
SD 卡在现在的日常生活与工作中使用非常广泛，时下已经成为最为通用的数据

存储卡。在诸如 MP3、数码相机等设备上也都采用 SD 卡作为其存储设备。 SD

卡之所以得到如此广泛的使用，是因为它价格低廉、存储容量大、使用方便、

通用性与安全性强等优点。既然它有着这么多优点，那么如果将它加入到单片

机应 用开发系统中来，将使系统变得更加出色。这就要求对 SD 卡的硬件与读

写时序进行研究。对于 SD 卡的硬件结构，在官方的文档上有很详细的介绍，如

SD 卡内的 存储器结构、存储单元组织方式等内容。要实现对它的读写，最核

心的是它的时序，笔者在经过了实际的测试后，使用 51 单片机成功实现了对

SD 卡的扇区读写， 并对其读写速度进行了评估。下面先来讲解 SD 卡的读写时

序。

（1） SD 卡的引脚定义：

SD 卡引脚功能详述：

引脚

编号

SD 模式 SPI 模式

名称 类型 描述 名称 类型 描述

1 CD/DAT3 IO 或

PP

卡检测

/

数据线

3

#CS I 片选

2 CMD PP 命令/

回应

DI I 数据输入

3 VSS1 S 电源地 VSS S 电源地

4 VDD S 电源 VDD S 电源

5 CLK I 时钟 SCLK I 时钟

6 VSS2 S 电源地 VSS2 S 电源地

7 DAT0 IO 或

PP

数据线

0

DO O 或 PP 数据输出

8 DAT1 IO 或

PP

数据线

1

RSV

9 DAT2 IO 或

PP

数据线

2

RSV

注：S：电源供给 I：输入 O：采用推拉驱动的输出

PP：采用推拉驱动的输入输出

http://www.baiheee.com/Documents/091203/091203224635/300ZS4SN.jpg

SD 卡 SPI 模式下与单片机的连接图：

 SD 卡支持两种总线方式：SD 方式与 SPI 方式。其中 SD 方式采用 6线

制，使用 CLK、CMD、DAT0~DAT3 进行数据通信。而 SPI 方式采用 4线 制，使用

CS、CLK、DataIn、DataOut 进行数据通信。SD 方式时的数据传输速度与 SPI 方

式要快，采用单片机对 SD 卡进行读写时一般都采用 SPI 模式。采用不同的初

始化方式可以使 SD 卡工作于 SD 方式或 SPI 方式。这里只对其 SPI 方式进行介

绍。

（2） SPI 方式驱动 SD 卡的方法

 SD 卡的 SPI 通信接口使其可以通过 SPI 通道进行数据读写。从应用

的角度来看，采用 SPI 接口的好处在于，很多单片机内部自带 SPI 控制器，不

光给开发 上带来方便，同时也见降低了开发成本。然而，它也有不好的地方，

如失去了 SD 卡的性能优势，要解决这一问题，就要用 SD 方式，因为它提供更

大的总线数据带 宽。SPI 接口的选用是在上电初始时向其写入第一个命令时进

行的。以下介绍 SD 卡的驱动方法，只实现简单的扇区读写。

1） 命令与数据传输

1. 命令传输

SD 卡自身有完备的命令系统，以实现各项操作。命令格式如下：

 命令的传输过程采用发送应答机制，过程如下：

http://www.baiheee.com/Documents/091203/091203224635/300910494250.jpg
http://www.baiheee.com/Documents/091203/091203224635/3009113E2X.jpg

