5 112 phy_clk50 156

 pci_devselz 25 aux_csz 69 aux_adr4 113 3.3V VCC 157

 3.3V VCC 26 3.3 VCC 70 GND 114 test_enable 158

 pci_stopz 27 aux_wez1 71 aux_adr3 115 auto_boot 159

 GND 28 GND 72 3.3V VCC 116 GND 160

N/C (reserved) 29 aux_wez0 73 aux_adr2 117 pci_clk 161

 pci_perrz 30 aux_oez 74 aux_adr1 118 5.0V VCC 162

 pci_serrz 31 3.3V VCC 75 aux_adr0 119 pci_resetz 163

 pci_par 32 aux_data15 76 N/C (spare) 120 pci_gntz 164

 3.3V VCC 33 aux_data14 77 GND 121 3.3V VCC 165

 pci_cbez1 34 aux_data13 78 gpio_data3 122 pci_intaz 166

 GND 35 GND 79 gpio_data2 123 pci_reqz 167

 pci_ad15 36 aux_data12 80 gpio_data1 124 GND 168

 pci_ad14 37 aux_data11 81 gpio_data0 125 pci_ad31 169

 pci_ad13 38 aux_data10 82 zv_pix_clk 126 pci_ad30 170

 pci_ad12 39 aux_data9 83 zv_vsync 127 pci_ad29 171

 5.0V VCC 40 5.0V VCC 84 3.3V VCC 128 3.3V VCC 172

 pci_ad11 41 aux_data8 85 zv_ext_clk 129 pci_ad28 173

 3.3V VCC 42 3.3V VCC 86 GND 130 pci_ad27 174

Signal to Package Assignments

A-2 SCPA020A

 pci_ad10 43 aux_data7 87 zv_hsync 131 GND 175

 pci_ad9 44 aux_data6 88 zv_data_valid 132 pci_ad26 176

Table A–1. PCILynx I/O Signal Function Table

Signal Name Dir Note Output
Drive (mA) Functional Description

GND I 1 Ground

3.3V VCC I 1 3.3 Volt power

5.0V VCC I 1 5 Volt tolerance input

pci_clk I 1 PCI system clock. 0–33 MHz

pci_ad[31:0] I/O 1 PCI multiplexed address/data bus signals

pci_cbez[3:0] I/O 1 PCI multiplexed command/byte enable signals

pci_par I/O 1 PCI parity signal. Parity is even across pci_ad [31:0] and pci_cbez[3:0] signals

pci_framez I/O 1 PCI frame signal

pci_irdyz I/O 1 PCI initiator ready signal

pci_trdyz I/O 1 PCI target ready signal

pci_devselz I/O 1 PCI device select

pci_stopz I/O 1 PCI stop

pci_idsel I 1 PCI initialization device select

pci_perrz I/O 1 PCI data parity error

pci_serrz OD 1 PCI system error. This is an open drain signal.

pci_reqz O 1 PCI master bus request to PCI bus arbiter

pci_gntz I 1 PCI bus grant from PCI bus arbiter

pci_resetz I 1 PCI system reset

pci_intaz OD 11 PCI system interrupt A. This is an open drain signal

seeprom_data I/O 2, 3 4 External serial EEPROM read-write data line

seeprom_clk I/O 2, 4 4 External serial EEPROM data clock

aux_clk O 5 8 Auxiliary port clock out (output at frequency of PCI Clock)

aux_rstz O 5 4 Auxiliary port reset out

aux_intz I 6 Auxiliary port interrupt in

gpio_data[3:0] I/O 3 4 Auxiliary port general purpose programmable i/o signals

aux_adr[15:0] O 5 4 Auxiliary port address lines out to external logic

aux_data[15:0] I/O 3 4 Auxiliary port bidirectional data bus to external logic

aux_oez O 5 4 Auxiliary port output enable to enable external logic data on to the aux_data bus

aux_wez[1:0] O 5 4 Auxiliary port write strobes to external logic

aux_rdyz I 6 Auxiliary port ready indication from external logic

aux_csz O 5 4 Auxiliary port chip select to external logic

rom_csz O 5 4 External ROM chip select

ram_csz O 5 4 External RAM chip select

phy_ctl[0:1] I/O 7 12 Phy-link bidirectional control lines

phy_data[0:7] I/O 3 12 Phy-link bidirectional data lines

phy_clk50 I 1 50 MHz system clock from PHY chip.

phy_lreq O 1 12 Phy-link request signal generated by the PCILynx chip

link_isoz I 8 Phy-link isolation barrier mode

link_cyclein I 10 Optional external 8 kHz clock for use as the cycle clock.

link_cycleout O 5 4 Cycle timer 8 kHz cycle clock out

zv_ext_clk I 6 Zoom port external clock input

Signal to Package Assignments

A-3 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Table A–1. PCILynx I/O Signal Function Table (Continued)

zv_vsync O 3 4 Zoom port vertical sync output

zv_hsync O 3 4 Zoom port horizontal sync output

zv_data_valid O 3, 9 4 Zoom port data valid signal

test_out O 5 4 Test mux out. Internal test point selected by the test multiplexer for observation.

test_enable I 10 Test enable. Enables factory test features.

autoboot I 10 Autoboot. Selects autoboot mode.

zv_pix_clk O 3 4 Zoom port pixel clock.

NOTES: 1. Required connection
2. Bidirectional with open-drain style output. Connect through resistor to same VCC as SEEPROM uses.
3. Connect to 3.3 V VCC or GND through resistor if this pin not used in system.
4. Connect to GND through resistor for SEEPROM not present detection (see SEEPROM control register @044).
5. May be left unconnected if not used in system.
6. Connect to 3.3 V VCC or GND directly or through a resistor if not used in system.
7. phy_ctl pins should be connected to physical layer device and have a resistor to GND.
8. Isolation buffers are not implemented. This pin must be connected to 3.3 V VCC. Shown as 3.3 V VCC on datasheet.
9. If Zoom port is used without zv_data_valid pin, must use gated clock mode.

