

Wireless Sensor Networks

BLUETOOTH LOW ENERGY

Flavia Martelli flavia.martelli@unibo.it

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

- Introduction
- Applications
- Architecture
- Topology
- Controller specifications:
 - Physical Layer
 - Link Layer
- Host specifications: upper layers
- Products on the market

Introduction (1/2)

Bluetooth:

- Wireless technology for short-range communication
- Replacement to cables connecting portable and/or fixed electronic devices
- Key features:
 - worldwide operation
 - robustness
 - low power consumption
 - Iow cost
 - interoperability

Introduction (2/2)

Bluetooth Core Specification v4.0 (adopted 30 June 2010)

- Two main configurations
 - 1. Basic Rate (BR)
 - Optional Enhanced Data Rate (EDR) and Alternate MAC and PHY (AMP) extensions
 - 2. Low Energy (LE)
 - Lower power consumption \rightarrow devices operated with coin cell batteries
 - Lower complexity
 - Lower cost
 - Lower data rates

Applications (1/7)

Automotive

Sports and fitness

Entertainment

Applications (5/7)

Applications (6/7)

Security and proximity

Advertising

Architecture

- Single-mode (stand-alone) implementation: targeted at low power consumption and small size devices
- Dual-mode implementation: extension to a classic Bluetooth radio, targeted at mobile phones and PCs

Piconet: star topology

Broadcast group

Controller specification

Physical Layer (1/2)

- Modulation: Gaussian Frequency Shift Keying (GFSK)
 - Bandwidth-bit period product: BT = 0.5
 - Modulation index: 0.45 < h < 0.55
 - Bit-rate: $R_b = 1Mbit/s$
- **Transmission power**: $-20 dBm < P_{tx} < +10 dBm$
- Receiver sensitivity: -70 dBm [BER < 0.1%]

Physical Layer (2/2)

- Band: ISM @ 2.4 GHz
 - 40 channels of 2 MHz
 - $f = 2402 + i^{*}2 MHz$, i=0,...,39

Controller specification

• **RF** Channels are allocated into two types:

- Advertising physical channel (i = 0, 12, 39): discovering devices, initiating a connection, broadcasting data
- 2. Data physical channel (the other 37 RF channels): communication between connected devices

MHz	2402	2404	2406	2408	2410	2412	2414	2416	2418	2420	2422	2424	2426	2428	2430	2432	2434	2436	2438	2440	2442	2444	2446	2448	2450	2452	2454	2456	2458	2460	2462	2464	2466	2468	2470	2472	2474	0147	3770
Adv	37												38 38												-											-			
Data		0	<u> </u>	2	ω	4	. 0	ו ס	7		9	10		11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	

Advertising events

Connection events

Passive scanning

Active scanning

Broadcasting data

Initiating a connection

Link Layer: PDU

- Frequency synchronization
- Symbol timing estimation
- Automatic gain control

Fixed sequence for advertising PDUs

Link Layer: advertising PDU RN.

Preamble	Access Address	PDU H	leader	PD	CF	RC						
1 byte	4 bytes	2 by	/tes	varia	3 by	⁄tes						
	F	PDU type	Res.	TxAdd	RxAdd	Leng	gth	Res.				
		4 bits	2 bits	1 bit	1 bit	6 bi	ts	2 bits				

PDU type	Packet name	PDU type	Packet name
0000	ADV_IND	0011	SCAN_REQ
0001	ADV_DIRECT_IND	0100	SCAN_RSP
0010	ADV_NONCONN_IND	0101	CONNECT_REQ
0110	ADV_SCAN_IND	other	Reserved

Link Layer: data PDU

	Preamble Access Address			PDU Header PDU Payload					CR	C		
	1 byte 4 bytes		2	2 bytes		Va	ariable byte	3 by	tes			
				LLID	NESN	S	SN	MD	Res.	Length	Res	-
2 bits 1						oit 1 bit 1 bit 3 bits			3 bits	5 bits	3 bi	t
				<u> </u>	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>			<u> </u>)		-	
LL	ID	Packe	t type									
0	0	Reserved										
01 LL Data PDU: continuation fragment of an L2CAP message or empty PDU											ata bi	t
1	0	LL Data PDU: start of an L2CAP message										
1	11 LL Control PDU											

HCI specification

- The HCI provides a uniform interface method of accessing Bluetooth Controller's capabilities (command PHY and LL, access hardware status, control registers)
- Optional implementation
- Possibility of realizing separate Host and Controller
 → interoperability of different subsystems

L2CAP (1/2)

- L2CAP provides connection-oriented and connection-less data services to upper layer protocols
 - Protocol multiplexing capability (not in case of LE only Controller)
 - Segmentation and reassembly
 - Per-channel flow control and retransmission

L2CAP (2/2)

PDU format

- 0x0004 = Attribute Protocol
- 0x0005 = LE L2CAP Signaling channel
- 0x0006 = Security Manager Protocol

Attribute Protocol (1/2)

