Developing with the
DLP® Structured Light SDK

ﬁl TeEXAS INSTRUMENTS



Developing the DLP® Structured Light SDK

o Setting up the development environment
— Install the DLP Structured Light SDK
— Install and compile OpenCV

« Scalable solutions with object oriented programming (OOP) in C++

— Case Study: Consider that the 3D Scanner Demo software is practically
identical for the DLP LightCrafter™ 4500 EVM and DLP LightCrafter 6500
EVM (and now the DLP LightCrafter 3000 EVM)

— What are the primary abstract modules?
— How to use abstracted modules?

e Creating new modules
— Where should source code go?
— How to creating a new camera module?

{j& TeEXAS INSTRUMENTS



Setting up the development environment

e DLP® Structured Light SDK
— Currently included with 3D Machine Vision Reference Design

— As new DLP evaluation modules are added (DLP LightCrafter, LightCrafter
6500 EVM, etc.) the DLP Structured Light SDK source code will move to its
own tool page

» This is to prevent duplication of code on ti.com

 OpenCV
— Download the source code from www.opencv.org
— Brief instructions
e Install CMake
» Use CMake to create Makefile
e Compile with make
— Detailed compilation instructions are available in the Machine Vision

Reference Design User’'s Guide

{j& TeEXAS INSTRUMENTS


http://www.opencv.org/

Scalable Solutions with OOP

e Consider the DLP® LightCrafter™ 4500 and LightCrafter 6500 EVMSs

— Both chipsets have different API, resolutions, speeds, etc.
— Did | need to rewrite each application with all of the chipset specific API ?

* NO! Only a single line of code needed to change

// System Variables
dlp::PG FlyCap2 C camera;

dlp::LCr4500 projector;
// System Vil ables
dlp::PG F1 2 C  camera;

| dlp::LCre&500 projector;

— The DLP LightCrafter 3000 EVM has recently been added also!

e How Is this possible?
— DLP Structured Light SDK contains modules which define interfaces

— C++ allows you to reference sub-classes as their parent class

{j& TeEXAS INSTRUMENTS



What are the primary abstract modules?

I DLP®
Calibration Platform Light @

Setup(...) Setup(...) Setup(...)
AddCalibrationBoard(...) PreparePatternSequence(...) SetOriginView(...)
Calibrate(...) StartPatternSequence(...) GeneratePointCloud(...)
\ 4 v
Setup(...) Setup(...)
Start(...) GeneratePatternSequence(...)
GetFrame(...) DecodePatternSequence(...)

« Each module (base-class) defines an interface which all sub-modules
(sub-classes) must follow

ﬁl TeEXAS INSTRUMENTS



How to use abstracted modules?

 Function Declaration uses the abstracted base-class modules

volid ScanObject (dlp::Camera *camera,
const std::string &camera calib data file,
dlp::DLP Platform *projector,
const std::string &projector calib data file,

dlp::StructuredLight *structured light vertical,
dlp::StructuredLight *structured light horizontal,

const bool &use_vertical,
const bool &use_horizontal,
const std::string &geometry settings file) {

« Specific sub-modules can be passed as the parent type though

// System Variables
dlp::PG FlyCap2 C camera;
dlp::LCre500 projector;

ScanObject (&camera,
calibration data file camera,
&projector,
calibration data file projector,
&structured light vertical,
&structured light horizontal,
true,
true,
geometry settings file):;

ﬁl TeEXAS INSTRUMENTS



Where should source code go?

 Use the current sub-modules for reference

— Header files should be located in the /include directory

— Source files should be located in the /src directory

Organize -

Include in library -

» 0 Favorites
» il Libraries
» |M Computer

=&“¥ Metwork

g items

Mame

| 3rd_party
. build

, doc

Jinclude
g L

. reference_designs

Share with =

-~

@Uv| J « Texas Instruments-DLP » dlp_structured_light_sdk »

Burn

Mew folder
[Date modified

9/23/2014 11:55 AM
7/10/2014 5:41 PM

9/23/2014 11:55 AM
9/23/2014 11:55 AM
9/23/2014 11:55 AM
9/23/2014 11:55 AM
9/23/2014 11:56 AM
9/23/2014 11:55 AM
9/23/2014 11:55 AM

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

File folder

- | 3 | | Search dlp structured_li

H==

=3 E5R
d_ .5,'1;” p |
- E;l |ﬂ'
Size

1

I

* Add new source files to QT PRO file or CMakeL.ists.txt

ﬁl TeEXAS INSTRUMENTS



How to creating a new camera module?

» Reference the module base-class header files to identify what functions
need to be written for a sub-class

— Al al functions must be written by the sub-class!

class er;lr!:lera: public dlp::Moduled B
- NOTE: This is only an
// Define\by subclass
virtual Re\urnCode Connect(int camera id) = 0; examp|e!! Please
virtual RetNrnCode Disconnect() = 0; - reference camera hpp
virtual Retuigcode Start() = 0; for the complete camera
virtual ReturiKode Stop() = 0; .

module declaration

virtual ReturnCXie GetFrame (Image* ret frame) = 0;

} =

class PG FlyCap2 C —

{
// Defi T irtual functi .
ReturnCode Comnect(int camera id); Notice that the sub-class
REeturnCode Disconnect(): _— ContainS the exaCt same
ReturnCode Start():
ReturnCode Stopl(); methOdS
ReturnCode GetFrame(Image* ret frame);

} — 8

ﬁl TeEXAS INSTRUMENTS



	Developing with the �DLP® Structured Light SDK
	Developing the DLP® Structured Light SDK
	Setting up the development environment
	Scalable Solutions with OOP
	What are the primary abstract modules?
	How to use abstracted modules?
	Where should source code go?
	How to creating a new camera module?