10. Connect to GND directly or through a resistor if not used in system.
11. From a hardware standpoint PCILynx is capable of sharing an interrupt line, however this may lead to reduced performance due

to multiple interrupt service routines being called for each interrupt.

I/O Characteristics

All signal pins (except for test_out) contain an input buffer for test purposes even
if the signal is functionally an output. The guidelines given above for tying off
unused connections must be followed to prevent high through-current in the input
buffer.

PCILynx incorporates 5-V tolerant inputs on all signal pins. Due to the unique
characteristics of these buffers a small amount of current may flow from 3.3-V
VCC through the input pin under certain conditions. When an I/O is terminated
through a resistor to GND, the resistance should be 1.8 kΩ or less. Therefore the
recommended value for all resistors to GND is 1.8 kΩ. Resistors to 3.3-V VCC
have no such restriction. Resistors to the 5-V VCC are not recommended except
for the SEEPROM pins.

The 5-V tolerant inputs are tolerant to voltages over 3.6 V only when the 3.3 V
VCC is on. This has important implications for power supply sequencing. Please
see Appendix G for more details.

A-4 SCPA020A

ASIC Package Outline Dimension Drawing

B-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix B ASIC Package Outline Dimension Drawing

PGF (S-PQFP-G176) PLASTIC QUAD FLATPACK

0,13 NOM

89

0,17
0,27

 88

45

0,45

0,25

0,75

44

Seating Plane

0,05 MIN

4040134/B 11/96

Gage Plane

132

133

176

SQ
24,20

SQ
25,80
26,20

23,80

21,50 SQ
1

1,45
1,35

1,60 MAX

M0,08

0,50

0,08

0°–7°

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

Figure B–1. 176 Pin Plastic Quad Flat Pack (S-PQFP-G176)

B-2 SCPA020A

FIFO Packet Organization Formats

C-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix C FIFO Packet Organization Formats
Table C–1. Asynchronous Transmit FIFO Single Data Quadlet Packet Format

32 31 0

1

0

0

0

0

1

START_OF_PACKET_CONTROL_WORD

DESTINATION_ID

SOURCE_ID

TLABEL RT TCODE PRIORITY

 DESTINATION OFFSET HI
DESTINATION OFFSET LOW

QUADLET DATA (for write request and read response)

END_OF_PACKET_CONTROL_WORD

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of the packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

DESTINATION_ID 31 – 16 This is the concatenation of the 10-bit bus number and the 6-bit node number which forms
the destination address of the node which this packet is being sent to.

TLABEL 15 – 10 This field is the transaction label, which is a unique tag for each outstanding transaction be-
tween two nodes. This is used to pair up a response packet with a corresponding request
packet.

RT 9 – 8 Retry code field

TCODE 7 – 4 The transaction code for this packet. (See Table 6–9 of IEEE 1394–1995 Standard)

PRIORITY 3 – 0 The priority level for this packet. For cable implementation the value of the bits must be zero.

SOURCE_ID 31 – 16 This is the concatenation of the 10-bit bus number and the 6-bit node number which forms
the destination address of this packet

DESTINATION OFFSET HI
DESTINATION OFFSET LOW

15 – 0
31 – 0

The concatenation, of these two fields addresses a quadlet in the destination node address
space. This address must be quadlet-aligned (modulo-4)

QUADLET DATA 31 – 0 For write requests and read responses, this field holds the data to be transferred. For write
responses and read requests, this field is not used and should not be written into the FIFO.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

FIFO Packet Organization Formats

C-2 SCPA020A

Table C–2. Asynchronous Transmit FIFO Multiple Data Quadlet Format

32 31 0

1

0

0

0

0

0

1

START_OF_PACKET_CONTROL_WORD

DESTINATION_ID

SOURCE_ID

TLABEL RES TCODE PRIORITY

 DESTINATION OFFSET LOW

DESTINATION OFFSET HI

BLOCK DATA (for write request and read response)

END_OF_PACKET_CONTROL_WORD

DATA LENGTH EXTENDED_TCODE

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of a packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

DESTINATION ID 31 – 16 This is the concatenation of the 10-bit bus number and the 6-bit node number which forms
the destination address of the node which this packet is being sent to.

TLABEL 15 – 10 This field is the transaction label, which is a unique tag for each outstanding transaction
between two nodes. This is used to pair up a response packet with a corresponding re-
quest packet.

RT 9 – 8 The retry code for this packet. 00 = new, 10 = retryA, 11 = retryB

TCODE 7 – 4 The transaction code for this packet. (See Table 6–9 of IEEE 1394–1995 Standard)

PRIORITY 3 – 0 The priority level for this packet. For cable implementation the value of the bits must be
zero.

SOURCE ID 31 – 16 This is the node ID of the sender of this packet.

DESTINATION OFFSET HI
DESTINATION OFFSET LOW

15 – 0
31 – 0

The concatenation, of these two fields addresses a quadlet in the destination node ad-
dress space. This address must be quadlet-aligned (modulo-4). The upper 4 bits of the
destination offset high field are used as the response code for lock response packets.

DATA_LENGTH 31 – 16 For write requests, read responses, and locks, this field indicates the number of bytes
being transferred. For read requests, this field indicates the number of bytes of data to be
read. A write response packet does not use this field.

EXTENDED TCODE 15 – 0 The block extended tcode to be performed on the data in this packet. See Table 6–11 of
the IEEE 1394–1995 serial bus specification.

BLOCK DATA 31 – 0 This field contains any data being transferred for this packet. Regardless of the destina-
tion address or memory alignment, the first byte of the data appears in byte 0 of the first
quadlet of this field. the last quadlet of this field is padded with zeros out to 4 bytes, if
necessary.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

FIFO Packet Organization Formats

C-3 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Table C–3. Asynchronous Receive FIFO Single Data Quadlet Format

32 31 0

1

0

0

0

0

1

START_OF_PACKET_CONTROL_WORD

DESTINATION_ID

SOURCE_ID

TLABEL RT TCODE PRIORITY

 DESTINATION OFFSET LOW
DESTINATION OFFSET HI

QUADLET DATA (for write request and read response)

END_OF_PACKET_CONTROL_WORD

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of the packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

DESTINATION_ID 31 – 16 This is the concatenation of the 10-bit bus number and the 6-bit node number which forms
the destination address of the node which this packet is being sent to.