- Attribute is 'data'
 - Value with a meaning (UUID), permissions (read/write), that is addressable by a handle
- \rightarrow Attributes expose data on a remote device
- ATT is a peer-to-peer protocol between a server and a client
 - Server: contains attributes, receives requests, executes, responds, can indicate values
 - *Client*: sends requests, commands, waits for responses, can confirm indications

Attribute Protocol (2/2)

- Operations on attributes
 - Push: the server sends the data to the client when it changes or according to configuration
 - Pull: a client request the data from the server when it needs it
 - Set: configuring a server (actuator)
 - Broadcast: the server periodically broadcast the data (using LL advertising PDUs)
 - Get: the client requests for attributes handles and UUID to discover the services that the server offers

- The GATT profile is designed to be used by an application or another profile
- It defines how to use the ATT Protocol to discover, read, write and obtain indications of server attributes, as well as configuring broadcast of attributes
- Attributes are grouped in services
 - service = collection of data and associated behaviors
 - *characteristic* = value used in a service along with properties and descriptors (how it is accessed, displayed and represented)

- A bluetooth *profile* defines the required functions and features of each layer in the Bluetooth system
- GAP: base profile implemented by all devices
 - Basic requirements of a device
 - Description of behaviours and methods for device discovery, connection establishment, security, authentication, association models, service discovery
 - Four LE device roles:
 - Broadcaster
 - Observer
 - Peripheral
 - Central

Device profiles

• Profiles can be organized in a hierarchy

Applicat	tion Profile #1	
Gene	ric Profile #1	
	GAP	

• Application profile: top level profile that describes application interoperability

Security specifications

Security (1/4)

- Bluetooth Low Energy provides
 - Eavesdropping protection
 - Man In The Middle protection
 - Privacy of devices
- Security functions are split between host and controller
 - Controller \rightarrow LL: encryption and authentication
 - Host \rightarrow SMP: security protocol

Security (2/4)

Encryption and authentication

- AES128 CCM cryptography
- Both hardware and software solutions
- A Message Integrity Check field is included in every encrypted PDU at the end of the payload
- Bit stream process:

SMP

- Defines how to setup a secure link
 - Key management and exchange

Security (4/4)

Privacy

- Feature used to prevent device tracking
- Two types of address
 - 1. Public: IEEE MAC address
 - 2. Random: obtained through a hash function from the IRK (Identity Resolving Key)
- Random addresses may be resolved only knowing the IRK
- Random addresses may be changed frequently in time

Products on the market (1/7)

- NORDIC nRF8001
 - Integrates both Controller and Host
 - Serial interface to support external application microcontrollers
 - Designed for Peripheral role devices
 - Temperature sensor

Products on the market (2/7)

- Texas Instrument CC2540
 - Integrates Controller, Host and Application
 - Peripherals to interface with analog and digital sensors
 - Single mode device
 - Mini development kit includes:
 - CC 2540 Keyfob (LE slave), with an accelerometer sensor
 - CC2540 USB Dongle (LE master)
 - → 99 \$

- BLUEGIGA BLE 112 Low Energy Module
 - Integrates Controller, Host and Application space for customer applications (no external processor needed)
 - Hardware interfaces to connect sensors and/or simple user interfaces
 - Single mode device
 - Designed for master and slave roles
 - Battery monitor and temperature sensor

Products on the market (4/7)

- BLUEGIGA BLED 112 Low Energy USB Dongle
 - Integrates Controller, Host and Application
 - Single mode USB device enabling LE connectivity for PCs and other devices having a USB port
 - BLE 112 Starter Kit includes:
 - 2 BLE112 Modules
 - 2 BLED112 USB Dongles
 - → 440 \$

Products on the market (5/7)

	Tx powe	r [dBm]	Ry	Curre	nt cons	sumption	Power supply [V]		
Device	min	max	sensitivity [dBm]	Tx (@ 0 dBm)	Rx	sleep	min	max	
NORDIC nRF8001	- 18	0	- 87	13 mA	14.5 mA	0.5 µA	1.9	3.6	
TI CC2540	- 20	+ 4	- 93	27 mA	19.6 mA	0.4 µA	2	3.6	
BLUEGIGA BLE 112 / BLED 112	- 23	+ 4	- 93	27 mA	22.1 mA	0.4 µA	2	3.6	

Products on the market (6/7)

- Dayton Industrial Co. Ltd Heart Rate Belt
 - Based on nRF8001 chip
 - "Heart rate monitors are one of the first and most sought after use cases for Bluetooth low energy" [Johnson Chan, Product Engineering Manager at Dayton]

Products on the market (7/7)

- Casio G-SHOCK Watch
 - Automatic correct time update
 - Incoming calls and messages notification

References

- Specification of the Bluetooth System, version 4.0, available at <u>www.bluetooth.org</u>, June 2010
- www.bluetooth.com
- <u>www.ti.com</u>
- <u>www.nordicsemi.com</u>
- <u>www.bluegiga.com</u>
- http://world.casio.com/news/2011/watch_prototype/

Flavia Martelli

flavia.martelli@unibo.it +39 051 20 93549

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA