
Application Report
SPRA918A - August 2003

1

The TMS320DM642 Video Port Mini-Driver
DSP Catalog and Emerging End Equipment

ABSTRACT

This application report describes the usage and design of the video capture and display
mini-drivers that work on the TMS320DM642 Evaluation board (EVM). These device drivers
are compliant with the DSP/BIOS IOM device driver model. The DSP’s EDMA is used to
transfer data between memory and the TMS320DM642 Video Port. To maximize code reuse
and streamline the integration process, both drivers are designed of two distinctive parts: the
generic part and the board specific part. The external device control interface (EDC) is
defined to bind these two parts together in a plug-and-play manner.

Features:

• Multi-instance (can handle multiple video ports simultaneously).

• Capture driver supports the following modes:

− Single-channel 8/10-bit BT.656 mode with embedded or external sync

− Dual-channel 8/10 bit BT.656 mode with embedded sync

− Single-channel 16/20 bit Y/C mode with embedded or external sync

• Display driver supports the following modes:

− 8/10-bit BT.656 mode with embedded or external sync.

− 16/20-bit Y/C mode with embedded or external sync for output formats such as
high-definition 480p, 720p and 1080i

− 8/10/16/20 raw mode with ¾ unpacking, for output formats such as 8/16/24-bit RGB

• Supports enable/disable of video port global interrupt on all defined video port events

• Drivers allocate video frame buffers at initialization time based on configuration parameters
passed in by the application

• External Control Interface for seamless integration with different video encoder or decoder
devices

Contents

1 Overview 3.

2 Usage 5.
2.1 Configuration 5.
2.2 Device Parameters for Generic Part of the Driver 5.

2.2.1 Port Parameters 5.
2.2.2 Capture Channel Parameters 6.

Trademarks are the property of their respective owners.

SPRA918A

2 The TMS320DM642 Video Port Mini-Driver

2.2.3 Display Channel Parameters 9.
2.2.4 Video Port Global Interrupt Processing 14.
2.2.5 Commands 15.

2.3 Device Parameters for Board Specific Part of the Drivers 16.
2.3.1 The External Device Control (EDC) Interface 16.
2.3.2 SAA7105 Parameters 17.
2.3.3 SAA7115 Parameters 18.
2.3.4 String Naming Convention in FVID_create() 19.

3 Architecture 20.
3.1 Block Diagram 20.
3.2 Buffer Management 21.
3.3 Cache Coherency 22.

4 Constraints 22.

5 References 23.

Appendix A Device Driver Data Sheet 24.
A.1 Device Driver Library Name 24.
A.2 DSP/BIOS Modules Used 24.
A.3 DSP/BIOS Objects Used 24.
A.4 CSL Modules Used 24.
A.5 CPU Interrupts Used 24.
A.6 Peripherals Used 24.
A.7 Maximum Interrupt Latency(Capture/Display) 24.
A.8 Memory Usage 24.

Appendix B The FVID API Interface 26.
B.1 Overview 26.
B.2 Using the FVID APIs 26.
B.3 API Description 27.

B.3.1 Functions 27.
B.3.2 Constants, Types, and Structures 28.

B.4 Function Calls 29.

List of Figures

Figure 1. DSP/BIOS IOM Device Driver Model 3.
Figure 2. DM642 Video Capture and Display Driver Architecture 4.
Figure 3. Block Diagram of the Display Driver 20.
Figure 4. Capture Driver Buffer Management 21.
Figure 5. Display Driver Buffer Management. 22.

List of Tables

Table A−1. Device Driver Memory Usage (Capture/Display) 24.
Table B−1. Device Driver Control Commands 30.

SPRA918A

3 The TMS320DM642 Video Port Mini-Driver

1 Overview

The device driver described here is actually part of an IOM mini-driver. That is, it is implemented
as the lower layer of a two-layer device driver model. The upper layer is the FVID module, which
is a simple wrapper on top of the DSP/BIOS GIO class driver. While GIO provides an
independent and generic set of APIs and services for a wide variety of mini-drivers, FVID
provides customized APIs for frame video capture and display. Please refer to Appendix B for a
detailed description of the FVID APIs.

Figure 1 shows the overall DSP/BIOS device driver architecture. For more information about the
IOM device driver model as well as the GIO, SIO/DIO, and PIP/PIO modules, see the
References section.

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

Chip Support Library (CSL)

Class
Driver

Mini-
Driver

On-Chip Peripheral Hardware Off-Chip Peripheral Hardware

Figure 1. DSP/BIOS IOM Device Driver Model

SPRA918A

4 The TMS320DM642 Video Port Mini-Driver

Application/Framework

Device
Driver

Class

Driver GIO Class Driver

FVID Class Driver Wrapper

Encoder/Decoder Specific Part of Mini Driver

Generic Video Port − DMA Data Mover

Chip Support Library (CSL)

Video Port/EDMA Video Codecs

−

Mini-
Driver

Figure 2. DM642 Video Capture and Display Driver Architecture

Figure 2 shows the architecture of the video capture and display mini-drivers of the DM642
video port. In order to maximize code reusability the DM642 video capture and display
mini-drivers are split into two parts: a generic part and a board specific part. In other
mini-drivers, such as in the C6x1x EDMA McBSP mini-driver, the class driver interfaces with the
board-specific portion of the mini-driver. In the DM642 video mini-drivers, on the other hand, the
FVID/GIO class driver interfaces with the generic part of the mini-driver, and the board-specific
portion is plugged into the generic portion of mini-driver through an interface called External
Device Control or EDC. By mandating that the board-specific portion of the mini-driver be a
compliant EDC module, maximum code reuse is achieved by changing only the EDC module of
the driver when porting to different platforms.

This application note describes both the generic part and the board-specific part of the DM642
EVM video capture and video display mini-drivers. The generic part of the drivers uses EDMAs
to transfer data to and from the video ports. The board-specific part mainly consists of code that
in the case of the capture driver, initializes and configures the SAA7115 video decoder, and in
the case of the display driver, initializes and configures the SAA7105 video encoder. These
EDC-compliant modules set up the video codecs to work together with the video ports to capture
or display the desired video data in a specific format. For example, the SAA7105 can be
configured to output video data in composite NTSC format or component High-Definition 1080i
format or a wide range of other video formats, depending on application requirements. In the
mean time, the associated video port must also be configured accordingly.

The board-specific part also requires the EVM and the DM642 DSP to be initialized by calling
the EVM642_init() function from the DM642 EVM Board Support Library (BSL), which comes
with the EVM. This will set up the EMIF, pin-mux configurations and the I2C controller. An
application must link all three libraries necessary in order to function correctly: one from the
board-specific part, such as the SAA7115 or the SAA7105, one from the generic VPORTCAP or
VPORTDIS part, and one from the BSL. These three libraries are called evm642_saa7115.l64,
evm642_vportcap.l64, and evmdm642.l64, respectively for capture, and are called
evm642_saa7105.l64, evm642_vportdis.l64, and evmdm642.l64, respectively for display.

