[image: image9.wmf]Application Report

[image: image10.wmf]

[image: image11.wmf][image: image12.wmf]
Overwrite this text with the Lit. Number

Ethernet Bootloader for Hercules
ABSTRACT
This application report describes how to use Ethernet module to transfer the firmware image and program it into flash on Hercules. The Ethernet bootloader is based on TFTP (Trivial File Transfer Protocol) which is a file transfer protocol notable for its simplicity. And it is a small piece of code that can be programmed at the beginning of the flash to act as an application loader as well as an update mechanism for applications running on a Hercules microcontroller.
Table of Contents
1ABSTRACT

1Table of Contents

21.
Introduction

32.
Hardware requirement

33.
Software requirement

44.
The TFTP Protocol used in Ethernet bootloader

45.
Load the Application code

46.
References

Figure1 Hardware and setup
Figure2 Ethernet bootloader flowchart

Figure3 TFTP used in server and client

Figure4 Ethernet Bootloader is loaded through the JTAG port
Figure5 Application image is loaded through the ENT bootloader

Figure6 Tftp32 GUI

Figure7 Image transfer finish

Figure8 LED blinky
Table 1, List of Source Code Files Used in Ethernet Bootloader

1. Introduction

The Ethernet bootloader is placed in the begin several flash blocks of target device. It enables programming of the Hercules microcontroller through its Ethernet interface. The bootloader helps designers update the user application image for products already deployed in the field, especially for the remote application image update.
This report describes how to use the Ethernet bootloader for application image transfer and program it into flash. Also the bootloader is provided as source code which allows the developer to do some customization.
The bootloader on the target device use the lwIP stack to configure the Ethernet module and use the TFTP protocol base on lwIP to communication with PC host through the Ethernet. The target device will listen to the requests from PC host on Port 69, the receive function will be called whenever a new incoming TFTP request is received. After the internal flash has successfully downloaded the binary image, the bootloader jumps to the starting address of the new application image.
The target side bootloader has been built and validated using CCv6 on the TMS570 Hercules HDK. The Host side which communicates with the bootloader is an opensource and free software name Tftp32 (http://tftpd32.jounin.net/)
The following is an overview of the organization of the source code provided with the bootloader.
Table 1, List of Source Code Files Used in Ethernet Bootloader
	sys_startup.c
	The start-up code used when TI’s Code Composer Studio (CCS) compiler is being used to build the boot loader.

	sys_main.c
	The main control loop of the boot loader.

	sys_link_boot.cmd
	The linker script used when the CCS compiler is being used to build the boot loader.

	bl_config.h
	Boot loader configuration file. This contains all of the possible configuration values.

	bl_flash.c
	The functions for erasing, programming the flash, and functions for erase/program check

	bl_flash.h
	Prototypes for flash operations

	bl_tftp.c
	Function for define the tftp request and image write/read function

	bl_tftp.h
	Prototype define the variables and functions

	Fapi_UserDefinedFunction.c
	Contains all user defined functions that the Fapi functions use

	Emac.c
	Contains the device abstraction layer APIs for EMAC

	Esm.c
	Esm driver source file

	Mdio.c
	Contains the device abstraction layer APIs for MDIO

	Pinmux.c
	PINMUX driver implementation

	tftp.c
	Simple LwIP TFTP sever

	tftp.h
	Public function prototypes and globals related to the LwIP TFTP sever

	ustdlib.c
	Simple standard library functions

	Lwip-1.3.2
	Lwip library support TCP/IP stack

	Others
	Relevant for system

2. Hardware Requirements
The hardware required for configuration includes:

· Power supply: 12V to HDK

· Hercules TMDX570LS31HDK

· PC with windows for running tftpd32

· Router or connect directly

[image: image1.jpg]
Figure1 Hardware and setup
3. Software Requirements
· The bootloader code is implemented in C, ARM Cortex-R4F assembly coding is used only when absolutely necessary. The IDE is TI CCSv6
· The bootloader is compiled in the 32-BIT ARM mode.

· The Application code needs to change the address with bootloader setting
4. The TFTP Protocol used in Ethernet bootloader
The trivial file transfer protocol (TFTP) protocol uses in this case is based on lightweight IP (lwIP), which is a widely used open source TCP/IP stack designed for embedded system and has small resource usage for RAM and ROM. It is a simple protocol for transfer files, implemented on the top of the User Datagram Protocol (UDP) using port number 69.
In TFTP, communication is initiated by the client issuing a request to read or write a file on the server via using UPD/IP packets. So in Ethernet bootloader, define the HDK board as TFTP server for receiving the application image and the PC host as TFTP client. If the server grants the request, the connection will be established and the file will be sent in fixed length blocks of 512 bytes.
Follow is the Ethernet bootloader firmware flowchart.

[image: image2.emf] Start

Init Device

Pushbutton

is pressed?

Vaild Flag?

LwIP Init

Excute User

Application

NONO

YESYES

TFTP Sever Init

 Tftpd32

Client Link?

Image Transmit

Program Flash

YESYES

Last Block?

NONO

YESYES

TFTP Link&Program

Finish

Excute New

Application

Figure2 Ethernet bootloader flowchart

The BIN image will be divided into several data blocks (1 block= 512bytes) by TFTP client Tftpd32.exe, and each data block is received by the bootloader, it will be programmed into flash. And a data packet of less than 512 bytes signals termination of a transfer. Once all data blocks are received and programmed, the device will jump to the application start address and start running the new application image.
The Figure 3 is the detail TFTP implement in firmware. In the TFTPInit function which defined in tftp.c, it will initialized the lwIP TFTP server and starts listening for incoming requests from clients.

[image: image3.emf]lwIP_Init

TFTP_Init

UDP CreateUDP_RecvUDP_Bind

TFTP_Request

EthernetEthernet

Tftp32@PC

Figure3 TFTP used in server and client
5. Load the application code

The Ethernet bootloader is built with CCSv6 and loaded throught the JTAG port into the lower part of the program memory at 0x00000000.
[image: image4.png]
Figure4 Ethernet Bootloader is loaded through the JTAG port
After HDK reset, the stratup code copies the FlashAPI of bootloader from flash to RAM, and excute the bootloader in flash.
It will check to see if the GPIO_A7 key is pushed or not , If the key is not pushed , it will excute the application code that already exist in the flash, otherwise call the TFTP update code. The flash will be erased, and then waiting for the application image from PC host.
[image: image5.png]
Figure5 Application image is loaded through the ENT bootloader
When the HDK enters into TFTP update mode, On the PC side, use the software named Tftpd32 which is free and opensource. Then do
· Select the tftp client table
· Fill the Host with HDK borad IP and Port is 69

· Choose the local file to the image file location
· Set block size as default(512)
Ensure both HDK board and PC are in the same net. Click the Put command button in figure 6, the image will be transferred into the HDK board.
[image: image6.png]
Figure6 Tftp32 GUI

Once finished, there is a reminder, how many blocks have been transferred for notice.
[image: image7.jpg]
Figure7 Image transfer finish

After the HDK has received the whole application image and programed it into flash, the bootloader will jump to the starting address of the new application image and execute it. Here the led blinky application image is working in figure 8
[image: image8.jpg]
Figure8 LED blinky
References
· Datasheet of TMS570 16/32-Bit RISC Flash Microcontroller

· F021 Flash API (V1.5, SPNU501A)
1
2
Ethernet Bootloader for Hercules

Ethernet Bootloader for Hercules
9

_948891555.doc