TLABEL 15 – 10 This field is the transaction label, which is a unique tag for each outstanding transaction be-
tween two nodes. This is used to pair up a response packet with a corresponding request
packet.

RT 9 – 8 Retry code for this packet. 00=nre, 10=retryA, 11=retryB

TCODE 7 – 4 The transaction code for this packet. (See Table 6–9 of IEEE 1394–1995 Standard)

PRIORITY 3 – 0 The priority level for this packet. For cable implementation the value of the bits must be zero.

SOURCE_ID 31 – 16 This is the concatenation of the 10-bit bus number and the 6-bit node number which forms
the destination address of this packet

DESTINATION OFFSET HI
DESTINATION OFFSET LOW

15 – 0
31 – 0

The concatenation, of these two fields addresses a quadlet in the destination node address
space. This address must be quadlet-aligned (modulo-4)

QUADLET DATA 31 – 0 For write requests and read responses, this field holds the data to be transferred. For write
responses and read requests, this field is not used and should not be written into the FIFO.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

FIFO Packet Organization Formats

C-4 SCPA020A

Table C–4. Asynchronous Receive FIFO Multiple Data Quadlet Format

32 31 0

1

0

0

0

0

0

1

START_OF_PACKET_CONTROL_WORD

DESTINATION_ID

SOURCE_ID

TLABEL RT TCODE PRIORITY

 DESTINATION OFFSET LOW

DESTINATION OFFSET HI

BLOCK DATA (for write request and read response)

END_OF_PACKET_CONTROL_WORD

DATA LENGTH EXTENDED_TCODE

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of a packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

DESTINATION ID 31 – 16 This is the concatenation of the 10-bit bus number and the 6-bit node number which forms
the destination address of the node which this packet is being sent to.

TLABEL 15 – 10 This field is the transaction label, which is a unique tag for each outstanding transaction
between two nodes. This is used to pair up a response packet with a corresponding re-
quest packet.

RT 9 – 8 The retry code for this packet. 00 = new, 10 = retryA, 11 = retryB

TCODE 7 – 4 The transaction code for this packet. (See Table 6–9 of IEEE 1394–1995 Standard)

PRIORITY 3 – 0 The priority level for this packet. For cable implementation the value of the bits must be
zero.

SOURCE ID 31 – 16 This is the node ID of the sender of this packet.

DESTINATION OFFSET HI
DESTINATION OFFSET LOW

15 – 0
31 – 0

The concatenation, of these two fields addresses a quadlet in the destination node ad-
dress space. This address must be quadlet-aligned (modulo-4). The upper 4 bits of the
destination offset high field are used as the response code for lock response packets.

DATA_LENGTH 31 – 16 For write requests, read responses, and locks, this field indicates the number of bytes
being transferred. For read requests, this field indicates the number of bytes of data to be
read. A write response packet does not use this field.

EXTENDED TCODE 15 – 0 The block extended tcode to be performed on the data in this packet. See Table 6–11 of
the IEEE 1394–1995 serial bus specification.

BLOCK DATA 31 – 0 This field contains any data being transferred for this packet. Regardless of the destina-
tion address or memory alignment, the first byte of the data appears in byte 0 of the first
quadlet of this field. The last quadlet of this field is padded with zeros out to 4 bytes, if
necessary.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control informa-
tion that is set up by the DMA channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in Appendix D.

FIFO Packet Organization Formats

C-5 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Table C–5. General Receive FIFO Snoop Mode Packet Format*

32 31 0

1

0

0

1

START_OF_PACKET_CONTROL_WORD

SNOOPED_PACKET

END_OF_PACKET_CONTROL_WORD

SNOOPED_ACK

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of a snooped packet in the FIFO. Contains control informa-
tion that will be used by DMA channel 0 for controlling the transfer of the snooped packets from the
FIFO to PCI host memory. The details of this control word are specified in Appendix D.

SNOOPED_PACKET 31 – 0 N number of quadlets that comprise the packet that was snooped. The SNOOPED_PACKET will
include any 1394 header CRC or payload CRC quadlets. These CRC quadlets are not received in a
normal receive operation.

SNOOPED_ACK 3–0 The 4-bit ack status that was snooped. If the link receiver does not detect a ack for the snooped pack-
et, the SNOOPED_ACK value will be set to 0000.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control information that is
used by DMA channel 0 for transferring the snooped packet from the FIFO to host memory. The bit
field definitions for this control word are specified in Appendix D.

*PCILynx Pev A and Higher

FIFO Packet Organization Formats

C-6 SCPA020A

Table C–6. Isochronous Transmit FIFO Packet Format

32 31 0

1

0

0

1

START_OF_PACKET_CONTROL_WORD

DATA LENGTH

END_OF_PACKET_CONTROL_WORD

ISOCHRONOUS DATA
TAG CHANNEL_NO TCODE SY

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of the packet in the FIFO. Contains control information that is
set up by the DMA channel for use by the 1394 transmitter logic. The bit field definitions for this con-
trol word are specified in Appendix D.

DATA LENGTH 31 – 16 Indicates the number of bytes in the ISO packet

TAG 15 – 14 Tag field

CHANNEL_NO 13 – 8 The channel number that this packet is being transmitted to

TCODE 7 – 4 Transaction code = 1010

SY 3 – 0 Transaction layer specific synchronization bits

ISOCHRONOUS DATA 31 – 0 The data to be transmitted in this packet. The first byte of data must appear in byte 0 of the first quad-
let of this field. If the last quadlet does not contain four bytes of data, the unused bytes should be
padded with zeroes.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control information that is
set up by the DMA channel for use by the 1394 transmitter logic. The bit field definitions for this con-
trol word are specified in Appendix D.