 每一个命令都有自己命令应答格式。在 SPI 模式中定义了三种应答格

式，如下表所示：

字节 位 含义

1

7 开始位，始终为 0

6 参数错误

5 地址错误

4 擦除序列错误

3 CRC 错误

2 非法命令

1 擦除复位

0 闲置状态

字节 位 含义

1

7 开始位，始终为 0

6 参数错误

5 地址错误

4 擦除序列错误

3 CRC 错误

2 非法命令

1 擦除复位

0 闲置状态

2

7 溢出，CSD 覆盖

6 擦除参数

5 写保护非法

4 卡 ECC 失败

3 卡控制器错误

2 未知错误

1 写保护擦除跳过，锁／解锁

失败

0 锁卡

字节 位 含义

7 开始位，始终为 0

6 参数错误

5 地址错误

http://www.baiheee.com/Documents/091203/091203224635/3009120b451.jpg

1 4 擦除序列错误

3 CRC 错误

2 非法命令

1 擦除复位

0 闲置状态

2～5 全部 操作条件寄存器，高位在前

写命令的例程：

1. //---

2. 向 SD 卡中写入命令，并返回回应的第二个字节

3. //---

4. unsigned char Write_Command_SD(unsigned char *CMD)

5. {

6. unsigned char tmp;

7. unsigned char retry=0;

8. unsigned char i;

9.

10. //禁止 SD 卡片选

11. SPI_CS=1;

12. //发送 8个时钟信号

13. Write_Byte_SD(0xFF);

14. //使能 SD 卡片选

15. SPI_CS=0;

16.

17. //向 SD 卡发送 6字节命令

18. for (i=0;i<0x06;i++)

19. {

20. Write_Byte_SD(*CMD++);

21. }

22.

23. //获得 16 位的回应

24. Read_Byte_SD(); //read the first byte,ignore it.

25. do

26. { //读取后 8位

27. tmp = Read_Byte_SD();

28. retry++;

29. }

30. while((tmp==0xff)&&(retry<100));

31. return(tmp);

32.}

2） 初始化

SD 卡的初始化是非常重要的，只有进行了正确的初始化，才能进行后面的各项

操作。在初始化过程中，SPI 的时钟不能太快，否则会造初始化失败。在初始

化成 功后，应尽量提高 SPI 的速率。在刚开始要先发送至少 74 个时钟信号，

这是必须的。在很多读者的实验中，很多是因为疏忽了这一点，而使初始化不

成功。随后 就是写入两个命令 CMD0 与 CMD1，使 SD 卡进入 SPI 模式

 初始化时序图：

 初始化例程：

1. //---

2. 初始化 SD 卡到 SPI 模式

3. //---

4. unsigned char SD_Init()

5. {

6. unsigned char retry,temp;

7. unsigned char i;

8. unsigned char CMD[] = {0x40,0x00,0x00,0x00,0x00,0x95};

9. SD_Port_Init(); //初始化驱动端口

10.

http://www.baiheee.com/Documents/091203/091203224635/3009145045J.jpg
http://www.baiheee.com/Documents/091203/091203224635/30091510Y42.jpg

11. Init_Flag=1; //将初始化标志置 1

12.

13. for (i=0;i<0x0f;i++)

14. {

15. Write_Byte_SD(0xff); //发送至少 74 个时钟信号

16. }

17.

18. //向 SD 卡发送 CMD0

19. retry=0;

20. do

21. { //为了能够成功写入 CMD0,在这里写 200 次

22. temp=Write_Command_SD(CMD);

23. retry++;

24. if(retry==200)

25. { //超过 200 次

26. return(INIT_CMD0_ERROR);//CMD0 Error!

27. }

28. }

29. while(temp!=1); //回应 01h，停止写入

30.

31. //发送 CMD1 到 SD 卡

32. CMD[0] = 0x41; //CMD1

33. CMD[5] = 0xFF;

34. retry=0;

35. do

36. { //为了能成功写入 CMD1,写 100 次

37. temp=Write_Command_SD(CMD);

38. retry++;

39. if(retry==100)

40. { //超过 100 次

41. return(INIT_CMD1_ERROR);//CMD1 Error!

42. }

43. }

44. while(temp!=0);//回应 00h 停止写入

45.

46. Init_Flag=0; //初始化完毕，初始化标志清零

47.

48. SPI_CS=1; //片选无效

49. return(0); //初始化成功

50.}

51.

52.

