Q’ TeEXAS
INSTRUMENTS

TMS320C54x DSP Design Workshop

Student Guide

DSP54-NOTES-4.02
May 2000

Technical Training

Copyright © 2000 Texas Instruments Incorporated.
All rights reserved.

Notice

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written permission of Texas Instruments.

Texas Instruments reserves the right to update this Guide to reflect the most current product
information for the spectrum of users. If there are any differences between this Guide and a
technical reference manual, references should always be made to the most current reference
manual. Information contained in this publication is believed to be accurate and reliable.
However, responsibility is assumed neither for its use nor any infringement of patents or rights of

others that may result from its use. No license is granted by implication or otherwise under any
patent or patent right of Texas Instruments or others.

Revision History
April 1998, Version 3.1

July 1998, Version 3.2

June 1999, Version 3.3
October 1999, Version 4.0
December 1999, Version 4.01

May 2000, Version 4.02

TMS320C54x DSP Design Workshop

Welcome to the ‘C54x Workshop

Introduce Yourself

¢ A Show of Hands...
+ TMS320, C54x, other DSP/uP experience
+ C and/or Assembly
¢ About You...(one minute)
+ Name, job function
+ Expectations

+ Which C54x DSP are you interested in
using?

TMS320C54x Workshop Agenda

*

. Architectural Overview
. Software Development

. Addressing
Programming FIR filters

. Numerical Issues

. Solving a Block FIR

. Pipeline Implications

. Application-Specific Instructions

4
NI R I) N =

*

. Managing Interrupts
. Setting Up and Using Peripherals

*
—
_— D

. Mixing C and Assembly
. Making a C54x System Work

k.
N

This is a tentative agenda. Your instructor is free to rearrange and add or delete material as they

see fit. If you have any specific interests please make the instructor aware of them.

Your promptness will help keep the workshop on schedule. Try to arrive in the morning and

return from breaks on time.

TMS320C54x DSP Design Workshop

Welcome to the ‘C54x Workshop

Administrative Topics

Name Tags (fill ‘em out)
Start & End Times, Breaks
Bathrooms

Phone calls (make or get)
Lunch

Let us know if you’ll miss part of the
workshop

L BR 2R JNE JEE 2R 2

Latest TMS320C54x Information

¢ Application notes, databooks, etc.:

www.ti.com/sc/docs/general/dsmenu.htm

¢ Application Software:

www.ti.com/sc/docs/apps/index.htm

Whenever a document is printed on paper it seems it is immediatley out if date. Refer to TI’s web
resources for the very latest information.

0-4 TMS320C54x DSP Design Workshop

Architectural Overview

Introduction

This chapter will provide an introduction to the TMS320C54x (or “ *C54x). We’ll start by
building a device to solve our most important task; high speed multiply — accumulates. Next we’ll
zoom in on a feature that greatly enhances our speed; the pipeline. Then we’ll look closely at the
*C5409, which we’ve selected as the processor for this class. We selected the ‘C5409 since it
contains most of the features found on just about any ‘C54x (except multi-core parts). Finally
we’ll get a chance to browse the documentation files on the computers. Let’s face it, knowing
where to find answers is half the battle.

Learning Objectives

Learning Objectives

& Describe the basic ‘C54x CPU architecture
& Discuss the ‘C54x pipeline phases

& List the key features of the ‘C54x memory
map and peripherals

DSP54.1-2

DSP54x - Architectural Overview 1-1

Module Topics

Module Topics

Y e O Y Y T 1-1]
IMOGUIE TOPICS ...t 1-2]
[Crealing @ SOTUTION ... s sneeenesnesneeeneene s 1-3]
[CHAX BIOCK DIBGIAM.ciiviviiiiiiiiiciii bbb 1-4|
TN T T 1-5]
FC5400 MEMOIY MADS ..ottt es et r et eee et eee e ee e tee e eeee et eeserereeas 1-8]
ST oo 1-11]

LAB 1 — EXPIOFING the DOCUMENTS.........ovovoveeeeseseseseeererreresesesesserenenenenenceeeesesesesssnenenenenesesenseesesessesens 1-12]
SO Ut OIS ..ttt et et seeteteeeeesese et eeeaceeeesesee st et e seeceeeeeesae et et seceeeeses et st st eseesreretesseseeseerereraseeseeseees 1-13]
Bome Additional INFOIMALION.coovveeieieeeieeeeeeieeseeseseeeeereesesreeseenstsesereesesessesesesessesessnseseseeseseses 1-14|

1-2 DSP54x - Architectural Overview

Creating a Solution

Creating a Solution

Amplitude

Time

Xy X3 X, X; X

What Problems Are We Trying To Solve?

Z=Xy+ X+ X5+ X

MAC *AR2+, *AR3+, A ADD @x2,B ...

[Data Read Buses |

4 d

R

A
B

& Single-cycle MAC
+ Single-cycle ADD

DSP54.1-3

The code you see at the bottom of the slide is a preview if things to come. We’ll be dealing with
the assembly language code in depth later. For the present let’s focus on the architecture.

The multiply-accumulate (MAC) is the basis for DSP. Since just about any physical system can
be modeled using a Taylor series, being able to multiply two numbers together and add them to a
previous result can be very powerful. The MAC becomes even more powerful if you can do them

quickly, say, every 8.3 nS.

Alternately, other operations require an Arithmetic Logic Unit, capable of performing adds,

subtracts and Boolean instructions.

You C-programmers may find the assembly language code on the lower left pretty readable ...

DSP54x - Architectural Overview

‘C54x Block Diagram

‘C54x Block Diagram

‘C54x Architecture (10km view)

Data Read A/D Bus (C) |

| Program A/D Bus (P) |

7

| Data Read A/D Bus (D)

= ALU
£ AT PR
Decode | 1! A
ARN :
R

1l

Data Write A/D Bus (E) |

MAC *AR2+, *AR3+, A

ADD @x2,B ...

Separate Program and Data spaces = Harvard architecture

DSP54.1-4

If you’ve got a powerful math engine, your next problem is keeping it fed with data. Separate

Program and Data Spaces guarantee access to these areas without conflict. Dual data read busses
and a data write bus mean we can access two operands simultaneously and still be able to write a
result. Addresses for these operations are generated in a variety of ways. Instructions are fetched

using the program bus and are fed to the decoder.

‘Ch4x
Block

Pas [

re [

Diagram

cas [

ons [

o8 [

* 17x17 MAC Unit

« Saturation and
Rounding Hardware

* Two 40-bit ACC’s

« 40-bit ALU
« 40-bit Barrel Shifter
« Temporary Register

« Exponent Encoder

« Program and Data
Address Generation
Units

« Compare, Select
and Store Unit

« 4 Internal Bus Pairs
« External Interface

DSP54.1-5

The obligatory block diagram. Your instructor will point out the aspects of this drawing that
we’ve already seen. We’ll cover all of its parts in detail during the workshop. You can find a
better print of this diagram in the appendix of this workbook.

DSP54x - Architectural Overview

The Pipeline

The Pipeline

‘C54x Memory, Buses and Pipeline

Program A/D Bus (P)

Internal Data Read A/D Bus (D) Ext’l Ii> Sl

Memory Data Read A/D Bus (C) VE <:1> Memory
Data Write A/D Bus (E)

+ Internal: Up to 4 accesses / cycle ¢ External: 1access/cycle
< up to 8M words program

Pipeline Phases PIFID|AIRIX
P - generate program address P
F - get opcode [
D - decode instruction
A - generate read address
R - read operands
X - execute

-n
o|lm| O
o| M| o>
oM O|>T
M| O|>| ™| X
O|>|Xo| X
ps)

x|
A[R[X]

Full Pipeline DSP54.1- 6

The most important thing to understand about the pipeline is that 6 instructions are being worked
on simultaneously. This means any given instruction takes at least 6 cycles to reach the execute
phase, yet we can “retire” an instruction every cycle. While this allows us a great speed
advantage, it has certain implications on operation that we’ll deal with in detail later.

'C54x Pipeline Bus/Hardware Use

P | Generate Program address | = P, PC

F | Getopcode <+ Py Program mem

D | Decode instruction Decoder

A | Generate Read address - D,/C,| ARs, ARAU

R | Read operands < Dy/C,| Datamem
Generate Write address -» E, ARs, ARAU

X | Execute instruction MAC, ALU
Write result > E Data mem

& When storing results back to memory, the
“write” is broken into two phases:
- generating the write address
- writing the result

¢ Overlaid onto R & X phases

DSP54.1-7

Note how every part of the device operates during every cycle, with little or no overlap of
resource utilization. Since writing is a relatively rare event in DSP algorithms it is not allocated
its own pipeline stage.

DSP54x - Architectural Overview 1-5

The Pipeline

Pipeline Implications (1)

What if all data and

B

& External read conflicts with external fetch
¢ Can reduce performance by at least 50%

program are external? 54x
D
Pl Fl Dl Al Rl Xl
P, |[F2 [D | A | R X
P3 F3 D3 A3 R3 X3
P | - | - - TR o] alR| x
B B B Ps Fs || Ds As | Rs Xs
= | = | P | Fell Ds | As | Re

How would you avoid this situation?

DSP54.1-8

As mentioned earlier, pipelining has implications and the boss won’t be happy that we turned a

160 Mhz screamer into a 80 Mhz slug.

Pipeline Implications (2)

When either
Program or Data
is located internally...

...fetch and read can
occur simultaneously

54x

—»E or

54x

P, Fp | D, | A | R | X
P, |/, | D, | A | R| X
P3 F3 D3 A3 R3 X3
P, | Fa| Do| A | Ry| X,
Ps | Fs| Ds | As| Ry | Xs
P6 FG D6 AG RG X6

What if both program and data are located internally?

DSP54.1-9

Locating either Program or Data internally will prevent the access problem shown here. Of
course, this doesn’t take into account delays incurred if your memory is slower than 0 wait-state.

DSP54x - Architectural Overview

The Pipeline

Pipeline Implications (3)

I [[[
Program Data

SARAM DARAM
ROM ROM
3 AA AAAALA AAAA

A V} v

[E Bus

¢ ROM/SARAM - 1 access per block per cycle
¢ DARAM - 2 accesses per block per cycle

Size and number of blocks vary based upon device - refer to memory map

[P Bus
v v \ 4 s
[DBus Ext’l II:>
A4 \ 4 \ 4 Mem
[CBus IIF

There are no conflicts as long as you follow these rules:

DSP54.1 - 10

Just how much memory you have available depends on the device you’re using. Some devices
have no Single-Access RAM and some have no ROM. The number of blocks and the size of each

block is also dependent on the device you’ve selected.

DSP54x - Architectural Overview

‘C5409 Memory Maps

‘C5409 Memory Maps

1
C5409 Memory Maps
PROGRAM DATA
0000 PAGE 0 (64K 0000
DARAM or MMR,

External (<— OVLY SPRAM, 64K X 16
8M x 16 memory bit DARAM Data
Program Space

Space
TFFF TFFF 32Kx 16
:Il-r?tpé?n]éel Internal
External External DARAM
ROM memory memory
€000 nternal CIJI" Cooo0 External
External
— DROM —>| memory
crg0 Hemony bit or Internal
ROM
FrFF L YECTORS FFFF
OVLY Maps most of on-chip DARAM into Program space
DROM Maps most of on-chip Program ROM into Data space
DSP54.1 - 11

The OVLY bit maps a portion of data space into program space so that you can load and run a
program from data space. While the OVLY bit is set you can also access this area as data.

The DROM bit operates similarly, but it maps a portion of program space into data space. This
way, non-volatile tables contained in the on-chip ROM can be accessed as data. While DROM is
set you can still access this area as program.

The exact size of these areas depends on the device selected.

. .
C5409 Program Memory Options (Page 0)
All External Internal/External 'RAM' Option
MP/MC =1 MP/MC =0 OVLY =1
0000 0000 0000
0080
DARAM
External External
memory memory TFFF
External
memory
C000 C000
Internal External
16K x 16 memory or
ROM Internal ROM
FF80 [~ \/ectors | FF80 [~ \/ectors | FF80 [~ \/ectors |
Frep ectors Frep L Vectors Frep L Vectors
DSP54.1 - 12

The state of the MP/MC- bit determines whether program memory is located externally or uses
the internal ROM (should any exist). All internal ROM is full speed (zero wait state).

We’ll look at the rest of program space later. For the present, page 0 has the most interesting
features.

1-8 DSP54x - Architectural Overview

‘C5409 Memory Maps

'C5409 8M x 16 Program Space

¢ The OVLY bit selects between two different program memory maps:

OVLY =0 oVLY =1
00 0000
Page 0 | DARAM |
64K words
Page 0
00 FFFF 00 Frrr|ExternaliMemy |-
7F 0000 ' 7F 0000
Page 127 | DARAM
64K words
7F FFFF 7F FFFF| External Mem

DSP54.1-13

The OVLY = 0 option allows you access to the entire 8M of Program memory. The OVLY =1
option gives you fast (not FAR) access to common routines and assembly language programs.

L]
C5409 Data Memory
0000 0000 0000
D/?\RQM MMR
Block a
32K x 16 0060 spRAM
DARAM 2000 0080
DARAM
Block b
8000 4000 DARAM
DARAM Block a
Block ¢
External
oty 6000
FO00 DARAM
External
memory or Block d
FFFFL—ROM 7FFF 1FFF
DSP54.1 - 14

Internal dual access RAM is full speed (zero wait state). You can access any block twice per
clock cycle. Locations 00 — 60h contain out Memory Mapped Registers while 60h — 80h contains
our Scratch Pad RAM.

DSP54x - Architectural Overview 1-9

‘C5409 Memory Maps

‘C5409 Peripheral Overview

54x
core

!

McBSP

DMA

HPI

Boot

Timers

GPIO

PLL

Power Down

‘C5409

3 Multi-Channel BSPs: Each offers up to 128-channel rcv/xmt
6-channels: facilitates data/program transfers w/o CPU intervention
Host Port Interface: 8-bit interface to host processor

Boot Loader: Multiple ways to load program to volatile memory
One 20-bit timer: Can generate timed-based interrupts

General Purpose 1/0: External lines dedicated to 1/0

Phase Locked Loop: software programmable

Idle Modes: Power saving modes and features

DSP54.1-15

All of these “peripherals” are included with the’C5409. There is some sharing of signals and pins.

DSP54x - Architectural Overview

Review

Review

'C54x Review

& Name the buses on the ‘C54x

& How large are the accumulators?

¢ How many adders are on the part?

¢ Where are the Memory Mapped Registers located?

& Where is the Reset Vector located?

DSP54.1- 16

Answers to reviews, exercises and labs are always located at the end of each module.

Looking for Literature on DSP?

& “ASimple Approach to Digital Signal Processing”
by Craig Marven and Gillian Ewers; | SBN 0- 4711-5243-9

*

”DSP Primer (Primer Series)”
by C. Britton Rorabaugh; | SBN 0- 0705- 4004- 7

*

"'A DSP Primer : With Applications to Digital Audio
and Computer Music” by Ken Steiglitz; | SBN 0- 8053- 1684- 1

_Jhu
| iR 4 "DSP First : A Multimedia Approach (Matlab Curriculum Series)”
5 James H. McClellan; | SBN 0- 1324-3171-8

ey

DSP54.1 - 18

Visit any of the online bookstores for a more comprehensive list of DSP primers. These are just a
few that we’ve encountered.

DSP54x - Architectural Overview 1-11

Review

LAB 1 — Exploring the Documents

LAB 1 - Exploring the Documents

Time: 15 minutes
< If login is required, Userid/Pswd: DSP54

& Double click on the CPU and Peripherals Guide icon
(you may find it under “C5400 Manuals™)

1. Find the status register diagram for ST0, ST1 and PMST.

2. Find the Pipeline Latency chapter.

3. Find the block diagram of the C54x Internal Hardware.

4. At what address is the reset vector? (after you find it, don’t close Acrobat...)
& Double click on the Mnemonic Instruction Set Guide icon

5. In Acrobat, click on “Window” and observe that both guides are available .

6. How many cycles does a branch (B) take?

7. Using the bookmarks on the left, find the “MVPD” instruction. What does
it do?

DSP54.1 - 19

Probably the most important thing you can learn in this workshop is WHERE to find the answers
to your question. With so many databooks and resources the process can be a bit daunting.

This symbol is the “TI-bug”. In each module you’ll find additional resources “after the TI-bug”.
If you have specific questions on anything you see, ask your instructor to present or explain the

material.

DSP54x - Architectural Overview

Solutions

Solutions

'C54x Review - Solutions

& Name the buses on the ‘C54x
PA,PD CA,CD DADD EAED
& How large are the accumulators?
40 bits
¢ How many adders are on the part?
2, one in the MAC and the other in the ALU
¢ Where are the Memory Mapped Registers located?
From 0x00 to 0x60 in Data Memory
¢ Where is the Reset Vector located?
0xFF80 in Program Memory

DSP54.1-17

DSP54x - Architectural Overview

Some Additional Information...

Some Additional Information...

For your reference we’ve included this list. New devices are being added all the time so this list
may be out of date.

'C54x Flavors

SARAM| DARAM |ROM |Prog. Space |Core Ver.|CVdd DVdd| Max. Speed
C541 5K 28K 64K 1.0 5V 5V 25nS
C542 10K 2K 64K
LC541 5K 28K 64K
LC542 10K 2K 64K
LC543 10K 2K 64K 1.0 3.3V| 33V | 20nS
LC545 6K 48K 64K
LC546 6K 48K 64K
LC541A 5K 28K 64K 2.0 3.3V| 33V | 20nS
LC541B 5K 28K 64K
LC545A 6K 48K 64K 25 3.3V| 33V | 15nS
LC546A 6K 48K 64K
LC548 24K 8K 2K 8M 25 3.3V | 33V]| 15nS
LC549 24K 8K 16K 8M 25 3.3V | 33V| 12.5nS
VC549 24K 8K 16K 8M 25 25V | 33V | 8.3nS
VC5402 16K 4K M 25 1.8V | 3.3V
VC5409 32K 16K 8M 1.8V | 33V | 10nS
VC5410 56K 8K 16K 8M 25 25V | 33V | 8.3nS
VC5420*| 168K 32K 256K 25 1.8V | 3.3V | 10nS
* dual core DSP54.1 - 21

Newest of the New...

SARAM| DARAM |ROM |Prog. Space |Core Ver.|CVdd|DVdd |Max. Speed
VC5416 | 128K ? ? 8M 25 1.8V | 3.3V | 6.25nS
VC5421*| 2x32K | 2x32K | 2x2K 256K 25 1.8V | 3.3V | 10nS
+128K
VC5402 16K 4K 1M 25 1.2V | 3.3V | 33nS
* dual core DSP54.1 - 22

1-14 DSP54x - Architectural Overview

Some Additional Information...

'C54x Peripheral Mix
SSP| TDM | BSP | McBSP | DMA| HPI | Timers |PLL | GPIO

C541 2 1 H/W

C542 1 1 8 bit 1 H/W

LC541 2 1 H/W

LC542 1 1 8 bit 1 H/W

LC543 1 1 1 H/W

LC545 1 1 8 bit 1 H/W

LC546 1 1 8 bit 1 H/W
LC541A | 2 1 H/W
LC541B | 2 1 SIW
LC545A | 1 1 8 bit 1 SIW
LC546A | 1 1 1 SIW

LC548 1 2 8 bit 1 SIW

LC549 1 2 8 bit 1 SIW

VC549 1 2 8 bit 1 SIW

VC5402 2 yes 2 SIW | 20*
VC5409 3 yes [8bit+| 1 SIW | 26*
VC5410 3 yes |8bit+| 1 SIW | 21*
VC5420 6 yes |16 bit| 2 SIW | 8/42*

+ enhanced * muxed with McBSP / HPI pins DSP54.1- 23

DSP54x - Architectural Overview

Some Additional Information...

1-16 DSP54x - Architectural Overview

Software Development Tools

Introduction

The software development environment for TI-DSPs is similar to most microprocessors. It is
expected that the user will wish to develop multiple files in parallel, assemble and test them for
syntax errors, then create a single executable file by linking the elements together. For the
present, we’re going to be programming in assembly. If you’ve only programmed in C, you’ll
miss things like dynamic memory allocation, but you’ll appreciate the performance increase you
get by coding in assembly.

Learning Objectives

Learning Objectives
& Use assembler directives to create sections
of code, variables and constants

¢ Create a linker command file to place the
allocated sections into a memory map

& Create a reset vector

& Describe the software tool flow

DSP54.2-2

DSP54x - Software Development Tools 2-1

Module Topics

Module Topics

| Software Development Tools 2-1|
JOGUIE TODICS ... 2-2|
N e L """, 2-3|
Petting Up HAFAWATE ...t 2-4|
O ke 2-5|
|y A 2-6|
Hssembly Directives and DAIA TYDEScooweeeoieueeieeeeiieeeeieieeeeeeieeeeeieieeeeeeieseieieesieieeeieeeseeeenens 2-7|
Bofiware Development TOOI SUTLEo.ooeesererer e e e sesesnsnsnseseaeeas 2-8|
LAB2 — SOfIWAFE DEVEIODIEHL. ... 2-10
LABX-A VS, LABX-B ..ottt e et e st e ebeeeaees 2-10
DD CCTIVE ..ttt ettt et et et e e ekt e et e et et e enteent et e anteenteenteenteartenteeseeneenreenreeneens 2-10
LAB2-A PFOCEAUFC ...t en e eeeeeesensneeneenneenanene 2-11
Check Code CompoSer StUAIO SEEUDeeevieeiieeiieeiieeiieeiieeiee et eieeeteeeteeeteeeveeebeeeseeenbeeenveeennes 2-11
C1CALE & NEW PTOJEOE Lt e e eeaeaeeeeeeeeaas 2-11
EQIt LAB2AASM oo oo eeeses oo eeesse oo eeeeeese e eeesoee e ee e eereeees 2-12
ASSEMDIC LABZ2ALASM L..oiiiiiiiiieiieeiieeee ettt e et eesteeeiteeenbeeenteeenbeeenbeeenbeesnteeanreeentes 2-12
Create VECTORS.ASM ...oiiiiiiiiiiiicece ettt eaaeeitaeeavaennbaesnaaenssaennseeanees 2-12
Assemble VECTORS.ASM .o 2-13
Edit LAB2A CMD oo seeeeeeeeseo oo eeeeeeese oo 2-13
LANK LLABZA ..ottt ettt te ittt esbesb et e seseeneestententessensenseereas 2-13
Bimulate LAB2A oo eeeeesesos oo eeeeemee oo 2-14
GTAPN MEMOTY CONIENESveeeeeieeeeeeeeeeeeeeeeeeeeeee e e e eeneeeeenneeeeennneseennneseeennneeean 2-16
VY N L T 2-18)|
BOIULIONS ... eeneeeneneeeeneneneneneas 2-20|

DSP54x - Software Development Tools

Modular Software Development

Modular Software Development

e 1/0

e Program

e Data Structures

& Sections are:

o Modules consisting of code,
constants or variables

o Defined in the source file using
assembler directives

Modular Software Development

& An application consists of various elements such as:

4 These elements or modules are called SECTIONS

filel.asm file2.asm

| codel | code2

o |

init_values

DSP54.2-3

| |
o |
| |

l init_values ‘

Using a modular development environment allows the user(s) to work on multiple files

simultaneously and combine these efforts into a single executable as a final step. To do this, the
programmer needs to understand and use “sections” that will allow the linker to correctly map

your program elements.

Program
(Internal/External)

codel

code2

Data
(Internal/External)

vars

Memory Spaces and Software Sections

& The C54x memory map is split into
3 separate spaces:
- Program (8M or less)
- Data (64K)
- 1/0 (64K)

¢ Sections are placed into specific
memory spaces via the linker.

it

init_values

filel.asm file2.asm
| codel | code2

-
C54x L
Core

_’

Ly

/o
(External only)

init_values

DSP54.2-4

| |
En EE
| |

l init_values ‘

DSP54x - Software Development Tools

Setting Up Hardware

Setting Up Hardware

Let’s Setup Some Hardware
Need:

¢ Program memory for code

y0 = (a0 * x0) + (al * x1)

¢ Data ROM for initialized constants Algorithm

¢ Internal RAM for variables

Let’s create the necessary sections
and map them into memory...

Program Memory
Internal (4K ROM)
SPRAM (32W) 0F000h
C54x 60h x0
CPU x1
yo Data ROM (1K)

8000h[16 |20
al

Remember that Program and Data are in separate “spaces” in a Harvard architecture machine like
the ‘C54x.

DSP54.2-5

Software Sections

;jmain.asm

y0 = (a0 * x0) + (al * x1)

x .usect “vars”,2

yo0 .usect “vars”,1l a X y0
.sect “table” 8000h m 60h GZhD

a .int 10h, 4 n

.sect “code” . .
Assembler Directives

start: STM #x,AR2 ;init AR2
STM #a,AR3 ;init AR3 & Code (Initialized Section)
jetc.

.sect “?”
MAC: MPY *AR2+,*AR3+,A
MAC *AR2, ;‘AR3 , A’ & Constants (Initialized Section)

.sect “?”

STORE: STL A, * (y0) label .int 1,2,3,4

& Variables (Un-initialized Section)
label .usect “?”7,

¢ Column 1: comments or labels

¢ Comments: “;” in any column #words

How do we map these sections into memory?

DSP54.2-6

Most, if not all code will contain these basic elements: Initialized Program memory for code,
Initialized Data memory for constants and Uninitialized Data memory for your variables.

DSP54x - Software Development Tools

The Linker Command File

The Linker Command File

Linker Command File

main.obj /* input files */ ¢ File /O

- input files
-o main.out /* output files */ - output files
-m main.map - linker options
MENORY ¢ Hardware

{PAGE 1: /* Data Memory */
RAM: org = 00060h, len 0020h -progranm/data
DROM: org = 08000h, len 0400h - name, addr, len

PAGE 0: /* Program Memory */

- memory map

ROM: org = OF000h, len = OF80h & Map s/w to h/w

) - sections
- code and data
SECTIONS
{vars :> RAM PAGE 1
60h X

table :> DROM PAGE 1 8000h 16 a
code :> ROM PAGE 0

) 0F000h -

DSP54.2-7

The linker command file is the heart of the development environment. It must understand where

your files are and what outputs you wish to generate, what your memory map looks like and

where to place your sections within this map. While future tools may eliminate the need to write

this file by hand, it will remain important to understand this files construction.

Multiple Files - Reset Vector

When power is turned on, how

;main.asm

! does the CPU find start ?
.def start

x .usect “vars”,2 . t

¥0 ‘usect “vars”,1 jvectors.asm

.sect “table” .ref start

a o3 A, ¢ .sect “vectors”

.sect “code”

start: STM #x,AR2 ;init AR2
STM #a,AR3 ;init AR3

rsv: B start

jetc.
MAC: MPY *AR2+, *AR3+,A ¢ Reset and all interrupt vectors
MAC *AR2, *AR3,A are mapped starting at 0FF80h.

STORE: STL A, *(y0)

How do you locate the “vectors” section at 0FF80h?
DSP54.2-8

The ‘C54x interrupt vectors are “soft”. That is, the Program Counter (PC) is directed to 0OFF80h
and the processor begins “running” code at the indicated location. This is different from a “hard”
vector, where only the address to be loaded in the PC is resident. While this a slightly slower than

the “hard” vector, it is more flexible.

DSP54x - Software Development Tools

Vectors.ASM

Vectors.ASM

Linking in Vectors.ASM...
main.obj /* input files */
vectors.ob] & Memory spaces
-o main.out /* output files */ cannot overlap
-m main.map
MEMORY & Sections link in th'e
{PAGE 1: same ord?r as .obj
RAM: org = 00060h, len = 0020h files are listed
DROM: org = 08000h, len = 0400h
g ¢ Don’t forget to
PAGE 0: ble ALL
ROM: org = 0F000h, len = OF80h assembie
VECS: org = OFF80h, len = 0080h input files
}
SECTIONS
{vars :> RAM PAGE 1
table :> DROM PAGE 1
code :> ROM PAGE 0
vectors :> VECS PAGE 0
}
DSP54.2-9

The linker command file will need to be instructed exactly where to place the vectors file. This a
critically important since we want “B START” to land precisely at OFF80h.

Assembly Directives and Data Types

Basic Directives Data Types
sect create initialized named 10 Decimal (default)
section for code or data 0Ah, 0xA Hex
.usect create uninitialized 1010b, 1010B Binary
named section for data
.byte 8-bit constant
word-aligned
.int (.word) 16-bit constant
Jlong 32-bit constant
ref/.def used for symbol
references
.global .ref and .def combined
set/.equ equate a value with a
symbol*
.asg assign an assembly * takes no memory space
constant*. Will display
in debugger DSP54.2 - 10

You may wish to recreate batch files like these on your own PC.

2-6 DSP54x - Software Development Tools

Assembly Directives and Data Types

Assembly Directives and Data Types

Assembly Directives and Data Types

Basic Directives Data Types
sect create initialized named 10 Decimal (default)
section for code or data 0Ah, 0xA Hex
.usect create uninitialized 1010b, 1010B Binary
named section for data
.byte 8-bit constant
word-aligned
.int (.word) 16-bit constant
Jlong 32-bit constant
ref/.def used for symbol
references
.global .ref and .def combined
set/.equ equate a value with a
symbol*
.asg assign an assembly * takes no memory space
constant®*. Will display
in debugger DSP54.2 - 10

There are more directives and types than can be listed here. Refer to the Assembly Language
Tools User Guide for more information.

DSP54x - Software Development Tools

Software Development Tool Suite

Software Development Tool Suite

Software Development Tool Flow

SIMINIT.CMD

Code Composer Studio - — sim
= LNK . CMD In
>
8 - —— DSK
o Eqit 22, Buld® LouT. hopg
- ° (Cmp/Asm/Lnk)
; ! ——| EVM
O ¥ .LST/.MAP/.OBJ
2]
= l l | || Third
S BIOS Probe Party
= Library Profile Graph Out
—— XDS
& Code Generation Tools, Simulator I
¢ Debug Tools, Plug-ins (make or buy) DSP
¢ BIOS/RTDX: Real-time kernel Board

Real-time analysis (RTA) oSPBA 1

TI has developed an open toolset. Users or 3™ party developers can write code that can be
“plugged into” the Code Composer Studio (CCS) tool suite. In addition, on-chip elements like
BIOS and RTA interface directly through the JTAG port to CCS.

DSP/BIOS: Real-Time Kernel

BIOS provides:
+ System Configuration (timer, PLL, wait states, etc.)
+ Some peripheral setup/use
+ Priority based scheduling (h/w, s/w)
+ Creation of interrupt vectors
+ Graphical real-time analysis

C54xx

BIOS
CPU Mem <1KW
<3% CPU load

What is “real-time analysis” ?

DSP54.2 - 12

You get BIOS and it’s source code free on newer C54 devices.

2-8 DSP54x - Software Development Tools

Software Development Tool Suite

DSP/BIOS: Visual Real-Time Analysis

DSP/BIOS performs these functions automatically:
« Monitor CPU load percentage
« Monitor worst-case task execution time
« Provide “software logic analyzer” display of task execution

[System Log [_ (5] =]
audiaSig waiting
loadPrd] ready
PRD_signal B unknawn
Other Threads 1 M enor
FRD Ticks | Lo L L L Lo L1 B running
Time CPU Load EE
Aggpity = e e——

100z

7hE

5% Count [LE Average
2857 badPrd | G784 | Blicks | 283ticks
0 audioSig | 23264 | wmE0uws | 4753w

Last B53% +01 Peak: 42 332 //_jl

How do you transfer application data to the host? ., ..

Before this tool, determining whether or not your system met real-time goals was a hit or miss
proposition. With RTA you can see it directly.

RTDX: Real-Time Data Exchange

¢ RTDX enables user to transfer application data (e.g. adapting coefficients)
to the host independent of the user’s program code

¢ Transfer speed limited by JTAG bandwidth (~10 MHz serial)

¢ Application must make an RTDX call

PC TMS320 DSP
User
Display S c
& g
Tl Code _ JTAG e E
Display Comp < > g _&
s <
Third Party C]
Display

DSP54.2- 14

RTDX speeds the usual ITAG port by transmitting a subset of the normal information.

DSP54x - Software Development Tools 2-9

LAB2 -

Software Development

LAB2 - Software Development

LABXx-A vs. LABx-B

Each lab contains two labs: part A and part B. Part A will test the basic skills learned in the
module. It is important that you spend as much time as necessary to complete part A. If you finish
part A and would like to continue challenging yourself and exploring more details, move right on
to part B. Part B of every lab contains much more information than you can actually complete in
the allotted time. However, any time spent on part B will enhance your understanding of the
processor.

Objective

The objective of this lab is twofold: (1) edit the given link.cmd file based on the system diagram;
(2) add the proper assembler directives to the given file (LAB2A . ASM) to allocate sections for
code, constants and variables.

LAB?2 - Software Tools (System Diagram)

LAB Flow (for ALL labs):

¢ LABx-A: tests the basic concepts (must complete)

o LABx-B: extends the learning experience (do if you can)
LAB2a Procedure:

¢ Modify given Lab2a.cmd based on system shown

& Modify given Lab2a.asm to use proper assembler
directives for variables, constants and code

¢ Time: 45 minutes

‘C5409

4Kx16 EPROM 20hx16 SPRAM 1Kx16 DROM

code

1Kx16 DARAM

FF80h vectors 80h [2yOO]
FFFFh x

DSP54.2- 15

DSP54x - Software Development Tools

LAB2-A Procedure

LAB2-A Procedure

For you people suffering from hexaphobia, here’s some help:

1K
4K
8K
16K
32K
48K
64K

0400h
1000h
2000h
4000h
8000h
C000h
10000h

Check Code Composer Studio Setup

1. Before we get started, let’s make sure Code Composer Studio (CCS) is setup to run on the
C54x simulator. Double click on the CCS Setup icon on the desktop. When the “Import
Configuration” window appears click the Clear System Configuration button.
When prompted if you are sure click Yes the close the “Import Configuration”
window.

2. The middle pane displays the available platforms that can be installed. Double click on the
C54xx Simulator to installit.

3. A window displaying Board Properties will appear. Click Next. In the next window

select sim549 . cfg as the simulator config file (click the ... button). The C5409 is
currently not a selection, but the C54 9 has the same memory map.

4. Click Finish and close the CCS Setup window. When prompted to save changes to the
system configuration click Yes.

Create a New Project

1. Double click on the CCS icon on the desktop. Maximize CCS to fill your screen. The menu
bar (at the top) lists File ... Help. Note the horizontal tool bar below the menu bar and the
vertical tool bar on the left-hand side. The window on the left is the project window and the
large right hand window is your workspace.

2. A project is all the files you’ll need to develop an executable output file (. OUT) which can be
run on the simulator or target hardware. Let’s create a new project for this lab. On the menu
bar click:

Project =2 New

and make sure the “SAVE IN” location is: C: \DSP54 \LABS and type LAB2A in the file
name window. This will create a make file which will invoke all the necessary tools
(assembler, linker, compiler) to build your project.

3. Let’s add the assembly file to the new project. Click:

Project > Add Files to Project

DSP54x - Software Development Tools 2-11

LAB2-A Procedure

and make sure you’re looking in C: \DSP54 \ LABS. Change the “files of type” to view
assembly files (. ASM) and select LAB2A . ASM and click OPEN. This will add the file
LAB2A .ASM to your newly created project.

Add LAB2A . CMD to the project using the same procedure.

In the project window on the left click the plus sign (+) to the left of Project. Now, click
on the plus sign next to LAB2A . MAK. Notice that the LAB2A . CMD file is listed. Click on
Source to see the current source file list (i.e. LAB2A . ASM).

Edit LAB2A.ASM

6.

To open and edit LAB2A . ASM, double click on the file in the project window. The code you
see in this file is not related to the setup you will create in the following steps. This code is
simply a place holder for future labs and doesn’t do much.

Create uninitialized sections for a called coeffs and y called result.
Refer to the system diagram for the sizes. Remember the format is:

label: .usect “section name”,size
LAB2A.ASM already contains the values that need to be allocated in fable[8]. 16 values are
given, but 8 of them are commented out. The 2™ set of 8 values will be used in future labs.

Define an initialized data section called init for the values and place a label (able) next to the
first 4. Table/8] should contain the following values:

7FCh, 7FDh, 7FEh, 7FFh, 800h, 801h, 802h, 803h

. Create an initialized program section for code. Add a label definition for the beginning label

of the code (start). Save your changes by clicking the disk on the horizontal tool bar “Save”.

Assemble LAB2A.ASM

10. Assemble LAB2A . ASM by clicking on the top button on the vertical toolbar. When your

mouse hovers over this button, you will see the words Compile File and check for
errors before moving on to the next step. If you get an assembly error, scroll the Build
window at the bottom of your screen until you can see the error and simply double-click the
error shown in red. Your cursor should now be positioned at the start of the line with the error
in your assembly file. Save any changes you made before going on.

Create VECTORS.ASM

11.
12.

13.

Create a new file by clicking on the left most button on the horizontal toolbar “New”.

Add an initialized code section named “vectors” that contains: rsv: B start
Make sure that both labels (start and rsv) are visible to the linker. Save your file by clicking
on the Save button on the horizontal toolbar. When prompted, save your file and name it
“vectors” as type “Assembly Source File” in the C:\DSP54\LABS directory.

FYI: a complete ‘C54xx instruction summary is available by clicking:

Help > DSP Instructions

DSP54x - Software Development Tools

LAB2-A Procedure

on the menu bar. If you need help with a specific instruction you’ve already typed, highlight
the instruction with your mouse and hit <F1>. Try it now. The workbook appendix also
contains a complete list of instructions for the ‘C54xx. Feel free to use either reference in this
and future labs.

Assemble VECTORS.ASM

14. Assemble VECTORS .ASM by clicking on the compile button as you did before to assemble
LAB2A . ASM. Check for errors before moving on. Save your work.

15. Add VECTORS . ASM to the project using the procedure shown earlier.

Edit LAB2A.CMD

16. To open and edit LAB2A . CMD, double click on the filename in the project window.

17. Setup the file I/O and any options necessary to create map and output files. Don’t forget to
link in the vectors file (vectors.obj). Add an option: -e rsv to define an entry point
for the simulator.

NOTE: You can delete the entire file I/O section of your linker command file and perform the
same functions in CCS under Project, Options, Linker. Allfiles added to the
project will be linked. Try linking your project using the CCS options and use the method you
prefer.

18. Edit the Memory{ } declaration by describing the given system diagram’s memory map.

19. Place the sections defined in LAB2A . ASM and VECTORS . ASM into the appropriate
memories via the Sections{} area. Save your work.

Link LAB2A

20. Setup the linker options by clicking:
Project = Options

on the menu bar. In the middle of the screen select “No Autoinitialization”, then
OK. We will cover the other options shown during the module on compiling C code. To open
up more work space, close any open files that you may have.

21. FYI: CCS can automatically load the output file into the simulator after a successful build.
On the menu bar click:

Option = Program Load

and select: “Load program after build”, thenclick OK.

DSP54x - Software Development Tools 2-13

LAB2-A Procedure

22.

23.

24.

25.

26.

The top four buttons on the vertical toolbar control code generation. Hover your mouse over
each button as you read the following descriptions:
Button Name Description
1 Compile File Compile, assemble the current open file
2 Incremental Build Compile, assemble only changed files, then link
3 Rebuild All Compile, assemble all files, then link
4 Stop Build Stop code generation
Before we build and load the program we need to initialize the simulator. We have included a

GEL file to do this for you. GEL files allow the user to automate repetitive procedures. On
the menu bar click:

GEL -> C54x = (549 Init

You should initialize the simulator every time before you build/load a program.

Click the “Rebuild A11” button and watch the tools run in the build window. Debug as
necessary. Right-click on the build window and Hide the build window.

Open and inspect LAB2A . MAP. This file will show you the results of the link process. Close
the file when you are done.

If code generation is successful, a window displaying the VECTORS . ASM source file with
and a yellow highlight on “B start” should appear. This indicates that you are now ready to
simulate.

Simulate LAB2A

27.

28.

29.
30.

31.

32.

FYI: Should you experience a problem with CCS, quit, then restart , reload your project and
program .

As you can probably tell, the windows in the simulator can be moved around and resized.
Typically, the default window arrangement is not a desirable one. To customize your display,
move the windows around where you want them. You also may want to right click on each
window and select: Float in Main Window. This will allow each window to be
visible when it is active.

Right click on the project window and select: Hide

You’ll probably want to see the CPU registers. On the menu bar click:
View = CPU Registers > CPU Registers
Right click in the CPU Registers window and deselect “Allow Docking”. You can

now move and resize the window as you like. Close the CPU Register window. Locate the
“Register Window” button on the vertical toolbar, then click it to see if it appears.

If you’re familiar with the Command Window used by previous TI simulators, you can add
one by clicking:

Tools 2 Command Window

DSP54x - Software Development Tools

LAB2-A Procedure

33.

34.

35.

36.

37.

38.

39.

40.

41.

on the menu bar. Resize and dock or undock to your liking.

If you prefer to see the disassembly window, find and click the “View Disassembly” button
(at the bottom of the vertical toolbar) or click: View - Dis-Assembly onthe menu
bar.

You can save your workspace by clicking:
File 2 Workspace > Save Workspace

and selecting a name. Make sure you save itin C:\DSP54\LABS. DO NOT save your new
workspace as the “default”. When you restart CCS, you can reload “your” workspace by
clicking:

File 2 Workspace > Load Workspace

and select your filename.

You may want to save a “generic” workspace rather than one that opens up a project. Make
sure that you close the project before you save this workspace.

You can edit the contents of any CPU register by double-clicking on it. Try this with AR7
now. Try typing in both hex and decimal numbers. Note that CCS will convert decimal to hex
for you.

Hit the <F8> key or click the single step button on the vertical toolbar repeatedly and single-
step through the program, watching the values in the accumulators change. Notice the other
step buttons as well: Step Over (a function call) and Step Out (of a function or
subroutine).

At the command line, type:
Step 20 d

and watch the simulator actions. You should see the screen update to reflect the results of
each individual “step”.

Type: Run or F5 or click the Run button on the vertical toolbar. Notice the words
“DSP Running” in the bottom left-hand corner of your screen. If something isn’t working
properly or the simulator seems like it is stuck, always check this location first to see the
status of the simulator.

Hit Shift-F5 or the Halt button on the vertical toolbar to stop the simulator. Notice the words
“DSP Halted”.

Type: Run 20

This will not update the display until the specified time is complete.

Type: Reset J orclick Debug = Reset DSP from the menu bar.

Notice that reset takes you back to the reset vector located at OFF80h. Restart, on the other
hand, will return you to the entry label you set up by using the —e option in the linker
command file. Edit your linker command file to set —e to start and rebuild the project. Notice
that when your program loaded, the simulation begins at the start label. Now type reset on the
command line and watch the simulation return back to the reset vector location.

DSP54x - Software Development Tools 2-15

LAB2-A Procedure

42.

43.

44,

45.

46.

47.

48.

Now type: go LOOP

Note that labels are case sensitive.