Table C–7. Isochronous Receive FIFO Packet Format

32 31 0

1

0

0

1

START_OF_PACKET_CONTROL_WORD

DATA LENGTH

END_OF_PACKET_CONTROL_WORD

ISOCHRONOUS DATA
TAG CHANNEL_NO TCODE SY

Field Name Bit Positions Description

START_OF_PACKET
CONTROL_WORD

31 – 0 FIFO start control word. Marks the start of a packet in the FIFO. Contains control information that is
set up by the DMA channel for use by the 1394 transmitter logic. The bit field definitions for this con-
trol word are specified in Appendix D.

DATA LENGTH 31 – 16 Indicates the number of bytes in the ISO packet

TAG 15 – 14 Tag field

CHANNEL_NO 13 – 8 The channel number that this packet is being transmitted to

TCODE 7 – 4 Transaction code = 1010

SY 3 – 0 Transaction layer specific synchronization bits

ISOCHRONOUS DATA The data to be transmitted in this packet. The first byte of data must appear in byte 0 of the first quad-
let of this field. If the last quadlet does not contain four bytes of data, the unused bytes should be
padded with zeroes.

END_OF_PACKET
CONTROL_WORD

31 – 0 FIFO end control word. Marks the end of the packet in the FIFO. Contains control information that is
set up by the DMA channel for use by the 1394 transmitter logic. The bit field definitions for this con-
trol word are specified in Appendix D.

FIFO Control Word and Transmit ACK Formats

D-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix D FIFO Control Word and Transmit ACK Formats

Table D–1. General Receive FIFO Isochronous Packet Control Token Format Definition

32 31 30 27 26 25 24 23 18 17 16 15 13 12 0

FCT PKTBD RCV_STAT RES RCV_SPD DMA_CH ISO SELF_ID RES PACKET_SIZE

Bit Field Function Description

FCT FIFO control token. FCT = 1 indicates that FIFO data bits 31 – 0 of the quadlet are to be interpreted as a FIFO control
token. The bit fields defined below for this control token shall only be valid when FCT = 1.

PKTBD Packet delimiter. PKTBD = 0 indicates start of packet
PKTBD = 1 indicates end of packet

RCV_STAT Packet receive status. This field is valid when PKTBD = 1
0001= Packet was successfully received. If the packet was a request subaction, the destination node has successfully

 completed the transaction and no response subaction shall follow.
1101= The receiver could not accept the packet because a CRC error occurred or the length of the data block payload

 did not match the length contained in the data length field of the packet header

RCV_SPEED The speed at which the packet was received. 00 = 100 Mbps, 01 = 200 Mbps, 10 = 400 Mbps.
This field valid when PKTBD= 0 and 1

DMA_CH The DMA channel number assigned to the packet. The value of this number shall be from 000000 to 111111. When the
PCILynx 1394 receiver is running in SNOOP MODE, the DMA channel number will be set to 000000. This field is valid when
PKTBD = 0 and 1

ISO ISO = 1 Isochronous packet type

SELF_ID SELF_ID = 1 indicates that this packet is a self_id packet

PACKET_SIZE The total size of the packet in bytes (header + data payload). This field valid when PKTBD = 0 and 1

FIFO Control Word and Transmit ACK Formats

D-2 SCPA020A

Table D–2. General Receive FIFO Asynchronous Packet Control Token Format Definition

32 31 30 27 26 25 24 23 18 17 16 15 13 12 0

FCT PKTBD RCV_STAT RES RCV_SPD DMA_CH ISO SELF_ID RES PACKET_SIZE

Bit Field Function Description

FCT FIFO control token. FCT = 1 indicates that bits 31 – 0 of the quadlet are to be interpreted as a FIFO control token. The
bit fields defined below for this control token shall only be valid when FCT = 1.

PKTBD Packet delimiter. PKTBD = 0 indicates start of packet
PKTBD = 1 indicates end of packet

ACK_SENT Packet receive status. This field is only valid when PKTBD = 1.
 0001 = Packet was successfully received. If the packet was a request subaction, the destination node has successfully

completed the transaction and no response subaction shall follow.
 0010 = Ack pending. Packet was successfully received. If the packet was a request subaction, a subaction response will

follow at a later time.
 0100 = The packet could not be accepted. The destination transaction layer may accept the packet on a retry X of the

subaction.
 0101 = The packet could not be accepted. The destination transaction layer will accept the packet when the node is not

busy during the next occurrence of retry phase A.
 0110 = The packet could not be accepted. The destination transaction layer will accept the packet when the node is not

busy during the next occurrence of retry phase B.
 1101 = The receiver could not accept the packet because a CRC error occurred or the length of the data block payload did

not match the length contained in the data length field of the packet header.
 1110 = A field in the request packet header was set to an unsupported or incorrect value, or an invalid transaction was

attempted.

RCV_SPD The speed at which the packet is received at. 00 = 100 Mbps, 01 = 200 Mbps.
This field valid for PKTBD = 0 and 1

DMA_CHANNEL The DMA channel number assigned to the packet. The value of this number shall be from 000000 to 111111. When the
PCILynx 1394 receiver is running in SNOOP MODE, the DMA channel number will be set to 000000. This field is valid when
PKTBD = 0 and 1.

ISO ISO = 0 Asynchronous packet type

SELF_ID SELF_ID = 1 This packet is a self id packet type

PACKET_SIZE The total size of the packet in bytes (header + data payload). This field valid for PKTBD = 0 and 1

FIFO Control Word and Transmit ACK Formats

D-3 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Table D–3. Isochronous Transmit FIFO Control Word Format

32 31 30 29 28 27 26 25 24 – 0

FCT PKTBNDRY SPD_CODE MSTR_ERR RESERVED UNFORMATTED XMT RESERVED

Bit Field Function Description

FCT FIFO control token. FCT = 1 indicates that bits 31 – 0 of the quadlet are to be interpreted as a FIFO control token.
The bit fields defined below for this control token shall only be valid when FCT = 1.

PKTBNDRY Packet delimiter. PKTBNDRY = 00 indicates start of packet
PKTBNDRY = 10 indicates end of packet
PKTBNDRY = 11 indicates end of packet and the last packet to be transmitted for the current

 isochronous interval.

