
TMS320C54x DSP Design Workshop

Student Guide

DSP54-NOTES-4.02
May 2000

Technical Training

0-2 TMS320C54x DSP Design Workshop

Copyright © 2000 Texas Instruments Incorporated.
All rights reserved.

Notice

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written permission of Texas Instruments.

Texas Instruments reserves the right to update this Guide to reflect the most current product
information for the spectrum of users. If there are any differences between this Guide and a
technical reference manual, references should always be made to the most current reference
manual. Information contained in this publication is believed to be accurate and reliable.
However, responsibility is assumed neither for its use nor any infringement of patents or rights of
others that may result from its use. No license is granted by implication or otherwise under any
patent or patent right of Texas Instruments or others.

Revision History

April 1998, Version 3.1

July 1998, Version 3.2

June 1999, Version 3.3

October 1999, Version 4.0

December 1999, Version 4.01

May 2000, Version 4.02

TMS320C54x DSP Design Workshop 0-3

Welcome to the ‘C54x Workshop

00 - - 22

Introduce Yourself

A Show of Hands...

TMS320, C54x, other DSP/µµµµP experience

C and/or Assembly

About You…(one minute)

Name, job function

Expectations

Which C54x DSP are you interested in
using?

00 - - 22

00 - - 33

TMS320C54x Workshop Agenda

 1. Architectural Overview
 2. Software Development
 3. Addressing
 4. Programming FIR filters

 5. Numerical Issues
 6. Solving a Block FIR
 7. Pipeline Implications
 8. Application-Specific Instructions

 9. Managing Interrupts
10. Setting Up and Using Peripherals

11. Mixing C and Assembly
12. Making a C54x System Work

00 - - 33

This is a tentative agenda. Your instructor is free to rearrange and add or delete material as they
see fit. If you have any specific interests please make the instructor aware of them.

Your promptness will help keep the workshop on schedule. Try to arrive in the morning and
return from breaks on time.

0-4 TMS320C54x DSP Design Workshop

Welcome to the ‘C54x Workshop

00 - - 44

Administrative Topics

Name Tags (fill ‘em out)

Start & End Times, Breaks

Bathrooms

Phone calls (make or get)

Lunch

Let us know if you’ll miss part of the
workshop

00 - - 44

00 - - 55

Latest TMS320C54x Information

00 - - 55

 Application notes, databooks, etc.:
www.ti.com/sc/docs/general/dsmenu.htm

 Application Software:
www.ti.com/sc/docs/apps/index.htm

Whenever a document is printed on paper it seems it is immediatley out if date. Refer to TI’s web
resources for the very latest information.

DSP54x - Architectural Overview 1 - 1

Architectural Overview

Introduction
This chapter will provide an introduction to the TMS320C54x (or “ ’C54x ”). We’ll start by
building a device to solve our most important task; high speed multiply – accumulates. Next we’ll
zoom in on a feature that greatly enhances our speed; the pipeline. Then we’ll look closely at the
‘C5409, which we’ve selected as the processor for this class. We selected the ‘C5409 since it
contains most of the features found on just about any ‘C54x (except multi-core parts). Finally
we’ll get a chance to browse the documentation files on the computers. Let’s face it, knowing
where to find answers is half the battle.

Learning Objectives

DSP54.1DSP54.1 - - 22

Learning Objectives

! Describe the basic ‘C54x CPU architecture

! Discuss the ‘C54x pipeline phases

! List the key features of the ‘C54x memory
map and peripherals

DSP54.1DSP54.1 - - 22

Module Topics

1 - 2 DSP54x - Architectural Overview

Module Topics

Architectural Overview... 1-1

Module Topics ... 1-2

Creating a Solution ... 1-3

‘C54x Block Diagram.. 1-4

The Pipeline .. 1-5

‘C5409 Memory Maps... 1-8

Review ... 1-11

LAB 1 – Exploring the Documents... 1-12

Solutions.. 1-13

Some Additional Information…... 1-14

Creating a Solution

DSP54x - Architectural Overview 1 - 3

Creating a Solution

DSP54.1DSP54.1 - - 33

What Problems Are We Trying To Solve?

Data Read Buses

! Single-cycle MAC∑ anxn

3

n = 0
y0 =

Amplitude

x4 x3 x2 x1 x0

Time

z = x2 + x4 + x3 + x1

MAC

A

ALU

B

MAC *AR2+, *AR3+, A ADD @x2, B ...

! Single-cycle ADD

DSP54.1DSP54.1 - - 33

The code you see at the bottom of the slide is a preview if things to come. We’ll be dealing with
the assembly language code in depth later. For the present let’s focus on the architecture.

The multiply-accumulate (MAC) is the basis for DSP. Since just about any physical system can
be modeled using a Taylor series, being able to multiply two numbers together and add them to a
previous result can be very powerful. The MAC becomes even more powerful if you can do them
quickly, say, every 8.3 nS.

Alternately, other operations require an Arithmetic Logic Unit, capable of performing adds,
subtracts and Boolean instructions.

You C-programmers may find the assembly language code on the lower left pretty readable …

‘C54x Block Diagram

1 - 4 DSP54x - Architectural Overview

‘C54x Block Diagram

DSP54.1DSP54.1 - - 44

����������
����������
����������
����������
����������

����������
����������
����������

����������
����������
����������
����������

���������
���������
���������
���������

����������
����������

������
������

XPC

‘C54x Architecture (10km view)

Data Write A/D Bus (E)

PC

MAC ALU

A

B

Addr

Gen

Data Read A/D Bus (C)

Data Read A/D Bus (D)

AR0-7

����������
����������
����������

DP @x2

Program A/D Bus (P)

Decode

MAC *AR2+, *AR3+, A ADD @x2, B ...

Separate Program and Data spaces = Harvard architectureSeparate Program and Data spaces = Harvard architecture DSP54.1DSP54.1 - - 44

If you’ve got a powerful math engine, your next problem is keeping it fed with data. Separate
Program and Data Spaces guarantee access to these areas without conflict. Dual data read busses
and a data write bus mean we can access two operands simultaneously and still be able to write a
result. Addresses for these operations are generated in a variety of ways. Instructions are fetched
using the program bus and are fed to the decoder.

DSP54.1DSP54.1 - - 55

• 17x17 MAC Unit

• Saturation and
Rounding Hardware

• Two 40-bit ACC’s

• 40-bit ALU

• 40-bit Barrel Shifter

• Temporary Register

• Exponent Encoder

• Program and Data
Address Generation
Units

• Compare, Select
and Store Unit

• 4 Internal Bus Pairs

• External Interface

‘C54x
Block
Diagram

DSP54.1DSP54.1 - - 55

The obligatory block diagram. Your instructor will point out the aspects of this drawing that
we’ve already seen. We’ll cover all of its parts in detail during the workshop. You can find a
better print of this diagram in the appendix of this workbook.

The Pipeline

DSP54x - Architectural Overview 1 - 5

The Pipeline

DSP54.1DSP54.1 - - 66

‘C54x Memory, Buses and Pipeline

X - execute
R - read operands
A - generate read address
D - decode instruction
F - get opcode
P - generate program address

P F D A R X

P

P

P

P

P

F

F

F

F

F

D A R X

D A R X

D A R X

D A R X

D A R X

Program A/D Bus (P)

Data Read A/D Bus (D)

Data Read A/D Bus (C)

Data Write A/D Bus (E)

Ext’l
Mem
I/F

A

D

Internal

Memory

External

Memory

! External: 1 access / cycle

! up to 8M words program

! Internal: Up to 4 accesses / cycle

Full Pipeline

Pipeline Phases

DSP54.1DSP54.1 - - 66

The most important thing to understand about the pipeline is that 6 instructions are being worked
on simultaneously. This means any given instruction takes at least 6 cycles to reach the execute
phase, yet we can “retire” an instruction every cycle. While this allows us a great speed
advantage, it has certain implications on operation that we’ll deal with in detail later.

DSP54.1DSP54.1 - - 77

'C54x Pipeline Bus/Hardware Use

P Generate Program address

F Get opcode

D Decode instruction

A Generate Read address

R Read operands

X Execute instruction

Decoder

 Generate Write address

 Write result

! When storing results back to memory, the
“write” is broken into two phases:
- generating the write address
- writing the result

! Overlaid onto R & X phases

PA PC

PD Program mem

DA/CA ARs, ARAU

DD/CD Data mem

MAC, ALU

EA ARs, ARAU

EEDD
Data mem

DSP54.1DSP54.1 - - 77

Note how every part of the device operates during every cycle, with little or no overlap of
resource utilization. Since writing is a relatively rare event in DSP algorithms it is not allocated
its own pipeline stage.

The Pipeline

1 - 6 DSP54x - Architectural Overview

DSP54.1DSP54.1 - - 88

Pipeline Implications (1)

P

D

54x
What if all data and

program are external?

! External read conflicts with external fetch

! Can reduce performance by at least 50%

How would you avoid this situation?

 P1

P2

F1 D1

P3

F2

A1

D2

P4

F3 D3

A2

--

--

R1 X1

A3

--

--

--

R2 X2

--

--

--

R3 X3

P5

--

F4 D4

P6

F5

AA44

DD55

FF66

A5

D6

R4 X4

A6

R5 X5

R6

DSP54.1DSP54.1 - - 88

As mentioned earlier, pipelining has implications and the boss won’t be happy that we turned a
160 Mhz screamer into a 80 Mhz slug.

DSP54.1DSP54.1 - - 99

Pipeline Implications (2)
When either

Program or Data
 is located internally...

…fetch and read can
occur simultaneously

What if What if bothboth program and data are located internally? program and data are located internally?

or
54x

D P
54x

P
D

P1 F1 D1 A1 R1 X1

P2 F2

P3 F3 D3 A3 R3 X3

D2 A2 R2 X2

P4 F4 D4 A4 R4 X4

P5 F5 D5 A5 R5 X5

P6 F6 D6 A6 R6 X6

DSP54.1DSP54.1 - - 99

Locating either Program or Data internally will prevent the access problem shown here. Of
course, this doesn’t take into account delays incurred if your memory is slower than 0 wait-state.

The Pipeline

DSP54x - Architectural Overview 1 - 7

DSP54.1DSP54.1 - - 1010

Pipeline Implications (3)

There are no conflicts as long as you follow these rules:
! ROM/SARAM - 1 access per block per cycle
! DARAM - 2 accesses per block per cycle

Size and number of blocks vary based upon device - refer to memory map

Program

ROM

Data

ROM
SARAM DARAM

E Bus

C Bus

D Bus

P Bus

A

D

Ext’l
Mem
I/F

DSP54.1DSP54.1 - - 1010

Just how much memory you have available depends on the device you’re using. Some devices
have no Single-Access RAM and some have no ROM. The number of blocks and the size of each
block is also dependent on the device you’ve selected.

‘C5409 Memory Maps

1 - 8 DSP54x - Architectural Overview

‘C5409 Memory Maps

DSP54.1DSP54.1 - - 1111

'C5409 Memory Maps
PROGRAM

PAGE 0 (64K)

FFFF

External
memory

VECTORSFF80

Internal or
External
memory

DATA

FFFF

External
memory

0000

MMR,
SPRAM,
DARAM

OVLY
bit

DROM
bit

C000
 External
memory

OVLY Maps most of on-chip DARAM into Program space

DROM Maps most of on-chip Program ROM into Data space

C000

7FFF

0000

External
memory

16Kx 16
Internal

ROM

8M x 16
Program

Space
32Kx 16
Internal
DARAM

64K x 16
Data
Space

DARAM or

or Internal
ROM

7FFF

DSP54.1DSP54.1 - - 1111

The OVLY bit maps a portion of data space into program space so that you can load and run a
program from data space. While the OVLY bit is set you can also access this area as data.

The DROM bit operates similarly, but it maps a portion of program space into data space. This
way, non-volatile tables contained in the on-chip ROM can be accessed as data. While DROM is
set you can still access this area as program.

The exact size of these areas depends on the device selected.

DSP54.1DSP54.1 - - 1212

'C5409 Program Memory Options (Page 0)

External
memory

0000

FFFF
VectorsFF80

All ExternalAll External
MP/MC = 1MP/MC = 1

0000

Internal/ExternalInternal/External
MP/MC = 0MP/MC = 0

External
memory

C000
Internal
16K x 16

ROM

FFFF
VectorsFF80

0000

7FFF

DARAM

0080

'RAM' Option
OVLY = 1

External
memory

External
memory or

Internal ROM

C000

FFFF
VectorsFF80

DSP54.1DSP54.1 - - 1212

The state of the MP/MC- bit determines whether program memory is located externally or uses
the internal ROM (should any exist). All internal ROM is full speed (zero wait state).

We’ll look at the rest of program space later. For the present, page 0 has the most interesting
features.

‘C5409 Memory Maps

DSP54x - Architectural Overview 1 - 9

DSP54.1DSP54.1 - - 1313

'C5409 8M x 16 Program Space

Page 0

64K words

00 0000

00 FFFF

OVLY = 0

7F 0000

7F FFFF

Page 127

64K words

.

.

.

! The OVLY bit selects between two different program memory maps:

00 0000

00 FFFF

7F 0000

7F FFFF

.

.

.

32K

DARAM

Upper 32K
Page 0

External Mem

32K

DARAM

Upper 32K
Page 127

External Mem

OVLY = 1

SAME

DSP54.1DSP54.1 - - 1313

The OVLY = 0 option allows you access to the entire 8M of Program memory. The OVLY = 1
option gives you fast (not FAR) access to common routines and assembly language programs.

DSP54.1DSP54.1 - - 1414

'C5409 Data Memory

0000

8000

F000

FFFF

External
memory or

ROM

External
memory

32K x 16
DARAM

0000

0060

0080

1FFF

DARAM
Block a

MMR

SPRAM

0000

4000

7FFF

DARAM
Block a

DARAM
Block d

6000

2000

DARAM
Block c

DARAM
Block b

DSP54.1DSP54.1 - - 1414

Internal dual access RAM is full speed (zero wait state). You can access any block twice per
clock cycle. Locations 00 – 60h contain out Memory Mapped Registers while 60h – 80h contains
our Scratch Pad RAM.

‘C5409 Memory Maps

1 - 10 DSP54x - Architectural Overview

DSP54.1DSP54.1 - - 1515

‘C5409 Peripheral Overview

DSP54.1DSP54.1 - - 1515

McBSPMcBSP

DMADMA

TimersTimers

HPIHPI

PLLPLL

GPIOGPIO

BootBoot

Power DownPower Down

3 Multi-Channel 3 Multi-Channel BSPsBSPs: Each offers up to 128-channel : Each offers up to 128-channel rcvrcv//xmtxmt

6-channels: facilitates data/program transfers w/o CPU intervention6-channels: facilitates data/program transfers w/o CPU intervention

Host Port Interface: 8-bit interface to host processorHost Port Interface: 8-bit interface to host processor

Boot Loader: Multiple ways to load program to volatile memoryBoot Loader: Multiple ways to load program to volatile memory

One 20-bit timer: Can generate timed-based interruptsOne 20-bit timer: Can generate timed-based interrupts

General Purpose I/O: External lines dedicated to I/OGeneral Purpose I/O: External lines dedicated to I/O

Phase Locked Loop: software programmablePhase Locked Loop: software programmable

Idle Modes: Power saving modes and featuresIdle Modes: Power saving modes and features

54x54x
corecore

‘C5409

All of these “peripherals” are included with the’C5409. There is some sharing of signals and pins.

Review

DSP54x - Architectural Overview 1 - 11

Review

DSP54.1DSP54.1 - - 1616

'C54x Review

! Name the buses on the ‘C54x

! How large are the accumulators?

! How many adders are on the part?

! Where are the Memory Mapped Registers located?

! Where is the Reset Vector located?

DSP54.1DSP54.1 - - 1616

Answers to reviews, exercises and labs are always located at the end of each module.

DSP54.1DSP54.1 - - 1818

Looking for Literature on DSP?

! "A DSP Primer : With Applications to Digital Audio
 and Computer Music” by Ken Steiglitz; ISBN 0-8053-1684-1

! “A Simple Approach to Digital Signal Processing”
by Craig Marven and Gillian Ewers; ISBN 0-4711-5243-9

! ”DSP Primer (Primer Series)”
 by C. Britton Rorabaugh; ISBN 0-0705-4004-7

! "DSP First : A Multimedia Approach (Matlab Curriculum Series)”
James H. McClellan; ISBN 0-1324-3171-8

Visit any of the online bookstores for a more comprehensive list of DSP primers. These are just a
few that we’ve encountered.

Review

1 - 12 DSP54x - Architectural Overview

LAB 1 – Exploring the Documents

DSP54.1DSP54.1 - - 1919

LAB 1 - Exploring the Documents

! If login is required, Userid/Pswd: DSP54

! Double click on the CPU and Peripherals Guide icon
(you may find it under “C5400 Manuals”)

! Double click on the Mnemonic Instruction Set Guide icon

Time: 15 minutes

1. Find the status register diagram for ST0, ST1 and PMST.

2. Find the Pipeline Latency chapter.

3. Find the block diagram of the C54x Internal Hardware.

4. At what address is the reset vector? (after you find it, don’t close Acrobat…)

5. In Acrobat, click on “Window” and observe that both guides are available .

6. How many cycles does a branch (B) take?

7. Using the bookmarks on the left, find the “MVPD” instruction. What does

 it do?
DSP54.1DSP54.1 - - 1919

Probably the most important thing you can learn in this workshop is WHERE to find the answers
to your question. With so many databooks and resources the process can be a bit daunting.

This symbol is the “TI-bug”. In each module you’ll find additional resources “after the TI-bug”.
If you have specific questions on anything you see, ask your instructor to present or explain the
material.

Solutions

DSP54x - Architectural Overview 1 - 13

Solutions

DSP54.1DSP54.1 - - 1717

'C54x Review - Solutions

! Name the buses on the ‘C54x

! How large are the accumulators?

! How many adders are on the part?

! Where are the Memory Mapped Registers located?

! Where is the Reset Vector located?

PA,PD CA,CD DA,DD EA,ED

40 bits

2, one in the MAC and the other in the ALU

From 0x00 to 0x60 in Data Memory

0xFF80 in Program Memory

DSP54.1DSP54.1 - - 1717

Some Additional Information…

1 - 14 DSP54x - Architectural Overview

Some Additional Information…
For your reference we’ve included this list. New devices are being added all the time so this list
may be out of date.

DSP54.1DSP54.1 - - 2121

'C54x Flavors

C541
C542
LC541
LC542
LC543
LC545
LC546
LC541A
LC541B
LC545A
LC546A
LC548
LC549
VC549
VC5402
VC5409
VC5410
VC5420*

SARAM DARAM ROM Prog. Space Core Ver. CVdd DVdd Max. Speed

24K
24K
24K

56K
168K

5K
10K
5K
10K
10K
6K
6K
5K
5K
6K
6K
8K
8K
8K
16K
32K
8K
32K

28K
2K
28K
2K
2K
48K
48K
28K
28K
48K
48K
2K
16K
16K
4K
16K
16K

64K
64K
64K
64K
64K
64K
64K
64K
64K
64K
64K
8M
8M
8M
1M
8M
8M

256K

1.0

1.0

2.0

2.5

2.5
2.5
2.5
2.5

2.5
2.5

5V

3.3V

3.3V

3.3V

3.3V
3.3V
2.5V
1.8V
1.8V
2.5V
1.8V

5V

3.3V

3.3V

3.3V

3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V

* dual core* dual core

25nS

20nS

20nS

15nS

15nS
12.5nS
8.3nS

10nS
8.3nS
10nS

DSP54.1DSP54.1 - - 2121

DSP54.1DSP54.1 - - 2222

Newest of the New...

VC5416
VC5421*

VC5402

SARAM DARAM ROM Prog. Space Core Ver. CVdd DVdd Max. Speed
128K
2x32K

?
2x32K
+128K

16K

?
2x2K

4K

8M
256K

1M

2.5
2.5

2.5

1.8V
1.8V

1.2V

3.3V
3.3V

3.3V

* dual core* dual core

6.25nS
10nS

33nS

DSP54.1DSP54.1 - - 2222

Some Additional Information…

DSP54x - Architectural Overview 1 - 15

DSP54.1DSP54.1 - - 2323

'C54x Peripheral Mix

+ enhanced+ enhanced

C541
C542
LC541
LC542
LC543
LC545
LC546
LC541A
LC541B
LC545A
LC546A
LC548
LC549
VC549
VC5402
VC5409
VC5410
VC5420

SSP TDM BSP McBSP DMA HPI Timers PLL GPIO
2

2

1
1
2
2
1
1

1

1
1

1
1
1

1

1
1
1
1

1
1
2
2
2

2
3
3
6

yes
yes
yes
yes

8 bit

8 bit

8 bit
8 bit

8 bit

8 bit
8 bit
8 bit

8 bit+
8 bit+
16 bit

1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2

H/W
H/W
H/W
H/W
H/W
H/W
H/W
H/W
S/W
S/W
S/W
S/W
S/W
S/W
S/W
S/W
S/W
S/W

* * muxed muxed with with McBSP McBSP / HPI pins/ HPI pins

20*
26*
21*

8/42*

DSP54.1DSP54.1 - - 2323

Some Additional Information…

1 - 16 DSP54x - Architectural Overview

DSP54x - Software Development Tools 2 - 1

Software Development Tools

Introduction
The software development environment for TI-DSPs is similar to most microprocessors. It is
expected that the user will wish to develop multiple files in parallel, assemble and test them for
syntax errors, then create a single executable file by linking the elements together. For the
present, we’re going to be programming in assembly. If you’ve only programmed in C, you’ll
miss things like dynamic memory allocation, but you’ll appreciate the performance increase you
get by coding in assembly.

Learning Objectives

DSP54.2DSP54.2 - - 22

Learning Objectives

Use assembler directives to create sections
of code, variables and constants

Create a linker command file to place the
allocated sections into a memory map

Create a reset vector

Describe the software tool flow

DSP54.2DSP54.2 - - 22

Module Topics

2 - 2 DSP54x - Software Development Tools

Module Topics

Software Development Tools .. 2-1

Module Topics ... 2-2

Modular Software Development.. 2-3

Setting Up Hardware .. 2-4

The Linker Command File... 2-5

Vectors.ASM.. 2-6

Assembly Directives and Data Types .. 2-7

Software Development Tool Suite ... 2-8

LAB2 – Software Development.. 2-10
LABx-A vs. LABx-B.. 2-10
Objective... 2-10

LAB2-A Procedure .. 2-11
Check Code Composer Studio Setup .. 2-11
Create a New Project .. 2-11
Edit LAB2A.ASM .. 2-12
Assemble LAB2A.ASM ... 2-12
Create VECTORS.ASM ... 2-12
Assemble VECTORS.ASM .. 2-13
Edit LAB2A.CMD.. 2-13
Link LAB2A ... 2-13
Simulate LAB2A .. 2-14
Graph Memory Contents... 2-16

LAB2-B Procedure .. 2-18

Solutions.. 2-20

Modular Software Development

DSP54x - Software Development Tools 2 - 3

Modular Software Development

DSP54.2DSP54.2 - - 33

file2.asmfile1.asm

code1 code2

io

init_values

vars vars

init_values

Modular Software Development

An application consists of various elements such as:

Modules consisting of code,
constants or variables

Defined in the source file using
assembler directives

Sections are:Sections are:

Data Structures

I/O

These elements or modules are called SECTIONS

Program

DSP54.2DSP54.2 - - 33

Using a modular development environment allows the user(s) to work on multiple files
simultaneously and combine these efforts into a single executable as a final step. To do this, the
programmer needs to understand and use “sections” that will allow the linker to correctly map
your program elements.

DSP54.2DSP54.2 - - 44

Memory Spaces and Software Sections

C54x

Core

Program
(Internal/External)

Data
(Internal/External)

I/O
(External only)

code1

code2

vars

io

init_values

The C54x memory map is split into
3 separate spaces:
- Program (8M or less)
- Data (64K)
- I/O (64K)

code1

init_values

vars

file1.asm

code2

vars

io

init_values

file2.asm

Sections are placed into specific
memory spaces via the linker.

DSP54.2DSP54.2 - - 44

Setting Up Hardware

2 - 4 DSP54x - Software Development Tools

Setting Up Hardware

DSP54.2DSP54.2 - - 55

Let’s Setup Some Hardware

C54x

CPU

Internal
SPRAM (32W)

60h x0

x1

y0 Data ROM (1K)

8000h 16

4

a0

a1

Program Memory
(4K ROM)

code0F000h

Data ROM for initialized constants

Program memory for code

Internal RAM for variables

Let’s create the necessary sections
and map them into memory...

Need:
y0 = (a0 * x0) + (a1 * x1)

Algorithm

DSP54.2DSP54.2 - - 55

Remember that Program and Data are in separate “spaces” in a Harvard architecture machine like
the ‘C54x.

DSP54.2DSP54.2 - - 66

Software Sections

y0 = (a0 * x0) + (a1 * x1)
x .usect “vars”,2

 .sect “table”

MAC: MPY *AR2+,*AR3+,A
 MAC *AR2,*AR3,A

STORE: STL A,*(y0)

start: STM #x,AR2 ;init AR2
 STM #a,AR3 ;init AR3
 ;etc.

.sect “code”

Column 1: comments or labels
Comments: “;” in any column

CodeCode (Initialized Section) (Initialized Section)

ConstantsConstants (Initialized Section) (Initialized Section)

16
4

a
8000h

x
 60h

VariablesVariables ((UnUn-initialized Section)-initialized Section)

 .sect “?”

 .sect “?”
label .int 1,2,3,4

label .usect “?”, #words

a .int 10h, 4

y0 .usect “vars”,1

Assembler Directives

How do we map these sections into memory?

y0
 62h

 ;main.asm

DSP54.2DSP54.2 - - 66

Most, if not all code will contain these basic elements: Initialized Program memory for code,
Initialized Data memory for constants and Uninitialized Data memory for your variables.

The Linker Command File

DSP54x - Software Development Tools 2 - 5

The Linker Command File

DSP54.2DSP54.2 - - 77

Map s/w to h/w

Hardware

File I/O

Linker Command File
main.obj /* input files */

-o main.out /* output files */
-m main.map

PAGE 1: /* Data Memory */
 RAM: org = 00060h, len = 0020h
 DROM: org = 08000h, len = 0400h

MEMORY
{

}

PAGE 0: /* Program Memory */
 ROM: org = 0F000h, len = 0F80h

SECTIONS
{

}

 code
 table
 vars

- input files
- output files
- linker options

- memory map
- program / data
- name, addr, len

- sections
- code and data

16

4

a8000h x 60h

 62h y0

:> RAM PAGE 1
:> DROM PAGE 1
:> ROM PAGE 0

code0F000h
DSP54.2DSP54.2 - - 77

The linker command file is the heart of the development environment. It must understand where
your files are and what outputs you wish to generate, what your memory map looks like and
where to place your sections within this map. While future tools may eliminate the need to write
this file by hand, it will remain important to understand this files construction.

DSP54.2DSP54.2 - - 88

Multiple Files - Reset Vector

;main.asm

x .usect “vars”,2
y0 .usect “vars”,1

 .sect “table”
a .int 10h, 4

 .sect “code”

start: STM #x,AR2 ;init AR2
 STM #a,AR3 ;init AR3

 ;etc.

MAC: MPY *AR2+,*AR3+,A
 MAC *AR2,*AR3,A

STORE: STL A,*(y0)

.def start

.ref start

.sect “vectors”

;vectors.asm

rsv: B start

When power is turned on, howWhen power is turned on, how
does the CPU find does the CPU find start ?start ?

Reset and all interrupt vectors
are mapped starting at 0FF80h.

How do you locate the “vectors” section at 0FF80h?
DSP54.2DSP54.2 - - 88

The ‘C54x interrupt vectors are “soft”. That is, the Program Counter (PC) is directed to 0FF80h
and the processor begins “running” code at the indicated location. This is different from a “hard”
vector, where only the address to be loaded in the PC is resident. While this a slightly slower than
the “hard” vector, it is more flexible.

Vectors.ASM

2 - 6 DSP54x - Software Development Tools

Vectors.ASM

DSP54.2DSP54.2 - - 99

Linking in Vectors.ASM...

Memory spaces
cannot overlap

Sections link in the
same order as .obj
files are listed

Don’t forget to
assemble ALL
input files

main.obj /* input files */

-o main.out /* output files */
-m main.map

PAGE 1:
RAM: org = 00060h, len = 0020h
DROM: org = 08000h, len = 0400h

MEMORY
{

}

PAGE 0:
ROM: org = 0F000h, len = 0F80h

SECTIONS
{

}

 code
 table
 vars :> RAM PAGE 1

:> DROM PAGE 1
:> ROM PAGE 0

vectors.obj

VECS: org = 0FF80h, len = 0080h

vectors :> VECS PAGE 0

DSP54.2DSP54.2 - - 99

The linker command file will need to be instructed exactly where to place the vectors file. This a
critically important since we want “B START” to land precisely at 0FF80h.

DSP54.2DSP54.2 - - 1010

Assembly Directives and Data Types
Basic Directives

.byte 8-bit constant
word-aligned

.long 32-bit constant

.set/.equ equate a value with a
symbol*

.global .ref and .def combined

Data Types
10 Decimal (default)
0Ah, 0xA Hex
1010b, 1010B Binary

.sect.sect create create initializedinitialized named named
section for code or data section for code or data

..usectusect createcreate uninitializeduninitialized
named section for datanamed section for data

 .int (.word) 16-bit constant

.ref/.def used for symbol
references

.asg assign an assembly
constant*. Will display
in debugger

* takes no memory space* takes no memory space

DSP54.2DSP54.2 - - 1010

You may wish to recreate batch files like these on your own PC.

Assembly Directives and Data Types

DSP54x - Software Development Tools 2 - 7

Assembly Directives and Data Types

DSP54.2DSP54.2 - - 1010

Assembly Directives and Data Types
Basic Directives

.byte 8-bit constant
word-aligned

.long 32-bit constant

.set/.equ equate a value with a
symbol*

.global .ref and .def combined

Data Types
10 Decimal (default)
0Ah, 0xA Hex
1010b, 1010B Binary

.sect.sect create create initializedinitialized named named
section for code or data section for code or data

..usectusect createcreate uninitializeduninitialized
named section for datanamed section for data

 .int (.word) 16-bit constant

.ref/.def used for symbol
references

.asg assign an assembly
constant*. Will display
in debugger

* takes no memory space* takes no memory space

DSP54.2DSP54.2 - - 1010

There are more directives and types than can be listed here. Refer to the Assembly Language
Tools User Guide for more information.

Software Development Tool Suite

2 - 8 DSP54x - Software Development Tools

Software Development Tool Suite

DSP54.2DSP54.2 - - 1111

“Build”
(Cmp/Asm/Lnk)

Edit

Code Composer Studio

.OUT.ASM
.C

LNK.CMD

.LST/.MAP/.OBJ

Software Development Tool Flow

Debug
P

L
U

G
 I

N
S

 (
C

+
+

, V
B

, J
av

a)

Probe
In

Probe
OutGraphProfile

BIOS
Library

Code Generation Tools,

DSP
Board

SIM

DSK

EVM

Third
Party

XDS

SIMINIT.CMD

Debug Tools, Plug-ins (make or buy)

BIOS/RTDX: Real-time kernel

 Real-time analysis (RTA)
DSP54.2DSP54.2 - - 1111

Simulator

TI has developed an open toolset. Users or 3rd party developers can write code that can be
“plugged into” the Code Composer Studio (CCS) tool suite. In addition, on-chip elements like
BIOS and RTA interface directly through the JTAG port to CCS.

DSP54.2DSP54.2 - - 1212

BIOS provides:

System Configuration (timer, PLL, wait states, etc.)

Some peripheral setup/use

Priority based scheduling (h/w, s/w)

Creation of interrupt vectors

Graphical real-time analysis

DSP/BIOS: Real-Time Kernel

DSP54.2DSP54.2 - - 1212

C54xx

 BIOS
 < 1KW

 < 3% CPU load

CPU Mem

What is “real-time analysis” ?

You get BIOS and it’s source code free on newer C54 devices.

Software Development Tool Suite

DSP54x - Software Development Tools 2 - 9

DSP54.2DSP54.2 - - 1313

DSP/BIOS performs these functions DSP/BIOS performs these functions automatically:automatically:
Monitor CPU load percentageMonitor CPU load percentage
Monitor worst-case task execution timeMonitor worst-case task execution time
Provide “software logic analyzer” display of task executionProvide “software logic analyzer” display of task execution

DSP/BIOS: Visual Real-Time Analysis

DSP54.2DSP54.2 - - 1313How do you transfer application data to the host?

Before this tool, determining whether or not your system met real-time goals was a hit or miss
proposition. With RTA you can see it directly.

DSP54.2DSP54.2 - - 1414

RTDX: Real-Time Data Exchange

PC TMS320 DSP

JTAG

E
m

u
la

ti
o

n
 H

/W

DS
P/

BI
OS

 &
 R

TD
X

A
p

p
li

c
at

io
n

Third Party
Display

TI
Display

Code
Composer

User
Display

Third Party
Display

DSP54.2DSP54.2 - - 1414

RTDX enables user to transfer application data (e.g. adapting coefficients)
to the host independent of the user’s program code

Transfer speed limited by JTAG bandwidth (~10 MHz serial)

Application must make an RTDX call

RTDX speeds the usual JTAG port by transmitting a subset of the normal information.

LAB2 – Software Development

2 - 10 DSP54x - Software Development Tools

LAB2 – Software Development

LABx-A vs. LABx-B

Each lab contains two labs: part A and part B. Part A will test the basic skills learned in the
module. It is important that you spend as much time as necessary to complete part A. If you finish
part A and would like to continue challenging yourself and exploring more details, move right on
to part B. Part B of every lab contains much more information than you can actually complete in
the allotted time. However, any time spent on part B will enhance your understanding of the
processor.

Objective

The objective of this lab is twofold: (1) edit the given link.cmd file based on the system diagram;
(2) add the proper assembler directives to the given file (LAB2A.ASM) to allocate sections for
code, constants and variables.

DSP54.2DSP54.2 - - 1515

LAB2 - Software Tools (System Diagram)
LAB Flow (for ALL labs):LAB Flow (for ALL labs):

LABxLABx-A: tests the basic concepts (must complete)-A: tests the basic concepts (must complete)

LABxLABx-B: extends the learning experience (do if you can) -B: extends the learning experience (do if you can)

LAB2a Procedure:LAB2a Procedure:

Modify given Lab2a.Modify given Lab2a.cmdcmd based on system shown based on system shown

Modify given Lab2a.Modify given Lab2a.asmasm to use proper assembler to use proper assembler
directives for variables, constants and codedirectives for variables, constants and code

Time: 45 minutesTime: 45 minutes

a[8]
code

‘C5409

60hF000h
4Kx16 EPROM 20hx16 SPRAM

FF80h
vectors

FFFFh

y
x[200]

80h

1Kx16 DARAM

table[8]C00h
1Kx16 DROM

DSP54.2DSP54.2 - - 1515

LAB2-A Procedure

DSP54x - Software Development Tools 2 - 11

LAB2-A Procedure
For you people suffering from hexaphobia, here’s some help:

1K 0400h
4K 1000h
8K 2000h
16K 4000h
32K 8000h
48K C000h
64K 10000h

Check Code Composer Studio Setup

1. Before we get started, let’s make sure Code Composer Studio (CCS) is setup to run on the
C54x simulator. Double click on the CCS Setup icon on the desktop. When the “Import
Configuration” window appears click the Clear System Configuration button.
When prompted if you are sure click Yes the close the “Import Configuration”
window.

2. The middle pane displays the available platforms that can be installed. Double click on the
C54xx Simulator to install it.

3. A window displaying Board Properties will appear. Click Next. In the next window

select sim549.cfg as the simulator config file (click the … button). The C5409 is
currently not a selection, but the C549 has the same memory map.

4. Click Finish and close the CCS Setup window. When prompted to save changes to the
system configuration click Yes.

Create a New Project
1. Double click on the CCS icon on the desktop. Maximize CCS to fill your screen. The menu

bar (at the top) lists File ... Help. Note the horizontal tool bar below the menu bar and the
vertical tool bar on the left-hand side. The window on the left is the project window and the
large right hand window is your workspace.

2. A project is all the files you’ll need to develop an executable output file (.OUT) which can be
run on the simulator or target hardware. Let’s create a new project for this lab. On the menu
bar click:

 Project New

 and make sure the “SAVE IN” location is: C:\DSP54\LABS and type LAB2A in the file
name window. This will create a make file which will invoke all the necessary tools
(assembler, linker, compiler) to build your project.

3. Let’s add the assembly file to the new project. Click:

 Project Add Files to Project

LAB2-A Procedure

2 - 12 DSP54x - Software Development Tools

 and make sure you’re looking in C:\DSP54\LABS. Change the “files of type” to view
assembly files (.ASM) and select LAB2A.ASM and click OPEN. This will add the file
LAB2A.ASM to your newly created project.

4. Add LAB2A.CMD to the project using the same procedure.

5. In the project window on the left click the plus sign (+) to the left of Project. Now, click
on the plus sign next to LAB2A.MAK. Notice that the LAB2A.CMD file is listed. Click on
Source to see the current source file list (i.e. LAB2A.ASM).

Edit LAB2A.ASM
6. To open and edit LAB2A.ASM, double click on the file in the project window. The code you

see in this file is not related to the setup you will create in the following steps. This code is
simply a place holder for future labs and doesn’t do much.

7. Create uninitialized sections for a called coeffs and y called result.
Refer to the system diagram for the sizes. Remember the format is:

 label: .usect “section_name”,size

8. LAB2A.ASM already contains the values that need to be allocated in table[8]. 16 values are
given, but 8 of them are commented out. The 2nd set of 8 values will be used in future labs.
Define an initialized data section called init for the values and place a label (table) next to the
first 4. Table[8] should contain the following values:

 7FCh, 7FDh, 7FEh, 7FFh, 800h, 801h, 802h, 803h

9. Create an initialized program section for code. Add a label definition for the beginning label
of the code (start). Save your changes by clicking the disk on the horizontal tool bar “Save”.

 Assemble LAB2A.ASM
10. Assemble LAB2A.ASM by clicking on the top button on the vertical toolbar. When your

mouse hovers over this button, you will see the words Compile File and check for
errors before moving on to the next step. If you get an assembly error, scroll the Build
window at the bottom of your screen until you can see the error and simply double-click the
error shown in red. Your cursor should now be positioned at the start of the line with the error
in your assembly file. Save any changes you made before going on.

Create VECTORS.ASM
11. Create a new file by clicking on the left most button on the horizontal toolbar “New”.

12. Add an initialized code section named “vectors” that contains: rsv: B start
Make sure that both labels (start and rsv) are visible to the linker. Save your file by clicking
on the Save button on the horizontal toolbar. When prompted, save your file and name it
“vectors” as type “Assembly Source File” in the C:\DSP54\LABS directory.

13. FYI: a complete ‘C54xx instruction summary is available by clicking:

 Help DSP Instructions

LAB2-A Procedure

DSP54x - Software Development Tools 2 - 13

 on the menu bar. If you need help with a specific instruction you’ve already typed, highlight
the instruction with your mouse and hit <F1>. Try it now. The workbook appendix also
contains a complete list of instructions for the ‘C54xx. Feel free to use either reference in this
and future labs.

Assemble VECTORS.ASM
14. Assemble VECTORS.ASM by clicking on the compile button as you did before to assemble

LAB2A.ASM. Check for errors before moving on. Save your work.

15. Add VECTORS.ASM to the project using the procedure shown earlier.

Edit LAB2A.CMD
16. To open and edit LAB2A.CMD, double click on the filename in the project window.

17. Setup the file I/O and any options necessary to create map and output files. Don’t forget to
link in the vectors file (vectors.obj). Add an option: -e rsv to define an entry point
for the simulator.

NOTE: You can delete the entire file I/O section of your linker command file and perform the
same functions in CCS under Project, Options, Linker. All files added to the
project will be linked. Try linking your project using the CCS options and use the method you
prefer.

18. Edit the Memory{} declaration by describing the given system diagram’s memory map.

19. Place the sections defined in LAB2A.ASM and VECTORS.ASM into the appropriate
memories via the Sections{} area. Save your work.

Link LAB2A
20. Setup the linker options by clicking:

 Project Options

 on the menu bar. In the middle of the screen select “No Autoinitialization”, then
OK. We will cover the other options shown during the module on compiling C code. To open
up more work space, close any open files that you may have.

21. FYI: CCS can automatically load the output file into the simulator after a successful build.
On the menu bar click:

 Option Program Load

 and select: “Load program after build”, then click OK.

LAB2-A Procedure

2 - 14 DSP54x - Software Development Tools

22. The top four buttons on the vertical toolbar control code generation. Hover your mouse over
each button as you read the following descriptions:

 Button Name Description
 1 Compile File Compile, assemble the current open file
 2 Incremental Build Compile, assemble only changed files, then link
 3 Rebuild All Compile, assemble all files, then link
 4 Stop Build Stop code generation

23. Before we build and load the program we need to initialize the simulator. We have included a
GEL file to do this for you. GEL files allow the user to automate repetitive procedures. On
the menu bar click:

 GEL C54x C549_Init

You should initialize the simulator every time before you build/load a program.

24. Click the “Rebuild All” button and watch the tools run in the build window. Debug as
necessary. Right-click on the build window and Hide the build window.

25. Open and inspect LAB2A.MAP. This file will show you the results of the link process. Close
the file when you are done.

26. If code generation is successful, a window displaying the VECTORS.ASM source file with
and a yellow highlight on “B start” should appear. This indicates that you are now ready to
simulate.

Simulate LAB2A
27. FYI: Should you experience a problem with CCS, quit, then restart , reload your project and

program .

28. As you can probably tell, the windows in the simulator can be moved around and resized.
Typically, the default window arrangement is not a desirable one. To customize your display,
move the windows around where you want them. You also may want to right click on each
window and select: Float in Main Window. This will allow each window to be
visible when it is active.

29. Right click on the project window and select: Hide

30. You’ll probably want to see the CPU registers. On the menu bar click:

 View CPU Registers CPU Registers

31. Right click in the CPU Registers window and deselect “Allow Docking”. You can
now move and resize the window as you like. Close the CPU Register window. Locate the
“Register Window” button on the vertical toolbar, then click it to see if it appears.

32. If you’re familiar with the Command Window used by previous TI simulators, you can add
one by clicking:

 Tools Command Window

LAB2-A Procedure

DSP54x - Software Development Tools 2 - 15

 on the menu bar. Resize and dock or undock to your liking.

33. If you prefer to see the disassembly window, find and click the “View Disassembly” button
(at the bottom of the vertical toolbar) or click: View Dis-Assembly on the menu
bar.

34. You can save your workspace by clicking:

 File Workspace Save Workspace

 and selecting a name. Make sure you save it in C:\DSP54\LABS. DO NOT save your new
workspace as the “default”. When you restart CCS, you can reload “your” workspace by
clicking:

 File Workspace Load Workspace

 and select your filename.

You may want to save a “generic” workspace rather than one that opens up a project. Make
sure that you close the project before you save this workspace.

35. You can edit the contents of any CPU register by double-clicking on it. Try this with AR7
now. Try typing in both hex and decimal numbers. Note that CCS will convert decimal to hex
for you.

36. Hit the <F8> key or click the single step button on the vertical toolbar repeatedly and single-
step through the program, watching the values in the accumulators change. Notice the other
step buttons as well: Step Over (a function call) and Step Out (of a function or
subroutine).

37. At the command line, type:

 Step 20 ↵

 and watch the simulator actions. You should see the screen update to reflect the results of
each individual “step”.

38. Type: Run ↵ or F5 or click the Run button on the vertical toolbar. Notice the words
“DSP Running” in the bottom left-hand corner of your screen. If something isn’t working
properly or the simulator seems like it is stuck, always check this location first to see the
status of the simulator.

39. Hit Shift-F5 or the Halt button on the vertical toolbar to stop the simulator. Notice the words
“DSP Halted”.

40. Type: Run 20 ↵

 This will not update the display until the specified time is complete.

41. Type: Reset ↵ or click Debug Reset DSP from the menu bar.

 Notice that reset takes you back to the reset vector located at 0FF80h. Restart, on the other
hand, will return you to the entry label you set up by using the –e option in the linker
command file. Edit your linker command file to set –e to start and rebuild the project. Notice
that when your program loaded, the simulation begins at the start label. Now type reset on the
command line and watch the simulation return back to the reset vector location.

LAB2-A Procedure

2 - 16 DSP54x - Software Development Tools

42. Now type: go LOOP ↵

 Note that labels are case sensitive.

43. Try: go loop ↵

 and see if that helps.

44. On the menu bar click:

 View Memory

 or click the View Memory button on the vertical toolbar. Type “table” into the address to
display the contents of the memory starting at label table. Do the same for label “a”. You can
display as many independent windows as you require. Do you see your initial values in the
memory window displaying “table”?

 Note that by double-clicking on any location you can edit the contents of the memory
location.

45. The numbers in “table” are actually signed fractions with values of about 1/16th. In the
memory window, displaying “table”, right-click and select Properties. Select a Q value
of 15 and “16-bit signed int” format. In later modules you’ll see what Q values
represent.

46. We can set a watch on a variable. Type: wa *y ↵ in the command window or click the
“Watch Window” button on the vertical toolbar or select View Watch Window
from the menu bar. Right click in the watch window and select “Insert New
Expression” and type: *y. This will display the contents (*) of the location y.

 If a watch fails to display, the variable may be unavailable to the debugger. Make sure you
used the –s switch when assembling, or, declare y as global using .def or .global. Either
method will ensure that the debugger recognizes the name.

 Note that you can have up to 4 watch windows open where you can group your watches.

47. Type: wd *y ↵ to remove the watch or right-click on *y and select “Remove
Current Expression”.

48. From the menu bar click:

 Profiler View Clock

 to watch the system clock. Click:

 Profiler Enable Clock

 to allow the clock to run. Double-click on Clock in the Profile Clock window to zero it. Step
through your code and watch the display accumulate the cycle count.

Graph Memory Contents
49. Located in the C:\DSP54\LABS directory is a file called IN6.DAT. It contains initialized

values for a sine wave created by adding low and high frequency sine waves together. You
can open the file and view its contents if you like. This data will be the input to the filter we
will design in future labs, so we need to add it to our assembly source file.