Try: go loop
and see if that helps.

On the menu bar click:
View = Memory

or click the View Memory button on the vertical toolbar. Type “table” into the address to
display the contents of the memory starting at label fable. Do the same for label “a”. You can
display as many independent windows as you require. Do you see your initial values in the
memory window displaying “table”?

Note that by double-clicking on any location you can edit the contents of the memory
location.

The numbers in “table” are actually signed fractions with values of about 1/16th. In the
memory window, displaying “table”, right-click and select Properties. Select a Q value
of 15and “16-bit signed int” format. In later modules you’ll see what Q values
represent.

We can set a watch on a variable. Type: wa *y Jinthe command window or click the
“Watch Window” button on the vertical toolbar or select View > Watch Window
from the menu bar. Right click in the watch window and select “Insert New
Expression” and type: *y. This will display the contents (*) of the location y.

If a watch fails to display, the variable may be unavailable to the debugger. Make sure you
used the —s switch when assembling, or, declare y as global using . def or .global. Either
method will ensure that the debugger recognizes the name.

Note that you can have up to 4 watch windows open where you can group your watches.

Type: wd *y d toremove the watch or right-click on *y and select “Remove
Current Expression”.

From the menu bar click:
Profiler - View Clock

to watch the system clock. Click:
Profiler - Enable Clock

to allow the clock to run. Double-click on Clock in the Profile Clock window to zero it. Step
through your code and watch the display accumulate the cycle count.

Graph Memory Contents

49.

Located in the C: \DSP54 \LABS directory is a file called IN6 . DAT. It contains initialized
values for a sine wave created by adding low and high frequency sine waves together. You
can open the file and view its contents if you like. This data will be the input to the filter we
will design in future labs, so we need to add it to our assembly source file.

DSP54x - Software Development Tools

LAB2-A Procedure

50.

51.
52.
53.

54.

55.

56.

You should be able to see the LAB2A . ASM source file on the screen. Add an initialized
section called “indata” with a label pointing to its first location called “x”. After this line

type:
.copy iné6.dat

Now add the indata section to the DARAM data memory in LAB2A . CMD.
Save your changes and rebuild the project.

Click on the View memory button on the vertical toolbar and type “x” in the address field.
You should see lots of data displayed, but it sure would be nice to see this as a graph.

Select:
View > Graph

on the menu bar and pick “Time/Frequency”. Change the following fields to reflect the
information shown below:

Graph Title: Input Data

Start Address: b'e

Acquisition Buffer Size: 200

Display Data Size: 200

DSP Data Type: 16-bit signed integer
Q type: 15

Click OK to see your graph. Resize it to your liking.

We might also want to see the plot as a frequency display. Right-click on the graph, select
Properties, and change the Display Type field to “FFT Magnitude”. Then click
OK to view the plot.

If you’re finished with part A of this lab and you have some more time, move on to part B on
the next page.

DSP54x - Software Development Tools 2-17

LAB2-B Procedure

LAB2-B Procedure

Further details about each of the following commands are in the C Source Debugger User’s
Guide. You might try locating this .pdf file on your PC and look through it. You can obtain the
answers to any of these questions by looking in the on-line help guide or asking your instructor.

1. The simulator supports connecting a file to any address to allow file i/0. Look up how in the
CCS help file and familiarize yourself with them.

2. Create a custom command string using the ALTAS command. Alias can be used to rename
any command (to avoid lots of typing) or to combine several commands into one user-defined
name. For example, type:

alias r, restart J
Look up the ALIAS command in the debugger guide and read more about it.

3. Use the FILL command to initialize a block of memory. Look on the menu bar under Edit ...
memory .. fill.

LAB Debrief

1. What was the most difficult aspect of
using the linker?

2. What kind of syntax errors did you get when
you assembled your code?

3. When using the simulator, were you able to view
the contents at address table and a?

4. What did you learn?
5. Did the lab procedure provide CLEAR directions?
6. Did anyone get to part B of the lab?

DSP54.2- 16

2-18 DSP54x - Software Development Tools

LAB2-B Procedure

DSP54x - Software Development Tools 2-19

Solutions

Solutions

LAB2A.ASM - Solution

;i allocate label definition here
.def start

; allocate uninitialized data sections here
.usect "coeffs",8
Y .usect "result",1l

[l

; allocate initialized data sections here

; only the first 8 values are used in Labs 2a and 3a
.sect "init"

table .int 7FCh, 7FDh, 7FEh, 7FFh

.int 800h,801h,802h,803h

.int 803h,802h,801h,800h

.int 7FFH,7FEH, 7FDH, 7FCH

.sect "indata"
x .copy "iné.dat"

i allocate code section here
.sect "code"

start: LD #0,A
LD #0,B
loop: ADD #1,A
ADD A,B
ADD #1,B
ADD B,A
B loop
DSP54.2-18
.

LAB2A.CMD - Solution

/* file I/O and options */

vectors.obj

lab2a.obj

-m lab2a.map

-o lab2a.out

-e start

MEMORY {

PAGE 1: /* Data memory */
SPRAM : org = 00060h, len = 00020h
DARAM : org = 00080h, len = 00400h
DROM: org = 00C00h, 1len = 00400h

PAGE 0: /* Program memory */
EPROM: org = 0F000h, len = 00F80h
VECS: org = O0FF80h, len = 00080h

}

SECTIONS
coeffs > SPRAM PAGE 1
result > DARAM PAGE 1
init > DROM PAGE 1
indata > DARAM PAGE 1
code > EPROM PAGE 0
vectors > VECS PAGE 0

! DSP54.2 - 19

2-20 DSP54x - Software Development Tools

Addressing Modes

Introduction

In a machine that can perform as many as 160 million multiply-accumulates per second, getting
data to and from the computational units is of critical importance. Different tasks access data
differently, so the ‘C54x incorporates addressing modes to perform those tasks at the fastest

possible speed.

Learning Objectives

Objectives
¢ Understand the 5 basic addressing
modes and why to use them
& Perform an exercise using these modes

& List the remaining addressing modes

DSP54.3 -2

DSP54x - Addressing Modes

Module Topics

Module Topics

JADATESSING MOTES..........vcveeiveeeeeteeeeteteeeteteeeeteteeese e teeeeteteeseteteeeeteteeseseteeseseseessseseesesesessssesesnssesessseresesan 3-1|
MOGUIE TOPICS ... 3-2|
| N T T 3-3]
| 3-4|
S T D e e (s [T 3-5|
T 3-6|
VYR [T e P 3-7|
S 3-8
Y T T 3-9]
DIreCt AJAressINg ... A HOW-TO......cuciiiiiiiiiicii s 3-10]|
PADSOIULE ACAIESSINGvvevivevieeieteeiietete ettt ettt et et esteteterestetesessesesessetesessasessssesesessasesessareseans 3-11|
VAt NAVE WE MISSEA?.....c.viivieiiiciii s 3-12

LS 3-12

A List of INdireCt Addressing OPTIONScvvevviveiueeiieeiteeereereetreeteeeteeeteetesresreesreeereeeressesssesseesseen 3-13
DIrECT AQUIESSING ISSUBS. ... e.vieieieieieeeeet et et estesesseeseeseeseessessesseaseasesssessessesessessessesssessensessesses 3-14
BOME DBTINITIONS ..ttt et et e et e e e st esresresseereensessessensesreasesreeneaseensenresreas 3-14
T 3-15]
EXBICISE ...ttt stete et steatsesseestsessesssasssesessnssesesssssesessessesessessesssssssesssssssesssssssesssassssssssssssssesses 3-16|
N o 3-17|
S T L 3-17|
RN 3-18]
Copy Flles, Create Make FIIE...... ...t 3-18
Copy table[8] t0 a[8] — WIIE/DEDUQcc.coeiiiieiicieieieecc sttt eenaenae e 3-18
Add the values, Store result t0 Y — WIite/DebUQovviviieiiiiiiisesi e secsie s eseseer e eeeseesrssreaneas 3-19
PrOTIIE YOUr COUE ... ovovovosoooscoocoscooceocoscoscoscescesconcesceseeneneeeeneneeeneneeeeneseeneeneeeseneeesseennneeneseee 3-20
R S T e T [V 3-21]|
I 3-23|

DSP54x - Addressing Modes

The Need For Addresses

The Need For Addresses

Adding 3 Numbers...How hard can it be?

System Diagram

Algorithm DROM | [TRAM
y:X1+X0+X2 init[3] x[3]
ROVIT | 54y | [RAM
(code) CPU y

Procedure
+ Allocate sections (code, constants, vars)

+ Setup addressing modes
¢ Add the values (x1 + x0 + x2)
+ Store the result (y)

How do we allocate the proper sections?

DSP54.3-3

We’ve already done this, so this should be merely a review of the techniques covered in module

2.

DSP54x - Addressing Modes

A Review

A Review

Allocating Sections (Review?)

; mai n.asm o .
Uninitialized Sections...

.sect "init"
thl .int 1,2,3 * X[3]
X .usect "vars",3 * y[1]
y o UBCEL PTESIIET, & Initialized Sections...
.sect “code o thi[1.2,3]
¢ code
What does the linker
command file look like? System Diagram
DROM RAM
— b
thl [3] x[3]
: J
code I cPu] y

DSP54.3 - 4

Linker Command File - Review

; mai n.asm L
¢ What are the 3 main pieces of

.sect "init" a linker command file?
t bl .int 1,2,3
¢ " g ¢ Where do these go?
X - usec "var S . - code, vectors?
y .usect "result",1

- init, vars, result?
.sect “code”

/* fileilo */ How do we generate data

MEMCRY { addresses to access tbl, x and y?
PAGE 0:
ROM or g=0F000h | en=0F80h

VECS: or g=0FF80h | en=0080h System Diagram

PAGE 1:
RAM or g=00085h | en=0020h
DROM or g=08000h | en=0100h DROM BN RAM
. tbl [3] x[3]
SECTI ONS {]
code :> ROM PAGE 0
vectors :> VECS PAGE 0 RoM L] S54x | RAM
init : > DROM PAGE 1 code CPU y
vars :> RAM PAGE 1
result :> RAM PAGE 1
} DSP54.3-5

DSP54x - Addressing Modes

Generating Data Addresses

Generating Data Addresses

Generating Data Addresses

The ‘C54x uses 5 basic data addressing modes:

Indirect

Direct

Absolute

Immediate

MMR

Uses 16-bit registers as pointers

Random access from a specified base address
Specify entire 16-bit address

Instruction contains the data operand

Access memory mapped registers

DSP54.3 -6

Generating Data addresses is what the programmer will be doing most. How can it be done at the

fastest possible speed?

DSP54x - Addressing Modes

Indirect Addressing

Indirect Addressing

Indirect Addressing - *

; mai n. asm First, let’s copy the values
from DROM to RAM (via A):

.sect "init"
tbl -int 1,2,3 # Indirect Addressing allows
X .usect "vars",3 sequential access to arrays
y .usect "result",1

B N & 8address registers (AR0-7) can be
-sect “code used as 16-bit pointers to data

start: ¢ ARs can be optionally modified

LD *ARl+, A

STL A *AR2+ ;... System Diagram
DROM
tbl [3]
How do we initialize the ARs?
ROM RAM
code y

DSP54.3-7

Indirect addressing is typically used for addressing arrays of information where stepping up or
down through the data is necessary. We’ll cover the modifications a little later.

3-6 DSP54x - Addressing Modes

MMR Addressing

MMR Addressin

g

MMR and Immediate Addressing

;mai n.asm .
.sect "init"
t bl .int 1,2,3
X .usect "vars",3
y .usect "result",1 .
.sect “code”
start: STM #tbl, AR1
STM #x, AR2 *
LD *AR1l+ A
STL A *AR2+ ;... *
0000h
MMRs
0060h
SPRAM
007Fh

STM (STore to Memory-mapped
register) stores an immediate
value to the specified MMR or
SPRAM address.

STM writes value to register in
the access phase of the pipeline
to avoid latencies (more later...)

#t bl is the 16-bit address of the
first element of the array tbl.

Immediate operands, like #t bl ,
are located in program memory
as part of the opcode.

STM to AR1
tbl

<+——16 bits —»

2 words, 2 cycles

Now, let’s do the add...

DSP54.3-8

MMRs contain the information needed to control the ‘C54x functions and you’ll need to program
them periodically. MMR addressing gives you a method to easily access those registers.
Additionally, since writing to control registers can incur latencies, instructions like STMoperate
early and avoid most pipeline problems.

DSP54x - Addressing Modes

Direct Addressing

Direct Addressing

;mai n.asm

. sect
t bl .int

. sect

start: STM
STM

LD
STL

LD
ADD
ADD

X . usect
y . usect

Direct Addressing - @

"init"
1,2,3

“code”
#t bl , ARL
#x, AR2
*ARL+, A
A *AR2+

@+1, A
@, A
@&+2, A

How is the DP (data page) initialized?

"vars", 3
"result",1

y =x1+ X0+ x2

Direct Addressing allows random,
single-cycle access to 128 locations
positively offset from a base address

The direct 16-bit address is formed

by concatenating the base address (DP)
with the 7-bit offset contained in the
instruction:

Instruction l opcode |7-bit offset‘

Address [9-bit DP [7-bit offset
- 16 bits >

DSP54.3-9

If you need to randomly access some variables, indirect addressing would be a poor choice since
you’d need to reprogram the AR before each access. Direct addressing allows us random access
into a “page” of memory. Why doesn’t direct addressing access the entire data space? Because
instructions in the *‘C54x are only 16 bits long. If you specify the entire data address it alone will
require 16 bits, forcing the instruction to take 2 cycles. In order to meet the single cycle access
need, designers broke up data memory into 512 128 word memory “pages”.

DSP54x - Addressing Modes

Immediate Addressing

Immediate Addressing

Immediate Addressing - #

;main.asm LD #x, DP
.sect "init" . .
t bl int 1.2.3 < This instruction loads the upper
el m 9 bits of address x into DP (located
X .usect "vars",3

in STO) in a single cycle.

y .usect "result",1

.sect “code” & Short immediate instructions
start: STM #tbl, ARL are L word, 1 cycle:

STM #x, AR2 LD #k5, ASM

LD * AR1+. A LD #k8, dst ;A or B

STL A *AR2+ ;... LD #k9, DP

LD #x, DP RPT #k8

LD @+1, A FRAME #k8

ADDEE gé‘ A & All other immediate constants are

16 bits and require 2 words, 2 cycles.

Now, let’s see how the C54x calculates direct addresses...

DSP54.3 - 10

An instruction using Immediate Addressing transfers the information from program to data space.

DSP54x - Addressing Modes 3-9

Direct Addressing ... A How-To

Direct Addressing ... A How-To

Generating Direct Addresses

;mai n.asm
.sect "init"
t bl .int 1,2,3
X .usect "vars",3
y .usect "result",1

.sect “code”
start: STM #tbl, ARL

STM #x, AR2

LD *AR1l+ A

STL A *AR2+ ;...

LD #x,DP

LD @&+1, A

ADD @, A

ADD @+2, A

Which addressing mode should
be used to store the result?

16-bit address of x
|0000 0000 1 | 000 0101] =85h

LD #x, Db Data Page 1
00007 0000°71| Base Addr = 80h
DP
LD @&+1, A

[0000 0000 1]000 0110] =sgsh

ADD @, A
[0000 0000 1[000 0101] = 8sh

ADD @+2, A
[0000 0000 1[000 0111] =g7h

CPL (compiler mode) bit in ST1 determines
whether the offset is relative to DP (CPL = 0)
or SP (stack pointer)(CPL = 1)

DSP54.3 - 11

Confused? It seems everyone gets confused the first time (or 3" or 4™) that they encounter direct
addressing. We’ll be doing more exercises using the mode so don’t worry if it is not 100% clear

right now.

DSP54x - Addressing Modes

Absolute Addressing

Absolute Addressing

Absolute Addressing
;mai n.asm L
e & Guarantees access to any location in the
bI - sect 1 '2’“3t memory map by supplying the entire
u oD do Z 16-bit address
X .usect "vars",3 L
y .usect "result",1 ¢ Usestheindirect hardware to generate
_sect “code” the address, hence the *
start: STM #tbl, ARL ¢ Always MINIMUM of 2 words, 2 cycles
STM #x, AR2
LD *ARL+ A _ .]
STL A *AR2+ ;... What other issues exist concerning
LD #x,DP the basic addressing modes?
LD @+1, A
ADD @, A
ADD @&+2, A
STL A *(y)
DSP54.3 - 12

Gee, this looks like what direct addressing would look like if we didn’t need a DP. But notice the

performance penalty.

The form of the instruction seems to denote indirect addressing and indeed, absolute addressing
using the indirect hardware to generate its addresses.

DSP54x - Addressing Modes

What have we missed?

What have we missed?

X
y

;mai n.asm

. sect

t bl .int

Addressing Issues

"init"
1,2,3

.usect "vars",3
.usect "result",1

. sect

start: STM

ST™M
LD
STL
LD
LD

ADD
ADD

STL

“code”
#t bl , ARL
#x, AR2
*ARL+, A
A * AR2+
#x, DP
@+1, A

@, A
@+2, A

A *(Y)

v’ What issues exist regarding
memory-mapped addressing?

v’ What other update modes exist
for address registers (AR0-7)?

v How do you ensure that a group
of variables reside on the same
data page?

¢ What goofy abbreviations will
you see in the user’s guide?

DSP54.3 - 20

MMR Issues

MMR Addressing

¢ DP, SP and CPL are ignored - not used or modified
¢ Invoked via MMR-specific mnemonics:

LDM STLM MW - Acc

STM # - MWR

PSHM POPM MWR o~ Stack
MDM MWND MWR < Dnem
MWMM AR, SP - AR, SP

& When accessing MMRs, latencies must be considered.
(these will be covered in module 6)

Tip: use the .mmregs directive LDM ;r_ri egs
to allow MMR names to be ’
interpreted as addresses R #4000, B

STLM B, ST1

What are the MMRs that can be addressed?

DSP54.3 - 14

MMR addressing allows access to the MMRS regardless of the page or mode, which is very
handy. You’ll have to remember that these are the only MMR specific instructions. If you use an
MMR name as an address in any other instruction (say a direct address) you may need to set the

DP to 0.

DSP54x - Addressing Modes

What have we missed?

Memory-Mapped Registers (MMR)

Addr. Addr.

Name (Hex) Description Name (Hex) Description

IMR 0000 Interrupt Mask Register ARO 0010 Address Register 0

IFR 0001 Interrupt Flag Register AR1 0011 Address Register 1

----- 2-5 Reserved AR2 0012 Address Register 2

STO 0006 Status 0 Register AR3 0013 Address Register 3

ST1 0007 Status 1 Register AR4 0014 Address Register 4

AL 0008 A accumulator low (A[15:00]) AR5 0015 Address Register 5

AH 0009 A accumulator high (A[31:16]) AR6 0016 Address Register 6

AG 000A A accumulator guard (A[39:32]) | | AR7 0017 Address Register 7

BL 000B B accumulator low (B[15:00]) SP 0018 Stack Pointer Register

BH 000C B accumulator high (B[31:16]) BK 0019 Circular Size Register

BG 000D B accumulator guard (B[39:32]) | | BRC 001A Block Repeat Counter

T 000E Temporary Register RSA 001B Block Repeat Start Address

TRN 000F Transition Register REA 001C Block Repeat End Address
PMST 001D PMST Register
»»»»»»» 01E-01F | Reserved

XPC and Peripheral MMR locations are device dependent

DSP54.3 - 15

These are core MMRs only. Peripheral MMRs will be covered in the peripheral module.

A List of Indirect Addressing Options

Indirect Addressing Options

Option Syntax Action Affected by:
No Modification |*ARn no modification to ARn
Increment / *ARn+ post increment by 1
Decrement *ARn- post decrement by 1
Indexed *ARN+0 post increment by ARO ARO
*ARN-0 post decrement by ARO
Circular *ARN+% post increment by 1 - circular BK
*ARN-% post decrement by 1 - circular
*ARN+0% | post increment by ARO - circular BK, ARO
*ARN-0% post decrement by ARO - circular
Bit-Reversed *ARn+0B post inc. ARn by ARO with reverse carry | ARO
*ARn-0B post dec. ARn by ARO with reverse carry| (=FFT size/2)
Pre-modify *ARn (Ik) *(ARn+LK), ARn unchanged
*+ARn (Ik) | *(ARn+LK), ARn changed
*+ARnN (Ik)%| *(ARn+LK), ARn changed - circular BK
*+ARnN pre-increment by 1, during write only
Absolute *(1k) 16-bit Ik is used as an absolute address
See Absolute Addressing

ARs are read in access phase and modified in read phase of the pipeline,
so the debugger will appear to show ARs changing early.

DSP54.3 - 17

Other than pre-modify and absolute, these modifications incur no time penalty. The pointer

updates occur as you direct within the address generation hardware.

DSP54x - Addressing Modes

What have we missed?

Direct Addressing Issues

Forcing Variables Onto A Single Data Page

varsl: Guaranteed to reside on DP=2.
- get a warning if varsl section is larger than 80h

vars2: Guaranteed to reside on the same data page.
- blocking forces section sizes of 2, 4, 8, ...128

MEMORY {

PAGE 1: H SRAM org=100h | en=080h
HERRAM or g=210h | en=200h
| TSRAM or g=500h | en=100h

}

SECTI ONS {

varsl :> H SRAM PACGE 1

vars2 :> HERRAM PAGE 1 BLOCK=128
vars3 :> | TSRAM PACGE 1

}

vars3: Guaranteed to reside on the same data page.
- uses blocking flag to force variables onto same data page
- must use “.def y” to see variable in the debugger
X .usect “vars3”,4,1
y .set X+3

All 3 methods require close management of the linker.cmd file. DSP54.3 - 19

Using direct addressing effectively involves good management of variable placement. The
hardware has no method to determine that your data access was from the correct or incorrect

page.

Some Definitions

Terms From the User’s Guide...

Term | What it means

Smem | 16-bit single data memory operand

Xmem | 16-bit dual data memory operand used in dual-operand instructions
and some single-operand instructions. Read through D bus.

Ymem | 16-bit dual data-memory operand used in dual-operand instructions.
Read through C bus.

1k 16-bit long constant
dmad | 16-bitimmediate data memory address (0 - 65,535)

pmad | 16-bitimmediate program memory address (0 - 65,535)
This includes extended program memory devices

src Source accumulator (A or B)

dst Destination accumulator (A or B)
PA 16-bit port (1/0) immediate address (0 - 65,535)

DSP54.3-21

There are always hard to understand acronyms and these are a few of the most used.

3-14 DSP54x - Addressing Modes

Review

Review

Review Questions

For the following instructions, what do you need to setup?

LD @arl, A

LD *AR1,B

STL B, *(var3)

LD #OFFh, A

STLM B, ST1

;var2

DSP54.3 - 22

DSP54x - Addressing Modes

Exercise

Exercise

Given:
Address/Data (hex)

DP=0

Exercise 3: Addressing

DP=4

DP=6

60
61

62

20
120

200
201
202

100
60
40

300
301
302

100
30
60

Program

A

DP

ARO

AR1

AR2

LD #0, DP
STM #2, ARO

STM #200h, ARL
STM #300h, AR2
LD @1h, A

120

ADD *ARL+, A
SUB @0h, A B
ADD *ARl+, B, A

260

LD #6, DP
ADD @, A
ADD *AR2+, A

390

SUB *AR2+, A
SUB #32,A
ADD *AR1-0,A B

380

SUB *AR2-0, B, A
STL A, 62h

DSP54.3 - 23

In everyday coding you would probably not be using “hard” addresses to load registers but would
rather be using symbols. In this exercise we are using hard addresses so we can emphasize

addressing modes rather than the use of symbols.

DSP54x - Addressing Modes

Exercise

LAB3 — Addressing

Objective

The objective of this lab is to write code to perform a copy of the initialized table from DROM to
RAM, add the values stored in the RAM table, and then store the result to y.

LABS3 - Addressing

1. Setup proper addressing modes

Time: 60 minutes

‘C5409
4Kx16 EPROM
Foooh son 20hx16 SPRAM
code
FF80h vectors 80h e R
FFFFh y
x[200]

_ L 2. Copy table[8] to a[8] using indirect addressing
y - an 3. Solve for y using direct addressing
4. Store y to RAM using absolute addressin

Q00h

1Kx16 DROM

DSP54.3 - 25

DSP54x - Addressing Modes

LAB3-A Procedure

LAB3-A Procedure

Copy Files, Create Make File

1. Using CCS, open LAB2A. CMDin C: \ DSP54\ LABS and save it as
C: \ DSP54\ LABS\ LAB3A. CVD. Modify as necessary (especially the file i/0). Save your
work.

2. Open LAB2A. ASMand save it as LAB3A. ASM

3. Create a new project called LAB3A. MAK and add LAB3. ASM VECTORS. ASMand
LAB3A. CMDto it. Check your file-list to make sure all the files are there.

Copy table[8] to a[8] — Write/Debug

4. Edit LAB3A. ASMand write code to copy table[8] to a[8] using indirect addressing. Begin
your copy code by writing the actual copy routine, then setup the necessary pointers. This is
the “Oreo cookie” approach of coding. First, write the kernel (whatever task you’re
performing). Then, work on the setup code (like initializing pointers or registers). Then
assemble, link and simulate the small kernel to ensure it is working properly before adding
other tasks to your code. The worst coding technique is to “write it all”, then simulate it all.
Gee, if you have an error, you have a zillion places to look. With the “Oreo cookie” method,
you’ll know exactly where to look.

5. To perform the copy, use a load/store method via the accumulator. Which part of an
accumulator (low or high) should be used? Use the following when writing your copy
routine:

- use ARL1 to hold the address of a
- use AR2 to hold the address of table
- setup the appropriate indirect addressing registers

6. Save your work. Build and simulate LAB3A. You might want to use your workspace from
LAB2A. You may need to reload your project, remove the LAB2A. ASMsource window and
add the lab3a.asm source window. You may want to re-save the workspace with a “generic”
layout without the source file open. Look under File > Recent Workspaces on the menu bar
to select your saved workspace quickly.

7. Single-step your copy routine. While single-stepping, it is helpful to see the values located in
table[8] and a[8] at the same time. You can have as many as four memory windows open at
the same time. Open two memory windows by using the “ Vi ew Menory” button on the
vertical toolbar and using the address labels table and a. Setting the properties filed to
“Hex — T1 sytle” will give you more viewable data in the window.

Note:ARs are read/modified early in the pipeline. Therefore, the addresses contained in the
register(s) will appear to change early, most often appearing to be two cycles ahead.

First, does table contain the proper values? Are the addresses for table and a what you
expected? Single-step your copy routine. Do the values show up in a? If not, debug your
assembly routine and re-simulate. Get the copy routine working before moving on to the next
step.

3-18 DSP54x - Addressing Modes

LAB3-A Procedure

Add the values, Store result to y — Write/Debug

8.

10.
11.

12.

13.

14.

15.

Edit LAB3A. ASMagain and write code to solve for y using direct addressing. According to
the equation shown on the system diagram,y =a0 + al + a2 + a3 + a4 + a5 + a6 + a7. First,
write the add routine using one of the accumulators and direct addressing. Then, setup the
appropriate direct addressing registers. Create a label (like add:) at the beginning of your
add routine.

Did you check to see if all the values in a are contained within a single data page? We can
assure they are by adding the *, 1” switch to the . usect command that allocates this
section.

Store the result y using absolute addressing.

Create a stop condition at the end of your code with an endless loop. You can use:

here: B here
Verify that you still have the following selected:
Option > Program Load - Load Program after Build

On the menu bar select: Proj ect - Options and make sure —g is included in the

Assembler options box. If it is not, click the box labeled Enabl e Synbol i ¢ Debug

I nf or mat i on. The —g option enables source-level debugging. The options box should
now read —gs. The —s option makes all symbols global so that they can be displayed in
Code Composer Studio. Rebuild your . OUT file.

When the simulator opens, type:
go add O

on the command line (or use the label you wrote at the beginning of your add routine) to run
the code beginning at the start label and ending at the add label. Use a memory window to
view a and verify that the values have been properly copied.

We know that the copy routine works properly, so now it is time to debug the add routine.
Single step your add routine.

Note:When single-stepping, normally the highlighted instruction is sitting at the beginning of the
EXECUTE phase of the pipeline. So, when you hit <F8> or press the single-step button, the
instruction will complete the EXECUTE phase. This implies that the instructions following the
current instruction might have already performed the pre-fetch, fetch, decode, access and read
phases. Any updates or modifications made during early phases of the pipeline might already be
complete by the time you highlight the specific instruction. For example, STMwrites in the
READ phase. Therefore, when you actually highlight this instruction, it has already “executed”.

16.

The result stored to location y should be 16380 (decimal) or 3FFCh. Add the following two
expressions to the watch window to display y in both decimal and hex:

*y (decimal is the default) ... *y will display the contents of the address y

"y, X (x selects hexadecimal)

DSP54x - Addressing Modes 3-19

LAB3-A Procedure

17.

18.

View the CPU Regi st er s window. Notice that CCS parses STO, ST1 and PMST into
their individual pieces. Review the CCS online help and determine what those pieces are.
Find them in the CPU Regi st er s window.

If your add/store routine is not working properly, debug as necessary before benchmarking
your code.

Profile Your Code

19.

20.

21.

22.

23.

To re-initialize your debugging session, you have two options. r est art andr eset .
restart loadsthe PC with your entry label (for example: start) and does not reset any
registers. r eset loads the PC with the reset vector address and initializes all reset
bits/registers. Use both commands now to see the difference. Type: r eset or look under
Debug on the menu bar and select Reset DSP.

Type: go start O
on the command line to run to your beginning label.

Click on the line in your source file corresponding to the beginning of your add routine. Click
on the “Toggl e Profi | e- poi nt” button on the vertical toolbar. You should see a green
line appear. Do the same on the instruction performing the store to y. Check on the menu bar
under Pr of i | er and make sure the clock is enabled. Display the Profile window by
selecting:

Profiler - View Statistics.

Press the Run button, then press the Halt button on the vertical toolbar. You should see the
yellow line indicating the current position of the PC on your stop condition.

Ouch! 64 cycles for 8 instructions? What’s happening here is that the software wait state
register is set to the maximum (8 cycles per access) at reset so that we can interface with slow
memory. We’ll see how to set this register in our code later. Type: ?SWASR=0 on the
command line, then r est art (don’t reset) the processor. Run and Halt the simulator and
check your results. If you use r eset , it will set the SWABR to the maximum. To make life
easier for future profiling, we created an alias for ? SWASR=0 called “Ows” (the number
ZERO, then ws — for ZERO WAIT STATE). From now on, you can simply type “Ows” at the
command line to set wait states to zero.

Note in the statistics window that you’ve run the code twice. You should see different values
for minimum and maximum. You can clear the statistics by right clicking in the statistics
window and selecting “Cl ear Al'l ™.

Take a moment and look at the Appendix of this student guide (at the very back) and study its
contents. Is this good stuff or what?

If you still have some time left and desire a real challenge, move on to LAB3B...

DSP54x - Addressing Modes

LAB3-B Procedure

LAB3-B Procedure

If you plan on modifying your LAB3A. ASMcode, you might copy the files (LAB3A. ASMand
LAB3A. CVD) to LAB3B. ASMand LAB3B. CVD. You can obtain the answers to any of these
questions by looking in the on-line help guide or asking your instructor.

1.

How would you implement a data addressing scheme that crosses data pages using indirect
addressing?

What addressing modes would you use to implement indexed addressing and what registers
would you need to initialize?

Determine how to randomly access a memory block greater than 128 words in length.
Use READA instruction to perform the copy from table to a.

Implement two ways for forcing variables onto the same data page. Verify your methods via
simulation.

Review the list of MMR’s in the appendix. You can also locate them in the on-line
documentation. If you find them, set a bookmark there for future use.

DSP54x - Addressing Modes 3-21

LAB3-B Procedure

LAB Debrief
1. Which addressing mode was easiest to use? Why?
2. Which mode was the most difficult? Why?
3. Did you watch the copy occur from table to a?
4. Did the tools behave as expected?
5. What did you learn?
6. Did the lab procedure provide CLEAR directions?

7. Did anyone get to part B of the lab?

DSP54.3 - 26

DSP54x - Addressing Modes

Solutions

Solutions

Exercise 3: Addressing - Solution

Given: DP=0 DP=4 DP=6
Address/Data (hex) 60| 20 200| 100 300(100
CPL=0 61| 120 201 60 301| 30
CMPT=0 62 202| 40 302| 60
Program A B DP ARO AR1 AR2
LD #0, DP 0
STM #2, ARO 2
STM #200h, AR1 200
STM #300h, AR2 300
LD @1h, A 120
ADD *AR1+, A 220 201
SUB @0h, A B 200
ADD *AR1+, B, A 260 202
LD #6, DP 6
ADD @, A 290
ADD *AR2+, A 390 301
SUB *AR2+, A 360 302
SUB #32, A 340
ADD *AR1-0,A B 380 200
SUB *AR2-0,B,A| 320 300
STL A 62h
DSP54.3 - 24
LAB3A. ASM: Solution
.def start LD *AR2+, A 5]
STL A *ARL+
a .usect "coeffs",8,1 LD *AR2+, A ;6
y .usect "result",1 STL A, * AR1+
LD *AR2+, A 07
.sect "init" STL A, *ARL+
table .int 7FCh, 7FDh, 7FEh, 7FFh LD *AR2+, A ;8
.int 800h, 801h, 802h, 803h STL A *ARL+
; .int 803h, 802h, 801h, 800h
H .int 7FFH, 7FEH, 7FDH, 7FCH LD #a, DP
.sect "indata" add: LD @ A
X .copy "iné.dat" ADD @+1, A
ADD @+2, A
.sect "code" ADD @+3, A
start: ST™M #a, ARL ADD @+4, A
ST™M #t abl e, AR2 ADD @+5, A
LD *AR2+, A ;1 ADD @+6, A
STL A *ARL+ ADD @+7, A
LD *AR2+, A 32 STL A *(y)
STL A *ARL+
LD *AR2+, A 13 here: B here
STL A *ARL+
LD *AR2+, A 4
STL A *ARL+
DSP54.3 - 28

DSP54x - Addressing Modes

Solutions

LAB3A. C\VD : Solution

/* file 1/0O and options */
vectors. obj

| ab3a. obj

-m | ab3a. map

-0 | ab3a. out

-e start

MEMORY {

PAGE 1: /* Data nenmory */
SPRAM org = 00060h, |en = 00020h
DARAM org = 00080h, |en = 00400h
DROM org = 00C00h, |en = 00400h

PAGE 0: /* Program nenory */
EPROM org = OF000h, |en = 00F80h
VECS: org = OFF80h, |en = 00080h

}

SECTI ONS

{ coeffs 1> SPRAM PAGE 1
resul t :> DARAM PAGE 1
init :> DROM PAGE 1
indata :> DARAM PAGE 1
code :> EPROM PAGE O
vectors 1> VECS PAGE 0

}

DSP54.3 - 29

DSP54x - Addressing Modes

Programming FIR Filters

Introduction

While the purist might quibble that what we’re covering here isn’t everything needed to perform
FIR filter, we will cover the most important aspect; multiply-accumulates. We’ll introduce the
concept of a sampled signal and work a complete problem using just 4 data points. In later
modules we’ll look at how important managing pointers and data is.

Learning Objectives

Objectives
< Introduce DSP Filtering
& Compare/contrast array vs. scalar math

& Solve an EIR filter using basic math and
program flow instructions

& List additional instructions

DSP54.4 -2

DSP54x - Programming FIR Filters 4-1

Module Topics

Module Topics

[Programming FIR FIEEScoovoviuiiirieieeeeeeeeeeeee et eae et eneteteneteteensnetennetereesssennnana 4-1|
MOAUIE TOPICS ... 4-2|
Converting the ANalog WOrld £0 DIGIALcoveovivrieeeiieeieeeeeeeeeieeesseeseseeseseereseseereneseereeneas 4-3|
R 4-4|
Y 4-5|
YR R S e 4-6|
Btore t0 Memory Mappea REGISIETScvieiverieeiierieesteiaesteieestessarestessasestesseseatesseseatessessaressesessensans 4-7|
IR 4-8|
Btore AcCUMUIALON t0 MEIMOIYcuieisieiseiicesssi et ss s esesss st ess s s ens st st sn st an s s s s ansseneas 4-9|
REPEAL SINGIE......cooiii 4-10|
IMOVE INSEIUCTIONS ...ttt ettt ettt e et et ess et ebesesserensssaseseesabensssesesesrererenes 4-11|
Program FIOW ... 4-12|
| A 4-13|
e 4-14|

| Y N ol 1 oo 4-15]|
PDOJECTIVE ..t 4-15|
Y N T o Yoo [N T 4-16
CopY Files, Create MaKe FilB..........c..cocuiiuiiiiiiicceece ettt et e s teesnbeesreeenees 4-16
EAIT LABAA.CIMD .ottt 4-16
betup 16-TAP FIR and Stack — Write/Debug ... 4-16
l5ptimize Copy RoUtINe — WITE/DEDUG ...t 4-17
FIR ROULING — WITEE/DEDUG ...ttt sttt snesnenee e 4-17
Dptimize Your FIR RoUting — WIIte/DEDUGc.eveieieiieeiectieieeetieseesiesiesiese e ataesaeneesaenseneeneens 4-18
I N 4-19|
What Have WE IMHSSEA?. ..o 4-20
TR FTITEIS ..tttk ettt ettt s ettt s et e e st eb et er e e b e e ereeberr et et e ere e 4-20
MOre IMUIEIPIY INSEIUCTIONSeviiiiciiceieice ettt e e ae et e stestesraeneereeneeneennens 4-21
AAAAS AN SUDTFACES. ...ttt st sb et e st esesse st et eb e st et ebesbe b enesbeneeresbenens 4-22

B2 Bt OPEIAIONS ..ot 4-22
A[TGNING LONG ODEIANGSvviivieitieeitieeetieectve ettt eeteeestveeetteestbeeeteeestbeeenreesereesnreessreesreesnreesnreeesses 4-23

AF OPBIALIONS. ...ttt ettt ettt ettt et est e e et e eb e et e abeene et e et enteneeabeabeaneeneenrenreareas 4-23
BONUTIONS ... 4-25]
Bome Additional INFOMMATIONcvciiiveiieictcieiee ettt ere et e s sreteresrerernsserenenas 4-27 |

DSP54x - Programming FIR Filters

Converting the Analog World to Digital

Converting the Analog World to Digital

Sampling

¢ We’re going to sample a real world signal at some rate greater than twice the
frequency of interest using an analog to digital converter...

-

& ...togenerate an array of numbers & Or, the input might look like this:
representing our original input:

406737
743145
951057
994522
866025
gg%?g & We might want to filter this signal

to extract or exclude a part of it.

. Poeeooco

Let’s take a look at one of several filtering methods... osesa4-3

There certainly isn’t time or space here to cover time-invariant sampling theory, but the idea of
sampling a real world signal at a given rate is at the heart of DSP. Remember Nyquist? We must
sample our signal at a minimum of twice the frequency of interest. Since voice ranges up to
4KHz, we must sample voice signal at a minimum of 8KHz or 125uS.

DSP54x - Programming FIR Filters 4-3

FIR Filters

FIR Filters

DSP Filtering Using an FIR Filter

¢ Unconditionally stable (no feedback)
& Linear phase possible

¢ Usually requires many taps - so typically array math and
indirect addressing are used

& MAC is the basic instruction used to solve an FIR filter

FIR Signal Flow Diagram

y0 = a0*x0 + al*x1 + a2*x2 + a3*x3

DSP54.4 -4

An FIR filter in its simplest implementation is an averaging filter. To determine the average high
temperature for a week we’d take the high for each day, add together all 7 and divide by 7. Since
multiplication is easier than division we can multiply each “data point” by our “coefficient” (1/7)
and accumulate the result. Unfortunately, FIR filters are relatively poor performers, so many
“taps” or multiply-accumulates will be needed.

DSP54x - Programming FIR Filters

Array Math

Array Math

Array Math
Coefficients Input Data
3 a0 x0
= a.x X al x1
yO n= n n a2 X2
a3 X3

FIR Signal Flow Diagram

y0 = a0*x0 + al*x1 + a2*x2 + a3*x3
Next, let’s setup the link.cmd file and sections... DSP54.4-5

There they are ... an array of data and an array of coeffiecients.

Yo = apXg T a1X; + a)X; + agXs

Link.cmd
| ab1l. obj System C54x
-0 | abl. out Diagram
-mlabl. nap x[6]

Qut RAM

NEMORY { y[1]
PAGE 1: /* Data Memory */ code

SPRAM or g=00060h | en=0020h

— [SPrRAM
INRAM org=00400h | en=0400h init_af4] a[4]
Qut RAM or g=00800h | en=0400h

PAGE 0: /* Program Menory */

A

ROM or g=0F000h | en=0F80h FIR.asm

X . usect i nput”,
} s
SECTI ONS { a . usect "coeff .’.4
code > ROM PAGE 0 y .usect "output", 1
!nit 1> ROM PAGE 0 .sect "init"
i nput > InRAM PAGE 1 init_a.int 1,234
out put > QutRAM PACE 1
coef f > SPRAM PAGE 1 o (s &g
} .sect "code"

Let’s start writing some code... DSP54.4-6

Let’s make sure they’re correctly placed in memory to avoid access conflicts.

DSP54x - Programming FIR Filters 4-5

Multiply and Accumulate

Multiply and Accumulate

Multiply and Accumulate
FIR.asm Yo = X T @1X; 3%, + a3X;
fir:
Two methods can be used to solve for y,:
1. Multiply, then add
MPY *AR2+, *AR3+, B
ADD B, A
2. Multiply/Accumulate
math: MAC *AR2+, *AR3+ A MAC *AR2+, *AR3+, A
ATCE * Dual_—operand |_nstruct|ons are
restricted to using:
- AR2, AR3, AR4, AR5
How do you initialize the pointers? - modifiers: none, +, -, +0%
DSP54.4-7

This is the “Oreo” method of coding. An Oreo cookie is eaten from the inside out, and this is how
the “Oreo” technique of coding works. The equation is a MAC, so start out by writing the MAC
instruction. Then you can think about what register will be needed to be initialized to make it
work. Finally you can work on storing the results.

Note that the post-increments will step through our data array.

4-6 DSP54x - Programming FIR Filters

Store to Memory Mapped Registers

Store to Memory Mapped Registers

fir:

mat h:

done:

Store to Memory-Mapped Register

FIR.asm Yo = @gXp + 1% + X, + agXg
Coefficients Input Data
AR2 —» a0 AR3 —» X0
STM #a, AR2 al x1
STM #x, AR3 a2 X2
a3 X3
STM
MAC *ARZH *AR3+, A & Stores #value to the MMR early

in the pipeline to avoid latencies

& 2words, 2 cycles

What does accumulator A
contain before the first MAC?

DSP54.4-8

If you intend to use pointers you must initialize them. Duh.

