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TI Information – Selective Disclosure 

Developing the DLP® Structured Light SDK 
• Setting up the development environment 

– Install the DLP Structured Light SDK 
– Install and compile OpenCV  

• Scalable solutions with object oriented programming (OOP) in C++ 
– Case Study: Consider that the 3D Scanner Demo software is practically 

identical for the DLP LightCrafter™ 4500 EVM and DLP LightCrafter 6500 
EVM (and now the DLP LightCrafter 3000 EVM)  

– What are the primary abstract modules? 
– How to use abstracted modules? 

• Creating new modules 
– Where should source code go? 
– How to creating a new camera module? 
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Setting up the development environment 
• DLP® Structured Light SDK 

– Currently included with 3D Machine Vision Reference Design 
– As new DLP evaluation modules are added (DLP LightCrafter, LightCrafter 

6500 EVM, etc.) the DLP Structured Light SDK source code will move to its 
own tool page 
• This is to prevent duplication of code on ti.com 

• OpenCV  
– Download the source code from www.opencv.org 
– Brief instructions 

• Install CMake 
• Use CMake to create Makefile 
• Compile with make 

– Detailed compilation instructions are available in the Machine Vision 
Reference Design User’s Guide 
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http://www.opencv.org/
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Scalable Solutions with OOP 
• Consider the DLP® LightCrafter™ 4500 and LightCrafter 6500 EVMs 

– Both chipsets have different API, resolutions, speeds, etc. 
– Did I need to rewrite each application with all of the chipset specific API ? 

• NO! Only a single line of code needed to change 
 
 

 
 

 
 

– The DLP LightCrafter 3000 EVM has recently been added also! 
• How is this possible?  

– DLP Structured Light SDK contains modules which define interfaces 
– C++ allows you to reference sub-classes as their parent class 
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• Each module (base-class) defines an interface which all sub-modules 

(sub-classes) must follow 

What are the primary abstract modules? 
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Calibration Camera DLP® 
Platform 

Structured 
Light Geometry 

Setup(…) 
AddCalibrationBoard(…) 
Calibrate(…) 
… 

Setup(…) 
Start(…) 
GetFrame(…) 
… 

Setup(…) 
PreparePatternSequence(…) 
StartPatternSequence(…) 
… 

Setup(…) 
GeneratePatternSequence(…) 
DecodePatternSequence(…) 
… 

Setup(…) 
SetOriginView(…) 
GeneratePointCloud(…) 
… 
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How to use abstracted modules? 
• Function Declaration uses the abstracted base-class modules 

 
 
 

 
• Specific sub-modules can be passed as the parent type though 
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Where should source code go? 
• Use the current sub-modules for reference 

– Header files should be located in the /include directory 
– Source files should be located in the /src directory 

 
 
 
 
 
 
 
 
 

 
 

• Add new source files to QT PRO file or CMakeLists.txt  
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How to creating a new camera module? 
• Reference the module base-class header files to identify what functions 

need to be written for a sub-class 
– All virtual functions must be written by the sub-class! 
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NOTE: This is only an 
example!! Please 
reference camera.hpp 
for the complete camera 
module declaration 

Notice that the sub-class 
contains the exact same 
methods 
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