LAB2-A Procedure

DSP54x - Software Development Tools 2 - 17

50. You should be able to see the LAB2A.ASM source file on the screen. Add an initialized
section called “indata” with a label pointing to its first location called “x”. After this line
type:

 .copy in6.dat

51. Now add the indata section to the DARAM data memory in LAB2A.CMD.

52. Save your changes and rebuild the project.

53. Click on the View memory button on the vertical toolbar and type “x” in the address field.
You should see lots of data displayed, but it sure would be nice to see this as a graph.

54. Select:

 View Graph

 on the menu bar and pick “Time/Frequency”. Change the following fields to reflect the
information shown below:

 Graph Title: Input Data
Start Address: x
Acquisition Buffer Size: 200
Display Data Size: 200
DSP Data Type: 16-bit signed integer
Q type: 15

 Click OK to see your graph. Resize it to your liking.

55. We might also want to see the plot as a frequency display. Right-click on the graph, select
Properties, and change the Display Type field to “FFT Magnitude”. Then click
OK to view the plot.

56. If you’re finished with part A of this lab and you have some more time, move on to part B on
the next page.

LAB2-B Procedure

2 - 18 DSP54x - Software Development Tools

LAB2-B Procedure
Further details about each of the following commands are in the C Source Debugger User’s
Guide. You might try locating this .pdf file on your PC and look through it. You can obtain the
answers to any of these questions by looking in the on-line help guide or asking your instructor.

1. The simulator supports connecting a file to any address to allow file i/o. Look up how in the
CCS help file and familiarize yourself with them.

2. Create a custom command string using the ALIAS command. Alias can be used to rename
any command (to avoid lots of typing) or to combine several commands into one user-defined
name. For example, type:

alias r, restart ↵

 Look up the ALIAS command in the debugger guide and read more about it.

3. Use the FILL command to initialize a block of memory. Look on the menu bar under Edit ...
memory .. fill.

DSP54.2DSP54.2 - - 1616

LAB Debrief

1. What was the most difficult aspect of1. What was the most difficult aspect of
 using the linker? using the linker?

2. What kind of syntax errors did you get when2. What kind of syntax errors did you get when
 you assembled your code? you assembled your code?

3. When using the simulator, were you able to view3. When using the simulator, were you able to view
 the contents at address the contents at address table table andand a a??

4. What did you learn?4. What did you learn?

5. Did the lab procedure provide 5. Did the lab procedure provide CLEARCLEAR directions? directions?

6. Did anyone get to part B of the lab?6. Did anyone get to part B of the lab?

DSP54.2DSP54.2 - - 1616

LAB2-B Procedure

DSP54x - Software Development Tools 2 - 19

Solutions

2 - 20 DSP54x - Software Development Tools

Solutions

DSP54.2DSP54.2 - - 1818

LAB2A.ASM - Solution
; allocate label definition here

.def start

; allocate uninitialized data sections here
a .usect "coeffs",8
y .usect "result",1

; allocate initialized data sections here
; only the first 8 values are used in Labs 2a and 3a

.sect "init"
table .int 7FCh,7FDh,7FEh,7FFh
 .int 800h,801h,802h,803h
; .int 803h,802h,801h,800h
; .int 7FFH,7FEH,7FDH,7FCH

.sect "indata"
x .copy "in6.dat"

; allocate code section here
.sect "code"

start: LD #0,A
LD #0,B

loop: ADD #1,A
ADD A,B
ADD #1,B
ADD B,A

 B loop
DSP54.2DSP54.2 - - 1818

DSP54.2DSP54.2 - - 1919

LAB2A.CMD - Solution
/* file I/O and options */
vectors.obj
lab2a.obj
-m lab2a.map
-o lab2a.out
-e start

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h
 DROM: org = 00C00h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{
 coeffs :> SPRAM PAGE 1
 result :> DARAM PAGE 1
 init :> DROM PAGE 1
 indata :> DARAM PAGE 1
 code :> EPROM PAGE 0
 vectors :> VECS PAGE 0
}

DSP54.2DSP54.2 - - 1919

DSP54x - Addressing Modes 3 - 1

Addressing Modes

Introduction
In a machine that can perform as many as 160 million multiply-accumulates per second, getting
data to and from the computational units is of critical importance. Different tasks access data
differently, so the ‘C54x incorporates addressing modes to perform those tasks at the fastest
possible speed.

Learning Objectives

DSP54.3DSP54.3 - - 22

Objectives

! Understand the 5 basic addressing
modes and why to use them

! Perform an exercise using these modes

! List the remaining addressing modes

DSP54.3DSP54.3 - - 22

Module Topics

3 - 2 DSP54x - Addressing Modes

Module Topics

Addressing Modes.. 3-1

Module Topics ... 3-2

The Need For Addresses.. 3-3

A Review.. 3-4

Generating Data Addresses... 3-5

Indirect Addressing ... 3-6

MMR Addressing... 3-7

Direct Addressing.. 3-8

Immediate Addressing ... 3-9

Direct Addressing … A How-To.. 3-10

Absolute Addressing.. 3-11

What have we missed?... 3-12
MMR Issues .. 3-12
A List of Indirect Addressing Options .. 3-13
Direct Addressing Issues... 3-14
Some Definitions .. 3-14

Review ... 3-15

Exercise ... 3-16

LAB3 – Addressing.. 3-17

Objective... 3-17

LAB3-A Procedure .. 3-18
Copy Files, Create Make File.. 3-18
Copy table[8] to a[8] – Write/Debug .. 3-18
Add the values, Store result to y – Write/Debug .. 3-19
Profile Your Code ... 3-20

LAB3-B Procedure .. 3-21

Solutions.. 3-23

The Need For Addresses

DSP54x - Addressing Modes 3 - 3

The Need For Addresses

DSP54.3DSP54.3 - - 33

Adding 3 Numbers…How hard can it be?

How do we allocate the proper sections?

RAM

x[3]

RAM

y
54x
CPU

System Diagram

DROM

init[3]

ROMROM

(code)(code)

DSP54.3DSP54.3 - - 33

y = x1 + x0 + x2
Algorithm

! Allocate sections (code, constants, vars)

! Setup addressing modes

! Add the values (x1 + x0 + x2)

! Store the result (y)

Procedure

We’ve already done this, so this should be merely a review of the techniques covered in module
2.

A Review

3 - 4 DSP54x - Addressing Modes

A Review

DSP54.3DSP54.3 - - 44

Allocating Sections (Review?)

Uninitialized Sections...

Initialized Sections...

! x[3]
! y[1]

! tbl [1,2,3]

! code

What does the linker
command file look like?

RAM

x[3]

RAM

y
54x
CPU

System Diagram

DROM

tbl[3]

ROM

code

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 .sect “code”

;main.asm

DSP54.3DSP54.3 - - 44

DSP54.3DSP54.3 - - 55

Linker Command File - Review
! What are the 3 main pieces of

a linker command file?

How do we generate data
addresses to access tbl, x and y?

/* file i/o */

MEMORY {
PAGE 0:
 ROM: org=0F000h len=0F80h
 VECS: org=0FF80h len=0080h
PAGE 1:
 RAM: org=00085h len=0020h
 DROM: org=08000h len=0100h
}

SECTIONS {

}

code :> ROM PAGE 0
vectors :> VECS PAGE 0
init :> DROM PAGE 1
vars :> RAM PAGE 1
result :> RAM PAGE 1

! Where do these go?
- code, vectors?
- init, vars, result?

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 .sect “code”

RAM

x[3]

RAM

y
54x
CPU

System Diagram

DROM

tbl[3]

ROM

code

DSP54.3DSP54.3 - - 55

Generating Data Addresses

DSP54x - Addressing Modes 3 - 5

Generating Data Addresses

DSP54.3DSP54.3 - - 66

 Generating Data Addresses

Indirect Uses 16-bit registers as pointers

Direct Random access from a specified base address

Absolute Specify entire 16-bit address

Immediate Instruction contains the data operand

MMR Access memory mapped registers

The ‘C54x uses 5 basic data addressing modes:The ‘C54x uses 5 basic data addressing modes:

DSP54.3DSP54.3 - - 66

Generating Data addresses is what the programmer will be doing most. How can it be done at the
fastest possible speed?

Indirect Addressing

3 - 6 DSP54x - Addressing Modes

Indirect Addressing

DSP54.3DSP54.3 - - 77

!! Indirect Addressing allowsIndirect Addressing allows
sequentialsequential access to arrays access to arrays

!! 8 address registers (AR0-7) can be8 address registers (AR0-7) can be
used as 16-bit pointers to dataused as 16-bit pointers to data

!! ARsARs can be optionally modified can be optionally modifiedstart:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

RAM

x[3]

RAM

y
54x
CPU

System Diagram

DROM

tbl[3]

ROM

code

First, let’s copy the values
from DROM to RAM (via A):

How do we initialize the ARs?

 Indirect Addressing -

DSP54.3DSP54.3 - - 77

*

Indirect addressing is typically used for addressing arrays of information where stepping up or
down through the data is necessary. We’ll cover the modifications a little later.

MMR Addressing

DSP54x - Addressing Modes 3 - 7

MMR Addressing

DSP54.3DSP54.3 - - 88

start:

MMR and Immediate Addressing

start:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

start: STM #tbl,AR1
 STM #x,AR2

! STM (STore to Memory-mapped
register) stores an immediate
value to the specified MMR or
SPRAM address.

!! STM writes value to register inSTM writes value to register in
the the accessaccess phase of the pipeline phase of the pipeline
to avoid latencies (more later…)to avoid latencies (more later…)

! Immediate operands, like #tbl,
are located in program memory
as part of the opcode.

0000h

0060h

007Fh

MMRs

SPRAM

STM to AR1
tbl

16 bits

2 words, 2 cycles

Now, let’s do the add...

!! ##tbltbl is the 16-bit address of the is the 16-bit address of the
first element of the array first element of the array tbltbl..

DSP54.3DSP54.3 - - 88

MMRs contain the information needed to control the ‘C54x functions and you’ll need to program
them periodically. MMR addressing gives you a method to easily access those registers.
Additionally, since writing to control registers can incur latencies, instructions like STM operate
early and avoid most pipeline problems.

Direct Addressing

3 - 8 DSP54x - Addressing Modes

Direct Addressing

DSP54.3DSP54.3 - - 99

Direct Addressing - @

start:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

start: STM #tbl,AR1
 STM #x,AR2

! Direct Addressing allows random,
single-cycle access to 128 locations
positively offset from a base address

y = x1 + x0 + x2

 LD @x+1,A
 ADD @x,A
 ADD @x+2,A

! The direct 16-bit address is formed
by concatenating the base address (DP)
with the 7-bit offset contained in the
instruction:

opcode 7-bit offset

9-bit DP 7-bit offset

Instruction

Address

16 bits

How is the DP (data page) initialized?
DSP54.3DSP54.3 - - 99

If you need to randomly access some variables, indirect addressing would be a poor choice since
you’d need to reprogram the AR before each access. Direct addressing allows us random access
into a “page” of memory. Why doesn’t direct addressing access the entire data space? Because
instructions in the ‘C54x are only 16 bits long. If you specify the entire data address it alone will
require 16 bits, forcing the instruction to take 2 cycles. In order to meet the single cycle access
need, designers broke up data memory into 512 128 word memory “pages”.

Immediate Addressing

DSP54x - Addressing Modes 3 - 9

Immediate Addressing

DSP54.3DSP54.3 - - 1010

Immediate Addressing - #

start:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

start: STM #tbl,AR1
 STM #x,AR2

 LD @x+1,A
 ADD @x,A
 ADD @x+2,A

Now, let’s see how the C54x calculates direct addresses...

LD #x,DP

 LD #x,DP

! This instruction loads the upper
9 bits of address x into DP (located
in ST0) in a single cycle.

! Short immediate instructions
are 1 word, 1 cycle:

LD #k5, ASM
LD #k8, dst ;A or B

LD #k9, DP
RPT #k8

FRAME #k8

! All other immediate constants are
16 bits and require 2 words, 2 cycles.

DSP54.3DSP54.3 - - 1010

An instruction using Immediate Addressing transfers the information from program to data space.

Direct Addressing … A How-To

3 - 10 DSP54x - Addressing Modes

Direct Addressing … A How-To

DSP54.3DSP54.3 - - 1111

Generating Direct Addresses

start:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

start: STM #tbl,AR1
 STM #x,AR2

 LD @x+1,A
 ADD @x,A
 ADD @x+2,A

Which addressing mode should
be used to store the result?

 LD #x,DP

0000 0000 1 000 0110 = 86h

LD @x+1,A

0000 0000 1 000 0101 = 85h

ADD @x,A

0000 0000 1 000 0111 = 87h

ADD @x+2,A

0000 0000 1 000 0101
16-bit address of x

= 85h

LD #x, DP

0000 0000 1

DP

- Data Page 1
- Base Addr = 80h

CPL (compiler mode) bit in ST1 determines
whether the offset is relative to DP (CPL = 0)
or SP (stack pointer)(CPL = 1)

DSP54.3DSP54.3 - - 1111

Confused? It seems everyone gets confused the first time (or 3rd or 4th) that they encounter direct
addressing. We’ll be doing more exercises using the mode so don’t worry if it is not 100% clear
right now.

Absolute Addressing

DSP54x - Addressing Modes 3 - 11

Absolute Addressing

DSP54.3DSP54.3 - - 1212

Absolute Addressing

start:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

start: STM #tbl,AR1
 STM #x,AR2

 LD @x+1,A
 ADD @x,A
 ADD @x+2,A

 LD #x,DP

!! Guarantees access to Guarantees access to anyany location in the location in the
memory map by supplying the entire memory map by supplying the entire
16-bit address16-bit address

 STL A,*(y)

! Always MINIMUM of 2 words, 2 cycles

What other issues exist concerning
the basic addressing modes?

DSP54.3DSP54.3 - - 1212

! Uses the indirect hardware to generate
the address, hence the *

Gee, this looks like what direct addressing would look like if we didn’t need a DP. But notice the
performance penalty.

The form of the instruction seems to denote indirect addressing and indeed, absolute addressing
using the indirect hardware to generate its addresses.

What have we missed?

3 - 12 DSP54x - Addressing Modes

What have we missed?

DSP54.3DSP54.3 - - 2020

Addressing Issues

start:

;main.asm

x .usect "vars",3
y .usect "result",1

 .sect ”init"
tbl .int 1,2,3

 LD *AR1+,A
 STL A,*AR2+ ;...

 .sect “code”

start: STM #tbl,AR1
 STM #x,AR2

 LD @x+1,A
 ADD @x,A
 ADD @x+2,A

 LD #x,DP

"What issues exist regarding
memory-mapped addressing?

 STL A,*(y)

"What other update modes exist
for address registers (AR0-7)?

"How do you ensure that a group
of variables reside on the same
data page?

DSP54.3DSP54.3 - - 2020

! What goofy abbreviations will
you see in the user’s guide?

MMR Issues

DSP54.3DSP54.3 - - 1414

! DP, SP and CPL are ignored - not used or modified

! Invoked via MMR-specific mnemonics:

MMR Addressing

! When accessing MMRs, latencies must be considered.
 (these will be covered in module 6)

What are the MMRs that can be addressed?

 .mmregs

LDM ST1,B

OR #4000,B

STLM B,ST1

TipTip: use the .: use the .mmregs mmregs directivedirective
 to allow MMR names to be to allow MMR names to be
 interpreted as addresses interpreted as addresses

LDM, STLM MMR LDM, STLM MMR ↔ AccAcc

STMSTM # # → MMR MMR

PSHM, POPM MMR PSHM, POPM MMR ↔ Stack Stack

MVDM, MVMD MMR MVDM, MVMD MMR ↔ DmemDmem

MVMMMVMM AR, SP AR, SP ↔ AR, SP AR, SP

DSP54.3DSP54.3 - - 1414

MMR addressing allows access to the MMRS regardless of the page or mode, which is very
handy. You’ll have to remember that these are the only MMR specific instructions. If you use an
MMR name as an address in any other instruction (say a direct address) you may need to set the
DP to 0.

What have we missed?

DSP54x - Addressing Modes 3 - 13

DSP54.3DSP54.3 - - 1515

Memory-Mapped Registers (MMR)

Addr.
Name (Hex) Description

IMR 0000 Interrupt Mask Register

IFR 0001 Interrupt Flag Register

----- 2 - 5 Reserved

ST0 0006 Status 0 Register

ST1 0007 Status 1 Register

AL 0008 A accumulator low (A[15:00])

AH 0009 A accumulator high (A[31:16])

AG 000A A accumulator guard (A[39:32])

BL 000B B accumulator low (B[15:00])

BH 000C B accumulator high (B[31:16])

BG 000D B accumulator guard (B[39:32])

T 000E Temporary Register

TRN 000F Transition Register

Addr.
Name (Hex) Description

AR0 0010 Address Register 0

AR1 0011 Address Register 1

AR2 0012 Address Register 2

AR3 0013 Address Register 3

AR4 0014 Address Register 4

AR5 0015 Address Register 5

AR6 0016 Address Register 6

AR7 0017 Address Register 7

SP 0018 Stack Pointer Register

BK 0019 Circular Size Register

BRC 001A Block Repeat Counter

RSA 001B Block Repeat Start Address

REA 001C Block Repeat End Address

PMST 001D PMST Register

------- 01E-01F Reserved

DSP54.3DSP54.3 - - 1515

XPC and Peripheral MMR locations are device dependent

These are core MMRs only. Peripheral MMRs will be covered in the peripheral module.

A List of Indirect Addressing Options

DSP54.3DSP54.3 - - 1717

Indirect Addressing Options

No Modification *ARn no modification to ARn

Option Syntax Action Affected by:

Absolute *(lk) 16-bit lk is used as an absolute address
 See Absolute Addressing

Pre-modify *ARn (lk) *(ARn+LK), ARn unchanged
 *+ARn (lk) *(ARn+LK), ARn changed
 *+ARn (lk)% *(ARn+LK), ARn changed - circular BK
 *+ARn pre-increment by 1, during write only

Bit-Reversed *ARn+0B post inc. ARn by AR0 with reverse carry AR0
 *ARn-0B post dec. ARn by AR0 with reverse carry (=FFT size/2)

Circular *ARn+% post increment by 1 - circular BK
 *ARn-% post decrement by 1 - circular
 *ARn+0% post increment by AR0 - circular BK, AR0
 *ARn-0% post decrement by AR0 - circular

Indexed *ARn+0 post increment by AR0 AR0
 *ARn-0 post decrement by AR0

Increment / *ARn+ post increment by 1
Decrement *ARn- post decrement by 1

ARs are read in access phase and modified in read phase of the pipeline,
so the debugger will appear to show ARs changing early. DSP54.3DSP54.3 - - 1717

Other than pre-modify and absolute, these modifications incur no time penalty. The pointer
updates occur as you direct within the address generation hardware.

What have we missed?

3 - 14 DSP54x - Addressing Modes

Direct Addressing Issues

DSP54.3DSP54.3 - - 1919

Forcing Variables Onto A Single Data Page

MEMORY {
PAGE 1: HISRAM: org=100h len=080h

 HERRAM: org=210h len=200h
 ITSRAM: org=500h len=100h

}
SECTIONS {
vars1 :> HISRAM PAGE 1
vars2 :> HERRAM PAGE 1 BLOCK=128
vars3 :> ITSRAM PAGE 1
}

vars1vars1: Guaranteed to reside on DP=2.: Guaranteed to reside on DP=2.
- get a warning if vars1 section is larger than 80h- get a warning if vars1 section is larger than 80h

vars2vars2: Guaranteed to reside on the : Guaranteed to reside on the samesame data page. data page.
- blocking forces section sizes of 2, 4, 8, …128- blocking forces section sizes of 2, 4, 8, …128

x .usect “vars3”,4,1
y .set x+3

vars3vars3: Guaranteed to reside on the : Guaranteed to reside on the samesame data page. data page.
- uses blocking flag to force variables onto same data page- uses blocking flag to force variables onto same data page
- must use “.- must use “.def def y” to see variable in the debuggery” to see variable in the debugger

All 3 methods require close management of the linker.cmd file. DSP54.3DSP54.3 - - 1919

Using direct addressing effectively involves good management of variable placement. The
hardware has no method to determine that your data access was from the correct or incorrect
page.

Some Definitions

DSP54.3DSP54.3 - - 2121

Terms From the User’s Guide...

DSP54.3DSP54.3 - - 2121

Term What it means

Smem Smem 16-bit single data memory operand

pmad pmad 16-bit immediate program memory address (0 - 65,535)
 This includes extended program memory devices

dmad dmad 16-bit immediate data memory address (0 - 65,535)

Ymem Ymem 16-bit dual data-memory operand used in dual-operand instructions.
 Read through C bus.

Xmem Xmem 16-bit dual data memory operand used in dual-operand instructions
 and some single-operand instructions. Read through D bus.

PA PA 16-bit port (I/O) immediate address (0 - 65,535)

src src Source accumulator (A or B)

dst dst Destination accumulator (A or B)

 lk lk 16-bit long constant

There are always hard to understand acronyms and these are a few of the most used.

Review

DSP54x - Addressing Modes 3 - 15

Review

DSP54.3DSP54.3 - - 2222

Review Questions
For the following instructions, what do you need to setup?

LD *AR1,B ;var2

LD @var1,A

STL B,*(var3)

LD #0FFh, A

LD #var1,DP

STM #var2,AR1

nothing...

nothing...

STLM B,ST1 .mmregs

DSP54.3DSP54.3 - - 2222

Exercise

3 - 16 DSP54x - Addressing Modes

Exercise

DSP54.3DSP54.3 - - 2323

Program A B DP AR0 AR1 AR2
LD #0,DP
STM #2,AR0
STM #200h,AR1
STM #300h,AR2
LD @61h,A
ADD *AR1+,A
SUB @60h,A,B
ADD *AR1+,B,A
LD #6,DP
ADD @1,A
ADD *AR2+,A
SUB *AR2+,A
SUB #32,A
ADD *AR1-0,A,B
SUB *AR2-0,B,A
STL A,62h

Exercise 3: Addressing
GivenGiven: : DP=0 DP=0 DP=4 DP=4 DP=6 DP=6
Address/Data (hex) Address/Data (hex) 6060 2020 200200 100100 300300 100100
CPL=0CPL=0 6161 120120 201201 6060 301301 3030
CMPT=0CMPT=0 6262 202202 4040 302302 6060

 120

260

390

380

DSP54.3DSP54.3 - - 2323

In everyday coding you would probably not be using “hard” addresses to load registers but would
rather be using symbols. In this exercise we are using hard addresses so we can emphasize
addressing modes rather than the use of symbols.

Exercise

DSP54x - Addressing Modes 3 - 17

LAB3 – Addressing

Objective

The objective of this lab is to write code to perform a copy of the initialized table from DROM to
RAM, add the values stored in the RAM table, and then store the result to y.

DSP54.3DSP54.3 - - 2525

LAB3 - Addressing

DSP54.3DSP54.3 - - 2525

a[8]code

‘C5409

60hF000h
4Kx16 EPROM 20hx16 SPRAM

FF80h
vectors

FFFFh y

x[200]

80h
1Kx16 DARAM

table[8]C00h
1Kx16 DROM

y = ∑ an
n=0

7
1. Setup proper addressing modes1. Setup proper addressing modes

2. Copy table[8] to a[8] using 2. Copy table[8] to a[8] using indirect addressingindirect addressing

3. Solve for y using 3. Solve for y using direct addressingdirect addressing

4. Store y to RAM using 4. Store y to RAM using absolute addressingabsolute addressing

Time: 60 minutesTime: 60 minutes

ACC

LAB3-A Procedure

3 - 18 DSP54x - Addressing Modes

LAB3-A Procedure

Copy Files, Create Make File
1. Using CCS, open LAB2A.CMD in C:\DSP54\LABS and save it as

C:\DSP54\LABS\LAB3A.CMD. Modify as necessary (especially the file i/o). Save your
work.

2. Open LAB2A.ASM and save it as LAB3A.ASM.

3. Create a new project called LAB3A.MAK and add LAB3.ASM, VECTORS.ASM and
LAB3A.CMD to it. Check your file-list to make sure all the files are there.

Copy table[8] to a[8] – Write/Debug
4. Edit LAB3A.ASM and write code to copy table[8] to a[8] using indirect addressing. Begin

your copy code by writing the actual copy routine, then setup the necessary pointers. This is
the “Oreo cookie” approach of coding. First, write the kernel (whatever task you’re
performing). Then, work on the setup code (like initializing pointers or registers). Then
assemble, link and simulate the small kernel to ensure it is working properly before adding
other tasks to your code. The worst coding technique is to “write it all”, then simulate it all.
Gee, if you have an error, you have a zillion places to look. With the “Oreo cookie” method,
you’ll know exactly where to look.

5. To perform the copy, use a load/store method via the accumulator. Which part of an
accumulator (low or high) should be used? Use the following when writing your copy
routine:
 - use AR1 to hold the address of a
 - use AR2 to hold the address of table
 - setup the appropriate indirect addressing registers

6. Save your work. Build and simulate LAB3A. You might want to use your workspace from
LAB2A. You may need to reload your project, remove the LAB2A.ASM source window and
add the lab3a.asm source window. You may want to re-save the workspace with a “generic”
layout without the source file open. Look under File # Recent Workspaces on the menu bar
to select your saved workspace quickly.

7. Single-step your copy routine. While single-stepping, it is helpful to see the values located in
table[8] and a[8] at the same time. You can have as many as four memory windows open at
the same time. Open two memory windows by using the “View Memory” button on the
vertical toolbar and using the address labels table and a. Setting the properties filed to
“Hex – TI sytle” will give you more viewable data in the window.

Note: ARs are read/modified early in the pipeline. Therefore, the addresses contained in the
register(s) will appear to change early, most often appearing to be two cycles ahead.

 First, does table contain the proper values? Are the addresses for table and a what you
expected? Single-step your copy routine. Do the values show up in a? If not, debug your
assembly routine and re-simulate. Get the copy routine working before moving on to the next
step.

LAB3-A Procedure

DSP54x - Addressing Modes 3 - 19

Add the values, Store result to y – Write/Debug
8. Edit LAB3A.ASM again and write code to solve for y using direct addressing. According to

the equation shown on the system diagram, y = a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7. First,
write the add routine using one of the accumulators and direct addressing. Then, setup the
appropriate direct addressing registers. Create a label (like add:) at the beginning of your
add routine.

9. Did you check to see if all the values in a are contained within a single data page? We can
assure they are by adding the “,1” switch to the .usect command that allocates this
section.

10. Store the result y using absolute addressing.

11. Create a stop condition at the end of your code with an endless loop. You can use:

 here: B here

12. Verify that you still have the following selected:

Option # Program Load # Load Program after Build

13. On the menu bar select: Project # Options and make sure –g is included in the
Assembler options box. If it is not, click the box labeled Enable Symbolic Debug
Information. The –g option enables source-level debugging. The options box should
now read –gs. The –s option makes all symbols global so that they can be displayed in
Code Composer Studio. Rebuild your .OUT file.

14. When the simulator opens, type:

 go add ↵

on the command line (or use the label you wrote at the beginning of your add routine) to run
the code beginning at the start label and ending at the add label. Use a memory window to
view a and verify that the values have been properly copied.

15. We know that the copy routine works properly, so now it is time to debug the add routine.
Single step your add routine.

Note: When single-stepping, normally the highlighted instruction is sitting at the beginning of the
EXECUTE phase of the pipeline. So, when you hit <F8> or press the single-step button, the
instruction will complete the EXECUTE phase. This implies that the instructions following the
current instruction might have already performed the pre-fetch, fetch, decode, access and read
phases. Any updates or modifications made during early phases of the pipeline might already be
complete by the time you highlight the specific instruction. For example, STM writes in the
READ phase. Therefore, when you actually highlight this instruction, it has already “executed”.

16. The result stored to location y should be 16380 (decimal) or 3FFCh. Add the following two
expressions to the watch window to display y in both decimal and hex:

 *y (decimal is the default) … *y will display the contents of the address y

 *y,x (x selects hexadecimal)

LAB3-A Procedure

3 - 20 DSP54x - Addressing Modes

17. View the CPU Registers window. Notice that CCS parses ST0, ST1 and PMST into
their individual pieces. Review the CCS online help and determine what those pieces are.
Find them in the CPU Registers window.

18. If your add/store routine is not working properly, debug as necessary before benchmarking
your code.

Profile Your Code
19. To re-initialize your debugging session, you have two options. restart and reset.

restart loads the PC with your entry label (for example: start) and does not reset any
registers. reset loads the PC with the reset vector address and initializes all reset
bits/registers. Use both commands now to see the difference. Type: reset or look under
Debug on the menu bar and select Reset DSP.

20. Type: go start ↵

on the command line to run to your beginning label.

21. Click on the line in your source file corresponding to the beginning of your add routine. Click
on the “Toggle Profile-point” button on the vertical toolbar. You should see a green
line appear. Do the same on the instruction performing the store to y. Check on the menu bar
under Profiler and make sure the clock is enabled. Display the Profile window by
selecting:

 Profiler # View Statistics.

22. Press the Run button, then press the Halt button on the vertical toolbar. You should see the
yellow line indicating the current position of the PC on your stop condition.

Ouch! 64 cycles for 8 instructions? What’s happening here is that the software wait state
register is set to the maximum (8 cycles per access) at reset so that we can interface with slow
memory. We’ll see how to set this register in our code later. Type: ?SWWSR=0 on the
command line, then restart (don’t reset) the processor. Run and Halt the simulator and
check your results. If you use reset, it will set the SWWSR to the maximum. To make life
easier for future profiling, we created an alias for ?SWWSR=0 called “0ws” (the number
ZERO, then ws – for ZERO WAIT STATE). From now on, you can simply type “0ws” at the
command line to set wait states to zero.

Note in the statistics window that you’ve run the code twice. You should see different values
for minimum and maximum. You can clear the statistics by right clicking in the statistics
window and selecting “Clear All”.

23. Take a moment and look at the Appendix of this student guide (at the very back) and study its
contents. Is this good stuff or what?

 If you still have some time left and desire a real challenge, move on to LAB3B…

LAB3-B Procedure

DSP54x - Addressing Modes 3 - 21

LAB3-B Procedure
If you plan on modifying your LAB3A.ASM code, you might copy the files (LAB3A.ASM and
LAB3A.CMD) to LAB3B.ASM and LAB3B.CMD. You can obtain the answers to any of these
questions by looking in the on-line help guide or asking your instructor.

1. How would you implement a data addressing scheme that crosses data pages using indirect
addressing?

2. What addressing modes would you use to implement indexed addressing and what registers
would you need to initialize?

3. Determine how to randomly access a memory block greater than 128 words in length.

4. Use READA instruction to perform the copy from table to a.

5. Implement two ways for forcing variables onto the same data page. Verify your methods via
simulation.

6. Review the list of MMR’s in the appendix. You can also locate them in the on-line
documentation. If you find them, set a bookmark there for future use.

LAB3-B Procedure

3 - 22 DSP54x - Addressing Modes

DSP54.3DSP54.3 - - 2626

LAB Debrief

1. Which addressing mode was easiest to use? Why?1. Which addressing mode was easiest to use? Why?

2. Which mode was the most difficult? Why?2. Which mode was the most difficult? Why?

3. Did you watch the copy occur from 3. Did you watch the copy occur from tabletable to to aa??

4. Did the tools behave as expected?4. Did the tools behave as expected?

5. What did you learn?5. What did you learn?

6. Did the lab procedure provide 6. Did the lab procedure provide CLEARCLEAR directions? directions?

7. Did anyone get to part B of the lab?7. Did anyone get to part B of the lab?

DSP54.3DSP54.3 - - 2626

Solutions

DSP54x - Addressing Modes 3 - 23

Solutions

DSP54.3DSP54.3 - - 2424

Exercise 3: Addressing - Solution

Program A B DP AR0 AR1 AR2
LD #0,DP
STM #2,AR0
STM #200h,AR1
STM #300h,AR2
LD @61h,A 120
ADD *AR1+,A
SUB @60h,A,B
ADD *AR1+,B,A 260
LD #6,DP
ADD @1,A
ADD *AR2+,A 390
SUB *AR2+,A
SUB #32,A
ADD *AR1-0,A,B 380
SUB *AR2-0,B,A
STL A,62h

GivenGiven: : DP=0 DP=0 DP=4 DP=4 DP=6 DP=6
Address/Data (hex) Address/Data (hex) 6060 2020 200200 100100 300300 100100
CPL=0CPL=0 6161 120120 201201 6060 301301 3030
CMPT=0CMPT=0 6262 202202 4040 302302 6060

 0
 2
 200

300

220 201
200

202
6

290
301

360 302
340

200
 320 300

DSP54.3DSP54.3 - - 2424

DSP54.3DSP54.3 - - 2828

LAB3A.ASM : Solution
.def start

a .usect "coeffs",8,1
y .usect "result",1

.sect "init"
table .int 7FCh,7FDh,7FEh,7FFh
 .int 800h,801h,802h,803h
; .int 803h,802h,801h,800h
; .int 7FFH,7FEH,7FDH,7FCH

.sect "indata"
x .copy "in6.dat"

.sect "code"
start: STM #a,AR1

STM #table,AR2
LD *AR2+,A ;1
STL A,*AR1+
LD *AR2+,A ;2
STL A,*AR1+
LD *AR2+,A ;3
STL A,*AR1+
LD *AR2+,A ;4
STL A,*AR1+

DSP54.3DSP54.3 - - 2828

LD *AR2+,A ;5
STL A,*AR1+
LD *AR2+,A ;6
STL A,*AR1+
LD *AR2+,A ;7
STL A,*AR1+
LD *AR2+,A ;8
STL A,*AR1+

LD #a,DP

add: LD @a,A
ADD @a+1,A
ADD @a+2,A
ADD @a+3,A
ADD @a+4,A
ADD @a+5,A
ADD @a+6,A
ADD @a+7,A
STL A,*(y)

here: B here

Solutions

3 - 24 DSP54x - Addressing Modes

DSP54.3DSP54.3 - - 2929

LAB3A.CMD : Solution
/* file I/O and options */
vectors.obj
lab3a.obj
-m lab3a.map
-o lab3a.out
-e start

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h
 DROM: org = 00C00h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{ coeffs :> SPRAM PAGE 1
 result :> DARAM PAGE 1
 init :> DROM PAGE 1
 indata :> DARAM PAGE 1
 code :> EPROM PAGE 0
 vectors :> VECS PAGE 0
}

/* file I/O and options */
vectors.obj
lab3a.obj
-m lab3a.map
-o lab3a.out
-e start

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h
 DROM: org = 00C00h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{ coeffs :> SPRAM PAGE 1
 result :> DARAM PAGE 1
 init :> DROM PAGE 1
 indata :> DARAM PAGE 1
 code :> EPROM PAGE 0
 vectors :> VECS PAGE 0
}

DSP54.3DSP54.3 - - 2929

DSP54x - Programming FIR Filters 4 - 1

Programming FIR Filters

Introduction
While the purist might quibble that what we’re covering here isn’t everything needed to perform
FIR filter, we will cover the most important aspect; multiply-accumulates. We’ll introduce the
concept of a sampled signal and work a complete problem using just 4 data points. In later
modules we’ll look at how important managing pointers and data is.

Learning Objectives

DSP54.4DSP54.4 - - 22

Objectives

!! Introduce Introduce DSP FilteringDSP Filtering

!! Compare/contrast Compare/contrast array array vsvs. scalar. scalar math math

!! Solve an Solve an FIR filterFIR filter using basic math and using basic math and
 program flow instructions program flow instructions

!! List List additional instructionsadditional instructions

DSP54.4DSP54.4 - - 22

Module Topics

4 - 2 DSP54x - Programming FIR Filters

Module Topics

Programming FIR Filters ... 4-1

Module Topics ... 4-2

Converting the Analog World to Digital ... 4-3

FIR Filters ... 4-4

Array Math .. 4-5

Multiply and Accumulate... 4-6

Store to Memory Mapped Registers .. 4-7

Loads ... 4-8

Store Accumulator to Memory .. 4-9

Repeat Single... 4-10

Move Instructions.. 4-11

Program Flow ... 4-12

The Stack ... 4-13

Review ... 4-14

LAB4 – 16-TAP FIR.. 4-15

Objective... 4-15

LAB4-A Procedure .. 4-16
Copy Files, Create Make File.. 4-16
Edit LAB4A.CMD.. 4-16
Setup 16-TAP FIR and Stack – Write/Debug ... 4-16
Optimize Copy Routine – Write/Debug.. 4-17
FIR Routine – Write/Debug.. 4-17
Optimize Your FIR Routine – Write/Debug ... 4-18

LAB4-B Procedure .. 4-19

What Have We Missed?... 4-20
IIR Filters .. 4-20
More Multiply Instructions ... 4-21
Adds and Subtracts.. 4-22
32 Bit Operations .. 4-22
Aligning Long Operands... 4-23
Far Operations... 4-23

Solutions.. 4-25

Some Additional Information ….. 4-27

Converting the Analog World to Digital

DSP54x - Programming FIR Filters 4 - 3

Converting the Analog World to Digital

DSP54.4DSP54.4 - - 33

Sampling
! We’re going to sample a real world signal at some rate greater than twice the

frequency of interest using an analog to digital converter...

0
0.406737
0.743145
0.951057
0.994522
0.866025
0.587785
0.207912
...

! …to generate an array of numbers
 representing our original input:

Let’s take a look at one of several filtering methods...

ADC

! Or, the input might look like this:

! We might want to filter this signal
to extract or exclude a part of it.

DSP54.4DSP54.4 - - 33

There certainly isn’t time or space here to cover time-invariant sampling theory, but the idea of
sampling a real world signal at a given rate is at the heart of DSP. Remember Nyquist? We must
sample our signal at a minimum of twice the frequency of interest. Since voice ranges up to
4KHz, we must sample voice signal at a minimum of 8KHz or 125uS.

FIR Filters

4 - 4 DSP54x - Programming FIR Filters

FIR Filters

DSP54.4DSP54.4 - - 44

DSP Filtering Using an FIR Filter

z-1 z-1 z-1

++

xx

++ ++

xx xx xx

y0 = a0*x0 + a1*x1 + a2*x2 + a3*x3

a0a0 a1a1 a2a2 a3a3

x0x0
x3x3x2x2x1x1

y0

FIR Signal Flow Diagram

! Unconditionally stable (no feedback)

!! Linear phase Linear phase possiblepossible

!! Usually requires many taps - so typically Usually requires many taps - so typically arrayarray math and math and
indirectindirect addressing are used addressing are used

!! MACMAC is the basic instruction used to solve an FIR filter is the basic instruction used to solve an FIR filter

DSP54.4DSP54.4 - - 44

An FIR filter in its simplest implementation is an averaging filter. To determine the average high
temperature for a week we’d take the high for each day, add together all 7 and divide by 7. Since
multiplication is easier than division we can multiply each “data point” by our “coefficient” (1/7)
and accumulate the result. Unfortunately, FIR filters are relatively poor performers, so many
“taps” or multiply-accumulates will be needed.

Array Math

DSP54x - Programming FIR Filters 4 - 5

Array Math

DSP54.4DSP54.4 - - 55

Array Math
CoefficientsCoefficients

a0a0

a1a1

a2a2

a3a3

Input DataInput Data

x0x0

x1x1

x2x2

x3x3
n=0

3

an∑ *y = xn0

z-1 z-1 z-1

++

xx

++ ++

xx xx xx

y0 = a0*x0 + a1*x1 + a2*x2 + a3*x3

a0a0 a1a1 a2a2 a3a3

x0x0
x3x3x2x2x1x1

y0

FIR Signal Flow Diagram

Next, let’s setup the link.cmd file and sections... DSP54.4DSP54.4 - - 55

There they are … an array of data and an array of coeffiecients.

DSP54.4DSP54.4 - - 66

y0 = a0x0 + a1x1 + a2x2 + a3x3

InRAM
x[6]

OutRAM
y[1]

ROM

code

init_a[4]
SPRAM
a[4]

C54x
lab1.obj
-o lab1.out
-m lab1.map

MEMORY {
PAGE 1: /* Data Memory */
 SPRAM: org=00060h len=0020h
 InRAM: org=00400h len=0400h
 OutRAM: org=00800h len=0400h
PAGE 0: /* Program Memory */
 ROM: org=0F000h len=0F80h
}

SECTIONS {
code :> ROM PAGE 0
init :> ROM PAGE 0
input :> InRAM PAGE 1
output :> OutRAM PAGE 1
coeff :> SPRAM PAGE 1
}

Link.cmd
System

Diagram

.sect "code"

.sect ”init"
init_a .int 1,2,3,4

x .usect ”input",6
a .usect ”coeff",4
y .usect ”output",1

.mmregs

FIR.asm

Let’s start writing some code... DSP54.4DSP54.4 - - 66

Let’s make sure they’re correctly placed in memory to avoid access conflicts.

Multiply and Accumulate

4 - 6 DSP54x - Programming FIR Filters

Multiply and Accumulate

DSP54.4DSP54.4 - - 77

fir: fir:

done:done:

FIR.asm

math: MAC *AR2+,*AR3+,A

Multiply and Accumulate
y0 = a0x0 + a1x1 + a2x2 + a3x3

Two methods can be used to solve for y0:

MPY *AR2+, *AR3+, B
ADD B,A

...

1. Multiply, then add

MAC *AR2+, *AR3+, A

...

2. Multiply/Accumulate

! Dual-operand instructions are
restricted to using:
- AR2, AR3, AR4, AR5
- modifiers: none, +, -, +0%How do you initialize the pointers?

DSP54.4DSP54.4 - - 77

This is the “Oreo” method of coding. An Oreo cookie is eaten from the inside out, and this is how
the “Oreo” technique of coding works. The equation is a MAC, so start out by writing the MAC
instruction. Then you can think about what register will be needed to be initialized to make it
work. Finally you can work on storing the results.

Note that the post-increments will step through our data array.

Store to Memory Mapped Registers

DSP54x - Programming FIR Filters 4 - 7

Store to Memory Mapped Registers

DSP54.4DSP54.4 - - 88

math: MAC *AR2+,*AR3+,A

fir:

done:

FIR.asm

STM #a,AR2

 STM #x,AR3

fir:

Store to Memory-Mapped Register

What does accumulator A
 contain before the first MAC?

CoefficientsCoefficients

a0a0

a1a1

a2a2

a3a3

Input DataInput Data

x0x0

x1x1

x2x2

x3x3

AR2 AR3

! Stores #value to the MMR early
in the pipeline to avoid latencies

! 2 words, 2 cycles

STM

y0 = a0x0 + a1x1 + a2x2 + a3x3

DSP54.4DSP54.4 - - 88

If you intend to use pointers you must initialize them. Duh.

Loads

4 - 8 DSP54x - Programming FIR Filters

Loads

DSP54.4DSP54.4 - - 99

math: MAC *AR2+,*AR3+,A

STM #a,AR2

 STM #x,AR3

fir:

fir:

done:

FIR.asm

 LD #0,A

Loads

How is the result stored?

y0 = a0x0 + a1x1 + a2x2 + a3x3

LD source, [leftshift,] dst

! We must first initialize “A” using
a load instruction.

!! sourcesource: constant or memory location : constant or memory location

!! leftshiftleftshift:: Ex:Ex: LD @x,16,A LD @x,16,A
-- none none
- T [5:0] (- T [5:0] (use TSuse TS))
- constant (-16 to +16) - constant (-16 to +16)

!! dstdst: A,B,T,DP,ASM: A,B,T,DP,ASM

LHG

15-031-1639-32

!! LDLD: : - loads - loads dstdst[15:0][15:0] by default by default
- may be 1 or 2 cycles - may be 1 or 2 cycles

DSP54.4DSP54.4 - - 99

Since MAC merely accumulates to the A or B accumulator, any previous value would be
incorporated as well. So we need to initialize it by loading A with 0. This load would be a 8 bit
constant and the instruction would take a single cycle. The assembler will look at the immediate
value and decide on the correct interpretation of the LD mnemonic. Since a load clears the upper
bits, this will work perfectly.

Can you think how we might more efficiently initialize the accumulator?

Store Accumulator to Memory

DSP54x - Programming FIR Filters 4 - 9

Store Accumulator to Memory

DSP54.4DSP54.4 - - 1010

math: MAC *AR2+,*AR3+,A

STM #a,AR2

 STM #x,AR3

fir:

fir:

done:

FIR.asm

 LD #0,A

Store Accumulator to Memory

How do we perform
4 MACs quickly?

y0 = a0x0 + a1x1 + a2x2 + a3x3

 STL A, *(y)

STL/H source, [leftshift,] dst

! Memory is 16-bits wide. So you must
specify the low or high 16 bits:

!! sourcesource: : A,BA,B

!! leftshiftleftshift:: Ex:Ex: STL B,-8,*AR5- STL B,-8,*AR5-
-- none none
- ASM- ASM
- constant (-16 to 15) - constant (-16 to 15)

!! dstdst: memory location: memory location

LHG

15-031-1639-32

STL/STH may be 1 or 2 cycles
DSP54.4DSP54.4 - - 1010

Accumulators are 32 bits plus 8 guard bits. You must indicate which portion of the accumulator
you wish to store (with an optional shift value).

The ASM bit field may be used to perform a shift by a preset amount.

Repeat Single

4 - 10 DSP54x - Programming FIR Filters

Repeat Single

DSP54.4DSP54.4 - - 1111

math: MAC *AR2+,*AR3+,A

STM #a,AR2

 STM #x,AR3

fir:

 LD #0,A

 STL A, *(y)

fir:

done:

FIR.asm

 RPT #3

Repeat Single

How do we copy the coefficients from
program ROM to data RAM?

y0 = a0x0 + a1x1 + a2x2 + a3x3

! Executes the next instruction
n+1 times:

1. RPT #n

2. RPT Smem

! Non-interruptible

! May be 1 or 2 cycles

! RPTZ clears the ACC before
repeating - always 2 words, 2 cycles

MVDM MVKD MACD MVMD
MVDK MACP MVDP MVPD
READA WRITA FIRS

! These execute faster when using RPT:

3. RPTZ src,#n

DSP54.4DSP54.4 - - 1111

Repeat Single repeats the following instruction by the programmed number + 1. This is because
efficient loop control runs the 0th iteration.