DSP54x - Programming FIR Filters

Loads

Loads
FIR.asm Yo = @gXp + 1% + X, + agXg
fir:
I ¢ We must first initialize “A” using
a load instruction.
e[w [v]
STM #a, AR2 39-32 31-16 15-0
M #x, Al
il o (RS LD source, [leftshift,] dst
LD #0, A

+ source: constant or memory location

e leftshift: Ex: LD @, 16, A
- none
- T [5:0] (use TS)
- constant (-16 to +16)

done: ¢ dst: A B, T, DP, ASM

math: MAC *AR2+, *AR3+, A

. ¢ LD -loadsdst [15: 0] by default
How is the result stored? -may be 1 cEr 2 CyC]|esy

DSP54.4 -9

Since MAC merely accumulates to the A or B accumulator, any previous value would be
incorporated as well. So we need to initialize it by loading A with 0. This load would be a 8 bit
constant and the instruction would take a single cycle. The assembler will look at the immediate
value and decide on the correct interpretation of the LD mnemonic. Since a load clears the upper
bits, this will work perfectly.

Can you think how we might more efficiently initialize the accumulator?

4-8 DSP54x - Programming FIR Filters

Store Accumulator to Memory

Store Accumulator to Memory

Store Accumulator to Memory
FIR.asm Yo = X T @1X; 3%, + a3X;
fir:
& Memory is 16-bits wide. So you must
specify the low or high 16 bits:
ST e, AR2 el n [: |
’ 39-32 31-16 15-0
STM #x, AR3 _
LD 40, A STL/H source, [leftshift,] dst
¢ source: A B
math: MAC *AR2+, *AR3+, A ¢ |eftshift: Ex: STL B, -8, *AR5-
- none
STL A *(y) - ASM
o - constant (-16 to 15)
¢ dst: menory |ocation
How do we perform
4 MACs quickly’) STL/STH may be 1 or 2 cycles
' DSP54.4 - 10

Accumulators are 32 bits plus 8 guard bits. You must indicate which portion of the accumulator

you wish to store (with an optional shift value).

The ASM bit field may be used to perform a shift by a preset amount.

DSP54x - Programming FIR Filters

Repeat Single

Repeat Single

FIR.asm
fir:
STM #a, AR2
STM #x, AR3
LD #0, A
RPT #3
math: MAC *AR2+, *AR3+, A
STL A *(y)
done:
How do we copy the coefficients from
program ROM to data RAM?

Repeat Single

& Non-interruptible
¢ May be 1 or 2 cycles
& RPTZ clears the ACC before

Yo = @gXp + 1% + X, + agXg
Executes the next instruction
n+1 times:

1. RPT #n

2. RPT Smem

3. RPTZ src, #n

repeating - always 2 words, 2 cycles
These execute faster when using RPT:

WDM MWKD MACD MWMD
MWDK MACP WDP MWPD
READA WRI TA FI RS

DSP54.4 - 11

Repeat Single repeats the following instruction by the programmed number + 1. This is because

efficient loop control runs the 0™ iteration.

Using RPTZ would eliminate the need to use the “LD #0, A” instruction by zeroing A the first

time through.

The listed instruction execute faster when placed in a RPT loop since they require the hardware to

set up a tear down pointers internally.

DSP54x - Programming FIR Filters

Move Instructions

Move Instructions

FIR.asm
fir: STM #a, AR2
RPT #3
MPD #init_a, *AR2+
STM #a, AR2
STM #x, AR3
LD #0, A
RPT #3

math: MAC *AR2+, *AR3+, A
STL A *(y)

done:

If “fir” is a subroutine, what
else do we need to consider?

Move Instructions

Yo = @gXp + 1% + X, + agXg

location to another:

MPD #pnad,

init_a

& Copy values from one memory

Snem

a

PCH[1 | »

l— AR2

2

3

4

& PC=PC+1 every access
& Move instructions:

Prog <> Data MMR +> Data
MVPD, \WDP MVIVD, WDM
READA, VR TA

Data +* Data MMR** MMR
MVKD, MWDK, WDD | WIWM

DSP54.4 - 12

Move instructions allow program and data movement, but require program and processor
attention. The DMA transfers information without attention, but only moves between data
memories. Some C54x devices place additional restrictions on DMA movements.

DSP54x - Programming FIR Filters

Program Flow

Program Flow

Where is the return address
stored during the CALL?

FIR.asm
fir: STM #a, AR2
RPT #9
M/PD #init_a, *AR2+
STM #a, AR2
STM #x, AR3
LD #0, A
RPT #3
math: MAC *AR2+, *AR3+, A
STL A *(y)
done: RET

Program Flow

¢ Implementing a subroutine requires:

CALL fir 2w, 4c

RET 1w, 4c
& Other program flow instructions:

B next 2w, 4c

BACC src 1w, 6¢c

CALA src 1w, 6¢
¢ Conditional program flow:

BC next, cnd, | 2w, 3¢/5c

cCc next, cnd, 2w, 3c/5c

RC cnd, 1w, 3c¢/5¢

& Conditions: 3 max w/restrictions, ANDed

Al B:

EQ NEQ LEQ GEQ LT, GT, OV, NOV
TC, NTC, C, NC, Bl O, NBl O

Ex: CCfir, AEQ AOV

DSP54.4 - 13

RET is a return from a subroutine. We’ll see other variants on returns later.

Restrictions on conditions are that you can choose up to 3 from the top row or up to 2 from the
bottom, but you may not mix them. See the CPU and Peripherals User Guide for more detailed

information.

DSP54x - Programming FIR Filters

The Stack

The Stack

The Stack

File. ASM

size .set 100h

stack .usect "STK',size
.sect “code”
ST™M #st ack+si ze, SP

Link.CMD

MEMORY {
PAGE 1:
STKRAM or g=3F00h | en=0100h

}

SECTI ONS {
STK :>

}

STKRAM PAGE 1

& Setting up the stack:

1. Declare an uninitialized section
of the proper length.

2. Initialize stack pointer (SP) to
point to the “top of stack + 1”:
Data

1 }

3. Place STK in memory
- internal memory suggested

SP—+

¢ SP points to last used location
CALL: PC - *--SP
RET: *SP++ - PC

DSP54.4 - 14

The stack pointer is a pre-decrementing pointer which points to the last used location. Before the
stack pointer is used the first time it should point to one location higher (after) the stack. In
assembly, you must take care of stack initialization yourself. If you use C, the boot.asm routine

will do this for you.

DSP54x - Programming FIR Filters

Review

Review

Review

1. Name some characteristics of FIR filters?
2. What restrictions exist for a dual-operand MAC?

3. What does “ RPT 5 ” do?

4. Write the instruction to store A[23:8] to @y.

5. Which part of memory should the stack (SP) be located in
and why?

DSP54.4 - 15

4-14 DSP54x - Programming FIR Filters

Review

LAB4 — 16-TAP FIR

Objective

The objective of this lab is to write code to perform a 16-tap FIR (actually, it is a sum of products
because we don’t get any new data, but who’s asking?) as described in module 4. You have
already copied the coefficients (a values) into RAM, but we need to modify the code to use 16
values instead of 8. The input file, i n4. dat , contains the 16 input data values of the filter.

LABA4A - Programming an FIR filter

1. Set up a stack for CALL/ RET
15 2. Copy table[16] to a[16] using RPT/ MWPD
yn = a'n Xn 3. Import the data values: x[16]
4. Use RPT/ MACto solve for y

Time: 75 minutes

‘C5409
1Kx16 EPROM
FOOOh code 20hx16 SPRAM
t abl e[16] a[16]
Egﬁgﬂ vectors 1Kx16 DARAM
80h y
x[16]
SP

DSP54.4 - 17

DSP54x - Programming FIR Filters 4-15

LAB4-A Procedure

LAB4-A Procedure

Copy Files, Create Make File

1.

2.
3.

In CCS, open LAB3A. CVD and save it as LAB4A. CVD. Modify the file i/o and save your
work.

Open LAB3A. ASMand save it as LAB4A. ASM

Create a project called LAB4A and add the necessary files to it.

Edit LAB4A.CMD

4.

Change the routing of the “init” section (which contained table[8] before) from data space
(PAGE 1) to program space (PAGE 0). Place the “init” section into EPROM(along with your
code).

Allocate a section called “STK” for the stack and route it to DARAMalong with the input
samples (x) and results (y). Save your work.

Setup 16-TAP FIR and Stack — Write/Debug

6.

10.

11.

12.

13.

Edit LAB4A. ASM Change your copy statement to read:
X .copy “in4.dat”

You can open up and view the i n4. dat file if you wish, just to see what it contains.

Because we are now using a 16-tap FIR which requires 16 input values and 16 coefficients,
you need to change the size of the uninitialized data section for your coefficients (related to
label a) to 16 instead of 8. Also, remove the semi-colons (comments) on the last two sets of 4
coefficients in the initialized section for table. Now table contains 16 coefficients.

Allocate an uninitialized data section 100 words in length for the stack. Name the section
“STK”. You cannot name this section “stack’ because this name is reserved by the linker.
This might be a good time to use the .set directive (for example STKLEN .set 100). Make
sure your . usect uses a label such as BOS (for bottom of stack). This label will be used to
load the stack pointer.

Add the . T egs directive to the top of your code to facilitate using MMR names as
addresses. Anywhere before your code section is okay.

Load the stack pointer (SP) as described in class. Make sure your start label is on this
instruction. Otherwise, your reset vector and restart command will not be able to find the
beginning of your code.

Move the stop condition (her e: B her e) to the next instruction following the SP
initialization. You should now have start and here as sequential labels.

Build LAB4A. Simulate the code and verify that you now have 16 coefficients in table.
Open a memory window on address table. Do you see your coefficients? Hmmm. Why not?
Well, the default memory window shows DATA memory. Where did you map the section

DSP54x - Programming FIR Filters

LAB4-A Procedure

containing table in your linker command file? Oh, that’s right — it is now in PROGRAM
space. To verify if the values in table are correct, right-click on the memory window and
change the page to Pr ogr am

14. Also, verify thati n4. dat was loaded properly. Open a memory window starting at address
X. It might also help if you select “16- bi t Si gned | nt ” for the format.

Do you see some data? The first 4 values should be 1,2,3,4.

15. Single-step until you hit your stop condition (her e: B her e). Now, verify that your stack
pointer (SP) is set up correctly by opening a new memory window on SP in TI - Hex Format.
What location is SP pointing to? SP is now currently pointing to one location PAST the end
of the stack. SP is a pre-decrementing pointer, so the first CALL you make will write the
return address to one location before where SP is pointing now. Try changing the memory
window address to SP-6. This will now allow you to see return addresses stored on the stack
later on.

Optimize Copy Routine — Write/Debug

16. Edit LAB4A. ASM Between the start and here labels in your code, add an instruction to
CALL your copy routine.

17. Change your copy routine by doing the following:
* add a label copy pointing to the first instruction
e use single repeat and MVPD to copy 16 coefficients from table to a

* make sure you copy all 16 values and return back to the main routine.

18. Build LAB4A. Verify that your copy routine works and returns back to the main routine.
After the simulator starts:

* Hit <F8> to execute the STMinstruction and load the stack pointer (SP).
» Single step again — once — and watch the return address go onto the stack.
e Open aview memory window to display a.

» Single-step the copy routine and watch the coefficients copy into a. Notice that you can’t
single step inside the RPT loop. Did it work?

* When you single-step the RET instruction, watch the return address load itself into the
PC in the Register window. When you reach your main routine and everything is working
properly, move on to the next step.

FIR Routine — Write/Debug
19. Edit LAB4A. ASM Add a CALL to the code label fir after the CALL to copy.

20. Write your fir routine by doing the following:
» Write a dual-operand MAC instruction using the proper pointers

» Use arepeat single to accumulate 16 products. This might be a good opportunity to use
RPTZ.

DSP54x - Programming FIR Filters 4-17

LAB4-A Procedure

» Initialize the appropriate registers

» Store the result to y using absolute addressing (this should already be in your code). Make
sure you store the correct part of the accumulator.

e Return back to the main routine

21. Build LAB4A. Simulate and verify that your FIR (currently just a sum of products) works
correctly:

» Because everything should work up to the fir routine, type: go fir onthe command
line.

e Add awatch ony in hexadecimal.

» Single-step the MAC loop. The result in the accumulator and stored to y should be 14h.

22. Profile your fir routine by setting profile points at the label fir and on the store toy. Type
rest art, then Run, Halt and check your statistics. You did remember to enable the clock
and view the statistics window, right? You should get about 22 cycles, unless you forgot to
set the wait states to zero (oops...).

Optimize Your FIR Routine — Write/Debug

23. Is there a better way to initialize the accumulator instead of loading it with zero? Of course.
Why else would we be asking? Instead of loading it with zero or using RPTZ, initialize your
accumulator with the first product of the MAC and reduce the repeat count by one. Write it
and profile it. Did you get one less cycle?

24. If you’re done with LAB4A and you still have some time, move on to LAB4B...

4-18 DSP54x - Programming FIR Filters

LAB4-B Procedure

LAB4-B Procedure

1. What instructions should NOT be placed in a single repeat? Why?
2. Where should the stack be located and why?

3. What conditions can you combine in a conditional instruction?

4

Rewrite lab4a fir routine to use MACP

DSP54x - Programming FIR Filters 4-19

What Have We Missed?

What Have We Missed?

IR Filters

IIR Characteristics

+ Potentially unstable due to feedback path
¢ More computationally efficient than FIR

& Programmer must use care to ensure
proper operation

¢ Much better frequency performance
+ Best for frequency discrimination

DSP54.4 - 19

2"d Order IIR Filter

w(n)

X(n) \+ 7 /Q)—» y(n)
Xl —>

I

Feedback Path - Poles Forward Path - Zeros

Cascade higher order IIRs into multiple 2nd order filters DSP54.4 - 20

4-20 DSP54x - Programming FIR Filters

What Have We Missed?

IR Filter - Single Operand
LD #x0, DP
SSBX FRCT
IR PORTR 0000, x0 ¢ Scalar Math
LD @O0, 16, A - MAC uses T register
LD @1, T contents as 2nd operand
Feedback MAC @1, A - Must load T register
Section LD @2' T . .
' ¢ LTD isequivalent to:
MC @2 A - LT + DELAY
STH A, @O0
MPY @2, A ¢ DELAY
LTD @1 - copies Smem to next
higher memory location
Feed fwd ﬁg g(l) a 9 y
Section MAC @0, A
STH A @O0
BD IR
PORTW @0, 0001
DSP54.4 -21

More Multiply Instructions

Multiply Instructions
MPY Single or dual-operand multiply
MPYA Uses AH as multiplicand
MAC Single or dual-operand multiply/accumulate
MACA Uses AH as multiplicand
MAS Single or dual-operand multiply/subtract
MASA Uses AH as multiplicand
MACP Uses pmad as one multiplicand
MACD Copy data to next higher address
SQUR Square single operand or AH
SQURA/ S| Square single operand and accumulate/subtract

Each instruction supports multiple options for operands.
Refer to the User’s Guide for more information.
DSP54.4-23

DSP54x - Programming FIR Filters 4-21

What Have We Missed?

Adds and Subtracts

Add and Subtract Instructions

ADD Single or dual-operand add

ADDC Single operand add with carry

ADDS Add with sign-suppression

ADDM Add a constant to a memory location

SUB Single or dual-operand subtract

SUBB Single operand subtract with borrow

SUBS Subtract with sign-suppression

SUBC Conditional subtract (performs 1-bit divide)

Each instruction supports multiple options for operands.
Refer to the User’s Guide for more information.

DSP54.4 - 25

32 Bit Operations

32-bit Operations

DLD Loads 32-bit value from memory to ACC
DST Stores 32-bit value from ACC to memory
DADD Adds 32-bit value from memory to ACC
DSUB Subtracts 32-bit value from ACC to memory
DRSUB Reverses operands used in DSUB

- Affected by C16 bit in ST1 (splits ACC’s into two independent 16-bit registers)

& Double instructions use long-memory (Imem) operands
¢ Double store (DST) requires two cycles for dual E-bus activity

< Internal memory hardware is organized as 32-bit. Therefore, double
adds/subtracts/loads from any internal memory are sinale cycle.

& Default auto-increment step size is TWO

. . 5
How are long operands aligned in memory? DSPSA4. 27

4-22 DSP54x - Programming FIR Filters

What Have We Missed?

Aligning Long Operands

Aligning Long Operands

OFFh [1234 STM #100h, ARL A

100h [5566 | Words 16-bit | LD *ARL, A 0000 5566
101h [7788 | | (ngs32-bit | DLD *ARL+, A 5566 7788

¢ Long accesses assume address points to MSW
¢ LSW read from same address with LSB toggled.

1. Ptr=100h (MSW @100h, LSW @101h)
2. Ptr=101h (MSW @101h, LSW @100h)

You must EVEN-align long operands:
¢ Constants: (.int/.word, .long) Auto-aligns on “type” boundary

¢ Variables: (use even-align flag) .usect “Sect”,len, 1,1

DSP54.4 - 28

Far Operations

Using FAR Operations

FB Far Branch
FCALL Far Call
FRET Far Return
FBACC Far branch to location specified by ACC[23:0]
FCALA Far call to location specified by ACC[23:0]
FRETE Far return from ISR

23 16 15 0

[XPC | 16-bit addr |

& During a FCALL, the PC is placed on the stack followed by the XPC
& Other instructions do not modify the XPC

& The size of the XPC and consequently the address used in computed
operations (like FBACC) depends on the chosen device.

DSP54.4 - 30

DSP54x - Programming FIR Filters 4-23

What Have We Missed?

4-24 DSP54x - Programming FIR Filters

Solutions

Solutions

Review

. Name some characteristics of FIR filters?

unconditionally stable, linear phase possible, typically lots of taps

. What restrictions exist for a dual-operand MAC?

Use AR2-5 only, modifiers (none, +, -, +0%)

. What does “ RPT 5 ”do?

Repeats the next instruction [1 + (value located at the 5th word
from the current DP)]

. Write the instruction to store A[23:8] to @y.

STL A -8, @ -OR STH A 8, @
. Which part of memory should the stack (SP) be located in
and why?
Internal RAM, to decrease access time
DSP54.4 - 16
. egs
.def start
STKLEN . set 100
a .usect "coeffs",16,1
y .usect "result",1
BOs .usect "STK", STKLEN
.sect "init"
table .int 7FCh, 7FDh, 7FEh, 7FFh
.int 800h, 801h, 802h, 803h
.int 803h, 802h, 801h, 800h
.int 7FFH, 7FEH 7FDH, 7FCH
.sect "indata"
X .copy "in4. dat"
.sect "code"
start: ST™ #BOS+STKLEN, SP ; setup stack pointer
CALL copy
CALL fir
here: B here ;return
DSP54.4 - 32

DSP54x - Programming FIR Filters

Solutions

LAB4A. ASM- Solution (Continued)

copy: ST™M #a, ARL ; setup ARL
RPT #15 ;copy 16 val ues
MPD #tabl e, *ARL+
RET ;return
fir: STM #a, AR2 ;setup ARs for MAC
ST™M #x, AR3
MPY *AR2+, * AR3+, A ; 1st product
RPT #14 ;mult/acc 15 terms
MAC *AR2+, * AR3+, A
STL A *(y) ;store result
RET

DSP54.4 - 33
LAB4A. CMVD : Solution
/* file 1/0O and options */
vectors. obj
| ab4a. obj
-m | ab4a. map
-0 | abda. out
-e start
MEMORY {
PAGE 1: /* Data nenory */
SPRAM org = 00060h, |en = 00020h
DARAM org = 00080h, |en = 00400h
PAGE 0: /* Program nenory */
EPROM org = OF000h, |en = 00F80h
VECS: org = OFF80h, |en = 00080h
}
SECTI ONS
{ coeffs > SPRAM PAGE 1
resul t > DARAM PAGE 1
i ndata > DARAM PAGE 1
STK > DARAM PAGE 1
code > EPROM PAGE 0
init > EPROM PAGE 0
vectors > VECS PAGE 0
}
DSP54.4 - 34

4-26 DSP54x - Programming FIR Filters

Some Additional Information ...

Some Additional Information

Long Word Operations

|Example: Z;, =

Xap + Ya|

Standard Operations

Long Word Operations

LD @hi, 16, A DLD @hi, A
ADDS @lo, A DADD @hi, A
ADD @hi, 16, A DST A, @hi
ADDS @lo, A
STH A @hi
STL A @lo
Words =6 Words =3
Cycles=6 Cycles=4
DSP54.4 - 35
Bus Usage
Instruction Activity PB CB DB EB
Program Read AD
Program Write A D
Data Single Read AD
Data Dual Read AD AD

Data Long (32-bit) Read

A,D(ms)| ALD(ls)

Data Single Write AD
Data Read / Data Write AD AD
Dual Read / Coefficient Read | AD | AD AD
Peripheral Write AD
Peripheral Read* AD

| * MMRs only accessible via D Bus, MMR access as Ymem op yields bad data! .

DSP54.4 - 36

DSP54x - Programming FIR Filters

Some Additional Information ...

4-28 DSP54x - Programming FIR Filters

Numerical Issues

Introduction

Understanding numerical issues is fundamental to getting the best performance from a fixed-point
processor. A fixed-point processor generally operates without the benefit of floating point
numeric representation, so the programmer must bear in mind overflow during calculations.

Objectives

Learning Objectives

¢ Compare/Contrast integers vs. fractions

¢ Use methods for handling multiplicative
and accumulative overflow

¢ Discuss other important instructions that
handle various numeric types

DSP54.5 -2

DSP54x - Numerical Issues 5-1

Module Topics

Module Topics

N R VT 5-1|
MOGUIE TOPICS ... 5-2|
I N T o e o 5-3]
Eractional MUIIDHCAIONccououivivieiveiieceiiiecsetseseteesees e st esesetstees st seseeesstenssssesteessseesesesseensssenees 5-4|
TThe Fractional IMOTEL..............c.ceiieeieee et ettt e seetereseateeneerereneseereneeeenenes 5-5|
Handling ACCUMUIALIVE OVEITIOWc.ccuvoveevieiieieieeiieceisesiecissseessessesensessesensessesessessessssessessssessnssssessesnes 5-6|

e N Y Ao v 5-8
W g
Eit [R R T 5-8]
0018AN OPBIALIONS. ...ttt ettt et et e et ent et eabesbeabesbeaneaneeneenreseea 5-9
Bift aNd ROTAIE OPEBIATIONScc.veiivieceieeiiieee ettt et e e ete e e beeereesabeeenreestreessreessreesnreen 5-9
50ME Other Math OPEIatIONS .. .iuiiiiiiiiiiii ittt se et e e e e st s esteesteeseesseesreesbeebeesseaseesseesseeseanseass 5-10
REVIBW ... 5-11|
Yo VT 5-12|
@%e Additional INFOrMAtIONooviiiiiic e 5-13
L T 5-13
LONg MUIIPIES. .o 5-14
SING EXPONENTSe.veeieeieeieeeieeeiesteetesteetaesteseetestestesteaaeeseeneeseeseessesteasesseasaeseeseenseseessessesneaseensensessens 5-14

DSP54x - Numerical Issues

Integer Multiplication

Integer Multiplication

Integer Multiplication

E value

X @ times value

yields double size result

* 1*1>1

¢ Which digit should be stored - the upper (8) or the
lower (1)?
- Both must be kept (uses additional resources)
- Also, the results cannot be used recursively

Which numerical model solves this problem?

DSP54.5 -3

DSP54x - Numerical Issues 5-3

Fractional Multiplication

Fractional Multiplication

Fractional Multiplication

[9] value

X @ times value

) yields double size result

. result to be stored

e F*F<1
Which digit should be stored?

*

- No, because the output is as exact as the input

Let’s look at the fractional model in action...

¢ |Ifonly .8 is stored, have we lost important information?

¢ The accumulator is double-wide to maintain interim results

DSP545 -4

We often forget that the accuracy of a calculation can be no greater than the accuracy of its
inputs. In the example above, .9 is accurate to tenths. The doublewide result though, contains
information precise t0100ths, which we know nothing about. The result that we will be storing, .8

represents the most accurate result possible.

DSP54x - Numerical Issues

The Fractional Model

The Fractional Model

Fractional Model

i Fractional model | -1

x 1101
00000100 ¢ Range? 1000b (-1) < F< 0111b (~1)
0000000
000100 & Input values? (1/2)*(-3/8)
11100 & Result? (-3/16)
11110100
ACC shows effect of sign extension:
scc[mgiotoo] * ’
SSBX SXM ;sign-extension mode ON
rem

RSBX SXM ;sign-extension mode OFF

& What value is shown in the accumulator?
& Where is the binary point? Q types...
& How wide is memory?

Which 4 bits should be stored to memory?

DSP54.5-5

Q refers to quantization. Even when multiplying decimal numbers, it is a similar process to
determine where to put the radix point. Count the total number of places to the right of the radix
point in the multiplicands and place the radix point there in the result.

Eliminating the Redundant Sign Bit

0100 Fractional model | -1

x 1101

00000100 & Store 1. 110 (-1/4) to memory
0000000 . . o
?
000100 & How is the redundant sign bit eliminated?
11100 __ STH A, 1, *AR0O ; MANUAL
11110100 o
Acc [1111 0100 SSBX FRCT ; AUTO
= STH A, *ARO
em 3110

& FRCT shifts multiply results left by 1

« The tools do not support fractions:
¢ Tostore0.707use: | a0 .int 32768*707/ 1000
* 32767 =7FFFh =~1
| F*F| < 1, butwhat about F + F?

DSP54.5-6

Redundant sign bits are not specific to TI. Anytime you multiply two signed binary number
together you will produce two sign bits. The FRCT mode, when selected will shift the multiplier
result left by one position. If you happen to need to calculate an integer value like an address
while FRCT mode is on, your answer will be twice what you expect.

DSP54x - Numerical Issues 5-5

Handling Accumulative Overflow

Handling Accumulative Overflow

39 32 31

Handling Accumulative Overflow
¢ F +F could be > 1, so how is this handled?

1. Use Guard Bits (allow at least 128 signed summations):

16 15 0

A or B|G.Jard| Hi gh

Low ‘

Guard bits increase dynamic range from +/-1 to +/-128

2. In a non-gain system temporary overflow is permitted.
The output is guaranteed to remain bounded by the input.

3. Ina system with gain, the output is not guaranteed
to remain bounded (i.e. result is larger than 32-bits).

How do you handle a result larger than 32-bits?

DSP54.5-7

How will you write a value larger than 1 or smaller than —1 to a DAC that only understands
fractions? The answer is that you can’t, anything greater than 1 is 1 and anything smaller than -1

is —1. This process is called saturation.

Saturation
Two saturation methods exist for A/B:

& Manual: use the SAT instruction (saturates A or B)
& Auto: saturate on store (saturates stored value only)

Before After
VAN +1
\ \ SAT A ; MANUAL
N/ 0 AN / STH A, * ARL
N -1 _OR-
LD #0, DP : AUTO

|71 2345 6789|:>|00 7FFF FFFF| ORM #1, @VET + SST=1

| F8 1234 5678) |FF 8000 0000| STH A *ARD
PMST = Processor Mode Status Reg

& SAT will set the overflow bit (OVA or OVB) if saturation occurs
& SST does not affect Ovx or accumulator contents

What if I don’t want to use the guard bits?

DSP54.5-8

DSP54x - Numerical Issues

Handling Accumulative Overflow

Overflow Mode

SSBX OVM ;turn overflow mode ON

¢ With OVM=1, computations will not exceed 32 bits
and are saturated if overflow occurs.

& STOgya/0ve (Overflow bits for A and B) are set
and latched if overflow occurs

& ST1lgym =0 at reset

How do we recover 1/2 bit of accuracy in our result?

DSP54.5-9

Some algorithms require precisely 32 bits for their execution. Turning on overflow mode
effectively turns off the guard bits.

Rounding

3| How do you round this amount to the nearest $?
0| -Add$0.50
3

- Partial result
- Truncate result (to nearest $)

o U1 U1

B | BB
NNYE

& The following instructions can perform rounding
(8000h added to accumulator):

MR | MAS[R| | LDIR] | R\D
MACAIR] | MASA[R] | MPY[R]

& Example: RPTZ A #98
WAL AR TARRR A Typically, only the last
MACR *AR2, *AR3, A operation is rounded
STH A *(y)

DSP54.5 - 10

If you had used MACR in the repeat loop above, you would have added 50 to the final result.

DSP54x - Numerical Issues 5-7

What's Missing?

What's Missing?

What’s Missing?

v"How do 1 test and compare bits?
v'What boolean operations can | perform?

v'What shift/rotate operations exist?

¢ What other useful math operations could I use?

DSP54.5 - 17

Bit Compare and Test

Bit Compare and Test

CWPM Smem #K If Smem =#K, TC=1

BI TF Smem #K If Smem bitfield specified by #K are 1’s, TC =1
BIT Xmem bi t If Xmem bit=1, TC =1

BITT Smem If Smem bit specifiedby T=1, TC =1

& Using the BI T/ BI TT Instructions:

BIT mem Bit_code 15 11 0 «—Bit #
LD #Bit_code, T mem| [.-[a] -] | _
0 4 15 «—Bi t _code
BITT mem
« Confusing? Try: Tc[in]
Macro Substitution
BITM .nmacro nem bit_no BIT5 .set 15-5
BI T nmem 15-bit_no -OR- BIT @, Bl T5
.endm BC oops, TC

Use: BITM @&, 5

DSP54.5 - 12

CMPM compares a location in memory (Smem) to a constant and sets the test condition (TC) bit
if they are equal.

BITF tests a 1 to 16 bits of Smem specified by a constant. If they are all ones, TC is set.
BIT writes the value of Smem:bit to the TC.

BITT writes the value of Smem:bit postion specified by the T register to the TC.

5-8 DSP54x - Numerical Issues

What's Missing?

Boolean Operations

Boolean Operations

Cycles
src = src (op) Smem 1
AND/ OR/ XOR dst = dst (op) (src << Shift) 2
dst = src (op) (#K << Shift) 2
ANDM ORM XORM | Smem = Smem (op) #K 2

& srcand dst: Aor B

accumulators

¢ ANDM/ORM/XORM perform a read - modify - write

DSP54.5 - 14

ANDM,ORM and XORM work directly to memory.

Shift and Rotate Operations

Shift and Rotate Operations

SFTA src, SH FT, [dst]] «{cl—{39 32}{a1 oo
+SHIFT = left Sx-{39 32} {31 o-[Ccl>
SFTL src, SHFT, [dst] 31 oo
+SHIFT = left o) oo] L oj-{c}-
[RoLTC sre | 31 0l {7C
‘R(l src 31 OH
Eme folie e

3

Rotate operations move 1 bit position each iteration

DSP545 - 16

DSP54x - Numerical Issues

What's Missing?

Some Other Math Operations ...

Other Math Operations

LDU Load Unsigned
MPYU Multiply (Unsigned * Unsigned)
MACSU MAC (Signed * Unsigned)
ABS Absolute Value
NEG 2’s complement
CWVPL 1’s complement
EXP T = (number of leading 1’s or 0’s) - 8
NORM dst=src<<T
PMSTgyuc| 1f OVM FRCT/ SMUL =1,
-1*-1 saturated to 00.7FFFFFFFh

Unsigned operations are useful for > 16-bit multiplication
EXP/NORM are useful in floating point calculations DSPS45 - 18

SMUL is also known as GSM mode.

5-10 DSP54x - Numerical Issues

Review

Review

Review

1. How is multiplicative overflow prevented?

2. How is accumulative overflow handled?

3. What processor bits should be set up for signed fractional
math?

4. How does the processor round a number?

5. Do boolean operations only work on the accumulators?

6. What does “bit @y, 5” do?

DSP545 - 19

DSP54x - Numerical Issues 5-11

Solutions

Solutions

Review

1. How is multiplicative overflow prevented?
By using fractional math

2. How is accumulative overflow handled?
Saturation: SAT or SST(bit) OR using a non-gain system OR OVM=1
3. What processor bits should be set up for signed fractional
math?
SXM=1 to preserve sign bit, FRCT=1 to eliminate redundant sign bit,
OVM=0 to allow use of guard bits
4. How does the processor round a number?
Adds 8000h to accumulator after operation is performed.
5. Do boolean operations only work on the accumulators?
No. ANDM/ORM/XORM operate on memory directly
6. What does “bit @y, 5” do?
Copies bit 10 from the value at address DP:@y into the TC bit

DSP545 - 20

5-12 DSP54x - Numerical Issues

Some Additional Information ...

Some Additional Information ...

Division

Division

& The ‘C54x does not have a single cycle 16-bit divide instruction
e Divide is a rare function in DSP
e Division hardware is expensive

& The ‘C54x does have a single cycle 1-bit divide instruction: conditional
subtract or SUBC

e Preceded by RPT #15, a 16-bit divide is performed
e Is much faster than without SUBC

& The SUBC process operates only on unsigned operands, thus software
must:

e Compare the signs of the input operands
> If they are alike, plan a positive quotient
> If they differ, plan to negate (NEG) the quotient
e Strip the signs of the inputs
e Perform the unsigned division
e Attach the proper sign based on the comparison of the inputs

DSP54.5 - 22
Division Routine
LD @len, 16, A
MPYA @um B = num*den (tells sign)
ABS A Strip sign of denominator
STH A, @en
LD @um A
ABS A Strip sign of numerator
RPT #15 16 iterations
SUBC @len, A 1-bit divide
XC 1, BLT If result needs to be negative
NEG A Invert sign
STL A, @uot Store negative result
DSP54.5 - 23

DSP54x - Numerical Issues 5-13

Some Additional Information ...

Long Multiplies

Long Multiply Routine
STM #X0, AR2
ST™M #Y0, AR3
LD *AR2, T T=x0
MPYU *AR3+, A A = ux0*uy0
STL A @Y w0 = ux0*uy0
LD A -16, A A=A>>16
MACSU *AR2+, *AR3-, A A +=y1*ux0
MACSU *AR3+, *AR2, A A +=x1*uy0
STL A @\ wl=A
LD A -16, A A=A>>16
MAC *AR2, *AR3, A A +=x1*yl
STL A @V w2 = A-lo
STH A @B w3 = A-hi

DSP54.5 - 24

Using Exponen

ts

Exponent Encoder

¢ One cycle exponent ([-8, +31] range) computation
¢ Resultin T register as 2's complement value

EXPONENT
ENCODER
(—1

6 T
exp A ;1 cycle for exp
norm A ;1 cycle normalize
-8 0 16 31

¢ Note: NORMshould not directly follow EXP

DSP54.5 - 25

DSP54x - Numerical Issues

Some Additional Information ...

Floating Point Usage

Full Floating Point Block Floating Point
el mil e mlL
e2 2 n2
e3 s n8

LD @1, T LD @, T

LD @, TS, A LD @, TS, A

LD @2, T ADD @2, TS, A

ADD @2, TS, A ADD @8, TS, A

LD @3, T

ADD @8, TS, A

2*N RAM & Cycl es

N+1 RAM & Cycl es

DSP54.5 - 26

DSP54x - Numerical Issues

Some Additional Information ...

5-16 DSP54x - Numerical Issues

Solving a Block FIR Filter

Introduction

We've already taken a look at the heart of a FIR filter; multiply-accumulates. Now let's extend
that concept to include a large block of data. Of primary importance here will be how to manage
my pointers and how to efficiently repeat a block of code.

Learning Objectives

Learning Objectives

¢ Update pointers using MAR and Circular
Addressing
¢ Use RPTB to repeat a block of code

¢ Describe how to nest repeat blocks
& Learn how to use parallel operations

DSP54.6 - 2

DSP54x - Solving a Block FIR Filter 6-1

Module Topics

Module Topics

[SOIVING @ BIOCK FIR FIITEYcvcvivveeieeeicteeeeeeeeeeeeeeeeee et e e aeeene e e eneseenneteneessnennnena 6-1|
MOAUIE TOPICS ... 6-2|
YT A LR T 6-3|
=T 6-4|
A A e e L 6-5|
S BT e e 6-6 |
N R e R Y TR U 6-7

bingle Sample FIR ..o 6-7
N R o T T 6-8
LA IS UCTIONS. .. vttt et et e e et e eebeesseesseensesseesbeesbaessesssesbaesraesreereenseanes 6-8
e = L= 6-9]
S 6-9|
LABB-A PrOCEOUIE ..ot eeesessesesssseesssssssessssssssenssasssnssesssnssesseesesesesssssssssssssssassesssaes 6-10
FOEX Files, Make Project and Edit LAB6A.CMD........ PO PPV POT POV PO PO RO POTFRPTPOTPPPTROII 6-10
Fractional Math, Repeat Block, Output Buffer — Write/Debugccccccevvveviiviivcicieicieccseieaenns 6-10
Circular Addressing, Pointer Wrap — WIte/DEDUGc..ccuvecveiviiniiiiieiieieececcecieeieeteeeteeeveaveennan 6-11
5raph YOUP RESUIS. ..ottt s e e e area 6-11]
Erofile Y OUE COUR ..ttt et e bt e e et e e st e et esteesbeebeesseesseesseessestsebeebeesreesseansesseeseenseenes 6-13
Y Yo S T o Lo [V T 6-14|
BenNCAMArKING the LADSc.covivieieiieeeeeseeeseteseeeeeesees et sessetssesensesennsesesensesesensesesssesesnsesesssesesas 6-15|
IV 6-16]

6 -2 DSP54x - Solving a Block FIR Filter

Block FIR Filters

Block FIR Filters

2 3
Ym =2 @n* Xnim
m=0

n=u

& Start with the basic FIR equation

¢ Block FIR uses any length block
of data

& With 6 inputs and 4 taps, how many
outputs can you generate? m=3

& n =#taps (i.e. number of products)
m = (#inputs - #taps) + 1

Writing Code for a Block FIR

Coefficients Input Data
AR2—>| a0 x0
al x1
a2 | AR3—>| x2
a3 X3
x4
x5

How should the pointers

update between y0, y1, y2?

y0 =a0x0 + alxl + a2x2 + a3x3
yl=a0x1 + alx2 + a2x3 + a3x4
y2 =a0x2 + alx3+ a2x4 + a3x5

AR2 = #a0; AR3 = AR3 - #3
AR2 = #a0; AR3 = AR3 - #3

Block FIR involves: Many multiply accumulates + some pointer updates
Let’s review the standard FIR code...

DSP54.6 - 3

Obviously, this concept can be extended to any length block. You might wonder what happens
when the filter reaches the end of the block. We’ll cover that later ...

fir: STM #a, AR2

STM #y, ARL

STM #x, AR3

LD #0, A

done: RET
How do we repeat this block of code?

FIR Code - Review

Set up for signed fractions
RPT #3 (not shown)

M/PD #init a *AR2+ Copy Coefficients

STM #a, AR2 Pointer Setup

RPT #3 FIR Code
meth: MAC AR+ *AR3+, A | o Generates asingle output

- & Block FIR requires multiple outputs
STH A *ARl+ & Using fractions, so store AH

DSP54.6 - 4

Is this the most efficiently to initialize the A. accumulator?

DSP54x - Solving a Block FIR Filter

Repeat Block

Repeat Block

Repeat Block

fir: STM #a, AR2

RPT #3 RPTB end_address
M/PD #init a, *AR2+
STM #2, BRC & RSA: Start address
= next line of code
STM #y, ARL ¢ REA: El’_ld a_ddress _ _
STM #a, ARR = specified in RPTB instruction
STM #x, AR3 ¢ BRC: Count-1
RPTB done-1 .
i #0, A ¢ RPTB: 2 words, 4 cycles
RPT #3 < Interruptible

math: MAC *AR2+, *AR3+, A

; “‘done-1"" ensures a complete fetch
STH A, *AR1+ : of a multi-word final instruction

done: RET
How do we manage the pointer updates? DSP54.6 - 5

A RPTB (repeat block) may contain any length block up to 64 K. in length.

6 -4 DSP54x - Solving a Block FIR Filter

Wrapping the Pointers

Wrapping the Pointers

Pointer Wrap Using MAR

Coefficients Input Data
a0 x0
al | ARB—>| x1
a2 X2
a3 x3
AR2 > x4
x5

¢ Towrap AR3, we need to subtract 3
from the current value. But how?

& MAR(Modify AR) allows all pointer

updates shown in Module 3,

for example:

 MAR * AR+
MR *+ARN(#I K)

;ARNn = ARn +1
;modify ARn by #lk

& How should we wrap AR2?

fir: STM #a, AR2
RPT #3
M/PD #init a, *AR2+
STM #2, BRC
STM #y, ARL
STM #a, AR2
STM #x, AR3
RPTB done-1
LD #0, A
RPT #3
math: MAC *AR2+, *AR3+, A
‘ MAR *+AR3(#- 3)
STH A *ARl+
done: RET
Let’s look at a method for efficiently wrapping AR2...

DSP54.6 - 6

MAR allows you to modify the address register by +1 or by a long constant. AR2 0 always starts
back at a0, so its modification can be little different.

DSP54x - Solving a Block FIR Filter

Circular Addressing

Circular Addressing

Circular Addressing

fir: STM #a, AR2 Coefficients Input Data
RPT #3 AR2 —>| a0 x0
MPD #init a,*AR2+ al | ARB—| x1
STM #2, BRC a2 X2
STM #4, BK 23 3
STM #1, ARO 4
STM #y, ARL <5
STM #a, AR2
STM #x, AR3 & Circular addressing is modulo
RPTB done-1 « First, define buffer size using BK
LD #0, A & % modifier indicates circular
RPT #3 - available for all ARs
‘math: MAC *AR2+0% *AR3+, A ¢ Whywas “+0%” used?
MAR *+AR3(#- 3) - & Because we are forced to use +0%,
STH A *ARL+ ; how do we make it look like +%6?
done: RET & Now,when AR2 =#a3 , AR2+1 =#a0
Circular buffers need to be aligned in memory... DSP54.6-7

Always remember to properly align your circular buffers.

Circular Buffer Alignment

fir: STM #a, AR2 Coefficients .
<«align 8
RPT #3 a0
M/PD #init a,*AR2+ al
STM #2, BRC a2
STM #4, BK a3
STM #1, ARO

& Circular Buffers must be aligned

STM #y, ARL on the next 2*n boundary greater
STM #a, AR2 than BK.
STM #x, AR3 ¢ On what boundary should a block
- - A
o done-1 e
LD #0, A . - ! -
- & How? Use al i gn argument in the
RPT #3 ! linker command file:
mat h: MAC *AR2+0% * AR3+, A SECTIONS{
MAR *+AR3(#- 3) | coeff :> DARAM align(8) PAGE 1
STH A *ARl+ | . i
done: RET & The linker will attempt to

fill unused memory locations
DSP54.6 - 8

6 -6 DSP54x - Solving a Block FIR Filter

What Have We Missed?

What Have We Missed?

What have we missed?

v Howcan I doa single sample FIR?
v How do I nest repeat operations?

& How can | optimize code using
parallel instructions?

