
How to determine point cloud 
resolution?

Spatial X and Y
• Inversely proportional to 

field of view
– Scanning larger areas worsens 

spatial resolution
– Scanning smaller areas 

improves spatial resolution
• Proportional to camera and 

projector resolution
– Increasing camera or 

projector resolution improves 
spatial resolution

– Also increases number of 
points in cloud

Z‐Depth
• Inversely proportional to 

focal length and baseline
– Longer focal lengths improve 

accuracy
– Increasing the baseline 

distance improves accuracy
• Proportional to the object 

distance and disparity 
resolution
– Accuracy decreases as 

distance increases
– Increasing camera and 

projector resolutions 
improves accuracy

1



Camera Field of ViewWasted camera view

• Nyquist theorem requires at least 2x sampling 
– Camera width resolution must be double projector width resolution
– Camera height resolution must be double projector height resolution
– Camera pixel count should be at least 4 times larger than projector’s!

• Field of view and “effective resolution” must be considered 

Field of view mismatch means 
smaller effective resolution…

System Resolutions & Field of Views

2

Width = 2048 pixels

He
ig
ht
 =
 2
04
8 
pi
xe
ls

DLP4500 Field of View

Resolution = 912x1440
ݏ݈ݔ݌	2048 ∗ 60% ൌ ݏ݈ݔ݌	݁ݒ݅ݐ݂݂ܿ݁݁	1228

ݏ݈ݔ݌	݁ݒ݅ݐ݂݂ܿ݁݁	1228
ݏ݈ݔ݌	ݎ݋ݐ݆ܿ݁݋ݎ݌	1140 ൌ 1.07 ൏ 2

Check pixel sampling…

Cannot resolve all projector rows!!
ݏ݈ݔ݌	݁ݒ݅ݐ݂݂ܿ݁݁	1228
ݏ݈ݔ݌	ݎ݋ݐ݆ܿ݁݋ݎ݌	570 ൌ 2.15 ൐ 2

Effective  912x570 

Can resolve projector row pairs



Scalable Solutions with OOP
• Consider the LightCrafter 4500 and LightCrafter 6500 EVMS

– Both chipsets have different API, resolutions, speeds, etc.
– Did I need to rewrite each application with all of the chipset specific 

API ?
• NO! Only a single line of code needed to change

– The LightCrafter 3000 has recently been added also!
• How is this possible? 

– DLP Structured Light SDK contains modules which define interfaces
– C++ allows you to reference sub‐classes as their parent class

3



• Each module (base‐class) defines an interface which all sub‐modules (sub‐
classes) must follow

What are the primary abstract modules?

4

Calibration Camera DLP Platform Structured 
Light Geometry

Setup(…)
AddCalibrationBoard(…)
Calibrate(…)
…

Setup(…)
Start(…)
GetFrame(…)
…

Setup(…)
PreparePatternSequence(…)
StartPatternSequence(…)
…

Setup(…)
GeneratePatternSequence(…)
DecodePatternSequence(…)
…

Setup(…)
SetOriginView(…)
GeneratePointCloud(…)
…



How to use abstracted modules?

• Function Declaration uses the abstracted 
base‐class modules

• Specific sub‐modules can be passed as the 
parent type though

5



• Use the current sub‐modules for reference
– Header files should be located in the /include directory
– Source files should be located in the /src directory

• Add new source files to QT PRO file or CMakeLists.txt 

Where should source code go?

6



• Reference the module base‐class header files to identify what functions need to be written for a sub‐class
– All virtual functions must be written by the sub‐class!

How to creating a new camera module?

7

NOTE: This is only an 
example!! Please reference 
camera.hpp for the 
complete camera module 
declaration

Notice that the sub‐class 
contains the exact same 
methods