Using RPTZ would eliminate the need to use the “LD #0,A” instruction by zeroing A the first
time through.

The listed instruction execute faster when placed in a RPT loop since they require the hardware to
set up a tear down pointers internally.

Move Instructions

DSP54x - Programming FIR Filters 4 - 11

Move Instructions

DSP54.4DSP54.4 - - 1212

Move Instructions

If “fir” is a subroutine, what
else do we need to consider?

math: MAC *AR2math: MAC *AR2+,*+,*AR3+,AAR3+,A

STM #a,AR2STM #a,AR2

 STM #x,AR3 STM #x,AR3

fir: fir:

 LD #0,A LD #0,A

 STL A, *(y) STL A, *(y)

fir: fir:

done: done:

FIR.FIR.asmasm

 RPT #3

fir: STM #a, AR2

 RPT #3

 MVPD #init_a,*AR2+

y0 = a0x0 + a1x1 + a2x2 + a3x3

! Copy values from one memory
location to another:

1
2
3
4

init_a a
AR2PC

! PC=PC+1 every access

MVPD #pmad, Smem

! Move instructions:

Prog Data

MVPD,MVDP
READA, WRITA

Data Data

MVKD,MVDK,MVDD

MMR Data

MVMD,MVDM

MMR MMR

MVMM
DSP54.4DSP54.4 - - 1212

Move instructions allow program and data movement, but require program and processor
attention. The DMA transfers information without attention, but only moves between data
memories. Some C54x devices place additional restrictions on DMA movements.

Program Flow

4 - 12 DSP54x - Programming FIR Filters

Program Flow

DSP54.4DSP54.4 - - 1313

math: MAC *AR2+,*AR3+,A

STM #a,AR2

 STM #x,AR3

fir:

 LD #0,A

 STL A, *(y)

 RPT #3

fir: STM #a, AR2

 RPT #9

 MVPD #init_a,*AR2+

FIR.asm

done:

Program Flow

Where is the return address
stored during the CALL?

done: RET

! Implementing a subroutine requires:

! Other program flow instructions:

! Conditional program flow:

A/B: EQ,NEQ,LEQ,GEQ,LT,GT,OV,NOV

 TC,NTC,C,NC,BIO,NBIO

! Conditions: 3 max w/restrictions, ANDed

Ex: CC fir, AEQ, AOV

BC next,cnd,

CC next,cnd,
RC cnd,

2w, 3c/5c

2w, 3c/5c

1w, 3c/5c

2w, 4c
1w, 6c
1w, 6c

B next
BACC src
CALA src

2w, 4c
1w, 4c

CALL fir
RET

DSP54.4DSP54.4 - - 1313

RET is a return from a subroutine. We’ll see other variants on returns later.

Restrictions on conditions are that you can choose up to 3 from the top row or up to 2 from the
bottom, but you may not mix them. See the CPU and Peripherals User Guide for more detailed
information.

The Stack

DSP54x - Programming FIR Filters 4 - 13

The Stack

DSP54.4DSP54.4 - - 1414

The Stack

size .set 100h
stack .usect "STK",size

File.ASM

MEMORY {

PAGE 1:
 STKRAM: org=3F00h len=0100h

}

SECTIONS {
 STK :> STKRAM PAGE 1

}

Link.CMD

.sect “code”
STM #stack+size,SP

! Setting up the stack:

1. Declare an uninitialized section
of the proper length.

2. Initialize stack pointer (SP) to
point to the “top of stack + 1”:

!! SP points to SP points to last usedlast used location location

CALL: PC →→→→ *--SP

RET: *SP++ →→→→ PC

3. Place 3. Place STKSTK in memory in memory
- internal memory suggested- internal memory suggested

0

STK

SPSP

Data

DSP54.4DSP54.4 - - 1414

The stack pointer is a pre-decrementing pointer which points to the last used location. Before the
stack pointer is used the first time it should point to one location higher (after) the stack. In
assembly, you must take care of stack initialization yourself. If you use C, the boot.asm routine
will do this for you.

Review

4 - 14 DSP54x - Programming FIR Filters

Review

DSP54.4DSP54.4 - - 1515

1. Name some characteristics of FIR filters?

2. What restrictions exist for a dual-operand MAC?

3. What does “ RPT 5 ” do?

4. Write the instruction to store A[23:8] to @y.

5. Which part of memory should the stack (SP) be located in

 and why?

Review

DSP54.4DSP54.4 - - 1515

Review

DSP54x - Programming FIR Filters 4 - 15

LAB4 – 16-TAP FIR

Objective

The objective of this lab is to write code to perform a 16-tap FIR (actually, it is a sum of products
because we don’t get any new data, but who’s asking?) as described in module 4. You have
already copied the coefficients (a values) into RAM, but we need to modify the code to use 16
values instead of 8. The input file, in4.dat, contains the 16 input data values of the filter.

DSP54.4DSP54.4 - - 1717

LAB4A - Programming an FIR filter
1. Set up a stack for CALL/RET

2. Copy table[16] to a[16] using RPT/MVPD

3. Import the data values: x[16]

4. Use RPT/MAC to solve for y

Time: 75 minutes

a[16]

code

table[16]

‘C5409

60h
F000h

1Kx16 EPROM
20hx16 SPRAM

FF80h
vectors

FFFFh y
x[16]

SP

80h
1Kx16 DARAM

yn =∑ an
n=0

15

xn

DSP54.4DSP54.4 - - 1717

LAB4-A Procedure

4 - 16 DSP54x - Programming FIR Filters

LAB4-A Procedure

Copy Files, Create Make File
1. In CCS, open LAB3A.CMD and save it as LAB4A.CMD. Modify the file i/o and save your

work.

2. Open LAB3A.ASM and save it as LAB4A.ASM.

3. Create a project called LAB4A and add the necessary files to it.

Edit LAB4A.CMD
4. Change the routing of the “init” section (which contained table[8] before) from data space

(PAGE 1) to program space (PAGE 0). Place the “init” section into EPROM (along with your
code).

5. Allocate a section called “STK” for the stack and route it to DARAM along with the input
samples (x) and results (y). Save your work.

Setup 16-TAP FIR and Stack – Write/Debug
6. Edit LAB4A.ASM. Change your copy statement to read:

 x .copy “in4.dat”

7. You can open up and view the in4.dat file if you wish, just to see what it contains.

8. Because we are now using a 16-tap FIR which requires 16 input values and 16 coefficients,
you need to change the size of the uninitialized data section for your coefficients (related to
label a) to 16 instead of 8. Also, remove the semi-colons (comments) on the last two sets of 4
coefficients in the initialized section for table. Now table contains 16 coefficients.

9. Allocate an uninitialized data section 100 words in length for the stack. Name the section
“STK”. You cannot name this section “stack” because this name is reserved by the linker.
This might be a good time to use the .set directive (for example STKLEN .set 100). Make
sure your .usect uses a label such as BOS (for bottom of stack). This label will be used to
load the stack pointer.

10. Add the .mmregs directive to the top of your code to facilitate using MMR names as
addresses. Anywhere before your code section is okay.

11. Load the stack pointer (SP) as described in class. Make sure your start label is on this
instruction. Otherwise, your reset vector and restart command will not be able to find the
beginning of your code.

12. Move the stop condition (here: B here) to the next instruction following the SP
initialization. You should now have start and here as sequential labels.

13. Build LAB4A. Simulate the code and verify that you now have 16 coefficients in table.
Open a memory window on address table. Do you see your coefficients? Hmmm. Why not?
Well, the default memory window shows DATA memory. Where did you map the section

LAB4-A Procedure

DSP54x - Programming FIR Filters 4 - 17

containing table in your linker command file? Oh, that’s right – it is now in PROGRAM
space. To verify if the values in table are correct, right-click on the memory window and
change the page to Program.

14. Also, verify that in4.dat was loaded properly. Open a memory window starting at address
x. It might also help if you select “16-bit Signed Int” for the format.

 Do you see some data? The first 4 values should be 1,2,3,4.

15. Single-step until you hit your stop condition (here: B here). Now, verify that your stack
pointer (SP) is set up correctly by opening a new memory window on SP in TI - Hex Format.
What location is SP pointing to? SP is now currently pointing to one location PAST the end
of the stack. SP is a pre-decrementing pointer, so the first CALL you make will write the
return address to one location before where SP is pointing now. Try changing the memory
window address to SP-6. This will now allow you to see return addresses stored on the stack
later on.

Optimize Copy Routine – Write/Debug
16. Edit LAB4A.ASM. Between the start and here labels in your code, add an instruction to

CALL your copy routine.

17. Change your copy routine by doing the following:

• add a label copy pointing to the first instruction

• use single repeat and MVPD to copy 16 coefficients from table to a

• make sure you copy all 16 values and return back to the main routine.

18. Build LAB4A. Verify that your copy routine works and returns back to the main routine.
After the simulator starts:

• Hit <F8> to execute the STM instruction and load the stack pointer (SP).

• Single step again – once – and watch the return address go onto the stack.

• Open a view memory window to display a.

• Single-step the copy routine and watch the coefficients copy into a. Notice that you can’t
single step inside the RPT loop. Did it work?

• When you single-step the RET instruction, watch the return address load itself into the
PC in the Register window. When you reach your main routine and everything is working
properly, move on to the next step.

FIR Routine – Write/Debug
19. Edit LAB4A.ASM. Add a CALL to the code label fir after the CALL to copy.

20. Write your fir routine by doing the following:

• Write a dual-operand MAC instruction using the proper pointers

• Use a repeat single to accumulate 16 products. This might be a good opportunity to use
RPTZ.

LAB4-A Procedure

4 - 18 DSP54x - Programming FIR Filters

• Initialize the appropriate registers

• Store the result to y using absolute addressing (this should already be in your code). Make
sure you store the correct part of the accumulator.

• Return back to the main routine

21. Build LAB4A. Simulate and verify that your FIR (currently just a sum of products) works
correctly:

• Because everything should work up to the fir routine, type: go fir on the command
line.

• Add a watch on y in hexadecimal.

• Single-step the MAC loop. The result in the accumulator and stored to y should be 14h.

22. Profile your fir routine by setting profile points at the label fir and on the store to y. Type
restart, then Run, Halt and check your statistics. You did remember to enable the clock
and view the statistics window, right? You should get about 22 cycles, unless you forgot to
set the wait states to zero (oops…).

Optimize Your FIR Routine – Write/Debug
23. Is there a better way to initialize the accumulator instead of loading it with zero? Of course.

Why else would we be asking? Instead of loading it with zero or using RPTZ, initialize your
accumulator with the first product of the MAC and reduce the repeat count by one. Write it
and profile it. Did you get one less cycle?

24. If you’re done with LAB4A and you still have some time, move on to LAB4B…

LAB4-B Procedure

DSP54x - Programming FIR Filters 4 - 19

LAB4-B Procedure
1. What instructions should NOT be placed in a single repeat? Why?

2. Where should the stack be located and why?

3. What conditions can you combine in a conditional instruction?

4. Rewrite lab4a fir routine to use MACP

What Have We Missed?

4 - 20 DSP54x - Programming FIR Filters

What Have We Missed?

IIR Filters

DSP54.4DSP54.4 - - 1919

IIR Characteristics

! Potentially unstable due to feedback path

! More computationally efficient than FIR

! Programmer must use care to ensure

 proper operation

! Much better frequency performance

! Best for frequency discrimination

DSP54.4DSP54.4 - - 1919

DSP54.4DSP54.4 - - 2020

2nd Order IIR Filter

z–1z–1

××××

××××X0

X1

××××

++++

z–1z–1

X2

B1

B0

y(n)x(n)

B2

××××

××××

-A1

-A2

++++
w(n)

Feedback Path - Poles Forward Path - Zeros

DSP54.4 - 20Cascade higher order IIRs into multiple 2nd order filters

What Have We Missed?

DSP54x - Programming FIR Filters 4 - 21

DSP54.4DSP54.4 - - 2121

IIR Filter - Single Operand

DSP54.4 - 21

LD #x0,DP
SSBX FRCT

IIR: PORTR 0000,x0
LD @x0,16,A
LD @x1,T
MAC @a1,A
LD @x2,T
MAC @a2,A
STH A,@x0
MPY @b2,A
LTD @x1
MAC @b1,A
LTD @x0
MAC @b0,A
STH A,@x0
BD IIR
PORTW @x0,0001

Feedback
Section

Feed fwd
Section

! Scalar Math
- MAC uses T register
 contents as 2nd operand
- Must load T register

! LTD is equivalent to:
- LT + DELAY

! DELAY
- copies Smem to next
 higher memory location

More Multiply Instructions

DSP54.4DSP54.4 - - 2323

Multiply Instructions

Each instruction supports multiple options for operands.
Refer to the User’s Guide for more information.

DSP54.4DSP54.4 - - 2323

MPY Single or dual-operand multiply

MPYA Uses AH as multiplicand

MAC Single or dual-operand multiply/accumulate

MACA Uses AH as multiplicand

MAS Single or dual-operand multiply/subtract

MASA Uses AH as multiplicand

MACP Uses pmad as one multiplicand

MACD Copy data to next higher address

SQUR Square single operand or AH

SQURA/S Square single operand and accumulate/subtract

What Have We Missed?

4 - 22 DSP54x - Programming FIR Filters

Adds and Subtracts

DSP54.4DSP54.4 - - 2525

Add and Subtract Instructions

Each instruction supports multiple options for operands.
Refer to the User’s Guide for more information.

ADD Single or dual-operand add

ADDC Single operand add with carry

ADDS Add with sign-suppression

ADDM Add a constant to a memory location

SUB Single or dual-operand subtract

SUBB Single operand subtract with borrow

SUBS Subtract with sign-suppression

SUBC Conditional subtract (performs 1-bit divide)

DSP54.4DSP54.4 - - 2525

32 Bit Operations

DSP54.4DSP54.4 - - 2727

32-bit Operations

!! Double instructions use long-memory (Double instructions use long-memory (lmemlmem) operands) operands

!! Double store (Double store (DSTDST) requires two cycles for dual E-bus activity) requires two cycles for dual E-bus activity

!! Internal memory hardware is organized as 32-bit. Therefore, doubleInternal memory hardware is organized as 32-bit. Therefore, double
adds/subtracts/loads from any internal memory are adds/subtracts/loads from any internal memory are single cyclesingle cycle. .

!! Default auto-increment step size is TWODefault auto-increment step size is TWO

How are long operands aligned in memory?

DLD Loads 32-bit value from memory to ACC

DST Stores 32-bit value from ACC to memory

DADD Adds 32-bit value from memory to ACC

DSUB Subtracts 32-bit value from ACC to memory

DRSUB Reverses operands used in DSUB
- Affected by C16 bit in ST1 (splits ACC’s into two independent 16-bit registers)

DSP54.4DSP54.4 - - 2727

What Have We Missed?

DSP54x - Programming FIR Filters 4 - 23

Aligning Long Operands

DSP54.4DSP54.4 - - 2828

Aligning Long Operands

Words 16-bit

Longs 32-bit DLD *AR1+, A

LD *AR1, A

You must EVEN-align long operands:You must EVEN-align long operands:

!! Constants: (. Constants: (.intint/.word, .long)/.word, .long) Auto-aligns on “type” boundaryAuto-aligns on “type” boundary

!! Variables: (use even-align flag) Variables: (use even-align flag) .usect “Sect”,.usect “Sect”,lenlen,1,,1,11

STM #100h,AR1STM #100h,AR1 A
0000 5566

5566 7788

! Long accesses assume address points to MSW

! LSW read from same address with LSB toggled.

1. Ptr=100h (MSW @100h, LSW @101h)
2. Ptr=101h (MSW @101h, LSW @100h)

100h
101h

5566

7788

12340FFh

DSP54.4DSP54.4 - - 2828

Far Operations

DSP54.4DSP54.4 - - 3030

Using FAR Operations

FB Far Branch

FCALL Far Call

FRET Far Return

FBACC Far branch to location specified by ACC[23:0]

FCALA Far call to location specified by ACC[23:0]

FRETE Far return from ISR

XPC 16-bit addr
0151623

! During a FCALL, the PC is placed on the stack followed by the XPC

! Other instructions do not modify the XPC

! The size of the XPC and consequently the address used in computed
operations (like FBACC) depends on the chosen device.

DSP54.4DSP54.4 - - 3030

What Have We Missed?

4 - 24 DSP54x - Programming FIR Filters

Solutions

DSP54x - Programming FIR Filters 4 - 25

Solutions

DSP54.4DSP54.4 - - 1616

1. Name some characteristics of FIR filters?

2. What restrictions exist for a dual-operand MAC?

3. What does “ RPT 5 ” do?

4. Write the instruction to store A[23:8] to @y.

5. Which part of memory should the stack (SP) be located in

 and why?

Review

unconditionally stable, linear phase possible, typically lots of taps

Use AR2-5 only, modifiers (none, +, -, +0%)

Repeats the next instruction [1 + (value located at the 5th word
from the current DP)]

STL A,-8,@y -OR- STH A,8,@y

Internal RAM, to decrease access time

DSP54.4DSP54.4 - - 1616

DSP54.4DSP54.4 - - 3232

LAB4A.ASM : Solution

.mmregs

.def start

STKLEN .set 100

a .usect "coeffs",16,1
y .usect "result",1
BOS .usect "STK",STKLEN

.sect "init"
table .int 7FCh,7FDh,7FEh,7FFh
 .int 800h,801h,802h,803h
 .int 803h,802h,801h,800h
 .int 7FFH,7FEH,7FDH,7FCH

.sect "indata"
x .copy "in4.dat"

.sect "code"
start: STM #BOS+STKLEN,SP ;setup stack pointer

CALL copy
CALL fir

here: B here ;return

DSP54.4DSP54.4 - - 3232

Solutions

4 - 26 DSP54x - Programming FIR Filters

DSP54.4DSP54.4 - - 3333

LAB4A.ASM - Solution (Continued)

copy: STM #a,AR1 ;setup AR1
RPT #15 ;copy 16 values
MVPD #table,*AR1+
RET ;return

fir: STM #a,AR2 ;setup ARs for MAC
STM #x,AR3
MPY *AR2+,*AR3+,A ;1st product
RPT #14 ;mult/acc 15 terms
 MAC *AR2+,*AR3+,A
STL A,*(y) ;store result

RET

DSP54.4DSP54.4 - - 3333

DSP54.4DSP54.4 - - 3434

LAB4A.CMD : Solution
/* file I/O and options */
vectors.obj
lab4a.obj
-m lab4a.map
-o lab4a.out
-e start

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{ coeffs :> SPRAM PAGE 1
 result :> DARAM PAGE 1
 indata :> DARAM PAGE 1
 STK :> DARAM PAGE 1
 code :> EPROM PAGE 0
 init :> EPROM PAGE 0
 vectors :> VECS PAGE 0
}

DSP54.4DSP54.4 - - 3434

Some Additional Information …

DSP54x - Programming FIR Filters 4 - 27

Some Additional Information …

DSP54.4DSP54.4 - - 3535

Example : Z32 = X32 + Y32

Long Word Operations

Standard Operations

LD @xhi,16,A

ADDS @xlo,A

ADD @yhi,16,A

ADDS @ylo,A

STH A,@zhi

STL A,@zlo

Words = 6

Cycles = 6

Long Word Operations

DLD @xhi,A

DADD @yhi,A

DST A,@zhi

Words = 3

Cycles = 4

DSP54.4DSP54.4 - - 3535

DSP54.4DSP54.4 - - 3636

Bus Usage

Instruction Activity PB CB DB EB

Program Read A,D

Program Write A D

Data Single Read A,D

Data Dual Read A,D A,D

Data Long (32-bit) Read A,D(ms) A1,D(ls)

Data Single Write A,D

Data Read / Data Write A,D A,D

Dual Read / Coefficient Read A,D A,D A,D

Peripheral Write A,D

Peripheral Read* A,D

* MMRs only accessible via D Bus, MMR access as Ymem op yields bad data!* MMRs only accessible via D Bus, MMR access as Ymem op yields bad data!

DSP54.4DSP54.4 - - 3636

Some Additional Information …

4 - 28 DSP54x - Programming FIR Filters

DSP54x - Numerical Issues 5 - 1

Numerical Issues

Introduction
Understanding numerical issues is fundamental to getting the best performance from a fixed-point
processor. A fixed-point processor generally operates without the benefit of floating point
numeric representation, so the programmer must bear in mind overflow during calculations.

Objectives

DSP54.5DSP54.5 - - 22

Learning Objectives

! Compare/Contrast integers vs. fractions

! Use methods for handling multiplicative
and accumulative overflow

! Discuss other important instructions that
handle various numeric types

DSP54.5DSP54.5 - - 22

Module Topics

5 - 2 DSP54x - Numerical Issues

Module Topics

Numerical Issues .. 5-1

Module Topics ... 5-2

Integer Multiplication ... 5-3

Fractional Multiplication .. 5-4

The Fractional Model.. 5-5

Handling Accumulative Overflow ... 5-6

What’s Missing?.. 5-8
Bit Compare and Test ... 5-8
Boolean Operations... 5-9
Shift and Rotate Operations .. 5-9
Some Other Math Operations …... 5-10

Review ... 5-11

Solutions.. 5-12

Some Additional Information ….. 5-13
Division... 5-13
Long Multiplies... 5-14
Using Exponents ... 5-14

Integer Multiplication

DSP54x - Numerical Issues 5 - 3

Integer Multiplication

DSP54.5DSP54.5 - - 33

Integer Multiplication

!! I * I I * I >> I I

!! Which digit should be stored - the upper (8) or theWhich digit should be stored - the upper (8) or the
lower (1)?lower (1)?

9

9

8 1

x

valuevalue

times valuetimes value

yields yields doubledouble size result size result

Which numerical model solves this problem?

- Both must be kept (uses additional resources)
- Also, the results cannot be used recursively

DSP54.5DSP54.5 - - 33

Fractional Multiplication

5 - 4 DSP54x - Numerical Issues

Fractional Multiplication

DSP54.5DSP54.5 - - 44

Fractional Multiplication

! If only .8 is stored, have we lost important information?

9

9
.

.

. 8 1

x

valuevalue

times valuetimes value

yields yields doubledouble size result size result

!! F * F F * F << 1 1

!! Which digit should be stored?Which digit should be stored?

- No, because the output is as exact as the input

8. result to be stored

Let’s look at the fractional model in action...
DSP54.5DSP54.5 - - 44

! The accumulator is double-wide to maintain interim results

We often forget that the accuracy of a calculation can be no greater than the accuracy of its
inputs. In the example above, .9 is accurate to tenths. The doublewide result though, contains
information precise to100ths, which we know nothing about. The result that we will be storing, .8
represents the most accurate result possible.

The Fractional Model

DSP54x - Numerical Issues 5 - 5

The Fractional Model

DSP54.5DSP54.5 - - 55

Fractional Model

01000100
 x 1101x 1101
0000010000000100
0000000 0000000
000100 000100
11100 11100
1111010011110100

 Fractional modelFractional model -1 1/2 1/4 1/8

ACC 1111 0100

(1/2)*(-3/8)

(-3/16)

1000b (-1) 1000b (-1) << F F << 0111b (~1) 0111b (~1)

! Input values?

! Result?

! ACC shows effect of sign extension:

! Range?

! What value is shown in the accumulator?
! Where is the binary point? Q types…

SSBX SXM ;sign-extension mode ON

RSBX SXM ;sign-extension mode OFF

Which 4 bits should be stored to memory?

! How wide is memory?

mem xxxx

DSP54.5DSP54.5 - - 55

 Q refers to quantization. Even when multiplying decimal numbers, it is a similar process to
determine where to put the radix point. Count the total number of places to the right of the radix
point in the multiplicands and place the radix point there in the result.

DSP54.5DSP54.5 - - 66

Eliminating the Redundant Sign Bit

! How is the redundant sign bit eliminated?

| F * F | | F * F | << 1, but what about F + F? 1, but what about F + F?

! Store 1.110 (-1/4) to memory

01000100
 x 1101x 1101
0000010000000100
0000000 0000000
000100 000100
11100 11100
1111010011110100

ACC 1111 0100

mem 1110

 Fractional modelFractional model -1 1/2 1/4 1/8

STH A,1,*AR0 ;MANUAL

SSBX FRCT ;AUTO
STH A,*AR0

-OR-

! The tools do not support fractions:

! To store 0.707 use:

! 32767 = 7FFFh = ~1

a0 .int 32768*707/1000

! FRCT shifts multiply results left by 1

DSP54.5DSP54.5 - - 66

 Redundant sign bits are not specific to TI. Anytime you multiply two signed binary number
together you will produce two sign bits. The FRCT mode, when selected will shift the multiplier
result left by one position. If you happen to need to calculate an integer value like an address
while FRCT mode is on, your answer will be twice what you expect.

Handling Accumulative Overflow

5 - 6 DSP54x - Numerical Issues

Handling Accumulative Overflow

DSP54.5DSP54.5 - - 77

Handling Accumulative Overflow
! F + F could be > 1, so how is this handled?

1. Use 1. Use Guard BitsGuard Bits (allow at least 128 signed summations): (allow at least 128 signed summations):

How do you handle a result larger than 32-bits?

 2. In a 2. In a non-gain systemnon-gain system temporary overflow is permitted. temporary overflow is permitted.
 The output is guaranteed to remain bounded by the input. The output is guaranteed to remain bounded by the input.

 3. In a 3. In a system with gainsystem with gain, the output is , the output is notnot guaranteed guaranteed
 to remain bounded (i.e. result is larger than 32-bits). to remain bounded (i.e. result is larger than 32-bits).

A or B
39

Guard
32 31

High
16 15

Low
0

DSP54.5DSP54.5 - - 77

Guard bits increase dynamic range from +/-1 to +/-128Guard bits increase dynamic range from +/-1 to +/-128

How will you write a value larger than 1 or smaller than –1 to a DAC that only understands
fractions? The answer is that you can’t, anything greater than 1 is 1 and anything smaller than –1
is –1. This process is called saturation.

DSP54.5DSP54.5 - - 88

Saturation
Two saturation methods exist for A/B:Two saturation methods exist for A/B:

!! ManualManual: use the : use the SATSAT instruction (saturates A or B) instruction (saturates A or B)

!! AutoAuto: saturate on store (saturates stored value only): saturate on store (saturates stored value only)

SAT A ;MANUAL
STH A,*AR1

-OR-
LD #0,DP ;AUTO
ORM #1,@PMST ;SST=1

STH A,*AR0

0

-1

+1

BeforeBefore AfterAfter

71 2345 6789

F8 1234 5678

00 7FFF FFFF

FF 8000 0000

PMST = Processor Mode Status Reg

What if I don’t want to use the guard bits?

! SAT will set the overflow bit (OVA or OVB) if saturation occurs

DSP54.5DSP54.5 - - 88

! SST does not affect Ovx or accumulator contents

Handling Accumulative Overflow

DSP54x - Numerical Issues 5 - 7

DSP54.5DSP54.5 - - 99

Overflow Mode

SSBX OVM ;turn overflow mode ON

! With OVM=1, computations will not exceed 32 bits
and are saturated if overflow occurs.

! ST0OVA/OVB (overflow bits for A and B) are set
and latched if overflow occurs

! ST1OVM = 0 at reset

How do we recover 1/2 bit of accuracy in our result?

DSP54.5DSP54.5 - - 99

 Some algorithms require precisely 32 bits for their execution. Turning on overflow mode
effectively turns off the guard bits.

DSP54.5DSP54.5 - - 1010

Rounding
$ 1.53
$ 0.50
$ 2.03
$ 2.

How do you round this amount to the nearest $?
- Add $0.50
- Partial result
- Truncate result (to nearest $)

! The following instructions can perform rounding
 (8000h added to accumulator):

! Example: RPTZ A,#98

MAC *AR2+, *AR3+, A

MACR *AR2, *AR3, A

STH A,*(y)

Typically, only the last
operation is rounded

DSP54.5DSP54.5 - - 1010

MAC[R] MAS[R] LD[R] RND

MACA[R] MASA[R] MPY[R]

 If you had used MACR in the repeat loop above, you would have added 50 to the final result.

What’s Missing?

5 - 8 DSP54x - Numerical Issues

What’s Missing?

DSP54.5DSP54.5 - - 1717

What’s Missing?

"How do I test and compare bits?

"What boolean operations can I perform?

"What shift/rotate operations exist?

! What other useful math operations could I use?

DSP54.5DSP54.5 - - 1717

Bit Compare and Test

DSP54.5DSP54.5 - - 1212

Bit Compare and Test
CMPM Smem,#K If Smem = #K, TC = 1

BITF Smem,#K If Smem bitfield specified by #K are 1’s, TC = 1

BIT Xmem,bit If Xmem bit =1, TC =1

BITT Smem If Smem bit specified by T = 1, TC =1

BIT mem, Bit_code

LD #Bit_code, T

BITT mem

! Using the BIT/BITT Instructions:

! Confusing? Try:

BITM .macro mem,bit_no

 BIT mem,15-bit_no

.endm

Use: BITM @x,5

Macro
BIT5 .set 15-5

 BIT @x,BIT5

 BC oops,TC

Substitution

-OR-

DSP54.5DSP54.5 - - 1212

15 0

0 15

mem
Bit #

Bit_code

... ...n

nTC

11

4

CMPM compares a location in memory (Smem) to a constant and sets the test condition (TC) bit
if they are equal.

BITF tests a 1 to 16 bits of Smem specified by a constant. If they are all ones, TC is set.

BIT writes the value of Smem:bit to the TC.

BITT writes the value of Smem:bit postion specified by the T register to the TC.

What’s Missing?

DSP54x - Numerical Issues 5 - 9

Boolean Operations

DSP54.5DSP54.5 - - 1414

Boolean Operations

src = src (op) Smem

AND/OR/XOR dst = dst (op) (src << Shift)

dst = src (op) (#K << Shift)

ANDM/ORM/XORM Smem = Smem (op) #K

 1

 2

 2

 2

Cycles

DSP54.5DSP54.5 - - 1414

! src and dst: A or B accumulators

! ANDM/ORM/XORM perform a read - modify - write

ANDM,ORM and XORM work directly to memory.

Shift and Rotate Operations

DSP54.5DSP54.5 - - 1616

Shift and Rotate Operations

ROLTC src C - 00 - 31 0 TC

ROL src C - 00 - 31 0

ROR src C - 00 - 31 0

SFTASFTA src,SHIFT,[dst]src,SHIFT,[dst] C 39 32 31 0 0C 39 32 31 0 0

Sx 39 32 31 0 CSx 39 32 31 0 C+SHIFT = left

SFTLSFTL src,SHIFT,[dst]src,SHIFT,[dst] C - 00 - 31 0 0C - 00 - 31 0 0

0 - 00 - 31 0 C0 - 00 - 31 0 C+SHIFT = left

DSP54.5DSP54.5 - - 1616Rotate operations move 1 bit position each iteration

What’s Missing?

5 - 10 DSP54x - Numerical Issues

Some Other Math Operations …

DSP54.5DSP54.5 - - 1818

Other Math Operations

Unsigned operations are useful for > 16-bit multiplication
EXP/NORM are useful in floating point calculations

LDU Load Unsigned

MPYU Multiply (Unsigned * Unsigned)

MACSU MAC (Signed * Unsigned)

ABS Absolute Value

NEG 2’s complement

CMPL 1’s complement

EXP T = (number of leading 1’s or 0’s) - 8

NORM dst = src << T

PMSTSMUL If OVM/FRCT/SMUL = 1,
-1*-1 saturated to 00.7FFFFFFFh

DSP54.5DSP54.5 - - 1818

SMUL is also known as GSM mode.

Review

DSP54x - Numerical Issues 5 - 11

Review

DSP54.5DSP54.5 - - 1919

1. How is multiplicative overflow prevented?

2. How is accumulative overflow handled?

3. What processor bits should be set up for signed fractional
 math?

4. How does the processor round a number?

5. Do boolean operations only work on the accumulators?

6. What does “bit @y, 5” do?

Review

DSP54.5DSP54.5 - - 1919

Solutions

5 - 12 DSP54x - Numerical Issues

Solutions

DSP54.5DSP54.5 - - 2020

1. How is multiplicative overflow prevented?

2. How is accumulative overflow handled?

3. What processor bits should be set up for signed fractional
 math?

4. How does the processor round a number?

5. Do boolean operations only work on the accumulators?

6. What does “bit @y, 5” do?

Review

By using fractional math

Saturation: SAT or SST(bit) OR using a non-gain system OR OVM=1

SXM=1 to preserve sign bit, FRCT=1 to eliminate redundant sign bit,

OVM=0 to allow use of guard bits

Adds 8000h to accumulator after operation is performed.

Copies bit 10 from the value at address DP:@y into the TC bit

No. ANDM/ORM/XORM operate on memory directly

DSP54.5DSP54.5 - - 2020

Some Additional Information …

DSP54x - Numerical Issues 5 - 13

Some Additional Information …

Division

DSP54.5DSP54.5 - - 2222

Division

!! The ‘C54x does The ‘C54x does notnot have a single cycle 16-bit divide instruction have a single cycle 16-bit divide instruction

Divide is a rare function in DSPDivide is a rare function in DSP

Division hardware is expensiveDivision hardware is expensive

!! The ‘C54x The ‘C54x doesdoes have a single cycle 1-bit divide instruction: conditional have a single cycle 1-bit divide instruction: conditional
subtract or subtract or SUBCSUBC

Preceded by Preceded by RPT #15RPT #15, a 16-bit divide is performed, a 16-bit divide is performed

Is Is muchmuch faster than without faster than without SUBCSUBC

!! The The SUBCSUBC process operates only on process operates only on unsignedunsigned operands, thus software operands, thus software
must:must:

Compare the signs of the input operandsCompare the signs of the input operands

$$ If they are alike, plan a positive quotientIf they are alike, plan a positive quotient

$$ If they differ, plan to negate (If they differ, plan to negate (NEGNEG) the quotient) the quotient

Strip the signs of the inputsStrip the signs of the inputs

Perform the unsigned divisionPerform the unsigned division

Attach the proper sign based on the comparison of the inputsAttach the proper sign based on the comparison of the inputs

DSP54.5DSP54.5 - - 2222

DSP54.5DSP54.5 - - 2323

Division Routine

LD @den,16,A

MPYA @num B = num*den (tells sign)

ABS A Strip sign of denominator

STH A,@den

LD @num,A

ABS A Strip sign of numerator

RPT #15 16 iterations

SUBC @den,A 1-bit divide

XC 1,BLT If result needs to be negative

NEG A Invert sign

STL A,@quot Store negative result

DSP54.5DSP54.5 - - 2323

Some Additional Information …

5 - 14 DSP54x - Numerical Issues

Long Multiplies

DSP54.5DSP54.5 - - 2424

Long Multiply Routine

STM #X0,AR2

STM #Y0,AR3

LD *AR2,T T = x0

MPYU *AR3+,A A = ux0*uy0

STL A,@W0 w0 = ux0*uy0
LD A,-16,A A = A>>16

MACSU *AR2+,*AR3-,A A += y1*ux0

MACSU *AR3+,*AR2,A A += x1*uy0

STL A,@W1 w1 = A

LD A,-16,A A = A>>16

MAC *AR2,*AR3,A A += x1*y1

STL A,@W2 w2 = A-lo

STH A,@W3 w3 = A-hi

DSP54.5DSP54.5 - - 2424

Using Exponents

DSP54.5DSP54.5 - - 2525

Exponent Encoder

! One cycle exponent ([-8, +31] range) computation

! Result in T register as 2's complement value

ALU

A B

EXPONENT
ENCODER

EXPONENT
ENCODER

6

T

exp A ; 1 cycle for exp

norm A ; 1 cycle normalize

 -8 0 16 31

! Note: NORM should not directly follow EXP

DSP54.5DSP54.5 - - 2525

Some Additional Information …

DSP54x - Numerical Issues 5 - 15

DSP54.5DSP54.5 - - 2626

Floating Point Usage

LD @e1,T

LD @m1,TS,A

LD @e2,T

ADD @m2,TS,A

LD @e3,T

ADD @m3,TS,A

2*N RAM & Cycles

 LD @e,T

 LD @m1,TS,A

 ADD @m2,TS,A

 ADD @m3,TS,A

 …

N+1 RAM & Cycles

Block Floating PointBlock Floating Point

 e m1 e m1

 m2 m2

 m3 m3

Full Floating Point

 e1 m1

 e2 m2

 e3 m3

DSP54.5DSP54.5 - - 2626

Some Additional Information …

5 - 16 DSP54x - Numerical Issues

DSP54x - Solving a Block FIR Filter 6 - 1

Solving a Block FIR Filter

Introduction
We've already taken a look at the heart of a FIR filter; multiply-accumulates. Now let's extend
that concept to include a large block of data. Of primary importance here will be how to manage
my pointers and how to efficiently repeat a block of code.

Learning Objectives

DSP54.6DSP54.6 - - 22

Learning Objectives

! Update pointers using MAR and Circular
Addressing

! Use RPTB to repeat a block of code

! Describe how to nest repeat blocks

! Learn how to use parallel operations

DSP54.6DSP54.6 - - 22

Module Topics

6 - 2 DSP54x - Solving a Block FIR Filter

Module Topics

Solving a Block FIR Filter... 6-1

Module Topics ... 6-2

Block FIR Filters... 6-3

Repeat Block.. 6-4

Wrapping the Pointers... 6-5

Circular Addressing .. 6-6

What Have We Missed?... 6-7
Single Sample FIR .. 6-7
Nesting Repeat Loops ... 6-8
Parallel Instructions... 6-8

LAB6 – Block FIR ... 6-9

Objective... 6-9

LAB6-A Procedure .. 6-10
Copy Files, Make Project and Edit LAB6A.CMD.. 6-10
Fractional Math, Repeat Block, Output Buffer – Write/Debug .. 6-10
Circular Addressing, Pointer Wrap – Write/Debug .. 6-11
Graph Your Results... 6-11
Profile Your Code ... 6-13

LAB6-B Procedure .. 6-14

Benchmarking the Labs ... 6-15

Solutions.. 6-16

Block FIR Filters

DSP54x - Solving a Block FIR Filter 6 - 3

Block FIR Filters

DSP54.6DSP54.6 - - 33

aann
n=0n=0

33

∑∑ **yy00 = = xxnn

Block FIR involves: Many multiply accumulates + some pointer updates

Writing Code for a Block FIR

AR2 = #a0; AR3 = AR3 - #3
AR2 = #a0; AR3 = AR3 - #3

Let’s review the standard FIR code...

y0 = a0x0 + a1x1 + a2x2 + a3x3

y1 = a0x1 + a1x2 + a2x3 + a3x4

y2 = a0x2 + a1x3 + a2x4 + a3x5

m=0

2
AR2 AR3

CoefficientsCoefficients

a0a0

a1a1

a2a2

a3a3

Input DataInput Data

x0x0

x1x1

x2x2

x3x3

+m

! Start with the basic FIR equation
!! Block FIR uses any length Block FIR uses any length blockblock

of dataof data
! With 6 inputs and 4 taps, how many

outputs can you generate?

! n = # taps (i.e. number of products)
m = (# inputs - # taps) + 1

m=3

How should the pointers
update between y0, y1, y2?

AR2

AR2

AR3

AR3

AR3

m

DSP54.6DSP54.6 - - 33

x4x4

x5x5
...

 Obviously, this concept can be extended to any length block. You might wonder what happens
when the filter reaches the end of the block. We’ll cover that later …

DSP54.6DSP54.6 - - 44

FIR Code - Review

How do we repeat this block of code?

Copy Coefficients

Pointer Setup

FIR Code

! Generates a single output

! Block FIR requires multiple outputs

! Using fractions, so store AH

STM #a,AR2

 STM #x,AR3

fir: STM #a,AR2

 RPT #3

 MVPD #init_a,*AR2+

done: RET

 LD #0,A

 STH A,*AR1+

 RPT #3

 STM #y,AR1

math: MAC *AR2+,*AR3+,A

Set up for signed fractions
(not shown)

DSP54.6DSP54.6 - - 44

 Is this the most efficiently to initialize the A. accumulator?

Repeat Block

6 - 4 DSP54x - Solving a Block FIR Filter

Repeat Block

DSP54.6DSP54.6 - - 55

Repeat Block

How do we manage the pointer updates?

RPTB end_address

! RSA: Start address
= next line of code

! REA: End address
= specified in RPTB instruction

! BRC: Count - 1

! RPTB: 2 words, 4 cycles

! Interruptible

“done-1” ensures a complete fetch
of a multi-word final instruction

STM #a,AR2

 STM #x,AR3

fir: STM #a,AR2

 RPT #3

 MVPD #init_a,*AR2+

done: RET

 LD #0,A

 STH A,*AR1+

 RPT #3

 STM #y,AR1

math: MAC *AR2+,*AR3+,A

 STM #2,BRC

 RPTB done-1

DSP54.6DSP54.6 - - 55

 A RPTB (repeat block) may contain any length block up to 64 K. in length.

Wrapping the Pointers

DSP54x - Solving a Block FIR Filter 6 - 5

Wrapping the Pointers

DSP54.6DSP54.6 - - 66

Pointer Wrap Using MAR

Let’s look at a method for efficiently wrapping AR2...

CoefficientsCoefficients

a0a0

a1a1

a2a2

a3a3

Input DataInput Data

x0x0

x1x1

x2x2

x3x3

x4

x5

AR2AR2 AR3AR3

! To wrap AR3, we need to subtract 3
from the current value. But how?

MAR *ARn+ ;ARn = ARn +1

MAR *+ARn(#lk) ;modify ARn by #lk

! MAR (Modify AR) allows all pointer
updates shown in Module 3,
for example:

! How should we wrap AR2?

STM #a,AR2

 STM #x,AR3

fir: STM #a,AR2

 RPT #3

 MVPD #init_a,*AR2+

done: RET

 LD #0,A

 STH A,*AR1+

 RPT #3

 STM #y,AR1

 RPTB done-1

 STM #2,BRC

math: MAC *AR2+,*AR3+,A

 MAR *+AR3(#-3)

AR3AR3

DSP54.6DSP54.6 - - 66

MAR allows you to modify the address register by +1 or by a long constant. AR2 0 always starts
back at a0, so its modification can be little different.

Circular Addressing

6 - 6 DSP54x - Solving a Block FIR Filter

Circular Addressing

DSP54.6DSP54.6 - - 77

Circular Addressing
CoefficientsCoefficients

a0a0

a1a1

a2a2

a3a3

Input DataInput Data

x0x0

x1x1

x2x2

x3x3

x4

x5

STM #a,AR2

 STM #x,AR3

fir: STM #a,AR2

 RPT #3

 MVPD #init_a,*AR2+

done: RET

 LD #0,A

 STH A,*AR1+

 RPT #3

 STM #y,AR1

 MAR *+AR3(#-3)

STM #1,AR0

 RPTB done-1

 STM #2,BRC

math: MAC *AR2+,*AR3+,A

 STM #4,BK

math: MAC *AR2+0%,*AR3+,A

!! Circular addressing is Circular addressing is modulomodulo

! First, define buffer size using BK

AR3AR3

AR2AR2

!! % modifier indicates circular% modifier indicates circular
- available for - available for allall ARsARs

! Why was “+0%” used?

! Now,when AR2 = #a3 , AR2+1 = #a0

AR2AR2

AR2AR2

Circular buffers need to be aligned in memory...

! Because we are forced to use +0%,
how do we make it look like +%?

DSP54.6DSP54.6 - - 77

 Always remember to properly align your circular buffers.

DSP54.6DSP54.6 - - 88

Circular Buffer Alignment

STM #a,AR2

 STM #x,AR3

fir: STM #a,AR2

 RPT #3

 MVPD #init_a,*AR2+

done: RET

 LD #0,A

 STH A,*AR1+

 RPT #3

 STM #y,AR1

 MAR *+AR3(#-3)

STM #1,AR0

 RPTB done-1

 STM #2,BRC

math: MAC *AR2+0%,*AR3+,A

 STM #4,BK

Coefficients

a0

a1

a2

a3

!! Circular Buffers must be alignedCircular Buffers must be aligned
on the on the nextnext 2^n boundary greater 2^n boundary greater
than BK.than BK.

! On what boundary should a block
size of 4 be aligned?

align 8align 8

DSP54.6DSP54.6 - - 88

! The linker will attempt to
fill unused memory locations

! How? Use align argument in the
linker command file:

a .usect “coeff”,4

SECTIONS{
 coeff :> DARAM align(8) PAGE 1
}

What Have We Missed?

DSP54x - Solving a Block FIR Filter 6 - 7

What Have We Missed?

DSP54.6DSP54.6 - - 1313

What have we missed?

" How do I nest repeat operations?

! How can I optimize code using
 parallel instructions?

" How can I do a single sample FIR?

DSP54.6DSP54.6 - - 1313

Single Sample FIR

DSP54.6DSP54.6 - - 1010

Single Sample (Minimum Latency) FIR
CoefficientsCoefficients

a0a0

a1a1

a2a2

a3a3

Input DataInput Data

x0x0

x1x1

x2x2

x3x3

fir: STM #4,BK
STM #1,AR0
STM #y,AR1
STM #a,AR2
STM #x,AR3

loop: MPY *AR2+0%,*AR3+0%,A

MAC *AR2+0%,*AR3+0%,A

 MAC *AR2+0%,*AR3+0%,A

 MAC *AR2+0%,*AR3,A

! Now the input data and coefficient
buffers are the same size

! After the last MAC the pointers are:

! x3 is the oldest sample and we
won’t need it next pass
- use it as a temporary location for y

! Write result out to a port

! Where will AR3 be next pass?

AR3AR3AR2AR2

! Bring in a new datum

AR3AR3

 STH A,*AR3

PORTW *AR3,0000h

PORTR 0000h, *AR3

! Make sure both buffers are aligned

DSP54.6DSP54.6 - - 1010

yxn

AR3AR3

B loop

PORTR (port read) and PORTW (port write) operate from a memory location to a port address.
In the code above, the oldest data point will not be used again so we can use this memory location
as temporary storage. Obviously your code would not look quite like this, since this code will eat
100% of processor bandwidth.

What Have We Missed?