SPRA918A

5 The TMS320DM642 Video Port Mini-Driver

2 Usage

2.1 Configuration

To use the capture or display device driver, a device entry must be added and configured in the
DSP/BIOS configuration tool. Refer to the DSP/BIOS Device Driver Developer’s Guide (literature
number SPRU616) for more information on how to use the DSP/BIOS configuration tool to
configure device drivers. The following are the device configuration settings required to use the
capture driver:

� Init function: N/A, not used by this driver

� Function table ptr: _VPORTCAP_Fxns

� Function table type: IOM_Fxns

� Device id: 0 or 1 for DM642 EVM:, specify which video port to use

� Device params ptr: An optional pointer to an object of type VPORT_PortParams as defined
in the header file vport.h. This pointer will point to a device parameter structure. Setting this
pointer to NULL requires that an additional FVID_control call made from the application to
initialize the video port. The parameter structure is described below. An example of this
structure is the _EVM642_vCapParamsNTSCPort that is defined in the
evm642_vcapParamsNTSC.c file for NTSC format video capture.

� Device global data ptr: N/A, not used by this driver

The following are the device configuration settings required to use the display driver:

� Init function: N/A, not used by this driver

� Function table ptr: _VPORTDIS_Fxns

� Function table type: IOM_Fxns

� Device id: 2 for DM642 EVM: specify which video port is in use

� Device params ptr: Same as for the capture driver

� Device global data ptr: N/A, not used by this driver

2.2 Device Parameters for Generic Part of the Driver

Please refer to TMS320C64x DSP Video Port/ VCXO Interpolated Control (VIC) Port Reference
Guide (literature number SPRU629) for a better understanding of the parameters described
below.

2.2.1 Port Parameters
typedef struct VPORT_PortParams{
 Int versionId;
 Bool dualChanEnab;
 Uns vc1Polarity;
 Uns vc2Polarity;
 Uns vc3Polarity;
 EDC_Fxns* edcTbl[2];
}VPORT_PortParams;

• versionId: Version number of the driver.

SPRA918A

6 The TMS320DM642 Video Port Mini-Driver

• dualChanEnable: Dual channel mode enable (capture only).

• vc1Polarity: polarity of the vctrl1 pin, either active high or active low.

• vc2Polarity: polarity of the vctrl2 pin.

• vc3Polarity: polarity of the vctrl3 pin.

• edcTbl[2]: array of up to two pointers of EDC function tables, one for each channel.

2.2.2 Capture Channel Parameters

typedef struct {

 Int cmode;

 Int fldOp;

 Int scale;

 Int resmpl;

 Int bpk10Bit;

 Int hCtRst;

 Int vCtRst;

 Int fldDect;

 Int extCtl;

 Int fldInv;

 Uint16 fldXStrt1;

 Uint16 fldYStrt1;

 Uint16 fldXStrt2;

 Uint16 fldYStrt2;

 Uint16 fldXStop1;

 Uint16 fldYStop1;

 Uint16 fldXStop2;

 Uint16 fldYStop2;

 Uint16 thrld;

 Int numFrmBufs;

 Int alignment;

 Int mergeFlds;

 Int segId;

 Int edmaPri;

 Int irqId;

}VPORTCAP_Params;

SPRA918A

7 The TMS320DM642 Video Port Mini-Driver

The definitions of the bit-fields in the above parameter are mapped to the video port capture
control register. The unnamed fields are there to represent the reserved bits in that register.

� cmode: capture mode, The following are possible settings defined in vport.h:

− VPORT_MODE_BT656_8BIT

− VPORT_MODE_BT656_10BIT

− VPORT_MODE_RAW_8BIT

− VPORT_MODE_RAW_10BIT

− VPORT_MODE_YC_8BIT

− VPORT_MODE_YC_10BIT

− VPORT_MODE_RAW_16BIT

− VPORT_MODE_RAW_20BIT

• fldOp: field and frame operation mode. The following are possible settings defined in
vport.h:

− VPORT_FLDOP_FLD1

− VPORT_FLDOP_FLD2

− VPORT_FLDOP_FRAME

− VPORT_FLDOP_PROGRESSIVE

� scale: horizontal ½ scaling enable. The following are possible settings defined in vport.h:

− VPORT_SCALING_DISABLE

− VPORT_SCALING_ENABLE

� resmpl: chroma horizontal 4:2:2 to 4:2:0 re-sampling enable. The following are possible
settings defined in vport.h:

− VPORT_RESMPL_DISABLE

− VPORT_RESMPL_DISABLE

� bpk10Bit: 10-bit packing mode, the following are possible settings defined in vportcap.h:

− VPORTCAP_BPK_10BIT_ZERO_EXTENDED

− VPORTCAP_BPK_10BIT_SIGN_EXTENDED

− VPORTCAP_BPK_10BIT_DENSE

� hCtRst: horizontal counter reset mode. The following are possible settings defined in
vportcap.h:

− VPORTCAP_HRST_EAV

− VPORTCAP_HRST_START_HBLK

− VPORTCAP_HRST_START_HSYNC

− VPORTCAP_HRST_SAV

− VPORTCAP_HRST_END_HBLK

− VPORTCAP_HRST_END_HSYNC

SPRA918A

8 The TMS320DM642 Video Port Mini-Driver

� vCtRst: vertical counter reset mode. The following are possible settings defined in
vportcap.h:

− VPORTCAP_VRST_START_VBLK

− VPORTCAP_VRST_START_VSYNC

− VPORTCAP_VRST_END_VBLK

− VPORTCAP_VRST_END_VSYNC

− VPORTCAP_VRST_EAV_V1

− VPROTCAP_VRST_EAV_V0

� fldDect: field detection enable, only used in external sync mode. Indicate whether to use
h-sync and v-sync relationship or just use the Field ID input for field detection. The following
are possible settings defined in vportcap.h

− VPORTCAP_FLDD_ENABLE

− VPORTCAP_FLDD_ENABLE

� extCtl: external sync mode enable. The following are possible settings defined in
vportcap.h:

− VPORTCAP_EXC_DISABLE

− VPORTCAP_EXC_ENABLE

� fldInv: field inverse enable. The following are possible settings defined in vportcap.h:

− VPORTCAP_FINV_DISABLE

− VPORTCAP_FINV_ENABLE

� fldXStrt1: starting pixel number of field one, must be greater than or equal to zero

� fldYStrt1: starting line number of field one, must be greater than or equal to one

� fldXStrt2: starting pixel number of field two, must be greater than or equal to zero

� fldYStrt2: starting line number of field two, must be greater than or equal to one

� fldXStop1: the last captured pixel of field one, must be greater than or equal to fldXStrt1

� fldYStop1: the last captured line of field one, must be greater than or equal to fldYStrt1

� fldXStop2: the last captured pixel of field two, must be greater than or equal to fldXStrt2