DSP54.6 - 13

Single Sample FIR

fir: STM
ST™M
STM
ST™M
STM

| oop: MPY
VAC
VAC
MAC
STH

B

#4, BK

#1, ARO

#y, ARL

#a, AR2

#x, AR3

* AR2+0% * AR3+0% A
* AR2+0% * AR3+0% A
* AR2+0% * AR3+0% A
* AR2+0% * AR3, A

A *AR3

PORTW * AR3, 0000h
PCORTR 0000h, *AR3

| oop

Single Sample (Minimum Latency) FIR

Coefficients Input Data
AR2 —| a0 x0
al x1
a2 AR3 —>| x2
a3 Xxn

+ Now the input data and coefficient

*

buffers are the same size
After the last MAC the pointers are:

& x3is the oldest sample and we

won’t need it next pass
- use it as a temporary location for y

Write result out to a port

Bring in a new datum

Where will AR3 be next pass?
Make sure both buffers are aligned

DSP54.6 - 10

PORTR (port read) and PORTW (port write) operate from a memory location to a port address.
In the code above, the oldest data point will not be used again so we can use this memory location
as temporary storage. Obviously your code would not look quite like this, since this code will eat

100% of processor bandwidth.

DSP54x - Solving a Block FIR Filter

What Have We Missed?

Nesting Repeat Loops

; RPTB outer-1

STM #Count -1, ARG

Nesting Repeat Loops Using BANZ

; STM #out er _count, BRC

| oop:

RPTB i nner-1

i nner:

PSHM BRC, RSA, REA
STM #i nner _count , BRC -

; POPM REA, RSA, BRC

outer:

BANZ | oop, * AR6-

Last Quter Instr

¢ To nest repeat blocks requires
saving/restoring BRC, RSA, REA

& Cost: 6 cycles per outer loop

¢ Better: Use BANZ for outside loop
BANZ pnmd, *ARn-
2 words, 4 cycles
¢ BANZ: Branch if ARn Not Zero

¢ Analysis: BANZ saves 2 cycles
per outer loop compared to nesting
repeat blocks

DSP54.6 - 12

So, while you can nest repeat blocks, it is usually more efficient to use the BANZ instruction.

Parallel Instructions

LD || MAOR]
LD || MAS[R]
ST || MPY
ST || MAOR]
ST || MAS[R]
ST || ADD
ST || suB
ST || LD

Example :Z = X +Y and F=D+ E

Parallel Instructions

LD
ADD
ST
LD
ADD
STH

& Parallel load/store instructions use D Bus and E Bus in same cycle.
& Parallel ops focus on high accumulator.
& Store in parallel ops are offset by ASM value.

& What is the error in the above example?

*ARS5+, 16, A

* AR5+, 16, A X
A * ARS 2
* ARG+, B ARG 1D
* ARG+, 16, B =
B, * ARG

DSP54.6 - 14

If both parts of a ST || LD instruction pointed to the same memory location the processor would
operate as expected, swapping the accumulator and memory values.

DSP54x - Solving a Block FIR Filter

What Have We Missed?

LAB6 — Block FIR

Objective

The objective of this lab is to write code to perform a block FIR. The input file, i n6. dat ,
contains the input values of the filter (which you plotted in LAB2A). The input file represents the
summation of a high frequency and a low frequency sine wave. The objective of the block FIR is
to filter out the high frequency component and pass only the low frequency wave. This lab will
incorporate the numerical methods you learned in the previous module. The output should look
like a low-frequency sine wave. If not, hmmm, debugging is in your future...

LABGA - Block FIR
1. Set up the bits required to use fractional math
184 _ R 2. Create an output buffer of results for y
ym = & an * Xn+m 3. Use block repeat to execute the block FIR
m=0 4. Convert the access of the coefficient
array, a[16], to use circular addressing
5. Graph resulting file to verify correct result
6. Track your profiling on the following slide
Time: 75 minutes
EPROM ‘C5409
FOOOh code 20hx16 SPRAM 1Kx16 DARAM
t abl e[16] =M a[16] 80h [*"y[200]
x[200]
EEIEIQE vectors =P
DSP54.6 - 15

DSP54x - Solving a Block FIR Filter 6-9

LABG-A Procedure

LABG-A Procedure

Copy Files, Make Project and Edit LAB6A.CMD

1.

2.

Copy files from the last lab to LAB6A, make a new project called LAB6A and add the
appropriate files to it.

Edit LAB6A. CVD and modify i/o as necessary.

Fractional Math, Repeat Block, Output Buffer —
Write/Debug

1.
2.

Edit LAB6A. ASM

We will be creating an output buffer for the results. So, change the uninitialized data section
for your results (y) to a length of 200 instead of 1.

Change your . copy statement toi n6. dat rather thani n4. dat .

Set up the proper numerical bits to use fractional math. Make sure the following conditions
exist in the main routine just before the CALL to fir:

e Overflow Mode is OFF
* Fractional Mode is ON
» Sign-extension is ON

» Setthe SST bit in the PMST register to automatically saturate on store. If you use the
CRMuinstruction to set this bit, remember that ORMmeans “OR to Memory”, not “OR to
Memory-mapped register”. This implies that you will need to set the DP to the proper
page. Which data page is PMST located in? Can’t remember the format for the ORM
instruction? Highlight “ORM’ then hit the <F1> key.

Set up a repeat block to repeat the 16-TAP FIR code (including the store to y) the proper
number of times. If you have 200 input values, how many output values should be generated?
Use this value to determine how to initialize the block repeat counter. You will need a label
on the return instruction to facilitate the block repeat.

Look at your store to y instruction. This instruction will store all results to ONE memory
location. Change this instruction to create an array that contains ALL of the results.

Look at the store instruction again. Keeping in mind that you are using fractions, which half
of the accumulator contains the correct result? Modify the store command if necessary.

Build LABGA.

When the simulation opens, press <F8> until the CALL copy instruction is highlighted.
Now, press the St ep Over button on the vertical tool bar. This will execute the copy
routine and return to the next instruction.

Open memory windows and verify that the coefficients (a) and data values (x) are correct.

You should see the coefficient table in a and the input data values in x.

DSP54x - Solving a Block FIR Filter

LABG-A Procedure

9.

10.

Open a memory window to view the result array buffer (y).

Single step your code through the store instruction in the fir routine. The first value stored to
y should be E404h. If everything looks like it is operating correctly, move on to the next
step.

Circular Addressing, Pointer Wrap — Write/Debug

11.

12.

13.

14.

15.

16.

17.

Edit LAB6A. ASM To wrap the coefficient pointer (pointing to a) automatically, implement
circular addressing. Remember, +%is not a supported modifier in a dual-operand MAC
instruction. What other registers need to be set up to make this work?

Circular buffers must be aligned. Make sure the section containing the coefficient table (a) is
aligned properly in your linker command file. What boundary should an array of 16 values be
aligned on?

The pointer to the input values (x) must also be wrapped back to the proper position. Write an
instruction to perform this function just before the store to y. To determine the amount to
subtract from the pointer, think about where the pointer is after the last MAC instruction
executed and where the pointer needs to be for the next iteration of the block repeat. You may
need to reference Module 3 to see the available modifiers.

Build LAB6A. When the simulator opens, set a breakpoint on the store instruction in the fir
routine. Click the Run button on the vertical toolbar to run to the breakpoint. At this point, the
first store to y has NOT been done yet, but we can see if the pointer wraps have worked

properly.

Look at the address contained in the pointer to a. Is it pointing to the first value in a? Now,
look at the address contained in the pointer to x. Is it pointing to the 2" value in the data
table? If not, debug the problem and re-verify.

Click the Run button to run through the block repeat again. This will write the first value to y.
Look at the pointers to a and x again and verify that they have updated properly.

Remove the breakpoint on the store instruction and click Run. This will run the block FIR
routine to its completion. After a few seconds, click Hal t to halt at the stop condition.

Graph Your Results

18.

Let’s take a look again at the input to our filter. On the menu bar click:
View - G aph = Tine/ Frequency
Change the following fields:

Graph Title: Input data

Start Address: X

Acquisition Buffer Size: 200

Display Data Size: 200

DSP Data Type: 16-bit signed integer
Q Value: 15

Autoscale: Off

Maximum Y-value: 1

DSP54x - Solving a Block FIR Filter 6-11

LABG-A Procedure

19.

20.

21.

22.

23.

24,

25.

26.

217.

Move the window to a convenient spot on your display.

Let’s set up a display of the output with the following properties:

Graph Title: Filtered Output
Start Address: y

Acquisition Buffer Size: 185

Display Data Size: 185

DSP Data Type: 16-bit signed integer
Q Value: 15

Autoscale: Off

Maximum Y-value: 1

Explain why the result waveform amplitude is +/- %%.

Sometimes you might like to actually view your program in action. Additionally, you may
not have a complete buffer of the information available to be graphed. CCS allows you to do
this using a feature called “animation”. Since this feature stops the program to transfer data,
real-time performance may be impacted.

Let’s wipe out our previous results by filling our result memory with zeros. From the menu
bar click:

Edit > Menory > Fill .
And change the following fields:

Address: y
Length: 185

Click OK. Check your memory display window to verify the fill has occurred.
Right click on your filtered output graph and click on Gl ear Di spl ay.

In LAB6A. ASMsource window, click on the instruction that stores your result. On the
vertical toolbar click on the Toggl e Pr obe- poi nt button
On the menu bar, click:

Debug - Probe-points

and highlight the only probe point listed in the bottom window. Take care not to uncheck the
box on the left. Change the following fields:

Probe type: Probe on Data Write at Location
Connect To: Filtered Output

Note the different types of probes you can use and that you can use expressions. Click Add,
then delete the probe point with no connection. Click OK.

Restart your project. On the vertical toolbar, click the Ani mat e button and watch the display
draw as the program runs.

DSP54x - Solving a Block FIR Filter

LABG-A Procedure

28. Probe points can also run on hardware targets, but RTDX has less impact on real-time
operation. Probe points may also be used to connect data i/o files to your program. Look in
the online help and see how this is done.

Profile Your Code

29. Once you have a clean graph, it is time to profile your code. Remove the Probe point, then set
the 1% profile-point on the CALL f i r instruction and the 2™ profile-point on the stop
condition. Now, restart and profile your code. Write down your time on the sheet provided at
the end of this module. It should be about 11470 cycles.

30. Does 11470 seem right? Well, it IS correct, but what did you expect it to be? Estimate the
cycle count for the RPTB loop by counting up the cycles inside the loop and multiplying by
the RPTB loop count. Write down your estimate on the sheet provided.

31. Why was the cycle count so much higher than your estimate? Did you forget to run “Ows”?

32. In areal application, you need to setup the external wait state generator to the appropriate
values based on your system requirements. However, because we are using the simulator,
let’s simply assume that everything external is zero-wait states. At the beginning of
LAB6A. ASM type in the following instruction:

STM #0, SWABR
Issues associated with wait states and memory interfacing will be covered in later modules.

33. Build and simulate your code again. Now, profile your f i r routine. What was your cycle
count? Write it down on the sheet provided. The cycle count should be around 3700 cycles.

34. One last note: open up LAB6A. ASM Note the values of the coefficients. Notice anything
interesting? If you add all 16 coefficients together, they equal almost one (on a fractional
scale). What does this imply?

It implies that the filter has a gain less than one. Therefore, saturation is not required, because
the filter is guaranteed (by design) to not overflow because the coefficients added together are
less than unity AND every input to the filter is less unity — no gain. Hey, this stuff really
works ©.

35. If you’re done with LABG6A and you still have some time, move on to LAB6B...

DSP54x - Solving a Block FIR Filter 6-13

LABG6-B Procedure

LABG6-B Procedure

If you make any changes to LAB6A. ASMor LAB6A. CVD, first copy the files to
LAB6B. ASMand LAB6B. CVD. Answers to the following questions are either contained in
the on-line documentation or via your instructor.

1. Negate all 16 coefficients. In other words, use the 2’s complement of all of the coefficients.
Re-run your code. What changed and why?

2. Change your repeat block to use BANZ. Profile your code. Any difference?

3. How do you terminate a block repeat? Can you perform a branch or call inside a block
repeat? Hmmm. Look at the BRAF bit. What does it do? Do you think this might assist you
in terminating a block repeat?

4. Let’s make the entire code interruptible. Replace repeat single with a repeat block and nest
the repeat blocks.

5. Look at your code. Can you take advantage of using parallel instructions? Why/why not?

6. Display the contents of REA and RSA during the block repeat loop.

6 -14 DSP54x - Solving a Block FIR Filter

Benchmarking the Labs

Benchmarking the Labs

Block_FIR Profiling

LAB | Profile #cycles

6a | MAC, first profile

6a | MAC, estimate

6a | MAC, w/SWWSR=0

8a | FIRS, wW/SWWSR=0

keep this form handy for all the labs to compare your #’s

DSP54.6 - 16

DSP54x - Solving a Block FIR Filter 6-15

Solutions

Solutions

LABG6A. ASM-

Solution

. mr egs
.def start
STKLEN . set 100
a .usect "coeffs", 16,1
y .usect "result", 200
BOS .usect "STK", STKLEN
.sect "init"
table .int 7FCh, 7FDh, 7FEh, 7FFh
.int 800h, 801h, 802h, 803h
.int 803h, 802h, 801h, 800h
.int 7FFH, 7FEH 7FDH, 7FCH
.sect "indata"
X .copy "in6.dat"
.sect "code"
start: ST™M #BOS+STKLEN, SP ; setup stack pointer
ST™M #0, SWA\BR ;set ext'l wait state to zero
LD #0, DP ;set SST bit (saturate on store)
ORM #1, @MBT
SSBX FRCT ;set FRCT bit (fractional node)
RSBX Oow ;clr O/ bit (overflow node)
SSBX SXM ;set SXM bit (sign extension)
DSP54.6 - 18
CALL copy
CALL fir
here: B here
copy: ST™ #a, ARL ;setup ARL
RPT #15 ;copy 16 val ues
MPD #tabl e, *ARL+
RET ;return
fir ST™M #184, BRC
ST™M #16, BK
ST™M #1, ARO
ST™M #a, AR2 ;setup ARs for MAC
ST™M #x, AR3
STM #y, AR4
RPTB done- 1
MPY *AR2+0% *AR3+, A ;1st product
RPT #14 ;mult/acc 15 terms
MAC * AR2+0% * AR3+, A
MAR *+ARB(- 15)
STH A, * AR4+ ;store result
done: RET ;return
DSP54.6 - 19

DSP54x - Solving a Block FIR Filter

Solutions

LABGA. CNVD : Solution

/* file 1/0 and options */
vectors. obj

| ab6a. obj

-m | ab6a. map

-0 | ab6a. out

-e start

MEMORY {

PAGE 1: /* Data nenmory */
SPRAM org = 00060h, Ien = 00020h
DARAM org = 00080h, Ien = 00400h

PAGE 0: /* Program nenory */
EPROM org = OF000h, |en = 00F80h
VECS: org = OFF80h, Ien = 00080h

}

SECTI ONS

{ coeffs > SPRAM PAGE 1
resul t > DARAM PAGE 1
i ndata > DARAM PAGE 1
STK > DARAM PAGE 1
code > EPROM PAGE 0
init > EPROM PAGE 0
vectors > VECS PAGE 0

}

DSP54.6 - 20

DSP54x - Solving a Block FIR Filter

Solutions

6 -18 DSP54x - Solving a Block FIR Filter

Pipeline Implications

Introduction

Most microprocessors and DSP's are pipelined in some fashion. The C54x differs in that its
pipeline is open. When we write to control type registers it can have a profound and sometimes an
out-of-sequence affect on CPU operation. The responsibility for proper pipeline operation rests
on the programmer. Fortunately you have both assembler and simulator latency detection tools at

your disposal.

Learning Objectives

Learning Objectives

¢ Describe the "C54x pipeline events

¢ Implement delayed operations

<& ldentify and resolve pipeline conflicts

DSP54.7 - 2

DSP54x - Pipeline Implications

Module Topics

Module Topics

[PIPEIING TMPIICALIONSvcviveveveeieeietieeeeeeeeteteeeet ettt eeveteteeneteteeneseteesesetensesesereesesenessesereeseserenenes 7-1|
MOGUIE TOPICS ... /-2

D EN L S T e 7-3]|
I 7-4|
Understanding the IMPact 0N the PIPE...........ccuveueviieiieeiseeeiseeiseesseeseeteeseseneseereeseareneseereeneas 7-5|
| 7-6|
Determining LAtENCY CYCIES.cvciiveieeiieeieiisieieteeieiieteseetstesieeaeteeatesteseateseeneasesseseasessesesseseeseesessessenes 7-7|
A 7-8|
TV 7-10|
EXBICISES. ..ot 7-11|
LLABT — LALENCY ISSUBSvveveteeceeeeeeeeseseieseteteteteteseesesesessesesesssssesssesesesessssssssssssesssssssssasssesessssssssssssesns 7-12|
S 7-12|
LABT7-A PrOCEOUIE ..ottt sb sttt 7-13
Fix Catencies in LATENCY. ASMand LAB6A. ASM.......o.oooovooooooooooocoooocoocooconioroneoroneenenennenen 7-13
LABT-B PTOCEUUIE ... eeeesvereeseeeneeserenensesensesesensnsesessesesenssensnssesesnesssesnsneseeneneses 7-14|
o IV o e 7-15|
AAAIONA] INFOTMALION.ot eeereeeeseneesesereesesensesereneesesesseseseesesesesmenseesesnseses 7-16 |

DSP54x - Pipeline Implications

Delayed Instructions

2 final
code
words

Delayed Instructions
Pipeline and Delayed Branches
[plrlofalr]x]
B |r | F D!
addr P, | F |ADDR
P, F; |FLUSH| --
2 words/
4 cycles Py |FusH| - | —~ | — | - ‘
P.|F [D]A|R]
BD Pl Fl Dll
new P, F, |NEW
P, | i, | D;| A, | R
2 words/ : : : : : :
2 cycles P, 4 D, | A | R, 4
N FN DN N RN

Xy |

DSP54.7 - 3

A delayed branch merely allows the 2 words that have already been prefetched to run to

completion.

STL
B

Using Delayed Instructions
Delayed Instructions

A
VA
, B

Lk

@

next

6w/8c

LD @, A BD CALLD
ADD @, A BACCD CALAD
BD next RETD
Wy @B BANZD RETED
STL A @

RPTBD RETFD

BCD
CCcb
RCD

6w/6¢

+ Delay slot is two words deep - cycles or lines of code
are not relevant

¢ Delay operation may not be a branch of any kind
(B, CALL, RET, RPT, etc.)

< Conditions set in delay slot of BCDY CCD/ RCD
will have NO effect on the instruction

¢ Do not load BRC in delay slot of RPTBD
¢ No PUSHPOP in CALLD or RETD delay slots

DSP54.7 - 4

The problem is, some operations may not be in the delay slot hand and since the next two words
will be executed before the branch is taken, debugging can be difficult.

Save the use of delayed branches for those situations where saving two cycles is very important.

DSP54x - Pipeline Implications

The Pipeline

The Pipeline

Pipeline Cases

“Typical” C54x Svst Cod Analysis:
ypica x System Code & Most 'C54x code requires

no special attention
v ¥ ¢ Some MMR writes require care

(MMR reads are not a problem)
C e ASM Code .
No Problem ¢ Latency requirements
I resolved via Latency Tables
20 v
CALU Operations MMR Writes
No Problem
I
v v
Early Writes All Other MMR Writes
& Early: write occurs at least & Use Latency Tables

6 cycles prior to a read
¢ Example: setup code

DSP54.7 -5

Execute Phase Writes - Problem?

In the following example, we want to calculate an address, then use
it to perform an operation. Let’s see what happens...

STLM A ARL | | TIA] vt
LD *ARl, B ‘N‘ T ‘ N=Need

& Oops, because STLM writes “late” and the address is needed “earlier”,
the code won’t work as written.

+ How many NOPs are needed to correct the problem? 2

+ Below, STM writes early (as soon as the constant is decoded), so the
LD works correctly:

STM #x, ARL Al]
#x ‘
LD *ARL,B N[| \

Let’s look at when bits/registers affect the pipeline...

DSP54.7 - 6

Most instructions complete their operations in the execute phase. Because of potential pipeline
latencies, it would be nice to have some instructions that operate early.

7-4 DSP54x - Pipeline Implications

Understanding the Impact on the Pipe

Understanding the Impact on the Pipe

Which Pipeline Phases Use These Regs/Bits?

Registers Bits in STx or PMST Affected Phase
T, A B OvM SXM C16, FRCT, ASM XI'R
ARO- 7, SP, BK DP, CPL, DROM R A
BRC, RSA, REA BRAF, MP/ MC, OVLY, | PTR B

¢ Example: Write to OVLY bit to change program memory map:
& Which instruction(s) are affected by this write?

ORM #20h, PNVBT lp EIDIAIR X «— Write to OVLY occurs here
— P|F|D|A|R|X
NOT »P|FID|A|R|X

affected PIEIDIAIR|X

by write

to OVLY PIFID|A|[R|X

» PIF|D|A|R|X

L MP|F|D|A|R|X

QOVLY affects this instruction — [P | F | D|A|R|X

DSP54.7 - 7

This breaks up the effect of the pipeline into three categories; CALU, data address generation and
program address generation.

Writing to STX/PMST

Registers Bits in STx or PMST Affected Phase
T, A B OVM SXM C16, FRCT, ASM XI'R
ARO- 7, SP, BK DP, CPL, DROM R A
BRC, RSA, REA BRAF, MP/ MC, OVLY, | PTR P
STO | | DP |

ST1 [BRAF| CPL | [OVM [SXM| C16 [FRCT| [ASM|

PNVST | I PTR | P/ MC[OVLY] [DROM |

Example
POPM ST1

¢ Which bits are affected by this instruction?
¢ What phase(s) do these bits affect?

DSP54.7 -8

DSP54x - Pipeline Implications 7-5

Writing Early

Writing Early

STM #K, MVR

LD #k9, DP

LD Snmem DP

LD #k5, ASM

LD Snem ASM

POPM MWR

MWDK Snem dmad

MMM MVR(src), MVR(dst)

Instructions That Write “Early”

& To minimize latencies, some instructions write early.
Use these recommended instructions whenever possible:

Conflicts can occur between writes...

DSP54.7 - 9

The problem arises when two instructions; one operating in the execute phase and the other
operating earlier attempt to write to ARX, SP or BK. If these two writes overlap, they will
conflict since there is only one path to these registers.

Write Conflict

Problem: Early write instructions can be blocked if a prior instruction
writes to an AR, SP or BK in the execute phase.

>

Conflict
r

STLM A, ARO [
STM #0, AR1

#0
LD *AR1, B

Solution: Add one protected cycle before the STM instruction:

STLM A ARO L_} No
nop Conflict
STM #0, ARL

#1
LD *ARL, B J

Alternate Solution:

Reverse the STLM and STM instructions

DSP54.7 - 10

In the latency chapter of the CPU and Peripherals user guide you'll find a rule stating not to
precede an instruction like STM with one that writes to these registers in the execute phase.

DSP54x - Pipeline Implications

Determining Latency Cycles

Determining Latency Cycles

How to Determine Latency Cycles

¢ The Latency Tables on the following pages show the number of cycles to
allow between a write to a control field and the effect of that write to be valid.

¢ Latency Tables show recommended instructions for accessing MMRs only.
See the CPU and Peripherals Guide for more details.

& Don’t neglect the exceptions listed at the end.
& Example: [SSBX SXM SSBX SXM
LD @&, A > NoP
LD @&, A
& Following is an excerpt from the Latency Tables:
Control Field | Latency 0 Latency 1
SXM SSBX, RSBX

& Latency Fix: 1. Use NOPs or any other non-involved code
2. Must consider multi-cycle operations (e.g. B | oop)

¢ Tools: Use -pw switch during assembly or -1(w) switch during
simulation to flag potential latencies

DSP54.7 - 11

The following tables do not and cannot show all possible latencies. Please refer to the CPU and
peripherals guide for more detail

DSP54x - Pipeline Implications 7-7

Latency Tables

Latency Tables

Latency Tables - Recommended Instructions

Control Field | Latency 0 Latency 1
T STM MWDK STLM STL,

LD Smem T STH, EXP

LD Smem T || ST
ASM LD #k5, ASM

LD Snem ASM
DP LD #k9, DP

LD Snem DP
SXM SSBX, RSBX
Aor B All except ... Modify accumulator

then read as MMR

BRC STM STLM STL, STH
before
RPTBI[D] MVDK

DSP54.7 - 12

Latency Tables - Recommended Instructions

Control Field | Latency 0 Latency 1 Latency 2 Latency 3
ARX ST™M POPM STLM STH, STL
MVDK
WM WND
MAR
BK STM POPM STLM STH, STL
MVDK
WW MWND
SP ifCPL=0 | ifCPL=1 if CPL=0 ifCPL=1
ST™M STM STLM STLM
MVDK MVDK STH STH
MMM MMM STL STL
MNMD MNMD
Implicit SP FRAMVE
changes when POPM POPD
CPL=1 PSHM PSHD

DSP54.7 - 13

DSP54x - Pipeline Implications

Latency Tables

Latency Tables - Recommended Instructions

Control Field | Latency 3| Latency4 | Latency5 | Latency 6
DROM ANDM

ORM

XORM
CPL RSBX

SSBX
BRAF RSBX

SSBX
OVLY ANDM
| PTR ORM
MP/ MC- XORM
DSP54.7 - 14

last instruction

RPTB[D] loop.

Latency Table Notes

word in the RPTB[D] loop.

& Do not precede STM MVDK or MVNVD with an instruction (e.g. STLM) that
writes to any ARX, BK or SP in the execute phase of the pipeline.

& After altering the BRAF bit, the next 6 cycles must not contain the

& SRCCD must be located at least 2 cycles before the last instruction of the

¢ When changing OVLY, MP/ MC- or | PTR, latency listed is to fetch the
first instruction from the newly activated memory space

DSP54.7 - 15

DSP54x - Pipeline Implications

Review

Review
Latency Issues - Review
¢ No latency for CALU operations
& Write to MMRs early whenever possible
< Set status early
¢ Use latency tables when writing to MMRs
< For debug: focus on late MMR writes
& Reference Guide has chapter on pipeline use
7-10 DSP54x - Pipeline Implications

Exercises

Exercises

Latency Exercise

1. Determine the dependencies between the instructions

2. Does a latency exist? If so, how many NOPs should be added?

STM

@

LD

STLM

@ STM

LD

STLM
®

LD

#100h, ARL
*AR1, A
B, AR2

#106h, ARL
*AR1, A

B, AR1

*AR1, A

DSP54.7 - 17

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

LD
@

LD

ORM
®

LD

POPM
®

LD

Latency Exercise
#x, DP

@, A
#8h, PMBT # Set DROMbit

*AR2, A
STO

@, A

DSP54.7 - 19

DSP54x - Pipeline Implications

Exercises

LAB7 — Latency Issues

Objective

The objective of this lab is to find and fix latency issues inside two files: LATENCY.ASM and
LABG6A.ASM. Use the latency tables and the —pwassembler switch to aide the process.

LABTA - Latency Issues

1. Add - pwswitch to your assembler options.
2. Open and view LATENCY. ASM

3. Determine the latencies and the #NOPs needed to fix the
problem. Write a comment next to the instruction of what
you expect the solution to be.

4. Assemble LATENCY. ASMusing - pwswitch and note the
warnings. Compare the warnings with your expectations.

5. Fix the latency issues and re-assemble.

6. Check and fix any latencies in LAB6A. ASM You may or
may not have any.

Time: 45 minutes

DSP54.7 - 21

DSP54x - Pipeline Implications

LAB7-A Procedure

LAB7-A Procedure

Fix Latencies in LATENCY. ASM

1.
2.

5.

Create a new project called Lat ency. Add LATENCY. ASM to it.

On the menu bar, select:

Proj ect > Options
Then, select the Assenbl er tab and add —pwto the command line switch box at the top of
the window. This switch will enable pipeline warnings during assembly. Click OK.

Open LATENCY. ASM for editing. Determine the latencies and the #NOPs needed to fix the
problems (if they exist). Write a comment next to the instruction describing what you expect
the solution to be.

Assemble LATENCY. ASMby clicking the Conpi | e button on the vertical toolbar and note
the warnings shown in the output window at the bottom of your screen. Compare the
warnings with your expectations.

Fix the latency issues and re-assemble.

Fix Latencies in LAB6A.ASM

6.

When LATENCY. ASMis “clean”, re-load project LAB6A. MAK. Check and fix any latencies
in LAB6A. ASM You may or may not have any. If you find latencies, explain why your code
worked anyway.

If you’re done with the above steps and you still have some time, move on to LAB7B...

DSP54x - Pipeline Implications 7-13

LAB7-B Procedure

LAB7-B Procedure

1. Open LATENCY. ASM Type in the following instructions, write down your expectations,

assemble and fix the latency issues. If the assembler gives no warning on an instruction
which you thought should be a problem, explain why it is not a problem:

POPM PNMST
RETF

STL A *AR3
LD *AR3, B

STL A *AR3+
LD #0, A
ADD *AR4, *AR5, A

STL A *AR3+
STH A *AR3
ADD *AR4, *AR5, A

You might find the additional material at the end of the module helpful.

Write an execute conditional (XC) instruction to perform some task. What are the
implications of using this instruction?

Delayed operations (like BD) take 2 cycles less than their non-delayed counterparts. Why not
use them all the time?

Open LAB6A. ASMand modify using delayed operations wherever possible. Assemble, link
and simulate. Verify your plot. Make sure you have working code because this lab will be
copied to later labs.

DSP54x - Pipeline Implications

Solutions

Solutions

@

@

®

Latency Exercise

STM #100h, ARL
LD *AR1, A
STLM B, AR2

STM #106h, AR1
LD *AR1, A

STLM B, AR1L

LD *AR1, A

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

& No latency issue

& NOP required to avoid
write conflict
¢ Can also swap STM STLM

& STLMwrites in X-phase,
* AR1 needed in A-phase
¢ Latency 2: 2 NOPs required

DSP54.7 - 18

@

®

Latency Exercise

1. Determine the dependencies between the instructions
2. Does a latency exist? If so, how many NOPs should be added?

LD #x, DP

LD @, A

ORM #8h, PMST
NOP

NOP

NOP

LD *AR2, A

POPM STO

LD @, A

¢ No latency issue

¢ Set DROMbit

& Potential DROMIatency:
3 NOPs required

¢ Or, modify PMST early in
your setup code

¢ Sit down at your computer and
open the CPU/Peripherals Guide
¢ Look up the latency
¢ Potential DP latency:
3 NOPs required

DSP54.7 - 20

DSP54x - Pipeline Implications

Additional Information...

Additional Information...

Conditional Execution: XC

& Allows fast choice of running one or two words of code or
substitution of NOPs.

& Condition evaluated early, so must be set two cycles prior.

& Avoid change of condition in last two lines prior to XC, as
they can be recognized in event of interrupt prior to XC.

XC n, cnd, cnd, cnd

-pre- CWR GRTR ARL
-pre- - ot her -
CWR GRTR, ARL - ot her -
BC next, TC XC 1,NTC
LD *AR3+, A LD * AR3+, A
next: ABS A ABS A
3 words, 5/4 cycles 2 words, 2 cycles

DSP54.7 - 23

CALU Operations - Analysis

& The 'C54x may need to perform a fetch, two reads,
and a write in any given cycle. Depending on the
system setup, this event could occur in one cycle or be
spread over several cycles. In no case are errors
generated. Consider the following environments:

> More than one external access: multiple cycles
> Each resource in separate memories: single cycle
» Note: "C54x memories are broken into blocks.

» More than one resource in a single "*C54x memory
block - Dual Access RAM :

Early phase | P and D
Late phase | Cand E

DSP54.7 - 24

7-16 DSP54x - Pipeline Implications

Additional Information...

Single read instructions: ’ Pr | Pp Dr| Dp
Dual read instructions: ’ Pr | Pp 8: 83
Single write instructions: ’ Pa Pp Er| Ep
Dual write instruction: ’ Pr | Pp E, | Ep
(2 cycles) Ea Ep
Read/write instructions: ’ Pr | Pp Da DEDA Ep

Pipeline Events

WRI TE

DUAL
READ

DSP54.7 - 25
DARAM Events
Single read instructions: ’ P l D
Dual read instructions: ’ B C|D
Single write instructions: ’ P | E
Dual write instruction: ’ P E
(2 cycles) E
Read/write instructions: ’ B D E
DSP54.7 - 26
Case Study - Latencies Avoided
VR TE | STL A, * AR3+ ’ B E
READ |LD *AR2+, A P D l

What if both are to the sane address? Wite takes place
normal |y,
wi t hout additional cycles!

and read is fromE, bus, yielding correct result

STL A * ARG+ P E
LD #0, A P E
ADD *AR4, * AR5, A P C|D

Early wite held off to allow dual access to operate w o del ay.

DSP54.7 - 27

DSP54x - Pipeline Implications

Additional Information...

Case Study - Automatic Latency

VRI TE | STL A, *AR3+ ’ P E
WRI TE | STH A, * AR3 P E
DUAL | ADD *AR4, * AR5, A P E
READ

C|D

One cycle latency autonmatically inserted by decoder

DSP54.7 - 28

DSP54x - Pipeline Implications

Application Specific Instructions

Introduction

A strictly general-purpose processor can only offer average performance. In order to extract the
maximum performance from a device you need instructions that can accelerate certain
algorithms. Since the C54x is targeted for the telecom marketplace, there are several powerful
instructions that enhance performance for our algorithms typically used in telecom.

Learning Objectives

Learning Objectives

¢ Describe the basic operation of specific
algorithms

& Associate certain instructions to the
chosen algorithm

¢ ldentify the architectural components
that provide advanced performance

DSP54.8 - 2

DSP54x - Application Specific Instructions 8-1

Module Topics

Module Topics

AppPlication SPECITIC INSTIUCTIONS.cooveveveeeerieeeeereteeieeetetieneteteeneteteseseteeeereteeseseteeeessserenesereessseresnena 8-1|
MOGUIE TOPICS ... 8-2|
Tl 8-3]
R R I 8-5|
Y s I T T — 8-6|
B0Me Other USETUl INSITUCKIONS.cviuiieeeiieiieeisteieeesseseisessteseeesstsessesseesssssssessrsssesssssssesssrsssesssssssessans 8-7|
POAITIONAI RESOUICES......e.veviveiieeieeieiieteetaeteiataetesteteetaseeseeteseeseasesseseasesseseesesseseesessessesessessesessensesessensenes 8-8|

| Y = = 8-9|

DDJECHIVE ..ttt ettt ettt ettt et et et et et et ete e etesestsseteseesesessaseteseasaressaseressateresareresearas 8-9|
LLABBA = PIOCEAUIE ...ttt et et seseseesesen st seseseesesessssesessesnsnssssnsensesnsnssesnssssesssnsessesnsnsses 8-10
Copy Files, Edit LABSA.CMD.........cooiuiuiieiiiiicssecissessessssssessssessessssssensassssnsssssssnssssesansassnsaneeseeas 8-10
o T NS A L Y[T T 8-10
BUITA, SIMUIAEE, VEITTYviiviiecicccecc ettt et sreateenaeneesaeaennennens 8-11
R I - 8-12|
BOIULIONS ...ttt sttt ettt s ettt ettt es ettt 8-13|
AAITIONAl TNTOIMALION ... 8-15
I ST T T 8-15
C00ED00K SEAMCH ...ttt e et e e reereanrearreareeereeas 8-15
VDT DECOTING eieiiiiii ittt et e et e et e et e et e eseeeseesseesreesseasneasseasseaseeareess 8-16
Determining Metrics .o 8-17
POIYNOMIAI EVAIUBTION ..ottt e enee e 8-18

8-2 DSP54x - Application Specific Instructions

Symmetric FIR

Symmetric FIR

Symmetric FIR

Coeffs

a0 al a2 a3:a4 a5 a6 a7

N/2 adds and N/2 MACs
+ Filters must be designed with even length

FIRS (*ARm *ARn, #COEFF)

3

(*ARm + *ARn) << 16

« This filter may be “folded” and performed with

Y(n) =a0(x7 + x0) + al(x6 + x1) + a2(x5 + x2) + a3(x4 + x3)

B + (AH * *#CCEFF) ; pseudo- code

DSP54.8 - 4

The FIRS instruction performs the multiply and accumulate as well as the summation of the next

two data points in a single cycle when in a single repeat.

FIRS (*ARm *ARn, #COEFF)

8-Tap Block FIRS Implementation

Program Sample

1. Perform 1st add of oldest and Memory Memory
newest data samples into AH, PC—»| a0 x0
move pointers (#COEFF) [31 x1

2. Repeat FI RS #taps/2 - 1 ;i.e. 3 a2 x2

BH = BH + (AH * *PC) e X3
|| AH = (*AR2+ + *AR3-) i
x5

3. Reset po_inters_ (AR2 and AR3) hl}eezgjcl)trsy %6
for next iteration

y0 X7

4. Store result (BH) and AR4 —| yl X8

move pointer

Now, let’s take a look at the actual code...

<« AR2

<+ AR3

DSP54.8-5

Your pointers will need to point of both the oldest and the newest samples. You'll also have to

perform the first add before entering the repeat single FIRS loop.

DSP54x - Application Specific Instructions

Symmetric FIR

FIR

done:

. asg
. asg
. asg
SSBX
ST™M
STM
STM
ST™M
STM

FIRS Code Example

AR2, ol d

AR3, new

AR4, results

FRCT

#sanps-taps+1- 1, BRC
#x, ol d

#X+7, new

#y,results

#- 4, ARO

done- 1
*ol d+, *new, A
B, #3
*ol d+, * new , #COEFF
*ol d+0
*+new(#6)
B, *resul t s+

;set FRCT

;setup BRC

;old = #x

;new = #x+7

;results = #y

;pointer wrap for old

;Repeat Block FIR

;First sum for FIRS << 16
;B=0, Repeat taps-1
;MAC, next sum

;Wrap old by -4

;Wrap new by +6

;Store resultto y

DSP54.8 - 6

Notice how we used ARO to save a cycle resetting the old pointer.

DSP54x - Application Specific Instructions

Least Mean Square

Least Mean Square

Adaptive Filtering Using LMS - Concept

A least mean square (LMS) approach is widely used for adaptive filter routines.
The technique minimizes an error term by tuning the filter coefficients.

input

& Provide input to the
real, modeled system to
get desired output: d(n)

< Filter input through FIR
model to get estimated
output: y?n)

& Compare results to
get error term: e(n)

¢ Correlate the error
term with x0, x1 ...,
to update coefficients
(eg=e(M*xg, ...

LVs FIR 5

Coef f update
(B =B+ (apn*xp)), A = rnd(ep+an)

; psuedo- code

DSP54.8-8

An example of this might be a noise-canceling headset. The modeled system is the earpiece
containing your ear, a speaker and a microphone to “listen” to what you are hearing. Add noise
from an external source. Now think of the input as the music from your stereo. That signal is what
we’d like to hear (monitored by the microphone (d(n))). In order for the signal inside the earpiece
to just be music, the FIR filter will adapt itself to produce anti-noise (a signal out-of-phase) with
the external noise. If the speaker is driven with this signal, music is all we’ll hear.

LMS Adaptive Filter Code
.. ;pre-calculate 2B*e(n)
. asg AR3, Coeffs
. asg AR4, Data
. asg AR1, Result ;initialize pointers
ST™M #a, Coeffs ;and circular addressing
ST™M #x, Data
ST™M #y, Result
ST™M #1, ARO
ST™M #t aps, BK
LD B2e, T ;T=B*2e
LD #0, B ;zero B
ST™M #TAPS- 2, BRC ;loop taps-2 times
RPTBD done- 1

MPY *Data, A ;A=e0

LMS *Coef fs, *Dat a+ ;B =a0*x0, A = e0+a0

ST A, *Coef f s+0% ;update a0
| MPY *Dat a, A ;A =nexte
LNV *Coef f s, *Dat a+ ;B=FIR, A=e+a
done: STH A, *Coeffs ;store last updated a
STH B, *Result+ ;store y, increment ptr
DSP54.8-9

DSP54x - Application Specific Instructions

Minimum and Maximum

Minimum and Maximum

M N, MAX
& Goal: find the max (or min) value in an array
MAX dst

M N dst
dst:AorB

¢ Example: Find the max value in this array

max: RPTBD done- 1 1628 |<—*AR1
LD *ARL+ A 24
LD *AR1+, B
MAX B - 24893
LD *ARL+, A 588
done:

& Benchmark: ~2N cycles to find the min/max of N elements

DSP54.8 - 11

8-6 DSP54x - Application Specific Instructions

Some Other Useful Instructions

Some Other Useful Instructions

Other Useful Instructions

¢ CodeBook Search (Conditional Stores)
STRCD Xmem cond Xmem =T if condition is true

SRCCD Xmem cond Xmem = BRC if condition is true
SACCD src, Xmem cond Xmem = src if condition is true

& Viterbi Acceleration (Split Accumulator Instructions)

CWS src, Snem Compare srcH/srcL, store greater
DADST Lnem dst dst=Lmem +/- T

DSADT Lnem dst dst=Lmem -/+T

ABDST Xmem Ynem Absolute Distance

SQDST Xmem Ynem Square Distance

+ Algebraic Polynomial Evaluation

RPT #Order-1 Performs any order polynomial evaluation
POLY Snem

Application code available at the end of this module... DSP54.8 - 13

Viterbi decoding, convolutional encoding and codebook search operations are used extensively in
cellular communications. If you are interested in learning more, ask your instructor to give you a
short presentation.

DSP54x - Application Specific Instructions 8-7

Additional Resources

Additional Resources

Additional Resources

Artech House, 1995.

TI Application Report, 1995.

1. S. M. Redl, M. K. Weber, M. W. Oliphant, “An Introduction to GSM”,

2. H. Hendrix, “Viterbi Decoding Techniques on the TMS320C54x Family”,

DSP54.8 - 14

DSP54x - Application Specific Instructions

Additional Resources

LAB8 — Block FIR

Objective

The objective of this lab is to write code to perform a block FIR using the FIRS instruction using

symmetrical coefficients.

LABBS8A - Block FIR Using FIRS
184 7 1. Replace MAC with FI RS
= 2. Implement pointer wraps
Ym Zo Ay * Xn+m P P P
=) n= 3. Profile and compare with LABGA
Time: 75 minutes
4Kx16 EPROM ‘C5409
FOO0h code - 20hx16 SPRAM 1Kx16 DARAM
tablers | | °° a[8] 80h [~ y[200]
x[200]
FF80h SP
FFEFh vectors
DSP54.8 - 15

DSP54x - Application Specific Instructions

LABSA - Procedure

LABS8A - Procedure

Copy Files, Edit LABBA.CMD

1.
2.
3.
4.

Make a new project called LABSA.

Copy LABGA. C\VDto LABBA. CVD. Modify as necessary.
Copy LAB6A. ASMto LABBA. ASM

Add the appropriate files to LAB8SA.

Note:This lab will be much less structured and spoon-fed than previous labs — and rightly so. You
should be more comfortable with the edit/debug environment, link.cmd files, program vs. data
labels, etc., by now. The following instructions will head you in the right direction but will be
slightly vague in terms of exact details.

Edit LAB8.ASM — Write/Debug

5.
6.

10.

11.
12.

Open LABBA. ASMfor editing. Comment out the CALL to the COPY routine.

Replace the MAC instruction with FI RS. Don’t forget that the label used to point to your
coefficients is a program label. Also, the pointer wraps will be done manually, so there is no
need to use circular addressing. Set up the two ARs to point to the correct data values (refer
to the material if you need help).

This is a good chance to use the .asg directive for our pointers. Look up its use in the
Assembly Language Tools User Guide.

Look at your RPT instruction. How does the single repeat count differ when using FI RS vs.
MAC? Also, FI RS uses the B accumulator to accumulate the result y, so how will you
initialize B?

FI RS requires the first two data values to be added together in the A accumulator prior to
using the FI RS instruction. Write the proper instruction to add these values. Look up this
instruction and note where the results will be. How should the pointers be modified?

Add two MAR instructions to wrap AR2 and AR3 the appropriate amounts after the FI RS
instruction. Use the value in ARO to wrap AR2 and use a constant (#| k) to wrap AR3.

Look at the store instruction. Which accumulator should be stored?

The RPTB instruction should remain as is because you still want to generate 185 outputs.

DSP54x - Application Specific Instructions

LABS8A - Procedure

Build, Simulate, Verify
13. Build your project

14. Run the code and verify that results are being written to y. Debug as necessary. Once you
think the code is running properly, graph your results.

Note: If, for some reason, you are not able to use symbolic debugging, check your assembler
options to see if —g is in your switches.

15. When you have a clean graph of the filtered sine wave, profile the FI RS routine. Set the first
profile-point on the CALL to your firs routine and the 2™ profile-point on the next instruction
in the main routine. Write down your cycle count on the sheet provided. It should be around
3145 cycles. Was your cycle count less using FI RS than MAC? Why?

16. If you’re done with LAB8A and you still have some time, move on to LAB8B...

DSP54x - Application Specific Instructions 8-11

LABS8-B Procedure

LAB8-B Procedure

If you make any changes to LAB8A. ASMor LAB8A. CVD, first copy the files to LAB8B. ASM
and LAB8B. CIVD. Answers to the following questions are either contained in the on-line
documentation or via your instructor.

1.

Write the kernel to find the minimum value in the x[200] array. Rewrite it the kernel to find
the maximum.

Edit the “max” kernel to also determine WHICH value was the maximum. In other words,
you must find a way to determine the index (from the base x) that locates the max value.

Implement an asymmetric FIR using the FIRS instruction. There are several possibilities, but
none that are simple.

DSP54x - Application Specific Instructions

Solutions

Solutions

LAB8A. ASM- Solution

. T egs
.def start

STKLEN . set 100

a .usect "coeffs",16,1

y .usect "result", 200

BCs .usect "STK", STKLEN
.sect "init"

table .int 7FCh, 7FDh, 7FEh, 7FFh

.int 800h, 801h, 802h, 803h
.int 803h,802h, 801h, 800h
.int 7FFH, 7FEH, 7FDH, 7FCH

.sect "indata"

X .copy "in6.dat"
.sect "code"
start: STM #BOS+STKLEN, SP ; set

ST™ #0, SWABR ; set
LD #0, DP ; set
ORM #1, @MST

SSBX FRCT ; set
RSBX ow yelr
SSBX SXM ; set

up stack pointer
ext'|l wait state to zero
SST bit (saturate on store)

FRCT bit (fractional node)
OYM bit (overflow node)
SXM bit (sign extension)

DSP54.8 - 25

LAB8A. ASM- Solution (Continued)

here:

copy:

done:

CALL
CALL
B

ST™M
RPT
MPD
RET

. asg
. asg
. asg

ST™
ST™
ST™
ST™
ST™

RPTB
ADD
RPTZ

copy
fir
here

#a, ARL
#15
#tabl e, *ARL+

AR2, TGP
AR3, BOTTOM
AR4, RESULTS

#184, BRC
#x+15, BOTTOM
#x, TOP

#y, RESULTS
#-8, ARO

done- 1
*TOP+, *BOTTOM , A
B, #7

FIRS *TOP+, *BOTTOM, #tabl e

MAR
MAR
STH

RET

*TOP+0
*+BOTTOM #10)
B, * RESULTS+

; setup ARL
; copy 16 val ues

,return

;setup ARs for MAC

;prime FIRS wadd of two data val ues
;execute FIRS 8 tines (16 products)

;store result

jreturn

DSP54x - Application Specific Instructions

Solutions

LAB8SA. CVD: Solution

/* file 1/0 and options */
vectors. obj

| ab8a. obj

-m | ab8a. map

-0 | ab8a. out

-e start

MEMORY {

PAGE 1: /* Data nenmory */
SPRAM org = 00060h, Ien = 00020h
DARAM org = 00080h, Ien = 00400h

PAGE 0: * Program menory */
EPROM org = OF000h, |en = 00F80h

VECS: org OFF80h, |en = 00080h

}

SECTI ONS

{ coeffs > SPRAM PAGE 1
resul t > DARAM PAGE 1
i ndata > DARAM PAGE 1
STK > DARAM PAGE 1
code > EPROM PAGE 0
init > EPROM PAGE 0
vectors > VECS PAGE 0

}

DSP54.8 - 27

8-14 DSP54x - Application Specific Instructions

Additional Information

Additional Information

LMS Loading

LMS Loading
Each Iteration (only once)
1 - determine error : e(i) = d(i)-y(@)
2 - scale by “rate” term B : e(i) = 2*B*e(i)
Each Term (N sets)
3 - Qualify error with signal strength . €”"(i) = x(i-k) * e"(i)
4 - Sum error with coefficient : b(i+1) = b(i) +e”(i)
5 - Update coefficient : b(i) = b(i+1)
Analysis :
LMS: 1 1 SwB
2 1 MPY
3 N MY ST
4 N ADD [wY
5 N STH
FIR a N MY «—_ 7 LNV
b N ADD «— |
c 1 STH
@ 100 tap: 500+ cycles @ 100 tap: 200+ cycles
DSP54.8 - 17

Codebook Search

Code Book Search

The speech coder uses a vector quantization technique from codebooks to
an excitation signal. This excitation signal is then applied to a linear
predictive-coding (LPC) synthesis filter.

Input speech [Weighting
_—
Filter
Codebook p(")

0 +
1 Synthesis | -
3 D ' +
N I/ Filter g(n)
: Select Gain

Codebook

Entry Mean-square error

minimization
2 * 2 *
G Gopt <¢c opt Gi

DSP54.8 - 18

DSP54x - Application Specific Instructions 8-15

Additional Information

Code Book Search

. mr egs
.text

CBS: STM #C, ARS
STM #G AR2
ST™M #G opt, AR3
ST™M #| - opt, AR4
ST #0, *AR4
ST #1, *AR3+
ST #0, *AR3-
ST™M #N-1, BRC
RPTBD done
SQUR *AR5+, A
MPYA * AR3+
MAS *AR2+, *AR3-, B
SRCCD *AR4, BGEQ
STRCD *AR3+, BCGEQ
SACCD A, *AR3-, BGEQ
SQUR *ARS+, A

done: MPYA *AR3+

AR5 —

<(0)

AR2 —

0)

AR3 —

Copt =1
Copt 2=0|

AR4 —|

| opt =0

A =C(i) 2
B = C(i) 2 * Gopt

and A

T = Gopt

B = C(i) 2 * Gopt - G(i) * Copt?
If (B >=0) then BRC --> lopt
and T

--> Gopt
--> Copt?

DSP54.8 - 19

Viterbi Decoding

Viterbi Decoding

N\
N

& Know: Received data, and how the original data was encoded
¢ Need: Derive the original data from the received data using Viterbi decoding
+ Viterbi: “Deriving the most likely path taken through a Viterbi trellis”

& Process: Establish path through trellis (using metric/penalties) to allow
traceback to determine the original data that determined this path

Procedure Current Prelim Next
State Values State
1. Get current state 0
2. Add/sub metric *ptr > Select
(M AL Max
3. Compare and TRN
select min/max BH
. Select
4. Note which path * >
was taken (TRN) ptr BL | Max :l
DSP54.8 - 20
8-16 DSP54x - Application Specific Instructions

Additional Information

Viterbi Decoding

D-cod: LD *AR2, T T = Metric
DADST *AR5, A AH=(2%])+M, AL=(2*J+1)-M
DSADT *AR5+, B BH=(2%J)-M, BL=(2*J+1)+M
CWPS A, *AR4+ (J)=max(AH,AL), etc
CWPS B, *AR3+ (J+8)=max(BH,BL), etc

Use ABDST/SQDST to determine metric

Procedure Current Prelim Next
State Values State
1. Get current state
* AH
2. Add/sub metric ptr - Select
(M AL Max
3. Compare and TRN

select min/max

4. Note which path
was taken (TRN)

BH Select
BL Max

DSP54.8 - 21

*ptr -

Determining Metrics

Absolute and Square Distance

ABDST Xmem Yrem : Absolute Distance

B += | AH |
AH = Xmem - Ymem

SQDST Xmem Ynmem : Square Distance

B += AH?
AH = Xmem - Ymem

DSP54.8 - 22

DSP54x - Application Specific Instructions 8-17

Additional Information

Polynomial Evaluation

Polynomial Evaluation

POLY is used to evaluate real algebraic polynomials of any order.

The general form of a 3 order polynomial equation can be written as:

P(X) = agx3 a,x+ a;x + 3,

The equation can be rewritten as:

P(X) = [(agx+ agx + a,]x + ag

This process can be extended to any order polynomial

DSP54.8 - 23

Polynomial Evaluation

SSBX FRCT L .
SSEX OVM POLY operation is affected by these bits
SSBX SXM

LD *AR4+, T T=X(0)

LD *AR3+, 16, A [A=A(order)=PX init
LD * AR3+, 16, B B=A(order-1)

RPT #2 3 times
Sl e A=PX=Rnd(B+A*T) B=An<<16
ST A *AR2+ PX=A>>16

|| LD *AR4+ T T=new x

A parallel load may be added to do iterative POLY operations with no penalty.

Note: The POLY instruction “expects” Q15 numbers!

DSP54.8 - 24

8-18 DSP54x - Application Specific Instructions

Managing Interrupts

Introduction

Handling interrupts in a timely fashion is what makes a system real-time. You need to know what
to set up, how interrupts are recognized and what to do when an interrupt is taken. It is not
difficult, but you must complete each step in the process.

Learning Objectives

Objectives

& Identify interrupt sources.
¢ ldentify the requirements for interrupt recognition.
¢ Describe the sequence of events during an interrupt.

DSP54.9 - 2

DSP54x - Managing Interrupts 9-1

Module Topics

Module Topics

R T e a0 o 9-1|
MOUIE TOPICS ... 9-2|
I T T LT 9-3]
AT R o1 9-4|
Lreating VECTORS.ASMcoovoiieeeeieieeeieieeeesteeestseetaesteeeseseereseseesessssesesessesesessenesseseressasenessnsssesessass 9-5|
N A N 9-6|
e e Y oL =T 9-7|
N 9-8|
S R e T 9-9]|
INEErTUPE FIAG REGISTETcviiiiiei s 9-10]|
Post INterrupt Hardware SEQUENCEcoveveveirerireteteieteteeeteteessseteaesesessasessssesesessssesessasesessasesssserens 9-11

CONEEXT SAVES ANA RESIOIESvvieveeiesteeiiesieeseesteesieesteeseeaneesseesseesseesseassesseesseesseessnsseessesssesssnansenssenns 9-11

RETUIN INSTTUCTIONSecvvevc ettt esaese e e saestesteaaaereanaesaeseenseseessesseaneereensensensens 9-12
N s 9-13|
T T T R T o Co AL = 1o LY 9-14|
BOTIWAIE TNEEITUDES......cviviiiciii bbb 9-15|
N R ol A T S 9-16|
(IR 9-17|
REVIBW 1.ttt ettt et s ettt s et et st et er ettt n et et en et et et aneateteneatenrenen 9-18|

LLABO — MANAGING INEETTUDESvveeeeeeeveeeeeeeeeseseseseeeeeeceeeeeesesesesesesesnensesessesenesssssssenenenencesnssesesessenens 9-19|

LABOA = PIOCEAUIE ...ttt ettt ettt esa st eststetessetetessesesesessesessesasesessesessssasesessaserenns 9-20
FI1E IMIANAGEIMENT ...ttt e et et e e et e e e beeenbeeenbeesnteesnteesnreesnreesnreesnreesreeestes 9-20
Edit VECTORS. ASM LABOA. ASM.....coiiiiiiiiesiiseeieiesieestestasseasaeseessessessessessessesseessessessessessens 9-20
VErTY that INTEITUDES WOTK.....c..eciiieiicicceeceeeeee et a e teeeeenvesreesreeas 9-21
MOAITY BIOCK FIR COUB ...ttt ettt e st eestea e s saeeessnetsessnnnsessaneneeas 9-21
ETTTY RESUITSvo oo osssssesenenenessesesesesssenesesssensesssssnresessnsesssssneseesesnsesssnsmrenensessssssssnsnerenenens 9-21

LABO-B PIOCEAUIE ...ttt ettt ettt ettt es e e ab st e et est et anesennarenees 9-22|

Yo IV oA 9-23|

9-2 DSP54x - Managing Interrupts

Interrupt Timeline

Interrupt Timeline

Interrupt Timeline

| 1. Select interrupt sources
N 2. Create interrupt vector table
'Ir 3. Enable individual interrupts

4. Enable Global Interrupts
c 5. Valid signal
P 6. Flag bit set
U 7. Int enabled? — branch to ISR
é 8. Context save/ISR/context restore
R 9. Return to main program

DSP54x - Managing Interrupts 9-3

Interrupt Locations

Interrupt Locations

1. “‘C5409 Interrupt Locations

Interrupt Offset (Hex) | Priority Description
RS 00 1 Reset
NM 04 2 Nonmaskabl e | nt
SI NT17- 30 08-3C = S/Wint 17-30
I NTO 40 3 Ext’'| Int #0
I NT1 44 4 Ext’ | Int #1
I NT2 48 5 Ext’'|l Int #2
TINT 4C 6 Tiner |nt
BRI NTO 50 7 McBSP #0 Rcv | nt
BXI NTO 54 8 McBSP #0 Xnt | nt
BRI NT2/ DMACO 58 9 McBSP #2 Rcv Int/DVA ChO I nt
BXI NT2/ DVAC1 5C 10 McBSP #2 Xnt Int/DVA Chl Int
I NT3 60 11 Ext’| Int #3
HI NT 64 12 HPI | nt
BRI NT1/ DMAC2 68 13 McBSP #1 Rcv Int/DVA Ch2 |nt
BXI NT1/ DVAC3 6C 14 MEBSP #1 Xt I nt/DVA Ch3 | nt
DVAC4A 70 15 DVA Ch4 | nt
DVACS 74 16 DVA Ch5 I nt
Reserved 78-7F -- Reserved DSP54.9 - 4

Different devices may have different interrupt tables. Be sure to check your documentation.

DSP54x - Managing Interrupts

Creating VECTORS.ASM

Creating VECTORS.ASM

RSV:

NW:

I V1:

2. Creating VECTORS. ASM

.sect “vectors”
BD Reset
STM #STK+LEN, SP

Put NM
routi ne here ...

BD I SR1
PSHM STO
PSHM ST1
BD | SR2
PSHM STO

PSHM ST1

& Each vector is always

4 words long

& Unused vectors:
Debug
IVn: BD
NOP
NOP

Production

I'vn: BD
NOP
NCP

Uh_oh

DSP54.9 -5

Remember that each location is at a specific address. You must make sure that you precisely
locate each vector at the proper address.

Unused vectors can present interesting ways to cost yourself debugging time. If, for example, the
solder joint that ties INT2 to a pull-up has a crack in it and the interrupt vector for INT2 contains
NOPs ... one day that crack will open, INT2 might get taken and the CPU would execute the
NOPs and succeeding code. This probably wouldn’t be what you expected!

DSP54x - Managing Interrupts

Interrupt Mask Register

Interrupt Mask Register

3. Enable Individual Interrupts
IMR (Interrupt Mask Register)

| Rsvd [Rsvd [DVACS | DVACA [BXINT1[BRINTL[HINT | INT3 |

15 14 13 12 11 10 9 8
’BXINTZ‘BRINTZ‘BXINTO‘BRINTO‘ TINT \ | NT2 \ I NT1 \ I NTO \
7 6 5 4 3 2 1 0

;disable: 0
;enable: 1
set: STM #102h, | MR

modi fy: ORM #40h, *(1 MR)
ANDM #OFFBFh, * (| MR)

DSP54.9 - 6

DSP54x - Managing Interrupts

Global Interrupt Bit

Global Interrupt Bit

4. Enable Global Interrupts (INTM)

ST1 | | TNT™ | |
15 12 11 10 0

enabl e: RSBX | NTM ; O

di sable: SSBX | NTM ; 1

+ Does not affect bits in IMR
¢ INTM=1 (disabled) at reset

DSP54.9 -7

The IMR is “the big switch” for interrupts.

DSP54x - Managing Interrupts

Interrupt Sources

Interrupt Sources

5. ‘C5409 External Interrupt Pins/Signals

'C5409 ¢ 4 maskable external
interrupts (INTO-3)
INTTE-E & 2 non-maskable
NMI «— external interrupts
RESET (NMI, RESET)
TACK — ¢ Interrupt acknowledge
(IACK)

Recommendation

¢ Do not use NMI as a high-priority interrupt. Because the state of INTM
is not saved, returning to main code from an NMI could result in undesired
behavior.

¢ Use NMI only when you do not intend to return to main code.

DSP54.9 -8

Since NMI doesn’t save the state of INTM and it can interrupt main code, ISRs and itself, where
to return to can become ambigous.

5. ‘C5409 Internal Interrupt Signals

'C5409 ¢ Software RESET does not set
IPTR to 1FFh
SW Reset

& MCcBSP channel 0 rcv & xmit
M cBSPs

DMAs ¢ McBSP channels 1 & 2 rev &
SW INTs xmit shared with DMA
HPI channels 0 - 3

Timer ¢ DMA channels4 &5

& Host Port Interface
& Timer

DSP54.9-9

9-8 DSP54x - Managing Interrupts

Interrupt Recognition

Interrupt Recognition

Recognizing Interrupts

What events/conditions are required to recognize an interrupt?

(IFR) (IMR) (INTM)
"Latch™ "'Switch™ "Big Switch™

INTx [1]
: (o] — 54xx
. core
INTy [1]

* 6 o o

External interrupts must meet the timing shown
IFR,;; must be set to: “1”

IMR;, must be enabled: “1”

INTM must be enabled: “0”

DSP54.9 - 10

DSP54x - Managing Interrupts

Interrupt Flag Register

Interrupt Flag Register

6. Pending Interrupts
IFR (Interrupt Flag Register)

] Rsvd \ Rsvd ‘Dl\MCS‘DI\/A@‘BXINTl‘BRINTl‘ HI NT \ I NT3 \
15 14 13 12 11 10 9 8

’BXINTZ‘BRINTZ‘BXINTO‘BRINTO‘ TINT \ | NT2 \ I NT1 \ I NTO \
7 6 5 4 3 2 1 0

;interrupt pending: “1”
clear I NT1: ST #1,*(IFR

& Writing a “0” to any IFR,; does nothing
o |IFR zeroed on reset

DSP54.9 - 11

Notice that the IMR and IFR are identical in layout. That makes coding a little easier.

9-10 DSP54x - Managing Interrupts

Post Interrupt Hardware Sequence

Post Interrupt Hardware Sequence

7. Post Interrupt Hardware Sequence

CPU Action

Description

1 - INTM

Disable global interrupts

PC - --*(SP)

Push PC onto predecremented stack

Vector(n) - PC

Load PC with int. vector “n” address

0 - IACK pin

IACK signal goes low

0 - IFR (n)

Clear corresponding interrupt flag bit

Minimum interrupt latency is 7 cycles from a synchronous interrupt event to the
fetch of the first ISR instruction. Add 2-3 cycles for an external interrupt.
DSP54.9 - 12

The CPU does these things automatically.

Context Saves and Restores

8. Context Save & Restore Instructions
Instruction Description

PSHM mmr g;s_th_’MSF;onto Stack

POPM mmr gngrf;oT ;’gack to MMR

PSHD Smem ;;s_thitzénemory value onto Stack

POPD Smem gngrtc;pffSitack to Data memory

EFRAME K g/lpoizllflz/ iteg:l; Pointer
Restore registers in the opposite order in which they were saved

DSPS49- 13

Then, since you have no idea when or where this routine may run, you should save all registers
you touch, especially ST0 and 1 which contain important information about the processor state.

DSP54x - Managing Interrupts

Post Interrupt Hardware Sequence

Return Instructions

9. Return Instructions

Instruction Actions Cycles
RET 5
RET[D] *SP)++ » PC e 3
*SP)++ o PC RETE 5
REWE 0 - INTM- |RETED 3
RTN - PC
RETF[D] 0 - INTM- EEED ‘19_’
*(SP) ++
Using RETF[D]: RI NTO: RETFD
¢ 3-cycle ISR MVKD DRRO, * AR7+%
NOP

+ No calls, no nesting

DSP54.9 - 14

RETF depends on the RTN register. RTN will contain the last PC pushed to the stack, so you
can’t do any CALLSs or nest any ISRs and still use RETF.

9-12 DSP54x - Managing Interrupts

Nesting Interrupts

Nesting Interrupts

Nested Interrupts

PSHM I MR
STM #5, | MR
RSBX | NTM

; Nestable ISR . . .
SSBX | NTM
POPM I MR
RETE

Save IMR
Enable only Interrupts 0 and 2

Enable Interrupts

Disable Interrupts INTM - =1
Restore IMR value

DSP54.9 - 16

In this example we are only allowing two interrupts to interrupt this ISR. These ISRs might need
to be specially written with the knowledge that they are nested.

DSP54x - Managing Interrupts

Relocating the Vector Table

Relocating the Vector Table

Relocating the Vector Table

151413121110 9 8 7 6 5 4 3 2 10
1 L
Ol>|wnS|L |
PMST 111111111%;‘;33%5
5°%53|5|”
IPTR
151413121110 9 8 7v6 5 4 3 2 1 0
Interrupt
Vector |[1|1(1|1|2f{1|2|2|/2[0]|0]|0[0|0|0 O
Address
I Reset]L“-wofd
align
Interrupt
Vector [0/0(0/0|0
Number

DSP54.9 - 17

This is especially useful for bootloads where the interrupt vector table is contained in factory
programmed ROM. Chances are that it does not contain the code you’d like. Since you can’t
reprogram the ROM yourself (without $$’s) you’ll need to program the table in available OVLY

space and then point IPTR to this location.

DSP54x - Managing Interrupts

Software Interrupts

Software Interrupts

Software Interrupts

I NTR k
TRAP k
RESET

+ k: interrupt number (see documentation)
¢ INTR = TRAP + disables INTM

& RESET instruction performs all tasks that a h/w reset does
except it does not set IPTR to all 1’s

DSP54.9 - 18

Operating systems make extensive use of software interrupts.

DSP54x - Managing Interrupts 9-15

Hardware State on Reset

Hardware State on Reset

Hardware Reset

Math Memory

0 - OV AOvBIOY™M 0 - OVLY, DROM
0 - C16, ASM FRCT ? - MP/IMC

1 - SXMC 1FFh - | PTR
Pins Misc

1 - XF 0 - BRAF

0 - CLKOFF 0 - DP, CPL

0 - AVIS, HM 1 - INTM

¢ A[x]: driven to FF80h, D[16]: high impedance
¢ Aninternal reset is sent to the peripherals.

& Seven CLKOUT cycles after RS- is released the
processor will fetch from 0FF80h

DSP54.9 - 19

9-16 DSP54x - Managing Interrupts

The Timer

The Timer

15 0

Timer TCR 1
9

Timer Control l TIM1 ‘ I PSC

]

I&I 15To 3T

0

- start/stop/reload PRD/ 1 ‘ I TDDR

«— 20-bit Timer —>

& TIM: Timer

& PRD: Period

& PSC: Prescaler

& TDDR: Timer Divide Down Ratio
& ‘5402 includes 2 timers

Timer Operation
& 20-bit s/w programmable down-counting timer

When TIM/PSC = 0:

¢ Generate CPU int (TINT)
& TOUT goes active
¢ PRD/TDDR—»TIM/PSC

— TINTO/ 1
— TOUTO/ 1

1

TINT rate =

CLKOUT x (TDDR+1) x (PRD+1)

DSP54.9 - 20

The timer is running on Reset.

Timer Registers

15 0 15

TIM1 ‘ ’

PRD 1

151413121110 9 8 7 6

543210 1g

S |F
TCR/ 1| Reserved ? g PsSC
tle

T
S
S

w0

TDDR

& At reset, the timer is running.
+ Startup Procedure

2. Initialize PRD to desired value
3. TCRgs =0 (start timer)

0: run, 1: stop

TRB

1:PRD - TIM
TDDR - PSC

1. TCRygg = 1 (stop timer), TCR+gg = 1, TDDR = desired value

DSP54.9 - 21

It is usually not important to program TIM since you have no idea “when” you’re programming

it.

DSP54x - Managing Interrupts

Review

Review

Review

1. What are the interrupt sources?
2. How do you poll for interrupts?
3. What must you set up to respond to an interrupt?

4. What conditions affect interrupt latency?

DSP54.9 - 22

9-18 DSP54x - Managing Interrupts

Review

LAB9 — Managing Interrupts

Objective

The objective of this lab is to modify your assembly routine to be an ISR. An infinite loop will be
interrupted at specific intervals by the timer and the ISR will write one new result each time. The
lab requires you to set up the proper registers to enable interrupts and generate a timer interrupt as
well as create an interrupt vector for the timer ISR.

LAB9 - Managing Interrupts

. Convert your previous assembly routine to an ISR

. Set up timer registers to generate an interrupt

. Set up interrupt registers to respond to timer interrupt
. Modify VECTORS. ASMto add a new vector

. Modify current assembly code to output 1 new result
each time the ISR is invoked

a b~ wWw N -

6. Graph results to verify
Time: 60 minutes

DSP54.9 - 24

DSP54x - Managing Interrupts 9-19

LABO9A - Procedure

LAB9A - Procedure

File Management

1.
2.
3.
4.

Create a project called LAB9A.
Copy LABBA. ASMto LAB9A. ASM
Copy LABBA. C\VDto LAB9A. CVD and modify as necessary.

Add the appropriate files to your project. Double check your tool options and project options
to make sure they are set as you like.

Edit VECTORS. ASM LAB9A. ASM

5.

Open VECTOR9. ASMand copy the contents to your clipboard. Open VECTORS. ASMfor
editing and paste the contents of the clipboard after your code. Delete the first few lines of the
pasted information to make sure you have 4 AND ONLY 4 words in each vector. How many
words isa “B st art ” instruction? Modify this file to invoke your block FIR routine as an
ISR based on the occurrence of TI NT. Make sure the label f i r is visible to your program.
Save your work. Close VECTCR9. ASM

Open LAB9A. ASM for editing. Modify your code to make fir visible to VECTORS. ASM
Just before your call to the fir routine, write the necessary instructions to set up the timer with
the following values:

TCR = 30h (auto-reload TIM/PSC and stop timer)
PRD = 30h
TCR = 20h (start timer)

Below your timer setup code (prior to the call to fir), write the necessary instructions to
respond to the timer interrupt (T1 NT). Also, write an instruction to clear any pending
interrupts prior to turning on global interrupts. This is a good programming practice just in
case a spurious interrupt occurred between reset and enabling global interrupts. If one did
occur, as soon as you enabled INTM-, you’d service the interrupt.

Comment out or remove the cal | to fir.
Replace your infinite loop “here: B here” with the following instructions:
mai n: ADD #1, A
ADD #1, B
B mai n

This will be the endless loop that gets interrupted to run your fir ISR.

DSP54x - Managing Interrupts

LAB9A - Procedure

Verify that Interrupts Work

10. Build LAB9A. You have not modified the block FIR routine yet to actually give you correct
results, but you must ensure that interrupts are working properly before taking this step.

11. Set a breakpoint on the label at the beginning of your fir routine. Then type RUN or click the
Run button on the vertical toolbar to run your code. Does the simulator stop at your fir
routine? If not, interrupts are NOT working. Debug, rebuild and re-simulate until the
debugger stops at fir. There is no other way for the code to find your fir routine except via the
interrupt. Once you have guaranteed that your interrupt setup code is working correctly, you
can now modify the fir routine itself.

Modify Block FIR Code

12. Now that your interrupt setup code is working, you can make a few more modifications to the
FIR code. We want the ISR to write one (1) result each time the interrupt occurs. Also, we
want to re-enable interrupts when returning from the ISR.

13. Remove the breakpoint.
14. Delete or comment out the RPTB instruction and RPTB loop setup code.
15. Modify the RET instruction to use “return from an ISR”.

16. Do not concern yourself with context save/restore yet. You might have noticed that the main
routine that is interrupted is using accumulators A and B and you are likely overwriting these
registers in the ISR. This is a no-no that we’ll fix in LAB9B.

17. What else needs to change? Two issues are left: (1) how do you ensure that only 185 results
will be written? Somehow, we need to turn off interrupts when 185 of them have been taken.
(2) the setup code for fir will be run each time the interrupt occurs. This won’t work because
the pointers will be reset each time the ISR is invoked. Let’s solve the 2™ problem first. The
first issue has been left for LAB9B (if you make it that far...)

18. Change your fir label to point to the first math instruction (the first ADD if you’re using FI RS
or the first multiply if you’re not using FI RS). Use another label at the top of the fir setup
code and place a RET instruction at the end of this setup code. Just before your timer setup
code, write a call to the fir setup code. Now, the setup code will only be executed once.

Verify Results

19. Build LAB9A. Set a breakpoint on the STH instruction at the end of your ISR (the store to y).
Set your memory window to view the contents of memory starting at the address of y. Hit the
Run button a few times and see the results being written to y. Does it look correct? If not,
debug, rebuild and simulate.

20. When you think your code is working correctly, remove your breakpoint and reset the
simulator. On the command line type: RUN 4000

21. This will generate ~185 outputs. Graph your results.

22. If you’re done with LAB9A and you still have some time left, move on to LAB9B.

DSP54x - Managing Interrupts 9-21

LAB9-B Procedure

LAB9-B Procedure

1.
2.

Open LAB9A. ASM for editing.

Determine a way to STOP recognizing interrupts when exactly 185 results have been written
toy. Run your code (NOT using RUN 4000) and verify it worked. Explain your method to
the instructor.

Now, add the proper context save/restore code to your ISR. Any registers you use or modify
in the fir code should be pushed to the stack and then popped just before you return. You
might want to put the save of STO and ST1 inside the Timer Interrupt Vector. Don’t forget to
use BDand . rmr egs .

How will you deal with the AR registers used in the math code that need to keep updating
each time the ISR is executed? Write the code and verify your results. Explain your solution
to the instructor.

If you’ve gotten this far, you’re hot. Change your code to respond to | NT3- instead of
TI NT.

If you’ve gotten here, you’re REALLY hot. Write your ISR in C and verify your results.

DSP54x - Managing Interrupts

Solutions

Solutions

Review

. What are the interrupt sources?

Reset, NMI, Timers, Serial Ports, DMA, External, Software

. How do you poll for interrupts?

Test the appropriate bit in IFR, then branch to ISR if TC set

INTM-, IMR, SP and a vector

. What conditions affect interrupt latency?

Higher priority interrupts, IMR,;;=0, processor is in
hold mode, INTM = 1, memory speed, Not READY, ...

. What must you set up to respond to an interrupt?

DSP54.9 - 23

LAB9A. ASM- Solution

STKLEN

start:

. egs
.def start,fir

. set 100

.usect "coeffs", 16,1
.usect "result", 200
.usect "STK", STKLEN

.sect "init"

.int 7FCh, 7FDh, 7FEh, 7FFh
.int 800h, 801h, 802h, 803h
.int 803h, 802h, 801h, 800h
.int 7FFH, 7FEH 7FDH, 7FCH

.sect "indata"
.copy "in6.dat"

. sect "code"

STM #BOS+STKLEN, SP ; setup stack pointer

ST™M #0, SWA\BR ;set ext'l wait state to zero
LD #0, DP ;set SST bit (saturate on store)
ORM #1, @MBT

SSBX FRCT ;set FRCT bit (fractional node)
RSBX ow ;clr OV bit (overflow node)
SSBX SXM ;set SXM bit (sign extension)

DSP54.9 - 26

DSP54x - Managing Interrupts

Solutions

LAB9A. ASM- Solution (continued)

CALL fir_setup ;setup pointers for fir ISR
ST™M #30h, TCR ;auto reload TIMPSC, stop tiner
ST™M #30h, PRD ;init period to 30 cycles
ST™ #20h, TCR ;start tiner
ST™M #OFFFFh, | FR ;clear any pending interrupts
ST™M #8, | MR ;enable TINT bit in IMR
RSBX I NTM ;turn ON global interrupts

mai n: ADD #1, A
ADD #1, B
B mai n

. asg AR2, TOP
.asg AR3, BOTTOM
.asg AR4, RESULTS

fir_setup:
ST™ #x+15, BOTTOM ;setup ARs for NAC
ST™ #x, TOP
ST™M #y, RESULTS
ST™M #-8, ARD
RET

DSP54.9 - 27

LABOA. ASM- Solution (continued)
fir: PSHM AL ;cont ext save
PSHM AH
PSHM AG
PSHM BL
PSHM BH
PSHM BG
ADD *TOP+, *BOTTOM , A ;prime FIRS wadd of two data val ues
RPTZ B, #7 ;execute FIRS 8 tines (16 products)
FIRS *TOP+, *BOTTOM , #t abl e
MAR *TOP+0
MAR * +BOTTOM #10)
STH B, *RESULTS+ ;store result
PCPM BG ;context restore
PCPM BH
PCPM BL
PCPM AG
PCPM AH
PCPM AL
PCPM STl ; pushed in vectors.asm
PCPM STO
done: RETE ;return frominterrupt
DSP54.9 - 28

9-24 DSP54x - Managing Interrupts

Solutions

VECTORS. ASM- Solution

. def
.ref

. sect

B
RETE
RETE

RETE
RETE
RETE
RETE

RETE
RETE
RETE
RETE

BD
PSHV
PSHV

rsv

start,fir

"vectors”

start
; Non-maskabl e Interrupt Vector
;Software Interrupt 18 Vector

fir ;Timer Interrupt Vector

STO

ST1

DSP54.9 - 29

DSP54x - Managing Interrupts

Solutions

9-26 DSP54x - Managing Interrupts

Setting Up and Using Peripherals

Introduction

Advanced C54x devices have some combination of the following three peripherals on them; the
DMA, the EHPI and the McBSP. In this module we’ll step through the capabilities of each and
delve into getting them set up for use.

Learning Objectives

Objectives

¢ Analyze how the DMA gperates

¢ Understand the basic setup required to use
the DMA to perform a task

¢ Describe the DMA'’s additional capabilities

DSP54.10 - 2

DSP54x - Setting Up and Using Peripherals 10-1

Module Topics

Module Topics

[Setting Up and USIiNG PEriPNEIAlSc.ccucuiuiuiiiieeieeeeeeeee ettt e et en e 10-1]
MOGUIE TOPICS ..o s 10-2|
(A 10-3

R G ISTEI S ..ttt ettt et e et e e bt e bt et e ent e et e teeste e beeteenteeat e bt e baenb e et baetbeetbeebeebeereenteenreanreareeareens 10-4
ThrOUGNPUL. e 10-5

S TIaTo) 3 10-6

DENEE DIMA ISSUBScvviivieie e cieeie ettt ecteete et e st e s teeeteeteeateesteeseesteesbaeseeassesseesseesseenseansesseesseessenss 10-6

| =T 10-7
DADADTIITIES ...ttt e et et b et e et e et e et e eseeateeareeareeteanreanseareeareeas 10-8
EXAMPIE o 10-8
BAMPIE RALE GENEIATON ...ttt ettt et e beste et e sbeeneareeneenreseea 10-9

(0] @ T T T=) 10-9
ST LATS 1T 10-10
Dther MCBSP CapabilitiESc.ecvviivieiiieiiiiiiicciee ettt te e eve et eeteeebeebeeseesteesteesreesresnreenns 10-10

LS =X | TP PP PP PP PPTUPTPPPN 10-11
T P T OPETATION........0covovvrresssssssensnernessessssssrssnsesnsessssssmsmnnsssssessesmnnsesnsesersmsrsnnnsessssesssesnsnnnens 10-12]

O TR = T TV 10-12
Bome Additional INFOrMEALTONcccuviveiieiiieeiieieieeiseieeesseseesiseseeessessessssesesessesessssessssssesssssssesseenes 10-14
Betting UP @ DIMA TraNSTOr . v ittt ess e se e sesns st ss s ss st e ss s st s snssssnee et ensesssseseanaes 10-14

10-2

DSP54x - Setting Up and Using Peripherals

The DMA

The DMA

DMA - Intro

& We used the “.copy” directive to load the input samples
into simulated internal memory.

Debugger

_I8

AN\

Inareal system, the DMA would perform this operation via
EMIF or a serial port using it’s own buses:

Input Data Memory
Let’s see how the
» DVA > DMA performs
it’s tasks...
serial or parallel internal/external

DSP54.10 - 3

Direct Memory Access (DMA)

& Performs data transfers without CPU intervention

SOURCE ———> DEST

SRC addr | Element 1 Frame 1 DST addr
Element 2 | Frame2
Element 3 . Frame 3
Element4 | -~ Frame 4
¢ Terminology

- Element: basic unit of transfer (1, 2 words)
- Frame: multiple elements (1-64K)
- Block: multiple frames (1-256)

¢ Max Speed: One 16-bit word per 4 CPU cycles (all channels combined)

& Transfer dependent upon:
- Source/destination address

- Rotating priority between channels
- Event sync (different events can be selected)
- Element/Frame count
- Index (can select: no mod, inc/dec by 1, element/frame index)
DSP54.10 - 4

DSP54x - Setting Up and Using Peripherals

10-3

The DMA

Registers

DMA Registers, Resources

EHPI DMA Channels 0-5 DMA “Resources”
| Source || Destination | SGINY
H | Elem Index | | Frame Index | SARAM
EHPI l Elem Count ‘ lFrame Count‘ ﬁ Ext’l Mem
%'ﬁg:]ige l Control ‘ l Status ‘ Bus Peripherals

15 14 13 8 7 6 5 0
|Free|Rsvd | DPRC[5:0] | INTOSEL | DE[5:0] |

DMPREC Register

DE[5: 0] Enable/disable channels
| NTGSEL Interrupt Multiplex Control
DPRC Channel Priority (Hi or Low)
Free Emulation Control
Currently only the 5409, 5410 and 5421 support external DMA accesses
DSP54.10 - 5
DMA Registers
15 12 11 10 8 7 0
| DSYN[3:0] [DBLW][rsvd [Frane Count |
DMSFC (Sync Event and Frame Count)
& Frame Count: N-1 (N is desired # of frames)
¢ DBLW: Double-word mode (0: 16-bit, 1: 32-bit)
& DSYN: DMA sync event (refer to spec for details)
15 11 10 8 7 6 5 4 2 1 0
|AUTONIT| |rsvd|SIND|DNB|rsvd|DIND|DND|
DMMCR (Transfer Mode Control)
& DMD: Destination Address Space (Program, Data, 1/0)
¢ DIND: Destination Index (none, +, -, elem/frame index)
¢ DMS: Source Address Space (Program, Data, 1/0)
& SIND: Source Index (none, +, -, element/frame index)
DSP54.10 - 6

10-4

DSP54x - Setting Up and Using Peripherals

The DMA

Writing to the DMA Registers

& Writing to DMA registers is a multi-step process using
sub-bank addressing

DMSRCn | Source Address

Sub-bank Address ["DVBA DVDSTn | Destination Address
Data Register DVSDN |:> DMCTRNn | Element Count
Data Register ¢ | DVBDI DMBFCn | sync Event, Frame Count

DMMCRN | Transfer Mode Control

¢ Using sub-bank addressing with auto-increment

DMSRCO . set 00h
STM DNMSRCO, DVBA ;init DVSA to pt to DVSRCO
STM #1000h, DMSDI ;wite 1000h to DMSRCO
STM #2000h, DMSDI ;wite 2000h to DVDSTO

DSP54.10 -7

Throughput

DMA Throughput

¢ DPRC[5: 0] : determines DMA bus priority between channels
- (hi-1, low-0) Affects access to the 16-bit DMA bus only
- Can select high or low rotating priority (per element transfer):

Low serviced when high:
- waiting for event sync
- transfers are complete

& Priority Access to HPI | highest
Data Buses: DMA (Hi)
DMA (Lo)

CPU lowest

DSP54.10 -8

DSP54x - Setting Up and Using Peripherals 10-5

The DMA

Example
Example: Auto-Init and Sync Events
McBSP DMA Ch0 80h| 1E57
2089
AID DVBRCO=DRR
» DRR
gheaid "| [DMDSTO=80h gL
DMETRO=16 8Fh [_DEAD
Global Reload Regs DVBFC0=00h
DMGSA=DRR
DMEDA=80h L syneevent T |\ cpy
DMGCR=16 RRDY =1
DMGFRO=00h

¢ Selected sync event (e.g. RRDY=1) triggers element transfer
(e.g. from DRR to 80h)

« Interrupt can occur at end of frame or end of frame/block

¢ DMA channel registers reloaded from reload regs at end of
block transfer IF auto-init enabled.

¢ Example shown transfers 16 values from DRR to the same
memory locations every frame
DSP54.10-9

Refer to the documentation for a complete list of the DMA registers

Other DMA Issues

Other DMA Issues

¢ Auto-Initialization:
- At end of block, DMA copies reload registers to channel registers
- Only ONE set of re-load registers exist for all 6 channels
- Reload registers can be altered at any time
- Every channel can select to use auto-init and reload registers
- Allows user to provide “continuous™ or “repititious™ operation

< Interrupt to CPU (one interrupt per channel)
- Triggered at: a) end of frame; b) end of frame and end of block
- Duplicates C54x ABU when selected (half/full buffer or full buffer)

& Synchronization Events
- DMA ELEMENT transfer is triggered by a specific sync event
- Example: DRR ready to read tells DMA to ready next value
- Up to 16 sync events - see datasheet for details

DSP54.10 - 10

Refer to the documentation for a complete list of the DMA registers

10-6 DSP54x - Setting Up and Using Peripherals

The McBSP

The McBSP

Objectives

¢ Analyze how the McBSP gperates

¢ Understand the basic setup required to use
the McBSP to perform a task

& Describe the McBSP’s additional capabilities

DSP54.10 - 11

MCcBSP - Intro

« In the labs, we graphed the filter output buffer using CCS

Output buffer

EFO1

& Inareal system the output buffer could be transferred
to a serial device using the McBSP and DMA:

Serial device

E23A

—>

D6C5

McBSP

Dat a
Cl ock
Frame Sync

The McBSP isn’t buffered without the DMA

Let’s see how the McBSP performs it’s tasks...

DSP54.10 - 12

DSP54x - Setting Up and Using Peripherals

10-7

The McBSP

Capabilities

Multi-Channel Buffered Serial Port (McBSP)

& Full duplex direct interface to codecs and other serial devices
& Max bit rate: 1/2 CPU Clock Rate

McBSP RINT ;Data: o=
DR ——[RSR'H RBR DRR > |
DX XSR DXR |« DMA
CLKX<-—> Frgme e
Egi:: Control M"tolohtd:grnel

¢ Word length: 8-, 12-, 16-, 20-, 24-, 32-bit
¢ Frame length (between FS): 1-128 words

Let’s see an example...

DSP54.10 - 13

Example

McBSP - Example

& Problem: transfer 16 16-bit words to SARAM, ext’| CLK/FS, no CPU int

SARAM
A/D McBSP 0
A e TN)
CLK CLKR ™ ova > [...
FS FSR REVT —* 15
15 5 4 1 0 :
Operation
SPCR l | RINTM | | Y | ‘ - Bit/CLKR shifted into RSR
CPU interrupt? DRR ready?
(not used) (not used) -RSR & RBR
15 10 8 0 -RBR & DRR (RRDY=1)
PCR l | FSRM| |CLKRM| ‘ - REVT sync event activates
O-external O-external DMA (no McBSP setup)
l-internal 1-internal - DMA transfers DRR
1514 8 7 5 0 to SARAM
RCR|[[RFRLENL | RWDLENL | | ..repeat
1-128 8/12/16/20/24/32
(16) (16) DSP54.10 - 14

10-8

DSP54x - Setting Up and Using Peripherals

The McBSP

Sample Rate Generator

Sample Rate Generator
‘54xX
Sample Rate Generator (SRGR)
CLKOUT . FSR
> L plrien o lp rso—p [FR—>
CLKS
CLKGDV CLKR
> CLKG—{ G KX P>
CLKSM
¢ FSGM: 0-FS gen’d on every DXR - XSR copy
1- FSgen’d by FSG
& FPER: frame sync period (12 bits)
& FWID: frame sync pulse width (8 bits)
& CLKGDV: Divide input clk up to 255 (8 bits)
& Some devices will allow CLKR/ X to drive CLKS internally
¢ CLKS not available on all 54xx devices
DSP54.10 - 15
Multi-Channels
The “Mc” - Multi-Channel
“Mc” Ch0-0
Erame TDM Bit Stream = Cho-1
cl- o [cofont] - [enat— M| T
0 c & Ch5-0
D — 1 —{Cho[Cht] - [Gh3L}— 3 | Receive Chs-1
E P only selected
€ Channels Ch27-0
Ch27-1

& Allows multiple channels (words) to be independently selected for transmit
and receive. (Ex: only enable Cho, 5, 27 for receive, then process via CPU)

& The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled - reduces processing/bus overhead.

& Multi-channel mode controlled primarily via two registers:

Multi-channel Control Reg Rec/Xmt Channel Enable Reg
MCR | | R/ XCER
- enables Mc-mode - enable/disable channels

& Up to 32 out of a 128-channel stream can be enabled at one time.

DSP54.10 - 16

DSP54x - Setting Up and Using Peripherals 10-9

The McBSP

Example

DMA Channel Sorting with McBSP

. Channel
Example: Handle the data input from three

channels (0, 5, 27) of an E1 framer and place
the data in contiguous memory such that 0
h : - 2

it can be block processed for voice coding.

Voice coder: process 20ms frames at 8KHz =

160 samples/frame/channel 122 5
Procedure: 162
1. Set channel bits for 0, 5, 27
2. Element Count =3
320

3. Frame Count = 160
4. Element Index = 160 gg; 2 7
5. Frame index = -319

Result: 0, 160, 320, 1, 161, 321, 2, ...

DSP54.10 - 17

Other McBSP Capabilities

Other McBSP Capabilities
& Supports direct interface to: T1/E1 framers, MVIP/ST-Bus,
I0M-2, AC’97 (multi-phase), I1S, SPI
p-law/A-law companding in hardware (on receive and transmit)
Internal clock/frame generation using the Sample Rate Generator (SRGR)
Programmable polarity of clock/frame
Digital Loopback (DLB): internally hooks xmt to rcv for debug
CPU interrupts occur when: (R/’XRDY=1, end of block/frame, new FS, error)

* 6 6 o o o

Can delay first data bit after FS by 0, 1, 2 clk cycles (required by
some algorithms, only on transmit)

& All typical errors/status are reported
& MCcBSP pins can be configured as general-purpose 1/0O if desired

All pins, registers and full explanations of these capabilities
can be found in the Peripheral User’s Guide DSP54.10 - 18

10-10 DSP54x - Setting Up and Using Peripherals

The EHPI

The EHPI

Objectives

¢ Describe gperation of EHPI

¢ Understand the basic setup required to use
the EHPI to perform a task

¢ Describe additional capabilities

DSP54.10 - 19

¢ BOOT:

Host

¢ SPEED:
¢ MODES:

A

8/16-bit port access to 54x’s on-chip memory resources
Can boot load DSP’s internal memory during reset

33MBytes/sec @ 100MHz (6 cycles/word, max)

Enhanced Host Port Interface (EHPI)

¢ ACCESS:

Multiplexed Address/Data, Non-multiplexed (A, D separate)

EHPI

v

T

Internal
Memory

Let’s see how the EHPI operates...

DSP54.10 - 20

DSP54x - Setting Up and Using Peripherals

10-11

The EHPI

EHPI Operation

EHPI Operation (non-multiplexed)

Hardware Setup
- Use HMODE to select multiplexed vs. non-multiplexed addr/data
- Tie HPI ENA high to use EHPI

Operation
- Host presents HA, HD and control (HCNTLO picks HPI DY HPI C access)
- EHPI sets up DMA to perform access, DMA reads/writes, next access

Host EHPI

s Ty A

5 ' HPL A DMA Bus

P X
H{ y: 0]
Data
Crl Sntrol | |HPID
v Internal

HMVODE »

- multiplexed Control Memory What else can

- non-multi HPI C the EHPI do?

HPI ENA »

DSP54.10 - 21

Other EHPI Issues

Other EHPI Issues

¢ EHPI Bootload during Reset
- hold device in reset, transfer data, release reset

- Host has full access to internal memory
< Interrupts

- DSP to Host

- Host to DSP

¢ Multiplexed Address/Data lines (Intel access)
- Uses HD[15/7:0] only, shared address/data bus

& EHPI always has priority to DMA bus

DSP54.10 - 22

10-12

DSP54x - Setting Up and Using Peripherals

The EHPI

DSP54x - Setting Up and Using Peripherals 10-13

Some Additional Information

Some Additional Information

DMA Channels and Registers

Global Registers
DMEDC DMA Channel Enabl e Control

& Channel Registers(0-5)

DMCCR Channel Control Register

DMCCR2 Channel Control Register 2
DVWVDP Main Data Page for src/des addr.
DVDRC Source Address Register

DVDST Destination Address Register
DMEC Elenent Count Register

DMFC Frane Count Register

DMEI DX El enent | ndex Register

DVFI DX Frame | ndex Register

DSP54.10 - 24

Setting Up a DMA Transfer

Setting Up a DMA Transfer (SARAM to DAC)

& Problem: - Transfer a block of pixels from Internal Memory to a DAC
- Output via McBSP/DMA and sync transfer to D/A (ready)

McBSP
16-bit pixels [|89 [T0[T »[DR}—> D
(SARAM) 14[15[16[17 DVA Dest: DXR DA
Src: mem_8 201212223 | NT3 Ready

15 14 13 12 11 10 9 8 7 6 5 4 0
V\DBRT|SIND|SRC|DIND| DST|FS|DSYN|
DMSFC (Sync Event and Frame Count)

Field Description Options Answer?
DSYN Sync Event 20 options EXT_INT4
SIND/ DI ND | Index Mode none, +, elem indx, frm indx | frm indx/none
FS Elem/Frm Sync | 0: Elem, 1: Frame 0
SRC/ DST Port select SA/DARAM, EMIF SARAM
VDBRT Word Size 1,2,4,8 1
What other registers need to be setup? DSP54.10 - 25

10-14 DSP54x - Setting Up and Using Peripherals

Some Additional Information

DMA Transfer - Example

¢ Problem: - Transfer a block of pixels from SARAM to a D/A
- Output via McBSP/DMA and sync transfer to D/A (ready)

McBSP
16-bit pixels [|8 TO[TONT —>[DR—>D
(SARAM) 14[15[16[17 DVA Dest: DXR DA
Src:mem_8 | [20[21)22]23 EXT I NT4 Ready
DMSRC DMDST DMMDP
mem 8 | | DXR | | DXR | mem 8 |
SRC Address DEST Address DST MDP SRC MDP
(load addr[22:16] only)
DMEC DMFC DMEIDX DMFIDX
« [s |} [+ [s
Element Count Frame Count Element Index Frame Index
What additional capabilities might be useful? bSPSA10. 26

DSP54x - Setting Up and Using Peripherals

10-15

Some Additional Information

10- 16 DSP54x - Setting Up and Using Peripherals

Mixing C and Assembly

Introduction

The most important aspect of using C in a Digital Signal Processor is mixing assembly into the C
runtime environment Parameter passing and register usage will be covered as well.

Learning Objectives

Objectives

& Understand the C Environment

¢ Run the Compiler
& Describe how to Mix C and Assembly

DSP54.11 - 2

DSP54x - Mixing C and Assembly 11-1

Module Topics

Module Topics

A O e I o Y 11-1]
MOGUIE TOPICS ... s 11-2]
TThe C RUN-tIME ENVIFONMENTccoiiveeeieeeeeeieeee et et eesiete e e eeaeareneseereneaeenenes 11-3

C LinKer COMMANG FlEottt ettt e st e b et sbe b enesresbenns 11-3
Compiling and LinkKingocooieniiiiniise et 11-4]
TRE C ENVITONMENT ... o.ouovoeooeeseresesssssesesssesnnsaeeesessssssnseseseesnssssnsssssrneesnsesesssssserennenssssssnsnnen 11-4
BtatUS REGISTEr EXPECTATIONS ...ttt sttt e e e eeneeeeseeas 11-5

U G A S I Ltttk ettt etttk ekt ket e et e ekt ekt e k£ oAk £ ek ke eh b e ek £ e R £ ekt ehneshneshnesh bt ne b e bt ea 11-5
PaSSING PAIAMELEIS.........vcveeivevesivetieiiteteeietetetaetetesesetesaeteteststetessstesessssesesessesessasesesssresessssesesesseresssserens 11-6
ACCESSING MIIMIRS ...ttt e et e e st eeenteestbeeenbeestbeesnreesnreesnreeantes 11-7,
TYEETTUIDES +. .tttk etttk ekttt et eh et et £ et £ es e ah e e et e e et e e ekt e b e anneanreanreareenreens 11-7
NUMEITCAL TYPES ... veveeieieitteste et et ee st eesta e te e te e e s e sreeste e teenseeseessaestaesteeseeaneesneessaenseeseansesseessennsenns 11-9

C OPtIMIZAION LEVEISocviiiiiiciicice ettt aenae et e saeneestesnearaeneeeennen 11-9
D C StUTT ..tttk ettt nr ettt enes 11-10
LAB11 — Mixing C and ASSEMBIYiviieieiiieeieeeeeee s se s sn et 11-11]
ST 11-11]
LABLIA - ProCEUUIE ..o 11-12
EAIT LABLLA. ASML......oviiiiiiiiiieticieietteteie ettt ettt stasaesasbassesaasassesaasessenaasensessasessessasensenes 11-12
BUIl AN SIMUIBEE. ... 11-13
LABLLB — PrOCEAUIEcooviiiiieicite et 11-15]
o) [V Te T 11-16|

11-2 DSP54x - Mixing C and Assembly

The C Run-time Environment

The C Run-time Environment

C Run-time Environment

Mai n. C

int y =0;

{
}

void main (void)

int func(int,int,int,int,int);

How are

these

sections linked?

y = func(1,2,3,4,5);

y (global) —» .bss
0 (init val) = .cinit

Funec. C

int func(int a,int b,int c,int d,int e)

return(a + b +c +d + e);

\\»

DSP54.11 -3

C Linker Command File

C Linker Command File

MEMORY
{ PACE 0:
VECS: org = OxFF80,
EPROM org = 0xF000,
PAGE 1:
DARAM org = 0x0080,
CROM org = 0x8000,
SECTI ONS{
.text: > EPROM PACE
.cinit: > EPROM PAGE
. bss: > DARAM PACE
. stack: > DARAM PACE
vectors > VECS PAGE
. const > CROM PAGE
.switch > EPROM PACE
.sysmem > DARAM PAGE
}

P ORFPORFRPF OO

I en
len

len
len

= 00080h
= 00F80h

= 04000h
= 01000h }

/* code

/* global inits
/* variabl es

/* for SP

/* vectors

/* const int x=25;
/* for case stnts

*/
*/
*/
*/
*/
*/
*/

/* heap, dynamc nmem */

DSP54.11 -4

DSP54x - Mixing C and Assembly

11-3

The C Run-time Environment

Compiling and Linking

o Optimizer

-ks
file.asm

< --4

Y
—>»| Assembler

file2.asm|

file.obj

Compile & Link

CL500 -gks -o filel.c file2.asm -z Ink.cmd

Compiler

Run-time
Library
(rts.lib)

Debug: -g-o
Full opt: -03

Link.cmd
|
Y

-m

file.map

-on Optimization levels|

-z Invoke linker

DSP54.11-5

The C Environment

c_int0O:

Setup stack (SP)
Call _main

L R R R

On reset, how do you tell
the CPU to begin
execution at _c_int00?

All symbols accessed by C

Inititializing the C Environment...

Boot.c in rts.lib

Initialize global and static variables
Initialize C environment variables

;cvectors. asm

Ir'sv:

.ref _c_int00

.sect “vectors”
B c_int00

require an underscore
DSP54.11 -6

11-4

DSP54x - Mixing C and Assembly

The C Run-time Environment

Status Register Expectations

Run-time Environment
Presumed

STx Bits Name Value Modified
ARP Auxiliary Reg Ptr 0 Yes
ASM ACC shift mode Yes
BRAF Block Rpt Active Flag No
© Carry bit Yes
C16 Dual 16-bit math 0 No
CMPT Compatibility mode 0 No
CPL Compiler mode 1 No
FRCT Fractional mode 0 No
OVA/B ACC Overflow flags Yes
OVM Overflow mode 0 *
SXM Sign-extension mode Yes
SMUL Saturate/multiply *
TC Test Control flag Yes

< If the user modifies a “presumed value”, this value must be

restored by the function
& * - for intrinsics only DSP54.11-7

Func.ASM

Mai n. C

int func(int,int,int);
int 'y =0;

void main (void)

{
y = func(1l,2,3);

Writing Func.ASM

Main.C:

- prototypes
called function

- calls function

How are the parameters

passed to func() ?

Func. C
int func(int a,int b,int c)

return(a + b + ¢);

DSP54.11 -8

DSP54x - Mixing C and Assembly

11-5

Passing Parameters

Passing Parameters

Parameter Passing

ARO

ARL D :Sg\hﬂielg r;neL?sttr%/a(\;seoifEl}sed

AR2 PC
AR3 arg2 =2
AR4 A argl, ret value arg3 =3
AR5 B

ARG used
AR7 used

y = func(1, 2, 3);

PC placed on stack

L R 2K 2R R 4

Argument 1 is passed in A accumulator
Arguments 2,3... passed in reverse order via stack

Return value placed in A accumulator
Arguments on the stack can be accessed using compiler mode (CPL=1):

«— SP

Ex: LD *SP(1), B ;arg2loaded to accumulator B, i.e. *(SP +1)

& Context save/restore: PSHM AR6, POPM AR6 sPEALL -0
Func.ASM
Entry .def _func
- declare func as global _func:

- define entry point (label)

- save SOE registers

Algorithm
- execute the algorithm
return(a + b + ¢);
- place result in return reg

; push SCE registers

ADD *SP(1), A

;pop SCE registers
RET

;a+ b
ADD *SP(2), A i+ C

Exit
- restore SOE registers
- return to calling routine

With -03 enabled, func is deleted and
main simply does: ST #6,*(y)

PC <« SP

used

DSP54.11 - 10

11-6

DSP54x - Mixing C and Assembly

Passing Parameters

Accessing MMRS

Accessing MMRs from C

 Using pointers to access Memory-Mapped Registers :

e Declare the necessary MMR component :
’ extern vol atil e unsi gned SW\BR; I

e Set it’s address via a forced ASM statement :
] asm(” SWABR .set 0x28"); |

e Read and write to the register as desired :
’SV\V/\BR = 0x8244;

+ Volatile modifier :
e Especially important with optimizer (-0)
e Tells compiler to always recheck actual memory whenever encountered

e Otherwise, optimizer might register-base value, or eliminate construct

DSP54.11 - 11

Interrupts

Interrupts in C

¢ Interrupt Service Routine
e C function to run when interrupt occurs

e All necessary context save/restore performed
automatically

¢ Interrupt Initialization Code
e Should be called prior to run-time process
e Interrupt status may be modified during run-time

¢ Interrupt Vector Table
o Written in ASM

DSP54.11 - 12

DSP54x - Mixing C and Assembly

11-7

Passing Parameters

Writing ISRs in C

int x[100] ; | & Global variables allow
int *p = x ; — | sharing of data between

main functions & ISR

mai n {/)// [— & Keyword
1 Name of ISR function

interrupt void nane(void)

{
static int y = ; — ¢ Void input and return values
—_— . \
_y =1 I~ o Locals are lost across calls
if y < 100 Statics persist across calls
*p++ = port 0001;
el Sg P + ISRs should not include calls
asm(* intr 17 “); & Return is with enable (RETE)
} ' & Avoid -e or -oe options

DSP54.11 - 13

Initializing Interrupts in C

Setup pointers to IMR & IFR. Initialize IMR, IFR, INTM :
vol atile unsigned int *IMR = (volatile unsigned int *) 0x0000;
vol atile unsigned int *IFR = (volatile unsigned int *) 0x0001;

*| FR = OXFFFF;
*I MR = OXFFFF;

asm(“ RSBX I NTM “);

Create Vector Table : Compiled ISR Sequence :
sect ““.vectors” * I$$SAVE performs context
save (from RTS.LIB)

B _ISR1 & ISR function runs

aap & I$SRESTORE performs

nop context restore (RTS.LIB)
¢ RETE - Return with Enable

DSP54.11 - 14

11-8 DSP54x - Mixing C and Assembly

Passing Parameters

Numerical Types

Numerical Typesin C
¢ Q15 math in C is accomplished by shifting the result:

XXXX XXXX XXXX XXXX 16-bit int
* YYYY YYyy Yyyy yyyy 16-bit int

zlzzz 2227 72227 7222 ‘zIzzz 722727 7727 7272 | 32-bit prod

[2=(P nt) ((x*y)>>15); |

< an integer is defined as the low portion of the accumulator

¢ short, char, etc, occupy full 16-bits of memory

¢ f | oat operations supported via rts.lib (multicycle)

DSP54.11 - 15

C Optimization Levels

C Optimization Levels

- allocates variables to registers
Level 0 |- simplifies expressions
- eliminates unused code
Level 1 |- removes unused assignments and
common expressions
0T single function (local) optimizations
Level 2 |- performs loop optimizations/unrolling
“1” + .. |- multi-function (global) optimizations
- removes unused functions
Level 3 - in-lines calls to small functions
wyn |- can perform multi-file optimizations
using project mode (assertions)
- other options available with Level 3
optimization levels are set via CCS build options DSP54.11 - 16

DSP54x - Mixing C and Assembly

11-9

Passing Parameters

Other C Stuff

Other C Stuff...

asm(“ |IDLE");

#i ncl ude <intrindefs. h>

y = _smacr(x1, x2, x3);
#pragma Data_Section(y, “Var”);
int y=0;

unsigned int *ctrl;
trl = OxFF);

In-Line Assembly
- can disrupt C

Intrinsics
- ASM instructions in C
- see C Compiler guide

Data/Program Sections

Volatile Keyword

- compiler may remove
code without volatile
keyword

& CCS allows you to change the default stack and heap sizes in

Project : Options : Compiler if desired.

DSP54.11 - 17

11-10

DSP54x - Mixing C and Assembly

Passing Parameters

LAB11 — Mixing C and Assembly

Objective

In this lab we’ll be changing one of out previous assembly language files to be C callable. Pay

careful attention to the passing of parameters in the A accumulator and on the stack

LAB11A - Mixing C and ASM

1. Review the given file: MAI N11A. C

2. Modify block FIR routine to be C callable
3.
4

. Build, profile and verify operations

Review/modify given linker command file

Time: 75 minutes

DSP54.11 - 18

DSP54x - Mixing C and Assembly

11-11

LAB11A - Procedure

LAB11A - Procedure

1. Create a new project called LAB11A.

2. Copy LABG6A. ASMto LAB11A. ASM and add it to the project.

3. Add and inspect the given files below to the project:

LAB11A. CVMD
MAI N11A. C
CVECTORS. ASM

4. 1 N11. H isincluded in the C routine and does not need to be added to the project

Edit LAB11A. ASM
4. Make the following changes to LAB11A. ASM

Remove the allocations for a, x, y and the stack. MAI N11A. Cand BOOT. ASMtake care
of these allocations for you.

Define an entry label for the assembly file using . def _fir
Reference aand x using . ref _a, x

Change the entry label from st art to _fir. Thisis where you want your fir code to
start when MAI N11A. Cecalls it.

Remove the stack allocation instructions.

Change your .sect “code” to .text. C places all code in the .text section. Reference
LAB11A. CVD (the “code” section is not linked).

Remove the copy routine, . copy of i n6. dat , stop conditions and all calls.

Remove the allocation for the i ni t section as well as t abl e[16]

5. After the _fir label, you need to write some code to access the parameters on the stack.
Before writing any code, draw a picture of what the stack looks like prior to calling your
assembly routine. If you’d like, comment this in your assembly routine and refer to as you
write your code. Your diagram should look something like this: When _f i r is called, the
stack and accumulator look like this:

Return Address < SP

Results

&y

AL = TAPS

11-12

DSP54x - Mixing C and Assembly

LAB11A - Procedure

6. So, the stack pointer (SP) points to the return address PC. An offset of +ONE from SP is the
parameter RESULTS which needs to be loaded into BRC. An offset of +TWO from SP is the
address of y which needs to be loaded into ARn (whichever AR you used to store the
results).

Note: Please note that if you have pushed any registers (like STO or ST1), you will need to
modify the picture of the stack as well as the following instructions.

7. Now, perform the following instructions to load the correct registers from the stack:
« STLM A, BK ; load BK with TAPS
« MWDK *SP(1), *(BRC) ;load BRC with #RESULTS-1
« MWDK *SP(2), *(ARl) ;load ARn with the address of y

Make sure you remove the STM to the result AR register in your code as well as the STMs to
BK and BRC.

8. Inside your _fi r routine, you set the FRCT bit to use fractional mode. C expects FRCT=0,
so you must RSBX FRCT before returning. Change your done: label to set FRCT to zero,
then follow this instruction with a return.

9. Change any referencestoaor xto_aand _x.

10. Note: in a normal subroutine, you would want to make the single repeat and the pointer wrap
based upon the passed parameter TAPS. To make it easy on yourself (to start with), simply
hard code the values into the single repeat and pointer wrap. Then, once you get your code
working, go back and make the necessary changes to the assembly routine.

Build and Simulate

11. Because we’re now working with C, we’ll need to check the settings for the C compiler. On
the menu bar click:

Proj ect > Options

Under the Conpi | er tab change —g to —gks in the command line switches box on the top.
This will keep the assembly file from the compilation so we can inspect it. Make sure you
have Load Program after Build checked under Opt i ons - Pr ogr am Load.

12. Build the project. Remember that you can double-click on any error to immediately go to it.

13. When the build and load are complete, reset your system. You should see B _c_i nt 00 in
the CVECTORS. ASMsource file.

14. Type: go mai n on the command line. This will run through the C initialization routine in
BOOT. ASMand stop at the main routine in MAI N11A. C.

DSP54x - Mixing C and Assembly 11-13

LAB11A - Procedure

15.

16.
17.

18.

Single step and check to make sure the proper values are loaded onto the stack in the proper
order prior to the call to fir (). Then single step through your assembly code and ensure that
these parameters are loaded into the proper registers. If all of this works properly, double
check your math code. If everything looks good, hit the Run button. You do not need to set a
breakpoint, because your assembly routine will return back to main and the execution will
stop at the C exit routine which is an infinite branch. Graph your results.

We don’t have much C code here to optimize, but let’s see how you use the optimizer ...

Under Pr oj ect - Opti ons, underthe Conpil er tabclickon Opti m zer inthe
Cat egory box. Let’s go ahead and pick Level 3 — Fil einthe Level box. Run your
code and graph your results.

You are now done with LAB11A. Congrats.

11-14

DSP54x - Mixing C and Assembly

LAB11B — Procedure

LAB11B — Procedure

As an alternative to processing the entire block in one call, let’s decide to use the C language
INTERRUPT capabilities and process another output EACH time a new input sample comes
from the ADC.

1. Setup the INTERRUPT prototype to call the RINT ISR.

2. Place your FIR code in a subroutine. Call that subroutine with a CALL using the index of the
latest sample that became available.

3. See LABL11B files in the solutions directory to see how this works.

DSP54x - Mixing C and Assembly 11-15

Solutions

Solutions

MAI N11A. C- Solution

/1 Define Sanple and Tap sizes for function
#defi ne RESULTS 185
#define TAPS 16

/1 Initialize Coefficient Table

int a[TAPS] = {0x7FC, Ox7FD, Ox7FE, Ox7FF,
0x800, 0x801, 0x802, 0x803,
0x803, 0x802, 0x801, 0x800,
Ox7FF, Ox7FE, Ox7FD, Ox7FC};

/1 Specify specific address for the result: y
#pragma DATA_SECTION (y, "yl oc");
int y[RESULTS];

/1 include initialized x array
#include "inll. h"

extern void fir(int taps,int results,int *y);

mai n()

/] set wait states to zero using in-line assenbly

asm(" STM #0, SWIBR") ;

/1 call assembly FIR routine
fir(TAPS, RESULTS, y);

DSP54.11 - 20
stack | ooks like this upon entry to this asmroutine:
RET_ADDR <-- SP
RESULTS
&y
AL = TAPS
allocate | abel definition here
. T egs
.def _fir
.ref _a, _x
. text
_fir: STLM A BK ;load BK with TAPS (16)
MVDK *SP(1), *(BRO) ;load BRC with RESULTS (185)
MVDK *SP(2), *(ARL) ;load ARn with &
LD #0, DP ;set SST bit (saturate on store)
ORM #1, @NMST
SSBX FRCT ;set FRCT bit (fractional node)
RSBX ow ;clr O/Mbit (overflow node)
SSBX SXM ;set SXM bit (sign extension)
DSP54.11 - 21

11-16

DSP54x - Mixing C and Assembly

Solutions

LAB11A.

done:

ST™ #1, ARO

ST™ #_a, AR

ST™M #_x, AR3

RPTB done-1

MPY * AR2+0% * AR3+, A
RPT #14

MAC * AR2+0% * AR3+, A
MAR * +AR3(- 15)

STH A, *ARL+

RSBX FRCT

;setup ARs for MAC

; 1st product
;mult/acc 15 terns

;store result

;return

ASM- Solution (continued)

DSP54.11 - 22
nei nlla. obj
| ablla. obj
cvectors. obj
-0 lablla.out
-m | ablla. map
-c
-stack 0x100
-1 c:\dsptls54\c54xcgt\rts.lib
MEMORY {
PAGE 1: /* Data nenory */
SPRAM org = 00060h, |en = 00020h
DARAM org = 00080h, |en = 00400h
PAGE 0: /* Program nenory */
EPROM org = OF000h, |en = O0F80h
VECS: org = OFF80h, |en = 00080h
}
SECTI ONS
{ .text > EPROM PAGE 0
vectors :> VECS PAGE 0
. bss :> DARAM PAGE 1
. stack > DARAM PAGE 1
yl oc > DARAM PAGE 1
}
DSP54.11 - 23

DSP54x - Mixing C and Assembly

11-17

Solutions

11-18 DSP54x - Mixing C and Assembly

Making a C54x System Work

Introduction

Hooking up memory and peripheral devices, programming wait states, relocating code, setting up
the clock ... these seemingly small items can end up being show-stoppers. In this module we’ll
take a look at these topics and others so we can smoothly transition our software to a real live

system.

We’ve taken a different approach in this module from the rest of the workshop. Here we’ve
attempted to cover every single topic that someone implementing a DSP system might care about.
Obviously there are things that fall outside the scope of this, like choice of algorithm, sampling
rates, etc.

There is a lot of detail in this module, probably too much to cover in depth and still stay awake.
Your instructor will point out the major decisions and why they were made. Your implementation
will be different, but you will still have to go through a similar process.

DSP54x — Making a C54x System Work 12-1

Module Topics

Module Topics
YO S A T 12-1]
MOGUIE TOPICS ... s 12-2]
| [T TV T 12-3]
| IR N 12-4
POWET CONSIABIALIONSvevveeeeieiteiteetieteeeieiestesteseestesraeseeseeneesteseessesseaseeseeneessessesesseasesseaneeseeneensessens 12-4
TNE CHOCK .1ttt ettt ettt e et e e st e eetteestbeeeseeestbaeanteessbeesnreessreesnreesntsesresestes 12-5
T 2T 12-6
The Analog INtErface CICUIT (AIC) ...ttt e et e steesbeesnbeesnreesnns 12-7
CONNECING UNUSEA PINS ...ttt e e st e e saeeesebeessseessseessseessseeesseessseessseessssesnsesssses 12-8
A 12-9
HArdware TrOUDIESNOOTING.ccuiiiiiieiiieecee ettt nee e e 12-9
he Flrmware. 12-10
NItIA] CIOCK FIEOUEBNCYo iiiieiiiiiic et eet e ee e et est et eseesseaseeseeseessessessessesseaseeseensessessessens 12-10
PrOgramMmMING THE PLLc..couviiuiiiiiiiiiiccieciecieeee ettt e e e eeveetaestaesteesreeresnreanns 12-11
T (U oI O oo [T P PP PPTPPTPT 12-11
[VRIT STATESvvvovevesrerenenenensssssssssnsmssssesesessrsssnensnsesnssssesmnensnsnsessessnnsesesesessmrsmnnsnssssssssesmsnnnens 12-12]
R T U T I e e L 12-13
Bank Switch C_:ontrol ... 12-13
BSCR RO T 12-14
MCBSP/ATC EQUALTIONS ...ttt ettt e eette e tveeeteeesbvaeeteeestraeseeessreennreens 12-14
BEIHING UD IMCBSPO ...ttt et s teeeateessteeeasessssessasesssseesnsesssseesssesssseesnseessseesnssssns 12-15
MCBSP Setup Code. . oooisiii 12-17]
AT IS TSI AT 12-17
ATC SETUP COUE .o, 12-18
AT TS oI T L 12-19
I T T 12-21
TIMEIINE ANIYSIS ...t e et e st s e s e e et e e e esee e eseseesresresreeseessessens 12-21
DIMIA SEEUD COUB.....uviieviivieitieeteeeieeteeteetteete et e e eteettesteesteeeteasesaseassessseetseseessesseesseesreesseesseeseenes 12-22
Turning ON The HardWare COOE.iiiuiiiiiiiieeiie it eitte e ittt eettesstreesssessteeessseessseeasseessseesseessseessneees 12-22
JTNE SOTEWAIE. ...t 12-23
L INK.CMA AN VECIOIS.ASIM......civiiiiuiiiiiiecctie ettt ectie et eette e st eetteesteeesaeeesteeeeseeesteeessreesteeesseeestreesseeesns 12-23
The Hardware Setup and The FIR COUEc.cccuiiiuieiiiiiiiece et veeeveeaa 12-24
T BOOTIOAUET L....viiieiiiitiiit ittt ettt eeteeetseeessessbseensesstseesseessseesseeessseenesessssesnsessns 12-27
EX000 12-28
[T 12-28
OWETF MaANAGEMENT HINTSveeiieiieesieeieeieeeesteesteeseeeeseesraesreesreesseeseeeneeaneesseesseessaensanseeeseessenssees 12-29
S LO TSI Te 12-29
NEeed MOre INFOIrMATIONT?.o it et e e st e st e sreaseereeseeseessessesresresreeneeneesserens 12-30
Additional ANalog INFOrMEALIONiivisieiisce i ss e ssisssssessessissssssensssssesssssssessssnsnesssnssssssnssessnseeas 12-32]

12-2 DSP54x - Making a C54x System Work

Introduction

Introduction
Intro to Problem We’re Solving...
Voice-band Audio, = > 5402-100 |« » External
AlC DSP »| Memo
Voice-band Audiog € < v y
16-bit 16-tap block FIR Boot Code
8K samps/s Low-pass filter

¢ Goal: build a system from scratch that performs the following:
- 16-bit 8K samples/sec voice-band audio 1/O stream
- Process via 16-tap block FIR low-pass filter on 32-element frames
- Use DMA/MCcBSP to interface to the AIC
- Boot vector table, code and coefficients from external memory

¢ What steps must we follow?
Part | - Configuring the Hardware (selecting and connecting)
Part Il - Configuring the Hardware with Software
Part 111 - Programming our Application, BootLoading

[Project] in title indicates specific choices made for our design project psps4.12-2

Throughout this module we will use the [Project] in the title of the slide to identify where we
have made specific choices for our design project. Other slide may include more general
information about concepts or selections that the 5402 may not possess.

DSP54x - Making a C54x System Work 12-3

The Hardware

The Hardware

M [1
Part | - Start with “vVC5402
Why ‘VC5402?
v_c?ggz & Extended addressing (up to 1M x 16)
. ¢ 16K DARAM
‘5 ¢ 4K ROM
¢ 2 McBSPs
& 2Timers
Disclaimer: ¢ HPI-8
Register layouts, features, and
capabilities of the 5402 differ ¢ 6channel DMA
slightly from other 54xx & 100 MHz
processors. As always, you will
need to refer to your chosen ¢ 33V 1/0, 1.8V core
device’s specification. ¢ DSPon DSK
How do we provide power to the ‘5402 DSP?
DSP54.12 -3

Power Considerations

[Project] - Generating Power

Dvdd 52/
\VC5402 250K l— 1RESET 1IN(2)
-100 RSn 2RESET 21 N(2)
Ccvdd(6) 10UT(2) ~~- F
Dvdd(6) 20UT(2) 1/ 2GND(2)
Vss(12) 7£0LI§L 1/ 2EN(2) —1
T_’F‘ TPS767D318
Voltage Regulator, SVS v
DG\D G\D

Provides 1.8V for CVdd (core), 3.3V for DVdd (1/O), 2% tolerance
Brings both supplies up at once

200ms reset delay on power up

Out-of-tolerance voltage triggers reset by SVS (supervisor system)
Some supervisor devices offer watchdog timers

More on proper grounding methods later...

* 6 6 ¢ o o

If you design your own power supply, you’ll have to consider...

DSP54.12 - 4

The following pages on the T1 web site have excellent selection charts for this and other parts:

fvww.ti.com/sc/select |

Wwww.ti.com/sc/docs/products/msp/index.htm |

12-4 DSP54x - Making a C54x System Work

http://www.ti.com/sc/select
http://www.ti.com/sc/docs/products/msp/index.htm

The Hardware

Power Sequencing

VC5402
-100 RSn
. cvdd(6) ——— If you cannot bring up supplies
DVdd(6) f——— simultaneously, then...
Vss(12)

& Neither supply should power up for an 25ms with the other supply
below operating voltage.

& System-level concerns such as bus contention may require supply

sequencing to be implemented. If so, CVdd should power up at the same
time or prior to (and powered down after) DvDD.

Recommendation: Use bypass capacitors of 4.7uF at CvVdd/DVdd supply tree,

0.1uF at each pin. Use as many caps as possible to increase
tolerance of switching noise and power spikes.

Now that we have power, let’s hook up a clock...

DSP54.12 -5
The Clock
[Project] - Generating the Clock
SR CLKMD | 5402
| 8% | ckar=, Py 12 3| akour
VC5402 CLKMDL ‘w 0 0 0| PLL x15
-100 CLKM®2 00 1|PLL x10
. LMD eS| 010]|PLL x5
{? 1 ke—x 100|PLL x2
CLKS 101|/4 no PLL
X2/ CLKI N our L0 6| E s
EPSON 8.192MHz 111|/2 no PLL
Oscillator

Crystal oscillator also possible between X1 and X2

‘5402 will run at divide-by-2 until PLL is re-programmed and locked
Using ext’l clock (no crystal), no PLL, min clk is 0 Mhz (static design)
Minimum input frequencies apply when using PLL (see datasheet)

Other 54xx devices have different CLKMD options

If PLL mode selected, user must wait for lockup by holding device in reset

L 2ER JER 2R JER BN 4

What else do we need to hook up? Program memory...
DSP54.12 -6

The selection of the clock is driven by a number of factors: PLL options, CPU speeds desired,
system circuitry requirements and others. Your system may require more than one clock source to
meet all of your goals.

DSP54x - Making a C54x System Work 12-5

The Hardware

Memory

[Project] - Hooking Up Ext’l Prog Memory

g\og A[17: 0] »[A[17: 0] Dvdd
CLOCK| VC5402 DI 15:0] [« D[15: 0]
-100 PSn » CEn BYTEn

, MSTRBN CEn
*? VEn Vien 10K
RS- SVS—+| RESETn

AM29LV400B, 3.3V
256K x 16 FLASH, 70ns

Cycle Time (2H) | 25 | 15 [125 | 10
Accesstime (tA) (15| 5| 25 | 0!

Read Timing
o t, is typically 2H-(addr+data setup). These values are device dependent.
& Without wait states, reads can occur every cycle: R-R-R

¢ Wait states required for faster devices (see table above)

¢ ‘5410 has updated external memory interface (X10) timing

& Writes to FLASH require knowledge of programming state machine

First Program memory, next...Data memory...

DSP54.12 -7

This type of FLASH contains the programming algorithm as an internal state machine. Your code
will need to reflect knowledge of the specific algorithm your selected FLASH implements. You
can of course use EPROM, ROM, RAM or any other kind of asynchronous memories for both

program and data space. You will need to initialize volatile memories if your code maps
initialized sections in them.

[Project] - Hooking Up Ext’| Data Memory

% A 15: 0] —> A 15: 0]
CLOCK| VC5402 DI 15:0] Dl itz @ CEn —~— Dvdd
FLASH| -100 DSn » CSn BHEN 9K

@ NBT\?E: :. VER BLEn

IDT71V016, 3.3V
64K x 16 SRAM, 15ns

A

Write Timing

& Single external write requires one CPU cycle to initiate,
but 3 cycles to complete: x-W-x (dead-ACTIVE-dead)

¢ Chained external writes use 2N+1 cycles: x-W-x-W-x

< Internal writes require 1 cycle: W-W-W-W

& Most DSP code favors reads. Ex: 256-tap filter (512 reads, 1 write)

& Wait states extend the active strobe time (W) ONLY by the # wait states
¢ Note: hooking up 5V devices to the DSP requires voltage level shifters

Now, how will we interface with the real world?

DSP54.12 -8

12-6

DSP54x - Making a C54x System Work

The Hardware

The Analog Interface Circuit (AIC)

PVR
SVS

CLOCK

VC5402 BDX0

FLASH

-100 BDRO

SRAM

BFSR/ X0

* 6 6 ¢ o o

3

BCLKR/ X0

[Project] - Serial Comm and Analog 1/0

CLK8—>

I NP
I NM

MCLK
DI N

DoUT
FSn QuTP
SCLK OQUT™M

«—— Analog
le— Input

—* Analog
+—— Output

TLC320AD50C

Analog Interface Circuit (AIC)
16-bit 22KHz ADC/DAC with filters

MCLK provides clocking for sigma-delta converter (8.192 MHz)
DIN (digital input) to DAC, DOUT (digital output) from ADC

FSn (frame sync) provided by AIC to DSP (FSR/X tied together)
SCLK (shift clock) provided by AIC to DSP (CLKR/X tied together)
Several programmable features will be covered later...
Analog 1/0 is shown differential, high-pass RC required on inputs

What is left to hook up on the AIC?

DSP54.12 -9

A simple low-pass RC network on the input limits inputs to the Nyquist rate. An RC smoothing
filter on the output should also be implemented.

[Project] - Other Connections

SVS

CLOCK

VC5402

FLASH

-100

SRAM

¥

5V

5 1]

——]FILT AVDD
J1uF AVDD(PLL)
AUXP REFP
AUXM REFM
ALTDATA AVSS
AVSS(PLL)

AGND DoNp T-C320ADS0C

& REFP/M: voltage reference filter input

AGND AGND AGND

¢ AGND and DGND should tie to GND at one and ONLY one point
& FILT decouples band-gap reference
& ALTDATA is a secondary data line (phone mode control)

Any other AIC signals that need to be connected?

DSP54.12 - 10

Any circuit with mixed signals (digital and analog) should implement separate digital and analog
grounds to reduce noise. Bring these grounds together at one and only one point. Failure to do so
will result in ground loop currents between the connections, higher system noise levels and lower

effective resolution.

DSP54x - Making a C54x System Work

12 -7

The Hardware

[Project] - Misc Signals

Dvdd
g\og CLKOUT DVDD
CLOCK| VC5402 DX T —
FLASH| -100 DR M Sn
SRAM # FSR/ X RESETh l«—RS- SVS
CLKR/ X DVSS —
XF FC DGAD
TLC320AD50C

¢ PWRDWN: off
& M/Sn (master/slave): master
& XF will be used to enable AIC control register writes

What do we do with all the unused DSP pins?

DSP54.12 - 11

Connecting Unused Pins

[Project] - Pull-Up or Pull-Down ?

g\og Dvdd Other Signals | Pull
CLOCK]| VC5402 READY oK (always ready) INTO-3n, NMIn | up
FLASH| -100 MP/ MCn (uC mode) BCLK/FSR/DR1 | up
SRAM @ HOLDn, BIOn | up
Al C HPI ENA (HPI off)
DGND

General Rules:

¢ Unused OUTPUTS can be left unconnected

¢ Unused INPUTS must be pulled inactive (else input chatters)
< 1/O: pull up with 10K (else output may short to ground)

¢ Many signals can be remapped as GP1O

We can’t talk to our development tools without...?

DSP54.12 - 12

CMOS type inputs without a pull-up or pull-down will assume some intermediate voltage.

System noise will cause them to go above and below the switching levels causing “chatter” and
wasting power.

12 -8

DSP54x - Making a C54x System Work

The Hardware

JTAG

[Project] - JTAG and Emulation Port

g\og EMJO/ 1 EMJO/ 1 DVTdd
CLOCK| VC5402 TRSTn TRSTn PD
FLASH| -100 D T
SRAM % TDO TDO
Al C ™ ™G GNDX(5)]
pins TCK TCK DG\D
L» TCK_RET

14-pin JTAG Header

EMUO/1, TRST, TDI must be pulled high through 10K resistors
Recommend device-to-header length < 6 inches (else buffers are needed)
‘5420 JTAG boundary scan is restricted

Must connect ALL grounds properly

Serial scan rate is approximately 10 MHz (TDI-to-TDO)

* & 6 o o

So, what happens if we turn on power and we can’t get the emulator working?

DSP54.12 - 13

JTAG connections MUST be clean and free of noise. Failure to provide good connections for the
emulator results in significant headaches for the designer.

Hardware Troubleshooting

Hardware Troubleshooting
Items to check (in order)
& Power supply working properly (check DVdd/CVvdd/5v)?
& Check all grounds for continuity.
¢ Is CLKOUT toggling?
.

Is RSn working properly (or is the CPU still in reset)? ‘542x devices
have 2 reset signals, so make sure they are both working.

Perform an EMURST from the debugger. If it fails ...

- Are TRST and TCK functioning properly?

- Are the JTAG data signals (TDI, TDO, TMS) toggling?
- Are EMUO0/1 properly pulled up?

- Is PD connected to DVdd?

« Is your debugger (CCS) set up for the correct 54xx device and order
of cores if using multi-core device (‘542x)?

& For more EMU info, refer to SPRA439 “Emulation Fundamentals ...”

*

After verifying that the h/w works, we need to write code to set up the h/w...

DSP54.12 - 14

DSP54x - Making a C54x System Work 12-9

The Firmware

The Firmware

Part Il - Software Part of the Hardware

Configuring the Hardware Via Software:
+ Set initial clock frequency and programming the PLL

+ Set up software and hardware wait states, bank switching
& Determine bit settings for all peripherals: McBSP, AIC, DMA

& Write code to program the peripherals

DSP54.12 - 15

Initial Clock Frequency

Setting ‘54xx Initial Clock Frequency

CLKMD | 54xx
aLKOUT|—» égg /C‘EKOUF
54xx ~ CLKMDLje—1 001/[/2
-100 CLKMD2 [+— 1 010/|/2
) le— 1 01 1| Stop node
{, CLKvDS 100]/2
XLp—x 10 1|PLL x1
X2/ CLKI Nje— CLK8 110//2
111//2

& ‘5402 supports auto-programming of PLL with CLKMDX pins.
- PLL programming not necessary unless change of frequency desired
or clock multiplier not sufficient (we’re doing a x12 for the project)
- For all devices, do not change CLKMDx pins after reset

& Other ‘54xx devices require the user to program the PLL after reset
& User will normally power up device in /2 mode (see datasheet).
¢ Early ‘54x (e.g. 541) devices do not have a software programmable PLL

So, how do we manually program the PLL to a desired frequency ?
DSP54.12 - 16

See your devices datasheet for its clock mode selections.

12-10 DSP54x - Making a C54x System Work

The Firmware

Programming The PLL

[Project] - Programming the PLL

& Power up in div-by-2 mode, CLKIN=8.192MHz, CLKOUT= 4.096 MHz
& However, we actually want CLKOUT to be ~100MHz
15 12 11 10 3 2 1 0
[PLLM. [PLLDIV [PLLOONT [PLLON OFF [PLLNDIV | PLLSTATUS |
Clock Mode Register
1. Determine Initial Clock Mode Reqister Value: (STM #0B7FCh, CLKND)_

a. Select PLLMUL ([x+1] * CLKIN) and PLLDIV (divide: yes/no) to your
desired values. Ex: x=11 for ~100MHz CLKOUT, PLLDIV=0 (no divide)

b. Select PLLCOUNT (Power up CLKOUT cycles * 16 to lock up).
CLKOUT=4MHz, PLLCOUNT=FFh, Lock up time = 255*16*250ns = 1ms
(Note: worst case time to lock on is 30us)

c. Select PLLON/OFF. Ex: ON (1) (begins PLL lock-up)

2. Tell processor WHEN to switch to new frequency: (ORM #2, CLKMD)
- if PLLCOUNT is non-zero, no switch will occur until PLLCOUNT =0.

Let’s do the coding... DSPELL. 17

PLL Setup Code

[Project] - Programming the PLL

; Setup CLKMD Regi st er & 5402 includes auto-lock feature
STM #0B7FCh, CLKMD

:Tell PLL to switch
:when PLLCOUNT = 0O

ORM #2, CLKMD ¢ Could set PLLCOUNT lower
if worst case lockup time is met

& PLL locks on after 30us to
new clock frequency

¢ You have 3 options regarding WHEN

your system switches from low to

high frequency:

1. Use auto-switch (e.g. ‘5402 PLL):
PLL locks automatically after Xns

2. If your system is sensitive to the
switch time, simply poll PLLSTATUS:
a. loop until auto-switch occurs
b. Set PLLNDIV=1 when locked

Next, let’s set up the proper wait states... DSP54.12 - 18

DSP54x - Making a C54x System Work 12-11

The Firmware

Wait States

‘5402 Software Wait States

15 14 12 11 9 8 6 5 3 2 0
[XPAT 1/0 [H Data [LowData | H Prog [Low Prog |
SWWSR: Software Wait State Register

15 1 0
SWCR: Software Wait State Control Register [Rsvd [SWM |

& Wait state: addition of ONE clock cycle to external memory access time

& SWWSR (3 bit fields)=0to 7
SWCR (SWSM) = 1, s/w wait-state multiplier bit doubles SWWSR value

& On reset, all Program, Data and 1/O is 7 wait states (SWSM = 0)

& XPA (Extended Program Address Control Bit). 0: every 64K page in program
space split in half. 1: Low Prog determines ENTIRE space (varies by device).

& On last software wait state (2-14), MSC will go LOW for 1 cycle.

XPA=0 XPA=1
0 0 0
Low Prog Low Data
x8000h Low Prog 1/0
Hi Prog 8000n Hi Data
xFFFFh FFFFFh FFFFh FFFFh
What if this software setup is not sufficient? DSP54.12 - 19
Hardware Wait States
PSn > CSn
VC5402 ?
-100 MSCn DS Q
*? CLKOUT M> — Momary
READY

When PSn/MSCn = 0, READY = 1, adds 1ws to SWWS

¢ Used when >14 wait states required, >2 speeds of memory or variable
wait-states exist.

¢ 0-1 SWWS: hardware wait-states do not apply

& 2-14 SWWS: MSC (Micro State Complete) pin indicates end of the last
SWWS to trigger addition of hardware wait states if required.

¢ Hardware wait is completed by a high signal input into the READY pin.
READY is sampled on falling CLKOUT1 (mid-cycle) and is not sampled
before MSC falls.

DSP54.12 - 20

12 -12 DSP54x - Making a C54x System Work

The Firmware

Waitstate Setup Code

[Project] - Programming Wait States

; SWABR Set up ‘ 5402
STM #8244h, SWABR -100
; SWCR Set up
STM #0001h, SWCR

256Kx16, 70ns

64Kx16, 15ns
& ‘5402-100 t,= Ons for zero wait states

& 70ns: best case 7ws, so choose 8ws
- SWSM/XPA=1, Low Prog=4, Hi Prog=x
- All 256Kx16 = 8 wait states

¢ 15ns: 2ws
- Low/HiData=1 (SWSM=1)
15 14 12 11 9 6 5 3 2 0
SWWSR lXPAl 110 [H DatalLow DatalHi Prog[Low Prog
1 000 001 001 000 100

15 1 0 Do we need to add wait states when

SWCR [Rsvd | sw8M | switching between memory banks?
1 DSP54.12 - 21

Bank Switch Control

Bank Switch Control

12

15 11 10 3
BSCR [BNKOWP [PS-DS[Reserved

[FeH [BH [EXO]

- ¢ EXIO: external interface off (1=0ff)
BNKCMP value | Bank Size o BH: bus hold (1=hold)
2 8 8 8 ggﬁ ¢ EXIO/BH=1, memory inputs don’t toggle
1100 16K ¢ HBH: HPI bus hold (1=hold)
1110 8K & PS-DS: 1ws added when changing PS-DS
1111 aK + BNKCMP: Bank Compare (see table)

Banks: add 1 wait state when crossing boundary

Table applies to external program and data spaces

Use only specified values of BNKCMP

1 cycle penalty for crossing program pages (XPC is modified)

L 2R 2R 2R 4

DSP54.12 - 22

DSP54x - Making a C54x System Work

12-13

The Firmware

BSCR Setup Code

[Project] - Programming BSCR
; BSCR Set up 5402
STM #0800h, BSCR 3 256Kx16, 70ns
100
64Kx16, 15ns
¢ EXIO/BH: off (interface is always on)
¢ HBH: HPI is already disabled (HPIENA)
& PS-DS: On, 1ws when switching PS-to-DS
& BNKCMP - choose largest bank size (64K)
15 12 11 10 3 2 1 0
BSCR [BNKCWP]PS— Iﬁ[Reser ved [HBH [BH [EXI O]
0000 1 0 0 0 0
On to the McBSP...
DSP54.12 - 23

McBSP/AIC Equations

[Project] - McBSP/AIC Equations

‘5402 BDX0 DI N Analoq 1
-100 B0 pour [AnalogIn
BESRIX0 FSn —» Analog Out
BCLKR/ X0 SCLK
McBSPO AIC
8.192 MHz = X2/ CLKIN

¢ DSP CLKIN = AIC MCLK = 8.192 MHz

¢ Desired sample freq: 8KHz (voice-band), 16-bit resolution,
bit-rate = 16*8 = 128KHz

& Set AIC sampling rate (FSn) = 8KHz = MCLK / (128 * N) where
N=8 (REG4, bits 7-4)

¢ BCLKR/X0=SCLK from AIC = FS * 256 = 2.048 MHz = serial port bit clock.
¢ BFSR/X0 = FS = 8KHz, BCLKR/X0 and BFSR/X0: set as inputs
& MCcBSPO0 Sample Rate Generator NOT used. Desired specs prohibit its use.

Let’s first determine the McBSP setup bits... DSP54.12 - 24

12-14 DSP54x - Making a C54x System Work

The Firmware

Setting Up McBSPO

[Project] - McBSPO Setup

Reg Bit(s) Name Description Value Note
SPCR10 15 DLB Digital Loopback on/off? 0 off
SA-00h 14-13 RJUST Right justify in DRR? 10 left justify
12-11 CLKSPP Clock Stop mode (SPI) 00 no SPI1
10-8 [rsvd] [reserved] 00
7 DXENA Enable DX delay? 0 no delay
6 ABI S A-BIS mode (any bit delay) 0 none
5-4 RI NTM Rcev interrupt mode 00 interrupt on RRDY
3-1 Error/status fields 000 not used
0 RRST Receiver reset 0 keep in reset
4000h FINAL VALUE
SPCR20 15-10 [rsvd] [reserved] 000000
SA-0th 9 FREE Run free wW/EMU stop? 0 not FREE running
8 SOFT Finish current word? 1 yes
7 FRSTn FS logic reset? 0 yes
6 GRSTn SRGR reset? 0 yes
5-4 XI NTM Xmt interrupt mode 00 interrupt on XRDY
3-1 Error/status fields 000 not used
0 XRST Transmit reset 0 keep in reset
0100h FINAL VALUE
SPCRxy - Serial Port Control Register x/y (Regx/McBSPy)
SA: Sub address used for programming DSP54.12-25
[Project] - McBSPO Setup
Reg Bit(s) Name Description Value Note
PCRO 15-14 [rsvd] [reserved] 00
SA-OEh 13 XI CEN DX: GP1O? 0 DX normal
12 RI CEN DR/CLKS GPIO? 0 DR/CLKS normal
11 FSXM FSX infout? 0 in: gen’d by AIC
10 FSRM FSR infout? 0 in: gen’d by AIC
9 CLKXM CLKX in/out? 0 in: gen’d by AIC
8 CLKRM CLKR in/out? 0 in: gen’d by AIC
7 [rsvd] [reserved] 0
6 CLKS_STAT value as GP10 0 not used
5 DX_STAT value as GPIO 0 not used
4 DR _STAT value as GPIO 0 not used
3 FSXP FSX polarity 1 active low, AIC:FS
2 FSRP FSR polarity 1 active low, AIC:FS
1 CLKXP CLKX polarity 0 xmt on rising edge
0 CLKRP CLKR polarity 0 rcv on falling edge
000Ch FINAL VALUE
PCRYy - Pin Control Register (McBSPy)
DSP54.12 - 26

DSP54x - Making a C54x System Work

12 -15

The Firmware

[Project] - McBSPO Setup

Reg Bit(s) Name Description Value Note
RCR10 15 [rsvd] [reserved] 0
SA-02h 14-8 RFRLENL1 Rcv Frame Length 1 00h 1 word/frame
7-5 RWLENL Rcv Word Length 1 010 16-bit
4-0 [rsvd] [reserved] 00000
0040h FINAL VALUE
RCR20 15 RPHASE Rcev: 1/2 phases? 0 1 phase
SA-03h 14-8 RFRLEN2 Rcv Frame Length 2 00h not used
7-5 RWLEN2 Rcv Word Length 2 000 not used
4-3 RCOVPAND Rcv Compand mode 00 not used
2 RFI G Rcv Frame Ignore 0 don’t ignore
1-0 RDATDLY FSR-DRdelay (0,1,2-bit) 00 no delay
0000h FINAL VALUE

RCRxy - Receive Control Register x/y (Regx/McBSPy)
Dual-phase frames used by AC*97

DSP54.12 - 27
[Project] - McBSPO Setup
Reg Bit(s) Name Description Value Note
XCR10 15 [rsvd] [reserved] 0
SA-04h 14-8 XFRLENL ~ Xmt Frame Length 1 00h 1 word/frame
7-5 XWDLENL Xmt Word Length 1 010 16-bit
4-0 [rsvd] [reserved] 00000
0040h FINAL VALUE
XCR20 15 XPHASE Xmt: 1/2 phases? 0 1 phase
SA-05h 14-8 XFRLEN2 Xmt Frame Length 2 00h not used
7-5 XWDLEN2 ~ Xmt Word Length 2 000 not used
4-3 XCOMPAND Xmt Compand mode 00 not used
2 XFI G Xmt Frame Ignore 0 don’t ignore
1-0 XDATDLY FSX-DX delay (0,1,2-bit) 00 no delay
0000h FINAL VALUE

XCRxy - Transmit Control Register x/y (Regx/McBSPy)
Dual-phase frames used by AC’97

DSP54.12 - 28

[Project] - McBSPO Setup

Reg Bit(s) Name Description Value Note

SRGR10 15-8 FW D Frame width 00h not used
SA-06h 7-0 CLKGDV CLKG Divider (1-256) 01h default, not used

0001h FINAL VALUE

SRGR20 15 GSYNC re-sync to FSG or free run? 0 free run, not used

SA-07h 14 CLKSP CLKS polarity 0 no CLKS on 5402
13 CLKSM input CLKOUT/CLKS? 1 CLKOUT, not used
12 FSGM FSX=FSG or DXR-XSR? 1 FSG, not used
11-0 FPER Frame period, 1-4096 OFFh 256, not used

30FFh FINAL VALUE

SRGRxy - Sample Rate Generator Register x/y (Regx/McBSPy)

Multi-channel Registers (MCR10/20, RCERA/B, XCERA/B)
not used. Default mode on reset is “non-multi-channel mode™

DSP54.12 - 29

12 -16 DSP54x - Making a C54x System Work

The Firmware

McBSP Setup Code

[Project] - Programming the McBSP

;Ssgset / P: oggg;nhNtBSPO BOX0 » DIN
. SE —
STM #00h, SPSAO ; SPCRLO S DoU
STM #4000h, SPO BFSR/ X0 FSn |
STM #01h, SPSA0 ; SPCR20 BCLKR/ X0 SCLK
STM #0100h, SPO McBSPO AIC
STM #02h, SPSA0 ; RCR10
STM #0040h, SPO
STM #03h, SPSA0 ; RCR20
STM #0000h, SPO & SPSAO holds “sub address” (0, 1,
STM #04h, SPSA0 ; XCR10 2,3,..)
STM #0040h, SPO « “Value” written to 39h (McBSPO
STM #05h, SPSA0 ; XCR20 only)
STM #0000h, SPO .
STM #06h, SPSAO .sraR10 ¢ MCcBSP1 (reset state): off
STM #0001h, SPO & RRST/XRST=0 (reset)
STM #07h, SPSA0 ; SRGR20
STM #30FFh, SPO Next, let’s program the AIC...
STM #OEh, SPSA0 ; PCRO
STM #000Ch, SPO
DSP54.12 - 30
[Project] - AIC Setup
Reg Bit(s) Description Value Note
REG al | 15 0-write, 1-read 0 Write
14-8 Register Number xxh Reg# to write to (01-04h)
REG1 7 Software reset? 0 Reset
6 Software power down 0 no power down
5 INP/INM or aux as analog in 0 select INP/INM for ADC
4 Pins to monitor, INP/INM 0 select INP/INM
3-2 Monitor gain? 00 mute (no gain)
1 Digital loopback ? 0 no loopback
0 16-bit DAC mode ? 1 yes
0101h FINAL VALUE
REG 2 7 Flag output value 0 don’t care
6 Phone mode 0 don’t care
5 Decimator FIR overflow flag 0 don’t care
4 16-bit ADC mode ? 1 yes
3 Analog loopback ? 0 no
2-0 [reserved] 000

0210h FINAL VALUE

For all registers, 0 in MSB (write) + reg # (Ex: Write REG 1: 01xxh)

Request to write (each time): XF=1, write value, XF=0
DSP54.12 - 31

DSP54x - Making a C54x System Work 12 - 17

The Firmware

[Project] - AIC Setup

Reg Bit(s) Description Value Note
REG3 7-6 # slave devices ? 00 None
5-0 Frame sync delay timing 12h not used (FSD)
0312h FINAL VALUE
REG 4 7 External sample clocky/n? 0 no
6-4 Sample frequency select 000 Equation (N = 8)
3-2 Analog input gain ? 00 0db gain
1-0 Analog output gain ? 00 0db gain
3 Analog loopback ? 0 no

0400h FINAL VALUE

For all registers, 0 in MSB (write) + reg # (Ex: Write REG 1: 01xxh)
Request to write (each time): XF=1, write value, XF=0

DSP54.12 - 32
AIC Setup Code
[Project] - Programming the AIC

; MBSPO Xnt out of reset, BDXO[—> DI N
SPO .set 039h BDRO j«— DOUT €

STM #01h, SPSAQ ; SPCR20 BFSR/ X0 FSn

STM #0101h, SPO ; XRST=1 BCLKR! X0 SOK >
;program Al C control registers 25 glas

CALL XSR_EMPTY McBSPO AlC

SSBX XF ¢ XF=1 enables communication

with AIC (XF=0, disable)

& XSR_EMPTY polls XEMPTY
bit to ensure value has been sent

STM #0101h, DXR ;CR-1
CALL XSR_EMPTY

STM #0210h, DXR ; CR-2 before sending next value
CALL XSR_EMPTY

STM #0312h,DXR ;CR-3 XSR_EMPTY:

CALL XSR_EMPTY LD #0,DP

STM #0400h, DXR ;CR-4 BIT #13,SP0 ;poll XEMPTY
CALL XSR_EMPTY BC XSR_EMPTY, TC

RSBX XF FET

Next? The DMA...

DSP54.12 - 33

12 - 18 DSP54x - Making a C54x System Work

The Firmware

Setting Up The DMA

[Project] - DMA Setup (Main)
Reg Bit(s) Name Description Value Note
DMWPREC 15 FREE Run free wW/EMU stop? 0 not FREE running
14 [rsvd] [reserved] 0
13 DPRC5 Chb5 priority? hi/low? 0 low
12 DPRC4 Ch4 priority? hi/low? 0 low
11 DPRC3 Ch3 priority? hi/low? 0 low (output to AIC)
10 DPRC2 Ch2 priority? hi/low? 1 hi (input from AIC)
9 DPRC1 Ch1 priority? hi/low? 0 low
8 DPRCO ChO priority? hi/low? 0 low
7-6 | NTOSEL Interrupt selector 01 Select Ch2, Ch3, timer
5 DES Enable Ch5? 0 no
4 DE4 Enable Ch4? 0 no
3 DE3 Enable Ch3? 1 yes
2 DE2 Enable Ch2? 1 yes
1 DE1 Enable Ch1? 0 no
0 DEO Enable Ch0? 0 no
044Ch FINAL VALUE
DMPREC - Channel Priority and Enable Control Register
INTOSEL: ‘5402 has 3 choices for interrupt selection, we chose to use
channels 2/3 and timer. Also forces IMR/IFR
to bits 7/10/11 to TIMER1/CH2/CH3 respectively
DEXx: Programming these bits START the transfer
DSP54.12 - 34
[Project] - DMA Channel 2 Setup
Reg Bit(s) Name Description Value Note
DVSRC2 15-0 16-bit Src Address (Ch2) #DRR10 input buffer src
DMDST2 15-0 16-bit Dest Address (Ch2) #80h input buffer dst
DMCTR2 15-0 16-bit Elem Count (Ch2) #1Fh 32 elements/frame
DVBFC2 15-12 DSYN Sync Event 0001 REVTO (RRDY=1)
11 DBLW Double word? 0 no (16-bit element)
10-8 [rsvd] [reserved] 000
7-0 FRVCNT Frame Count 02h #frames =3
1002h FINAL VALUE
DWCR2 15 AUTO NI T Auto init on/off? yes
14 DI NM DMA interrupts on/off? 1 on
13 | MOD When to gen interrupt 1 int @ end of frm/blk
12 CTMOD ABU/multi-frame mode 0 multi-frame
11 [rsvd] [reserved] 0
10-8 SIND Source index 000 no modification (DRR)
7-6 DVB Source space select 01 data space
5 [rsvd] [reserved] 0
4-2 DI ND Destination index 001 post increment (80h)
1-0 DMD Destination space select 01 data space
0E045h FINAL VALUE
DSP54.12 - 35

DSP54x - Making a C54x System Work

12-19

The Firmware

[Project] - DMA Channel 3 Setup

Reg Bit(s) Name Description Value Note
DVSRC3 15-0 16-bit Src Address (Ch3) ~ #2000h output buffer src
DMDST3 15-0 16-bit Dest Address (Ch3) #DXR10 output buffer dst
DMCTR3 15-0 16-bit Elem Count (Ch3) #1Fh 32 elements/frame
DMVBFC3 15-12 DSYN Sync Event 0010 XEVTO (XRDY=1)

11 DBLW Double word? 0 no (16-bit element)

10-8 [rsvd] [reserved] 000

7-0 FRMCNT Frame Count 00h #frames =1

2000h FINAL VALUE

DWCR3 15 AUTO NI T Auto init on/off? 0 no

14 DI NM DMA interrupts on/off? 0 off

13 | MOD When to gen interrupt 0 not used

12 CTMOD ABU/multi-frame mode 0 multi-frame

11 [rsvd] [reserved] 0

10-8 SIND Source index 001 post increment (2000h)

7-6 DVB Source space select 01 data space

5 [rsvd] [reserved] 0

4-2 DI ND Destination index 000 no modification (DXR)

1-0 DMD Destination space select 01 data space

0141h FINAL VALUE

DSP54.12 - 36

[Project] - DMA Setup (Misc, Reload)

Reg Bit(s) Name Description Value Note

DVSRCP 6-0 7-bit Src Prog Page Addr Oh not used
DMVDSTP 6-0 7-bit Dest Prog Page Addr Oh not used

DM DX0 15-0 Element Index 0 Oh not used

DM DX1 15-0 Element Index 1 0h not used

DVFRIO 15-0 Frame Index 0 0h not used

DMFRI1 15-0 Frame Index 1 0h not used

DMGSA 15-0 Global Src Addr Reload #DRR10 auto-init, Ch2 src
DMGDA 15-0 Global Dest Addr Reload ~ #80h auto-init, Ch2 dst
DMECR 15-0 Global Elem Cnt Reload ~ 001Fh 32 elements
DMGFR 7-0 Global Frm Cnt Reload 02h Ch2 - 3 frames

¢ No transfers to/from program space
& Not using indexing
& Global reload registers used to auto-initialize Channel 2 (input buffer)

Let’s step back and review the data flow...
DSP54.12 - 37

12-20 DSP54x - Making a C54x System Work

The Firmware

Data I/O

[Project] - Data 1/0

A, —»{ DOUTi—{BDRO | DRR|—>{[Ch2] — s0h INZEEF nt
SCLK +—— BOLKR/ X0 gg: —
FSn » BFSR/ X0 -
Ag¢— DIN Box0 [DXR] — 2000h OUzToEUF
AlC McBSPO DMA 20h
20h

& System Goal: Process a 16-tap block FIR filter on incoming data

¢ Design choices made
- McBSPO: aribitrary (could have chosen McBSP1)
- Ch2/3: based on INTOSEL limitations for ‘5402

& ‘5402 has two blocks of 8Kx16 DARAM. To avoid memory conflicts,
code/coeffs will be placed at 1000/3000h respectively

& Number of buffers chosen to ease programming boundary conditions
« Size of buffers chosen to limit 1/0 latency

Let’s make sure dataflow timing works... DSP54.12 - 38

TImeline Analysis

[Project] - Timeline Analysis

[1In132) [n2(32) [In-3(32) | In-4(32)

Sleep Sleep Sleep

[out-1 (32) [out-2 (32) [out-3(32)]

Int Int Nt Int

Input first 32 words - ignore first interrupt, (32 words @ 8KHz) = 4000us

Input 2nd 32 words - interrupt starts processing of In-1
- In-1 processing requires 47 input samples (15 from In-2) to complete

Processing takes ~22 cycles/result * 32 results (@100MHz) = 7.04us
CPU writes results to Out-1 and reprograms DMA3

Begin first transfer to AIC

Latency from first input to first output: ~8ms

Go to power-down state between end of processing and input interrupt

* o

* 6 ¢ ¢ o

Let’s finish programming the DMA.... DSP54.12 - 30

DSP54x - Making a C54x System Work 12-21

The Firmware

DMA Setup Code

[Project] - Programming the DMA
; DMA Channel 2 Setup
STM #0Ah, DVBA
STM #DRR, DVBDI :DMBRC2 w/ auto-inc ¢ save DMPREC code
STM #80h, DVBDI ; DVDST2 until we are ready to
STM #1Fh, DVBDI : DMCTR2 begin transfers
STM #1002h, DVBDI ; DVBFC2 o Registers not used -
STM #0E045h, DVBDI ; DVVCR2 not programmed
; DVA Channel 3 Setup
STM #OFh, DVBA
STM #2000h, DVSDI ; DMBRC3 W aut o-i nc
STM #DXR, DVBDI ; DVDST3
STM #1Fh, DVBDI : DVMCTR3
STM #2000, DVSDI : DVBFC3
STM #0141h, DVMBDI ; DVMCR3
; DVA d obal Rel oad Reg Setup
STM #24h, DVBA
STM #DRRh, DVSDI ; DMGSA w aut o-i nc
STM #80h, DVBDI ; DVGDA
STM #1Fh, DVBDI ; DMGCR
STM #02h, DVBDI ; DVMGFR
DSP54.12 - 40

Turning On The Hardware Code

| oop:

; En/ Di sabl e DMA (Ch2-on,

; MEBSPO (rcv) out of

; Al C out of

[Project] - Turning it ON...

; Check to ensure PLL is | ocked

LD #0,DP .
BI T CLKMD, #15-0 # Analog path now active
ES lean, e o INTM left inactive

until just before main

Ch3-of f) code begins

STM #0444h, DMPREC

¢ Firstinterrupt will not
occur for 4ms
(400,000 cycles)

reset
ORM #1, SPCR10

reset
XSR_EMPTY
XF
#0181h, DXR
XSR_EMPTY
XF

CALL
SSBX
ST™M

CALL
RSBX

;CR-1

;turn on interrupts

ST™M
ST™M

#0400h, | MR
#O0FFFFh, | FR

; DMA- | NT CH2
;Cr IFR

DSP54.12 - 41

12 - 22

DSP54x - Making a C54x System Work

The Software

The Software

Part 111 - Software

Programming the bootloader and application:

& Determine vector table and linker command options

& Write fir_ISR and application setup code

& Use HEX500 to create a boot table, discuss bootload options

& Discuss power down options (IDLE)

& Review power management hints

& See how BIOS and RTA can assist us

DSP54.12 - 42

Link.cmd and Vectors.asm

[Project] - Link.cmd, Vector Table

proj ect. obj
vect ors. obj
-0 project.out

MEMORY {
PAGE 1: INBUF: org
CODE: org
VECS: org
OUTBUF: org
CCEFF: org
DARAMZ: org
PAGE 0: EPROM org
}

SECTI ONS
{in_bufs
out _bufs :
coeffs

code
vectors
STK
vars

VVVVVVYV

00080h,
00100h,
00500h,
02000h,
02060h,
03000h,
0FO000h,

I NBUF PAGE 1
QUTBUF PAGE 1
LOAD=EPROM PAGE
LOAD=EPROM PAGE

00060h
00400h
00100h
00060h
00200h
01000h
00F80h

len
I en
I en
I en
I en
len
len

0, RUN=CCEFF PAGE 1
0, RUN=CODE PAGE 1
0, RUN=VECS PAGE 1

& The following sections

are booted:
- coeffs

- code

- vectors

Bootloader moves code
from Program space
to Data Space.
Bootloader sets OVLY
bit to one.

Vectors.ASM:

;unused: RETE
;Ch2 I nt @8h
DVAC2:

B fir_isr

Let’s now review
ALL of the code...

DSP54.12 - 43

DSP54x - Making a C54x System Work

12 - 23

The Software

The Hardware Setup and The FIR Code

[Project]

;** .set statements **

DWPREC
DVBA
DVBDI
DVBDN
SPSA0
SPO
DRR10
DXR10
SWCR

;** allocate al

X
bos
FLAGL
FLAG
CQOUNT
y

. T egs

. set
. set

. usect
. usect
. usect
. set
. set
. usect

54h
55h
56h
57h
38h
039h
21h
23h
2bh

- Project. ASM

; Channel Priority and Enabl e Control

; DVA sub- address

;DMA write w thout indexing
;DVMA wite with indexing

; MBSPO sub- address

;Wite for McBSPO sub-addressed regs

; Data Receive for MBSPO
;Data Transmit for MBSPO
;Software Wait State

igned circular buffers for input and output **

"in_bufs", 96
" STK", 128
"vars",3
FLAGL+1
FLAGL+2

"out _bufs", 96

;signal first time thru input
;signal first time thru output

routine
routine

;which buffer is being processed? 1,2,3

;** allocate 16 initialized coeffs of 1/16th each **

a

. sect
.int
.int
.int
.int

"coeffs"

800h, 800h, 800h,
800h, 800h, 800h,
800h, 800h, 800h,
800h, 800h, 800h,

800h
800h
800h
800h

DSP54.12 - 44

.sect "code"

LR KRR AR KRR KA R

cex pLL x*

start: STM #0B7FCh, CLKMD
ORM , CLKVMD

;** SWABR/ SWCR/ BSCR **
STM #8244h, SWABR
STM #0001h, SWCR
ST™M #0800h, BSCR

; ** Reset/Program McBSPO **
STM #00h, SPSAO
ST™M #4000h, SPO
STM #01h, SPSAO
ST™M #0100h, SPO
ST™M #02h, SPSA0
ST™M #0040h, SPO
ST™M #03h, SPSA0
ST™M #0000h, SPO
ST™M #04h, SPSAO0
ST™M #0040h, SPO
ST™M #05h, SPSAO
ST™M #0000h, SPO
ST™M #06h, SPSAO
ST™M #0001h, SPO
ST™M #07h, SPSAO0
STM #30FFh, SPO
ST™M #0Eh, SPSA0
ST™M #000Ch, SPO

H W Set up Code

Hokkkkkkkkkkkkkkkk

; Setup CLKMD Regi ster

;Tell PLL to switch when PLLCOUNT = 0

; SWABR Set up
; SWCR Set up
; BSCR Setup
; SPCR10

; SPCR20

; RCR10

; RCR20

; XCR10

; XCR20

; SRGR10

; SRGR20

; PCRO

DSP54.12 - 45

12-24

DSP54x - Making a C54x System Work

The Software

;** DMA Channel
ST™M

3 Setup **
#0Fh, DVBA

;** McBSPO Xmt out of reset **
ST™M #01h, SPSAO ; SPCR20
ST™M #0101h, SPO ; XRST=1
;** program Al C control registers **
CALL XSR_EMPTY
SSBX XF
ST™M #0101h, DXR10 ;CR-1
CALL XSR_EMPTY
ST™M #0210h, DXR10 ; CR-2
CALL XSR_EMPTY
ST™M #0312h, DXR10 ;CR-3
CALL XSR_EMPTY
ST™M #0400h, DXR10 ;CR-4
CALL XSR_EMPTY
RSBX XF
;** DMA Channel 2 Setup **
ST™M #0Ah, DMSA
STM #DRR10, DVSDI ; DMBRC2 w/ aut o-i nc
ST™M #80h, DVBDI ; DVDST2
ST™M #1Fh, DVSDI ; DMCTR2
ST™M #1002h, DVSDI ; DVMBFC2
ST™M #0E045h, DVSDI ;

STM #2000h, DVSDI ; DMBRC3 w/ aut o-i nc
STM #DXR10, DVSDI ; DVDST3
STM #1Fh, DVSDI ; DMCTR3
STM #2000, DVSDI ; DVBFC3
ST™M #0141h, DVSDI H
DSP54.12 - 46
;** DVA dobal Reload Reg Setup **
ST™M #24h, DVBA
ST™M #DRR10, DMVSDI ; DMGSA w aut o-i nc
ST™M #80h, DVBDI ; DMGDA
ST™M #1Fh, DVBDI ; DMGCR
ST™M #02h, DVBDI ; DMGFR
;** Set PMST Register to proper value **
*x *x
;** | PTR=500h (boot| oaded vector table) **
;** MP/MC = 0 (should be 0 already) i
;** OVLY =1 (should be 1 already) kit
(%% AVIS = 0 (off) o
;** DROM = 0 (off) >
;** CLKOFF = 1 (off) o
;¥* SMUL = 0 (off) >
;¥* SST =1 (on) *x
ST™M #0525h, PMST
;** Check to ensure PLL is |locked **
LD #0, DP
pl | oop:
BI TF @CLKND, #1 ;loop until PLLSTATUS=1
BC pl | oop, NTC ; (PLL Locked)
;** Enable DVA Channels 2 & 3 **
ST™M #044Ch, DMPREC
DSP54.12 - 47

*

;** MeBSPO (rcv) out of reset

;** fir_isr setup code **

*k

ST™M #00h, SPSAO ; SPCR10
ST™M #4001h, SPO
;** AIC out of reset **
CALL XSR_EMPTY
SSBX XF
ST™M #0181h, DXR10 ;CR-1
CALL XSR_EMPTY
RSBX XF
;** enable DMA Ch2 interrupt, Clear |FR **
ST™M #0400h, | MR ; DMA- | NT CH2
ST™M #0OFFFFh, | FR ;adr IFR

LD #FLAGL, DP ; FLAGL, FLAG2 and COUNT on sane DP
ST #0, FLAGL ;assure FLAGL (for in_bufs) is zero
ST #0, FLAR ;assure FLAGR (for out_bufs) is zero
ST #0, COUNT ;assure COUNT is zero
ST™M #31, BRC ;generate 32 results
ST™M #96, BK ; Moe, Larry, Curly input and
; Tom Dick, Harry output buffers
ST™M #1, ARO ;emul ate post inc by 1
ST™M #0Fh, DVBA ;OFh is DVMSRC3 (for all DMSRC3 writes)
RSBX ow ;clear overflow node
SSBX FRCT ;set fractional node
SSBX SXM ; set sign extension
RSBX | NTM yenabl e global interrupts last pgpss1o.48

DSP54x - Making a C54x System Work

12 -25

The Software

KA KA KA KA KRR KA KA A KA AR
o O Mai n Loop W
mai n
| DLE 1 ;When DMA2 interrupts nmain, fir_isr runs and
NOP ;execution returns to this code. W then go
NOP ;back into I DLE node and wait for the
NOP ;next interrupt.
NOP
B nai n
i XSR Enpty Test *x
KA KKK KRR KRR AR KA Ak
XSR_EMPTY:
LD #0, DP
BI TF @8P0, 2h ;pol 1 XEMPTYn flag
BC XSR_EMPTY, TC
RET
DSP54.12 - 49
R T FIR ISR (DMVA Ch2 Int) KRR R KRR AR KRR
fir_isr:
LD #FLAGL, DP ;lgnore First DMA | nterrupt
CVPM @LAGL, #0Fh H
ST #0Fh, @FLAGL H
BC done, NTC ;
ADDM #1, @OUNT ; COUNT holds 1,2,3 for Me, Larry, Curly
CVPM @DOUNT, #1 ; 1st pass (Moe)?
BC | oopi nit, TC ;if so, setup ARs and set output SRC
CVPM @COUNT, #2 ;2nd pass (Larry)?
BC test3, NTC ;NO, go to test3
ST™M #y+32, DMVSDN ; DVA3 SRC = out _buf #2
B mat h
test3: CWPM @DOUNT, #3 ;3rd pass (Curly)?
BC fourth, NTC ;NO, nust be fourth, reset counter
ST™M #y+64, DVSDN ; DMA3 SRC = out _buf #3
B mat h
fourth: ST #1, COUNT ;reset COUNT, reload ARs as 1st pass
| oopini t:
ST™M #x, AR3 ;setup ARs for MAC
ST™M #y, AR4
ST™M #y, DVSDN ; DMA3 SRC = out _buf #1
mat h ;
DSP54.12 - 50
mat h ST™M #a, AR2 ;always re-init coeff pointer
RPTB tstflg2-1
MPY *AR2+, * AR3+0% A ; 1st product, AR3 circles on 96
RPT #14 ;mult/acc 15 terns
MAC *AR2+, * AR3+0% A
MAR *+AR3(- 15) % ;modify AR3 by -15 circularly
STH A, * AR4+ ;store result
tstflg2:
CVPM @LAR, #0Fh ;Wite dummy DXR to initiate
ST #0Fh, @G- LAGR ;first DVMA3 transfer |F the FIRST
XC 2,NTC ;out _buf is ready
ST™M #0, DXR10
done: RETE ;return with enable
Now that we’ve written all of the code,
how does it get loaded into the system?
DSP54.12 - 51

12 - 26

DSP54x - Making a C54x System Work

The Software

The Bootloader

‘5402 Boot Loader - Options

Boot Mode | Description Trigger

No Boot MP/MC=1, begin execution @RS vector None

HPI-8 Host transfers code to DARAM. PC = dest. I NT2n low

Parallel Boot Loader xfrs code. Src = 8/16-bit async mem | FFFFh in 1/O = src
dest = int/ext’l RAM. PC = entry point specified. | src = 8AA or 10AAh

1/0 Boot Loader transfers code via 1/0 addr Oh. FFFFh in data = src
Handshake via XF/BI10O. src = 8AA or 10AAh

Serial Boot Loader configures SP and reads 1st word 8AA or 10AAh rcvd?
Src = 8/16-bit. Dest = int/ext’| RAM.

Serial Bootloader configures SP in SPI-mode I NT3n low

EEPROM

Each 54xx device has specific options and modes. Refer to the
boot-loader specification for your chosen device for more details.

‘5402 bootloader can copy to extended program space

DSP54.12 - 52

4 When 1/O space is accessed,
SRCaddr=F000h is returned

[Project] - Parallel Boot

¢ Boot table Generated by Hex500

R FO0Oh ;gﬁh ;gs\;,;IRI el boot
s 0001h ; SWCR
1 0800h ; BSCR
17 oS D15 0000h ; XPC entry poi nt
Fai — - start ; PC entry point
é: - Si ze of 1st section
0 8: — 0000h ; XPC DEST
0— |— D8 0100h ; PC DEST - CODE
o o Code word 1-N - (CCDE)
0 o] — . Si ze of 2nd section
o A 0000h ; XPC DEST
0% [' 0500h ; PC DEST - VECS
0— o Code word 1-N - (VECS)
Transparent ... (CCEFFS)
Buffer DSP54.12 - 53

DSP54x - Making a C54x System Work

12 - 27

The Software

HEX500

IDLE

[Project] - Using HEX500
HEX500 firmare. cnd

/* FI RMAMRE. CVD */

proj ect . out /* input file */
-e start /* set entry (execution) point */
- /* select Intel fornat */
-map project.nxp /* map file for HEX500 */
-0 project. hex /* output file */
-memd dth 16 /* DSP accesses nem as 8/16-bit */
-romni dth 16 /* physical nemwi dth, 8/16-bit */
- boot /* meke all sections bootable */
- boot org 0xF000 /* location of boot table */

¢ Must assemble .OUT file using -v548 if using ‘548/9/02/10 devices

¢ Programming formats: 16-bit ASCII hex, Tektronix, Intel MCS-86,
Motorola S (16/24/32-bit addresses), 16-bit TI-Tag

& For more info, see the Assembly Language Tools User Guide

Now, let’s look at our power-down options... DSP5A.12 54

IDLE Options

IDLE n n=[1|2]3
Effect :
CPU Halted X [X X
Peripherals Halted, CLKOUT Stopped X |X
System Clock Stopped X
Resume on:
Reset X[x|x
External Interrupt X[x|x
Internal Interrupt X

A 10ns minimum pulse on any external interrupt pin will initiate the
wakeup sequence

INTM=0 : go to ISR, INTM=1 : continue in-line main code

PLL requires a locking time for restart

McBSP, DMA and HPI are considered ‘external’ devices in above table

What other methods can be used to reduce power?
DSP54.12 - 55

12 - 28

DSP54x - Making a C54x System Work

The Software

Power Management Hints

Power Management Hints

¢ Set Address Visibility (AVIS) =0

¢ When not being used, make sure the timer and serial ports
reset and MCM =0

Assure all input pins are grounded or pulled high

Set SWWSR to 0 wait states when possible

Use circular addressing instead of DELAY’s

Use internal instead of external memory accesses
Minimize the clock frequency to match the task required
Implement power down modes where possible

L BRI B 2NR AR 2

Some design techniques for minimizing power consumption :
¢ Minimize external trace lengths and their associated capacitance

arein

DSP54.12 - 56

BIOS and RTA

BIOS and RTA

¢ BIOS and CCS offer static configuration of most of the

ADC/DAC devices

in_buff/processing/out_buf timing works within spec.

peripherals. We set up each peripheral manually via code, but
B10OS will allow the user to control each peripheral from CCS.

¢ Tl Analog group is creating plug-in tools to CCS to configure

¢ RTA (real time analysis) allows the user to ensure that the
real-time constraints are met. In our case, that means the

DSP54.12 - 57

DSP54x - Making a C54x System Work

12 -29

The Software

Need More Information?

Analog Information & Product Resources

& For the [Project], we used the following
sources to select our conversion and power
devices:

& Evaluation modules can be found at:

& Samples can be ordered on the Tl Web

¢ Mixed-Signal and Analog Literature
+ Designers Guide (SLYUO001B)
« Analog Overview (SSDV004D)

DSP54.12 - 58

Don’t Forget!

+ Take your workbook, databook(s) and CDs with you
+ Fill out the evaluation form (in pencil)

+ Fill out and mail the registration form if you desire

*>

Copy c:\dsp54\labs and c:\dsp54\solutions
to the disk in your workbook

Thank you for attending.
Have a safe trip home.

DSP54.12 - 59

12 -30 DSP54x - Making a C54x System Work

The Software

DSP54x - Making a C54x System Work 12-31

Additional Analog Information

Additional Analog Information

al

el
ells

o

T

TPS56100

v

PS36100

I
1 N Muttiple C54x DSPs

‘C54x Power Solutions

TPS60100 - Battery Powered Solution

200mA / 3.3V Charge Pump

Less than 5mV Vout ripple
+ 1.81t03.6 Vinput voltage range

< No inductors required - reduces EMI
< 50uA quiescent current

- 0.05uA shutdown current
& Up to 90% efficiency
& EVM: SLVP130

TPS56100 - Multiple DSP Solution

Single 5V DC-DC controller

+ Adjustable output voltage with 5 bit DAC

-+ Excellent transient response and regulation
(1.5%) over temperature range

& Features soft start, over current, and
over-voltage protection

« Ideal for applications requiring 3-30A

& EVM: SLVP128

Cire

e 3.3Y) o

DSP54.12 - 61

TPS767D318

‘C54x Power Solutions

TPS767D318 - Dual Voltage Solution

reset + Low quiescent current (85 uA) - 1 uA in shutdown

T
I

257 :
TPS76925 '—171 & Low quiescent current (17uA)

P TPS76933

18V # Dual Power on Reset
T ‘C5402 DSP # Drive capability to 1A (typ)
33V + 350mV dropout voltage
1 & Accuracy (2%) over entire temperature range

TSSOP PowerPAD package
to rest of system

TPS769xx - Low Power LDO Solution
< Low dropout voltage - 71 mV (typ)

43y | CH10DSP -1 UA in shutdown mode

1 + 100mA drive capability
N -+ Other fixed output voltage devices available

DSP54.12 - 62

12 - 32

DSP54x - Making a C54x System Work

Additional Analog Information

Do you Need a Supervisory Circuit (SVS) ?

Purposes for a Supervisory Circuit

+Vlc1 # Issue processor Reset during power up
J | - puts processor in a known state
+Veea # Issue Reset on power fail
Power Veare Viio # Single or multiple rail sensing
Supply S & Watchdog monitors processor activity

RESET|, DSP

 Power Fail early warning and back-up

battery switching
GND

Timing diagram of a Supervisory Circuit

VSENS
Key SVS Specifications % M
Vcec/lce: Supply voltage and current 1vy | ! ! R
V,q: Threshold voltage I 1y —
ty: Reset time delay P b :
Tolerance / Precision E
External components required 1}”““”“ ’_\ K]

RESET !
DSP54.12 - 63

Data Converters - Applications vs. Products

A , .
. 1
High | pc Audio i !
Modems ! !
B 15 -_Wt_s_(ia_lg_:_ ____________ i. ____________
i Process | ﬁ]%abnsr:ﬁgsl ! Basestation
t Mod | ‘control | Automotive |Communications
1
S Telecom | Mass Storage : Cable Head End
gy [e
Automotive; Automotive 1 Video, DVD
Printers ! DMC,HDD | STB
Metering ! PC Cameras | Cable Modems
1 ~
100K 10M ”
Low Moderate High
Sp eed DSP54.12 - 64
THS1206 connected to C54x
THS1206 TMS320C54x
— RD
— TS0 |« 110 STRB
— CSl |e Al4
— WR |¢ RIW
DATA_AV » INTX
CONV_CLK [* BCLKX
D11:0 [* Pl D11:0
& Read/Write access via I/0 STRB
& Address: 0x4000
< Interrupt driven
DSP54.12 - 65

DSP54x - Making a C54x System Work

12 - 33

Additional Analog Information

THS1206 - 12-bit A/D with 16 word deep FIFO

SHA MUX ADC FIFO
% »(»lmlmj
‘ l—>
Control Interface

¢ 12-Bit, 6MSPS
parallel interface
¢ FIFO to improve throughput

DSP54.12 - 66

FIFO optimizes Interrupt Transfer ...

.. by allowing multiple samples to be transferred per ISR iteration

N
ol
)

o
\
\

~
I

=

— 20 A

)

G

S 15 — — f(ISR)
e ——f(ADC)
w 10 4 .

o f(OVR)
£

=

£

]

]

o

Trigger Level

DSP54.12 - 67

TLV1570 connected to C54x

TLV1570 TMS320C54x

SCLK |« @—| Tout

E TCLKX

TCLKR

FS |« @ TFSX

L TFSR
SDIN |« TDX
SDOUT » TDR

Sig)

& Glueless serial interface

DSP54.12 - 68

12-34 DSP54x - Making a C54x System Work

Additional Analog Information

TLV1570 - 10-bit A/D with 8 input channels

MUX ADC Interface

Control
< 10-Bit, 1.25MSPS
serial interface
< 8-channel MUX

DSP54.12 - 69

DSP54x - Making a C54x System Work 12 -35

Additional Analog Information

12 - 36 DSP54x - Making a C54x System Work

Appendix

DSP54x - Appendix A-1

Block diagram

DSP54x - Appendix

Block diagram

Block diagram

System control Program address generation Data address generation
interface logic (PAGEN) logic (DAGEN)
< PC, IPTR, RC, ARAUD, ARAUT
< BRC, RSA, REA ARO-AR7
' 4 ARP, BK, DP, SP

+ A | AA A 4]a

Memory

KD s

interface

(>

Y W
X D Al B
vy
MUX
T register s
A
7| o[A Plc|D BAQD
L A \AAd ryyy
NSign etr Sign ctr // \Signctr/’
A 4 \ hd
[Mutioier 17 x 17)] Barrel shifter
A
v <
| Fractionall
v
SV
Adder(40) > MSSVOV':,L:W
v
TRN 3

| ZERO | SAT l ROUND |

DSP54x - Appendix A-3

Block diagram

DSP54x - Appendix

‘C54x Mnemonic Instruction Set Quick Reference

‘C54x Mnemonic Instruction Set Quick Reference

Arithmetic Operations

Add Instructions

Syntax Expression WC
ADD Smem, src src = src + Smem 11
ADD Smem, TS, src Src = src + Smem << TS 11
ADD Smem, 16, src [, dst] dst = src + Smem << 16 11
ADD Smem [, SHIFT], src [, dst] dst = src + Smem << SHIFT 2 2
ADD Xmem, SHFT, src src = src + Xmem <<SHFT 11
ADD Xmem, Ymem, dst dst = Xmem<<16 + Ymem<<16 1 1
ADD # Ik [SHFT], src [, dst] dst = src + #lk << SHFT 2 2
ADD # Ik, 16, src [, dst] dst = src + #lk << 16 2 2
ADD src [, SHIFT] [, dst] dst = dst + src << SHIFT 11
ADD src, ASM [, dst] dst = dst + src << ASM 11
ADDC Smem, src src =src + Smem + C 11
ADDM # Ik, Smem Smem = Smem + #lk 2 2
ADDS Smem, src src = src + uns(Smem) 11
Subtract Instructions
Syntax Expression WC
SUB Smem, src Src = src — Smem 11
SUB Smem, TS, src Src = src — Smem << TS 11
SUB Smem, 16, src [, dst] dst = src — Smem << 16 11
SUB Smem [, SHIFT], src [, dst] dst = src — Smem << SHIFT 2 2
SUB Xmem, SHFT, src src = src — Xmem << SHFT 11
SUB Xmem, Ymem, dst dst = Xmem<<16 — Ymem<<16 1 1
SUB # Ik [, SHFT], src [, dst] dst = src — #lk << SHFT 2 2
SUB # Ik, 16, src [, dst] dst = src — #lk <<16 2 2
SUB src[, SHIFT] [, dst] dst = dst — src << SHIFT 11
SUB src, ASM [, dst] dst = dst — src << ASM 11
SUBB Smem, src src =src— Smem - C 11
SUBC Smem, src If (src — Smem << 15) _ 0 11

src = (src—Smem << 15)<<1+1

Else

src=src<<1
SUBS Smem, src Src = src — uns(Smem) 11

Muliply Instructions

Syntax Expression WC

MPY Smem, dst dst=T * Smem 11

MPYR Smem, dst dst = rnd(T * Smem) 11

MPY Xmem, Ymem, dst dst = Xmem * Ymem, 11
T =Xmem

MPY Smem, # Ik, dst dst = Smem * #lk , 2 2
T = Smem

MPY # Ik, dst dst=T * #lk 2 2

MPYA dst dst=T * A(32-16) 11

MPYA Smem B = Smem * A(32-16), 11
T = Smem

MPYU Smem, dst dst = uns(T) * uns(Smem) 11

SQUR Smem, dst dst = Smem * Smem, 11
T =Smem

SQUR A, dst dst = A(32-16) * A(32-16) 11

Mult-Acc & Mult-Sub Instructions

Syntax Expression wC

MAC Smem, src src =src+ T * Smem 11

MAC Xmem, Ymem, src [.dst] dst = src + Xmem * Ymem, 11
T =Xmem

MAC # Ik, src [, dst] dst=src+ T * #lk 2 2

MAC Smem, # Ik, src [,dst] dst = src + Smem * #Ik, 2 2
T = Smem

MACR Smem, src dst = rnd(src + T * Smem) 11

MACR Xmem, Ymem, src [,dst] dst = rnd(src + Xmem * Ymem), 1 1
T = Xmem

MACA Smem [, B] B =B + Smem * A(32-16), 11
T = Smem

MACAT, src [, dst] dst =src + T * A(32-16) 11

MACAR Smem [, B] B =rnd(B + Smem * A(32-16)), 1 1
T =Smem

MACAR T, src [, dst] dst=rnd(src + T* A(32-16)) 1 1

MACD Smem, pmad, src src = src + Smem * pmad, 23
T = Smem, (Smem + 1) = Smem

MACP Smem, pmad, src src = src + Smem * pmad, 23
T =Smem

MACSU Xmem, Ymem, src src = src + uns(Xmem) * Ymem, 1 1
T =Xmem

MAS Smem, src src =src—T * Smem 11

DSP54x - Appendix

‘C54x Mnemonic Instruction Set Quick Reference

Mult-Acc & Mult-Sub (cont.)

Syntax

Expression WC

MASR Xmem, Ymem, src [,dst] dst=rnd(src — Xmem * Ymem), 1 1

T = Xmem
MAS Xmem, Ymem, src [,dst] dst = src — Xmem * Ymem, 11
T = Xmem
MASR Smem, src src = rnd(src — T * Smem) 1
MASA Smem [, B] B =B - Smem * A(32-16), 1
T =Smem
MASA T, src [, dst] dst =src - T * A(32-16) 1
MASAR T, src [, dst] dst=rnd(src— T * A(32-16)) 1
SQURA Smem, src src = src + Smem * Smem, 11
T =Smem
SQURS Smem, src Src = src — Smem * Smem, 11
T =Smem
Double (32-bit) Operand
Instructions
Syntax Expression WC
DADD Lmem, src [, dst] IfC16=0 11
dst = Lmem + src
IfCl6=1

DADST Lmem, dst

DRSUB Lmem, src

DSADT Lmem, dst

DSUB Lmem, src

DSUBT Lmem, dst

dst(39-16) = Lmem(31-16) + src(31-16)
dst(15-0) = Lmem(15-0) + src(15-0)
IfC16=0 11
dst=Lmem+ (T<<16+T)

IfCl6=1

dst(39-16) = Lmem(31-16) + T
dst(15-0) = Lmem(15-0) - T

IfC16=0 11
src = Lmem —src

IfCl6=1

src(39-16) = Lmem(31-16) — src(31-16)
src(15-0) = Lmem(15-0) — src(15-0)

IfC16=0 11
dst=Lmem—-(T<<16+T)
IfCl6=1

dst(39-16) = Lmem(31-16) - T
dst(15-0) = Lmem(15-0) + T
IfC16=0 11
Src = src — Lmem

IfCl6=1

src (39-16) = src(31-16) — Lmem(31-16)
src (15-0) = src(15-0) — Lmem(15-0)
IfC16=0 11
dst=Lmem-(T<<16+T)

IfCl16=1

dst(39-16) = Lmem(31-16) - T
dst(15-0) = Lmem(15-0) - T

Application-Specific Instructions

Syntax

Expression

wWC

ABDST Xmem, Ymem

ABS src [, dst]

CMPL src [, dst]

DELAY Smem

EXP src

FIRS Xmem, Ymem, pmad

LMS Xmem, Ymem

MAX dst

MIN dst

NEG src [, dst]
NORM src [, dst]

POLY Smem
RND src [, dst]

SAT src
SQDST Xmem, Ymem

B =B + |A(32-16)|

A = (Xmem - Ymem) << 16
dst = |src|

dst = ~src

(Smem + 1) = Smem

T = number of sign bits (src) — 8

B =B + A* pmad

A = (Xmem + Ymem) << 16
B =B + Xmem * Ymem
A=(A+Xmem<<16)+215
dst = max(A, B)

dst = min(A, B)

dst = -src

dst=src << TS

dst = norm(src, TS)

B = Smem << 16
A=md(A*T+B)

dst = src + 2715

saturate(src)

B =B + A(32-16) * A(32-16)
A = (Xmem + Ymem) << 16

Logical Operations

AND Instructions

Syntax

Expression

11

N S = N PR R e
N [N

-
-

AND Smem, src

AND # Ik [, SHFT], src [, dst]
AND # Ik, 16, src [, dst]
AND src [, SHIFT] [, dst]
ANDM # Ik, Smem

OR Instructions

Syntax

Src = src & Smem

dst = src & #lk << SHFT
dst = src & #lk << 16

dst = dst & src << SHIFT
Smem = Smem & #lk

Expression

OR Smem, src

OR#Ik [, SHFT], src [, dst]
OR # Ik, 16, src [, dst]

OR src [, SHIFT] [, dst]
ORM # Ik, Smem

src = src | Smem

dst = src | #lk << SHFT
dst = src | #lk << 16

dst = dst | src << SHIFT
Smem = Smem | #lk

N P NN -
N P NN -

DSP54x - Appendix

‘C54x Mnemonic Instruction Set Quick Reference

XOR Instructions Call Instructions
Syntax Expression WC Syntax Expression WC
XOR Smem, src src = src * Smem 11 CALA[D] src --SP=PC, 16/[4]
XOR # Ik [, SHFT,], src [, dst] dst = src ~ #lk << SHFT 2 2 PC = src(15-0)
XOR # Ik, 16, src [, dst] dst = src M #lk << 16 2 2 CALL[D] pmad --SP=PC, 24/[2]
XOR src [, SHIFT] [, dst] dst = dst src << SHIFT 11 PC = pmad(15-0)
XORM # Ik, Smem Smem = Smem " #lk 2 2 CCI[D] pmad,cond[,cond[,cond]] if (cond(s)) then — —SP = PC, 2 5/5/[3]
PC = pmad(15-0)
. . FCALA[D] src —--SP=PC,--SP = XPC, 16/[4]
Sh Ift In structions . PC = src(15-0), XPC = src(22-16)
Syntax Expression WC FCALL[D] extpmad —-SP=PC,--SP=XPC, 24/[2]
ROL src Rotate left with carry in 11 PC = pmad(15-0),
ROLTC src Rotate left with TC in 11 XPC = pmad(22-16)
ROR src Rotate right with carry in 11
SFTA src, SHIFT [, dst] dst = src << SHIFT {arith. shift} 1 1 .
SFTC src if src(31) = src(30) 11 Interrupt Instructions
then src = src<<1 Syntax Expression wC
SFTL src, SHIFT [, dst] dst = src << SHIFT {logical} 1 1 INTR K --SP=PC, 13
PC = IPTR(15-7) + K << 2,
. INTM =1
Test Instructions TRAP K __sp=pC, L 3
Syntax Expression WC PC = IPTR(15-7) + K << 2
BIT Xmem, BITC TC = Xmem(15 - BITC) 11
BITF Smem, # Ik TC = (Smem && #lk) 2 2)
BITT Smem TC = Smem(15 - T(3-0)) 11 Return Instructions
CMPM Smem, # Ik TC = (Smem == #Ik) 2 2 Syntax Expression WC
CMPR CC, ARx Compare ARx with ARO 11 FRET[D] XPC = SP++, PC = SP++ 16/[4]
FRETE[D] XPC = SP++, PC = SP++, 16/[4]
. INTM =0
Program Control Operations RCID] cond[,cond[,cond]] if (cond(s)) then PC = SP++ 1 5/3/[3]
RET[D] PC = SP++ 15/[3]
Branch Instructions RETE[D] PC = SP++, INTM =0 15/[3]
Syntax Expression WC RETF[D] PC=RTN, PC++ INTM=0 13/[1]
B[D] pmad PC = pmad(15-0) 2 4/[2]
BACCID] src PC = src(15-0) 16/[4] Repeat Instructions
BANZ[D] pmad, Sind if (Sind _0) 2 Syntax Expression WC
4/l RPT Smem Repeat single, RC = Smem 11
then PC = pmad(15-0) .
. RPT # K Repeat single, RC = #K 11
BC[D] pmad,cond[,cond[,cond]] if (cond(s)) 2 .
5/3/[3] RPT # Ik Repeat single, RC = #lk 2 2
then PC = pmad(15-0) RPTB[D] pmad Repeat block, RSA =PC + 2[4], 2 4/[2]
FB[D] extpmad PC= pmad(15-0), 2 4/[2] REA =pmad -1
XPC = pmad(22-16) RPTZ dst, # Ik Repeat single, RC = #lk,dst=0 2 2
FBACC[D] src PC =src(15-0), 16/[4]

XPC = src(22-16)

DSP54x - Appendix A-3

‘C54x Mnemonic Instruction Set Quick Reference

Stack-Manipulating Instructions

Syntax Expression WC
FRAME K SP=SP +K 11
POPD Smem Smem = SP++ 11
POPM MMR MMR = SP++ 11
PSHD Smem ——SP =Smem 11
PSHM MMR —-SP = MMR 11

Misc. Program Control Instructions

Syntax Expression WC
IDLE K idle(K) 1 4
MAR Smem If CMPT =0, then modify ARx 1 1
If CMPT =1 and ARX _ ARQ, then
modify ARX, ARP = x
If CMPT =1 and ARx = ARQ, then
modify AR(ARP)
NOP no operation 11
RESET software reset 1 3
RSBX N, SBIT STN (SBIT) =0 11
SSBX N, SBIT STN (SBIT) =1 11
XCn,cond [, cond[, cond]] If (cond(s)) then execute the 11
next n instructions; n=1 or 2
Load and Store Operations
Load Instructions
Syntax Expression WC
DLD Lmem, dst dst = Lmem
LD Smem, dst dst = Smem

LD Smem, TS, dst

LD Smem, 16, dst

LD Smem [, SHIFT], dst
LD Xmem, SHFT, dst
LD # K, dst

LD # Ik [, SHFT], dst
LD # Ik, 16, dst

LD src, ASM [, dst]
LD src [, SHIFT] [, dst]
LD Smem, T

LD Smem, DP

LD # k9, DP

LD #k5, ASM

LD # k3, ARP

LD Smem, ASM

LDM MMR, dst

LDR Smem, dst

LDU Smem, dst

LTD Smem

dst =Smem << TS
dst = Smem << 16

dst = Smem << SHIFT
dst = Xmem << SHFT
dst = #K

dst = #lk << SHFT
dst = #lk << 16

dst = src << ASM

dst = src << SHIFT

T = Smem

DP = Smem(8-0)

DP = #k9

ASM = #k5

ARP = #k3

ASM = Smem(4-0)
dst = MMR

dst = rnd(Smem)

dst = uns(Smem)

T = Smem, (Smem + 1) = Smem

1
1
1
1
2
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1

Store Instructions

Syntax Expression WC
DST src, Lmem Lmem = src

ST T, Smem Smem=T

ST TRN, Smem Smem = TRN

ST # Ik, Smem Smem = #lk

STH src, Smem

STH src, ASM, Smem
STH src, SHFT, Xmem
STH src [, SHIFT], Smem
STL src, Smem

STL src, ASM, Smem
STL src, SHFT, Xmem
STL src [, SHIFT], Smem
STLM src, MMR

STM # Ik, MMR

Smem = src << -16

Smem = src << (ASM - 16)
Xmem = src << (SHFT - 16)
Smem = src << (SHIFT - 16)
Smem = src

Smem = src << ASM

Xmem = src << SHFT
Smem = src << SHIFT
MMR = src

MMR = #lk

Conditional Store Instructions

N RPN R R R NRPR R RPRNR R
N RPN R PR NRPRRREPRNRE RN

Syntax Expression WC
CMPS src, Smem If src(31-16) > src(15-0)then 1 1
Smem = src(31-16)
If src(31-16) _ src(15-0) then
Smem = src(15-0)
SACCD src, Xmem, cond If (cond) 11
Xmem = src<<(ASM-16)
SRCCD Xmem, cond If (cond) Xmem = BRC 1
STRCD Xmem, cond If (cond) Xmem =T 1

Parallel Load and Mult. Instructions

Syntax Expression WC
LD Xmem, dst dst = Xmem << 16 11
[MAC Ymem, [dst_] ||dst_=dst_+T*Ymem

LD Xmem, dst dst = Xmem << 16 11
[MACR Ymem, [dst_] |[dst_=rnd(dst_+ T * Ymem)

LD Xmem, dst dst = Xmem << 16 11
[MAS Ymem, [dst_] [[dst_=dst_—-T*Ymem

LD Xmem, dst dst = Xmem << 16 11

[MASR Ymem, [dst_]

|| dst_=rnd(dst_—T * Ymem)

DSP54x - Appendix

‘C54x Mnemonic Instruction Set Quick Reference

Parallel Load and Store Instructions

Syntax Expression wC
ST src, Ymem Ymem = src << (ASM - 16) 11
|| LD Xmem, dst || dst = Xmem << 16

ST src, Ymem Ymem = src << (ASM - 16) 11
|| LD Xmem, T || T=Xmem

Parallel Store and Mult Instructions

Syntax Expression wC
ST src, Ymem Ymem = src << (ASM - 16) 11
|| MAC Xmem, dst || dst = dst + T * Xmem

ST src, Ymem Ymem = src << (ASM - 16) 11
|| MACR Xmem, dst || dst = rnd(dst + T * Xmem)

ST src, Ymem Ymem = src << (ASM - 16) 11
|| MAS Xmem, dst || dst = dst— T * Xmem

ST src, Ymem Ymem = src << (ASM - 16) 11
|| MASR Xmem, dst || dst = rnd(dst — T * Xmem)

ST src, Ymem Ymem = src << (ASM - 16) 11
|| MPY Xmem, dst || dst =T * Xmem

Parallel Store & Add/Sub
Instructions

Syntax Expression WC
ST src, Ymem Ymem = src << (ASM -16) 11
|| ADD Xmem, dst || dst = dst_ + Xmem <<16

ST src, Ymem Ymem = src << (ASM - 16) 11
|| SUB Xmem, dst || dst = (Xmem << 16) — dst_

Misc Load & Store Type Instructions

Syntax Expression WC
MVDD Xmem, Ymem Ymem = Xmem 11
MVDK Smem, dmad dmad = Smem 2 2
MVDM dmad, MMR MMR = dmad 2 2
MVDP Smem, pmad pmad = Smem 2 4
MVKD dmad, Smem Smem = dmad 2 2
MVMD MMR, dmad dmad = MMR 2 2
MVMM MMRx, MMRy MMRy = MMRx 11
MVPD pmad, Smem Smem = pmad 2 3
PORTR PA, Smem Smem = PA 2 2
PORTW Smem, PA PA = Smem 2 2
READA Smem Smem=A 15
WRITA Smem A =Smem 15

DSP54x - Appendix A-5

‘C54x Mnemonic Instruction Set Quick Reference

Indirect Addressing Types With a
Single Data-Memory Operand

*ARX *ARX-%
*ARX- *ARX-0%
*ARX+ *ARX+%
*+ARX *ARX+0%
*ARX-0 *+ARX(IK)
*ARX+0 *ARX(IK)%
*ARX+0B *(IK)

Conditions for Conditional
Instructions

Operand Condition Description

AEQ A=0 Accumulator A equal to 0

BEQ B=0 Accumulator B equal to 0

ANEQ A<>0 Anotequal to 0

BNEQ B<>0 Accumulator B not equal to 0

ALT A<O0 Accumulator A less than 0

BLT B<0 Accumulator B less than 0

ALEQ A=<0 Accumulator A less than or equal to 0
BLEQ B=<0 Accumulator B less than or equal to 0
AGT A>0 Accumulator A greater than 0

BGT B>0 Accumulator B greater than 0

AGEQ A>=0 Accumulator A greater than or equal to 0
BGEQ B >=0 Accumulator B greater than or equal to 0
AOVt AOV=1 Accumulator A overflow detected
BOV‘t BOv=1 Accumulator B overflow detected
ANOV T AOV=0 No accumulator A overflow detected
BNOV t BOV =0 No accumulator B overflow detected
Cct c=1 ALU carry setto 1

NC T C=0 ALU carry clear to 0

TCt TC=1 Test/Control flag set to 1

NTCt TC=0 Test/Control flag cleared to 0

BIO T BIO low BI1O signal is low

NBIO T BIO high BI1O signal is high

UNCt none Unconditional operation

T Cannot be used with conditional store instructions

Indirect Addressing Types With a Dual
Data-Memory Operand

*ARX *ARX-%
*ARX- *ARX-0%

Groupings of Conditions

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
can test EQ and OV at the same time but you cannot test GT and
NEQ at the same time.

Group 2: You can select up to three conditions. Each of these conditions

must be from a different category (category A, B, or C); you can-not
have two conditions from the same category. For example,

you can test TC, C, and BIO at the same time but you cannot test
NTC, C, and NC at the same time.

Goup 1 Goup 2

A B A B C
EQ ov TC c BIO
NEQ NOV NTC NC NBIO
LT

LEQ

GT

GEQ

DSP54x - Appendix

‘C54x Mnemonic Instruction Set Quick Reference

CPU Memory-Mapped Registers

Processor Mode Status Register

15-7 6 5 4 3 2 1 0
IPTR MP/ OVLY AVIS DROM CLKOFF SMUL* SST*
MC-

* LP devices only; reserved on all other devices

Status Register 0 (STO)

15-13 12 11 10 9 8-0

ARP TC C OVA ovB DP

Status Register 1 (ST1)

Address Name Description

0 IMR Interrupt mask register

1 IFR Interrupt flag register

2-5 - Reserved for testing

6 STO Status register 0

7 ST1 Status register 1

8 AL Accumulator A low word (bits 15-0)
9 AH Accumulator A high word (bits 31-16)
A AG Accumulator A guard bits (bits 39-32)
B BL Accumulator B low word (bits 15-0)
C BH Accumulator B high word (bits 31-16)
D BG Accumulator B guard bits (bits 39-32)
E T Temporary register

F TRN Transition register

10 ARO Aucxiliary register 0

11 AR1 Auxiliary register 1

12 AR2 Auxiliary register 2

13 AR3 Auxiliary register 3

14 AR4 Aucxiliary register 4

15 AR5 Auxiliary register 5

16 ARG Aucxiliary register 6

17 AR7 Auxiliary register 7

18 SP Stack pointer

19 BK Circular-buffer size register

1A BRC Block-repeat counter

1B RSA Block-repeat start address

1C REA Block-repeat end address

1D PMST Processor mode status register

1E XPC Program counter extension register (’548/9)
1E-1F - Reserved

15 14 13 12 11 10 9 8 7 6 5 4-0
BR CpP XF HM INT 0 ov SX C16 | FR Cc™M AS
AF L M M M CT PT M

Interrupt Registers (IFR/IMR)
‘541

8 7 6 5 4 3 2 1 0

INT3 XINT1 RINT1 XINTO RINTO TINT INT2 INT1 INTO

BITS 15-9 ARE RESERVED

*548/9
11 10 9 8 7 6 5 4 3 2 1 0
BXI BRI HPI INT I TRI BXI BRI TIN INT INT INT
NT NT NT 3 NT NT NT NT T 2 1 0
1 1 0 0
BITS 15-12 ARE RESERVED

DSP54x - Appendix A-7

‘C54x Mnemonic Instruction Set Quick Reference

DSP54x - Appendix

TMS320C54x Literature

If you prefer your databooks in electronic format, find them now at:

pttp://www.ti.com/sc/docs/dsps/hotline/support.htm|

If you prefer paper databooks, order them at:

http://www.ti.com/sc/docs/feedbkl.htm |

The next page is a partial list of literature available for the ‘C54x. Always refer to T1’s Web pages for the latest
documentation and information.

DSP54x - Appendix

http://www.ti.com/sc/docs/dsps/hotline/support.htm
http://www.ti.com/sc/docs/feedbk1.htm

TMS320C54x Literature

User’s Manuals

TMS320 DSP DEVELOPMENT SUPPORT REFERENCE GUIDE

TMS320C54X ASSEMBLY LANGUAGE TOOLS USER'S GUIDE

TMS320C54X DSKPLUS DSP STARTER KIT USER'S GUIDE

TMS320C54X DSP ALGEBRAIC INSTRUCTION SET REFERENCE SET VOLUME 3
TMS320C54X DSP APPLICATIONS GUIDE REFERENCE SET VOLUME 4
TMS320C54X DSP CPU AND PERIPHERAL REFERENCE SET VOLUME |
TMS320C54X DSP MNEMONIC INSTRUCTION SET REFERENCE SET VOLUME 2
TMS320C54X EVALUATION MODULE TECHNICAL REFERENCE

TMS320C54X OPTIMIZING C COMPILER USER'S GUIDE

TMS320C54X SIMULATOR C SOURCE DEBUGGER USER'S GUIDE ADDENDUM
TMS320C5X SIMULATOR GETTING STARTED GUIDE

TMS320C5XX C SOURCE DEBUGGER USER'S GUIDE

Applications

A-LAW AND MU-LAW COMPANDING IMPLEMENTATIONS USING THE TMS320C54X
ACCESSING TMS320C54X MEMORY-MAPPED REGISTERS IN C - C54XREGS.H
ACOUSTIC-ECHO CANCELLATION S/W FOR HANDS-FREE WIRELESS SYSTEMS
ADDRESSING PERIPHERALS AS DATA STRUCTURES IN C

C54X EXTENDED ADDRESSING

CALCULATION OF TMS320LC54X POWER DISSIPATION

DECT/CT2 BBSP SOFTWARE PACKAGE

DESIGNING LOW-POWER APPLICATIONS WITH THE TMS320LC54X

DSP SOLUTIONS FOR TELEPHONY AND DATA/FACSIMILE MODEMS

DTMF TONE GENERATION AND DETECTION ON THE TMS320C54X

DUAL POWER SUPPLY MANAGEMENT FOR THE TMS320VC549 DSP

ECHO CANCELLATION S/W FOR TMS320C54X

EMULATOR PROCESSOR ACCESS TIMEOUT

EXTENDING FIXED-POINT DYNAMIC RANGES

GUIDELINES FOR USING DECOUPLING CAPACITORS ON DSP DESIGNS

H/W CONSIDERATIONS WHEN DESIGNING AN INTERFACE USING THE TMS320C54X
IIR FILTER DESIGN ON THE TMS320C54X DSP APPLICATION REPORT

HIGH SPEED MODEM W/MULTILEVEL MULTIDIMENSIONAL MODULATION-TMS320C542
IMPROVED CONTEXT SAVE/RESTORE PERF. & INT. LATENCY FOR ISRs WRITTEN IN C
INITIALIZING THE FIXED-POINT EVM'S AIC

1S-54 DIGITAL CELLULAR PHONE: A FUNCTIONAL ANALYSIS

1S-54 SIMULATION

LINE ECHO CANCELLER

LINKING C DATA OBJECTS SEPARATE FROM THE .BSS SECTION

MU-LAW COMPRESSION ON THE TMS320C54X

MULTIPASS LINKING

PARITY GENERATION ON THE TMS320C54X

PC/TMS320C54X EVALUATION MODULE COMMUNICATION INTERFACE

REDUCING SYSTEM POWER REQUIREMENTS

SERIAL ROM BOOT

SHARING HEADER FILES IN C AND ASSEMBLY

THE IMPLEMENTATION OF G.726 ADPCM ON TMS320C54X DSP

TMS320C54X DSP PROGRAMMING ENVIRONMENT

USING VRAMS AND DSPS FOR SYSTEM PERFORMANCE

VITERBI DECODING TECHNIQUES IN THE TMS320C54X FAMILY APPLICATION REPORT
TMS320C548/9 BOOT LOADER AND ON-CHIP ROM DESCRIPTION

*5X TO ‘54X CODE TRANSLATION

spru0lle
sprul02b
Sprul9l
sprul79a
sprul73
sprul3ld
sprul72b
sprul3s
sprul03b
sprul70
sprul24c
spru099a

spral6é3a
Spra260
spral62
spra226
spral84
spral64
bpra052
spra281
spra073
spra096
spra280
bpra054
spra248
spra249
spra230
spral5l
spra079
spra321
spra232
spra206
spral34
spral35
spral88
spra258
spra267
spra257
Spra266
bpra0d51
spra209
spra233
spra205
bpra053
spral82
spra224
spra071

DSP54x - Appendix

	Notice
	Revision History
	Welcome to the ‘C54x Workshop
	Welcome to the ‘C54x Workshop
	DSP54M01.pdf
	Architectural Overview
	Introduction
	Learning Objectives
	Module Topics
	Architectural Overview	1-1
	‘C54x Block Diagram
	The Pipeline
	‘C5409 Memory Maps
	Review

	LAB 1 – Exploring the Documents
	Solutions
	Some Additional Information…

	DSP54M02.pdf
	Software Development Tools
	Introduction
	Learning Objectives
	Module Topics
	Software Development Tools	2-1
	Setting Up Hardware
	The Linker Command File
	Vectors.ASM
	Assembly Directives and Data Types
	Software Development Tool Suite
	LAB2 – Software Development
	LABx-A vs. LABx-B
	Objective

	LAB2-A Procedure
	Check Code Composer Studio Setup
	Create a New Project
	Edit LAB2A.ASM
	Assemble LAB2A.ASM
	Create VECTORS.ASM
	Assemble VECTORS.ASM
	Edit LAB2A.CMD
	Link LAB2A
	Simulate LAB2A
	Graph Memory Contents

	LAB2-B Procedure
	Solutions

	DSP54M03.pdf
	Addressing Modes
	Introduction
	Learning Objectives
	Module Topics
	Addressing Modes	3-1
	A Review
	Generating Data Addresses
	Indirect Addressing
	MMR Addressing
	Direct Addressing
	Immediate Addressing
	Direct Addressing … A How-To
	Absolute Addressing
	What have we missed?
	MMR Issues
	A List of Indirect Addressing Options
	Direct Addressing Issues
	Some Definitions

	Review
	Exercise

	LAB3 – Addressing
	
	Objective

	LAB3-A Procedure
	Copy Files, Create Make File
	Copy table[8] to a[8] – Write/Debug
	Add the values, Store result to y – Write/Debug
	Profile Your Code

	LAB3-B Procedure
	Solutions

	DSP54M04.pdf
	Programming FIR Filters
	Introduction
	Learning Objectives
	Module Topics
	Programming FIR Filters	4-1
	FIR Filters
	Array Math
	Multiply and Accumulate
	Store to Memory Mapped Registers
	Loads
	Store Accumulator to Memory
	Repeat Single
	Move Instructions
	Program Flow
	The Stack
	Review

	LAB4 – 16-TAP FIR
	
	Objective

	LAB4-A Procedure
	Copy Files, Create Make File
	Edit LAB4A.CMD
	Setup 16-TAP FIR and Stack – Write/Debug
	Optimize Copy Routine – Write/Debug
	FIR Routine – Write/Debug
	Optimize Your FIR Routine – Write/Debug

	LAB4-B Procedure
	What Have We Missed?
	IIR Filters
	More Multiply Instructions
	Adds and Subtracts
	32 Bit Operations
	Aligning Long Operands
	Far Operations

	Solutions
	Some Additional Information …

	DSP54M05.pdf
	Numerical Issues
	Introduction
	Objectives
	Module Topics
	Numerical Issues	5-1
	Fractional Multiplication
	The Fractional Model
	Handling Accumulative Overflow
	What’s Missing?
	Bit Compare and Test
	Boolean Operations
	Shift and Rotate Operations
	Some Other Math Operations …

	Review
	Solutions
	Some Additional Information …
	Division
	Long Multiplies
	Using Exponents

	DSP54M06.pdf
	Solving a Block FIR Filter
	Introduction
	Learning Objectives
	Module Topics
	Solving a Block FIR Filter	6-1
	Repeat Block
	Wrapping the Pointers
	Circular Addressing
	What Have We Missed?
	Single Sample FIR
	Nesting Repeat Loops
	Parallel Instructions

	LAB6 – Block FIR
	
	Objective

	LAB6-A Procedure
	Copy Files, Make Project and Edit LAB6A.CMD
	Fractional Math, Repeat Block, Output Buffer – Write/Debug
	Circular Addressing, Pointer Wrap – Write/Debug
	Graph Your Results
	Profile Your Code

	LAB6-B Procedure
	Benchmarking the Labs
	Solutions

	DSP54M07.pdf
	Pipeline Implications
	Introduction
	Learning Objectives
	Module Topics
	Pipeline Implications	7-1
	The Pipeline
	Understanding the Impact on the Pipe
	Writing Early
	Determining Latency Cycles
	Latency Tables
	Review
	Exercises

	LAB7 – Latency Issues
	
	Objective

	LAB7-A Procedure
	Fix Latencies in LATENCY.ASM
	Fix Latencies in LAB6A.ASM

	LAB7-B Procedure
	Solutions
	Additional Information…

	Dsp54m08.pdf
	Application Specific Instructions
	Introduction
	Learning Objectives
	Module Topics
	Application Specific Instructions	8-1
	Least Mean Square
	Minimum and Maximum
	Some Other Useful Instructions
	Additional Resources

	LAB8 – Block FIR
	
	Objective

	LAB8A - Procedure
	Copy Files, Edit LAB8A.CMD
	Edit LAB8.ASM – Write/Debug
	Build, Simulate, Verify

	LAB8-B Procedure
	Solutions
	Additional Information
	LMS Loading
	Codebook Search
	Viterbi Decoding
	Determining Metrics
	Polynomial Evaluation

	DSP54M09.pdf
	Managing Interrupts
	Introduction
	Learning Objectives
	Module Topics
	Managing Interrupts	9-1
	Interrupt Locations
	Creating VECTORS.ASM
	Interrupt Mask Register
	Global Interrupt Bit
	Interrupt Sources
	Interrupt Recognition
	Interrupt Flag Register
	Post Interrupt Hardware Sequence
	Context Saves and Restores
	Return Instructions

	Nesting Interrupts
	Relocating the Vector Table
	Software Interrupts
	Hardware State on Reset
	The Timer
	Review

	LAB9 – Managing Interrupts
	Objective
	LAB9A - Procedure
	File Management
	Edit VECTORS.ASM,LAB9A.ASM
	Verify that Interrupts Work
	Modify Block FIR Code
	Verify Results

	LAB9-B Procedure
	Solutions

	Dsp54m10.pdf
	Setting Up and Using Peripherals
	Introduction
	Learning Objectives
	Module Topics
	Setting Up and Using Peripherals	10-1
	Registers
	Throughput
	Example
	Other DMA Issues

	The McBSP
	Capabilities
	Example
	Sample Rate Generator
	Multi-Channels
	Example
	Other McBSP Capabilities

	The EHPI
	EHPI Operation
	Other EHPI Issues

	Some Additional Information
	Setting Up a DMA Transfer

	Dsp54m11.pdf
	Mixing C and Assembly
	Introduction
	Learning Objectives
	Module Topics
	Mixing C and Assembly	11-1
	C Linker Command File
	Compiling and Linking
	The C Environment
	Status Register Expectations
	Func.ASM

	Passing Parameters
	Accessing MMRS
	Interrupts
	Numerical Types
	C Optimization Levels
	Other C Stuff

	LAB11 – Mixing C and Assembly
	
	Objective

	LAB11A - Procedure
	Edit LAB11A.ASM
	Build and Simulate

	LAB11B – Procedure
	Solutions

	Dsp54m12.pdf
	Making a C54x System Work
	Introduction
	Module Topics
	Making a C54x System Work	12-1
	The Hardware
	Power Considerations
	The Clock
	Memory
	The Analog Interface Circuit (AIC)
	Connecting Unused Pins
	JTAG
	Hardware Troubleshooting

	The Firmware
	Initial Clock Frequency
	Programming The PLL
	PLL Setup Code
	Wait States
	Waitstate Setup Code
	Bank Switch Control
	BSCR Setup Code
	McBSP/AIC Equations
	Setting Up McBSP0
	McBSP Setup Code
	Setting Up The AIC
	AIC Setup Code
	Setting Up The DMA
	Data I/O
	TImeline Analysis
	DMA Setup Code
	Turning On The Hardware Code

	The Software
	Link.cmd and Vectors.asm
	The Hardware Setup and The FIR Code
	The Bootloader
	HEX500
	IDLE
	Power Management Hints
	BIOS and RTA
	Need More Information?

	Additional Analog Information

	DSP54APP.pdf
	Appendix
	Block diagram
	‘C54x Mnemonic Instruction Set Quick Reference
	Arithmetic Operations
	
	Add Instructions
	Subtract Instructions
	Muliply Instructions
	Mult-Acc & Mult-Sub Instructions
	Mult-Acc & Mult-Sub (cont.)
	Double (32-bit) Operand Instructions
	Application-Specific Instructions

	Logical Operations
	
	AND Instructions
	OR Instructions
	XOR Instructions
	Shift Instructions
	Test Instructions

	Program Control Operations
	
	Branch Instructions
	Call Instructions
	Interrupt Instructions
	Return Instructions
	Repeat Instructions
	Stack-Manipulating Instructions
	Misc. Program Control Instructions

	Load and Store Operations
	
	Load Instructions
	Store Instructions
	Conditional Store Instructions
	Parallel Load and Mult. Instructions
	Parallel Load and Store Instructions
	Parallel Store and Mult Instructions
	Parallel Store & Add/Sub Instructions
	Misc Load & Store Type Instructions
	Indirect Addressing Types With a Single Data-Memory Operand
	Conditions for Conditional Instructions
	Indirect Addressing Types With a Dual Data-Memory Operand
	Groupings of Conditions
	CPU Memory-Mapped Registers
	Processor Mode Status Register (PMST)
	Status Register 0 (ST0)
	Status Register 1 (ST1)
	Interrupt Registers (IFR/IMR)

	TMS320C54x Literature
	
	
	
	Applications