3） 读取 CID

CID 寄存器存储了 SD 卡的标识码。每一个卡都有唯一的标识码。

CID 寄存器长度为 128 位。它的寄存器结构如下：

名称 域 数据宽

度

CID 划分

生产标识号 MID 8 [127:120]

OEM/应用标识 OID 16 [119:104]

产品名称 PNM 40 [103:64]

产品版本 PRV 8 [63:56]

产品序列号 PSN 32 [55:24]

保留 － 4 [23:20]

生产日期 MDT 12 [19:8]

CRC7 校验合 CRC 7 [7:1]

未使用，始终

为 1

－ 1 [0:0]

它的读取时序如下：

 与此时序相对应的程序如下：

1. //---

2. 读取 SD 卡的 CID 寄存器 16 字节 成功返回 0

3. //---

4. unsigned char Read_CID_SD(unsigned char *Buffer)

5. {

6. //读取 CID 寄存器的命令

7. unsigned char CMD[] = {0x4A,0x00,0x00,0x00,0x00,0xFF};

8. unsigned char temp;

9. temp=SD_Read_Block(CMD,Buffer,16); //read 16 bytes

10. return(temp);

http://www.baiheee.com/Documents/091203/091203224635/300916044910.jpg

11.}

4）读取 CSD

CSD（Card-Specific Data）寄存器提供了读写 SD 卡的一些信息。其中的一些

单元可以由用户重新编程。具体的 CSD 结构如下：

名称 域 数据

宽度

单元

类型

CSD 划分

CSD 结构 CSD_STRUCTURE 2 R [127:126]

保留 - 6 R [125:120]

数据读取时间 1 TAAC 8 R [119:112]

数据在 CLK 周期内

读取时间 2

（NSAC*100）

NSAC 8 R [111:104]

最大数据传输率 TRAN_SPEED 8 R [103:96]

卡命令集合 CCC 12 R [95:84]

最大读取数据块长 READ_BL_LEN 4 R [83:80]

允许读的部分块 READ_BL_PARTIAL 1 R [79:79]

非线写块 WRITE_BLK_MISALIGN 1 R [78:78]

非线读块 READ_BLK_MISALIGN 1 R [77:77]

DSR 条件 DSR_IMP 1 R [76:76]

保留 - 2 R [75:74]

设备容量 C_SIZE 12 R [73:62]

最大读取电流

@VDDmin

VDD_R_CURR_MIN 3 R [61:59]

最大读取电流

@VDDmax

VDD_R_CURR_MAX 3 R [58:56]

最大写电流@VDDmin VDD_W_CURR_MIN 3 R [55:53]

最大写电流@VDDmax VDD_W_CURR_MAX 3 R [52:50]

设备容量乘子 C_SIZE_MULT 3 R [49:47]

擦除单块使能 ERASE_BLK_EN 1 R [46:46]

擦除扇区大小 SECTOR_SIZE 7 R [45:39]

写保护群大小 WP_GRP_SIZE 7 R [38:32]

写保护群使能 WP_GRP_ENABLE 1 R [31:31]

保留 - 2 R [30:29]

写速度因子 R2W_FACTOR 3 R [28:26]

最大写数据块长度 WRITE_BL_LEN 4 R [25:22]

允许写的部分部 WRITE_BL_PARTIAL 1 R [21:21]

保留 - 5 R [20:16]

文件系统群 FILE_OFRMAT_GRP 1 R/W [15:15]

拷贝标志 COPY 1 R/W [14:14]

永久写保护 PERM_WRITE_PROTECT 1 R/W [13:13]

暂时写保护 TMP_WRITE_PROTECT 1 R/W [12:12]

文件系统 FIL_FORMAT 2 R/W [11:10]

保留 - 2 R/W [9:8]

CRC CRC 7 R/W [7:1]

未用，始终为 1 - 1 [0:0]

 读取 CSD 的时序：

 相应的程序例程如下：

1. //---

2. 读 SD 卡的 CSD 寄存器 共 16 字节 返回 0说明读取成

功

3. //---

4. unsigned char Read_CSD_SD(unsigned char *Buffer)

