
cc2540速度测试

建立周期事件：

 在第一次产生SBP_PERIODIC_EVT事件后进入，在其中打开一个定时器，令其每次进入时都会再次产
生SBP_PERIODIC_EVT，达到周期事件的目的。
 我们会设置一个connection interval，这个interval表示的是两个event事件之间的间隔时间，也就是说，你不断的
产生SBP_PERIODIC_EVT事件，在事件内进行一些动作，而每次这个事件结束后到下个事件发生时会有这么一个时间间
隔。BLE这么处理是为了能够降低功耗，这也是蓝牙4.0设计的初衷。
 事件内我们4次调用senddata（），每次调用会发送一个包，每个包20字节，这里注意下，每两次发包之间也会有
150微秒的间隔。

周期事件的产生：

 发送这个动作一定是在两个设备建立连接或者配对绑定后才会成功。在两个设备建立连接后，我们调用定时器去产
生一个事件SBP_PERIODIC_EVT，这也就是我们第一次事件的产生，那么之后就是周期事件的不断循环。这里调用了
osal_setClock（）是为了到最后计算时间。

发送函数：

 调用notification发包，通过对返回值的判断来确定发包是否成功。这里注意，notification的返回值有6个，你的
每个包不一会都发送成功，可以自己去把成功1000包后其他5种包的数量打出来，你会吃惊的。
 这里当counter到1000时我们再次计算时间，通过字节数和事件就可以计算出速度了。
 还有一点，notification（）的第一个参数是handle，也就是连接句柄，也就是一条虚链路，表明当前发送的通信
通道，这里填的是0，也是说明了从机只会和一个设备建立连接。

发送的速率可以通过三个值来改变：

 interval上面讲过了，这里强调一点，他有一个最大和最小，这是给设备去选择的空间，在ios上要求max要比min
大20，而安卓上则不做要求。

测量方法和结果：

1、用两个2540。
一个主机一个从机，速度因为发包中HCI buffer的问题，会有大量的包发送不成功，发送1000个包SUCCESS时，底层会
丢弃几万个包，导致了速度的降低。
2、一个2540，一个usbdongle。
速度可以达到6K。因为我的时间用的是秒级的接口，不是特别精确，没有小数部分，在意的朋友可以换成ms的时间接
口。（ti官网上给的是5.9k，不过是好几年前的）。
这里我把包发给usbdongle，然后用BTOOL打出来。

结果1的解决方法：
使用1.40协议栈，在主机中：

从机中：

采用OverlappedProcessing后会解决HCI buffer问题，速度可以达到5k以上。
下附OverlappedProcessing连接：
http://processors.wiki.ti.com/index.php/OverlappedProcessing

http://processors.wiki.ti.com/index.php/OverlappedProcessing