SPD_CODE Transmit speed code. SPD_CODE = 00 – 100 mbps
SPD_CODE = 01 – 200 mbps

This field is valid for PKTBNDRY = 00

MSTR_ERR Master error. Indicates if an error occurred during the transfer of the packet from host memory to the asynchronous
transmit FIFO. Error occurred if set to 1.

No error occurred if set to 0

UNFORMATTED
XMT

When set to logic 1, the transmitter shall transmit the data quadlets between the packet start and end control tokens
without performing the normal packet formatting checks and header-data CRC insertions.

Table D–4. Isochronous Transmit FIFO Control Word Format

32 31 30 29 28 27 26 25 24 – 0

FCT PKTBNDRY SPD_CODE MSTR_ERR RT UNFORMATTED XMT RESERVED

Bit Field Function Description

FCT FIFO control token. FCT = 1 indicates that bits 31 – 0 of the quadlet are to be interpreted as a FIFO control token.
The bit fields defined below for this control token shall only be valid when FCT = 1.

PKTBNDRY Packet delimiter. PKTBNDRY = 00 indicates start of packet
PKTBNDRY = 10 indicates end of packet

SPD_CODE Transmit speed code. SPD_CODE = 00 – 100 mbps
SPD_CODE = 01 – 200 mbps

This field is valid for PKTBNDRY = 00

RT Transmit packet retry

MSTR_ERR Master error. Indicates if an error occurred during the transfer of the packet from host memory to the Asynchronous
transmit FIFO. Error occurred if set to 1.

No error occurred if set to 0

UNFORMATTED
XMT

When set to logic 1, the transmitter shall transmit the data quadlets between the packet start and end control tokens
without performing the normal packet formatting checks and header-data CRC insertions.

FIFO Control Word and Transmit ACK Formats

D-4 SCPA020A

Table D–5. Asynchronous Transmit Acknowledge Codes Returned to DMA Channel After an
Asynchronous Packet Transmission Completes

Acknowledge Codes Returned To
Active Transmit DMA Channel Functional Description

ack3 ack2 ack1 ack0 ack_type
p

0 0 0 1 0 Ack_Complete – packet was successfully transmitted

0 0 1 0 0 Ack_Pending – packet successfully transmitted but a response transaction will follow at a later time

0 1 0 0 0 Ack_busy_X received – The receiving node could not accept the packet. Retry the packet transmis-
sion using BUSY_X retry code.

0 1 0 1 0 Ack_busy_A received – The receiving node could not accept the packet. Retry the packet transmis-
sion using BUSY_X retry code.

0 1 1 0 0 Ack busy_B received – The receiving node could not accept the packet. Retry the packet transmis-
sion using BUSY_X retry code.

1 1 0 1 0 Ack data error received – The receiving node could not accept the block packet because the data field
CRC check failed, the number of data bytes received did not match the data byte count of the packet.

1 1 1 0 0 Ack type error received – The receiving node detected a field in the request packet header was set to
an unsupported or incorrect value, or an invalid transaction was attempted (e.g., a write to a read-only
address).

0 0 0 0 1 Retry time out – The current ASYNC packet transmission retry count has timed out without a suc-
cessful transmission occurring.

0 0 0 1 1 No ack received – An ack was expected but not received within the 1394 gap time allowed.

0 0 1 0 1 Transmit FIFO underrun – The entire packet was not transmitted because the PCI bus was not able to
keep up with the 1394 bus.

0 0 1 1 1 Acknowledge packet error – An a parity error or a truncation occurred during the reception of the 8-bit
transmit acknowledge packet.

1 1 1 0 1 Improper packet format – Packet was not transmitted because of a malformed header.

Program Control List (PCL) Examples

E-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix E Program Control List (PCL) Examples

E.1 Transfer AT ADDRESS Program

The PCILynx PCLs can be coded such that the payload data is transferred to the
host address contained in the 1394 packet header address field. This is
accomplished by simply transferring the header quadlet containing the address
into its own PCL so as to modify the data buffer address for the payload data.

For example: For a write request data block:

Allocate a DMA channel for this purpose (i.e., dedicated to processing write
request data block transactions only), and setup the receive comparators to allow
only accesses from a trusted node(s), only write request data block Tcodes, and
only requests with the destination address high equal to 0. Set PCILynx to return
ACK_COMPLETE for accesses to this DMA channel.

Example PCL:

00: Next PCL Address

04: Error Next PCL Address

08: Reserved

0C: Reserved

10: Reserved

14: cntl/xfr count = 8

18: Header Address 1

1C: cntl/xfr count = 4

20: Headsr Address 2 = PCL + 30

24: cntl/xfr count = 4

28: Header Address 3

2C: cntl/xfr count = maxpayload

30: Payload Address, Overwritten

First 2 quadlets of header.

Transfer 1 quadlet to overwrite the Payload Address
with low 32 bits of destination address from the 1394
header.

Last quadlet of the header.

Transfer payload to address loaded from header.

Program Control List (PCL) Examples

E-2 SCPA020A

E.2 PHY Configuration Packets

A PHY Configuration (PHY CFG) packet (or any other PHY packet or any other
packet) may be transmitted by the PCILynx by using the UNFXMT command. The
two quadlets described in the 1394 Standard can be transmitted as the 8-byte
payload of an ASYNC packet. This will always result in an ACK_TIMEOUT
completion status since PHY packets are not ACK’ed on the 1394 bus, and the
async transmitter used to transmit this format is expecting a returned ACK. (If
there were an ACK returned, then it would be returned in the completion status
with no error).