6 - 8 DSP54x - Solving a Block FIR Filter

Nesting Repeat Loops

DSP54.6DSP54.6 - - 1212

Nesting Repeat Loops Using BANZ

! To nest repeat blocks requires
saving/restoring BRC, RSA, REA

!! CostCost: 6 cycles per outer loop: 6 cycles per outer loop

!! BetterBetter: Use : Use BANZBANZ for outside loop for outside loop

 BANZ loop,*AR6-

 STM #Count-1, AR6

 STM #outer_count,BRC

 RPTB outer-1

loop: ...

 Last Outer Instr

outer: ...

 PSHM BRC, RSA, REA

 STM #inner_count,BRC

 RPTB inner-1

 ...

inner: ...

 POPM REA, RSA, BRC

;

;

;

;

BANZ pmad, *ARn-

2 words, 4 cycles

! BANZ: Branch if ARn Not Zero

!! AnalysisAnalysis: : BANZBANZ saves 2 cycles saves 2 cycles
per outer loop compared to nestingper outer loop compared to nesting
repeat blocksrepeat blocks

DSP54.6DSP54.6 - - 1212

 So, while you can nest repeat blocks, it is usually more efficient to use the BANZ instruction.

Parallel Instructions

DSP54.6DSP54.6 - - 1414

Parallel Instructions

LD || MAC[R]
LD || MAS[R]

ST || MPY
ST || MAC[R]
ST || MAS[R]

ST || ADD
ST || SUB
ST || LD

 LD *AR5+,16,A
 ADD *AR5+,16,A
 STH A,*AR5
 LD *AR6+,16,B
 ADD *AR6+,16,B
 STH B,*AR6

Example : Z = X + Y and F = D + E

 ST A,*AR5
|| LD *AR6+,B

! Parallel load/store instructions use D Bus and E Bus in same cycle.

! Parallel ops focus on high accumulator.

! Store in parallel ops are offset by ASM value.

! What is the error in the above example?

X
Y
Z
D
E
F

AR5

AR6

DSP54.6DSP54.6 - - 1414

 If both parts of a ST || LD instruction pointed to the same memory location the processor would
operate as expected, swapping the accumulator and memory values.

What Have We Missed?

DSP54x - Solving a Block FIR Filter 6 - 9

LAB6 – Block FIR

Objective

The objective of this lab is to write code to perform a block FIR. The input file, in6.dat,
contains the input values of the filter (which you plotted in LAB2A). The input file represents the
summation of a high frequency and a low frequency sine wave. The objective of the block FIR is
to filter out the high frequency component and pass only the low frequency wave. This lab will
incorporate the numerical methods you learned in the previous module. The output should look
like a low-frequency sine wave. If not, hmmm, debugging is in your future…

DSP54.6DSP54.6 - - 1515

LAB6A - Block FIR

1. Set up the bits required to use fractional math1. Set up the bits required to use fractional math

2. Create an output buffer of results for 2. Create an output buffer of results for yy

3. Use block repeat to execute the block FIR3. Use block repeat to execute the block FIR

4. Convert the access of the coefficient4. Convert the access of the coefficient
 array, a[16], to use circular addressing array, a[16], to use circular addressing

5. Graph resulting file to verify correct result5. Graph resulting file to verify correct result

6. Track your profiling on the following slide6. Track your profiling on the following slide

Time: 75 minutesTime: 75 minutes

an
n=0

15

∑ xn+m*
m=0

184

ym =

a[16]

code

table[16]

‘C5409

60h
F000h

EPROM

20hx16 SPRAM

FF80h
vectors

FFFFh

y[200]

x[200]

SP

80h
1Kx16 DARAM

DSP54.6DSP54.6 - - 1515

LAB6-A Procedure

6 - 10 DSP54x - Solving a Block FIR Filter

LAB6-A Procedure

Copy Files, Make Project and Edit LAB6A.CMD
1. Copy files from the last lab to LAB6A, make a new project called LAB6A and add the

appropriate files to it.

2. Edit LAB6A.CMD and modify i/o as necessary.

Fractional Math, Repeat Block, Output Buffer –
Write/Debug
1. Edit LAB6A.ASM.

2. We will be creating an output buffer for the results. So, change the uninitialized data section
for your results (y) to a length of 200 instead of 1.

3. Change your .copy statement to in6.dat rather than in4.dat.

4. Set up the proper numerical bits to use fractional math. Make sure the following conditions
exist in the main routine just before the CALL to fir:

• Overflow Mode is OFF

• Fractional Mode is ON

• Sign-extension is ON

• Set the SST bit in the PMST register to automatically saturate on store. If you use the
ORM instruction to set this bit, remember that ORM means “OR to Memory”, not “OR to
Memory-mapped register”. This implies that you will need to set the DP to the proper
page. Which data page is PMST located in? Can’t remember the format for the ORM
instruction? Highlight “ORM” then hit the <F1> key.

3. Set up a repeat block to repeat the 16-TAP FIR code (including the store to y) the proper
number of times. If you have 200 input values, how many output values should be generated?
Use this value to determine how to initialize the block repeat counter. You will need a label
on the return instruction to facilitate the block repeat.

4. Look at your store to y instruction. This instruction will store all results to ONE memory
location. Change this instruction to create an array that contains ALL of the results.

5. Look at the store instruction again. Keeping in mind that you are using fractions, which half
of the accumulator contains the correct result? Modify the store command if necessary.

6. Build LAB6A.

7. When the simulation opens, press <F8> until the CALL copy instruction is highlighted.
Now, press the Step Over button on the vertical tool bar. This will execute the copy
routine and return to the next instruction.

8. Open memory windows and verify that the coefficients (a) and data values (x) are correct.

 You should see the coefficient table in a and the input data values in x.

LAB6-A Procedure

DSP54x - Solving a Block FIR Filter 6 - 11

9. Open a memory window to view the result array buffer (y).

10. Single step your code through the store instruction in the fir routine. The first value stored to
y should be E404h. If everything looks like it is operating correctly, move on to the next
step.

Circular Addressing, Pointer Wrap – Write/Debug
11. Edit LAB6A.ASM. To wrap the coefficient pointer (pointing to a) automatically, implement

circular addressing. Remember, +% is not a supported modifier in a dual-operand MAC
instruction. What other registers need to be set up to make this work?

12. Circular buffers must be aligned. Make sure the section containing the coefficient table (a) is
aligned properly in your linker command file. What boundary should an array of 16 values be
aligned on?

13. The pointer to the input values (x) must also be wrapped back to the proper position. Write an
instruction to perform this function just before the store to y. To determine the amount to
subtract from the pointer, think about where the pointer is after the last MAC instruction
executed and where the pointer needs to be for the next iteration of the block repeat. You may
need to reference Module 3 to see the available modifiers.

14. Build LAB6A. When the simulator opens, set a breakpoint on the store instruction in the fir
routine. Click the Run button on the vertical toolbar to run to the breakpoint. At this point, the
first store to y has NOT been done yet, but we can see if the pointer wraps have worked
properly.

15. Look at the address contained in the pointer to a. Is it pointing to the first value in a? Now,
look at the address contained in the pointer to x. Is it pointing to the 2nd value in the data
table? If not, debug the problem and re-verify.

16. Click the Run button to run through the block repeat again. This will write the first value to y.
Look at the pointers to a and x again and verify that they have updated properly.

17. Remove the breakpoint on the store instruction and click Run. This will run the block FIR
routine to its completion. After a few seconds, click Halt to halt at the stop condition.

Graph Your Results

18. Let’s take a look again at the input to our filter. On the menu bar click:

 View # Graph # Time/Frequency

Change the following fields:

 Graph Title: Input data
Start Address: x
Acquisition Buffer Size: 200
Display Data Size: 200
DSP Data Type: 16-bit signed integer
Q Value: 15
Autoscale: Off
Maximum Y-value: 1

LAB6-A Procedure

6 - 12 DSP54x - Solving a Block FIR Filter

19. Move the window to a convenient spot on your display.

20. Let’s set up a display of the output with the following properties:

 Graph Title: Filtered Output
Start Address: y
Acquisition Buffer Size: 185
Display Data Size: 185
DSP Data Type: 16-bit signed integer
Q Value: 15
Autoscale: Off
Maximum Y-value: 1

21. Explain why the result waveform amplitude is +/- ½.

22. Sometimes you might like to actually view your program in action. Additionally, you may
not have a complete buffer of the information available to be graphed. CCS allows you to do
this using a feature called “animation”. Since this feature stops the program to transfer data,
real-time performance may be impacted.

23. Let’s wipe out our previous results by filling our result memory with zeros. From the menu
bar click:

 Edit # Memory # Fill .

And change the following fields:

 Address: y
Length: 185

 Click OK. Check your memory display window to verify the fill has occurred.

24. Right click on your filtered output graph and click on Clear Display.

25. In LAB6A.ASM source window, click on the instruction that stores your result. On the
vertical toolbar click on the Toggle Probe-point button

26. On the menu bar, click:

 Debug # Probe-points

 and highlight the only probe point listed in the bottom window. Take care not to uncheck the
box on the left. Change the following fields:

 Probe type: Probe on Data Write at Location
Connect To: Filtered Output

 Note the different types of probes you can use and that you can use expressions. Click Add,
then delete the probe point with no connection. Click OK.

27. Restart your project. On the vertical toolbar, click the Animate button and watch the display
draw as the program runs.

LAB6-A Procedure

DSP54x - Solving a Block FIR Filter 6 - 13

28. Probe points can also run on hardware targets, but RTDX has less impact on real-time
operation. Probe points may also be used to connect data i/o files to your program. Look in
the online help and see how this is done.

Profile Your Code
29. Once you have a clean graph, it is time to profile your code. Remove the Probe point, then set

the 1st profile-point on the CALL fir instruction and the 2nd profile-point on the stop
condition. Now, restart and profile your code. Write down your time on the sheet provided at
the end of this module. It should be about 11470 cycles.

30. Does 11470 seem right? Well, it IS correct, but what did you expect it to be? Estimate the
cycle count for the RPTB loop by counting up the cycles inside the loop and multiplying by
the RPTB loop count. Write down your estimate on the sheet provided.

31. Why was the cycle count so much higher than your estimate? Did you forget to run “0ws”?

32. In a real application, you need to setup the external wait state generator to the appropriate
values based on your system requirements. However, because we are using the simulator,
let’s simply assume that everything external is zero-wait states. At the beginning of
LAB6A.ASM, type in the following instruction:

 STM #0, SWWSR

 Issues associated with wait states and memory interfacing will be covered in later modules.

33. Build and simulate your code again. Now, profile your fir routine. What was your cycle
count? Write it down on the sheet provided. The cycle count should be around 3700 cycles.

34. One last note: open up LAB6A.ASM. Note the values of the coefficients. Notice anything
interesting? If you add all 16 coefficients together, they equal almost one (on a fractional
scale). What does this imply?

 It implies that the filter has a gain less than one. Therefore, saturation is not required, because
the filter is guaranteed (by design) to not overflow because the coefficients added together are
less than unity AND every input to the filter is less unity – no gain. Hey, this stuff really
works $.

35. If you’re done with LAB6A and you still have some time, move on to LAB6B…

LAB6-B Procedure

6 - 14 DSP54x - Solving a Block FIR Filter

LAB6-B Procedure
 If you make any changes to LAB6A.ASM or LAB6A.CMD, first copy the files to

LAB6B.ASM and LAB6B.CMD. Answers to the following questions are either contained in
the on-line documentation or via your instructor.

1. Negate all 16 coefficients. In other words, use the 2’s complement of all of the coefficients.
Re-run your code. What changed and why?

2. Change your repeat block to use BANZ. Profile your code. Any difference?

3. How do you terminate a block repeat? Can you perform a branch or call inside a block
repeat? Hmmm. Look at the BRAF bit. What does it do? Do you think this might assist you
in terminating a block repeat?

4. Let’s make the entire code interruptible. Replace repeat single with a repeat block and nest
the repeat blocks.

5. Look at your code. Can you take advantage of using parallel instructions? Why/why not?

6. Display the contents of REA and RSA during the block repeat loop.

Benchmarking the Labs

DSP54x - Solving a Block FIR Filter 6 - 15

Benchmarking the Labs

DSP54.6DSP54.6 - - 1616

Block_FIR Profiling

keep this form handy for all the labs to compare your #’s

LAB Profile #cycles

 6a MAC, first profile

 6a MAC, estimate

 6a MAC, w/SWWSR=0

 8a FIRS, w/SWWSR=0

DSP54.6DSP54.6 - - 1616

Solutions

6 - 16 DSP54x - Solving a Block FIR Filter

Solutions

DSP54.6DSP54.6 - - 1818

LAB6A.ASM - Solution
.mmregs
.def start

STKLEN .set 100

a .usect "coeffs",16,1
y .usect "result",200
BOS .usect "STK",STKLEN

.sect "init"
table .int 7FCh,7FDh,7FEh,7FFh
 .int 800h,801h,802h,803h
 .int 803h,802h,801h,800h
 .int 7FFH,7FEH,7FDH,7FCH

.sect "indata"
x .copy "in6.dat"

.sect "code"
start: STM #BOS+STKLEN,SP ;setup stack pointer

STM #0,SWWSR ;set ext'l wait state to zero
LD #0,DP ;set SST bit (saturate on store)
ORM #1,@PMST
SSBX FRCT ;set FRCT bit (fractional mode)
RSBX OVM ;clr OVM bit (overflow mode)
SSBX SXM ;set SXM bit (sign extension)

DSP54.6DSP54.6 - - 1818

DSP54.6DSP54.6 - - 1919

LAB6A.ASM - Solution (Continued)
CALL copy
CALL fir

here: B here

copy: STM #a,AR1 ;setup AR1

RPT #15 ;copy 16 values
MVPD #table,*AR1+
RET ;return

fir: STM #184,BRC
STM #16,BK
STM #1,AR0
STM #a,AR2 ;setup ARs for MAC
STM #x,AR3
STM #y,AR4

RPTB done-1
 MPY *AR2+0%,*AR3+,A ;1st product
 RPT #14 ;mult/acc 15 terms

 MAC *AR2+0%,*AR3+,A
 MAR *+AR3(-15)
 STH A,*AR4+ ;store result

done: RET ;return

DSP54.6DSP54.6 - - 1919

Solutions

DSP54x - Solving a Block FIR Filter 6 - 17

DSP54.6DSP54.6 - - 2020

LAB6A.CMD : Solution
/* file I/O and options */
vectors.obj
lab6a.obj
-m lab6a.map
-o lab6a.out
-e start

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{ coeffs :> SPRAM PAGE 1
 result :> DARAM PAGE 1
 indata :> DARAM PAGE 1
 STK :> DARAM PAGE 1
 code :> EPROM PAGE 0
 init :> EPROM PAGE 0
 vectors :> VECS PAGE 0
}

DSP54.6DSP54.6 - - 2020

Solutions

6 - 18 DSP54x - Solving a Block FIR Filter

DSP54x - Pipeline Implications 7 - 1

Pipeline Implications

Introduction
Most microprocessors and DSP's are pipelined in some fashion. The C54x differs in that its
pipeline is open. When we write to control type registers it can have a profound and sometimes an
out-of-sequence affect on CPU operation. The responsibility for proper pipeline operation rests
on the programmer. Fortunately you have both assembler and simulator latency detection tools at
your disposal.

Learning Objectives

DSP54.7DSP54.7 - - 22

Learning Objectives

!! Describe the 'C54x Describe the 'C54x pipeline eventspipeline events

!! Implement Implement delayeddelayed operations operations

!! Identify and resolve Identify and resolve pipeline conflictspipeline conflicts

DSP54.7DSP54.7 - - 22

Module Topics

7 - 2 DSP54x - Pipeline Implications

Module Topics

Pipeline Implications ... 7-1

Module Topics ... 7-2

Delayed Instructions ... 7-3

The Pipeline .. 7-4

Understanding the Impact on the Pipe.. 7-5

Writing Early... 7-6

Determining Latency Cycles.. 7-7

Latency Tables... 7-8

Review ... 7-10

Exercises.. 7-11

LAB7 – Latency Issues .. 7-12

Objective... 7-12

LAB7-A Procedure .. 7-13
Fix Latencies in LATENCY.ASM and LAB6A.ASM .. 7-13

LAB7-B Procedure .. 7-14

Solutions.. 7-15

Additional Information… .. 7-16

Delayed Instructions

DSP54x - Pipeline Implications 7 - 3

Delayed Instructions

DSP54.7DSP54.7 - - 33

Pipeline and Delayed Branches

P1 F

P2

D !D !

FF

PP33

FF33

PP44

ADDRADDR

FLUSHFLUSH

PPAA

FLUSHFLUSH --

--

-- --

-- -- --

-- -- --

RR XXAAFF DD AA

BD
new

P1 F1

P2

D1 !

F2

P3

FF33

PP44

NEW

--

--

D3

F4

PN

AA33

DD44

FFNN

RR33

AA44

DDNN

XX33

RR44

AANN

XX44

RRNN XN

2 final
 code
 words

addr
B

P F D A R X

DSP54.7DSP54.7 - - 33

2 words/
2 cycles

2 words/
4 cycles

A delayed branch merely allows the 2 words that have already been prefetched to run to
completion.

DSP54.7DSP54.7 - - 44

Using Delayed Instructions

LD @x,A

ADD @y,A
MPY @z,B

STL A,@r
B next

LD @x,A

ADD @y,A
BD next

 MPY @z,B
 STL A,@r

! Delay operation may not be a branch of any kind
 (B, CALL, RET, RPT, etc.)

! Conditions set in delay slot of BCD/CCD/RCD
will have NO effect on the instruction

! Do not load BRC in delay slot of RPTBD

! No PUSH/POP in CALLD or RETD delay slots

6w/8c 6w/6c

BD CALLD BCD

BACCD CALAD CCD

 RETD RCD

BANZD RETED

RPTBD RETFD

Delayed Instructions

!! Delay slot is two Delay slot is two wordswords deep - deep - cycles cycles or or lineslines of code of code
are not relevantare not relevant

DSP54.7DSP54.7 - - 44

The problem is, some operations may not be in the delay slot hand and since the next two words
will be executed before the branch is taken, debugging can be difficult.

 Save the use of delayed branches for those situations where saving two cycles is very important.

The Pipeline

7 - 4 DSP54x - Pipeline Implications

The Pipeline

DSP54.7DSP54.7 - - 55

Pipeline Cases

“Typical” C54x System Code
Analysis:

! Most 'C54x code requires
no special attention

! Some MMR writes require care
(MMR reads are not a problem)

! Latency requirements
resolved via Latency Tables

C Code
No Problem

ASM Code

CALU Operations
No Problem

MMR Writes

Early Writes
! Early: write occurs at least

6 cycles prior to a read

! Example: setup code

All Other MMR Writes
! Use Latency Tables

DSP54.7DSP54.7 - - 55

DSP54.7DSP54.7 - - 66

Execute Phase Writes - Problem?

STLM A,AR1

LD *AR1,B

A

N

! In the following example, we want to calculate an address, then use
it to perform an operation. Let’s see what happens...

! Oops, because STLM writes “late” and the address is needed “earlier”,
the code won’t work as written.

! How many NOPs are needed to correct the problem?

A=Available
N=Need

STM #x,AR1

LD *AR1,B

#x

A

N

! Below, STM writes early (as soon as the constant is decoded), so the
LD works correctly:

Let’s look at when bits/registers affect the pipeline...
DSP54.7DSP54.7 - - 66

2

 Most instructions complete their operations in the execute phase. Because of potential pipeline
latencies, it would be nice to have some instructions that operate early.

Understanding the Impact on the Pipe

DSP54x - Pipeline Implications 7 - 5

Understanding the Impact on the Pipe

DSP54.7DSP54.7 - - 77

Which Pipeline Phases Use These Regs/Bits?

T, A, B OVM,SXM,C16,FRCT,ASM

AR0-7,SP,BK DP,CPL,DROM

BRC,RSA,REA BRAF,MP/MC,OVLY,IPTR

X/R

R/A

P

Registers Bits in STx or PMST Affected Phase

ORM #20h,PMST

P F D A R X

!! ExampleExample: Write to OVLY bit to change program memory map:: Write to OVLY bit to change program memory map:

Write to OVLY occurs here

OVLY affects this instruction

! Which instruction(s) are affected by this write?

DSP54.7DSP54.7 - - 77

PP FF DD AA RR XX

PP FF DD AA RR XX

PP FF DD AA RR XX

PP FF DD AA RR XX

PP FF DD AA RR XX

PP FF DD AA RR XX

PP FF DD AA RR XX

NOT
affected
by write

to OVLY

This breaks up the effect of the pipeline into three categories; CALU, data address generation and
program address generation.

DSP54.7DSP54.7 - - 88

Writing to STx/PMST

BRAF CPL OVM SXM C16 FRCT ASM

IPTR MP/MC OVLY DROM

DP ST0

ST1

PMST

T, A, B OVM,SXM,C16,FRCT,ASM

AR0-7,SP,BK DP,CPL,DROM

BRC,RSA,REA BRAF,MP/MC,OVLY,IPTR

X/R

R/A

P

Registers Bits in STx or PMST Affected Phase

POPM ST1
Example

! Which bits are affected by this instruction?
! What phase(s) do these bits affect?

DSP54.7DSP54.7 - - 88

Writing Early

7 - 6 DSP54x - Pipeline Implications

Writing Early

DSP54.7DSP54.7 - - 99

Instructions That Write “Early”

! To minimize latencies, some instructions write early.
Use these recommended instructions whenever possible:

STM #K,MMR

LD #k9,DP
LD Smem,DP

LD #k5,ASM

LD Smem,ASM

POPM MMR

MVDK Smem,dmad

MVMM MMR(src),MMR(dst)

Conflicts can occur between writes...
DSP54.7DSP54.7 - - 99

 The problem arises when two instructions; one operating in the execute phase and the other
operating earlier attempt to write to ARx, SP or BK. If these two writes overlap, they will
conflict since there is only one path to these registers.

DSP54.7DSP54.7 - - 1010

Write Conflict
Problem: Early write instructions can be blocked if a prior instruction

writes to an AR, SP or BK in the execute phase.

STLM A,AR0
STM #0,AR1

LD *AR1,B

STLM A,AR0
STM #0,AR1

LD *AR1,B

W

Solution: Add one protected cycle before the STM instruction:

STLM A,AR0
nop
STM #0,AR1

LD *AR1,B

STLM A,AR0
nop
STM #0,AR1

LD *AR1,B

W

Conflict

N
#0

WW

WW
#1

NN

W

No
Conflict

Alternate Solution: Reverse the STLM and STM instructions
DSP54.7DSP54.7 - - 1010

 In the latency chapter of the CPU and Peripherals user guide you'll find a rule stating not to
precede an instruction like STM with one that writes to these registers in the execute phase.

Determining Latency Cycles

DSP54x - Pipeline Implications 7 - 7

Determining Latency Cycles

DSP54.7DSP54.7 - - 1111

How to Determine Latency Cycles

! Example: SSBX SXM
LD @x,A

! Following is an excerpt from the Latency Tables:

SSBX SXM
NOP
LD @x,A

!! Latency FixLatency Fix:: 1. Use1. Use NOPNOPss or any other non-involved code or any other non-involved code
2. Must consider multi-cycle operations (e.g. 2. Must consider multi-cycle operations (e.g. B loopB loop))

!! ToolsTools:: Use -Use -pw pw switch during assembly or -l(w) switch during switch during assembly or -l(w) switch during
simulation to flag potential latenciessimulation to flag potential latencies

Control Field Latency 0 Latency 1
SXM SSBX, RSBX

DSP54.7DSP54.7 - - 1111

!! The Latency Tables on the following pages show the number of The Latency Tables on the following pages show the number of cyclescycles to to
allow between a allow between a writewrite to a control field and the to a control field and the effecteffect of that write to be of that write to be validvalid..

!! Latency Tables show recommended instructions for accessingLatency Tables show recommended instructions for accessing MMRs MMRs only. only.
See the CPU and Peripherals Guide for more details.See the CPU and Peripherals Guide for more details.

! Don’t neglect the exceptions listed at the end.

The following tables do not and cannot show all possible latencies. Please refer to the CPU and
peripherals guide for more detail

Latency Tables

7 - 8 DSP54x - Pipeline Implications

Latency Tables

DSP54.7DSP54.7 - - 1212

Latency Tables - Recommended Instructions

Control Field Latency 0 Latency 1

 T STM, MVDK STLM, STL,
LD Smem,T STH, EXP
LD Smem,T || ST

ASM LD #k5,ASM
LD Smem,ASM

SXM SSBX, RSBX

A or BA or B All All exceptexcept ... Modify accumulator ... Modify accumulator
 then read as MMR then read as MMR

DP LD #k9,DP
 LD Smem,DP

BRC STM STLM, STL, STH
before
RPTB[D] MVDK

DSP54.7DSP54.7 - - 1212

DSP54.7DSP54.7 - - 1313

Latency Tables - Recommended Instructions
Control Field Latency 0 Latency 1 Latency 2 Latency 3

 ARx STM POPM STLM,STH,STL
MVDK
MVMM,MVMD
MAR

BK STM POPM STLM,STH,STL
 MVDK
 MVMM,MVMD

SP if CPL = 0 if CPL = 1 if CPL = 0 if CPL = 1
STM STM STLM STLM
MVDK MVDK STH STH
MVMM MVMM STL STL
MVMD MVMD

Implicit SP FRAME
changes when POPM/POPD
CPL = 1 PSHM/PSHD

DSP54.7DSP54.7 - - 1313

Latency Tables

DSP54x - Pipeline Implications 7 - 9

DSP54.7DSP54.7 - - 1414

Latency Tables - Recommended Instructions

Control Field Latency 3 Latency 4 Latency 5 Latency 6
DROM ANDM

 ORM
 XORM

OVLY ANDM
IPTR ORM
MP/MC- XORM

BRAF RSBX
 SSBX

CPL RSBX
 SSBX

DSP54.7DSP54.7 - - 1414

DSP54.7DSP54.7 - - 1515

Latency Table Notes

!! Do not precede Do not precede STM,MVDKSTM,MVDK or or MVMDMVMD with an instruction (e.g. with an instruction (e.g. STLM STLM) that) that

writes to writes to anyany ARx ARx, BK or SP in the execute phase of the pipeline., BK or SP in the execute phase of the pipeline.

!! After altering the BRAF bit, the next 6 cycles must not contain theAfter altering the BRAF bit, the next 6 cycles must not contain the
last instruction word in the last instruction word in the RPTB[D]RPTB[D] loop. loop.

!! SRCCDSRCCD must be located at least 2 cycles before the last instruction of the must be located at least 2 cycles before the last instruction of the

RPTB[D]RPTB[D] loop. loop.

!! When changing When changing OVLY,MP/MC-OVLY,MP/MC- or or IPTRIPTR, latency listed is to fetch the, latency listed is to fetch the

first instruction from the newly activated memory spacefirst instruction from the newly activated memory space

DSP54.7DSP54.7 - - 1515

Review

7 - 10 DSP54x - Pipeline Implications

Review

DSP54.7DSP54.7 - - 1616

Latency Issues - Review

!! No No latency for CALU operationslatency for CALU operations

!! Write to Write to MMRsMMRs early whenever possible early whenever possible

!! Set status early Set status early

!! Use latency tables when writing toUse latency tables when writing to MMRs MMRs

!! For debug: For debug: focus on late MMR writesfocus on late MMR writes

!! Reference Guide has chapter on pipeline useReference Guide has chapter on pipeline use

DSP54.7DSP54.7 - - 1616

Exercises

DSP54x - Pipeline Implications 7 - 11

Exercises

DSP54.7DSP54.7 - - 1717

Latency Exercise

STM #100h,AR1

LD *AR1,A
1

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

2

STLM B,AR2

STM #106h,AR1
LD *AR1,A

STLM B,AR1

LD *AR1,A

3

DSP54.7DSP54.7 - - 1717

DSP54.7DSP54.7 - - 1919

Latency Exercise

LD #x,DP

LD @x,A
4

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

5

ORM #8h,PMST

LD *AR2,A

POPM ST0

LD @x,A

6

! Set DROM bit

DSP54.7DSP54.7 - - 1919

Exercises

7 - 12 DSP54x - Pipeline Implications

LAB7 – Latency Issues

Objective

The objective of this lab is to find and fix latency issues inside two files: LATENCY.ASM and
LAB6A.ASM. Use the latency tables and the –pw assembler switch to aide the process.

DSP54.7DSP54.7 - - 2121

LAB7A - Latency Issues
1. Add 1. Add --pwpw switch to your assembler options.switch to your assembler options.

2. Open and view 2. Open and view LATENCY.ASMLATENCY.ASM. .

3. Determine the latencies and the #3. Determine the latencies and the #NOPNOPs s needed to fix theneeded to fix the
 problem. Write a comment next to the instruction of what problem. Write a comment next to the instruction of what
 you expect the solution to be. you expect the solution to be.

4. Assemble 4. Assemble LATENCY.ASMLATENCY.ASM using using --pwpw switch and note theswitch and note the
 warnings. Compare the warnings with your expectations. warnings. Compare the warnings with your expectations.

5. Fix the latency issues and re-assemble.5. Fix the latency issues and re-assemble.

6. Check and fix any latencies in 6. Check and fix any latencies in LAB6A.ASMLAB6A.ASM. You may or. You may or
 may not have any. may not have any.

Time: 45 minutesTime: 45 minutes

DSP54.7DSP54.7 - - 2121

LAB7-A Procedure

DSP54x - Pipeline Implications 7 - 13

LAB7-A Procedure

Fix Latencies in LATENCY.ASM
1. Create a new project called Latency. Add LATENCY.ASM to it.

2. On the menu bar, select:

 Project " Options

 Then, select the Assembler tab and add –pw to the command line switch box at the top of
the window. This switch will enable pipeline warnings during assembly. Click OK.

3. Open LATENCY.ASM for editing. Determine the latencies and the #NOPs needed to fix the
problems (if they exist). Write a comment next to the instruction describing what you expect
the solution to be.

4. Assemble LATENCY.ASM by clicking the Compile button on the vertical toolbar and note
the warnings shown in the output window at the bottom of your screen. Compare the
warnings with your expectations.

5. Fix the latency issues and re-assemble.

Fix Latencies in LAB6A.ASM
6. When LATENCY.ASM is “clean”, re-load project LAB6A.MAK. Check and fix any latencies

in LAB6A.ASM. You may or may not have any. If you find latencies, explain why your code
worked anyway.

7. If you’re done with the above steps and you still have some time, move on to LAB7B…

LAB7-B Procedure

7 - 14 DSP54x - Pipeline Implications

LAB7-B Procedure
1. Open LATENCY.ASM. Type in the following instructions, write down your expectations,

assemble and fix the latency issues. If the assembler gives no warning on an instruction
which you thought should be a problem, explain why it is not a problem:

 POPM PMST
RETF

 STL A,*AR3
LD *AR3,B

 STL A,*AR3+
LD #0,A
ADD *AR4, *AR5, A

 STL A,*AR3+
STH A,*AR3
ADD *AR4, *AR5, A

 You might find the additional material at the end of the module helpful.

2. Write an execute conditional (XC) instruction to perform some task. What are the
implications of using this instruction?

3. Delayed operations (like BD) take 2 cycles less than their non-delayed counterparts. Why not
use them all the time?

4. Open LAB6A.ASM and modify using delayed operations wherever possible. Assemble, link
and simulate. Verify your plot. Make sure you have working code because this lab will be
copied to later labs.

Solutions

DSP54x - Pipeline Implications 7 - 15

Solutions

DSP54.7DSP54.7 - - 1818

Latency Exercise

STM #100h,AR1

LD *AR1,A
1

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

! No latency issue

2

STLM B,AR2

STM #106h,AR1
LD *AR1,A

! NOP required to avoid
write conflict

! Can also swap STM/STLM
NOP

STLM B,AR1

LD *AR1,A

3 NOP
NOP

! STLM writes in X-phase,
*AR1 needed in A-phase

! Latency 2: 2 NOPs required

DSP54.7DSP54.7 - - 1818

DSP54.7DSP54.7 - - 2020

Latency Exercise

LD #x,DP

LD @x,A
4

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

! No latency issue

! Potential DROM latency:
3 NOPs required

! Or, modify PMST early in
your setup code

POPM ST0

LD @x,A

6

!! Sit down at your computer andSit down at your computer and
open the open the CPU/Peripherals GuideCPU/Peripherals Guide

!! Look up the latencyLook up the latency

5

ORM #8h,PMST

LD *AR2,A

! Set DROM bit

NOP
NOP
NOP

NOP
NOP

NOP

! Potential DP latency:
3 NOPs required

DSP54.7DSP54.7 - - 2020

Additional Information…

7 - 16 DSP54x - Pipeline Implications

Additional Information…

DSP54.7DSP54.7 - - 2323

Conditional Execution: XC

!! Allows Allows fastfast choice of running one or two words of code or choice of running one or two words of code or
substitution ofsubstitution of NOPs NOPs..

!! Condition evaluated early, so must be set Condition evaluated early, so must be set twotwo cycles prior. cycles prior.

!! Avoid change of condition in last two lines prior to XC, asAvoid change of condition in last two lines prior to XC, as
they can be recognized in event of interrupt prior to XC.they can be recognized in event of interrupt prior to XC.

XC n,cnd,cnd,cnd

-pre-
-pre-
CMPR GRTR,AR1
BC next,TC
LD *AR3+,A

next: ABS A

 3 words, 5/4 cycles

CMPR GRTR,AR1
-other-
-other-
XC 1,NTC
LD *AR3+,A
ABS A

 2 words, 2 cycles

DSP54.7DSP54.7 - - 2323

DSP54.7DSP54.7 - - 2424

CALU Operations - Analysis

!! The 'C54x may need to perform a fetch, two reads,The 'C54x may need to perform a fetch, two reads,
and a write in any given cycle. Depending on theand a write in any given cycle. Depending on the
system setup, this event could occur in one cycle or besystem setup, this event could occur in one cycle or be
spread over several cycles. spread over several cycles. In no caseIn no case are errors are errors
generated. Consider the following environments:generated. Consider the following environments:

More than one external access: multiple cyclesMore than one external access: multiple cycles

Each resource in separate memories: single cycleEach resource in separate memories: single cycle

Note: 'C54x memories are broken into blocks.Note: 'C54x memories are broken into blocks.

More than one resource in a single 'C54x memoryMore than one resource in a single 'C54x memory
block - Dual Access RAM :block - Dual Access RAM :

Early phase P and D

Late phase C and E

DSP54.7DSP54.7 - - 2424

Additional Information…

DSP54x - Pipeline Implications 7 - 17

DSP54.7DSP54.7 - - 2525

Pipeline Events

Single read instructions: Single read instructions: PPAA PPDD DDDDDDAA

Dual read instructions: Dual read instructions: PA PD
DD
CD

DA
CA

Single write instructions:Single write instructions: PA PD EA ED

Dual write instruction: Dual write instruction: PA PD EA ED

EA ED(2 cycles) (2 cycles)

Read/write instructions:Read/write instructions:
DD
 EA

EDDAPA PD

DSP54.7DSP54.7 - - 2525

DSP54.7DSP54.7 - - 2626

Read/write instructions:Read/write instructions:

Dual write instruction: Dual write instruction:

Single write instructions:Single write instructions:

Dual read instructions: Dual read instructions:

Single read instructions: Single read instructions:

P

DARAM Events

P D

C

E

P D

PP E

(2 cycles) (2 cycles) E

P D E

DSP54.7DSP54.7 - - 2626

DSP54.7DSP54.7 - - 2727

 Write takes place

normally, and read is from ED bus, yielding correct result

without additional cycles!

Case Study - Latencies Avoided

What if both are to the What if both are to the samesame address? address?

WRITE STL A,*AR3+

--- LD #0,A

DUAL ADD *AR4,*AR5,A
READ

P E

P

C DP

E

Early write Early write held offheld off to allow dual access to operate w/o delay. to allow dual access to operate w/o delay.

WRITE STL A,*AR3+

READ LD *AR2+,A

EEP

DP

E

DSP54.7DSP54.7 - - 2727

Additional Information…

7 - 18 DSP54x - Pipeline Implications

DSP54.7DSP54.7 - - 2828

Case Study - Automatic Latency

WRITE STL A,*AR3+

WRITE STH A,*AR3

DUAL ADD *AR4,*AR5,A
READ

One cycle latency One cycle latency automaticallyautomatically inserted by decoder inserted by decoder

P E

C D

EP DDCC

PP EEE

DSP54.7DSP54.7 - - 2828

DSP54x - Application Specific Instructions 8 - 1

Application Specific Instructions

Introduction
A strictly general-purpose processor can only offer average performance. In order to extract the
maximum performance from a device you need instructions that can accelerate certain
algorithms. Since the C54x is targeted for the telecom marketplace, there are several powerful
instructions that enhance performance for our algorithms typically used in telecom.

Learning Objectives

DSP54.8DSP54.8 - - 22

Learning Objectives

! Describe the basic operation of specific
algorithms

! Associate certain instructions to the
chosen algorithm

! Identify the architectural components
that provide advanced performance

DSP54.8DSP54.8 - - 22

Module Topics

8 - 2 DSP54x - Application Specific Instructions

Module Topics

Application Specific Instructions.. 8-1

Module Topics ... 8-2

Symmetric FIR... 8-3

Least Mean Square.. 8-5

Minimum and Maximum.. 8-6

Some Other Useful Instructions... 8-7

Additional Resources... 8-8

LAB8 – Block FIR ... 8-9

Objective... 8-9

LAB8A - Procedure ... 8-10
Copy Files, Edit LAB8A.CMD... 8-10
Edit LAB8.ASM – Write/Debug... 8-10
Build, Simulate, Verify ... 8-11

LAB8-B Procedure .. 8-12

Solutions.. 8-13

Additional Information.. 8-15
LMS Loading .. 8-15
Codebook Search .. 8-15
Viterbi Decoding... 8-16
Determining Metrics ... 8-17
Polynomial Evaluation.. 8-18

Symmetric FIR

DSP54x - Application Specific Instructions 8 - 3

Symmetric FIR

DSP54.8DSP54.8 - - 44

Symmetric FIR

Coeffs

a4 a5 a6 a7a3a2a1a0

! This filter may be “folded” and performed with
N/2 adds and N/2 MACs

! Filters must be designed with even length

Y(n) = a0(x7 + x0) + a1(x6 + x1) + a2(x5 + x2) + a3(x4 + x3)

FIRS (*ARm, *ARn, #COEFF)

FIRS = B = B + (AH * *#COEFF) ;pseudo-code
 || A = (*ARm + *ARn) << 16

DSP54.8DSP54.8 - - 44

 The FIRS instruction performs the multiply and accumulate as well as the summation of the next
two data points in a single cycle when in a single repeat.

DSP54.8DSP54.8 - - 55

1. Perform 1st add of oldest and
 newest data samples into AH,
 move pointers

8-Tap Block FIRS Implementation

AR2

AR3

4. Store result (BH) and
 move pointer

3. Reset pointers (AR2 and AR3)
 for next iteration

2. Repeat FIRS #taps/2 - 1 ;i.e. 3

BH = BH + (AH * *PC)

 | | AH = (*AR2+ + *AR3-)
AR2

AR3

AR2

AR3

AR3AR4

AR2

FIRS (*ARm, *ARn, #COEFF)

AR4AR4

a0a0

a1a1

a2a2

a3a3

ProgramProgram
MemoryMemory

PCPC

y0y0

ResultsResults
MemoryMemory

y1y1

.

x0x0

x1x1

x2x2

x3x3

x4x4

x5x5

SampleSample
MemoryMemory

x6x6

x7x7

x8x8

.

(#COEFF)

Now, let’s take a look at the actual code... DSP54.8DSP54.8 - - 55

 Your pointers will need to point of both the oldest and the newest samples. You'll also have to
perform the first add before entering the repeat single FIRS loop.

Symmetric FIR

8 - 4 DSP54x - Application Specific Instructions

DSP54.8DSP54.8 - - 66

FIRS Code Example
 .asg AR2,old

.asg AR3,new

.asg AR4,results
SSBX FRCT
STM #samps-taps+1-1,BRC

 STM #x,old
 STM #x+7,new
 STM #y,results
 STM #-4,AR0

FIR: RPTB done-1
 ADD *old+,*new-,A

 RPTZ B,#3
 FIRS *old+,*new-,#COEFF

 MAR *old+0
 MAR *+new(#6)

 STH B,*results+
done:

;set FRCT
;setup BRC
;old = #x
;new = #x+7
;results = #y
;pointer wrap for old

;Repeat Block FIR
;First sum for FIRS << 16
;B=0, Repeat taps-1
;MAC, next sum
;Wrap old by -4
;Wrap new by +6
;Store result to y

DSP54.8DSP54.8 - - 66

 Notice how we used AR0 to save a cycle resetting the old pointer.

Least Mean Square

DSP54x - Application Specific Instructions 8 - 5

Least Mean Square

DSP54.8DSP54.8 - - 88

Adaptive Filtering Using LMS - Concept
A least mean square (LMS) approach is widely used for adaptive filter routines.

The technique minimizes an error term by tuning the filter coefficients.

x0 x1 xn

input Modeled System
(with noise / echo)

d(n)

e(n)

ΣΣΣΣ-y(n)
ΣΣΣΣ

a0

z-1 z-1 z-1...

a1 an

x0 x1 xn

! Provide input to the
real, modeled system to
get desired output: d(n)

LMS = FIR , Coeff update ;psuedo-code
 = (B = B + (an*xn)), A = rnd(en+an)

! Filter input through FIR
model to get estimated
output: y(n)

! Compare results to
get error term: e(n)

! Correlate the error
term with x0, x1 …,
to update coefficients
(e0 = e(n)*x0 , ...)

DSP54.8DSP54.8 - - 88

An example of this might be a noise-canceling headset. The modeled system is the earpiece
containing your ear, a speaker and a microphone to “listen” to what you are hearing. Add noise
from an external source. Now think of the input as the music from your stereo. That signal is what
we’d like to hear (monitored by the microphone (d(n))). In order for the signal inside the earpiece
to just be music, the FIR filter will adapt itself to produce anti-noise (a signal out-of-phase) with
the external noise. If the speaker is driven with this signal, music is all we’ll hear.

DSP54.8DSP54.8 - - 99

 ...

.asg AR3, Coeffs

.asg AR4, Data

.asg AR1, Result
STM #a, Coeffs
STM #x, Data
STM #y, Result
STM #1,AR0
STM #taps,BK
LD B2e, T
LD #0,B
STM #TAPS-2, BRC

 RPTBD done-1
 MPY *Data, A
 LMS *Coeffs,*Data+
 ST A,*Coeffs+0%

 || MPY *Data,A
 LMS *Coeffs,*Data+

done:STH A, *Coeffs
STH B, *Result+

LMS Adaptive Filter Code
;pre-calculate 2B*e(n)

;initialize pointers
;and circular addressing

;T = B*2e
;zero B
;loop taps-2 times

;A = e0
;B = a0*x0, A = e0+a0
;update a0
;A = next e
;B = FIR, A = e+a
;store last updated a
;store y, increment ptr

DSP54.8DSP54.8 - - 99

Minimum and Maximum

8 - 6 DSP54x - Application Specific Instructions

Minimum and Maximum

DSP54.8DSP54.8 - - 1111

MIN, MAX
! Goal: find the max (or min) value in an array

max: RPTBD done-1
 LD *AR1+,A
 LD *AR1+,B
 MAX B
 LD *AR1+,A
done:

! Benchmark: ~2N cycles to find the min/max of N elements

! Example: Find the max value in this array

A B

max

C = 1C = 0

1628
24

-24893

588

*AR1

. . .

MAX dst
MIN dst
dst: A or B

DSP54.8DSP54.8 - - 1111

Some Other Useful Instructions

DSP54x - Application Specific Instructions 8 - 7

Some Other Useful Instructions

DSP54.8DSP54.8 - - 1313

Other Useful Instructions

! Viterbi Acceleration (Split Accumulator Instructions)
CMPS src, Smem

DADST Lmem,dst

DSADT Lmem,dst

ABDST Xmem, Ymem

SQDST Xmem, Ymem

Compare srcH/srcL, store greater

dst = Lmem +/- T

dst = Lmem -/+ T

Absolute Distance

Square Distance

! CodeBook Search (Conditional Stores)
STRCD Xmem, cond

SRCCD Xmem, cond

SACCD src, Xmem, cond

Xmem = T if condition is true

Xmem = BRC if condition is true

Xmem = src if condition is true

Application code available at the end of this module...

! Algebraic Polynomial Evaluation
RPT #Order-1
POLY Smem

Performs any order polynomial evaluation

DSP54.8DSP54.8 - - 1313

Viterbi decoding, convolutional encoding and codebook search operations are used extensively in
cellular communications. If you are interested in learning more, ask your instructor to give you a
short presentation.

Additional Resources

8 - 8 DSP54x - Application Specific Instructions

Additional Resources

DSP54.8DSP54.8 - - 1414

Additional Resources

1. S. M. Redl, M. K. Weber, M. W. Oliphant, “An Introduction to GSM”,
Artech House, 1995.

2. H. Hendrix, “Viterbi Decoding Techniques on the TMS320C54x Family”,
TI Application Report, 1995.

1. S. M. Redl, M. K. Weber, M. W. Oliphant, “An Introduction to GSM”,
Artech House, 1995.

2. H. Hendrix, “Viterbi Decoding Techniques on the TMS320C54x Family”,
TI Application Report, 1995.

DSP54.8DSP54.8 - - 1414

Additional Resources

DSP54x - Application Specific Instructions 8 - 9

LAB8 – Block FIR

Objective

The objective of this lab is to write code to perform a block FIR using the FIRS instruction using
symmetrical coefficients.

DSP54.8DSP54.8 - - 1515

LAB8A - Block FIR Using FIRS

1. Replace MAC with FIRS

2. Implement pointer wraps

3. Profile and compare with LAB6A

Time: 75 minutes

an
n=0

7

∑ xn+m*
m=0

184

ym =

a[8]

code

table[8]

‘C5409

60h
F000h

4Kx16 EPROM
20hx16 SPRAM

FF80h
vectors

FFFFh

y[200]
x[200]

SP

80h
1Kx16 DARAM

DSP54.8DSP54.8 - - 1515

LAB8A - Procedure

8 - 10 DSP54x - Application Specific Instructions

LAB8A - Procedure

Copy Files, Edit LAB8A.CMD
1. Make a new project called LAB8A.

2. Copy LAB6A.CMD to LAB8A.CMD. Modify as necessary.

3. Copy LAB6A.ASM to LAB8A.ASM.

4. Add the appropriate files to LAB8A.

Note: This lab will be much less structured and spoon-fed than previous labs – and rightly so. You
should be more comfortable with the edit/debug environment, link.cmd files, program vs. data
labels, etc., by now. The following instructions will head you in the right direction but will be
slightly vague in terms of exact details.

Edit LAB8.ASM – Write/Debug
5. Open LAB8A.ASM for editing. Comment out the CALL to the COPY routine.

6. Replace the MAC instruction with FIRS. Don’t forget that the label used to point to your
coefficients is a program label. Also, the pointer wraps will be done manually, so there is no
need to use circular addressing. Set up the two ARs to point to the correct data values (refer
to the material if you need help).

7. This is a good chance to use the .asg directive for our pointers. Look up its use in the
Assembly Language Tools User Guide.

8. Look at your RPT instruction. How does the single repeat count differ when using FIRS vs.
MAC? Also, FIRS uses the B accumulator to accumulate the result y, so how will you
initialize B?

9. FIRS requires the first two data values to be added together in the A accumulator prior to
using the FIRS instruction. Write the proper instruction to add these values. Look up this
instruction and note where the results will be. How should the pointers be modified?

10. Add two MAR instructions to wrap AR2 and AR3 the appropriate amounts after the FIRS
instruction. Use the value in AR0 to wrap AR2 and use a constant (#lk) to wrap AR3.

11. Look at the store instruction. Which accumulator should be stored?

12. The RPTB instruction should remain as is because you still want to generate 185 outputs.

LAB8A - Procedure

DSP54x - Application Specific Instructions 8 - 11

Build, Simulate, Verify
13. Build your project

14. Run the code and verify that results are being written to y. Debug as necessary. Once you
think the code is running properly, graph your results.

Note: If, for some reason, you are not able to use symbolic debugging, check your assembler
options to see if –g is in your switches.

15. When you have a clean graph of the filtered sine wave, profile the FIRS routine. Set the first
profile-point on the CALL to your firs routine and the 2nd profile-point on the next instruction
in the main routine. Write down your cycle count on the sheet provided. It should be around
3145 cycles. Was your cycle count less using FIRS than MAC? Why?

16. If you’re done with LAB8A and you still have some time, move on to LAB8B…

LAB8-B Procedure

8 - 12 DSP54x - Application Specific Instructions

LAB8-B Procedure
If you make any changes to LAB8A.ASM or LAB8A.CMD, first copy the files to LAB8B.ASM
and LAB8B.CMD. Answers to the following questions are either contained in the on-line
documentation or via your instructor.

1. Write the kernel to find the minimum value in the x[200] array. Rewrite it the kernel to find
the maximum.

2. Edit the “max” kernel to also determine WHICH value was the maximum. In other words,
you must find a way to determine the index (from the base x) that locates the max value.

3. Implement an asymmetric FIR using the FIRS instruction. There are several possibilities, but
none that are simple.

Solutions

DSP54x - Application Specific Instructions 8 - 13

Solutions

DSP54.8DSP54.8 - - 2525

LAB8A.ASM - Solution
.mmregs
.def start

STKLEN .set 100

a .usect "coeffs",16,1
y .usect "result",200
BOS .usect "STK",STKLEN

.sect "init"
table .int 7FCh,7FDh,7FEh,7FFh
 .int 800h,801h,802h,803h
 .int 803h,802h,801h,800h
 .int 7FFH,7FEH,7FDH,7FCH

.sect "indata"
x .copy "in6.dat"

.sect "code"
start: STM #BOS+STKLEN,SP ;setup stack pointer

STM #0,SWWSR ;set ext'l wait state to zero
LD #0,DP ;set SST bit (saturate on store)
ORM #1,@PMST
SSBX FRCT ;set FRCT bit (fractional mode)
RSBX OVM ;clr OVM bit (overflow mode)
SSBX SXM ;set SXM bit (sign extension)

DSP54.8DSP54.8 - - 2525

DSP54.8DSP54.8 - - 2626

LAB8A.ASM - Solution (Continued)
; CALL copy

CALL fir
here: B here

copy: STM #a,AR1 ;setup AR1

RPT #15 ;copy 16 values
MVPD #table,*AR1+
RET ;return

.asg AR2,TOP

.asg AR3,BOTTOM

.asg AR4,RESULTS

fir: STM #184,BRC
STM #x+15,BOTTOM ;setup ARs for MAC
STM #x,TOP
STM #y,RESULTS
STM #-8,AR0

RPTB done-1
 ADD *TOP+,*BOTTOM-,A ;prime FIRS w/add of two data values
 RPTZ B,#7 ;execute FIRS 8 times (16 products)
 FIRS *TOP+,*BOTTOM-,#table

 MAR *TOP+0
 MAR *+BOTTOM(#10)
 STH B,*RESULTS+ ;store result

done: RET ;return

Solutions

8 - 14 DSP54x - Application Specific Instructions

DSP54.8DSP54.8 - - 2727

LAB8A.CMD : Solution
/* file I/O and options */
vectors.obj
lab8a.obj
-m lab8a.map
-o lab8a.out
-e start

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{ coeffs :> SPRAM PAGE 1
 result :> DARAM PAGE 1
 indata :> DARAM PAGE 1
 STK :> DARAM PAGE 1
 code :> EPROM PAGE 0
 init :> EPROM PAGE 0
 vectors :> VECS PAGE 0
}

DSP54.8DSP54.8 - - 2727

Additional Information

DSP54x - Application Specific Instructions 8 - 15

Additional Information

LMS Loading

DSP54.8DSP54.8 - - 1717

LMS Loading
Each Iteration (only once)

1 - determine error : e(i) = d(i) - y(i)
2 - scale by “rate” term B : e´(i) = 2*B*e(i)

Each Term (N sets)
3 - Qualify error with signal strength : e´´(i) = x(i-k) * e´(i)
4 - Sum error with coefficient : b(i+1) = b(i) + e´´(i)
5 - Update coefficient : b(i) = b(i+1)

LMS: 1 1 SUB
2 1 MPY
3 N MPY
4 N ADD
5 N STH

FIR a N MPY
b N ADD
c 1 STH

@ 100 tap: 500+ cycles

Analysis :

 ST
|| MPY

MAC
ADD
LMS

@ 100 tap: 200+ cycles

DSP54.8DSP54.8 - - 1717

Codebook Search

DSP54.8DSP54.8 - - 1818

Code Book Search
The speech coder uses a vector quantization technique from codebooks to

an excitation signal. This excitation signal is then applied to a linear
predictive-coding (LPC) synthesis filter.

+

+
-

WeightingWeighting

FilterFilter

SynthesisSynthesis

FilterFilter

Mean-square error

minimization

0
1
2
.
.
.

Codebook

Gain

Input speech

p(n)

g(n)
Select
Codebook
Entry

ci
2 * Gopt < c opt

2 * Gi

DSP54.8DSP54.8 - - 1818

Additional Information

8 - 16 DSP54x - Application Specific Instructions

DSP54.8DSP54.8 - - 1919

Code Book Search

.mmregs

.text
CBS: STM #C, AR5

STM #G, AR2
STM #G-opt, AR3
STM #I-opt, AR4
ST #0, *AR4
ST #1, *AR3+
ST #0, *AR3-
STM #N-1, BRC

RPTB done
SQUR *AR5+, A
MPYA *AR3+

MAS *AR2+, *AR3-, B
SRCCD *AR4, BGEQ
STRCD *AR3+, BGEQ
SACCD A, *AR3-, BGEQ

done: NOP

A = C(i) A = C(i) 22

B = C(i) B = C(i) 22 * Gopt T = * Gopt T = GoptGopt

B = C(i) B = C(i) 22 * Gopt * Gopt -- G(i) * Copt G(i) * Copt22

If (B >= 0) then BRC --> Iopt
 and T --> Gopt
 and A --> Copt2

AR5 C(0)
...

AR3 Gopt=1

Copt2=0

AR4 Iopt=0

AR2 G(0)
...

SQUR *AR5+, A
done: MPYA *AR3+

D

DSP54.8DSP54.8 - - 1919

Viterbi Decoding

DSP54.8DSP54.8 - - 2020

Viterbi Decoding

ChannelENCData
G0G1 DEC Data

G0G1
^ ^

! Know: Received data, and how the original data was encoded

! Need: Derive the original data from the received data using Viterbi decoding

! Viterbi: “Deriving the most likely path taken through a Viterbi trellis”

! Process: Establish path through trellis (using metric/penalties) to allow
 traceback to determine the original data that determined this path

Select
Max

Select
Max

Next
State

+T

+T

-T

-T

AH

AL

BH

BL

Prelim
Values

TRN

1. Get current state

Current
State

*ptr

*ptr

Procedure

2. Add/sub metric
 (T)

3. Compare and
 select min/max

4. Note which path
 was taken (TRN)

Additional Information

DSP54x - Application Specific Instructions 8 - 17

DSP54.8DSP54.8 - - 2121

Viterbi Decoding

Use ABDST/SQDST to determine metric

D-cod:D-cod: LDLD *AR2,T*AR2,T T = MetricT = Metric

CMPSCMPS B, *AR3+B, *AR3+ (J+8)=max(BH,BL), etc(J+8)=max(BH,BL), etc

CMPSCMPS A, *AR4+A, *AR4+ (J)=max(AH,AL), etc(J)=max(AH,AL), etc

DSADTDSADT *AR5+, B*AR5+, B BH=(2*J)-M, BL=(2*J+1)+MBH=(2*J)-M, BL=(2*J+1)+M

DADSTDADST *AR5, A*AR5, A AH=(2*J)+M, AL=(2*J+1)-MAH=(2*J)+M, AL=(2*J+1)-M

DSP54.8DSP54.8 - - 2121

Select
Max

Select
Max

Next
State

+T

+T

-T

-T

AH

AL

BH

BL

Prelim
Values

TRN

1. Get current state

Current
State

*ptr

*ptr

Procedure

2. Add/sub metric
 (T)

3. Compare and
 select min/max

4. Note which path
 was taken (TRN)

Determining Metrics

DSP54.8DSP54.8 - - 2222

Absolute and Square Distance

ABDST Xmem, Ymem : Absolute Distance

B + = | AH |

AH = Xmem - Ymem

SQDST Xmem, Ymem : Square Distance

B + = AH2

AH = Xmem - Ymem

DSP54.8DSP54.8 - - 2222

Additional Information

8 - 18 DSP54x - Application Specific Instructions

Polynomial Evaluation

DSP54.8DSP54.8 - - 2323

Polynomial Evaluation

P(x) = a3x3+ a2x2 + a1x + a0

The general form of a 3rd order polynomial equation can be written as:

The equation can be rewritten as:

P(x) = [(a3x+ a2)x + a1]x + a0

POLY is used to evaluate real algebraic polynomials of any order.

This process can be extended to any order polynomial

DSP54.8DSP54.8 - - 2323

DSP54.8DSP54.8 - - 2424

Polynomial Evaluation

SSBX FRCT
SSBX OVM
SSBX SXM

LD *AR4+,T
LD *AR3+,16,A
LD *AR3+,16,B

RPT #2
POLY *AR3+

STH A,*AR2+

Note: The POLY instruction “expects” Q15 numbers!

A parallel load may be added to do iterative POLY operations with no penalty.

|| LD *AR4+,T T=new x

POLY operation is affected by these bits

T=X(0)
A=A(order)=PX init
B=A(order-1)

3 times
A=PX=Rnd(B+A*T) B=An<<16

PX=A>>16

DSP54.8DSP54.8 - - 2424

DSP54x - Managing Interrupts 9 - 1

Managing Interrupts

Introduction
Handling interrupts in a timely fashion is what makes a system real-time. You need to know what
to set up, how interrupts are recognized and what to do when an interrupt is taken. It is not
difficult, but you must complete each step in the process.

Learning Objectives

DSP54.9DSP54.9 - - 22

Objectives

! Identify interrupt sources.

! Identify the requirements for interrupt recognition.

! Describe the sequence of events during an interrupt.

DSP54.9DSP54.9 - - 22

Module Topics

9 - 2 DSP54x - Managing Interrupts

Module Topics

Managing Interrupts ... 9-1

Module Topics ... 9-2

Interrupt Timeline ... 9-3

Interrupt Locations.. 9-4

Creating VECTORS.ASM.. 9-5

Interrupt Mask Register... 9-6

Global Interrupt Bit... 9-7

Interrupt Sources... 9-8

Interrupt Recognition .. 9-9

Interrupt Flag Register.. 9-10

Post Interrupt Hardware Sequence ... 9-11
Context Saves and Restores .. 9-11
Return Instructions.. 9-12

Nesting Interrupts.. 9-13

Relocating the Vector Table .. 9-14

Software Interrupts.. 9-15

Hardware State on Reset... 9-16

The Timer .. 9-17

Review ... 9-18

LAB9 – Managing Interrupts ... 9-19

LAB9A - Procedure ... 9-20
File Management .. 9-20
Edit VECTORS.ASM,LAB9A.ASM... 9-20
Verify that Interrupts Work... 9-21
Modify Block FIR Code ... 9-21
Verify Results ... 9-21

LAB9-B Procedure .. 9-22

Solutions.. 9-23

Interrupt Timeline

DSP54x - Managing Interrupts 9 - 3

Interrupt Timeline

DSP54.9DSP54.9 - - 33

Interrupt Timeline

1. Select interrupt sources

2. Create interrupt vector table

3. Enable individual interrupts

4. Enable Global Interrupts

I
N
I
T

8. Context save/ISR/context restore
9. Return to main program

I
S
R

C
P
U

5. Valid signal

6. Flag bit set

7. Int enabled? branch to ISR

DSP54.9DSP54.9 - - 33

Interrupt Locations

9 - 4 DSP54x - Managing Interrupts

Interrupt Locations

DSP54.9DSP54.9 - - 44

1. ‘C5409 Interrupt Locations
DescriptionInterrupt Offset (Hex) Priority

00

04

40

44

48

4C

50

54

58

5C

60

64

08-3C

Reset

Nonmaskable Int

Ext’l Int #0

Ext’l Int #1

Ext’l Int #2

Timer Int

HPI Int

RS

NMI

INT0

INT1

INT2

TINT

BRINT0

BXINT0

BRINT2/DMAC0

BXINT2/DMAC1

INT3
HINT

SINT17-30 S/W Int 17-30

1

2

3

4

5

6

7

8

9

10

11

12

--

68 McBSP #1 Rcv Int/DMA Ch2 IntBRINT1/DMAC2 13

6C McBSP #1 Xmt Int/DMA Ch3 IntBXINT1/DMAC3 14

70 DMA Ch4 Int DMAC4 15

74 DMA Ch5 IntDMAC5 16

78-7F ReservedReserved --

McBSP #0 Rcv Int

McBSP #0 Xmt Int

McBSP #2 Rcv Int/DMA Ch0 Int

McBSP #2 Xmt Int/DMA Ch1 Int

Ext’l Int #3

DSP54.9DSP54.9 - - 44

Different devices may have different interrupt tables. Be sure to check your documentation.

Creating VECTORS.ASM

DSP54x - Managing Interrupts 9 - 5

Creating VECTORS.ASM

DSP54.9DSP54.9 - - 55

2. Creating VECTORS.ASM

 .sect “vectors”
RSV: BD Reset

STM #STK+LEN,SP

NMV: Put NMI
routine here …

...

IV1: BD ISR1
PSHM ST0
PSHM ST1

IV2: BD ISR2
PSHM ST0
PSHM ST1
...

! Each vector is always
4 words long

! Unused vectors:

IVn: BD IVn
NOP
NOP

IVn: BD Uh_oh
NOP
NOP

Debug

Production

DSP54.9DSP54.9 - - 55

Remember that each location is at a specific address. You must make sure that you precisely
locate each vector at the proper address.

Unused vectors can present interesting ways to cost yourself debugging time. If, for example, the
solder joint that ties INT2 to a pull-up has a crack in it and the interrupt vector for INT2 contains
NOPs ... one day that crack will open, INT2 might get taken and the CPU would execute the
NOPs and succeeding code. This probably wouldn’t be what you expected!

Interrupt Mask Register

9 - 6 DSP54x - Managing Interrupts

Interrupt Mask Register

DSP54.9DSP54.9 - - 66

3. Enable Individual Interrupts

BRINT2 BXINT0 BRINT0 TINT INT2 INT1 INT0BXINT2

Rsvd DMAC5 DMAC4 BXINT1 BRINT1 HINT INT3Rsvd

01234567

89101112131415

IMR (Interrupt Mask Register)

;disable: 0

;enable: 1

set: STM #102h,IMR

modify: ORM #40h,*(IMR)

ANDM #0FFBFh,*(IMR)

DSP54.9DSP54.9 - - 66

Global Interrupt Bit

DSP54x - Managing Interrupts 9 - 7

Global Interrupt Bit

DSP54.9DSP54.9 - - 77

4. Enable Global Interrupts (INTM)

INTM
01112

ST1
1015

enable: RSBX INTM ;0

disable: SSBX INTM ;1

! Does not affect bits in IMR

! INTM=1 (disabled) at reset

DSP54.9DSP54.9 - - 77

The IMR is “the big switch” for interrupts.

Interrupt Sources

9 - 8 DSP54x - Managing Interrupts

Interrupt Sources

DSP54.9DSP54.9 - - 88

5. ‘C5409 External Interrupt Pins/Signals

! 4 maskable external
interrupts (INT0-3)

! 2 non-maskable
external interrupts
(NMI, RESET)

! Interrupt acknowledge
(IACK)

'C5409

RESET

INT0-3

NMI

IACK

RecommendationRecommendation

!! Do Do notnot use NMI as a high-priority interrupt. Because the state of INTM use NMI as a high-priority interrupt. Because the state of INTM
is not saved, returning to main code from an NMI could result in undesiredis not saved, returning to main code from an NMI could result in undesired
behavior. behavior.

!! Use NMI only when you do not intend to return to main code.Use NMI only when you do not intend to return to main code.
DSP54.9DSP54.9 - - 88

Since NMI doesn’t save the state of INTM and it can interrupt main code, ISRs and itself, where
to return to can become ambigous.

DSP54.9DSP54.9 - - 99

5. ‘C5409 Internal Interrupt Signals

! Software RESET does not set
IPTR to 1FFh

! McBSP channel 0 rcv & xmit

! McBSP channels 1 & 2 rcv &
xmit shared with DMA
channels 0 - 3

! DMA channels 4 & 5

! Host Port Interface

! Timer

'C5409

DM As

SW Reset

SW INTs

DSP54.9DSP54.9 - - 99

M cBSPs

HPI
Timer

Interrupt Recognition

DSP54x - Managing Interrupts 9 - 9

Interrupt Recognition

DSP54.9DSP54.9 - - 1010

Recognizing Interrupts

! External interrupts must meet the timing shown

! IFRbit must be set to: “1”

! IMRbit must be enabled: “1”

! INTM must be enabled: “0”

What events/conditions are required to recognize an interrupt?

INTx

INTy

11

00

11

(IFR)

"Latch"

(IMR)

"Switch"

(INTM)

"Big Switch"

’54xx

core

22

33

DSP54.9DSP54.9 - - 1010

Interrupt Flag Register

9 - 10 DSP54x - Managing Interrupts

Interrupt Flag Register

DSP54.9DSP54.9 - - 1111

6. Pending Interrupts

! Writing a “0” to any IFRbit does nothing

! IFR zeroed on reset

BRINT2 BXINT0 BRINT0 TINT INT2 INT1 INT0BXINT2

Rsvd DMAC5 DMAC4 BXINT1 BRINT1 HINT INT3Rsvd

01234567

89101112131415

IFR (Interrupt Flag Register)

;interrupt pending: “1”

clear_INT1: ST #1,*(IFR)

DSP54.9DSP54.9 - - 1111

Notice that the IMR and IFR are identical in layout. That makes coding a little easier.

Post Interrupt Hardware Sequence

DSP54x - Managing Interrupts 9 - 11

Post Interrupt Hardware Sequence

DSP54.9DSP54.9 - - 1212

CPU Action Description

1 1 →→→→→→→→ INTM INTM Disable global interruptsDisable global interrupts

7. Post Interrupt Hardware Sequence

PC →→→→ - - *(SP) Push PC onto predecremented stack

Vector(n) →→→→ PC Load PC with int. vector “n” address

0 0 →→→→→→→→ IACK pin IACK pin IACK signal goes lowIACK signal goes low

0 →→→→ IFR (n) Clear corresponding interrupt flag bit

Minimum interrupt latency is 7 cycles from a synchronous interrupt event to the
fetch of the first ISR instruction. Add 2-3 cycles for an external interrupt.

DSP54.9DSP54.9 - - 1212

The CPU does these things automatically.

Context Saves and Restores

DSP54.9DSP54.9 - - 1313

8. Context Save & Restore Instructions

Instruction Description

PSHM mmr

POPM mmr

Push MMR onto Stack
SP - 1 →→→→ SP

Pop from Stack to MMR
SP + 1 →→→→ SP

PSHD Smem

POPD Smem

Push Data memory value onto Stack
SP - 1 →→→→ SP

Pop top of Stack to Data memory
SP + 1 →→→→ SP

FRAME K
Modify Stack Pointer
SP + K →→→→ SP

Restore registers in the opposite order in which they were saved

DSP54.9DSP54.9 - - 1313

Then, since you have no idea when or where this routine may run, you should save all registers
you touch, especially ST0 and 1 which contain important information about the processor state.

Post Interrupt Hardware Sequence

9 - 12 DSP54x - Managing Interrupts

Return Instructions

DSP54.9DSP54.9 - - 1414

9. Return Instructions

Instruction Actions Cycles

RET[D] *(SP) ++ →→→→ PC
RET 5
RETD 3

RETE[D]
*(SP) ++ →→→→ PC
 0 →→→→ INTM -

RETE 5
RETED 3

RETF[D]
 RTN →→→→ PC
 0 →→→→ INTM -
*(SP) ++

RETF 3
RETFD 1

RINT0: RETFD

MVKD DRR0,*AR7+%

NOP

Using RETF[D]:Using RETF[D]:

!! 3-cycle ISR3-cycle ISR

!! No calls, no nestingNo calls, no nesting

DSP54.9DSP54.9 - - 1414

RETF depends on the RTN register. RTN will contain the last PC pushed to the stack, so you
can’t do any CALLs or nest any ISRs and still use RETF.

Nesting Interrupts

DSP54x - Managing Interrupts 9 - 13

Nesting Interrupts

DSP54.9DSP54.9 - - 1616

Nested Interrupts

; Nestable ISR . . .

 RSBX INTM

 STM #5,IMR

 PSHM IMR

SSBX INTM

POPM IMR

RETE

Save IMR

Enable only Interrupts 0 and 2

Enable Interrupts

Disable Interrupts INTM - =1

Restore IMR value

DSP54.9DSP54.9 - - 1616

In this example we are only allowing two interrupts to interrupt this ISR. These ISRs might need
to be specially written with the knowledge that they are nested.

Relocating the Vector Table

9 - 14 DSP54x - Managing Interrupts

Relocating the Vector Table

DSP54.9DSP54.9 - - 1717

Relocating the Vector Table

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Interrupt
Vector

Address

Reset

IPTR

PMST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0

Interrupt
Vector

Number

1 1 1 1 1 1 1 1 1

M
P

/M
C

-
O

V
L

Y

A
V

IS
D

R
O

M

C
L

K
O

F
F

S
M

U
L

S
S

T

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0

4-word
align

DSP54.9DSP54.9 - - 1717

This is especially useful for bootloads where the interrupt vector table is contained in factory
programmed ROM. Chances are that it does not contain the code you’d like. Since you can’t
reprogram the ROM yourself (without $$’s) you’ll need to program the table in available OVLY
space and then point IPTR to this location.

Software Interrupts

DSP54x - Managing Interrupts 9 - 15

Software Interrupts

DSP54.9DSP54.9 - - 1818

Software Interrupts

INTR k

TRAP k

RESET

! k: interrupt number (see documentation)

! INTR = TRAP + disables INTM

! RESET instruction performs all tasks that a h/w reset does
except it does not set IPTR to all 1’s

DSP54.9DSP54.9 - - 1818

Operating systems make extensive use of software interrupts.

Hardware State on Reset

9 - 16 DSP54x - Managing Interrupts

Hardware State on Reset

DSP54.9DSP54.9 - - 1919

Hardware Reset
MathMath

0 0 →→→→→→→→ OVA/OVB/OVM OVA/OVB/OVM

0 0 →→→→→→→→ C16,ASM,FRCT C16,ASM,FRCT

1 1 →→→→→→→→ SXM,C SXM,C

MiscMisc

0 0 →→→→→→→→ BRAF BRAF

0 0 →→→→→→→→ DP, CPL DP, CPL

1 1 →→→→→→→→ INTM INTM

PinsPins

1 1 →→→→→→→→ XF XF

0 0 →→→→→→→→ CLKOFF CLKOFF

0 0 →→→→→→→→ AVIS, HM AVIS, HM

MemoryMemory

0 0 →→→→→→→→ OVLY,DROM OVLY,DROM

? ? →→→→→→→→ MP/MC MP/MC

1FFh 1FFh →→→→→→→→ IPTR IPTR

! A[x]: driven to FF80h, D[16]: high impedance

! An internal reset is sent to the peripherals.

! Seven CLKOUT cycles after RS- is released the
processor will fetch from 0FF80h

DSP54.9DSP54.9 - - 1919

The Timer

DSP54x - Managing Interrupts 9 - 17

The Timer

DSP54.9DSP54.9 - - 2020

Timer Operation

TIM/1

PRD/1

PSC

TDDR

TCR/1

03015

69015

20-bit Timer

TCR
Timer Control

- start/stop/reload

Timer When TIM/PSC = 0:When TIM/PSC = 0:
!! Generate CPU Generate CPU intint (TINT) (TINT)

!! TOUT goes activeTOUT goes active

!! PRD/TDDR TIM/PSCPRD/TDDR TIM/PSC

TINT0/1
TOUT0/1

! 20-bit s/w programmable down-counting timer

TINT rate =
1

CLKOUT x (TDDR+1) x (PRD+1)

! TIM: Timer
! PRD: Period
! PSC: Prescaler
! TDDR: Timer Divide Down Ratio
! ‘5402 includes 2 timers

DSP54.9DSP54.9 - - 2020

The timer is running on Reset.

DSP54.9DSP54.9 - - 2121

Timer Registers

! At reset, the timer is running.

1. TCRTSS = 1 (stop timer), TCRTRB = 1, TDDR = desired value

2. Initialize PRD to desired value

3. TCRTSS = 0 (start timer)

!! Startup ProcedureStartup Procedure

TIM/1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC TDDR

S
o
f
t

F
r
e
e

Reserved
T
R
B

T
S
S

015

TSSTSS
0: run, 1: stop0: run, 1: stop

TRBTRB

1: PRD 1: PRD →→→→→→→→ TIM TIM

 TDDR TDDR →→→→→→→→ PSC PSC

PRD/1
015

TCR/1

DSP54.9DSP54.9 - - 2121

It is usually not important to program TIM since you have no idea “when” you’re programming
it.

Review

9 - 18 DSP54x - Managing Interrupts

Review

DSP54.9DSP54.9 - - 2222

Review

1. What are the interrupt sources?

2. How do you poll for interrupts?

3. What must you set up to respond to an interrupt?

4. What conditions affect interrupt latency?

DSP54.9DSP54.9 - - 2222

Review

DSP54x - Managing Interrupts 9 - 19

LAB9 – Managing Interrupts

Objective
The objective of this lab is to modify your assembly routine to be an ISR. An infinite loop will be
interrupted at specific intervals by the timer and the ISR will write one new result each time. The
lab requires you to set up the proper registers to enable interrupts and generate a timer interrupt as
well as create an interrupt vector for the timer ISR.

DSP54.9DSP54.9 - - 2424

LAB9 - Managing Interrupts
1. Convert your previous assembly routine to an ISR

2. Set up timer registers to generate an interrupt

3. Set up interrupt registers to respond to timer interrupt

4. Modify VECTORS.ASM to add a new vector

5. Modify current assembly code to output 1 new result
 each time the ISR is invoked

6. Graph results to verify

Time: 60 minutes

DSP54.9DSP54.9 - - 2424

LAB9A - Procedure

9 - 20 DSP54x - Managing Interrupts

LAB9A - Procedure

File Management
1. Create a project called LAB9A.

2. Copy LAB8A.ASM to LAB9A.ASM.

3. Copy LAB8A.CMD to LAB9A.CMD and modify as necessary.

4. Add the appropriate files to your project. Double check your tool options and project options
to make sure they are set as you like.

Edit VECTORS.ASM,LAB9A.ASM
5. Open VECTOR9.ASM and copy the contents to your clipboard. Open VECTORS.ASM for

editing and paste the contents of the clipboard after your code. Delete the first few lines of the
pasted information to make sure you have 4 AND ONLY 4 words in each vector. How many
words is a “B start” instruction? Modify this file to invoke your block FIR routine as an
ISR based on the occurrence of TINT. Make sure the label fir is visible to your program.
Save your work. Close VECTOR9.ASM.

6. Open LAB9A.ASM for editing. Modify your code to make fir visible to VECTORS.ASM.
Just before your call to the fir routine, write the necessary instructions to set up the timer with
the following values:

 TCR = 30h (auto-reload TIM/PSC and stop timer)

 PRD = 30h

 TCR = 20h (start timer)

7. Below your timer setup code (prior to the call to fir), write the necessary instructions to
respond to the timer interrupt (TINT). Also, write an instruction to clear any pending
interrupts prior to turning on global interrupts. This is a good programming practice just in
case a spurious interrupt occurred between reset and enabling global interrupts. If one did
occur, as soon as you enabled INTM-, you’d service the interrupt.

8. Comment out or remove the call to fir.

9. Replace your infinite loop “here: B here” with the following instructions:

 main: ADD #1,A

 ADD #1,B

B main

 This will be the endless loop that gets interrupted to run your fir ISR.

LAB9A - Procedure

DSP54x - Managing Interrupts 9 - 21

Verify that Interrupts Work
10. Build LAB9A. You have not modified the block FIR routine yet to actually give you correct

results, but you must ensure that interrupts are working properly before taking this step.

11. Set a breakpoint on the label at the beginning of your fir routine. Then type RUN or click the
Run button on the vertical toolbar to run your code. Does the simulator stop at your fir
routine? If not, interrupts are NOT working. Debug, rebuild and re-simulate until the
debugger stops at fir. There is no other way for the code to find your fir routine except via the
interrupt. Once you have guaranteed that your interrupt setup code is working correctly, you
can now modify the fir routine itself.

Modify Block FIR Code
12. Now that your interrupt setup code is working, you can make a few more modifications to the

FIR code. We want the ISR to write one (1) result each time the interrupt occurs. Also, we
want to re-enable interrupts when returning from the ISR.

13. Remove the breakpoint.

14. Delete or comment out the RPTB instruction and RPTB loop setup code.

15. Modify the RET instruction to use “return from an ISR”.

16. Do not concern yourself with context save/restore yet. You might have noticed that the main
routine that is interrupted is using accumulators A and B and you are likely overwriting these
registers in the ISR. This is a no-no that we’ll fix in LAB9B.

17. What else needs to change? Two issues are left: (1) how do you ensure that only 185 results
will be written? Somehow, we need to turn off interrupts when 185 of them have been taken.
(2) the setup code for fir will be run each time the interrupt occurs. This won’t work because
the pointers will be reset each time the ISR is invoked. Let’s solve the 2nd problem first. The
first issue has been left for LAB9B (if you make it that far…)

18. Change your fir label to point to the first math instruction (the first ADD if you’re using FIRS
or the first multiply if you’re not using FIRS). Use another label at the top of the fir setup
code and place a RET instruction at the end of this setup code. Just before your timer setup
code, write a call to the fir setup code. Now, the setup code will only be executed once.

Verify Results
19. Build LAB9A. Set a breakpoint on the STH instruction at the end of your ISR (the store to y).

Set your memory window to view the contents of memory starting at the address of y. Hit the
Run button a few times and see the results being written to y. Does it look correct? If not,
debug, rebuild and simulate.

20. When you think your code is working correctly, remove your breakpoint and reset the
simulator. On the command line type: RUN 4000

21. This will generate ~185 outputs. Graph your results.

22. If you’re done with LAB9A and you still have some time left, move on to LAB9B.

LAB9-B Procedure

9 - 22 DSP54x - Managing Interrupts

LAB9-B Procedure
1. Open LAB9A.ASM for editing.

2. Determine a way to STOP recognizing interrupts when exactly 185 results have been written
to y. Run your code (NOT using RUN 4000) and verify it worked. Explain your method to
the instructor.

3. Now, add the proper context save/restore code to your ISR. Any registers you use or modify
in the fir code should be pushed to the stack and then popped just before you return. You
might want to put the save of ST0 and ST1 inside the Timer Interrupt Vector. Don’t forget to
use BD and .mmregs .

4. How will you deal with the AR registers used in the math code that need to keep updating
each time the ISR is executed? Write the code and verify your results. Explain your solution
to the instructor.

5. If you’ve gotten this far, you’re hot. Change your code to respond to INT3- instead of
TINT.

6. If you’ve gotten here, you’re REALLY hot. Write your ISR in C and verify your results.

Solutions

DSP54x - Managing Interrupts 9 - 23

Solutions

DSP54.9DSP54.9 - - 2323

Review

1. What are the interrupt sources?

2. How do you poll for interrupts?

3. What must you set up to respond to an interrupt?

4. What conditions affect interrupt latency?

Reset, NMI, Timers, Serial Ports, DMA, External, Software

Test the appropriate bit in IFR, then branch to ISR if TC set

INTM-, IMR, SP and a vector

Higher priority interrupts, IMRbit=0, processor is in
hold mode, INTM = 1, memory speed, Not READY, ...

DSP54.9DSP54.9 - - 2323

DSP54.9DSP54.9 - - 2626

LAB9A.ASM - Solution
.mmregs
.def start,fir

STKLEN .set 100

a .usect "coeffs",16,1
y .usect "result",200
BOS .usect "STK",STKLEN

.sect "init"
table .int 7FCh,7FDh,7FEh,7FFh
 .int 800h,801h,802h,803h
 .int 803h,802h,801h,800h
 .int 7FFH,7FEH,7FDH,7FCH

.sect "indata"
x .copy "in6.dat"

.sect "code"
start: STM #BOS+STKLEN,SP ;setup stack pointer
 STM #0,SWWSR ;set ext'l wait state to zero
 LD #0,DP ;set SST bit (saturate on store)

ORM #1,@PMST
SSBX FRCT ;set FRCT bit (fractional mode)
RSBX OVM ;clr OVM bit (overflow mode)
SSBX SXM ;set SXM bit (sign extension)

DSP54.9DSP54.9 - - 2626

Solutions

9 - 24 DSP54x - Managing Interrupts

DSP54.9DSP54.9 - - 2727

LAB9A.ASM - Solution (continued)
CALL fir_setup ;setup pointers for fir ISR

STM #30h,TCR ;auto reload TIM/PSC, stop timer
STM #30h,PRD ;init period to 30 cycles
STM #20h,TCR ;start timer

STM #0FFFFh,IFR ;clear any pending interrupts
STM #8,IMR ;enable TINT bit in IMR
RSBX INTM ;turn ON global interrupts

main: ADD #1,A
ADD #1,B
B main

.asg AR2,TOP
.asg AR3,BOTTOM
.asg AR4,RESULTS

fir_setup:
STM #x+15,BOTTOM ;setup ARs for MAC
STM #x,TOP
STM #y,RESULTS
STM #-8,AR0
RET

DSP54.9DSP54.9 - - 2727

DSP54.9DSP54.9 - - 2828

LAB9A.ASM - Solution (continued)
fir: PSHM AL ;context save

PSHM AH
PSHM AG
PSHM BL
PSHM BH
PSHM BG

ADD *TOP+,*BOTTOM-,A ;prime FIRS w/add of two data values
 RPTZ B,#7 ;execute FIRS 8 times (16 products)
 FIRS *TOP+,*BOTTOM-,#table

MAR *TOP+0
MAR *+BOTTOM(#10)
STH B,*RESULTS+ ;store result

POPM BG ;context restore
POPM BH
POPM BL
POPM AG
POPM AH
POPM AL
POPM ST1 ;pushed in vectors.asm
POPM ST0

done: RETE ;return from interrupt

DSP54.9DSP54.9 - - 2828

Solutions

DSP54x - Managing Interrupts 9 - 25

DSP54.9DSP54.9 - - 2929

VECTORS.ASM - Solution
 .def rsv

.ref start,fir

 .sect "vectors"

rsv: B start
RETE
RETE

 RETE ;Non-maskable Interrupt Vector
 RETE
 RETE
 RETE

. . .

 RETE ;Software Interrupt 18 Vector
 RETE
 RETE
 RETE

 BD fir ;Timer Interrupt Vector
 PSHM ST0

PSHM ST1

DSP54.9DSP54.9 - - 2929

Solutions

9 - 26 DSP54x - Managing Interrupts

DSP54x - Setting Up and Using Peripherals 10 - 1

Setting Up and Using Peripherals

Introduction
Advanced C54x devices have some combination of the following three peripherals on them; the
DMA, the EHPI and the McBSP. In this module we’ll step through the capabilities of each and
delve into getting them set up for use.

Learning Objectives

DSP54.10DSP54.10 - - 22

Objectives

!!Analyze how the DMA Analyze how the DMA operatesoperates

!!Understand the Understand the basic setupbasic setup required to use required to use
the DMA to perform a taskthe DMA to perform a task

!!Describe the DMA’s Describe the DMA’s additional capabilitiesadditional capabilities

DSP54.10DSP54.10 - - 22

Module Topics

10 - 2 DSP54x - Setting Up and Using Peripherals

Module Topics

Setting Up and Using Peripherals .. 10-1

Module Topics ... 10-2

The DMA ... 10-3
Registers.. 10-4
Throughput.. 10-5
Example .. 10-6
Other DMA Issues .. 10-6

The McBSP.. 10-7
Capabilities ... 10-8
Example .. 10-8
Sample Rate Generator ... 10-9
Multi-Channels ... 10-9
Example .. 10-10
Other McBSP Capabilities .. 10-10

The EHPI... 10-11
EHPI Operation... 10-12
Other EHPI Issues... 10-12

Some Additional Information .. 10-14
Setting Up a DMA Transfer.. 10-14

The DMA

DSP54x - Setting Up and Using Peripherals 10 - 3

The DMA

DSP54.10DSP54.10 - - 33

DMA - Intro
! We used the “.copy” directive to load the input samples

into simulated internal memory.

! In a real system, the DMA would perform this operation via
EMIF or a serial port using it’s own buses:

Debugger

.copy

DMA

Input Data

serial or parallel

Memory

internal/external

Let’s see how the
DMA performs

it’s tasks...

DSP54.10DSP54.10 - - 33

DSP54.10DSP54.10 - - 44

Direct Memory Access (DMA)
! Performs data transfers without CPU intervention

!! TerminologyTerminology
- Element: basic unit of transfer (1, 2 words)
- Frame: multiple elements (1-64K)
- Block: multiple frames (1-256)

SRC addr DST addr

SOURCESOURCE DESTDEST

!! Transfer dependent upon:Transfer dependent upon:
- Source/destination address- Source/destination address
- Rotating priority between channels- Rotating priority between channels
- Event sync (different events can be selected)- Event sync (different events can be selected)
- Element/Frame count- Element/Frame count
- Index (can select: no mod, - Index (can select: no mod, incinc//dec dec by 1, element/frame index)by 1, element/frame index)

!! Max Speed:Max Speed: One 16-bit word per 4 CPU cycles (all channels combined) One 16-bit word per 4 CPU cycles (all channels combined)

Element 1
Element 2
Element 3
Element 4

Frame 1
Frame 2
Frame 3
Frame 4

DSP54.10DSP54.10 - - 44

The DMA

10 - 4 DSP54x - Setting Up and Using Peripherals

Registers

DSP54.10DSP54.10 - - 55

DMA Channels 0-5

DMA Registers, Resources

Source Destination

Elem Count Frame Count

Elem Index Frame Index

Control Status

DE[5:0] Enable/disable channels
INTOSEL Interrupt Multiplex Control
DPRC Channel Priority (Hi or Low)
Free Emulation Control

EHPI

EHPI
Auxiliary
Channel

DSP54.10DSP54.10 - - 55

DMA “Resources”

PeripheralsPeripherals

Ext’l MemExt’l Mem

SARAMSARAM

DARAMDARAM

DMPREC Register

14 7 5

DE[5:0]INTOSELDPRC[5:0]Free
0613 8

Rsvd
15

Currently only the 5409, 5410 and 5421 support external DMA accessesCurrently only the 5409, 5410 and 5421 support external DMA accesses

DMA
Bus

DSP54.10DSP54.10 - - 66

DMA Registers

DSP54.10DSP54.10 - - 66

DMSFC (Sync Event and Frame Count)DMSFC (Sync Event and Frame Count)

1515 88

rsvdrsvd Frame CountFrame Count
007710101111

DBLWDBLWDSYN[3:0]DSYN[3:0]
1212

! Frame Count: N-1 (N is desired # of frames)

! DBLW: Double-word mode (0: 16-bit, 1: 32-bit)

! DSYN: DMA sync event (refer to spec for details)

DMMCR (Transfer Mode Control)

15 5

DMD
041011

DINDrsvdDMSSINDrsvdAUTOINIT
8 7 6 2 1

! DMD: Destination Address Space (Program, Data, I/O)

! DIND: Destination Index (none, +, -, elem/frame index)

! DMS: Source Address Space (Program, Data, I/O)

! SIND: Source Index (none, +, -, element/frame index)

The DMA

DSP54x - Setting Up and Using Peripherals 10 - 5

DSP54.10DSP54.10 - - 77

Writing to the DMA Registers

DSP54.10DSP54.10 - - 77

DMSRCnDMSRCn

DMDSTnDMDSTn

DMCTRnDMCTRn

DMSFCnDMSFCn

DMMCRnDMMCRn

Source Address

Destination Address

Element Count

Sync Event, Frame Count

Transfer Mode Control

! Writing to DMA registers is a multi-step process using
sub-bank addressing

DMSA

DMSDN

DMSDI

Sub-bank Address
Data Register
Data Register
with auto-increment

! Using sub-bank addressing with auto-increment

DMSRC0 .set 00h

 STM DMSRC0,DMSA ;init DMSA to pt to DMSRC0

 STM #1000h,DMSDI ;write 1000h to DMSRC0

 STM #2000h,DMSDI ;write 2000h to DMDST0

…etc.

Throughput

DSP54.10DSP54.10 - - 88

DMA Throughput

Ch-3

Ch-2

Ch-0

High

Ch-5

Ch-4

Ch-1

Low Low serviced when highLow serviced when high::

- waiting for event sync- waiting for event sync

- transfers are complete- transfers are complete

!! DPRC[5:0]DPRC[5:0]: determines DMA bus priority between channels: determines DMA bus priority between channels

- (hi-1, low-0) Affects access to the 16-bit DMA bus only- (hi-1, low-0) Affects access to the 16-bit DMA bus only

- Can select high or low rotating priority (per element transfer):- Can select high or low rotating priority (per element transfer):

DSP54.10DSP54.10 - - 88

! Priority Access to
Data Buses:

HPI
DMA (Hi)
DMA (Lo)

CPU

highest

lowest

The DMA

10 - 6 DSP54x - Setting Up and Using Peripherals

Example

DSP54.10DSP54.10 - - 99

Example: Auto-Init and Sync Events

DSP54.10DSP54.10 - - 99Refer to the documentation for a complete list of the DMA registers

A/D
McBSP

DRR

DMA Ch0

DMSRC0=DRR

DMDST0=80h

1E57

2089

F57B

...

DEAD

80h

8Fh

Sync event

RRDY = 1

DMCTR0=16

DMSFC0=00h
DMGSA=DRR

DMGDA=80h

DMGCR=16

DMGFR0=00h

Global Reload Regs

Int to CPU

! Selected sync event (e.g. RRDY=1) triggers element transfer
(e.g. from DRR to 80h)

! Interrupt can occur at end of frame or end of frame/block

! DMA channel registers reloaded from reload regs at end of
block transfer IF auto-init enabled.

! Example shown transfers 16 values from DRR to the same
memory locations every frame

Other DMA Issues

DSP54.10DSP54.10 - - 1010

Other DMA Issues

DSP54.10DSP54.10 - - 1010Refer to the documentation for a complete list of the DMA registers

!! Auto-InitializationAuto-Initialization::

 - At end of block, DMA copies reload registers to channel registers - At end of block, DMA copies reload registers to channel registers

 - Only ONE set of re-load registers exist for all 6 channels - Only ONE set of re-load registers exist for all 6 channels

 - Reload registers can be altered at any time - Reload registers can be altered at any time

 - Every channel can select to use auto- - Every channel can select to use auto-init init and reload registersand reload registers

 - Allows user to provide “continuous” or “ - Allows user to provide “continuous” or “repititiousrepititious” operation” operation

!! Interrupt to CPUInterrupt to CPU (one interrupt per channel) (one interrupt per channel)

- Triggered at: a) end of frame; b) end of frame and end of block- Triggered at: a) end of frame; b) end of frame and end of block

- Duplicates C54x ABU when selected (half/full buffer or full buffer) - Duplicates C54x ABU when selected (half/full buffer or full buffer)

!! Synchronization EventsSynchronization Events

- DMA ELEMENT transfer is triggered by a specific sync event- DMA ELEMENT transfer is triggered by a specific sync event

- Example: DRR ready to read tells DMA to ready next value- Example: DRR ready to read tells DMA to ready next value

- Up to 16 sync events - see datasheet for details- Up to 16 sync events - see datasheet for details

The McBSP

DSP54x - Setting Up and Using Peripherals 10 - 7

The McBSP

DSP54.10DSP54.10 - - 1111

Objectives

!!Analyze how the Analyze how the McBSPMcBSP operatesoperates

!!Understand the Understand the basic setupbasic setup required to use required to use
the the McBSPMcBSP to perform a task to perform a task

!!Describe the Describe the McBSP’sMcBSP’s additional capabilitiesadditional capabilities

DSP54.10DSP54.10 - - 1111

DSP54.10DSP54.10 - - 1212

McBSP - Intro

! In the labs, we graphed the filter output buffer using CCS

! In a real system the output buffer could be transferred
to a serial device using the McBSP and DMA:

EF01

E23A

D6C5

Output buffer

Let’s see how the McBSP performs it’s tasks...

Serial device

Data
Clock
Frame Sync

DSP54.10DSP54.10 - - 1212

The McBSP isn’t buffered without the DMA

McBSPDMA

The McBSP

10 - 8 DSP54x - Setting Up and Using Peripherals

Capabilities

DSP54.10DSP54.10 - - 1313

McBSP

Multi-Channel Buffered Serial Port (McBSP)

DRR

XSR DXR

Event

CPU

DMA

RBRRSR

Clock
&

Frame
Control

Multi-Channel
Control

RINT

XINT

! Full duplex direct interface to codecs and other serial devices

! Max bit rate: 1/2 CPU Clock Rate

! Word length: 8-, 12-, 16-, 20-, 24-, 32-bit
! Frame length (between FS): 1-128 words

Let’s see an example... DSP54.10DSP54.10 - - 1313

DR

DX

CLKR
CLKX
FSR
FSX

Data

Bus

DMA

Bus

Example

DSP54.10DSP54.10 - - 1414

McBSP - Example

D

CLK

FS

A/D

w0w0w1w1w15w15

! Problem: transfer 16 16-bit words to SARAM, ext’l CLK/FS, no CPU int

PCR

10

CLKRMFSRM
015

0-external
1-internal

8

0-external
1-internal

SPCR
5 4 1

RRDYRINTM
015

CPU interrupt? DRR ready?
(not used) (not used)

RCR
8

RWDLEN1
015

8/12/16/20/24/32

5

1-128

RFRLEN1
714

(16) (16)

Operation

- Bit/CLKR shifted into RSR

- RSR """" RBR

- RBR """" DRR (RRDY=1)

- REVT sync event activates
 DMA (no McBSP setup)

- DMA transfers DRR
 to SARAM

…repeat

DR

CLKR

FSR

McBSP

DRR

REVT

DMA

0
1

...

15

SARAM

DSP54.10DSP54.10 - - 1414

The McBSP

DSP54x - Setting Up and Using Peripherals 10 - 9

Sample Rate Generator

DSP54.10DSP54.10 - - 1515

Sample Rate Generator

‘54xx

FSR
FSX

CLKR
CLKX

Sample Rate Generator (SRGR)

CLKSM

CLKGDV
CLKG

Framing FSG
CLKOUT

CLKS

! FPER: frame sync period (12 bits)

! FWID: frame sync pulse width (8 bits)

! CLKGDV: Divide input clk up to 255 (8 bits)

! Some devices will allow CLKR/X to drive CLKS internally

! CLKS not available on all 54xx devices

! FSGM: 0 - FS gen’d on every DXR XSR copy
 1 - FS gen’d by FSG

$

Multi-Channels

DSP54.10DSP54.10 - - 1616

The “Mc” - Multi-Channel

C
O
D
E
C

M
c
B
S
P

Ch0-0
Ch0-1

Ch5-0
Ch5-1

Ch27-0
Ch27-1

FrameFrame TDM Bit Stream

Ch0Ch0 Ch1Ch1 Ch31Ch31......00

Ch0Ch0 Ch1Ch1 Ch31Ch31......11

! Multi-channel mode controlled primarily via two registers:

MCR

Multi-channel Control Reg

- enables Mc-mode

R/XCER

Rec/Xmt Channel Enable Reg

- enable/disable channels

! Up to 32 out of a 128-channel stream can be enabled at one time.

TransmitTransmit
& &

ReceiveReceive
only only selectedselected

ChannelsChannels

“Mc”

!! Allows multiple channels (words) to be Allows multiple channels (words) to be independently independently selected for transmitselected for transmit
and receive. (Ex: only enable Ch0, 5, 27 for receive, then process via CPU)and receive. (Ex: only enable Ch0, 5, 27 for receive, then process via CPU)

! The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled - reduces processing/bus overhead.

DSP54.10DSP54.10 - - 1616

The McBSP

10 - 10 DSP54x - Setting Up and Using Peripherals

Example

DSP54.10DSP54.10 - - 1717

DMA Channel Sorting with McBSP

. . .

0
1
2

. . .

160
161
162

. . .

320
321
322

Channel

0

5

27

ExampleExample: Handle the data input from three: Handle the data input from three
 channels (0, 5, 27) of an E1 framer and place channels (0, 5, 27) of an E1 framer and place
 the data in the data in contiguous contiguous memory such thatmemory such that

 it can be block processed for voice coding. it can be block processed for voice coding.

Voice Voice codercoder: process 20ms frames at 8KHz = : process 20ms frames at 8KHz =
 160 samples/frame/channel 160 samples/frame/channel

ProcedureProcedure::
1. Set channel bits for 0, 5, 271. Set channel bits for 0, 5, 27
2. Element Count = 32. Element Count = 3
3. Frame Count = 1603. Frame Count = 160
4. Element Index = 1604. Element Index = 160
5. Frame index = -3195. Frame index = -319

ResultResult: 0, 160, 320, 1, 161, 321, 2, . . .: 0, 160, 320, 1, 161, 321, 2, . . .

Other McBSP Capabilities

DSP54.10DSP54.10 - - 1818

Other McBSP Capabilities
! Supports direct interface to: T1/E1 framers, MVIP/ST-Bus,

IOM-2, AC’97 (multi-phase), IIS, SPI

! µ-law/A-law companding in hardware (on receive and transmit)

! Internal clock/frame generation using the Sample Rate Generator (SRGR)

! Programmable polarity of clock/frame

! Digital Loopback (DLB): internally hooks xmt to rcv for debug

! CPU interrupts occur when: (R/XRDY=1, end of block/frame, new FS, error)

! Can delay first data bit after FS by 0, 1, 2 clk cycles (required by
some algorithms, only on transmit)

! All typical errors/status are reported

! McBSP pins can be configured as general-purpose I/O if desired

DSP54.10DSP54.10 - - 1818

All pins, registers and full explanations of these capabilities
can be found in the Peripheral User’s Guide

The EHPI

DSP54x - Setting Up and Using Peripherals 10 - 11

The EHPI

DSP54.10DSP54.10 - - 1919

Objectives

!!Describe Describe operationoperation of EHPI of EHPI

!!Understand the Understand the basic setupbasic setup required to use required to use
the EHPI to perform a taskthe EHPI to perform a task

!!Describe Describe additional capabilitiesadditional capabilities

DSP54.10DSP54.10 - - 1919

DSP54.10DSP54.10 - - 2020

Enhanced Host Port Interface (EHPI)
! ACCESS: 8/16-bit port access to 54x’s on-chip memory resources

! BOOT: Can boot load DSP’s internal memory during reset

! SPEED: 33MBytes/sec @ 100MHz (6 cycles/word, max)

! MODES: Multiplexed Address/Data, Non-multiplexed (A, D separate)

Host

Internal
Memory

EHPI

Let’s see how the EHPI operates... DSP54.10DSP54.10 - - 2020

The EHPI

10 - 12 DSP54x - Setting Up and Using Peripherals

EHPI Operation

DSP54.10DSP54.10 - - 2121

EHPI

EHPI Operation (non-multiplexed)

Host

A

D

Ctrl

DMA

HPICHPIC
ControlControl

HPIDHPID
DataData

yy

HPIAHPIA
AddrAddr

xx
DMA Bus

HA[x:0]

HD[y:0]

Control

HMODE
- multiplexed
- non-multi

HPIENA

! Hardware Setup
- Use HMODE to select multiplexed vs. non-multiplexed addr/data
- Tie HPIENA high to use EHPI

! Operation
- Host presents HA, HD and control (HCNTL0 picks HPID/HPIC access)
- EHPI sets up DMA to perform access, DMA reads/writes, next access

What else can
the EHPI do?

DSP54.10DSP54.10 - - 2121

Internal
Memory

Other EHPI Issues

DSP54.10DSP54.10 - - 2222

Other EHPI Issues

!! EHPI EHPI BootloadBootload during Reset during Reset
- hold device in reset, transfer data, release reset- hold device in reset, transfer data, release reset
- Host has full access to internal memory- Host has full access to internal memory

!! InterruptsInterrupts
- DSP to Host- DSP to Host
- Host to DSP- Host to DSP

!! Multiplexed Address/Data lines (Intel access)Multiplexed Address/Data lines (Intel access)

- Uses HD[15/7:0] only, shared address/data bus- Uses HD[15/7:0] only, shared address/data bus

! EHPI always has priority to DMA bus

DSP54.10DSP54.10 - - 2222

The EHPI

DSP54x - Setting Up and Using Peripherals 10 - 13

Some Additional Information

10 - 14 DSP54x - Setting Up and Using Peripherals

Some Additional Information

DSP54.10DSP54.10 - - 2424

DMA Channels and Registers

! Global Registers

! Channel Registers(0-5)

DMEDC DMA Channel Enable Control

DMCCR Channel Control Register

DMCCR2 Channel Control Register 2

DMMDP Main Data Page for src/des addr.

DMDRC Source Address Register

DMDST Destination Address Register

DMEC Element Count Register

DMFC Frame Count Register

DMEIDX Element Index Register

DMFIDX Frame Index Register

DSP54.10DSP54.10 - - 2424

Setting Up a DMA Transfer

DSP54.10DSP54.10 - - 2525

FieldField DescriptionDescription OptionsOptions Answer?Answer?

! Problem: - Transfer a block of pixels from Internal Memory to a DAC
 - Output via McBSP/DMA and sync transfer to D/A (ready)

Src: mem_8

16-bit pixels
(SARAM)

DMA

INT3

SIND/DIND Index Mode none, +, elem indx, frm indx

FS Elem/Frm Sync 0: Elem, 1: Frame

SRC/DST Port select SA/DARAM, EMIF

DSYN Sync Event 20 options

WDBRT Word Size 1, 2, 4, 8

EXT_INT4

frm indx/none

0

SARAM

1

DMSFC (Sync Event and Frame Count)

15 10 5 4713 11

WDBRT DIND DST FS DSYN
0689

SRCSIND
1214

Setting Up a DMA Transfer (SARAM to DAC)

What other registers need to be setup? DSP54.10DSP54.10 - - 2525

8 9 10

141516

20212223

17

11

Dest: DXR

DXRDXR
McBSPMcBSP

Ready

D/A
D

Some Additional Information

DSP54x - Setting Up and Using Peripherals 10 - 15

DSP54.10DSP54.10 - - 2626

DMA Transfer - Example

DMMDP

SRC MDPDST MDP
(load addr[22:16] only)

DMSRCDMSRC

SRC AddressSRC Address

DMDSTDMDST

DEST AddressDEST Address

DMECDMEC

Element CountElement Count

DMFCDMFC

Frame CountFrame Count

DMEIDXDMEIDX

Element IndexElement Index

DMFIDXDMFIDX

Frame IndexFrame Index

mem_8 DXR mem_8DXR

4 3 1 3

What additional capabilities might be useful?
DSP54.10DSP54.10 - - 2626

! Problem: - Transfer a block of pixels from SARAM to a D/A
 - Output via McBSP/DMA and sync transfer to D/A (ready)

SrcSrc: : memmem_8_8

16-bit pixels16-bit pixels
(SARAM)(SARAM)

DMADMA

EXT_INT4EXT_INT4

88 99 1010

141415151616

2020212122222323
1717
1111

DestDest: DXR: DXR

DXRDXR
McBSPMcBSP

ReadyReady

D/AD/A
DD

Some Additional Information

10 - 16 DSP54x - Setting Up and Using Peripherals

DSP54x - Mixing C and Assembly 11 - 1

 Mixing C and Assembly

Introduction
The most important aspect of using C in a Digital Signal Processor is mixing assembly into the C
runtime environment Parameter passing and register usage will be covered as well.

Learning Objectives

DSP54.11DSP54.11 - - 22

Objectives

! Understand the C Environment

! Run the Compiler

! Describe how to Mix C and Assembly

DSP54.11DSP54.11 - - 22

Module Topics

11 - 2 DSP54x - Mixing C and Assembly

Module Topics

Mixing C and Assembly .. 11-1

Module Topics ... 11-2

The C Run-time Environment .. 11-3
C Linker Command File ... 11-3
Compiling and Linking ... 11-4
The C Environment... 11-4
Status Register Expectations ... 11-5
Func.ASM... 11-5

Passing Parameters... 11-6
Accessing MMRS ... 11-7
Interrupts ... 11-7
Numerical Types ... 11-9
C Optimization Levels .. 11-9
Other C Stuff... 11-10

LAB11 – Mixing C and Assembly .. 11-11

Objective... 11-11

LAB11A - Procedure ... 11-12
Edit LAB11A.ASM ... 11-12
Build and Simulate.. 11-13

LAB11B – Procedure .. 11-15

Solutions.. 11-16

The C Run-time Environment

DSP54x - Mixing C and Assembly 11 - 3

The C Run-time Environment

DSP54.11DSP54.11 - - 33

C Run-time Environment

FuncFunc.C.C

intint funcfunc((intint a, a,intint b, b,intint c, c,intint d, d,intint e) e)
{{
 return(a + b + c + d + e); return(a + b + c + d + e);
}}

Main.CMain.C

int int funcfunc(int,(int,intint,,intint,,intint,,intint););

int y = 0;int y = 0;

void main (void)void main (void)
{ {
 y = y = funcfunc(1,2,3,4,5);(1,2,3,4,5);
}}

How are these
sections linked?

y (global) .bss

0 (init val) .cinit

code .text

DSP54.11DSP54.11 - - 33

C Linker Command File

DSP54.11DSP54.11 - - 44

MEMORY
{PAGE 0:
 VECS: org = 0xFF80, len = 00080h
 EPROM: org = 0xF000, len = 00F80h
 PAGE 1:
 DARAM: org = 0x0080, len = 04000h
 CROM: org = 0x8000, len = 01000h }

C Linker Command File

SECTIONS{

.text: > EPROM PAGE 0 /* code */

.cinit: > EPROM PAGE 0 /* global inits */

.bss: > DARAM PAGE 1 /* variables */

.stack: > DARAM PAGE 1 /* for SP */

vectors > VECS PAGE 0 /* vectors */

.const > CROM PAGE 1 /* const int x=25; */

.switch > EPROM PAGE 0 /* for case stmts */

.sysmem > DARAM PAGE 1 /* heap, dynamic mem */

}

DSP54.11DSP54.11 - - 44

The C Run-time Environment

11 - 4 DSP54x - Mixing C and Assembly

Compiling and Linking

DSP54.11DSP54.11 - - 55

Compile & Link

file1.cfile1.c

file.obj
-m

file.map

-ks
file.asm

Run-time
Library
(rts.lib)

Compiler
Optimizer

Assembler

-o

file.out

-o

file.out

-on Optimization levels

-z Invoke linker

Linker

Debug: -g -o

Full opt: -o3

file2.asmfile2.asm
-z

CL500 -g -s file1.cCL500 -gs file1.cCL500 -gs -o file1.cCL500 -gs -o file1.c file2.asmCL500 -gks -o file1.c file2.asm -z lnk.cmd

-o

Link.cmd

DSP54.11DSP54.11 - - 55

The C Environment

DSP54.11DSP54.11 - - 66

Boot.c in rts.lib

_c_int00:

Inititializing the C Environment...

! Initialize global and static variables

! Initialize C environment variables

! Setup stack (SP)

! Call _main

All symbols accessed by C require an underscore

On reset, how do you tell
the CPU to begin

execution at _c_int00?

;cvectors.asm

rsv: B _c_int00
.sect “vectors”

.ref _c_int00

DSP54.11DSP54.11 - - 66

The C Run-time Environment

DSP54x - Mixing C and Assembly 11 - 5

Status Register Expectations

DSP54.11DSP54.11 - - 77

Run-time Environment

ARP Auxiliary Reg Ptr 0 Yes
ASM ACC shift mode Yes
BRAF Block Rpt Active Flag No
C Carry bit Yes
C16 Dual 16-bit math 0 No
CMPT Compatibility mode 0 No
CPL Compiler mode 1 No
FRCT Fractional mode 0 No
OVA/B ACC Overflow flags Yes
OVM Overflow mode 0 *
SXM Sign-extension mode Yes
SMUL Saturate/multiply *
TC Test Control flag Yes

Presumed
STx Bits Name Value Modified

DSP54.11DSP54.11 - - 77

! If the user modifies a “presumed value”, this value must be
restored by the function

! * - for intrinsics only

Func.ASM

DSP54.11DSP54.11 - - 88

Writing Func.ASM

FuncFunc.C.C

intint funcfunc((intint a, a,intint b, b,intint c) c)
{{
 return(a + b + c); return(a + b + c);
}}

Main.CMain.C

int int funcfunc(int,(int,intint,,intint););

intint y = 0; y = 0;

void main (void)void main (void)
{ {
 y = y = funcfunc(1,2,3);(1,2,3);
}}

Main.C:

- prototypes
 called function

- calls function

How are the parameters
passed to func() ?

DSP54.11DSP54.11 - - 88

Passing Parameters

11 - 6 DSP54x - Mixing C and Assembly

Passing Parameters

DSP54.11DSP54.11 - - 99

used

used

Parameter Passing

Save on entry (SOE)
- child must save if used

AR0
AR1
AR2
AR3
AR4
AR5
AR6
AR7

PC
arg2 = 2

arg3 = 3

SP

A
B

arg1, ret value

y = func(1,2,3);

! Return value placed in A accumulator

! Argument 1 is passed in A accumulator
! Arguments 2,3… passed in reverse order via stack
! PC placed on stack

Ex: LD *SP(1),B ;arg2 loaded to accumulator B, i.e. *(SP + 1)
! Arguments on the stack can be accessed using compiler mode (CPL=1):

SP
SP

! Context save/restore: PSHM AR6, POPM AR6
DSP54.11DSP54.11 - - 99

DSP54.11DSP54.11 - - 1010

Func.ASM
 .def _func

_func:

 ADD *SP(1),A ;a + b

 ADD *SP(2),A ;+ c

 ;pop SOE registers

AlgorithmAlgorithm

EntryEntry

Exit
PC

2

3

used

SP

- declare func as global- declare func as global
- define entry point (label)- define entry point (label)

- save SOE registers

;push SOE registers

 - restore SOE registers - restore SOE registers

 - return to calling routine - return to calling routine

- execute the algorithm- execute the algorithm
 return(a + b + c);return(a + b + c);
- place result in return reg- place result in return reg RET

With -o3 enabled, func is deleted and
main simply does: ST #6,*(y) DSP54.11DSP54.11 - - 1010

Passing Parameters

DSP54x - Mixing C and Assembly 11 - 7

Accessing MMRS

DSP54.11DSP54.11 - - 1111

 Accessing MMRs from C

! Using pointers to access Memory-Mapped Registers :

" Declare the necessary MMR component :
 extern volatile unsigned SWWSR;

" Set it’s address via a forced ASM statement :
 asm(”SWWSR .set 0x28");

" Read and write to the register as desired :
 SWWSR = 0x8244;

! Volatile modifier :

" Especially important with optimizer (-o)

" Tells compiler to always recheck actual memory whenever encountered

" Otherwise, optimizer might register-base value, or eliminate construct

DSP54.11DSP54.11 - - 1111

Interrupts

DSP54.11DSP54.11 - - 1212

Interrupts in C

! Interrupt Service Routine

" C function to run when interrupt occurs

" All necessary context save/restore performed
automatically

! Interrupt Initialization Code

" Should be called prior to run-time process

" Interrupt status may be modified during run-time

! Interrupt Vector Table

" Written in ASM

DSP54.11DSP54.11 - - 1212

Passing Parameters

11 - 8 DSP54x - Mixing C and Assembly

DSP54.11DSP54.11 - - 1313

Writing ISRs in C

int x[100] ;
int *p = x ;

main { … } ;

interrupt void name(void)
 {
 static int y = 0 ;
 y += 1 ;
 if y < 100
 *p++ = port0001;
 else
 asm(“ intr 17 “);
 }

!! Global variables allowGlobal variables allow
sharing sharing of data betweenof data between
main functions & ISRmain functions & ISR

!Keyword
!Name of ISR function

!Void input and return values

!Locals are lost across calls
Statics persist across calls

! ISRs should not include calls

!Return is with enable (RETE)

!Avoid -e or -oe options

DSP54.11DSP54.11 - - 1313

DSP54.11DSP54.11 - - 1414

Initializing Interrupts in C
Setup pointers to IMR & IFR. Initialize IMR, IFR, INTM :
volatile unsigned int *IMR = (volatile unsigned int *) 0x0000;

volatile unsigned int *IFR = (volatile unsigned int *) 0x0001;

*IFR = 0xFFFF;

*IMR = 0xFFFF;

asm(“ RSBX INTM “);

Create Vector Table :
.sect “.vectors”
…
B _ISR1
nop
nop
…

 Compiled ISR Sequence :

! I$$SAVE performs context
save (from RTS.LIB)

! ISR function runs

! I$$RESTORE performs
context restore (RTS.LIB)

! RETE - Return with Enable

DSP54.11DSP54.11 - - 1414

Passing Parameters

DSP54x - Mixing C and Assembly 11 - 9

Numerical Types

DSP54.11DSP54.11 - - 1515

Numerical Types in C

xxxx xxxx xxxx xxxx

yyyy yyyy yyyy yyyy

16-bit int

16-bit int*
zzzz zzzz zzzz zzzzzzzz zzzz zzzz zzzz 32-bit prod

z=(int)((x*y)>>15); z= x * y;

z(Q15)z(Q15) z(Q0)z(Q0)

! an integer is defined as the low portion of the accumulator

! short, char, etc, occupy full 16-bits of memory

! float operations supported via rts.lib (multicycle)

! Q15 math in C is accomplished by shifting the result:

DSP54.11DSP54.11 - - 1515

C Optimization Levels

DSP54.11DSP54.11 - - 1616

C Optimization Levels
- allocates variables to registers

- simplifies expressions

- eliminates unused code

- removes unused assignments and
 common expressions

- single function (local) optimizations

- performs loop optimizations/unrolling

- multi-function (global) optimizations

- removes unused functions

- in-lines calls to small functions

- can perform multi-file optimizations
 using project mode (assertions)

- other options available with Level 3

Level 0

Level 1

“0” + ...

Level 2

“1” + ...

Level 3

“2” + ...

optimization levels are set via CCS build options

Passing Parameters

11 - 10 DSP54x - Mixing C and Assembly

Other C Stuff

DSP54.11DSP54.11 - - 1717

Other C Stuff...

! In-Line Assembly
- can disrupt C

! Intrinsics
- ASM instructions in C
- see C Compiler guide

! Data/Program Sections

! CCS allows you to change the default stack and heap sizes in
Project : Options : Compiler if desired.

! Volatile Keyword
- compiler may remove
 code without volatile
 keyword

asm(“ IDLE”);

#include <intrindefs.h>
y = _smacr(x1, x2, x3);

#pragma Data_Section(y,“Var”);
int y = 0;

volatile unsigned int *ctrl;
while (*ctrl != 0xFF);

DSP54.11DSP54.11 - - 1717

Passing Parameters

DSP54x - Mixing C and Assembly 11 - 11

LAB11 – Mixing C and Assembly

Objective

In this lab we’ll be changing one of out previous assembly language files to be C callable. Pay
careful attention to the passing of parameters in the A accumulator and on the stack

DSP54.11DSP54.11 - - 1818

LAB11A - Mixing C and ASM

1. Review the given file: MAIN11A.C

2. Modify block FIR routine to be C callable

3. Review/modify given linker command file

4. Build, profile and verify operations

Time: 75 minutes

DSP54.11DSP54.11 - - 1818

LAB11A - Procedure

11 - 12 DSP54x - Mixing C and Assembly

LAB11A - Procedure
1. Create a new project called LAB11A.

2. Copy LAB6A.ASM to LAB11A.ASM and add it to the project.

3. Add and inspect the given files below to the project:

• LAB11A.CMD

• MAIN11A.C

• CVECTORS.ASM

4. IN11.H is included in the C routine and does not need to be added to the project

Edit LAB11A.ASM
4. Make the following changes to LAB11A.ASM:

• Remove the allocations for a, x, y and the stack. MAIN11A.C and BOOT.ASM take care
of these allocations for you.

• Define an entry label for the assembly file using .def _fir

• Reference a and x using .ref _a, _x

• Change the entry label from start to _fir. This is where you want your fir code to
start when MAIN11A.C calls it.

• Remove the stack allocation instructions.

• Change your .sect “code” to .text. C places all code in the .text section. Reference
LAB11A.CMD (the “code” section is not linked).

• Remove the copy routine, .copy of in6.dat, stop conditions and all calls.

• Remove the allocation for the init section as well as table[16]

5. After the _fir label, you need to write some code to access the parameters on the stack.
Before writing any code, draw a picture of what the stack looks like prior to calling your
assembly routine. If you’d like, comment this in your assembly routine and refer to as you
write your code. Your diagram should look something like this: When _fir is called, the
stack and accumulator look like this:

 Return Address # SP

Results

 &y

 AL = TAPS

LAB11A - Procedure

DSP54x - Mixing C and Assembly 11 - 13

6. So, the stack pointer (SP) points to the return address PC. An offset of +ONE from SP is the
parameter RESULTS which needs to be loaded into BRC. An offset of +TWO from SP is the
address of y which needs to be loaded into ARn (whichever AR you used to store the
results).

Note: Please note that if you have pushed any registers (like ST0 or ST1), you will need to
modify the picture of the stack as well as the following instructions.

7. Now, perform the following instructions to load the correct registers from the stack:

• STLM A, BK ; load BK with TAPS

• MVDK *SP(1), *(BRC) ; load BRC with #RESULTS-1

• MVDK *SP(2), *(AR1) ; load ARn with the address of y

Make sure you remove the STM to the result AR register in your code as well as the STMs to
BK and BRC.

8. Inside your _fir routine, you set the FRCT bit to use fractional mode. C expects FRCT=0,
so you must RSBX FRCT before returning. Change your done: label to set FRCT to zero,
then follow this instruction with a return.

9. Change any references to a or x to _a and _x.

10. Note: in a normal subroutine, you would want to make the single repeat and the pointer wrap
based upon the passed parameter TAPS. To make it easy on yourself (to start with), simply
hard code the values into the single repeat and pointer wrap. Then, once you get your code
working, go back and make the necessary changes to the assembly routine.

Build and Simulate
11. Because we’re now working with C, we’ll need to check the settings for the C compiler. On

the menu bar click:

 Project $ Options

 Under the Compiler tab change –g to –gks in the command line switches box on the top.
This will keep the assembly file from the compilation so we can inspect it. Make sure you
have Load Program after Build checked under Options $ Program Load.

12. Build the project. Remember that you can double-click on any error to immediately go to it.

13. When the build and load are complete, reset your system. You should see B _c_int00 in
the CVECTORS.ASM source file.

14. Type: go main on the command line. This will run through the C initialization routine in
BOOT.ASM and stop at the main routine in MAIN11A.C.

LAB11A - Procedure

11 - 14 DSP54x - Mixing C and Assembly

15. Single step and check to make sure the proper values are loaded onto the stack in the proper
order prior to the call to fir (). Then single step through your assembly code and ensure that
these parameters are loaded into the proper registers. If all of this works properly, double
check your math code. If everything looks good, hit the Run button. You do not need to set a
breakpoint, because your assembly routine will return back to main and the execution will
stop at the C exit routine which is an infinite branch. Graph your results.

16. We don’t have much C code here to optimize, but let’s see how you use the optimizer …

17. Under Project $ Options, under the Compiler tab click on Optimizer in the
Category box. Let’s go ahead and pick Level 3 – File in the Level box. Run your
code and graph your results.

18. You are now done with LAB11A. Congrats.

LAB11B – Procedure

DSP54x - Mixing C and Assembly 11 - 15

LAB11B – Procedure
As an alternative to processing the entire block in one call, let’s decide to use the C language
INTERRUPT capabilities and process another output EACH time a new input sample comes
from the ADC.

1. Setup the INTERRUPT prototype to call the RINT ISR.

2. Place your FIR code in a subroutine. Call that subroutine with a CALL using the index of the
latest sample that became available.

3. See LAB11B files in the solutions directory to see how this works.

Solutions

11 - 16 DSP54x - Mixing C and Assembly

Solutions

DSP54.11DSP54.11 - - 2020

MAIN11A.C - Solution
// Define Sample and Tap sizes for function
#define RESULTS 185
#define TAPS 16

// Initialize Coefficient Table
int a[TAPS] = {0x7FC, 0x7FD, 0x7FE, 0x7FF,
 0x800, 0x801, 0x802, 0x803,
 0x803, 0x802, 0x801, 0x800,
 0x7FF, 0x7FE, 0x7FD, 0x7FC};

// Specify specific address for the result: y
#pragma DATA_SECTION (y,"yloc");
int y[RESULTS];

// include initialized x array
#include "in11.h"

extern void fir(int taps,int results,int *y);

main()
{
 // set wait states to zero using in-line assembly
 asm(" STM #0,SWWSR");

 // call assembly FIR routine
 fir(TAPS,RESULTS,y);
}

DSP54.11DSP54.11 - - 2020

DSP54.11DSP54.11 - - 2121

LAB11A.ASM - Solution
; stack looks like this upon entry to this asm routine:
;
; RET_ADDR <-- SP
; RESULTS
; &y
; --
; --
;
; AL = TAPS

; allocate label definition here

.mmregs

.def _fir
 .ref _a,_x

.text
_fir: STLM A,BK ;load BK with TAPS (16)

MVDK *SP(1),*(BRC) ;load BRC with RESULTS (185)
MVDK *SP(2),*(AR1) ;load ARn with &y

LD #0,DP ;set SST bit (saturate on store)
ORM #1,@PMST
SSBX FRCT ;set FRCT bit (fractional mode)
RSBX OVM ;clr OVM bit (overflow mode)
SSBX SXM ;set SXM bit (sign extension)

DSP54.11DSP54.11 - - 2121

Solutions

DSP54x - Mixing C and Assembly 11 - 17

DSP54.11DSP54.11 - - 2222

LAB11A.ASM - Solution (continued)
STM #1,AR0
STM #_a,AR2 ;setup ARs for MAC
STM #_x,AR3

RPTB done-1
 MPY *AR2+0%,*AR3+,A ;1st product
 RPT #14 ;mult/acc 15 terms

MAC *AR2+0%,*AR3+,A
MAR *+AR3(-15)
STH A,*AR1+ ;store result

done: RSBX FRCT
RET ;return

DSP54.11DSP54.11 - - 2222

DSP54.11DSP54.11 - - 2323

LAB11A.CMD - Solution
main11a.obj
lab11a.obj
cvectors.obj
-o lab11a.out
-m lab11a.map
-c
-stack 0x100
-l c:\dsptls54\c54xcgt\rts.lib

MEMORY {
PAGE 1: /* Data memory */
 SPRAM: org = 00060h, len = 00020h
 DARAM: org = 00080h, len = 00400h

PAGE 0: /* Program memory */
 EPROM: org = 0F000h, len = 00F80h
 VECS: org = 0FF80h, len = 00080h
}

SECTIONS
{ .text :> EPROM PAGE 0
 vectors :> VECS PAGE 0
 .bss :> DARAM PAGE 1
 .stack :> DARAM PAGE 1
 yloc :> DARAM PAGE 1
}

DSP54.11DSP54.11 - - 2323

Solutions

11 - 18 DSP54x - Mixing C and Assembly

DSP54x – Making a C54x System Work 12 - 1

Making a C54x System Work

Introduction
Hooking up memory and peripheral devices, programming wait states, relocating code, setting up
the clock … these seemingly small items can end up being show-stoppers. In this module we’ll
take a look at these topics and others so we can smoothly transition our software to a real live
system.

We’ve taken a different approach in this module from the rest of the workshop. Here we’ve
attempted to cover every single topic that someone implementing a DSP system might care about.
Obviously there are things that fall outside the scope of this, like choice of algorithm, sampling
rates, etc.

There is a lot of detail in this module, probably too much to cover in depth and still stay awake.
Your instructor will point out the major decisions and why they were made. Your implementation
will be different, but you will still have to go through a similar process.

Module Topics

12 - 2 DSP54x - Making a C54x System Work

Module Topics

Making a C54x System Work ... 12-1

Module Topics ... 12-2

Introduction... 12-3

The Hardware ... 12-4
Power Considerations ... 12-4
The Clock.. 12-5
Memory... 12-6
The Analog Interface Circuit (AIC) .. 12-7
Connecting Unused Pins ... 12-8
JTAG... 12-9
Hardware Troubleshooting.. 12-9

The Firmware.. 12-10
Initial Clock Frequency... 12-10
Programming The PLL ... 12-11
PLL Setup Code.. 12-11
Wait States .. 12-12
Waitstate Setup Code .. 12-13
Bank Switch Control... 12-13
BSCR Setup Code... 12-14
McBSP/AIC Equations ... 12-14
Setting Up McBSP0.. 12-15
McBSP Setup Code... 12-17
Setting Up The AIC .. 12-17
AIC Setup Code .. 12-18
Setting Up The DMA.. 12-19
Data I/O... 12-21
TImeline Analysis ... 12-21
DMA Setup Code.. 12-22
Turning On The Hardware Code... 12-22

The Software.. 12-23
Link.cmd and Vectors.asm.. 12-23
The Hardware Setup and The FIR Code ... 12-24
The Bootloader ... 12-27
HEX500 .. 12-28
IDLE ... 12-28
Power Management Hints ... 12-29
BIOS and RTA.. 12-29
Need More Information?... 12-30

Additional Analog Information ... 12-32

Introduction

DSP54x - Making a C54x System Work 12 - 3

Introduction

DSP54.12DSP54.12 - - 22

Intro to Problem We’re Solving...

‘5402-100
DSP

AIC
Voice-band AudioIN

Voice-band AudioOUT

16-tap block FIR
Low-pass filter

External

Memory

16-bit
8K samps/s

Boot Code

!! GoalGoal: build a system from scratch that performs the following:: build a system from scratch that performs the following:
- 16-bit 8K samples/sec voice-band audio I/O stream- 16-bit 8K samples/sec voice-band audio I/O stream
- Process via 16-tap block FIR low-pass filter on 32-element frames- Process via 16-tap block FIR low-pass filter on 32-element frames
- Use DMA/- Use DMA/McBSP McBSP to interface to the AICto interface to the AIC
- Boot vector table, code and coefficients from external memory- Boot vector table, code and coefficients from external memory

! What steps must we follow?
 Part I - Configuring the Hardware (selecting and connecting)
 Part II - Configuring the Hardware with Software
 Part III - Programming our Application, BootLoading

DSP54.12DSP54.12 - - 22[Project] in title indicates specific choices made for our design project

Throughout this module we will use the [Project] in the title of the slide to identify where we
have made specific choices for our design project. Other slide may include more general
information about concepts or selections that the 5402 may not possess.

The Hardware

12 - 4 DSP54x - Making a C54x System Work

The Hardware

DSP54.12DSP54.12 - - 33

Part I - Start with ‘VC5402

! Extended addressing (up to 1M x 16)

! 16K DARAM

! 4K ROM

! 2 McBSPs

! 2 Timers

! HPI-8

! 6 channel DMA

! 100 MHz

! 3.3V I/O, 1.8V core

! DSP on DSK

How do we provide power to the ‘5402 DSP?

VC5402
 -100

DisclaimerDisclaimer::

Register layouts, features, andRegister layouts, features, and
capabilities of the 5402 differ capabilities of the 5402 differ
slightly from other 54xxslightly from other 54xx
processors. As always, you willprocessors. As always, you will
need to refer to your chosenneed to refer to your chosen
device’s specification.device’s specification.

Why ‘VC5402?

DSP54.12DSP54.12 - - 33

Power Considerations

DSP54.12DSP54.12 - - 44

[Project] - Generating Power

RSn

CVdd(6)

DVdd(6)

Vss(12)

VC5402
 -100

TPS767D318
Voltage Regulator, SVS

1RESET

2RESET

1OUT(2)

2OUT(2)

1IN(2)

2IN(2)

1/2GND(2)

1/2EN(2)

5V

! Provides 1.8V for CVdd (core), 3.3V for DVdd (I/O), 2% tolerance

! Brings both supplies up at once

! 200ms reset delay on power up

! Out-of-tolerance voltage triggers reset by SVS (supervisor system)

! Some supervisor devices offer watchdog timers

! More on proper grounding methods later...

.1uF

10uF

DVdd

250K

GND

If you design your own power supply, you’ll have to consider...

DGND

DSP54.12DSP54.12 - - 44

The following pages on the TI web site have excellent selection charts for this and other parts:

www.ti.com/sc/select

www.ti.com/sc/docs/products/msp/index.htm

http://www.ti.com/sc/select
http://www.ti.com/sc/docs/products/msp/index.htm

The Hardware

DSP54x - Making a C54x System Work 12 - 5

DSP54.12DSP54.12 - - 55

Power Sequencing

RSn

CVdd(6)

DVdd(6)

Vss(12)

VC5402
 -100

! Neither supply should power up for an 25ms with the other supply
below operating voltage.

! System-level concerns such as bus contention may require supply
sequencing to be implemented. If so, CVdd should power up at the same
time or prior to (and powered down after) DvDD.

Now that we have power, let’s hook up a clock...

If you cannot bring up supplies
simultaneously, then...

DSP54.12DSP54.12 - - 55

Recommendation: Use bypass capacitors of 4.7uF at CVdd/DVdd supply tree,
0.1uF at each pin. Use as many caps as possible to increase
tolerance of switching noise and power spikes.

The Clock

DSP54.12DSP54.12 - - 66

[Project] - Generating the Clock
PWR
SVS

 CLKOUT

CLKMD1

CLKMD2

CLKMD3

X1

X2/CLKIN

VC5402
 -100

EPSON 8.192MHz
Oscillator

OUT

x

DVdd
10K

! Crystal oscillator also possible between X1 and X2

! ‘5402 will run at divide-by-2 until PLL is re-programmed and locked

! Using ext’l clock (no crystal), no PLL, min clk is 0 Mhz (static design)

! Minimum input frequencies apply when using PLL (see datasheet)

! Other 54xx devices have different CLKMD options

! If PLL mode selected, user must wait for lockup by holding device in reset

CLKMD 5402
1 2 3 CLKOUT
0 0 0 PLL x15
0 0 1 PLL x10
0 1 0 PLL x5
1 0 0 PLL x2
1 0 1 /4 no PLL
1 1 0 PLL x1
1 1 1 /2 no PLL

What else do we need to hook up? Program memory...

10K

10K

CLK8

DSP54.12DSP54.12 - - 66

The selection of the clock is driven by a number of factors: PLL options, CPU speeds desired,
system circuitry requirements and others. Your system may require more than one clock source to
meet all of your goals.

The Hardware

12 - 6 DSP54x - Making a C54x System Work

Memory

DSP54.12DSP54.12 - - 77

[Project] - Hooking Up Ext’l Prog Memory
PWR
SVS

CLOCK

 A[17:0]

D[15:0]

PSn

MSTRBn

WEn

VC5402
 -100

A[17:0]

D[15:0]

CEn

Wen

RESETn

BYTEn

OEn

DVdd

AM29LV400B, 3.3V
256K x 16 FLASH, 70ns

RS-SVS

! tA is typically 2H-(addr+data setup). These values are device dependent.
! Without wait states, reads can occur every cycle: R-R-R
! Wait states required for faster devices (see table above)
! ‘5410 has updated external memory interface (XIO) timing
! Writes to FLASH require knowledge of programming state machine

Read Timing

Cycle Time (2H) 25 15 12.5 10

Access time (tA) 15 5 2.5 0 !

First Program memory, next…Data memory... DSP54.12DSP54.12 - - 77

10KOR

This type of FLASH contains the programming algorithm as an internal state machine. Your code
will need to reflect knowledge of the specific algorithm your selected FLASH implements. You
can of course use EPROM, ROM, RAM or any other kind of asynchronous memories for both
program and data space. You will need to initialize volatile memories if your code maps
initialized sections in them.

DSP54.12DSP54.12 - - 88

[Project] - Hooking Up Ext’l Data Memory
PWR
SVS

CLOCK

A[15:0]

D[15:0]

CSn

WEn

OEn

BHEn

BLEn

DGND
IDT71V016, 3.3V

 64K x 16 SRAM, 15ns

!! Single external write requires one CPU cycle to initiate, Single external write requires one CPU cycle to initiate,
but 3 cycles to complete: x-W-x (dead-ACTIVE-dead)but 3 cycles to complete: x-W-x (dead-ACTIVE-dead)

!! Chained external writes use 2N+1 cycles: x-W-x-W-xChained external writes use 2N+1 cycles: x-W-x-W-x

!! Internal writes require 1 cycle: W-W-W-WInternal writes require 1 cycle: W-W-W-W

!! Most DSP code favors reads. Ex: 256-tap filter (512 reads, 1 write)Most DSP code favors reads. Ex: 256-tap filter (512 reads, 1 write)

!! Wait states extend the active strobe time (W) ONLY by the # wait statesWait states extend the active strobe time (W) ONLY by the # wait states

!! NoteNote: hooking up 5V devices to the DSP requires voltage level shifters: hooking up 5V devices to the DSP requires voltage level shifters

Write Timing

FLASH

 A[15:0]

D[15:0]

DSn

MSTRBn

WEn

VC5402
 -100

Now, how will we interface with the real world? DSP54.12DSP54.12 - - 88

OR

DVdd
10K

The Hardware

DSP54x - Making a C54x System Work 12 - 7

The Analog Interface Circuit (AIC)

DSP54.12DSP54.12 - - 99

[Project] - Serial Comm and Analog I/O

FLASH

SRAM

PWR
SVS

CLOCK

BDX0

BDR0

BFSR/X0

BCLKR/X0

VC5402
 -100

MCLK

DIN

DOUT

FSn

SCLK

INP

INM

OUTP

OUTM

TLC320AD50C
 Analog Interface Circuit (AIC)

16-bit 22KHz ADC/DAC with filters

! MCLK provides clocking for sigma-delta converter (8.192 MHz)

! DIN (digital input) to DAC, DOUT (digital output) from ADC

! FSn (frame sync) provided by AIC to DSP (FSR/X tied together)

! SCLK (shift clock) provided by AIC to DSP (CLKR/X tied together)

! Several programmable features will be covered later…

! Analog I/O is shown differential, high-pass RC required on inputs

What is left to hook up on the AIC?

Analog
Input

Analog
Output

CLK8

DSP54.12DSP54.12 - - 99

A simple low-pass RC network on the input limits inputs to the Nyquist rate. An RC smoothing
filter on the output should also be implemented.

DSP54.12DSP54.12 - - 1010

[Project] - Other Connections

FLASH

SRAM

PWR
SVS

CLOCK VC5402
 -100

FILT

AUXP

AUXM

ALTDATA

AVDD

AVDD(PLL)

REFP

REFM

AVSS

AVSS(PLL)

TLC320AD50C

5V

! AGND and DGND should tie to GND at one and ONLY one point

! FILT decouples band-gap reference

! ALTDATA is a secondary data line (phone mode control)

! REFP/M: voltage reference filter input

Any other AIC signals that need to be connected?

DGND AGNDAGND

.1uF

.1uF

AGND AGND

5V

DSP54.12DSP54.12 - - 1010

Any circuit with mixed signals (digital and analog) should implement separate digital and analog
grounds to reduce noise. Bring these grounds together at one and only one point. Failure to do so
will result in ground loop currents between the connections, higher system noise levels and lower
effective resolution.

The Hardware

12 - 8 DSP54x - Making a C54x System Work

DSP54.12DSP54.12 - - 1111

[Project] - Misc Signals

FLASH

SRAM

PWR
SVS

CLOCK

 CLKOUT

DX

DR

FSR/X

CLKR/X

XF

VC5402
 -100

DVDD

PWRDWNn

M/Sn

RESETn

DVSS

DVdd

10K

DGND

RS-SVS

! PWRDWN: off

! M/Sn (master/slave): master

! XF will be used to enable AIC control register writes

What do we do with all the unused DSP pins?

TLC320AD50C

FC

DSP54.12DSP54.12 - - 1111

Connecting Unused Pins

DSP54.12DSP54.12 - - 1212

AIC

[Project] - Pull-Up or Pull-Down ?

FLASH

SRAM

PWR
SVS

CLOCK READY

MP/MCn

HPIENA

VC5402
 -100

General Rules:General Rules:

!! Unused Unused OUTPUTs OUTPUTs can be left unconnectedcan be left unconnected

!! Unused INPUTS must be pulled inactive (else input chatters)Unused INPUTS must be pulled inactive (else input chatters)

!! I/O: pull I/O: pull upup with 10K (else output may short to ground) with 10K (else output may short to ground)

!! Many signals can be remapped as GPIOMany signals can be remapped as GPIO

Other Signals Pull

INT0-3n, NMIn up

BCLK/FSR/DR1 up

HOLDn, BIOn up

DVdd

DGND

(always ready)

(uC mode)

(HPI off)

10K

We can’t talk to our development tools without…?
DSP54.12DSP54.12 - - 1212

CMOS type inputs without a pull-up or pull-down will assume some intermediate voltage.
System noise will cause them to go above and below the switching levels causing “chatter” and
wasting power.

The Hardware

DSP54x - Making a C54x System Work 12 - 9

JTAG

DSP54.12DSP54.12 - - 1313

[Project] - JTAG and Emulation Port

FLASH

AIC

SRAM

PWR
SVS

CLOCK

pins

EMU0/1

TRSTn

TDI

TDO

TMS

TCK

VC5402
 -100

EMU0/1

TRSTn

TDI

TDO

TMS

TCK

TCK_RET

PD

GND(5)

14-pin JTAG Header

DVdd

DGND

! EMU0/1, TRST, TDI must be pulled high through 10K resistors

! Recommend device-to-header length < 6 inches (else buffers are needed)

! ‘5420 JTAG boundary scan is restricted

! Must connect ALL grounds properly

! Serial scan rate is approximately 10 MHz (TDI-to-TDO)

So, what happens if we turn on power and we can’t get the emulator working?

DSP54.12DSP54.12 - - 1313

JTAG connections MUST be clean and free of noise. Failure to provide good connections for the
emulator results in significant headaches for the designer.

Hardware Troubleshooting

DSP54.12DSP54.12 - - 1414

Hardware Troubleshooting

! Power supply working properly (check DVdd/CVdd/5v)?

! Check all grounds for continuity.

! Is CLKOUT toggling?

! Is RSn working properly (or is the CPU still in reset)? ‘542x devices
have 2 reset signals, so make sure they are both working.

! Perform an EMURST from the debugger. If it fails …

- Are TRST and TCK functioning properly?

- Are the JTAG data signals (TDI, TDO, TMS) toggling?

- Are EMU0/1 properly pulled up?

- Is PD connected to DVdd?

! Is your debugger (CCS) set up for the correct 54xx device and order
of cores if using multi-core device (‘542x)?

! For more EMU info, refer to SPRA439 “Emulation Fundamentals ...”

After verifying that the h/w works, we need to write code to set up the h/w...

Items to check (in order)

DSP54.12DSP54.12 - - 1414

The Firmware

12 - 10 DSP54x - Making a C54x System Work

The Firmware

DSP54.12DSP54.12 - - 1515

Part II - Software Part of the Hardware

Configuring the Hardware Via Software:

! Set initial clock frequency and programming the PLL

! Set up software and hardware wait states, bank switching

! Determine bit settings for all peripherals: McBSP, AIC, DMA

! Write code to program the peripherals

DSP54.12DSP54.12 - - 1515

Initial Clock Frequency

DSP54.12DSP54.12 - - 1616

Setting ‘54xx Initial Clock Frequency

!! ‘5402 supports auto-programming of PLL with ‘5402 supports auto-programming of PLL with CLKMDx CLKMDx pins.pins.
- PLL programming not necessary unless change of frequency desired- PLL programming not necessary unless change of frequency desired
 or clock multiplier not sufficient (we’re doing a x12 for the project) or clock multiplier not sufficient (we’re doing a x12 for the project)
- For all devices, do not change - For all devices, do not change CLKMDxCLKMDx pins after reset pins after reset

!! Other ‘54xx devices require the Other ‘54xx devices require the useruser to program the PLL after reset to program the PLL after reset

!! User will normally power up device in /2 mode (see datasheet).User will normally power up device in /2 mode (see datasheet).

!! Early ‘54x (e.g. 541) devices do not have a software programmable PLLEarly ‘54x (e.g. 541) devices do not have a software programmable PLL

CLKMD 54xx
1 2 3 CLKOUT
0 0 0 /2
0 0 1 /2
0 1 0 /2
0 1 1 Stop mode
1 0 0 /2
1 0 1 PLL x1
1 1 0 /2
1 1 1 /2

 CLKOUT

CLKMD1

CLKMD2

CLKMD3

X1

X2/CLKIN

54xx
 -100

x

1

1

1

CLK8

So, how do we manually program the PLL to a desired frequency ?
DSP54.12DSP54.12 - - 1616

See your devices datasheet for its clock mode selections.

The Firmware

DSP54x - Making a C54x System Work 12 - 11

Programming The PLL

DSP54.12DSP54.12 - - 1717

[Project] - Programming the PLL

PLLSTATUSPLLSTATUSPLLNDIVPLLNDIVPLLCOUNTPLLCOUNTPLLDIVPLLDIVPLLMULPLLMUL PLLON/OFFPLLON/OFF

15 15 12 12 1111 10 10 3 3 22 11 00

Clock Mode Register

! Power up in div-by-2 mode, CLKIN=8.192MHz, CLKOUT= 4.096MHz

! However, we actually want CLKOUT to be ~100MHz

2. Tell processor WHEN to switch to new frequency: (ORM #2, CLKMD)
 - if PLLCOUNT is non-zero, no switch will occur until PLLCOUNT = 0.

1. 1. Determine Initial Clock Mode Register Value:Determine Initial Clock Mode Register Value: ((STM #0B7FCh,CLKMDSTM #0B7FCh,CLKMD))

 a. Select PLLMUL ([x+1] * CLKIN) and PLLDIV (divide: yes/no) to your
 desired values. Ex: x=11 for ~100MHz CLKOUT, PLLDIV=0 (no divide)

 b. Select PLLCOUNT (Power up CLKOUT cycles * 16 to lock up).
 CLKOUT=4MHz, PLLCOUNT=FFh, Lock up time = 255*16*250ns = 1ms
 (Note: worst case time to lock on is 30us)

 c. Select PLLON/OFF. Ex: ON (1) (begins PLL lock-up)

Let’s do the coding...
DSP54.12DSP54.12 - - 1717

PLL Setup Code

DSP54.12DSP54.12 - - 1818

[Project] - Programming the PLL

;Setup CLKMD Register

STM #0B7FCh,CLKMD

;Tell PLL to switch
;when PLLCOUNT = 0

ORM #2, CLKMD

! 5402 includes auto-lock feature

! PLL locks on after 30us to
new clock frequency

! Could set PLLCOUNT lower
if worst case lockup time is met

! You have 3 options regarding WHEN
your system switches from low to
high frequency:
1. Use auto-switch (e.g. ‘5402 PLL):
 PLL locks automatically after Xns
2. If your system is sensitive to the
 switch time, simply poll PLLSTATUS:
 a. loop until auto-switch occurs
 b. Set PLLNDIV=1 when locked

Next, let’s set up the proper wait states... DSP54.12DSP54.12 - - 1818

The Firmware

12 - 12 DSP54x - Making a C54x System Work

Wait States

DSP54.12DSP54.12 - - 1919

‘5402 Software Wait States

!! Wait stateWait state: addition of ONE clock cycle to external memory access time: addition of ONE clock cycle to external memory access time

!! SWWSR (3 bit fields) = 0 to 7SWWSR (3 bit fields) = 0 to 7
SWCR (SWSM) = 1, s/w wait-state multiplier bit doubles SWWSR valueSWCR (SWSM) = 1, s/w wait-state multiplier bit doubles SWWSR value

!! On reset, all Program, Data and I/O is 7 wait states (SWSM = 0)On reset, all Program, Data and I/O is 7 wait states (SWSM = 0)

!! XPA (Extended Program Address Control Bit). 0: every 64K page in programXPA (Extended Program Address Control Bit). 0: every 64K page in program
space split in half. 1: Lowspace split in half. 1: Low Prog Prog determines ENTIRE space (varies by device). determines ENTIRE space (varies by device).

!! On last software wait state (2-14), MSC will go LOW for 1 cycle.On last software wait state (2-14), MSC will go LOW for 1 cycle.

SWWSR: Software Wait State Register

Low ProgHi ProgLow DataHi DataI/OXPA
023568911121415

SWCR: Software Wait State Control Register SWSMRsvd
015 1

Low Prog

Hi Prog

0

x8000h

xFFFFh

XPA=0

Low Prog

0

FFFFFh

XPA=1

Low Data

Hi Data

0

8000h

FFFFh

I/O

0

FFFFh

What if this software setup is not sufficient? DSP54.12DSP54.12 - - 1919

DSP54.12DSP54.12 - - 2020

Hardware Wait States

!! Used when >14 wait states required, >2 speeds of memory or variableUsed when >14 wait states required, >2 speeds of memory or variable
wait-states exist. wait-states exist.

!! 0-1 SWWS: hardware wait-states do 0-1 SWWS: hardware wait-states do notnot apply apply

!! 2-14 SWWS: MSC (Micro State Complete) pin indicates end of the last2-14 SWWS: MSC (Micro State Complete) pin indicates end of the last
SWWS to trigger addition of hardware wait states if required.SWWS to trigger addition of hardware wait states if required.

!! Hardware wait is completed by a high signal input into the READY pin.Hardware wait is completed by a high signal input into the READY pin.
READY is sampled on falling CLKOUT1 (mid-cycle) and is READY is sampled on falling CLKOUT1 (mid-cycle) and is notnot sampled sampled
before MSC falls.before MSC falls.

PSn

MSCn

CLKOUT

 READY

VC5402
 -100

CSn

Program
Memory

D

>

Q

Qn

S

When PSn/MSCn = 0, READY = 1, adds 1ws to SWWS

DSP54.12DSP54.12 - - 2020

The Firmware

DSP54x - Making a C54x System Work 12 - 13

Waitstate Setup Code

DSP54.12DSP54.12 - - 2121

[Project] - Programming Wait States

! ‘5402-100 tA= 0ns for zero wait states

! 70ns: best case 7ws, so choose 8ws
- SWSM/XPA=1, Low Prog=4, Hi Prog=x
- All 256Kx16 = 8 wait states

! 15ns: 2ws
- Low/HiData = 1 (SWSM=1)

‘5402
-100

FLASH

256Kx16, 70ns

64Kx16, 15ns

SRAM

SWWSR Low ProgHi ProgLow DataHi DataI/OXPA
023568911121415

SWCR SWSMRsvd
015 1

;SWWSR Setup

STM #8244h,SWWSR

1 0 00 0 00 0 10 0 10 0 01

1

;SWCR Setup

STM #0001h,SWCR

Do we need to add wait states when
 switching between memory banks?

DSP54.12DSP54.12 - - 2121

Bank Switch Control

DSP54.12DSP54.12 - - 2222

Bank Switch Control

BSCR EXIOBHHBHReservedPS-DSBNKCMP
012310111215

 0 0 0 0 64K
 1 0 0 0 32K
 1 1 0 0 16K
 1 1 1 0 8K
 1 1 1 1 4K

 BNKCMP value Bank Size

! Banks: add 1 wait state when crossing boundary

! Table applies to external program and data spaces

! Use only specified values of BNKCMP

! 1 cycle penalty for crossing program pages (XPC is modified)

! EXIO: external interface off (1=off)

! BH: bus hold (1=hold)

! EXIO/BH=1, memory inputs don’t toggle

! HBH: HPI bus hold (1=hold)

! PS-DS: 1ws added when changing PS-DS

! BNKCMP: Bank Compare (see table)

DSP54.12DSP54.12 - - 2222

The Firmware

12 - 14 DSP54x - Making a C54x System Work

BSCR Setup Code

DSP54.12DSP54.12 - - 2323

[Project] - Programming BSCR

! EXIO/BH: off (interface is always on)

! HBH: HPI is already disabled (HPIENA)

! PS-DS: On, 1ws when switching PS-to-DS

! BNKCMP - choose largest bank size (64K)

‘5402
-100

FLASH

256Kx16, 70ns

64Kx16, 15ns

SRAM

;BSCR Setup

STM #0800h,BSCR

On to the McBSP...

BSCR EXIOBHHBHReservedPS-DSBNKCMP
012310111215

000010 0 0 0

DSP54.12DSP54.12 - - 2323

McBSP/AIC Equations

DSP54.12DSP54.12 - - 2424

[Project] - McBSP/AIC Equations

Let’s first determine the McBSP setup bits...

! DSP CLKIN = AIC MCLK = 8.192 MHz

! Desired sample freq: 8KHz (voice-band), 16-bit resolution,
bit-rate = 16*8 = 128KHz

! Set AIC sampling rate (FSn) = 8KHz = MCLK / (128 * N) where
N=8 (REG4, bits 7-4)

! BCLKR/X0 = SCLK from AIC = FS * 256 = 2.048 MHz = serial port bit clock.

! BFSR/X0 = FS = 8KHz, BCLKR/X0 and BFSR/X0: set as inputs

! McBSP0 Sample Rate Generator NOT used. Desired specs prohibit its use.

AIC

DIN

DOUT

FSn

SCLK

McBSP0

BDX0BDX0

BDR0BDR0

BFSR/X0BFSR/X0

BCLKR/X0BCLKR/X0

‘5402
-100

X2/CLKIN8.192 MHz

Analog In

Analog Out

DSP54.12DSP54.12 - - 2424

The Firmware

DSP54x - Making a C54x System Work 12 - 15

Setting Up McBSP0

DSP54.12DSP54.12 - - 2525

[Project] - McBSP0 Setup
RegReg Bit(s)Bit(s) NameName Description Description ValueValue NoteNote

SPCR10SPCR10 1515 DLBDLB Digital Digital Loopback Loopback on/off?on/off? 00 offoff
SA-00h SA-00h 14-1314-13 RJUSTRJUST Right justify in DRR? Right justify in DRR? 1010 left justifyleft justify

12-1112-11 CLKSPPCLKSPP Clock Stop mode (SPI) Clock Stop mode (SPI) 0000 no SPIno SPI
10-810-8 [[rsvdrsvd]] [reserved] [reserved] 0000
77 DXENADXENA Enable DX delay? Enable DX delay? 00 no delayno delay
66 ABISABIS A-BIS mode (any bit delay) A-BIS mode (any bit delay) 00 nonenone
5-45-4 RINTMRINTM Rcv Rcv interrupt modeinterrupt mode 0000 interrupt on RRDYinterrupt on RRDY
3-13-1 Error/status fields Error/status fields 000000 not usednot used
00 RRSTRRST Receiver reset Receiver reset 00 keep in resetkeep in reset

4000h4000h FINAL VALUEFINAL VALUE

SPCR20SPCR20 15-1015-10 [[rsvdrsvd]] [reserved] [reserved] 000000000000
SA-01hSA-01h 99 FREEFREE Run free w/EMU stop? Run free w/EMU stop? 00 not FREE runningnot FREE running

88 SOFTSOFT Finish current word? Finish current word? 11 yesyes
77 FRSTnFRSTn FS logic reset? FS logic reset? 00 yesyes
66 GRSTnGRSTn SRGR reset? SRGR reset? 00 yesyes
5-45-4 XINTMXINTM Xmt Xmt interrupt mode interrupt mode 0000 interrupt on XRDYinterrupt on XRDY
3-13-1 Error/status fields Error/status fields 000000 not usednot used
00 XRSTXRST Transmit reset Transmit reset 00 keep in resetkeep in reset

0100h0100h FINAL VALUEFINAL VALUE

SPCRxy - Serial Port Control Register x/y (Regx/McBSPy)
SA: Sub address used for programming DSP54.12DSP54.12 - - 2525

DSP54.12DSP54.12 - - 2626

[Project] - McBSP0 Setup

Reg Bit(s) Name Description Value Note

PCR0 15-14 [rsvd] [reserved] 00
SA-0Eh 13 XIOEN DX: GPIO? 0 DX normal

12 RIOEN DR/CLKS GPIO? 0 DR/CLKS normal
11 FSXM FSX in/out? 0 in: gen’d by AIC
10 FSRM FSR in/out? 0 in: gen’d by AIC
9 CLKXM CLKX in/out? 0 in: gen’d by AIC
8 CLKRM CLKR in/out? 0 in: gen’d by AIC
7 [rsvd] [reserved] 0
6 CLKS_STAT value as GPIO 0 not used
5 DX_STAT value as GPIO 0 not used
4 DR_STAT value as GPIO 0 not used
3 FSXP FSX polarity 1 active low, AIC:FS
2 FSRP FSR polarity 1 active low, AIC:FS
1 CLKXP CLKX polarity 0 xmt on rising edge
0 CLKRP CLKR polarity 0 rcv on falling edge

000Ch FINAL VALUE

PCRy - Pin Control Register (McBSPy)

DSP54.12DSP54.12 - - 2626

The Firmware

12 - 16 DSP54x - Making a C54x System Work

DSP54.12DSP54.12 - - 2727

[Project] - McBSP0 Setup

Reg Bit(s) Name Description Value Note

RCR10 15 [rsvd] [reserved] 0
SA-02h 14-8 RFRLEN1 Rcv Frame Length 1 00h 1 word/frame

7-5 RWDLEN1 Rcv Word Length 1 010 16-bit
4-0 [rsvd] [reserved] 00000

0040h FINAL VALUE

RCR20 15 RPHASE Rcv: 1/2 phases? 0 1 phase
SA-03h 14-8 RFRLEN2 Rcv Frame Length 2 00h not used

7-5 RWDLEN2 Rcv Word Length 2 000 not used
4-3 RCOMPAND Rcv Compand mode 00 not used
2 RFIG Rcv Frame Ignore 0 don’t ignore
1-0 RDATDLY FSR-DR delay (0,1,2-bit) 00 no delay

0000h FINAL VALUE

RCRxy - Receive Control Register x/y (Regx/McBSPy)
Dual-phase frames used by AC’97

DSP54.12DSP54.12 - - 2727

DSP54.12DSP54.12 - - 2828

[Project] - McBSP0 Setup

Reg Bit(s) Name Description Value Note

XCR10 15 [rsvd] [reserved] 0
SA-04h 14-8 XFRLEN1 Xmt Frame Length 1 00h 1 word/frame

7-5 XWDLEN1 Xmt Word Length 1 010 16-bit
4-0 [rsvd] [reserved] 00000

0040h FINAL VALUE

XCR20 15 XPHASE Xmt: 1/2 phases? 0 1 phase
SA-05h 14-8 XFRLEN2 Xmt Frame Length 2 00h not used

7-5 XWDLEN2 Xmt Word Length 2 000 not used
4-3 XCOMPAND Xmt Compand mode 00 not used
2 XFIG Xmt Frame Ignore 0 don’t ignore
1-0 XDATDLY FSX-DX delay (0,1,2-bit) 00 no delay

0000h FINAL VALUE

XCRxy - Transmit Control Register x/y (Regx/McBSPy)
Dual-phase frames used by AC’97

DSP54.12DSP54.12 - - 2828

DSP54.12DSP54.12 - - 2929

[Project] - McBSP0 Setup

Reg Bit(s) Name Description Value Note

SRGR10 15-8 FWID Frame width 00h not used
SA-06h 7-0 CLKGDV CLKG Divider (1-256) 01h default, not used

0001h FINAL VALUE

SRGR20 15 GSYNC re-sync to FSG or free run? 0 free run, not used
SA-07h 14 CLKSP CLKS polarity 0 no CLKS on 5402

13 CLKSM input CLKOUT/CLKS? 1 CLKOUT, not used
12 FSGM FSX=FSG or DXR-XSR ? 1 FSG, not used
11-0 FPER Frame period, 1-4096 0FFh 256, not used

30FFh FINAL VALUE

SRGRxy - Sample Rate Generator Register x/y (Regx/McBSPy)

Multi-channel Registers (MCR10/20, RCERA/B, XCERA/B)
not used. Default mode on reset is “non-multi-channel mode”

DSP54.12DSP54.12 - - 2929

The Firmware

DSP54x - Making a C54x System Work 12 - 17

McBSP Setup Code

DSP54.12DSP54.12 - - 3030

[Project] - Programming the McBSP

Next, let’s program the AIC...

AIC

DIN

DOUT

FSn

SCLK

McBSP0

BDX0BDX0

BDR0BDR0

BFSR/X0BFSR/X0

BCLKR/X0BCLKR/X0

;Reset/Program McBSP0
SP0 .set 039h
 STM #00h,SPSA0 ;SPCR10
 STM #4000h,SP0
 STM #01h,SPSA0 ;SPCR20
 STM #0100h,SP0
 STM #02h,SPSA0 ;RCR10
 STM #0040h,SP0
 STM #03h,SPSA0 ;RCR20
 STM #0000h,SP0
 STM #04h,SPSA0 ;XCR10
 STM #0040h,SP0
 STM #05h,SPSA0 ;XCR20
 STM #0000h,SP0
 STM #06h,SPSA0 ;SRGR10
 STM #0001h,SP0
 STM #07h,SPSA0 ;SRGR20
 STM #30FFh,SP0
 STM #0Eh,SPSA0 ;PCR0
 STM #000Ch,SP0

! SPSA0 holds “sub address” (0, 1,
2, 3, …)

! “Value” written to 39h (McBSP0
only)

! McBSP1 (reset state): off

! RRST/XRST=0 (reset)

DSP54.12DSP54.12 - - 3030

Setting Up The AIC

DSP54.12DSP54.12 - - 3131

[Project] - AIC Setup

For all registers, 0 in MSB (write) + reg # (Ex: Write REG 1: 01xxh)
Request to write (each time): XF=1, write value, XF=0

Reg Bit(s) Description Value Note

REG-all 15 0-write, 1-read 0 Write
 14-8 Register Number xxh Reg# to write to (01-04h)

REG 1 7 Software reset? 0 Reset
6 Software power down 0 no power down
5 INP/INM or aux as analog in 0 select INP/INM for ADC
4 Pins to monitor, INP/INM 0 select INP/INM
3-2 Monitor gain? 00 mute (no gain)
1 Digital loopback ? 0 no loopback
0 16-bit DAC mode ? 1 yes

0101h FINAL VALUE

REG 2 7 Flag output value 0 don’t care
6 Phone mode 0 don’t care
5 Decimator FIR overflow flag 0 don’t care
4 16-bit ADC mode ? 1 yes
3 Analog loopback ? 0 no
2-0 [reserved] 000

0210h FINAL VALUE

DSP54.12DSP54.12 - - 3131

The Firmware

12 - 18 DSP54x - Making a C54x System Work

DSP54.12DSP54.12 - - 3232

[Project] - AIC Setup

Reg Bit(s) Description Value Note

REG 3 7-6 # slave devices ? 00 None
5-0 Frame sync delay timing 12h not used (FSD)

0312h FINAL VALUE

REG 4 7 External sample clock y/n ? 0 no
6-4 Sample frequency select 000 Equation (N = 8)
3-2 Analog input gain ? 00 0db gain
1-0 Analog output gain ? 00 0db gain
3 Analog loopback ? 0 no

0400h FINAL VALUE

For all registers, 0 in MSB (write) + reg # (Ex: Write REG 1: 01xxh)

Request to write (each time): XF=1, write value, XF=0

DSP54.12DSP54.12 - - 3232

AIC Setup Code

DSP54.12DSP54.12 - - 3333

[Project] - Programming the AIC

Next? The DMA...

AIC

DIN

DOUT

FSn

SCLK

FC

McBSP0

BDX0

BDR0

BFSR/X0

BCLKR/X0

XF

;McBSP0 Xmt out of reset,
SP0 .set 039h
 STM #01h,SPSA0 ;SPCR20
 STM #0101h,SP0 ;XRST=1

;program AIC control registers
 CALL XSR_EMPTY
 SSBX XF

 STM #0101h,DXR ;CR-1
 CALL XSR_EMPTY
 STM #0210h,DXR ;CR-2
 CALL XSR_EMPTY
 STM #0312h,DXR ;CR-3
 CALL XSR_EMPTY
 STM #0400h,DXR ;CR-4
 CALL XSR_EMPTY

 RSBX XF

! XF=1 enables communication
with AIC (XF=0, disable)

! XSR_EMPTY polls XEMPTY
bit to ensure value has been sent
before sending next value

XSR_EMPTY:

 LD #0,DP

 BIT #13,SP0 ;poll XEMPTY

 BC XSR_EMPTY,TC

 RET

DSP54.12DSP54.12 - - 3333

The Firmware

DSP54x - Making a C54x System Work 12 - 19

Setting Up The DMA

DSP54.12DSP54.12 - - 3434

[Project] - DMA Setup (Main)
Reg Bit(s) Name Description Value Note

DMPREC 15 FREE Run free w/EMU stop? 0 not FREE running
 14 [rsvd] [reserved] 0

13 DPRC5 Ch5 priority? hi/low? 0 low
12 DPRC4 Ch4 priority? hi/low? 0 low
11 DPRC3 Ch3 priority? hi/low? 0 low (output to AIC)
10 DPRC2 Ch2 priority? hi/low? 1 hi (input from AIC)
9 DPRC1 Ch1 priority? hi/low? 0 low
8 DPRC0 Ch0 priority? hi/low? 0 low

 7-6 INTOSEL Interrupt selector 01 Select Ch2, Ch3, timer
5 DE5 Enable Ch5? 0 no
4 DE4 Enable Ch4? 0 no
3 DE3 Enable Ch3? 1 yes
2 DE2 Enable Ch2? 1 yes
1 DE1 Enable Ch1? 0 no
0 DE0 Enable Ch0? 0 no

044Ch FINAL VALUE

DMPREC - Channel Priority and Enable Control Register
INTOSEL: ‘5402 has 3 choices for interrupt selection, we chose to use
 channels 2/3 and timer. Also forces IMR/IFR
 to bits 7/10/11 to TIMER1/CH2/CH3 respectively
DEx: Programming these bits START the transfer

DSP54.12DSP54.12 - - 3434

DSP54.12DSP54.12 - - 3535

[Project] - DMA Channel 2 Setup
Reg Bit(s) Name Description Value Note

DMSRC2 15-0 16-bit Src Address (Ch2) #DRR10 input buffer src
DMDST2 15-0 16-bit Dest Address (Ch2) #80h input buffer dst
DMCTR2 15-0 16-bit Elem Count (Ch2) #1Fh 32 elements/frame

DMSFC2 15-12 DSYN Sync Event 0001 REVT0 (RRDY=1)
 11 DBLW Double word? 0 no (16-bit element)

10-8 [rsvd] [reserved] 000
7-0 FRMCNT Frame Count 02h #frames = 3

1002h FINAL VALUE

DMMCR2 15 AUTOINIT Auto init on/off? 1 yes
14 DINM DMA interrupts on/off? 1 on
13 IMOD When to gen interrupt 1 int @ end of frm/blk
12 CTMOD ABU/multi-frame mode 0 multi-frame

 11 [rsvd] [reserved] 0
10-8 SIND Source index 000 no modification (DRR)
7-6 DMS Source space select 01 data space
5 [rsvd] [reserved] 0
4-2 DIND Destination index 001 post increment (80h)
1-0 DMD Destination space select 01 data space

0E045h FINAL VALUE

DSP54.12DSP54.12 - - 3535

The Firmware

12 - 20 DSP54x - Making a C54x System Work

DSP54.12DSP54.12 - - 3636

[Project] - DMA Channel 3 Setup
Reg Bit(s) Name Description Value Note

DMSRC3 15-0 16-bit Src Address (Ch3) #2000h output buffer src
DMDST3 15-0 16-bit Dest Address (Ch3) #DXR10 output buffer dst
DMCTR3 15-0 16-bit Elem Count (Ch3) #1Fh 32 elements/frame

DMSFC3 15-12 DSYN Sync Event 0010 XEVT0 (XRDY=1)
 11 DBLW Double word? 0 no (16-bit element)

10-8 [rsvd] [reserved] 000
7-0 FRMCNT Frame Count 00h #frames = 1

2000h FINAL VALUE

DMMCR3 15 AUTOINIT Auto init on/off? 0 no
14 DINM DMA interrupts on/off? 0 off
13 IMOD When to gen interrupt 0 not used
12 CTMOD ABU/multi-frame mode 0 multi-frame

 11 [rsvd] [reserved] 0
10-8 SIND Source index 001 post increment (2000h)
7-6 DMS Source space select 01 data space
5 [rsvd] [reserved] 0
4-2 DIND Destination index 000 no modification (DXR)
1-0 DMD Destination space select 01 data space

0141h FINAL VALUE

DSP54.12DSP54.12 - - 3636

DSP54.12DSP54.12 - - 3737

[Project] - DMA Setup (Misc, Reload)

Reg Bit(s) Name Description Value Note

DMSRCP 6-0 7-bit Src Prog Page Addr 0h not used
DMDSTP 6-0 7-bit Dest Prog Page Addr 0h not used
DMIDX0 15-0 Element Index 0 0h not used
DMIDX1 15-0 Element Index 1 0h not used
DMFRI0 15-0 Frame Index 0 0h not used
DMFRI1 15-0 Frame Index 1 0h not used

DMGSA 15-0 Global Src Addr Reload #DRR10 auto-init, Ch2 src
DMGDA 15-0 Global Dest Addr Reload #80h auto-init, Ch2 dst
DMGCR 15-0 Global Elem Cnt Reload 001Fh 32 elements
DMGFR 7-0 Global Frm Cnt Reload 02h Ch2 - 3 frames

! No transfers to/from program space

! Not using indexing

! Global reload registers used to auto-initialize Channel 2 (input buffer)

DSP54.12DSP54.12 - - 3737

Let’s step back and review the data flow...

The Firmware

DSP54x - Making a C54x System Work 12 - 21

Data I/O

DSP54.12DSP54.12 - - 3838

[Project] - Data I/O

AIC

DOUT

SCLK

FSn

DIN

Ain

Aout

McBSP0

BDR0

BCLKR/X0

BFSR/X0

BDX0 DXR

DRR

Ch3

Ch2

DMA

20h80h
IN BUF

2000h
OUT BUF

Int
20h

20h

20h

20h

! System Goal: Process a 16-tap block FIR filter on incoming data

! Design choices made
- McBSP0: aribitrary (could have chosen McBSP1)
- Ch2/3: based on INTOSEL limitations for ‘5402

! ‘5402 has two blocks of 8Kx16 DARAM. To avoid memory conflicts,
code/coeffs will be placed at 1000/3000h respectively

! Number of buffers chosen to ease programming boundary conditions

! Size of buffers chosen to limit I/O latency

Let’s make sure Let’s make sure dataflowdataflow timingtiming works... works...

20h

DSP54.12DSP54.12 - - 3838

TImeline Analysis

DSP54.12DSP54.12 - - 3939

[Project] - Timeline Analysis

! Input first 32 words - ignore first interrupt, (32 words @ 8KHz) = 4000us

! Input 2nd 32 words - interrupt starts processing of In-1
- In-1 processing requires 47 input samples (15 from In-2) to complete

! Processing takes ~22 cycles/result * 32 results (@100MHz) = 7.04us

! CPU writes results to Out-1 and reprograms DMA3

! Begin first transfer to AIC

! Latency from first input to first output: ~8ms

! Go to power-down state between end of processing and input interrupt

Let’s finish programming the DMA...

In-1 (32) . . .

P1 P2 P3

In-2 (32) In-3 (32) In-4 (32)

Out-1 (32) Out-2 (32) Out-3 (32)

Int Int Int Int

. . .

. . .

Sleep Sleep Sleep

DSP54.12DSP54.12 - - 3939

The Firmware

12 - 22 DSP54x - Making a C54x System Work

DMA Setup Code

DSP54.12DSP54.12 - - 4040

[Project] - Programming the DMA
;DMA Channel 2 Setup
 STM #0Ah,DMSA
 STM #DRR,DMSDI ;DMSRC2 w/auto-inc
 STM #80h,DMSDI ;DMDST2
 STM #1Fh,DMSDI ;DMCTR2
 STM #1002h,DMSDI ;DMSFC2
 STM #0E045h,DMSDI ;DMMCR2

;DMA Channel 3 Setup
 STM #0Fh,DMSA
 STM #2000h,DMSDI ;DMSRC3 w/auto-inc
 STM #DXR,DMSDI ;DMDST3
 STM #1Fh,DMSDI ;DMCTR3
 STM #2000,DMSDI ;DMSFC3
 STM #0141h,DMSDI ;DMMCR3

;DMA Global Reload Reg Setup
 STM #24h,DMSA
 STM #DRRh,DMSDI ;DMGSA w/auto-inc
 STM #80h,DMSDI ;DMGDA
 STM #1Fh,DMSDI ;DMGCR
 STM #02h,DMSDI ;DMGFR

! save DMPREC code
until we are ready to
begin transfers

! Registers not used -
not programmed

DSP54.12DSP54.12 - - 4040

Turning On The Hardware Code

DSP54.12DSP54.12 - - 4141

[Project] - Turning it ON...
;Check to ensure PLL is locked
 LD #0,DP
loop: BIT CLKMD,#15-0
 BC loop,NTC

;En/Disable DMA (Ch2-on, Ch3-off)
 STM #0444h,DMPREC

;McBSP0 (rcv) out of reset
 ORM #1,SPCR10

;AIC out of reset
CALL XSR_EMPTY
SSBX XF
STM #0181h,DXR ;CR-1
CALL XSR_EMPTY
RSBX XF

;turn on interrupts
 STM #0400h,IMR ;DMA-INT CH2

STM #0FFFFh,IFR ;Clr IFR

! Analog path now active

! INTM left inactive
until just before main
code begins

! First interrupt will not
occur for 4ms
(400,000 cycles)

DSP54.12DSP54.12 - - 4141

The Software

DSP54x - Making a C54x System Work 12 - 23

The Software

DSP54.12DSP54.12 - - 4242

Part III - Software

Programming the bootloader and application:

! Determine vector table and linker command options

! Write fir_ISR and application setup code

! Use HEX500 to create a boot table, discuss bootload options

! Discuss power down options (IDLE)

! Review power management hints

! See how BIOS and RTA can assist us

DSP54.12DSP54.12 - - 4242

Link.cmd and Vectors.asm

DSP54.12DSP54.12 - - 4343

[Project] - Link.cmd, Vector Table
project.obj
vectors.obj
-o project.out

MEMORY {
PAGE 1: INBUF: org = 00080h, len = 00060h
 CODE: org = 00100h, len = 00400h
 VECS: org = 00500h, len = 00100h
 OUTBUF: org = 02000h, len = 00060h
 COEFF: org = 02060h, len = 00200h

DARAM2: org = 03000h, len = 01000h
PAGE 0: EPROM: org = 0F000h, len = 00F80h
}
SECTIONS
{in_bufs :> INBUF PAGE 1
 out_bufs :> OUTBUF PAGE 1
 coeffs :> LOAD=EPROM PAGE 0, RUN=COEFF PAGE 1
 code :> LOAD=EPROM PAGE 0, RUN=CODE PAGE 1
 vectors :> LOAD=EPROM PAGE 0, RUN=VECS PAGE 1
 STK :> DARAM2 PAGE 1
 vars :> COEFF PAGE 1
}

! The following sections
are booted:
- coeffs
- code
- vectors

! Bootloader moves code
from Program space
to Data Space.
Bootloader sets OVLY
bit to one.

! Vectors.ASM:

;unused: RETE

;Ch2 Int @68h

DMAC2:

 B fir_isr

DSP54.12DSP54.12 - - 4343

Let’s now review
ALL of the code...

The Software

12 - 24 DSP54x - Making a C54x System Work

The Hardware Setup and The FIR Code

DSP54.12DSP54.12 - - 4444

[Project] - Project.ASM
;** .set statements **

.mmregs
DMPREC .set 54h ;Channel Priority and Enable ControlChannel Priority and Enable Control
DMSA .set 55h ;DMA sub-address
DMSDI .set 56h ;DMA write without indexing
DMSDN .set 57h ;DMA write with indexing
SPSA0 .set 38h ;McBSP0 sub-address
SP0 .set 039h ;Write for McBSP0 sub-addressed regs
DRR10 .set 21h ;Data Receive for McBSP0
DXR10 .set 23h ;Data Transmit for McBSP0
SWCR .set 2bh ;Software Wait State

;** allocate aligned circular buffers for input and output **
x .usect "in_bufs",96
bos .usect "STK",128
FLAG1 .usect "vars",3 ;signal first time thru input routine
FLAG2 .set FLAG1+1 ;signal first time thru output routine
COUNT .set FLAG1+2 ;which buffer is being processed? 1,2,3
y .usect "out_bufs",96

;** allocate 16 initialized coeffs of 1/16th each **
.sect "coeffs"

a .int 800h,800h,800h,800h
.int 800h,800h,800h,800h
.int 800h,800h,800h,800h
.int 800h,800h,800h,800h

DSP54.12DSP54.12 - - 4444

DSP54.12DSP54.12 - - 4545

.sect "code"
;******************* H/W Setup Code *****************

;** PLL **
start: STM #0B7FCh,CLKMD ;Setup CLKMD Register

ORM #2,CLKMD ;Tell PLL to switch when PLLCOUNT = 0

;** SWWSR/SWCR/BSCR **
STM #8244h,SWWSR ;SWWSR Setup
STM #0001h,SWCR ;SWCR Setup
STM #0800h,BSCR ;BSCR Setup

;** Reset/Program McBSP0 **
 STM #00h,SPSA0 ;SPCR10
 STM #4000h,SP0
 STM #01h,SPSA0 ;SPCR20
 STM #0100h,SP0
 STM #02h,SPSA0 ;RCR10
 STM #0040h,SP0
 STM #03h,SPSA0 ;RCR20
 STM #0000h,SP0
 STM #04h,SPSA0 ;XCR10
 STM #0040h,SP0

STM #05h,SPSA0 ;XCR20
STM #0000h,SP0
STM #06h,SPSA0 ;SRGR10
STM #0001h,SP0
STM #07h,SPSA0 ;SRGR20
STM #30FFh,SP0
STM #0Eh,SPSA0 ;PCR0
STM #000Ch,SP0

DSP54.12DSP54.12 - - 4545

The Software

DSP54x - Making a C54x System Work 12 - 25

DSP54.12DSP54.12 - - 4646

;** McBSP0 Xmt out of reset **
STM #01h,SPSA0 ;SPCR20
STM #0101h,SP0 ;XRST=1

;** program AIC control registers **
CALL XSR_EMPTY
SSBX XF
STM #0101h,DXR10 ;CR-1
CALL XSR_EMPTY
STM #0210h,DXR10 ;CR-2
CALL XSR_EMPTY
STM #0312h,DXR10 ;CR-3
CALL XSR_EMPTY
STM #0400h,DXR10 ;CR-4

 CALL XSR_EMPTY
 RSBX XF

;** DMA Channel 2 Setup **
 STM #0Ah,DMSA
 STM #DRR10,DMSDI ;DMSRC2 w/auto-inc
 STM #80h,DMSDI ;DMDST2
 STM #1Fh,DMSDI ;DMCTR2
 STM #1002h,DMSDI ;DMSFC2
 STM #0E045h,DMSDI ;DMMCR2

;** DMA Channel 3 Setup **
 STM #0Fh,DMSA
 STM #2000h,DMSDI ;DMSRC3 w/auto-inc
 STM #DXR10,DMSDI ;DMDST3
 STM #1Fh,DMSDI ;DMCTR3
 STM #2000,DMSDI ;DMSFC3
 STM #0141h,DMSDI ;DMMCR3

DSP54.12DSP54.12 - - 4646

DSP54.12DSP54.12 - - 4747

;** DMA Global Reload Reg Setup **
STM #24h,DMSA

 STM #DRR10,DMSDI ;DMGSA w/auto-inc
 STM #80h,DMSDI ;DMGDA
 STM #1Fh,DMSDI ;DMGCR
 STM #02h,DMSDI ;DMGFR

;** Set PMST Register to proper value **
;** **
;** IPTR=500h (bootloaded vector table) **
;** MP/MC = 0 (should be 0 already) **
;** OVLY = 1 (should be 1 already) **
;** AVIS = 0 (off) **
;** DROM = 0 (off) **
;** CLKOFF = 1 (off) **
;** SMUL = 0 (off) **
;** SST = 1 (on) **

 STM #0525h,PMST

;** Check to ensure PLL is locked **
 LD #0,DP
plloop:

BITF @CLKMD,#1 ;loop until PLLSTATUS=1
 BC plloop,NTC ;(PLL Locked)

;** Enable DMA Channels 2 & 3 **
 STM #044Ch,DMPREC

DSP54.12DSP54.12 - - 4747

DSP54.12DSP54.12 - - 4848

;** McBSP0 (rcv) out of reset **
 STM #00h,SPSA0 ;SPCR10
 STM #4001h,SP0

;** AIC out of reset **
CALL XSR_EMPTY
SSBX XF
STM #0181h,DXR10 ;CR-1
CALL XSR_EMPTY
RSBX XF

;** enable DMA Ch2 interrupt, Clear IFR **
 STM #0400h,IMR ;DMA-INT CH2

STM #0FFFFh,IFR ;Clr IFR

;** fir_isr setup code **
LD #FLAG1,DP ;FLAG1,FLAG2 and COUNT on same DP
ST #0,FLAG1 ;assure FLAG1 (for in_bufs) is zero
ST #0,FLAG2 ;assure FLAG2 (for out_bufs) is zero
ST #0,COUNT ;assure COUNT is zero
STM #31,BRC ;generate 32 results
STM #96,BK ;Moe, Larry, Curly input and

;Tom, Dick, Harry output buffers
STM #1,AR0 ;emulate post inc by 1
STM #0Fh,DMSA ;0Fh is DMSRC3 (for all DMSRC3 writes)
RSBX OVM ;clear overflow mode
SSBX FRCT ;set fractional mode
SSBX SXM ;set sign extension
RSBX INTM ;enable global interrupts last DSP54.12DSP54.12 - - 4848

The Software

12 - 26 DSP54x - Making a C54x System Work

DSP54.12DSP54.12 - - 4949

;*************************

;** Main Loop **

;*************************

main:

IDLE 1 ;When DMA2 interrupts main, fir_isr runs and

NOP ;execution returns to this code. We then go

NOP ;back into IDLE mode and wait for the

NOP ;next interrupt.

NOP

B main

;*************************

;** XSR Empty Test **

;*************************

XSR_EMPTY:

 LD #0,DP

 BITF @SP0,2h ;poll XEMPTYn flag

 BC XSR_EMPTY,TC

 RET

DSP54.12DSP54.12 - - 4949

DSP54.12DSP54.12 - - 5050

;**************** FIR ISR (DMA Ch2 Int) ****************

fir_isr:
LD #FLAG1,DP ;Ignore First DMA Interrupt
CMPM @FLAG1,#0Fh ;
ST #0Fh,@FLAG1 ;
BC done,NTC ;
ADDM #1,@COUNT ;COUNT holds 1,2,3 for Moe,Larry,Curly
CMPM @COUNT,#1 ;1st pass (Moe)?
BC loopinit,TC ;if so, setup ARs and set output SRC
CMPM @COUNT,#2 ;2nd pass (Larry)?
BC test3,NTC ;NO, go to test3
STM #y+32,DMSDN ;DMA3 SRC = out_buf #2
B math

test3: CMPM @COUNT,#3 ;3rd pass (Curly)?
BC fourth,NTC ;NO, must be fourth, reset counter
STM #y+64,DMSDN ;DMA3 SRC = out_buf #3
B math

fourth: ST #1,COUNT ;reset COUNT, reload ARs as 1st pass

loopinit:
STM #x,AR3 ;setup ARs for MAC
STM #y,AR4
STM #y,DMSDN ;DMA3 SRC = out_buf #1

math: ;...
DSP54.12DSP54.12 - - 5050

DSP54.12DSP54.12 - - 5151

math: STM #a,AR2 ;always re-init coeff pointer

RPTB tstflg2-1

 MPY *AR2+,*AR3+0%,A ;1st product, AR3 circles on 96

 RPT #14 ;mult/acc 15 terms

 MAC *AR2+,*AR3+0%,A

 MAR *+AR3(-15)% ;modify AR3 by -15 circularly

 STH A,*AR4+ ;store result

tstflg2:

CMPM @FLAG2,#0Fh ;Write dummy DXR to initiate

ST #0Fh,@FLAG2 ;first DMA3 transfer IF the FIRST

XC 2,NTC ;out_buf is ready

STM #0,DXR10

done: RETE ;return with enable

Now that we’ve written all of the code,
how does it get loaded into the system?

DSP54.12DSP54.12 - - 5151

The Software

DSP54x - Making a C54x System Work 12 - 27

The Bootloader

DSP54.12DSP54.12 - - 5252

‘5402 Boot Loader - Options

Each 54xx device has specific options and modes. Refer to the
boot-loader specification for your chosen device for more details.

‘5402 bootloader can copy to extended program space

DSP54.12DSP54.12 - - 5252

Boot Mode Description Trigger

No Boot MP/MC=1, begin execution @RS vector None

HPI-8 Host transfers code to DARAM. PC = dest. INT2n low

Parallel Boot Loader xfrs code. Src = 8/16-bit async mem FFFFh in I/O = src

 dest = int/ext’l RAM. PC = entry point specified. src = 8AA or 10AAh

I/O Boot Loader transfers code via I/O addr 0h. FFFFh in data = src

 Handshake via XF/BIO. src = 8AA or 10AAh

Serial Boot Loader configures SP and reads 1st word 8AA or 10AAh rcvd?

 Src = 8/16-bit. Dest = int/ext’l RAM.

Serial Bootloader configures SP in SPI-mode INT3n low

EEPROM

DSP54.12DSP54.12 - - 5353

[Project] - Parallel Boot

1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

F

0

0

0

D15

 .
 .
 .

D8
D7

 .
 .
 .

D0

Transparent
Buffer

F000hFFFFh

OEn

IS

10AA ;parallel boot

8244h ;SWWSR

0001h ;SWCR

0800h ;BSCR

0000h ;XPC entry point

start ;PC entry point

Size of 1st section

0000h ;XPC DEST

0100h ;PC DEST - CODE

Code word 1-N - (CODE)

Size of 2nd section

0000h ;XPC DEST

0500h ;PC DEST - VECS

Code word 1-N - (VECS)

! When I/O space is accessed,
SRCaddr=F000h is returned

! Boot table Generated by Hex500

F000h

 … (COEFFS)

DSP54.12DSP54.12 - - 5353

The Software

12 - 28 DSP54x - Making a C54x System Work

HEX500

DSP54.12DSP54.12 - - 5454

[Project] - Using HEX500
HEX500 firmware.cmd

 /* FIRMWARE.CMD */

project.out /* input file */

-e start /* set entry (execution) point */

-i /* select Intel format */

-map project.mxp /* map file for HEX500 */

-o project.hex /* output file */

-memwidth 16 /* DSP accesses mem as 8/16-bit */

-romwidth 16 /* physical mem width, 8/16-bit */

-boot /* make all sections bootable */

-bootorg 0xF000 /* location of boot table */

DSP54.12DSP54.12 - - 5454

! Must assemble .OUT file using -v548 if using ‘548/9/02/10 devices

! Programming formats: 16-bit ASCII hex, Tektronix, Intel MCS-86,

Motorola S (16/24/32-bit addresses), 16-bit TI-Tag

! For more info, see the Assembly Language Tools User Guide

Now, let’s look at our power-down options...

IDLE

DSP54.12DSP54.12 - - 5555

IDLE Options

IDLE n n = 1 2 3
Effect :

CPU Halted x x x
Peripherals Halted, CLKOUT Stopped x x
System Clock Stopped x

Resume on:
Reset x x x
External Interrupt x x x
Internal Interrupt x

! A 10ns minimum pulse on any external interrupt pin will initiate the
wakeup sequence

! INTM=0 : go to ISR, INTM=1 : continue in-line main code
! PLL requires a locking time for restart
! McBSP, DMA and HPI are considered ‘external’ devices in above table

DSP54.12DSP54.12 - - 5555

What other methods can be used to reduce power?

