Developing with the
DLP® Structured Light SDK
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Developing the DLP® Structured Light SDK

o Setting up the development environment
— Install the DLP Structured Light SDK
— Install and compile OpenCV

« Scalable solutions with object oriented programming (OOP) in C++

— Case Study: Consider that the 3D Scanner Demo software is practically
identical for the DLP LightCrafter™ 4500 EVM and DLP LightCrafter 6500
EVM (and now the DLP LightCrafter 3000 EVM)

— What are the primary abstract modules?
— How to use abstracted modules?

e Creating new modules
— Where should source code go?
— How to creating a new camera module?
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Setting up the development environment

e DLP® Structured Light SDK
— Currently included with 3D Machine Vision Reference Design

— As new DLP evaluation modules are added (DLP LightCrafter, LightCrafter
6500 EVM, etc.) the DLP Structured Light SDK source code will move to its
own tool page

» This is to prevent duplication of code on ti.com

 OpenCV
— Download the source code from www.opencv.org
— Brief instructions
e Install CMake
» Use CMake to create Makefile
e Compile with make
— Detailed compilation instructions are available in the Machine Vision

Reference Design User’'s Guide
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http://www.opencv.org/

Scalable Solutions with OOP

e Consider the DLP® LightCrafter™ 4500 and LightCrafter 6500 EVMSs

— Both chipsets have different API, resolutions, speeds, etc.
— Did | need to rewrite each application with all of the chipset specific API ?

* NO! Only a single line of code needed to change

// System Variables
dlp::PG FlyCap2 C camera;

dlp::LCr4500 projector;
// System Vil ables
dlp::PG F1 2 C  camera;

| dlp::LCre&500 projector;

— The DLP LightCrafter 3000 EVM has recently been added also!

e How Is this possible?
— DLP Structured Light SDK contains modules which define interfaces

— C++ allows you to reference sub-classes as their parent class
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What are the primary abstract modules?

I DLP®
Calibration Platform Light @

Setup(...) Setup(...) Setup(...)
AddCalibrationBoard(...) PreparePatternSequence(...) SetOriginView(...)
Calibrate(...) StartPatternSequence(...) GeneratePointCloud(...)
\ 4 v
Setup(...) Setup(...)
Start(...) GeneratePatternSequence(...)
GetFrame(...) DecodePatternSequence(...)

« Each module (base-class) defines an interface which all sub-modules
(sub-classes) must follow
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How to use abstracted modules?

 Function Declaration uses the abstracted base-class modules

volid ScanObject (dlp::Camera *camera,
const std::string &camera calib data file,
dlp::DLP Platform *projector,
const std::string &projector calib data file,

dlp::StructuredLight *structured light vertical,
dlp::StructuredLight *structured light horizontal,

const bool &use_vertical,
const bool &use_horizontal,
const std::string &geometry settings file) {

« Specific sub-modules can be passed as the parent type though

// System Variables
dlp::PG FlyCap2 C camera;
dlp::LCre500 projector;

ScanObject (&camera,
calibration data file camera,
&projector,
calibration data file projector,
&structured light vertical,
&structured light horizontal,
true,
true,
geometry settings file):;
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Where should source code go?

 Use the current sub-modules for reference

— Header files should be located in the /include directory

— Source files should be located in the /src directory
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* Add new source files to QT PRO file or CMakeL.ists.txt
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How to creating a new camera module?

» Reference the module base-class header files to identify what functions
need to be written for a sub-class

— Al al functions must be written by the sub-class!

class er;lr!:lera: public dlp::Moduled B
- NOTE: This is only an
// Define\by subclass
virtual Re\urnCode Connect(int camera id) = 0; examp|e!! Please
virtual RetNrnCode Disconnect() = 0; - reference camera hpp
virtual Retuigcode Start() = 0; for the complete camera
virtual ReturiKode Stop() = 0; .

module declaration

virtual ReturnCXie GetFrame (Image* ret frame) = 0;

} =

class PG FlyCap2 C —

{
// Defi T irtual functi .
ReturnCode Comnect(int camera id); Notice that the sub-class
REeturnCode Disconnect(): _— ContainS the exaCt same
ReturnCode Start():
ReturnCode Stopl(); methOdS
ReturnCode GetFrame(Image* ret frame);

} — 8
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