5. {

6. //读取 CSD 寄存器的命令

7. unsigned char CMD[] = {0x49,0x00,0x00,0x00,0x00,0xFF};

8. unsigned char temp;

9. temp=SD_Read_Block(CMD,Buffer,16); //read 16 bytes

10. return(temp);

11.}

4） 读取 SD 卡信息

综合上面对 CID 与 CSD 寄存器的读取，可以知道很多关于 SD 卡的信息，以下程

序可以获取这些信息。如下：

1. //---

2. //返回

3. // SD 卡的容量，单位为 M

4. // sector count and multiplier MB are in

5. u08 == C_SIZE / (2^(9-C_SIZE_MULT))

http://www.baiheee.com/Documents/091203/091203224635/30091A1J94.jpg

6. // SD 卡的名称

7. //---

8. void SD_get_volume_info()

9. {

10. unsigned char i;

11. unsigned char c_temp[5];

12. VOLUME_INFO_TYPE SD_volume_Info,*vinf;

13. vinf=&SD_volume_Info; //Init the pointoer;

14./读取 CSD 寄存器

15. Read_CSD_SD(sectorBuffer.dat);

16.//获取总扇区数

17. vinf->sector_count = sectorBuffer.dat[6] & 0x03;

18. vinf->sector_count <<= 8;

19. vinf->sector_count += sectorBuffer.dat[7];

20. vinf->sector_count <<= 2;

21. vinf->sector_count += (sectorBuffer.dat[8] & 0xc0) >> 6;

22. // 获取 multiplier

23. vinf->sector_multiply = sectorBuffer.dat[9] & 0x03;

24. vinf->sector_multiply <<= 1;

25. vinf->sector_multiply += (sectorBuffer.dat[10] & 0x80) >> 7;

26.//获取 SD 卡的容量

27. vinf->size_MB = vinf->sector_count >> (9-

vinf->sector_multiply);

28. // get the name of the card

29. Read_CID_SD(sectorBuffer.dat);

30. vinf->name[0] = sectorBuffer.dat[3];

31. vinf->name[1] = sectorBuffer.dat[4];

32. vinf->name[2] = sectorBuffer.dat[5];

33. vinf->name[3] = sectorBuffer.dat[6];

34. vinf->name[4] = sectorBuffer.dat[7];

35. vinf->name[5] = 0x00; //end flag

36.}

37. 以上程序将信息装载到一个结构体中，这个结构体的定义

如下：

38.typedef struct SD_VOLUME_INFO

39.{ //SD/SD Card info

40. unsigned int size_MB;

41. unsigned char sector_multiply;

42. unsigned int sector_count;

43. unsigned char name[6];

44.} VOLUME_INFO_TYPE;

5） 扇区读

扇区读是对 SD 卡驱动的目的之一。SD 卡的每一个扇区中有 512 个字节，一次

扇区读操作将把某一个扇区内的 512 个字节全部读出。过程很简单，先写入命

令，在得到相应的回应后，开始数据读取。

扇区读的时序：

 扇区读的程序例程：

1. unsigned char SD_Read_Sector(unsigned long sector,unsigned char

 *buffer)

2. {

3. unsigned char retry;

4. //命令 16

5. unsigned char CMD[] = {0x51,0x00,0x00,0x00,0x00,0xFF};

6. unsigned char temp;

7.

8. //地址变换 由逻辑块地址转为字节地址

9. sector = sector << 9; //sector = sector * 512

10.

11. CMD[1] = ((sector & 0xFF000000) >>24);

12. CMD[2] = ((sector & 0x00FF0000) >>16);

13. CMD[3] = ((sector & 0x0000FF00) >>8);

14.

15. //将命令 16 写入 SD 卡

16. retry=0;

17. do

18. { //为了保证写入命令 一共写 100 次

19. temp=Write_Command_MMC(CMD);

20. retry++;

21. if(retry==100)

22. {

http://www.baiheee.com/Documents/091203/091203224635/30091H2C52.jpg

23. return(READ_BLOCK_ERROR); //block write Error!