Table E–1. PHY_CFG Packet (Big Endian Format)

PCI Address PCL Description Value Comment

0001FC30 00 NEXT_PCL 0001B461 NOT_VALID=1

0001FC34 04 ERROR_PCL 0001B461

0001FC38 08 SOFTWARE 00000000

0001FC3C 0C STATUS 00000000 CH=0 SPD=0 ACK=0=ACK_RSVD_0 XFR=000

0001FC40 10 RCV_COUNT 00000000 RCV_AND_UPDATE command only

0001FC44 14 NXT_BUF_ADR 00000000 RCV_AND_UPDATE command only

0001FC48 18 PAIR 0 CTRL 0C070008 CMD=C=UNFXMT, LASTBUF,
Wait for status, big endian, 8 Bytes

0001FC4C 1C PAIR 0 ADDR @0001FC50

@0001FC50 20 QUADLET DATA 0 01F00000 R=1, T=1, GAPCNT=30 (big endian format)

0001FC54 24 QUADLET DATA 1 FE0FFFFF Inverted QUAD0 (big endian format)

Table E–2. PHY_CFG Packet (Little Endian Format)

PCI Address PCL Description Value Comment

0001FC30 00 NEXT_PCL 0001B461 NOT_VALID=1

0001FC34 04 ERROR_PCL 0001B461

0001FC38 08 SOFTWARE 00000000

0001FC3C 0C STATUS 00000000 CH=0 SPD=0 ACK=0=ACK_RSVD_0 XFR=000

0001FC40 10 RCV_COUNT 00000000 RCV_AND_UPDATE command only

0001FC44 14 NXT_BUF_ADR 00000000 RCV_AND_UPDATE command only

0001FC48 18 PAIR 0 CTRL 0C060008 CMD=C=UNFXMT, LASTBUF,
Wait for status, 8 Bytes

0001FC4C 1C PAIR 0 ADDR @0001FC50

@0001FC50 20 QUADLET DATA 0 0000F001 R=1, T=1, GAPCNT=30 (little endian format)

0001FC54 24 QUADLET DATA 1 FFFF0FFE Inverted QUAD0 (little endian format)

Serial EEPROM Data

F-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix F Serial EEPROM Data

The PCILynx loads certain internal configuration registers from serial EEPROM
immediately after power reset. During the time the registers are being loaded, any
PCI slave access to the PCILynx will be terminated with a retry disconnect. This
ensures that the system software will always read the values loaded from serial
EEPROM whenever the PCILynx is first accessed.

If the serial EEPROM data is not loaded, the default values shown will persist after
PCI reset. A checksum error will only set the EEPCHKERR bit of the serial
EEPROM control register @044; it will not prevent the serial EEPROM data from
loading.

The first 8 bytes of the serial EEPROM address space are reserved for use by
the PCILynx after power reset. These bytes are loaded into internal registers by
the PCILynx. This is described in the following table. The second 8 bytes are
reserved for future use by the hardware. All remaining bytes in the serial
EEPROM are available for software to read and write via the serial EEPROM
control register. These bytes might be used for information such as 1394 unique
ID, assembly part number, manufacture, assembly revision information,
manufacturing data, etc. The size of the serial EEPROM address space depends
on which serial EEPROM device is selected to be used with the PCILynx.

Some may desire to eliminate the serial EEPROM to reduce system cost. While
this is possible from a hardware standpoint, careful consideration must be given
to applicable system specifications. Some of the register locations can only be
loaded from the serial EEPROM and therefore could not be changed from their
default value if the serial EEPROM is eliminated. Also consider the requirements
of any software to be used with PCILynx.

Table F–1. Serial EEPROM Address Map

Byte Adr Default Byte Description

00 x02 PCI max_lat (Configuration Reg 3F)

01 x01 PCI min_gnt (Configuration Reg 3E)

02 xE0 Local bus control register – ROM control (Configuration Reg B0)

03 x00 PCI subsystem vendor ID (ls byte) (Configuration Reg 2C)

04 x00 PCI subsystem vendor ID (ms byte) (Configuration Reg 2D)

05 x00 PCI subsystem ID (ls byte) (Configuration Reg 2E)

06 x00 PCI subsystem ID (ms byte) (Configuration Reg 2F)

07 Checksum (bytes 0–6)

08 Reserved for future hardware use

... .

0F Reserved for future hardware use

10 User defined

... .

FF User defined

Serial EEPROM Data

F-2 SCPA020A

The algorithm that should be used to generate the CRC code placed in the serial
EEPROM is included here.

 +––––––––––––––––––––+––+

 | INPUT MSB to LSB >> |LS|

 +––––––––––––––––––––+––+

 ___ | +–––+

 __/ on each clock: +–––––> |XOR|<––––––––––––––––––+

 +–––+ |

 | |

 v |

 +––+––––––––––––––––––+––+

 |MS| CRC MSB to LSB >> |LS|

 +–––––––––––––––––––––+––+

 CRC SEED = 10101010 (hex 0xAA)

It is assumed that data in the serial EEPROM will be shifted LSB to MSB
consistent with other serial communication streams.

Below is a c routine to calculate the serial EEPROM crc over the first 7 bytes of
the EEPROM. The return value is written to the 8th byte of the EEPROM. The
’msb’ arg passed is a copy of the bytes read from the EEPROM and stored in an
array.

unsigned char

xor_crc(unsigned char *msb, int bytes)

{

 unsigned char crc=0xaa; // seed

 int i;

 for(i=0; i<bytes; i++)

 crc^=msb[i];

 return(crc);

}

Power Supply Sequencing

G-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix G Power Supply Sequencing
Turning power supplies on and off within a mixed 5-V/3.3-V system is an
important consideration. Observe a few basic rules to avoid damaging PCI-Lynx
devices. Please check with the manufacturers of all components used in the
3.3-V to 5-V interface to ensure that no unique device characteristics exist that
would lead to rules more restrictive.

If the 3.3-V supply is turned on before turning on the 5-V supply, PCI-Lynx output
buffers in a logic 1 state can supply large amounts of current through their clamp
diodes to the 5-V supply pin. This can lead to excessive power dissipation and
a violation of current density limits. However, if the 5-V supply is turned on before
the 3.3-V supply, the maximum drain-to-gate voltage of the n-channel transistors
in the 5-V tolerant buffers exceeds the recommended value, and the effects of
channel hot carriers can be accelerated.

When turning on the power supply, all 3.3-V and 5-V supplies should start
ramping from 0 V and reach 95 percent of their end-point values within a 25-ms
time window. All bus contention between the PCI-Lynx and external devices is
eliminated by the end of the 25-ms time window. The preferred order of supply
ramping is to ramp the 3.3-V supply followed by the 5-V supply. This order is not
mandatory, but it allows a larger cumulative number of power supply events than
the reverse order.

When turning off the power supply, all 3.3-V and 5-V supplies should start
ramping from steady state values and reach 5 percent of these values within a
25-ms time window. All bus contention between the PCI-Lynx and external
devices is eliminated by the end of the 25-ms time window. The preferred order
of supply ramping is to ramp down the 5-V supply followed by the 3.3-V supply.
This order is not mandatory, but it allows a larger cumulative number of power
supply off events than the reverse order.

A cumulative total of 250 seconds of power supply turn-on or turn-off events is
allowed during the operating lifetime of the PCI-Lynx under worst-case conditions
(where the 5-V supply is ramped up before the 3.3-V supply, and the 3.3-V supply
is ramped down before the 5-V supply). If the maximum time window of 25 ms
is used, a total of 10000 power supply on/off events can occur as long as the
25-ms time window is observed.

An additional precaution must be observed when the PCI-Lynx is attached to a
5-V IEEE 1394 physical layer device which is powered from the 1394 cable. In
that case, it is possible for the physical layer device to have power while the
PCI-Lynx does not. It is essential that the physical layer device must not supply
a high on any pin which connects to the PCI-Lynx while the PCI-Lynx power is off.
This is normally achieved through the use of the link power status pin on the
physical layer device.

CAUTION:
If these precautions and guidelines are not followed, the
PCI-Lynx device may experience possible failures related to
overheating, accumulation of channel hot carriers, and/or
metal migration due to excessive current density.

G-2 SCPA020A

Device Changes

H-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix H Device Changes

Revision A device changes

The following paragraphs describe the Revision A changes to the TSB12LV21.
This device is now known as the TSB12LV21A.

DMA Swap & Compare command added

The Rev A PCILynx has an added DMA auxiliary command called swap &
compare which acts like the normal compare but first swaps the 16-bit halves of
the temp register. See Table 2, AUXILIARY Command Packet Control List Format
and section 4.2.2, DMA Logic.

Interrupt bit definition changed

The Int (Interrupt) bit definition in the PCL control and byte count quadlet changed
slightly in that it is used in the first transfer scatter pair of a PCL. Subsequent
scatter entries’ Int bit are ignored. See the Int bit description in the transfer
command data buffer 0 control register on page 27.

Lower Bound register redefined

The lower bound register was redefined. See section 5.3.10, Global Register
@908.

DMA performance enhancements

DMA performance was enhanced by increasing the number of context switching
opportunities in the DMA state machine.

PCI revision ID changed

Revision ID changed to 0x02. See section 5.2.3, Class Code – Revision ID @008.

ZOOM port ZV_PIX_CLK

Polarity control for the ZOOM Port ZV_PIX_CLK was added to the local bus
control register. See section 5.2.16, Local Bus Control Register @0B0 {ROM,
RAM, AUX, and ZV registers}. Bit 19 is the “invert ZV clock” bit.

Also, when autoboot is active, PCI reset enables and selects ZV_PIX_CLK as
PHY_CLK50/2 (25 MHz). This should allow a standalone application to use the
ZV_PIX_CLK for a PCI clock.

ZOOM port Vertical sync output

The prior PCILynx vertical sync output was not properly recognized by some
video controllers and GPIO DATA3 was used instead for the vertical sync. The
zoom port vertical sync pulse has been extended to work with more video
controllers.

Testability enhancements

Additional test bits were added to the test registers. This does not affect normal
operation.

Device Changes

H-2 SCPA020A

Header compare logic modified to allow reception of cycle start packets

The PCILynx header compare logic behavior has changed in Rev A. Previously,
always true comparator values would not receive cycle start packets; however,
with Rev A, cycle starts can be received into the GRF. The comparator definition
that changed is the Tcode compare enable field (word 0 receive packet compare
enable register CMP0_FIELD3_ENABLE [3:0]). See section 5.5.2, DMA
Channel 0 – 4 Word 0 Receive Packet Compare Enable Register @B04 B14 B24
B34 B44, for the new definition of this field. Any CMP0_FIELD3_ENABLE that is
always true will receive cycle starts. Selecting only isochronous or asynchronous
encoding will not receive cycle starts.

A DMA channel programmed with a CMP0_FIELD3_MASK == ’b0000, which in
the original part received everything except cycle start packets, now also receives
cycle start packets. This adds a lots of traffic for what may have been intended
to be a low traffic channel. The solution is to program the comparator differently.

If one only wants asynchronous packets (but not cycle start packets), not caught
by some other higher priority channel, set:

CMP0_FIELD3_ENABLE == 0xA. ”normal ASYNC encoding” –> GRF

If one only wants all packets (asynchronous and isochonous, but not cycle start
packets) not caught by some other higher priority channel, set:

CMP0_FIELD3_ENABLE == 0x4 Tcode DOES NOT match cmp0_field3 –> GRF
and CMP0_FIELD3 == 0x8Tcode == CYCLE_START

SNOOP_ENABLE bit added

A SNOOP_ENABLE bit was added to the link layer control register. See
section 5.5.6, 1394 Link Layer Control @F04.

CYCMASTER bit automatically clears

The CYCMASTER bit of the 1394 link layer control @F04 has been modified. This
bit will now automatically clear after a 1394 bus reset if the attached PHY is no
longer ROOT. The previous version required software to clear this bit after a bus
reset.

Local Bus waitstates redefined

The definition of Waitstates in the local bus control register has changed. Setting
Waitstates == 0 results in a 1 clock access cycle on the local bus, a value of 1,
results in a 2 clock access, and so on. See section 5.2.16, Local Bus Control
Register @0B0 {ROM, RAM, AUX, and AV registers}.