� fldYStop2: the last captured line of field two, must be greater than or equal to fldYStrt2

� thrld: specifies number of double-words required to generate DMA events

� numFrmBufs: number of frame buffers to be allocated by driver to store video data captured

� alignment: memory alignment requirement for frame buffers

� mergeFlds: indicate whether to merge field one and two or to keep them separate in
memory. Possible settings are defined in vport.h:

− VPORT_FLDS_MERGED

− VPORT_FLDS_SEPARATED

SPRA918A

9 The TMS320DM642 Video Port Mini-Driver

� SegId: DSP/BIOS memory segment ID, used by driver for frame buffer allocation

� edmaPri: priority level of EDMA transfers

� irqId: EDMA interrupt ID

2.2.3 Display Channel Parameters

typedef struct {

 Int dmode;

 Int fldOp;

 Int scale;

 Int resmpl;

 Int defValEn;

 Int bpk10Bit;

 Int vctl1Config;

 Int vctl2Config;

 Int vctl3Config;

 Int extCtl;

 Uint16 frmHSize;

 Uint16 frmVSize;

 Int16 imgHOffsetFld1;

 Int16 imgVOffsetFld1;

 Uint16 imgHSizeFld1;

 Uint16 imgVSizeFld1;

 Int16 imgHOffsetFld2;

 Int16 imgVOffsetFld2;

 Uint16 imgHSizeFld2;

 Uint16 imgVSizeFld2;

 Uint16 hBlnkStart;

 Uint16 hBlnkStop;

 Uint16 vBlnkXStartFld1;

 Uint16 vBlnkYStartFld1;

 Uint16 vBlnkXStopFld1;

 Uint16 vBlnkYStopFld1;

 Uint16 vBlnkXStartFld2;

SPRA918A

10 The TMS320DM642 Video Port Mini-Driver

 Uint16 vBlnkYStartFld2;

 Uint16 vBlnkXStopFld2;

 Uint16 vBlnkYStopFld2;

 Uint16 xStartFld1;

 Uint16 yStartFld1;

 Uint16 xStartFld2;

 Uint16 yStartFld2;

 Uint16 hSyncStart;

 Uint16 hSyncStop;

 Uint16 vSyncXStartFld1;

 Uint16 vSyncYStartFld1;

 Uint16 vSyncXStopFld1;

 Uint16 vSyncYStopFld1;

 Uint16 vSyncXStartFld2;

 Uint16 vSyncYStartFld2;

 Uint16 vSyncXStopFld2;

 Uint16 vSyncYStopFld2;

 Uint8 yClipLow;

 Uint8 yClipHigh;

 Uint8 cClipLow;

 Uint8 cClipHigh;

 Uint8 yDefVal;

 Uint8 cbDefVal;

 Uint8 crDefVal;

 Int rgbX;

 Int incPix;

 Uint16 thrld;

 Int numFrmBufs;

SPRA918A

11 The TMS320DM642 Video Port Mini-Driver

 Int alignment;

 Int mergeFlds;

 Int segId;

 Int edmaPri;

 Int irqId;

}VPORTDIS_Params;

� dmode: display mode, The following are possible settings defined in vport.h:

− VPORT_MODE_BT656_8BIT

− VPORT_MODE_BT656_10BIT

− VPORT_MODE_RAW_8BIT

− VPORT_MODE_RAW_10BIT

− VPORT_MODE_YC_8BIT

− VPORT_MODE_YC_10BIT

− VPORT_MODE_RAW_16BIT

− VPORT_MODE_RAW_20BIT

� fldOp: field and frame operation mode. The following are possible settings defined in
vport.h:

− VPORT_FLDOP_FLD1

− VPORT_FLDOP_FLD2

− VPORT_FLDOP_FRAME

− VPORT_FLDOP_PROGRESSIVE

� scale: horizontal 2x scaling enable, The following are possible settings defined in vport.h:

− VPORT_SCALING_DISABLE

− VPORT_SCALING_ENABLE

� resmpl: chroma horizontal 4:2:0 to 4:2:2 re-sampling enable. The following are possible
settings defined in vport.h:

− VPORT_RESMPL_DISABLE

− VPORT_RESMPL_DISABLE

� defValEn: default value output enable. Enable output of default value in the non-blanking
period outside the image window. The following are possible values defined in vportdis.h:

− VPORTDIS_DEFVAL_DISABLE

− VPORTDIS_DEFVAL_ENABLE

� bpk10Bit: 10-bit packing mode. The following are possible settings defined in vportdis.h:

− VPORTDIS_BPK_10BIT_NORMAL

− VPORTDIS_BPK_10BIT_DENSE

SPRA918A

12 The TMS320DM642 Video Port Mini-Driver

� • vctl1Config: VCTL1 pin output select. The following are possible settings defined in
vportdis.h:

− VPORTDIS_VCTL1_HSYNC

− VPORTDIS_VCTL1_HBLNK

− VPORTDIS_VCTL1_AVID

− VPORTDIS_VCTL1_FLD

� vctl2Config: VCTL2 pin output select. The following are possible settings defined in
vportdis.h:

− VPORTDIS_VCTL2_VSYNC

− VPORTDIS_VCTL2_VBLNK

− VPORTDIS_VCTL2_CSYNC

− VPORTDIS_VCTL2_FLD

� vctl3Config: VCTL3 pin output select. The following are possible settings defined in
vportdis.h:

− VPORTDIS_VCTL3_CBLNK

− VPORTDIS_VCTL3_FLD

� extCtl: external control enable. Indicate whether the video port is operated in master mode,
where VCTLx pins are output signals, or in slave mode, where those pins are inputs
generated by an external master timing device, such as a video encoder. The following are
possible values defined in vportdis.h:

− VPORTDIS_EXC_DISABLE

− VPORTDIS_EXC_ENABLE

� frmHSize: horizontal size of the video frame, including the blanking period

� frmVSize: vertical size of the video frame, including the blanking period

� imgHOffsetFld1: display image horizontal offset in Field 1, relative to the end of horizontal
blanking. Can be negative to enable output during horizontal blanking.

� imgVOffsetFld1: display image vertical offset in Field 1, relative to the end of vertical
blanking. Can be negative to enable output during vertical blanking

� imgHSizeFld1: display image width in pixels in Field 1

� imgVSizeFld1: display image height in lines in Field 1

� imgHOffsetFld2: display image horizontal offset in Field 2, relative to the end of horizontal
blanking. Can be negative to enable output during horizontal blanking

� imgVOffsetFld2: display image vertical offset in Field 2, relative to the end of vertical
blanking. Can be negative to enable output during vertical blanking.

� imgHSizeFld2: display image width in pixels in Field 2

� imgVSizeFld2: display image height in lines in Field 2

� hBlnkStart: specifies the pixel number within the line on which horizontal blanking starts

SPRA918A

13 The TMS320DM642 Video Port Mini-Driver

� hBlnkStop: specifies the pixel number within the line on which horizontal blanking ends

� vBlnkXStartFld1: specifies the pixel number on which the vertical blanking starts for Field 1

� vBlnkYStartFld1: specifies the line number on which the vertical blanking starts for Field 1

� vBlnkXStopFld1: specifies the pixel number on which the vertical blanking ends for Field 1

� vblnkYStopFld1: specifies the line number on which the vertical blanking ends for Field 1

� vBlnkXStartFld2: specifies the pixel number on which the vertical blanking starts for Field 2

� vBlnkYStartFld2: specifies the line number on which the vertical blanking starts for Field 2

� vBlnkXStopFld2: specifies the pixel number on which the vertical blanking ends for Field 2

� vblnkYStopFld2: specifies the line number on which the vertical blanking ends for Field 2

� xStartFld1: specifies the pixel number on the first line of Field 1 on which the FLD output is
de-asserted

� yStartFld1: specifies the line number of Field 1 on which the FLD output is de-asserted

� xStartFld2: specifies the pixel number on the first line of Field 2 on which the FLD output is
asserted

� yStartFld2: specifies the line number of Field 2 on which the FLD output is asserted

� hSyncStart: specifies the pixel number on which HSYNC is asserted

� hSyncStop: specifies the pixel number on which HSYNC is de-asserted

� vSyncXStartFld1: specifies the pixel number on which VSYNC is asserted in Field 1

� vSyncYStartFld1: specifies the line number on which VSYNC is asserted in Field 1

� vSyncXStopFld1: specifies the pixel number on which VSYNC is de-asserted in Field 1

� vSyncYStopFld1: specifies the line number on which VSYNC is de-asserted in Field 1

� vSyncXStartFld2: specifies the pixel number on which VSYNC is asserted in Field 2

� vSyncYStartFld2: specifies the line number on which VSYNC is asserted in Field 2

� vSyncXStopFld2: specifies the pixel number on which VSYNC is de-asserted in Field 2

� vSyncYStopFld1: specifies the line number on which VSYNC is de-asserted in Field 2

� yClipLow: specifies the lower boundary of allowable Y value without clipping

� yClipHigh: specifies the upper boundary of allowable Y value without clipping

� cClipLow: specifies the lower boundary of allowable Cb/Cr value without clipping

� cClipHigh: specifies the upper boundary of allowable Cb/Cr value without clipping

� yDefVal: specifies 8 MS bits of the default Y value

� cbDefVal: specifies 8 MS bits of the default Cb value

� crDefVal: specifies 8 MS bits of the default Cr value

� rgbX: only used in raw mode for sequential 24/30-bit RGB data output, RGB extract enable,
performing ¾ FIFO unpacking. Please refer to SPRU629 for more information.

� incPix: only used in raw mode, specifies that the internal FPCOUNT is incremented every
incPix output clocks. For example, incPix would be set to 1 for 16-bit RGB output when used

SPRA918A

14 The TMS320DM642 Video Port Mini-Driver

in 16-bit raw mode, while incPix would be set to 3 for 24-bit RGB output when used in 8-bit
raw mode. Please refer to SPRU629 for more information.

� thrld: specifies number of double-words required to generate DMA events

� numFrmBufs: number of frame buffers to be allocated by driver to store video data captured

� alignment: memory alignment requirement for frame buffers

� mergeFlds: indicate whether to merge field one and two or to keep them separate in
memory. Possible settings are defined in vport.h:

− VPORT_FLDS_MERGED

− VPORT_FLDS_SEPARATED

� SegId: DSP/BIOS memory segment ID, used by driver for frame buffer allocation

� edmaPri: priority level of EDMA transfers

� irqId: EDMA interrupt ID

2.2.4 Video Port Global Interrupt Processing

typedef struct VPORT_VIntCbParams{

 Int cbArg;

 VPORT_IntCallBack vIntCbFxn;

 Uint16 vIntMask;

 Uint16 vIntLine;

 Int irqId;

 Uns intrMask;

} VPORT_VIntCbParams;

� cbArg: specifies the argument of the interrupt call-back function

� vIntCBFxn: specifies the pointer of the interrupt call-back function

� vIntMask: specifies event or events that are enabled to generate the video port global
interrupt. The following are possible values defined in vport.h:

− VPORT_INT_COVR: capture FIFO over-run

− VPORT_INT_CCMP: capture complete

− VPORT_INT_SERR: synchronization error

− VPORT_INT_VINT1: vertical interrupt in field 1

− VPORT_INT_VINT2: vertical interrupt in field 2

− VPORT_INT_SFD: short field detected

− VPORT_INT_LFD: long field detected

− VPORT_INT_STC: system time clock

− VPORT_INT_TICK: clock tick

− VPORT_INT_DUND: display FIFO under-run

SPRA918A

15 The TMS320DM642 Video Port Mini-Driver

− VPORT_INT_DCMP: display complete

− VPORT_INT_DCNA: display complete not acknowledged

� irqId: specifies the interrupt channel to be used for the video port global interrupt

� IntrMask: interupt mask, set while executing ISR

2.2.5 Commands

The following are implemented run-time commands defined in vport.h:

� VPORT_CMD_RESET: resets video port

� VPORT_CMD_CONFIG_PORT: configures video port

� VPORT_CMD_CONFIG_CHAN: configures a video channel

� VPORT_CMD_START: starts capture or display operation

� VPORT_CMD_STOP: stops capture or display operation

� VPORT_CMD_SET_VINTCB: setup video port global interrupt call-back

� VPORT_CMD_DUND_RECOVER: force video port to recover from display under-run

� VPORT_CMD_COVR_RECOVER: force video port to recover from capture over-run

SPRA918A

16 The TMS320DM642 Video Port Mini-Driver

2.3 Device Parameters for Board Specific Part of the Drivers

2.3.1 The External Device Control (EDC) Interface

As showed in Figure 2, the capture and display mini-drivers consist of the following two parts:

• The generic part, which is designed to work as is with different external video codecs and
board layouts. All of its dependencies lies within the DM642 device. For example, the
vportdis.c file in the display mini-driver library, can be reused without any code change with
different video encoders on different customer boards.

• The board specific part, which only works with specific video encoders or decoders on a
specific board. For example, the SAA7105.c file in the display mini-driver library, only works
with the Phillips SAA7105 video encoder on the DM642 EVM. Source code changes may be
needed even if the same encoder is used on a different board.

The EDC interface is defined to allow seamless integration of these two parts in order to maxi-
mize code reuse and minimize possible errors in the integration process. It defines a set of APIs
that a board-specific part of the mini-driver must implement in order to work with the generic
part.

/* EDC control commands */

#define EDC_CONFIG 0x00000001

#define EDC_RESET 0x00000002

#define EDC_START 0x00000003

#define EDC_STOP 0x00000004

#define EDC_GET_CONFIG 0x00000005

#define EDC_GET_STATUS 0x00000006

/* base of user defined commands */

#define EDC_USER 0x10000000

/* EDC return codes */

#define EDC_SUCCESS 0

#define EDC_FAILED −1

typedef void* EDC_Handle;

/*

 * ======== EDC_Fxns ========

 * edcOpen() required, open the device

 * edcClose() required, close the device

 * edcCtrl() required, control/query device

 */

typedef struct EDC_Fxns {

 EDC_Handle (*open)(String name, Arg optArg);

 Int (*close)(Ptr devHandle);

 Int (*ctrl)(Ptr devHandle, Uns cmd, Arg arg);

} EDC_Fxns;

SPRA918A

17 The TMS320DM642 Video Port Mini-Driver

2.3.2 SAA7105 Parameters

typedef struct {

 SAA7105_AnalogFormat aFmt;

 SAA7105_Mode mode;

 SAA7105_InputFormat iFmt;

 Bool enableSlaveMode;

 Bool enableBT656Sync;

 I2C_Handle hI2C;

} SAA7105_ConfParams;

� aFmt: specified the analog output format of the video encoder device. Possible values are
defined in saa7105.h:

typedef enum SAA7105_AnalogFormat {

 SAA7105_AFMT_SVIDEO = 0,

 SAA7105_AFMT_RGB = 1,

 SAA7105_AFMT_YPBPR = 1,

 SAA7105_AFMT_COMPOSITE = 2

} SAA7105_AnalogFormat;

� mode: specifies the video format. Possible values are defined in saa7105.h:

typedef enum

{

 SAA7105_MODE_NTSC720,

 SAA7105_MODE_PAL720,

SAA7105_MODE_QVGA,

SAA7105_MODE_VGA,

SAA7105_MODE_SVGA,

SAA7105_MODE_XGA,

SAA7105_MODE_HD480P60F,

SAA7105_MODE_HD720P24F,

SAA7105_MODE_HD720P60F,

SAA7105_MODE_HD1080I30F

}SAA7105_Mode;

SPRA918A

18 The TMS320DM642 Video Port Mini-Driver

� iFmt: input format. Possible values are defined in saa7105.h:

typedef enum SAA7105_InputFormat {

 SAA7105_IFMT_RGB24_YCBCR444,

 SAA7105_IFMT_RGB555,

 SAA7105_IFMT_RGB565,

 SAA7105_IFMT_YCBCR422_NONEINTERLACED,

 SAA7105_IFMT_YCBCR422_INTERLACED

}SAA7105_InputFormat;

� enableSlaveMode: specifies whether device is operated in master or slave mode: Possible
values are :

− 1, for slave mode

− 0, for master mode

Note: because the design of the DM642 EVM board requires that the video port 2 work in master
mode, SAA7105 must then work in slave mode to ensure proper operation.

� enableBT656Sync: enable embedded synchronization using SAV/EAV code defined in
ITU-R BT.656.

� hI2C: handle to the DM642 I2C controller

2.3.3 SAA7115 Parameters

typedef struct {

 SAA7115_Mode inMode;

 SAA7115_Mode outMode;

 SAA7115_AnalogFormat aFmt;

 Bool enableBT656Sync;

 Bool enableIPortOutput;

 I2C_Handle hI2C;

 Int hSize;

 Int vSize;

 Bool interlaced;

} SAA7115_ConfParams;

SPRA918A

19 The TMS320DM642 Video Port Mini-Driver

� inMode: specifies the input video format. Possible values are defined in saa7115.h:

typedef enum SAA7115_Mode{

 SAA7115_MODE_NTSC640,

 SAA7115_MODE_NTSC720,

 SAA7115_MODE_PAL720,

 SAA7115_MODE_PAL768,

 SAA7115_MODE_CIF,

 SAA7115_MODE_QCIF,

 SAA7115_MODE_SQCIF,

 SAA7115_MODE_SIF

 SAA7115_MODE_USER

}SAA7115_Mode;

� outMode: specifies the output video format. Possible values are the same as inMode
described above. Since SAA7115 has an on-chip scaling capabilities. output format can be
different from input format.

� aFmt: specified the analog output format of the video encoder device. Possible values are
defined in saa7105.h:

typedef enum SAA7115_AnalogFormat {

 SAA7115_AFMT_SVIDEO,

 SAA7115_AFMT_COMPOSITE

} SAA7115_AnalogFormat;

� enableBT656Sync: enable insertion of SAV/EAV code defined in ITU-R BT.656 into the
output video data stream

� enableIPortOutput: enable video data output from the I-PORT instead of the X-PORT

� hI2C: handle to the DM642 I2C controller

The following parameters are used optionally when inMode = SAA7115_MODE_USER:

• hSize: horizontal size of the user-defined image

• vSize: vertical size of the user-defined image

• interlaced: specify whether user-defined image is in the interlaced or progressive format

2.3.4 String Naming Convention in FVID_create()

Since the DM642 video port is capable of dual-channel capture operations, and since the gener-
ic part of the driver can be hooked up with any EDC compliant module for external codec config-
uration, there must be a way for this information to be passed to the driver from the application
for the driver to function properly. This is done when calling FVID_create(). The first argument of
the function is name, which is of type String. The following rules are applied to the definition of
that string.

• For the Capture Driver: the string consists of up to 3 sub-strings, separated by ‘/’. For
example, “VP0CAPTURE/A/0”.

SPRA918A

20 The TMS320DM642 Video Port Mini-Driver

• The first sub-string shall be the name of the driver defined in the DSP/BIOS .cdb file. This
sub-string and its associated device ID are used by the GIO class driver to identify the video
port.

• The second sub-string shall be either A or B to identify whether this is for video port channel
A or channel B.

• The third sub-string is optional, and if specified, is used to identify the external video codec.
For example, on the DM642 EVM board, there are two SAA7115s that use the same EDC
compliant module to get initialized. The EDC module must know which codec to initialize and
configure. This is done by make the third sub-string either “0” or “1”.

• The naming convention of the string is similar for the display driver, except that it only
consists of up to two sub-strings because it always operates in single-channel mode. For
example, “VP2DISPLAY”.

• The first sub-string shall be the name of the driver defined in the DSP/BIOS .CDB
configuration file. This sub-string and its associated device id are used by the GIO class
driver to identify the video port.

• The second sub-string is optional, and if specified, is used to identify the external video
codec. For the DM642 EVM board, this sub-string is ignored since there is only one
SAA7105 device.

3 Architecture
This section describes the design and implementation of the device driver. The driver uses
various DSP/BIOS and CSL modules (see Appendix A). Refer to the TMS320C6000 DSP/BIOS
Application Programming Interface (literature number SPRU403) and TMS320C6000 Chip
Support Library API Reference Guide (literature number SPRU401). The technical details of the
EDMA are available from TMS320C6000 Peripherals Reference Guide (literature number
SPRU190). The technical details of the video port are available from TMS320C64x DSP Video
Port/ VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629).

3.1 Block Diagram

Memory EDMA
Controller

Video Port Video Encoder

EDMA ISR VP ISR

Data Flow

Interrupt
Triggering

Figure 3. Block Diagram of the Display Driver

Figure 3 shows the top-level block diagram of the display driver. In display operation, data flows
from frame buffer located in memory to the video port FIFO by EDMA transfers. The video port
in turn outputs data to the external video encoder for display. EDMA interrupt is triggered after
an entire frame is transferred from memory to the video port. This interrupt is essential and is
used by the driver for the following purposes:

SPRA918A

21 The TMS320DM642 Video Port Mini-Driver

• Frame buffer management

• EDMA re-load entry updating

• Notifying the class driver that an empty frame buffer is available for the application to fill by
calling the callback function provided by the class driver at initialization time

• The video port global interrupt can be optionally enabled by the application for error handling
or for synchronization with the video port.

The capture driver is very similar except that data flows in opposite direction.

3.2 Buffer Management

Frame buffers containing video data are allocated and initially owned by the drivers. The number
of frame buffers that the drivers allocate is run-time configurable with a minimum requirement of
triple buffering. Before allocation, the drivers calculate the size of each buffer based on the
channel configuration parameters. For example, the size of a buffer that can hold an entire
NTSC video frame is 720x480x2. If scaling is enabled, however, the size would be halved.

Frame buffers are exchanged among the application and the drivers by using the FVID_alloc(),
FVID_free() and FVID_exchange() functions. The buffer management strategies, however, are
different in the capture and display drivers, as showed in Figure 4 and Figure 5 below.

 (a) (b) (c) (d) (e)

1

2

3

1

2

3

1

2

3

1

1

2

3

1

2

3

Figure 4. Capture Driver Buffer Management

In the case of capture, all buffers are initially in the free queue and the driver cycles through
them in a circular fashion. This is illustrated in Figure 4(a).

When the application calls FVID_alloc() and grabs the buffer with the most recent data from the
driver, the driver then cycles through the rest of buffers. This is illustrated in Figure 4 from (a) to
(b) and from (b) (e).

When the application calls FVID_free(), an empty buffer is returned by the application to the driv-
er’s free queue. This is illustrated in Figure 4 from (b) to (a) or from (e) to (b).

When the application calls FVID_exchange(), an empty buffer is returned by the application to
the driver’s free queue, and a buffer with the most recent data is given to the application. This is
equivalent to calling FVID_free() and FVID_alloc() sequentially, as shown in Figure 4 from (b) to
(c) and from (c) to (d).

SPRA918A

22 The TMS320DM642 Video Port Mini-Driver

 (a) (b) (c) (d) (e)

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

Figure 5. Display Driver Buffer Management.

In the case of display, initially all buffers except one are in the output queue, ready to be
grabbed by the application. The driver repeatedly displays the current buffer. This is shown in
Figure 5(a).

When the application calls FVID_alloc(), it gets a buffer from the driver and starts to fill data to it
while the driver is still displaying its current buffer. This is shown in Figure 5(b) and (d).

When the application calls FVID_free(), it returns a buffer ready for display back to the driver.
The driver, in turn, will set this buffer as its now current buffer after it completes displaying the
previous one. This is shown in Figure 5(b) to (c) to (d).

When the application calls FVID_exchange(), it returns a buffer ready for display back to the
drive and it requires an empty buffer from the driver. This is equivalent to calling FVID_free() and
FVID_alloc() sequentially, as shown in Figure 5(d) to (e).

3.3 Cache Coherency

It is the application’s responsibility to ensure cache coherency, as the driver does nothing in this
respect. This is because data is typically moved by EDMA between fast on-chip SRAM and slow
off-chip SD-RAM for faster CPU access. Furthermore, algorithms can use ping-pong buffer
schemes to parallel the EDMA transfer and the CPU execution, thus hiding most or all overhead
associated with the data movement. If this is the case, cache flush and clean operations can be
avoided by aligning the frame buffers to cache line boundaries.

However, if the application does access these buffers directly, the application must flush or clean
the cache to ensure cache coherency, the EDMA accesses external memory directly through the
EMIF, while the CPU goes through the cache when accessing the data.

4 Constraints

This device driver does not support the following modes:

• Raw data capture

• Dual-channel synchronized raw-data display

• Synchronized to another video port

• Capture of MPEG transport stream

SPRA918A

23 The TMS320DM642 Video Port Mini-Driver

5 References

All these documents are available from http://www.ti.com.
1. DSP/BIOS Driver Developer’s Guide (SPRU616)

2. TMS320C64x DSP Video Port/ VCXO Interpolated Control (VIC) Port Reference Guide
(SPRU629)

3. TMS320C6000 DSP/BIOS Application Programming Interface (SPRU403)

4. TMS320C6000 Chip Support Library API Reference Guide (SPRU401)

5. TMS320C6000 Peripherals Reference Guide (SPRU190)

SPRA918A

24 The TMS320DM642 Video Port MiniDriver

Appendix A Device Driver Data Sheet

A.1 Device Driver Library Name

vportcap_.l64 and vportdis_.l64 for TMS320DM642 device.

A.2 DSP/BIOS Modules Used

• HWI – Hardware Interrupt Manager

• QUE – Queue Manager

• IOM – I/O Manager

A.3 DSP/BIOS Objects Used

• QUE_Obj

A.4 CSL Modules Used

• EDMA module

• IRQ module

• I2C module

• VP module

A.5 CPU Interrupts Used

• EDMA interrupt

• Video Port interrupt

A.6 Peripherals Used

• EDMA

• EMIF

• I2C

• Video Port

A.7 Maximum Interrupt Latency(Capture/Display)

89/71 cycles

A.8 Memory Usage

Table A−1. Device Driver Memory Usage (Capture/Display)

Uninitialized memory Initialized memory

CODE −−− 16704/18240 Words

DATA 3968/4186 + memory dynamically allocated for video frame
buffers

156/384 Words

SPRA918A

25 The TMS320DM642 Video Port MiniDriver

SPRA918A

26 The TMS320DM642 Video Port MiniDriver

Appendix B The FVID API Interface

B.1 Overview

The FVID module presents an API for DSP/BIOS applications that are performing frame video
capture and display. FVID was implemented as a simple wrapper on top of the GIO class driver
and provides an application-specific interface that has been customized for frame video. For
more information on the DSP/BIOS device driver model and the GIO class driver, refer to the
References section of this document.

The FVID device driver API differs from many other drivers in the way that it manages ownership
of data buffers with the application. Most DSP/BIOS device drivers expect the application to
initially have control of data buffers and to pass the address of these buffers down to the device
driver for the purposes of data input or output. The FVID module and the video capture and
display mini-drivers that it works with use an inverted model in which the device driver assumes
initial control of the data buffers. The motivation for this approach is that video systems often
have large, dedicated memory buffers that are optimized for high-speed data movement, rather
than being allocated from the system memory heap. Since the size, location, and status of these
buffers are set within the driver itself, it makes sense that the driver would have overall control of
them.

