
TI Information – Selective Disclosure TI Information – Selective Disclosure

Developing with the
DLP® Structured Light SDK

1

TI Information – Selective Disclosure

Developing the DLP® Structured Light SDK
• Setting up the development environment

– Install the DLP Structured Light SDK
– Install and compile OpenCV

• Scalable solutions with object oriented programming (OOP) in C++
– Case Study: Consider that the 3D Scanner Demo software is practically

identical for the DLP LightCrafter™ 4500 EVM and DLP LightCrafter 6500
EVM (and now the DLP LightCrafter 3000 EVM)

– What are the primary abstract modules?
– How to use abstracted modules?

• Creating new modules
– Where should source code go?
– How to creating a new camera module?

2

TI Information – Selective Disclosure

Setting up the development environment
• DLP® Structured Light SDK

– Currently included with 3D Machine Vision Reference Design
– As new DLP evaluation modules are added (DLP LightCrafter, LightCrafter

6500 EVM, etc.) the DLP Structured Light SDK source code will move to its
own tool page
• This is to prevent duplication of code on ti.com

• OpenCV
– Download the source code from www.opencv.org
– Brief instructions

• Install CMake
• Use CMake to create Makefile
• Compile with make

– Detailed compilation instructions are available in the Machine Vision
Reference Design User’s Guide

3

http://www.opencv.org/

TI Information – Selective Disclosure

Scalable Solutions with OOP
• Consider the DLP® LightCrafter™ 4500 and LightCrafter 6500 EVMs

– Both chipsets have different API, resolutions, speeds, etc.
– Did I need to rewrite each application with all of the chipset specific API ?

• NO! Only a single line of code needed to change

– The DLP LightCrafter 3000 EVM has recently been added also!
• How is this possible?

– DLP Structured Light SDK contains modules which define interfaces
– C++ allows you to reference sub-classes as their parent class

 4

TI Information – Selective Disclosure

• Each module (base-class) defines an interface which all sub-modules

(sub-classes) must follow

What are the primary abstract modules?

5

Calibration Camera DLP®
Platform

Structured
Light Geometry

Setup(…)
AddCalibrationBoard(…)
Calibrate(…)
…

Setup(…)
Start(…)
GetFrame(…)
…

Setup(…)
PreparePatternSequence(…)
StartPatternSequence(…)
…

Setup(…)
GeneratePatternSequence(…)
DecodePatternSequence(…)
…

Setup(…)
SetOriginView(…)
GeneratePointCloud(…)
…

TI Information – Selective Disclosure

How to use abstracted modules?
• Function Declaration uses the abstracted base-class modules

• Specific sub-modules can be passed as the parent type though

6

TI Information – Selective Disclosure

Where should source code go?
• Use the current sub-modules for reference

– Header files should be located in the /include directory
– Source files should be located in the /src directory

• Add new source files to QT PRO file or CMakeLists.txt

7

TI Information – Selective Disclosure

How to creating a new camera module?
• Reference the module base-class header files to identify what functions

need to be written for a sub-class
– All virtual functions must be written by the sub-class!

 8

NOTE: This is only an
example!! Please
reference camera.hpp
for the complete camera
module declaration

Notice that the sub-class
contains the exact same
methods

	Developing with the �DLP® Structured Light SDK
	Developing the DLP® Structured Light SDK
	Setting up the development environment
	Scalable Solutions with OOP
	What are the primary abstract modules?
	How to use abstracted modules?
	Where should source code go?
	How to creating a new camera module?