The Software

DSP54x - Making a C54x System Work 12 - 29

Power Management Hints

DSP54.12DSP54.12 - - 5656

Power Management Hints

! Minimize external trace lengths and their associated capacitance

! Set Address Visibility (AVIS) = 0

! When not being used, make sure the timer and serial ports are in

reset and MCM = 0

! Assure all input pins are grounded or pulled high

! Set SWWSR to 0 wait states when possible

! Use circular addressing instead of DELAY’s

! Use internal instead of external memory accesses

! Minimize the clock frequency to match the task required

! Implement power down modes where possible

Some design techniques for minimizing power consumption :

DSP54.12DSP54.12 - - 5656

BIOS and RTA

DSP54.12DSP54.12 - - 5757

BIOS and RTA

! BIOS and CCS offer static configuration of most of the
peripherals. We set up each peripheral manually via code, but
BIOS will allow the user to control each peripheral from CCS.

! TI Analog group is creating plug-in tools to CCS to configure
ADC/DAC devices

! RTA (real time analysis) allows the user to ensure that the
real-time constraints are met. In our case, that means the
in_buff/processing/out_buf timing works within spec.

DSP54.12DSP54.12 - - 5757

The Software

12 - 30 DSP54x - Making a C54x System Work

Need More Information?

DSP54.12DSP54.12 - - 5858

Analog Information & Product Resources

! For the [Project], we used the following
sources to select our conversion and power
devices:
www.ti.com/sc/select

www.ti.com/sc/docs/products/msp/index.htm

! Evaluation modules can be found at:
www.ti.com/sc/docs/tools/analog/index.html

! Samples can be ordered on the TI Web

! Mixed-Signal and Analog Literature
" Designers Guide (SLYU001B)

" Analog Overview (SSDV004D)

DSP54.12DSP54.12 - - 5858

DSP54.12DSP54.12 - - 5959

Don’t Forget!

♦ Take your workbook, databook(s) and CDs with you

♦ Fill out the evaluation form (in pencil)

♦ Fill out and mail the registration form if you desire

♦ Copy c:\dsp54\labs and c:\dsp54\solutions
 to the disk in your workbook

Thank you for attending.

Have a safe trip home.

DSP54.12DSP54.12 - - 5959

The Software

DSP54x - Making a C54x System Work 12 - 31

Additional Analog Information

12 - 32 DSP54x - Making a C54x System Work

Additional Analog Information

DSP54.12DSP54.12 - - 6161

!! Single 5V DC-DC controller Single 5V DC-DC controller
!! Adjustable output voltage with 5 bit DAC Adjustable output voltage with 5 bit DAC
!! Excellent transient response and regulation Excellent transient response and regulation
 (1.5%) over temperature range (1.5%) over temperature range
!! Features soft start, over current, and Features soft start, over current, and
 over-voltage protection over-voltage protection
!! Ideal for applications requiring 3-30A Ideal for applications requiring 3-30A
!! EVM: SLVP128 EVM: SLVP128

‘C54x Power Solutions‘C54x Power Solutions

!! 200mA / 3.3V Charge Pump200mA / 3.3V Charge Pump
!! Less than 5mV Vout ripple Less than 5mV Vout ripple
!! 1.8 to 3.6 V input voltage range 1.8 to 3.6 V input voltage range
!! No inductors required - reduces EMI No inductors required - reduces EMI
!! 50uA quiescent current 50uA quiescent current
 - 0.05uA shutdown current - 0.05uA shutdown current
!! Up to 90% efficiency Up to 90% efficiency
!! EVM: SLVP130 EVM: SLVP130

TPS56100TPS56100 - Multiple DSP Solution

TPS60100 - Battery Powered Solution

DSP54.12DSP54.12 - - 6161

DSP54.12DSP54.12 - - 6262

‘C54x Power Solutions‘C54x Power Solutions

!! Low quiescent current (85 uA) - 1 uA in shutdownLow quiescent current (85 uA) - 1 uA in shutdown
!! Dual Power on Reset Dual Power on Reset
!! Drive capability to 1A (typ) Drive capability to 1A (typ)
!! 350mV dropout voltage 350mV dropout voltage
!! Accuracy (2%) over entire temperature range Accuracy (2%) over entire temperature range
!! TSSOP PowerPAD package TSSOP PowerPAD package

TPS767D318 - Dual Voltage Solution

TPS769xx - Low Power LDO Solution - Low Power LDO Solution

!! Low dropout voltage - 71 mV (typ) Low dropout voltage - 71 mV (typ)
!! Low quiescent current (17uA) Low quiescent current (17uA)
 -1 uA in shutdown mode -1 uA in shutdown mode
!! 100mA drive capability 100mA drive capability
!! Other fixed output voltage devices available Other fixed output voltage devices available

DSP54.12DSP54.12 - - 6262

Additional Analog Information

DSP54x - Making a C54x System Work 12 - 33

DSP54.12DSP54.12 - - 6363

Purposes for a Supervisory Circuit
! Issue processor Reset during power up

- puts processor in a known state

! Issue Reset on power fail

! Single or multiple rail sensing

! Watchdog monitors processor activity

! Power Fail early warning and back-up
battery switching

Timing diagram of a Supervisory Circuit

undefined

td td

VSENSE

RESET

t

t

u
n

d
ef

in
ed

Vt

1 V

Power
Supply

DSP

+VCC1

+VCC2

GND

SVS
RESET

VVcorecore V VI/OI/O

Do you Need a Supervisory Circuit (SVS) ?

Key SVS Specifications
Vcc/Icc: Supply voltage and current
VIT: Threshold voltage
td: Reset time delay
Tolerance / Precision
External components required

DSP54.12DSP54.12 - - 6363

DSP54.12DSP54.12 - - 6464

��
��
��
��

100K 10M

15B
i
t
s

Speed

11

Moderate HighLow

Mod

High

Data Converters - Applications vs. ProductsData Converters - Applications vs. Products

Video, DVD
STB

Cable Modems

Automotive
DMC, HDD

PC Cameras

Scanners
Industrial

Automotive
Mass Storage

Process
 Control
Telecom

PC Audio
Modems
Wt Scale

Basestation
Communications
Cable Head End

Automotive
Printers

 Metering

DSP54.12DSP54.12 - - 6464

DSP54.12DSP54.12 - - 6565

 THS1206 connected to C54x

I/O STRB

A14

R/W

INTX

BCLKX

D11:0D11:0

CONV_CLK

DATA_AV

CS1

RD

CS0

WR

THS1206 TMS320C54x

!! Read/Write access via I/O STRBRead/Write access via I/O STRB
!! Address: 0x4000 Address: 0x4000
!! Interrupt driven Interrupt driven

DSP54.12DSP54.12 - - 6565

Additional Analog Information

12 - 34 DSP54x - Making a C54x System Work

DSP54.12DSP54.12 - - 6666

THS1206 - 12-bit A/D with 16 word deep FIFO

! 12-Bit, 6MSPS

! parallel interface

! FIFO to improve throughput

SHA MUX ADC FIFO

InterfaceControl

DSP54.12DSP54.12 - - 6666

DSP54.12DSP54.12 - - 6767

FIFO optimizes Interrupt Transfer ...

0

5

10

15

20

25

1 4 8 14

T rigger L evel

S
a

m
p

li
n

g
 F

re
q

u
e

n
c

y
 [

M
H

z
]

f(ISR)

f(AD C)

f(O VR)

… by allowing multiple samples to be transferred per ISR iteration

DSP54.12DSP54.12 - - 6767

DSP54.12DSP54.12 - - 6868

 TLV1570 connected to C54x

TOUT

TDX

TDR

TFSX

CS

FS

SDIN

TLV1570 TMS320C54x

! Glueless serial interface

SCLK

TCLKX

TCLKR

TFSR

SDOUT

DSP54.12DSP54.12 - - 6868

Additional Analog Information

DSP54x - Making a C54x System Work 12 - 35

DSP54.12DSP54.12 - - 6969

TLV1570 - 10-bit A/D with 8 input channels

! 10-Bit, 1.25MSPS

! serial interface

! 8-channel MUX

MUX ADC Interface

Control

DSP54.12DSP54.12 - - 6969

Additional Analog Information

12 - 36 DSP54x - Making a C54x System Work

DSP54x - Appendix A - 1

Appendix

Block diagram

A - 2 DSP54x - Appendix

Block diagram

DSP54x - Appendix A - 3

Block diagram

Block diagram

A - 4 DSP54x - Appendix

‘C54x Mnemonic Instruction Set Quick Reference

DSP54x - Appendix A - 5

‘C54x Mnemonic Instruction Set Quick Reference

Arithmetic Operations

Add Instructions

Syntax Expression WC
ADD Smem, src src = src + Smem 1 1

ADD Smem, TS, src src = src + Smem << TS 1 1

ADD Smem, 16, src [, dst] dst = src + Smem << 16 1 1

ADD Smem [, SHIFT], src [, dst] dst = src + Smem << SHIFT 2 2

ADD Xmem, SHFT, src src = src + Xmem <<SHFT 1 1

ADD Xmem, Ymem, dst dst = Xmem<<16 + Ymem<<16 1 1

ADD # lk [, SHFT], src [, dst] dst = src + #lk << SHFT 2 2

ADD # lk, 16, src [, dst] dst = src + #lk << 16 2 2

ADD src [, SHIFT] [, dst] dst = dst + src << SHIFT 1 1

ADD src, ASM [, dst] dst = dst + src << ASM 1 1

ADDC Smem, src src = src + Smem + C 1 1

ADDM # lk, Smem Smem = Smem + #lk 2 2

ADDS Smem, src src = src + uns(Smem) 1 1

Subtract Instructions

Syntax Expression WC
SUB Smem, src src = src – Smem 1 1

SUB Smem, TS, src src = src – Smem << TS 1 1

SUB Smem, 16, src [, dst] dst = src – Smem << 16 1 1

SUB Smem [, SHIFT], src [, dst] dst = src – Smem << SHIFT 2 2

SUB Xmem, SHFT, src src = src – Xmem << SHFT 1 1

SUB Xmem, Ymem, dst dst = Xmem<<16 – Ymem<<16 1 1

SUB # lk [, SHFT], src [, dst] dst = src – #lk << SHFT 2 2

SUB # lk, 16, src [, dst] dst = src – #lk <<16 2 2

SUB src[, SHIFT] [, dst] dst = dst – src << SHIFT 1 1

SUB src, ASM [, dst] dst = dst – src << ASM 1 1

SUBB Smem, src src = src – Smem – C 1 1

SUBC Smem, src If (src – Smem << 15) _ 0 1 1

src = (src – Smem << 15) << 1 + 1

Else

src = src << 1

SUBS Smem, src src = src – uns(Smem) 1 1

Muliply Instructions

Syntax Expression WC
MPY Smem, dst dst = T * Smem 1 1

MPYR Smem, dst dst = rnd(T * Smem) 1 1

MPY Xmem, Ymem, dst dst = Xmem * Ymem, 1 1

T = Xmem

MPY Smem, # lk, dst dst = Smem * #lk , 2 2

T = Smem

MPY # lk, dst dst = T * #lk 2 2

MPYA dst dst = T * A(32–16) 1 1

MPYA Smem B = Smem * A(32–16), 1 1

T = Smem

MPYU Smem, dst dst = uns(T) * uns(Smem) 1 1

SQUR Smem, dst dst = Smem * Smem, 1 1

T = Smem

SQUR A, dst dst = A(32–16) * A(32–16) 1 1

Mult-Acc & Mult-Sub Instructions

Syntax Expression WC
MAC Smem, src src = src + T * Smem 1 1

MAC Xmem, Ymem, src [.dst] dst = src + Xmem * Ymem, 1 1

T = Xmem

MAC # lk, src [, dst] dst = src + T * #lk 2 2

MAC Smem, # lk, src [,dst] dst = src + Smem * #lk, 2 2

T = Smem

MACR Smem, src dst = rnd(src + T * Smem) 1 1

MACR Xmem, Ymem, src [,dst] dst = rnd(src + Xmem * Ymem), 1 1

T = Xmem

MACA Smem [, B] B = B + Smem * A(32–16), 1 1

T = Smem

MACA T, src [, dst] dst = src + T * A(32–16) 1 1

MACAR Smem [, B] B = rnd(B + Smem * A(32–16)), 1 1

T = Smem

MACAR T, src [, dst] dst = rnd(src + T * A(32–16)) 1 1

MACD Smem, pmad, src src = src + Smem * pmad, 2 3

T = Smem, (Smem + 1) = Smem

MACP Smem, pmad, src src = src + Smem * pmad, 2 3

T = Smem

MACSU Xmem, Ymem, src src = src + uns(Xmem) * Ymem, 1 1

T = Xmem

MAS Smem, src src = src – T * Smem 1 1

‘C54x Mnemonic Instruction Set Quick Reference

A - 2 DSP54x - Appendix

Mult-Acc & Mult-Sub (cont.)

Syntax Expression WC

MASR Xmem, Ymem, src [,dst] dst = rnd(src – Xmem * Ymem), 1 1

T = Xmem

MAS Xmem, Ymem, src [,dst] dst = src – Xmem * Ymem, 1 1

T = Xmem

MASR Smem, src src = rnd(src – T * Smem) 1 1

MASA Smem [, B] B = B – Smem * A(32–16), 1 1

T = Smem

MASA T, src [, dst] dst = src – T * A(32–16) 1 1

MASAR T, src [, dst] dst = rnd(src – T * A(32–16)) 1 1

SQURA Smem, src src = src + Smem * Smem, 1 1

T = Smem

SQURS Smem, src src = src – Smem * Smem, 1 1

T = Smem

Double (32-bit) Operand
Instructions

Syntax Expression WC
DADD Lmem, src [, dst] If C16 = 0 1 1

dst = Lmem + src

If C16 = 1

dst(39–16) = Lmem(31–16) + src(31–16)

dst(15–0) = Lmem(15–0) + src(15–0)

DADST Lmem, dst If C16 = 0 1 1

dst = Lmem + (T << 16 + T)

If C16 = 1

dst(39–16) = Lmem(31–16) + T

dst(15–0) = Lmem(15–0) – T

DRSUB Lmem, src If C16 = 0 1 1

src = Lmem – src

If C16 = 1

src(39–16) = Lmem(31–16) – src(31–16)

src(15–0) = Lmem(15–0) – src(15–0)

DSADT Lmem, dst If C16 = 0 1 1

dst = Lmem – (T << 16 + T)

If C16 = 1

dst(39–16) = Lmem(31–16) – T

dst(15–0) = Lmem(15–0) + T

DSUB Lmem, src If C16 = 0 1 1

src = src – Lmem

If C16 = 1

src (39–16) = src(31–16) – Lmem(31–16)

src (15–0) = src(15–0) – Lmem(15–0)

DSUBT Lmem, dst If C16 = 0 1 1

dst = Lmem – (T << 16 + T)

If C16 = 1

dst(39–16) = Lmem(31–16) – T

dst(15–0) = Lmem(15–0) – T

Application-Specific Instructions

Syntax Expression WC
ABDST Xmem, Ymem B = B + |A(32–16)| 1 1

A = (Xmem – Ymem) << 16

ABS src [, dst] dst = |src| 1 1

CMPL src [, dst] dst = ~src 1 1

DELAY Smem (Smem + 1) = Smem 1 1

EXP src T = number of sign bits (src) – 8 1 1

FIRS Xmem, Ymem, pmad B = B + A * pmad 2 3

A = (Xmem + Ymem) << 16

LMS Xmem, Ymem B = B + Xmem * Ymem 1 1

A = (A + Xmem << 16) + 2 15

MAX dst dst = max(A, B) 1 1

MIN dst dst = min(A, B) 1 1

NEG src [, dst] dst = –src 1 1

NORM src [, dst] dst = src << TS 1 1

dst = norm(src, TS)

POLY Smem B = Smem << 16 1 1

A = rnd(A * T + B)

RND src [, dst] dst = src + 2^15 1 1

SAT src saturate(src) 1 1

SQDST Xmem, Ymem B = B + A(32–16) * A(32–16) 1 1

A = (Xmem + Ymem) << 16

Logical Operations

AND Instructions

Syntax Expression WC
AND Smem, src src = src & Smem 1 1

AND # lk [, SHFT], src [, dst] dst = src & #lk << SHFT 2 2

AND # lk, 16, src [, dst] dst = src & #lk << 16 2 2

AND src [, SHIFT] [, dst] dst = dst & src << SHIFT 1 1

ANDM # lk, Smem Smem = Smem & #lk 2 2

OR Instructions
Syntax Expression WC
OR Smem, src src = src | Smem 1 1

OR # lk [, SHFT], src [, dst] dst = src | #lk << SHFT 2 2

OR # lk, 16, src [, dst] dst = src | #lk << 16 2 2

OR src [, SHIFT] [, dst] dst = dst | src << SHIFT 1 1

ORM # lk, Smem Smem = Smem | #lk 2 2

‘C54x Mnemonic Instruction Set Quick Reference

DSP54x - Appendix A - 3

XOR Instructions
Syntax Expression WC
XOR Smem, src src = src ^ Smem 1 1

XOR # lk [, SHFT,], src [, dst] dst = src ^ #lk << SHFT 2 2

XOR # lk, 16, src [, dst] dst = src ^ #lk << 16 2 2

XOR src [, SHIFT] [, dst] dst = dst ^ src << SHIFT 1 1

XORM # lk, Smem Smem = Smem ^ #lk 2 2

Shift Instructions
Syntax Expression WC
ROL src Rotate left with carry in 1 1

ROLTC src Rotate left with TC in 1 1

ROR src Rotate right with carry in 1 1

SFTA src, SHIFT [, dst] dst = src << SHIFT {arith. shift} 1 1

SFTC src if src(31) = src(30) 1 1

then src = src<<1

SFTL src, SHIFT [, dst] dst = src << SHIFT {logical} 1 1

Test Instructions
Syntax Expression WC
BIT Xmem, BITC TC = Xmem(15 – BITC) 1 1

BITF Smem, # lk TC = (Smem && #lk) 2 2

BITT Smem TC = Smem(15 – T(3–0)) 1 1

CMPM Smem, # lk TC = (Smem == #lk) 2 2

CMPR CC, ARx Compare ARx with AR0 1 1

Program Control Operations

Branch Instructions
Syntax Expression WC
B[D] pmad PC = pmad(15–0) 2 4/[2]

BACC[D] src PC = src(15–0) 1 6/[4]

BANZ[D] pmad, Sind if (Sind _ 0) 2
4/2/[2]

then PC = pmad(15–0)

BC[D] pmad,cond[,cond[,cond]] if (cond(s)) 2
5/3/[3]

then PC = pmad(15–0)

FB[D] extpmad PC= pmad(15–0), 2 4/[2]

XPC = pmad(22–16)

FBACC[D] src PC = src(15–0), 1 6/[4]

XPC = src(22–16)

Call Instructions
Syntax Expression WC
CALA[D] src – –SP = PC, 1 6/[4]

PC = src(15–0)

CALL[D] pmad – –SP = PC, 2 4/[2]

PC = pmad(15–0)

CC[D] pmad,cond[,cond[,cond]] if (cond(s)) then – –SP = PC, 2 5/5/[3]

PC = pmad(15–0)

FCALA[D] src – –SP = PC, – –SP = XPC, 1 6/[4]

PC = src(15–0), XPC = src(22–16)

FCALL[D] extpmad – –SP = PC, – –SP = XPC, 2 4/[2]

PC = pmad(15–0),

XPC = pmad(22–16)

Interrupt Instructions
Syntax Expression WC
INTR K – –SP = PC, 1 3

PC = IPTR(15–7) + K << 2,

INTM = 1

TRAP K – –SP = PC, 1 3

PC = IPTR(15–7) + K << 2

Return Instructions
Syntax Expression WC
FRET[D] XPC = SP++, PC = SP++ 1 6/[4]

FRETE[D] XPC = SP++, PC = SP++, 1 6/[4]

INTM = 0

RC[D] cond[,cond[,cond]] if (cond(s)) then PC = SP++ 1 5/3/[3]

RET[D] PC = SP++ 1 5/[3]

RETE[D] PC = SP++, INTM = 0 1 5/[3]

RETF[D] PC = RTN, PC++, INTM = 0 1 3/[1]

Repeat Instructions
Syntax Expression WC
RPT Smem Repeat single, RC = Smem 1 1

RPT # K Repeat single, RC = #K 1 1

RPT # lk Repeat single, RC = #lk 2 2

RPTB[D] pmad Repeat block, RSA = PC + 2[4], 2 4/[2]

REA = pmad – 1

RPTZ dst, # lk Repeat single, RC = #lk, dst = 0 2 2

‘C54x Mnemonic Instruction Set Quick Reference

A - 4 DSP54x - Appendix

Stack-Manipulating Instructions
Syntax Expression WC
FRAME K SP = SP + K 1 1

POPD Smem Smem = SP++ 1 1

POPM MMR MMR = SP++ 1 1

PSHD Smem – –SP = Smem 1 1

PSHM MMR – –SP = MMR 1 1

Misc. Program Control Instructions
Syntax Expression WC
IDLE K idle(K) 1 4

MAR Smem If CMPT = 0, then modify ARx 1 1

If CMPT = 1 and ARx _ AR0, then

modify ARx, ARP = x

If CMPT = 1 and ARx = AR0, then

modify AR(ARP)

NOP no operation 1 1

RESET software reset 1 3

RSBX N, SBIT STN (SBIT) = 0 1 1

SSBX N, SBIT STN (SBIT) = 1 1 1

XC n , cond [, cond[, cond]] If (cond(s)) then execute the 1 1

next n instructions; n = 1 or 2

Load and Store Operations

Load Instructions
Syntax Expression WC
DLD Lmem, dst dst = Lmem 1 1

LD Smem, dst dst = Smem 1 1

LD Smem, TS, dst dst = Smem << TS 1 1

LD Smem, 16 , dst dst = Smem << 16 1 1

LD Smem [, SHIFT], dst dst = Smem << SHIFT 2 2

LD Xmem, SHFT, dst dst = Xmem << SHFT 1 1

LD # K, dst dst = #K 1 1

LD # lk [, SHFT], dst dst = #lk << SHFT 2 2

LD # lk, 16, dst dst = #lk << 16 2 2

LD src, ASM [, dst] dst = src << ASM 1 1

LD src [, SHIFT] [, dst] dst = src << SHIFT 1 1

LD Smem, T T = Smem 1 1

LD Smem, DP DP = Smem(8–0) 1 3

LD # k9, DP DP = #k9 1 1

LD # k5, ASM ASM = #k5 1 1

LD # k3, ARP ARP = #k3 1 1

LD Smem, ASM ASM = Smem(4–0) 1 1

LDM MMR, dst dst = MMR 1 1

LDR Smem, dst dst = rnd(Smem) 1 1

LDU Smem, dst dst = uns(Smem) 1 1

LTD Smem T = Smem, (Smem + 1) = Smem 1 1

Store Instructions

Syntax Expression WC
DST src, Lmem Lmem = src 1 2

ST T, Smem Smem = T 1 1

ST TRN, Smem Smem = TRN 1 1

ST # lk, Smem Smem = #lk 2 2

STH src, Smem Smem = src << –16 1 1

STH src, ASM, Smem Smem = src << (ASM – 16) 1 1

STH src, SHFT, Xmem Xmem = src << (SHFT – 16) 1 1

STH src [, SHIFT], Smem Smem = src << (SHIFT – 16) 2 2

STL src, Smem Smem = src 1 1

STL src, ASM, Smem Smem = src << ASM 1 1

STL src, SHFT, Xmem Xmem = src << SHFT 1 1

STL src [, SHIFT], Smem Smem = src << SHIFT 2 2

STLM src, MMR MMR = src 1 1

STM # lk, MMR MMR = #lk 2 2

Conditional Store Instructions

Syntax Expression WC
CMPS src, Smem If src(31–16) > src(15–0) then 1 1

Smem = src(31–16)

If src(31–16) _ src(15–0) then

Smem = src(15–0)

SACCD src, Xmem, cond If (cond) 1 1

Xmem = src<<(ASM–16)

SRCCD Xmem, cond If (cond) Xmem = BRC 1 1

STRCD Xmem, cond If (cond) Xmem = T 1 1

Parallel Load and Mult. Instructions
Syntax Expression WC
LD Xmem, dst dst = Xmem << 16 1 1

|| MAC Ymem, [dst_] || dst_ = dst_ + T * Ymem

LD Xmem, dst dst = Xmem << 16 1 1

|| MACR Ymem, [dst_] || dst_ = rnd(dst_ + T * Ymem)

LD Xmem, dst dst = Xmem << 16 1 1

|| MAS Ymem, [dst_] || dst_ = dst_ – T * Ymem

LD Xmem, dst dst = Xmem << 16 1 1

|| MASR Ymem, [dst_] || dst_ = rnd(dst_ – T * Ymem)

‘C54x Mnemonic Instruction Set Quick Reference

DSP54x - Appendix A - 5

Parallel Load and Store Instructions

Syntax Expression WC
ST src, Ymem Ymem = src << (ASM - 16) 1 1

|| LD Xmem, dst || dst = Xmem << 16

ST src, Ymem Ymem = src << (ASM - 16) 1 1

|| LD Xmem, T || T = Xmem

Parallel Store and Mult Instructions
Syntax Expression WC
ST src, Ymem Ymem = src << (ASM – 16) 1 1

|| MAC Xmem, dst || dst = dst + T * Xmem

ST src, Ymem Ymem = src << (ASM – 16) 1 1

|| MACR Xmem, dst || dst = rnd(dst + T * Xmem)

ST src, Ymem Ymem = src << (ASM – 16) 1 1

|| MAS Xmem, dst || dst = dst – T * Xmem

ST src, Ymem Ymem = src << (ASM – 16) 1 1

|| MASR Xmem, dst || dst = rnd(dst – T * Xmem)

ST src, Ymem Ymem = src << (ASM – 16) 1 1

|| MPY Xmem, dst || dst = T * Xmem

Parallel Store & Add/Sub
Instructions

Syntax Expression WC
ST src, Ymem Ymem = src << (ASM -16) 1 1

|| ADD Xmem, dst || dst = dst_ + Xmem <<16

ST src, Ymem Ymem = src << (ASM – 16) 1 1

|| SUB Xmem, dst || dst = (Xmem << 16) – dst_

Misc Load & Store Type Instructions

Syntax Expression WC
MVDD Xmem, Ymem Ymem = Xmem 1 1

MVDK Smem, dmad dmad = Smem 2 2

MVDM dmad, MMR MMR = dmad 2 2

MVDP Smem, pmad pmad = Smem 2 4

MVKD dmad, Smem Smem = dmad 2 2

MVMD MMR, dmad dmad = MMR 2 2

MVMM MMRx, MMRy MMRy = MMRx 1 1

MVPD pmad, Smem Smem = pmad 2 3

PORTR PA, Smem Smem = PA 2 2

PORTW Smem, PA PA = Smem 2 2

READA Smem Smem = A 1 5

WRITA Smem A = Smem 1 5

‘C54x Mnemonic Instruction Set Quick Reference

A - 6 DSP54x - Appendix

Indirect Addressing Types With a
Single Data-Memory Operand

*ARx *ARx-%

*ARx- *ARx-0%

*ARx+ *ARx+%

*+ARx *ARx+0%

*ARx-0 *+ARx(lk)

*ARx+0 *ARx(lk)%

*ARx+0B *(lk)

Conditions for Conditional
Instructions

Operand Condition Description

AEQ A = 0 Accumulator A equal to 0

BEQ B = 0 Accumulator B equal to 0 ÁÁÁÁÁÁ

ANEQ A <> 0 A not equal to 0

BNEQ B<>0 Accumulator B not equal to 0

ALT A < 0 Accumulator A less than 0 ÁÁÁÁÁÁ

BLT B < 0 Accumulator B less than 0

ALEQ A =< 0 Accumulator A less than or equal to 0

BLEQ B =< 0 Accumulator B less than or equal to 0

AGT A > 0 Accumulator A greater than 0 ÁÁÁÁÁÁ

BGT B > 0 Accumulator B greater than 0

AGEQ A >= 0 Accumulator A greater than or equal to 0

BGEQ B >=0 Accumulator B greater than or equal to 0

AOV † AOV = 1 Accumulator A overflow detected

BOV † BOV = 1 Accumulator B overflow detected

ANOV † AOV = 0 No accumulator A overflow detected

BNOV † BOV = 0 No accumulator B overflow detected

C † C = 1 ALU carry set to 1 ÁÁÁÁÁÁ

NC † C = 0 ALU carry clear to 0

TC † Á TC = 1 Test/Control flag set to 1

NTC † TC = 0 Test/Control flag cleared to 0 ÁÁÁÁÁÁ

BIO † BIO low BIO signal is low

NBIO † BIO high BIO signal is high

UNC † none Unconditional operation

† Cannot be used with conditional store instructions

 Indirect Addressing Types With a Dual
Data-Memory Operand

*ARx *ARx-%

*ARx- *ARx-0%

Groupings of Conditions

Group1: You can select up to two conditions. Each of these conditions

must be from a different category (category A or B); you cannot

have two conditions from the same category. For example, you

can test EQ and OV at the same time but you cannot test GT and

NEQ at the same time.

Group 2: You can select up to three conditions. Each of these conditions

must be from a different category (category A, B, or C); you can-not
have two conditions from the same category. For example,

you can test TC, C, and BIO at the same time but you cannot test

NTC, C, and NC at the same time.

Group 1 Group 2

A B A B C

EQ OV TC C BIO

NEQ NOV NTC NC NBIO

LT

LEQ

GT

GEQ

‘C54x Mnemonic Instruction Set Quick Reference

DSP54x - Appendix A - 7

CPU Memory-Mapped Registers

Address Name Description

0 Á IMR Interrupt mask register

1 IFR Á Interrupt flag register

2–5 Á – Reserved for testing

6 Á ST0 ÁÁ Status register 0

7 Á ST1 Status register 1

8 AL Á Accumulator A low word (bits 15–0)

9 AH Accumulator A high word (bits 31–16) ÁÁÁÁÁÁÁ

A AG Accumulator A guard bits (bits 39–32) ÁÁÁÁÁÁÁ

B BL Accumulator B low word (bits 15–0) ÁÁÁÁÁÁÁ

C BH Accumulator B high word (bits 31–16) ÁÁÁÁÁÁÁ

D BG Accumulator B guard bits (bits 39–32)

E T Temporary register

F Á TRN Transition register

10 AR0 Auxiliary register 0

11 AR1 Auxiliary register 1

12 AR2 Á Auxiliary register 2

13 AR3 Auxiliary register 3

14 AR4 Auxiliary register 4

15 AR5 Á Auxiliary register 5

16 AR6 Auxiliary register 6 ÁÁÁÁÁÁÁ

17 AR7 Auxiliary register 7 ÁÁÁÁÁÁÁ

18 SP Stack pointer ÁÁÁÁÁÁÁ

19 BK Circular-buffer size register ÁÁÁÁÁÁÁ

1A BRC Block-repeat counter

1B RSA Á Block-repeat start address

1C REA ÁÁ Block-repeat end address

1D Á PMST Processor mode status register

1E Á XPC Program counter extension register (’548/9)

1E–1F Á – Reserved

Processor Mode Status Register
(PMST)
15-7 6 5 4 3 2 1 0

IPTR MP/
MC-

OVLY AVIS DROM CLKOFF SMUL* SST*

* LP devices only; reserved on all other devices

Status Register 0 (ST0)
15-13 12 11 10 9 8-0

ARP TC C OVA OVB DP

Status Register 1 (ST1)
15 14 13 12 11 10 9 8 7 6 5 4-0

BR
AF

CP
L

XF HM INT
M

0 OV
M

SX
M

C16 FR
CT

CM
PT

AS
M

Interrupt Registers (IFR/IMR)

‘541

 8 7 6 5 4 3 2 1 0

INT3 XINT1 RINT1 XINT0 RINT0 TINT INT2 INT1 INT0

BITS 15-9 ARE RESERVED

 ‘548/9

11 10 9 8 7 6 5 4 3 2 1 0

BXI
NT
1

BRI
NT
1

HPI
NT

INT
3

TXI
NT

TRI
NT

BXI
NT
0

BRI
NT
0

TIN
T

INT
2

INT
1

INT
0

BITS 15-12 ARE RESERVED

‘C54x Mnemonic Instruction Set Quick Reference

A - 8 DSP54x - Appendix

DSP54x - Appendix A - 9

TMS320C54x Literature
If you prefer your databooks in electronic format, find them now at:

 http://www.ti.com/sc/docs/dsps/hotline/support.htm

If you prefer paper databooks, order them at:

http://www.ti.com/sc/docs/feedbk1.htm

The next page is a partial list of literature available for the ‘C54x. Always refer to TI’s Web pages for the latest
documentation and information.

http://www.ti.com/sc/docs/dsps/hotline/support.htm
http://www.ti.com/sc/docs/feedbk1.htm

TMS320C54x Literature

A - 10 DSP54x - Appendix

User’s Manuals

TMS320 DSP DEVELOPMENT SUPPORT REFERENCE GUIDE spru011e
TMS320C54X ASSEMBLY LANGUAGE TOOLS USER'S GUIDE spru102b
TMS320C54X DSKPLUS DSP STARTER KIT USER'S GUIDE spru191
TMS320C54X DSP ALGEBRAIC INSTRUCTION SET REFERENCE SET VOLUME 3 spru179a
TMS320C54X DSP APPLICATIONS GUIDE REFERENCE SET VOLUME 4 spru173
TMS320C54X DSP CPU AND PERIPHERAL REFERENCE SET VOLUME I spru131d
TMS320C54X DSP MNEMONIC INSTRUCTION SET REFERENCE SET VOLUME 2 spru172b
TMS320C54X EVALUATION MODULE TECHNICAL REFERENCE spru135
TMS320C54X OPTIMIZING C COMPILER USER'S GUIDE spru103b
TMS320C54X SIMULATOR C SOURCE DEBUGGER USER'S GUIDE ADDENDUM spru170
TMS320C5X SIMULATOR GETTING STARTED GUIDE spru124c
TMS320C5XX C SOURCE DEBUGGER USER'S GUIDE spru099a

Applications

A-LAW AND MU-LAW COMPANDING IMPLEMENTATIONS USING THE TMS320C54X spra163a
ACCESSING TMS320C54X MEMORY-MAPPED REGISTERS IN C - C54XREGS.H spra260
ACOUSTIC-ECHO CANCELLATION S/W FOR HANDS-FREE WIRELESS SYSTEMS spra162
ADDRESSING PERIPHERALS AS DATA STRUCTURES IN C spra226
C54X EXTENDED ADDRESSING spra184
CALCULATION OF TMS320LC54X POWER DISSIPATION spra164
DECT/CT2 BBSP SOFTWARE PACKAGE bpra052
DESIGNING LOW-POWER APPLICATIONS WITH THE TMS320LC54X spra281
DSP SOLUTIONS FOR TELEPHONY AND DATA/FACSIMILE MODEMS spra073
DTMF TONE GENERATION AND DETECTION ON THE TMS320C54X spra096
DUAL POWER SUPPLY MANAGEMENT FOR THE TMS320VC549 DSP spra280
ECHO CANCELLATION S/W FOR TMS320C54X bpra054
EMULATOR PROCESSOR ACCESS TIMEOUT spra248
EXTENDING FIXED-POINT DYNAMIC RANGES spra249
GUIDELINES FOR USING DECOUPLING CAPACITORS ON DSP DESIGNS spra230
H/W CONSIDERATIONS WHEN DESIGNING AN INTERFACE USING THE TMS320C54X spra151
IIR FILTER DESIGN ON THE TMS320C54X DSP APPLICATION REPORT spra079
HIGH SPEED MODEM W/MULTILEVEL MULTIDIMENSIONAL MODULATION-TMS320C542 spra321
IMPROVED CONTEXT SAVE/RESTORE PERF. & INT. LATENCY FOR ISRs WRITTEN IN C spra232
INITIALIZING THE FIXED-POINT EVM'S AIC spra206
IS-54 DIGITAL CELLULAR PHONE: A FUNCTIONAL ANALYSIS spra134
IS-54 SIMULATION spra135
LINE ECHO CANCELLER spra188
LINKING C DATA OBJECTS SEPARATE FROM THE .BSS SECTION spra258
MU-LAW COMPRESSION ON THE TMS320C54X spra267
MULTIPASS LINKING spra257
PARITY GENERATION ON THE TMS320C54X spra266
PC/TMS320C54X EVALUATION MODULE COMMUNICATION INTERFACE bpra051
REDUCING SYSTEM POWER REQUIREMENTS spra209
SERIAL ROM BOOT spra233
SHARING HEADER FILES IN C AND ASSEMBLY spra205
THE IMPLEMENTATION OF G.726 ADPCM ON TMS320C54X DSP bpra053
TMS320C54X DSP PROGRAMMING ENVIRONMENT spra182
USING VRAMS AND DSPS FOR SYSTEM PERFORMANCE spra224
VITERBI DECODING TECHNIQUES IN THE TMS320C54X FAMILY APPLICATION REPORT spra071
TMS320C548/9 BOOT LOADER AND ON-CHIP ROM DESCRIPTION
‘5X TO ‘54X CODE TRANSLATION

	Notice
	Revision History
	Welcome to the ‘C54x Workshop
	Welcome to the ‘C54x Workshop
	DSP54M01.pdf
	Architectural Overview
	Introduction
	Learning Objectives
	Module Topics
	Architectural Overview	1-1
	‘C54x Block Diagram
	The Pipeline
	‘C5409 Memory Maps
	Review

	LAB 1 – Exploring the Documents
	Solutions
	Some Additional Information…

	DSP54M02.pdf
	Software Development Tools
	Introduction
	Learning Objectives
	Module Topics
	Software Development Tools	2-1
	Setting Up Hardware
	The Linker Command File
	Vectors.ASM
	Assembly Directives and Data Types
	Software Development Tool Suite
	LAB2 – Software Development
	LABx-A vs. LABx-B
	Objective

	LAB2-A Procedure
	Check Code Composer Studio Setup
	Create a New Project
	Edit LAB2A.ASM
	Assemble LAB2A.ASM
	Create VECTORS.ASM
	Assemble VECTORS.ASM
	Edit LAB2A.CMD
	Link LAB2A
	Simulate LAB2A
	Graph Memory Contents

	LAB2-B Procedure
	Solutions

	DSP54M03.pdf
	Addressing Modes
	Introduction
	Learning Objectives
	Module Topics
	Addressing Modes	3-1
	A Review
	Generating Data Addresses
	Indirect Addressing
	MMR Addressing
	Direct Addressing
	Immediate Addressing
	Direct Addressing … A How-To
	Absolute Addressing
	What have we missed?
	MMR Issues
	A List of Indirect Addressing Options
	Direct Addressing Issues
	Some Definitions

	Review
	Exercise

	LAB3 – Addressing
	
	Objective

	LAB3-A Procedure
	Copy Files, Create Make File
	Copy table[8] to a[8] – Write/Debug
	Add the values, Store result to y – Write/Debug
	Profile Your Code

	LAB3-B Procedure
	Solutions

	DSP54M04.pdf
	Programming FIR Filters
	Introduction
	Learning Objectives
	Module Topics
	Programming FIR Filters	4-1
	FIR Filters
	Array Math
	Multiply and Accumulate
	Store to Memory Mapped Registers
	Loads
	Store Accumulator to Memory
	Repeat Single
	Move Instructions
	Program Flow
	The Stack
	Review

	LAB4 – 16-TAP FIR
	
	Objective

	LAB4-A Procedure
	Copy Files, Create Make File
	Edit LAB4A.CMD
	Setup 16-TAP FIR and Stack – Write/Debug
	Optimize Copy Routine – Write/Debug
	FIR Routine – Write/Debug
	Optimize Your FIR Routine – Write/Debug

	LAB4-B Procedure
	What Have We Missed?
	IIR Filters
	More Multiply Instructions
	Adds and Subtracts
	32 Bit Operations
	Aligning Long Operands
	Far Operations

	Solutions
	Some Additional Information …

	DSP54M05.pdf
	Numerical Issues
	Introduction
	Objectives
	Module Topics
	Numerical Issues	5-1
	Fractional Multiplication
	The Fractional Model
	Handling Accumulative Overflow
	What’s Missing?
	Bit Compare and Test
	Boolean Operations
	Shift and Rotate Operations
	Some Other Math Operations …

	Review
	Solutions
	Some Additional Information …
	Division
	Long Multiplies
	Using Exponents

	DSP54M06.pdf
	Solving a Block FIR Filter
	Introduction
	Learning Objectives
	Module Topics
	Solving a Block FIR Filter	6-1
	Repeat Block
	Wrapping the Pointers
	Circular Addressing
	What Have We Missed?
	Single Sample FIR
	Nesting Repeat Loops
	Parallel Instructions

	LAB6 – Block FIR
	
	Objective

	LAB6-A Procedure
	Copy Files, Make Project and Edit LAB6A.CMD
	Fractional Math, Repeat Block, Output Buffer – Write/Debug
	Circular Addressing, Pointer Wrap – Write/Debug
	Graph Your Results
	Profile Your Code

	LAB6-B Procedure
	Benchmarking the Labs
	Solutions

	DSP54M07.pdf
	Pipeline Implications
	Introduction
	Learning Objectives
	Module Topics
	Pipeline Implications	7-1
	The Pipeline
	Understanding the Impact on the Pipe
	Writing Early
	Determining Latency Cycles
	Latency Tables
	Review
	Exercises

	LAB7 – Latency Issues
	
	Objective

	LAB7-A Procedure
	Fix Latencies in LATENCY.ASM
	Fix Latencies in LAB6A.ASM

	LAB7-B Procedure
	Solutions
	Additional Information…

	Dsp54m08.pdf
	Application Specific Instructions
	Introduction
	Learning Objectives
	Module Topics
	Application Specific Instructions	8-1
	Least Mean Square
	Minimum and Maximum
	Some Other Useful Instructions
	Additional Resources

	LAB8 – Block FIR
	
	Objective

	LAB8A - Procedure
	Copy Files, Edit LAB8A.CMD
	Edit LAB8.ASM – Write/Debug
	Build, Simulate, Verify

	LAB8-B Procedure
	Solutions
	Additional Information
	LMS Loading
	Codebook Search
	Viterbi Decoding
	Determining Metrics
	Polynomial Evaluation

	DSP54M09.pdf
	Managing Interrupts
	Introduction
	Learning Objectives
	Module Topics
	Managing Interrupts	9-1
	Interrupt Locations
	Creating VECTORS.ASM
	Interrupt Mask Register
	Global Interrupt Bit
	Interrupt Sources
	Interrupt Recognition
	Interrupt Flag Register
	Post Interrupt Hardware Sequence
	Context Saves and Restores
	Return Instructions

	Nesting Interrupts
	Relocating the Vector Table
	Software Interrupts
	Hardware State on Reset
	The Timer
	Review

	LAB9 – Managing Interrupts
	Objective
	LAB9A - Procedure
	File Management
	Edit VECTORS.ASM,LAB9A.ASM
	Verify that Interrupts Work
	Modify Block FIR Code
	Verify Results

	LAB9-B Procedure
	Solutions

	Dsp54m10.pdf
	Setting Up and Using Peripherals
	Introduction
	Learning Objectives
	Module Topics
	Setting Up and Using Peripherals	10-1
	Registers
	Throughput
	Example
	Other DMA Issues

	The McBSP
	Capabilities
	Example
	Sample Rate Generator
	Multi-Channels
	Example
	Other McBSP Capabilities

	The EHPI
	EHPI Operation
	Other EHPI Issues

	Some Additional Information
	Setting Up a DMA Transfer

	Dsp54m11.pdf
	Mixing C and Assembly
	Introduction
	Learning Objectives
	Module Topics
	Mixing C and Assembly	11-1
	C Linker Command File
	Compiling and Linking
	The C Environment
	Status Register Expectations
	Func.ASM

	Passing Parameters
	Accessing MMRS
	Interrupts
	Numerical Types
	C Optimization Levels
	Other C Stuff

	LAB11 – Mixing C and Assembly
	
	Objective

	LAB11A - Procedure
	Edit LAB11A.ASM
	Build and Simulate

	LAB11B – Procedure
	Solutions

	Dsp54m12.pdf
	Making a C54x System Work
	Introduction
	Module Topics
	Making a C54x System Work	12-1
	The Hardware
	Power Considerations
	The Clock
	Memory
	The Analog Interface Circuit (AIC)
	Connecting Unused Pins
	JTAG
	Hardware Troubleshooting

	The Firmware
	Initial Clock Frequency
	Programming The PLL
	PLL Setup Code
	Wait States
	Waitstate Setup Code
	Bank Switch Control
	BSCR Setup Code
	McBSP/AIC Equations
	Setting Up McBSP0
	McBSP Setup Code
	Setting Up The AIC
	AIC Setup Code
	Setting Up The DMA
	Data I/O
	TImeline Analysis
	DMA Setup Code
	Turning On The Hardware Code

	The Software
	Link.cmd and Vectors.asm
	The Hardware Setup and The FIR Code
	The Bootloader
	HEX500
	IDLE
	Power Management Hints
	BIOS and RTA
	Need More Information?

	Additional Analog Information

	DSP54APP.pdf
	Appendix
	Block diagram
	‘C54x Mnemonic Instruction Set Quick Reference
	Arithmetic Operations
	
	Add Instructions
	Subtract Instructions
	Muliply Instructions
	Mult-Acc & Mult-Sub Instructions
	Mult-Acc & Mult-Sub (cont.)
	Double (32-bit) Operand Instructions
	Application-Specific Instructions

	Logical Operations
	
	AND Instructions
	OR Instructions
	XOR Instructions
	Shift Instructions
	Test Instructions

	Program Control Operations
	
	Branch Instructions
	Call Instructions
	Interrupt Instructions
	Return Instructions
	Repeat Instructions
	Stack-Manipulating Instructions
	Misc. Program Control Instructions

	Load and Store Operations
	
	Load Instructions
	Store Instructions
	Conditional Store Instructions
	Parallel Load and Mult. Instructions
	Parallel Load and Store Instructions
	Parallel Store and Mult Instructions
	Parallel Store & Add/Sub Instructions
	Misc Load & Store Type Instructions
	Indirect Addressing Types With a Single Data-Memory Operand
	Conditions for Conditional Instructions
	Indirect Addressing Types With a Dual Data-Memory Operand
	Groupings of Conditions
	CPU Memory-Mapped Registers
	Processor Mode Status Register (PMST)
	Status Register 0 (ST0)
	Status Register 1 (ST1)
	Interrupt Registers (IFR/IMR)

	TMS320C54x Literature
	
	
	
	Applications