Frame video systems are also characterized by efficient multi-buffering of frame data. Double
buffering is used so that when one buffer is being used to move data to or from the display
hardware (and therefore owned by the driver), the other buffer (is owned by and) is being used
by the application for rendering. The two buffers can then be swapped during a frame-sync and
the process will be repeated. Triple buffering is often used to allow the application to obtain a
buffer from the driver without having to wait for a new frame-sync.

B.2 Using the FVID APIs

As discussed above, the device driver has initial ownership of the frame buffers and the
application needs to allocate these buffers for processing. Therefore, the prime role of the FVID
APIs is managing ownership of the buffers between the device driver and the application. At the
heart of the FVID interface are two calls:

FVID_alloc. Allocate a video port buffer to the application.

FVID_exchange. Exchange an application-owned buffer for a driver-owned buffer.

Once the driver is initialized, the application will need to call FVID_alloc once at the beginning to
get initial ownership of the buffer. After that, calls to FVID_exchange can be used to swap
buffers between the application and driver.

The FVID interface is completely integrated into DSP/BIOS. For each FVID channel created, a
separate synchronization object is initialized. Calls to allocate and exchange video buffers can
be blocking or non-blocking, depending on the timeout value specified when the channel was
created.

The following is a simplified example of an application that is capturing data from a video source
and displaying the data to some kind of device.

SPRA918A

27 The TMS320DM642 Video Port MiniDriver

#include <std.h>
#include <fvid.h>

main()
{
 /* DSP/BIOS scheduler starts at the termination of main() */
}

/* Video processing task */
void tskVDisplay()
{
 /* capture/display channel objects */
 GIO_Handle capChan, disChan;

 /* capture/display frame buffers */
 FVID_Frame *capFrameBuf, *disFrameBuf;

 /* create and initialize the FVID channel objects */
 capChan = FVID_create(”/vcap”, IOM_INPUT, NULL, (Ptr)&capParams, NULL);
 disChan = FVID_create(”/vdis”, IOM_OUTPUT, NULL, (Ptr)&disParams, NULL);

 /* Let application have ownership of the first set of buffers */
 FVID_alloc(capChan, &capFrameBuf);
 FVID_alloc(disChan, &disFrameBuf);

 while(1) {
 /* copy captured frame data to the display frame buffer */
 FrameDataCopy(capFrameBuf, disFrameBuf);

 FVID_exchange(capChan, &capFrameBuf);
 FVID_exchange(disChan, &disFrameBuf);
 }
}

B.3 API Description

B.3.1 Functions

The following API functions are defined by the FVID module:

• FVID_alloc. Allocate a video port buffer to the application.

• FVID_control. Send a control command to the mini-driver.

• FVID_create. Allocate and initialize an FVID channel object.

• FVID_delete. De-allocate an FVID channel object.

• FVID_exchange. Exchange an application-owned buffer for a driver-owned buffer.

• FVID_free. Relinquish a video port buffer back to the driver.

SPRA918A

28 The TMS320DM642 Video Port MiniDriver

B.3.2 Constants, Types, and Structures

/* definition of interlaced frame */
typedef struct FVID_IFrame{
 unsigned char* y1;
 unsigned char* cb1;
 unsigned char* cr1;
 unsigned char* y2;
 unsigned char* cb2;
 unsigned char* cr2;
}FVID_IFrame;

/* progressive frame */
typedef struct FVID_PFrame {
 unsigned char* y;
 unsigned char* cb;
 unsigned char* cr;
} FVID_PFrame;

/* Raw frame, could be RGB, monochrome or just any data*/
/* interleaved Y/C frame etc. */
typedef struct FVID_RawIFrame{
 unsigned char* buf1;
 unsigned char* buf2;
} FVID_RawIFrame;

typedef struct FVID_RawPFrame{
 unsigned char* buf;
} FVID_RawPFrame;

/* definition of interlaced frame */
typedef struct FVID_IFrame{
 unsigned char* y1;
 unsigned char* cb1;
 unsigned char* cr1;
 unsigned char* y2;
 unsigned char* cb2;
 unsigned char* cr2;
}FVID_IFrame;

/* progressive frame */
typedef struct FVID_PFrame {
 unsigned char* y;
 unsigned char* cb;
 unsigned char* cr;
} FVID_PFrame;

/* Raw frame, could be RGB, monochrome or just any data*/
/* interleaved Y/C frame etc. */
typedef struct FVID_RawIFrame{

SPRA918A

29 The TMS320DM642 Video Port MiniDriver

 unsigned char* buf1;
 unsigned char* buf2;
} FVID_RawIFrame;

typedef struct FVID_RawPFrame{
 unsigned char* buf;
} FVID_RawPFrame;
/* FVID frame buffer descriptor */
typedef struct FVID_Frame {
 QUE_Elem queElement; /* the first two words are for queuing */
 union {
 FVID_IFrame iFrm; /* y/c frame buffer */
 FVID_PFrame pFrm; /* y/c frame buffer */
 FVID_RawIFrame riFrm; /* raw frame buffer */
 FVID_RawPFrame rpFrm; /* raw frame buffer */
 } frame;

} FVID_Frame;

B.4 Function Calls

FVID_alloc Allocate a video port buffer to the application

Syntax status = FVID_alloc (fvidChan, bufp);

Parameters FVID_Handle fvidChan /* handle to an instance of the device */
Ptr bufp /* pointer to buffer allocated by driver */

Return Value Int status /* returns IOM_COMPLETED if successful */

Description An application will call FVID_alloc to request the video device driver to give it
ownership of a data buffer. This API function will result in an mdSubmit call being
made to the mini-driver.

The fvidChan argument is the handle of the video driver channel that was
created with a call to FVID_create.

The bufp argument is an out parameter that this function fills with a pointer to the
structure of type FVID_Frame that was allocated by the device driver.

FVID_alloc returns IOM_COMPLETED when it completes successfully. If the re-
quest is queued by the mini-driver, a status of IOM_PENDING is returned. If an
error occurs, a negative value will be returned. See the iom.h header file for the
possible error values that can be returned.

Constraints This function can only be called after the device has been loaded and initialized.
The handle supplied as an argument to this function should have been obtained
with a previous call to FVID_create.

Example /* allocate a buffer from the device */
status = FVID_alloc(chanHandle, dispBuf);

SPRA918A

30 The TMS320DM642 Video Port MiniDriver

FVID_control Send a control command to the mini-driver

Syntax status = FVID_control (fvidChan, cmd, args);

Parameters FVID_Handle fvidChan /* handle to an instance of the device */
Int cmd /* control command */
Ptr args /* pointer to control command arguments */

Return Value Int status /* returns IOM_COMPLETED if successful */

Description An application calls FVID_control to send device-specific control commands to
the mini-driver

The fvidChan argument is the handle of the video driver channel that was
created with a call to FVID_create.

The cmd argument specified the control command. At present, the video port
mini-driver implements the following control commands.

Table B−1. Device Driver Control Commands

Command Arg Function

IOM_ABORT N/A Abort all pending I/O jobs

IOM_FLUSH N/A All video capture I/O jobs pending are discarded. All video
display I/O jobs are processed normally.

The args argument is a pointer to the argument or structure of arguments that
are specific to the command being passed

FVID_control returns IOM_COMPLETED when it completes successfully. If an
error occurs, this call will return a negative value. See the iom.h header file for
the possible error values that can be returned.

Constraints This function can only be called after the device has been loaded and initialized.
The handle supplied as an argument to this function should have been obtained
with a previous call to FVID_create.

Example /* abort all pending video driver I/O jobs */
FVID_control(fvidChan, IOM_ABORT, NULL);

SPRA918A

31 The TMS320DM642 Video Port MiniDriver

FVID_create Allocate and initialize an FVID channel object

Syntax fvidChan = FVID_create (name, mode, *status, optArgs, *attrs);

Parameters String name /* handle to an instance of the device */
Int mode /* pointer to buffer allocated by driver */
Int *status /* pointer to size of buffer pointed to by */
Ptr optArgs /* */
FVID_Attrs *attrs /* */

Return Value FVID_Handle fvidChan /* handle to an instance of the device */

Description An application calls FVID_create to create and initialize a video driver channel to
the driver.

The name argument is the name specified for the device when it was created in
the configuration file or at run-time.

The mode argument specifies the mode in which the device is to be opened. It
can be either IOM_INPUT for video capture or IOM_OUTPUT for video display.

The status argument is an out parameter that this function fills with a pointer to
the status that was returned by the mini-driver.

The attrs argument is a pointer to a structure of type FVID_Attrs:

typedef struct FVID_Attrs {
 Uns timeout;

} FVID_Attrs;

The timeout member of the attributes structure is to specify the timeout of the
synchronization (semaphore) object that is created by the class driver. A value of
SYS_FOREVER will cause the FVID_alloc, FVID_free and FVID_exchange calls
to wait indefinitely for a completion of the call. A numerical timeout value will
cause these APIs to block for the specified time, in units of system clock ticks. A
value of 0 will cause the APIs to be non-blocking and they will return immediate-
ly, in which case the application would have to check the status returned to make
sure the call was completed successfully. If a non-zero timeout is specified, it is
important that calls to FVID_alloc, FVID_free and FVID_exchange are only
called within a DSP/BIOS task (TSK).

FVID_create returns a handle to the channel if it is successfully opened. This
handle can then be used by subsequent FVID module calls to this channel. This
function will return NULL if the device channel could not be opened.

Constraints This function can only be called after the device has been loaded and initialized.

Example /* Initialize the attributes */
FVID_ATTRS dispAttrs = FVID_ATTRS;
/* Create an instance to a video display device */ chan-
Handle = FVID_create(“\display0”, IOM_INPUT, NULL, NULL,
&dispAttrs);

SPRA918A

32 The TMS320DM642 Video Port MiniDriver

FVID_delete Deallocate an FVID channel object

Syntax status = FVID_delete (fvidChan);

Parameters FVID_Handle fvidChan /* handle to an instance of the device */

Return Value Int status /* returns IOM_COMPLETED if successful */

Description An application calls FVID_delete to close a device driver channel.

The fvidChan argument is the handle of the video driver channel that was
created with a call to FVID_create.

FVID_delete returns IOM_COMPLETED when it completes successfully. If an
error occurs, a negative value will be returned. See the iom.h header file for the
possible error values that can be returned.

Constraints This function can only be called after the device has been loaded and initialized.
The handle supplied as an argument to this function should have been obtained
with a previous call to FVID_create.

Example /* allocate a buffer from the device */

status = FVID_delete(chanHandle);

SPRA918A

33 The TMS320DM642 Video Port MiniDriver

FVID_exchange Exchange an application-owned buffer for a driver-owned buffer

Syntax status = FVID_exchange (fvidChan, bufp);

Parameters FVID_Handle fvidChan /* handle to an instance of the device */
Ptr bufp /* pointer to buffer exchanged by driver */
LgUns *pSize /* pointer to size of buffer pointed to by bufp */

Return Value Int status /* returns IOM_COMPLETED if successful */

Description An application calls FVID_exchange to request the video device driver to give it
ownership of a data buffer in exchange for a buffer that the application owns and
is ready to relinquish back to the driver. A call to FVID_exchange is functionally
equivalent to serial calls to FVID_free and FVID_alloc, but allows the same thing
to be done in a single API call. The application will need to call FVID_alloc once
to initialize ownership of the frame. This API function will result in an mdSubmit
call being made to the mini-driver.

The fvidChan argument is the handle of the video driver channel that was
created with a call to FVID_create.

The bufp argument is an in/out parameter that points to the application-owned
buffer that is to be relinquished back to the driver. After the call returns success-
fully, this function fills bufp with a pointer to the structure of type FVID_Frame
that was exchanged by the device driver.

FVID_exchange returns IOM_COMPLETED when it completes successfully. If
the request is queued by the mini-driver, a status of IOM_PENDING is returned.
If an error occurs, a negative value will be returned. See the iom.h header file for
the possible error values that can be returned.

Constraints This function can only be called after the device has been loaded and initialized.
The handle supplied as an argument to this function should have been obtained
with a previous call to FVID_create.

Example /* allocate a buffer from the device */

status = FVID_exchange(chanHandle, dispBuf);

SPRA918A

34 The TMS320DM642 Video Port MiniDriver

FVID_free Relinquish a video port buffer back to the driver

Syntax status = FVID_free (fvidChan, bufp);

Parameters FVID_Handle fvidChan /* handle to an instance of the device */
Ptr bufp /* pointer to buffer to be relinquished to driver */
LgUns *pSize /* pointer to size of buffer pointed to by bufp */

Return Value Int status /* returns IOM_COMPLETED if successful */

Description An application calls FVID_free to relinquish a video buffer back to the video de-
vice driver. This API function will result in an mdSubmit call being made to the
mini-driver.

The fvidChan argument is the handle of the video driver channel that was
created with a call to FVID_create.

The bufp argument is a pointer to the structure of type FVID_Frame that was
previously allocated by the device driver and is not to be relinquished.

FVID_alloc returns IOM_COMPLETED when it completes successfully. If the re-
quest is queued by the mini-driver, a status of IOM_PENDING is returned. If an
error occurs, a negative value will be returned. See the iom.h header file for the
possible error values that can be returned.

Constraints This function can only be called after the device has been loaded and initialized.
The handle supplied as an argument to this function should have been obtained
with a previous call to FVID_create. The pointer that is passed as an argument
to this call must point to a video buffer of type FVID_Frame that was already allo-
cated by the driver through a call to FVID_alloc or FVID_exchange.

Example /* free a buffer back to the device */

status = FVID_free(chanHandle, dispBuf);

