How to determine point cloud
resolution?

Spatial X and Y

Inversely proportional to
field of view

— Scanning larger areas worsens
spatial resolution

— Scanning smaller areas
improves spatial resolution

Proportional to camera and

projector resolution

— Increasing camera or
projector resolution improves
spatial resolution

— Also increases number of
points in cloud

Z-Depth

Inversely proportional to
focal length and baseline

— Longer focal lengths improve
accuracy

— Increasing the baseline
distance improves accuracy
Proportional to the object
distance and disparity
resolution

— Accuracy decreases as
distance increases

— Increasing camera and
projector resolutions
improves accuracy

System Resolutions & Field of Views

Nyquist theorem requires at least 2x sampling
— Camera width resolution must be double projector width resolution
— Camera height resolution must be double projector height resolution
— Camera pixel count should be at least 4 times larger than projector’s!
Field of view and “effective resolution” must be considered

Field of view mismatch means

DLP4500 Field of View smaller effective resolution...
" 2048 pxls x 60% = 1228 ef fective pxls
2| Resolution = 912x1440 Check pixel sampling...
o% 1228 ef fective pxls
§ Effective > 912x570 1140 projector pxls =107 <2
% Cannot resolve all projector rows!!
S Wasted camera view 1228 ef fective pxls
T : =215>2
570 projector pxls

Width = 2048 pixels Can resolve projector row pairs

Scalable Solutions with OOP

Consider the LightCrafter 4500 and LightCrafter 6500 EVMS

— Both chipsets have different API, resolutions, speeds, etc.
— Did I need to rewrite each application with all of the chipset specific

AP| ?
e NO!On

// System Variables
dlp::PG FlyCapl C camera;
dlp::LCr4500 projector;

// System Vi ables
dlp::PG Fl 2 cC camera;

dlp::LCre500 projector;

— The LightCrafter 3000 has recently been added also!

How is this possible?

— DLP Structured Light SDK contains modules which define interfaces
— C++ allows you to reference sub-classes as their parent class

What are the primary abstract modules?

. : Structured
Calibration amera DLP Platform .
Light
Setup(...) Setup(...) Setup(...)
AddCalibrationBoard(...) PreparePatternSequence(...) SetOriginView(...)
Calibrate(...) StartPatternSequence(...) GeneratePointCloud(...)
\ 4 \ 4

Setup(...) Setup(...)

Start(...) GeneratePatternSequence(...)

GetFrame(...) DecodePatternSequence(...)

e Each module (base-class) defines an interface which all sub-modules (sub-
classes) must follow

How to use abstracted modules?

void ScanObject (dlp::Camera *camera,
const std::string &camera calib data file,
[F dlp::DLP Platform *projector,
const std::string &projector calib data file,
dlp::StructuredLight *structured light wvertical,
t: dlp::StructuredlLight *structured light horizontal,
const bool &use_vertical,
const bool &use_horizontal,
const std::string &geometry settings file) {

// System Variables
dlp::PG FlyCap2 C camera;
dlp::LCre500 projector;

ScanCbject (&camera,
calibration data file camera,
gprojector,
calibration data file projector,
® S‘ &structured light vertical,) passed as the
&structured light horizontal,
true,

F) true,

geometry settings file):

Where should source code go?

e Use the current sub-modules for reference
— Header files should be located in the /include directory

— Sa
] -=-]
@U=| . < Texas Instruments-DLP » dlp_structured_light_sdk » - ‘ $¢|| Search dip_structured_light... ,Dl
Organize - Include in library - Share with + Burn Mew folder == ~ i i:@:]
, <% Favorites Marme Date modified Type Size
J 3rd_party 9/23/2014 11:55 AM File folder
» = Libraries) build 7/10/2014 5:41 PM File folder
J doc 9/23/2014 11:55 AM File folder
> 1M Computer N 9/23/2014 11:55 AM File folder
972372014 11:55 AM File folder
€l Network _— 9/23/2014 11:55 AM File folder
, reference_designs 9/23/2014 11:56 AM File folder
9/23/2014 11:55 AM File folder
E 972372014 11:55 AM File folder
] I b

9 items

e Add newsource 1ies to Ul PRU Tile or CIVIQKeLISTS.TXT

How to creating a new camera module?

. Reference the module base-class header files to identify what functions need to be written for a sub-class

— All virtual functions must be written by the sub-class!

class Camera: Joublic dlp::Module -
public
NOTE: This is only an
Re\urnCode Connect(int camera id) = 0; example!! Please reference
virtual Ret\rnCode Disceonnect() = 0; - Camera.hpp for the
virtual Returfcode Start() = 0; complete camera module
virtual Returr§ode Stop() = 0; d |)
eclaration
virtual ReturnCile GetFrame(Image* ret frame) = 0;
} —
class PG FlyCap2 C Rpublic Camera —
{
public:
// Define pure wvirtual functions .
ReturnCode Connect(int camera id): Notice that the SUb'CIaSS
ReturnCode Disconnect(); = contains the exact same
ReturnCode Start():
ReturnCode Stopl(): methOdS
ReturnCode GetFrame(Image* ret frame);
} —