Local Bus AUX_DATA bus

The local bus AUX_DATA bus is set to high-impedance state by PCI reset (unless
autoboot is active). This will allow designs that only have zoom port (no
AUX/ROM/RAM) to multiplex between various zoom sources without having to
add external 3-state buffers. This also requires pull-up/down resistors on the bus
if it is not used since the bus is bidirectional.

Device Changes

H-3 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

GPIO polarity control

The definition of the GPIO polarity control bits has changed. See
section 4.2.1.5.6, GPIO Interface. Also see section 5.2.18, PCI_GPIO[1:0]
Control Register A @0B8 and section 5.2.19, PCI_GPIO[3:2] Control Register B
@0BC.

Serial EEPROM bit ordering has been corrected

The bit ordering on the autonomous serial EEPROM load was reversed. Rev A
and later loads the MS bit of each byte first, and the LS bit last.

Link transmitter modified

The link layer transmitter was modified to only allow an ISO transmit request to
be issued to the PHY near the start of a subaction gap. This prevents late-arriving
ISO transmit requests from extending into the ASYNC period.

Errata items from previous version corrected

In general, the errata items from the original 12LV21 device were corrected. The
exceptions follow:

• Electrical isolation as described in Annex J.6 of IEEE 1394–1995 is not
supported by PCILynx.

• PCI performance has been enhanced, however it remains possible to
program the PCILynx so that the latencies exceed the PCI 2.1 specification.
In particular, the use of local bus waitstates and the aux_rdy signal can cause
PCI bus latencies which exceed those specified by PCI 2.1. In some cases
a PCI transaction can be held waiting for a local bus transaction to complete.
See section 4.2.1.1, PCI Specification 2.1 Compliance.

• Separately, a bug in the Rev A PCILynx makes it necessary to set the
ENA_POST_WR bit in the miscellaneous control register to 0. Note that
Errata for the original PCILynx required that both ENA_POST_WR and
ENA_SLV_BURST be set to 1.

Device Changes

H-4 SCPA020A

Revision B device changes

The following paragraphs describe the Revision B changes to the TSB12LV21A.
This device is now known as the TSB12LV21B.

Device ID

Device ID changed from 0x02 to 0x04.

FIFO size

The FIFO size increased from a total of 1 Kbyte to 4 Kbytes. The current RAM
is a single 1024 X 33-bit clocked dual-port RAM. Each FIFO is programmable in
size from 0 to 256 quadlets (x4). The programmed FIFO size is internally
multiplied by 4.

• Allows asynchronous streams (isochronous tcode used in an asynchronous
bus phase) in the asynchronous transmit FIFO.

• Corrected receive behavior of certain illegal packets with missing or extra
data.

• New ack-type error added: ’h1F packet format error (separate from tcode
error)

• Added the subsystem access register at PCI offset 58h. Writes to this register
are reflected back to the subsystem ID and subsystem vendor ID registers at
PCI offset 2Ch. This provides a method for system BIOS to write values to the
subsystem ID and subsystem vendor ID registers and allow them to appear
as read-only to the Windows 9x operating system. This method for the
subsystem ID and subsystem vendor ID registers can be used when no
EEPROM is implemented.

Using SNOOP Mode

I-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix I Using SNOOP Mode

Set bit 6 SNOOP_ENABLE in the link control register @F04. This forces all
received data to DMA channel 0 and ACKs are inhibited.

Only DMA channel 0 should be programmed.

Set up the largest possible receive FIFO.

An extra quadlet is appended on the end of received packets. This quadlet
contains the received ACK (ls bits) or 0 for ISO or cycle_start packets.

I-2 SCPA020A

Using the AV Port

J-1 PCILynx 1394 to PCI Bus Interface TSB12LV21BPGF Functional Specification

Appendix J Using the AV Port

ZV_DATA_VALID is an active high signal that indicates when valid data is present
on the ZV data bus. It remains high until the back-to-back writes are finished. For
example, a typical transaction would be to put a quadlet out to the ZV port. If the
ZV port is enabled in 16-bit mode it will require 2 clocks to transfer the 2 doublets
to complete the quadlet. ZV_DATA_VALID will remain high for the entire duration
of the 2 clocks required to complete the transfer of the quadlet. ZV_PIX_CLK
should be used to latch the data. If the interface does not use ZV_DATA_VALID
then the ZV port pixel clock should be put into gated mode (local bus control
register bit 31 at offset 0B0h). When placed in gated mode ZV_PIX_CLK is only
allowed to toggle when data is valid on the ZV data bus. When the ZV port is
disabled, the ZV_DATA_VALID signal is 3-stated.

ZV_HSYNC is the video port horizonal sync pulse. Its mode of operation is set
using bits 28, 29, and 30 of the local bus control register @0B0h. When these bits
are set to 0 it is a special mode where it is assumed the device receiving the data
is generating its own HSyncs. An HSync will still be generated once every frame
in this mode. When these bits are set to a nonzero value, it is the number of
packets between Hsyncs (the number of packets that make up one line of video).

PCILynx PIN COMMENT

ZV_PIX_CLK Video port pixel clock (can be inverted via control reg bit)
8-bit mode uses both edges and MUST select divide-by-2 clock
(i.e., ext_clk/2, sclk/4, or pci_clk/2)

ZV_VSYNC Video port vertical sync

ZV_HSYNC Video port horizonal sync

ZV_DATA_VALID Video port data valid not used on all chips, if not used
must use gated clock mode

AUX_DATA[7:0] Data output for all bytes for 8-bit mode
video data for UV data in 16-bit mode

AUX_DATA[15:8] Video data for Y data in 16-bit mode

This interface was designed to allow the 1394 digital camera to send packet data
to a zoom video interface. For the data sequence and the vertical sync detect
logic in the PCILynx to work, the packets (both in the header and the packet
payload data) must be received with the big_endian flag set to 0 (which preserves
byte addressing).

The pixel clock choices are restricted in 8-bit mode because the data is clocked
on every edge (both rising and falling). To keep the controlling state machines
synchronized, the clock needs to be divided by 2.

J-2 SCPA020A