24. }

25. }

26. while(temp!=0);

27.

28. //Read Start Byte form MMC/SD-Card (FEh/Start Byte)

29. //Now data is ready,you can read it out.

30. while (Read_Byte_MMC() != 0xfe);

31. readPos=0;

32. SD_get_data(512,buffer) ; //512 字节被读出到 buffer 中

33. return 0;

34.}

35.其中 SD_get_data 函数如下：

36.//---

37. 获取数据到 buffer 中

38.//---

39.void SD_get_data(unsigned int Bytes,unsigned char *buffer)

40.{

41. unsigned int j;

42. for (j=0;j<Bytes;j++)

43. *buffer++ = Read_Byte_SD();

44.}

45.

6） 扇区写

扇区写是 SD 卡驱动的另一目的。每次扇区写操作将向 SD 卡的某个扇区中写入

512 个字节。过程与扇区读相似，只是数据的方向相反与写入命令不同而已。

 扇区写的时序：

扇区写的程序例程：

http://www.baiheee.com/Documents/091203/091203224635/30091P45144.jpg

1. //---

2. 写 512 个字节到 SD 卡的某一个扇区中去 返回 0说明写入成

功

3. //---

4. unsigned char SD_write_sector(unsigned long addr,unsigned char

 *Buffer)

5. {

6. unsigned char tmp,retry;

7. unsigned int i;

8. //命令 24

9. unsigned char CMD[] = {0x58,0x00,0x00,0x00,0x00,0xFF};

10. addr = addr << 9; //addr = addr * 512

11.

12. CMD[1] = ((addr & 0xFF000000) >>24);

13. CMD[2] = ((addr & 0x00FF0000) >>16);

14. CMD[3] = ((addr & 0x0000FF00) >>8);

15.

16. //写命令 24 到 SD 卡中去

17. retry=0;

18. do

19. { //为了可靠写入，写 100 次

20. tmp=Write_Command_SD(CMD);

21. retry++;

22. if(retry==100)

23. {

24. return(tmp); //send commamd Error!

25. }

26. }

27. while(tmp!=0);

28.

29.

30. //在写之前先产生 100 个时钟信号

31. for (i=0;i<100;i++)

32. {

33. Read_Byte_SD();

34. }

35.

36. //写入开始字节

37. Write_Byte_MMC(0xFE);

38.

39. //现在可以写入 512 个字节

40. for (i=0;i<512;i++)

41. {

42. Write_Byte_MMC(*Buffer++);

43. }

44.

45. //CRC-Byte

46. Write_Byte_MMC(0xFF); //Dummy CRC

47. Write_Byte_MMC(0xFF); //CRC Code

48.

49.

50. tmp=Read_Byte_MMC(); // read response

51. if((tmp & 0x1F)!=0x05) // 写入的 512 个字节是未被接受

52. {

53. SPI_CS=1;

54. return(WRITE_BLOCK_ERROR); //Error!

55. }

56. //等到 SD 卡不忙为止

57.//因为数据被接受后，SD 卡在向储存阵列中编程数据

58. while (Read_Byte_MMC()!=0xff){};

59.

60. //禁止 SD 卡

61. SPI_CS=1;

62. return(0);//写入成功

63.}

 此上内容在笔者的实验中都已调试通过。单片机采用 STC89LE 单片机（SD 卡

的初始化电压为 2.0V~3.6V，操作电压为 3.1V~3.5V， 因此不能用 5V 单片机，或

进行分压处理），工作于 22.1184M 的时钟下，由于所采用的单片机中没硬件

SPI，采用软件模拟 SPI，因此读写速率都较 慢。如果要半 SD 卡应用于音频、视

频等要求高速场合，则需要选用有硬件 SPI 的控制器，或使用 SD 模式，当然这就

需要各位读者对 SD 模式加以研究，有了 SPI 模式的基础，SD 模式应该不是什么难

事。

http://www.baiheee.com/Documents/091203/091203224635/300919433a2.jpg

