
Application Report

Lit. Number – June 2011

1

Performance of Multicore Navigator on KeyStone DSPs

Brighton Feng Communication Infrastructure

ABSTRACT

Multicore Navigator is a new architecture for high-speed data packet movement within
KeyStone DSPs.

This application report discusses the performance of Multicore Navigator, provides
measured performance data achieved under various operating conditions. Some factors
affecting Multicore Navigator performance are discussed.

Overwrite this text with the Lit. Number

2 Performance of Multicore Navigator on KeyStone DSPs

Contents

1 Introduction to Multicore Navigator .. 3

2 Performance of QMSS ... 5

2.1 DSP core cycles for PUSH operation.. 5

2.2 DSP core cycles for POP operation .. 6

2.3 Access queue through different access regions .. 7

2.4 Using external linking RAM ... 8

2.5 Delay for queue pending interrupt ... 9

2.6 Delay for descriptor accumulation interrupt ... 9

2.7 Delay for descriptor reclamation ... 10

2.8 Other performance considerations for queue operation .. 10

3 Performance of Packet DMA ... 11

3.1 Packet DMA Transfer overhead .. 11

3.2 Packet DMA bandwidth .. 11

3.3 Packet DMA v.s. EDMA .. 13

References ... 14

Figures

Figure 1. Multicore Navigator Architecture ... 3

Figure 2. Throughput of single packet DMA channel in QMSS .. 12

Figure 3. Total Throughput of multiple packet DMA channels in QMSS 13

Figure 4. Single Channel Packet DMA v.s. EDMA ... 14

Tables

Table 1. Average DSP core cycles for different PUSH operation ... 5

Table 2. Average DSP core cycles for different POP operation ... 6

Table 3. Average PUSH/POP cycles with External linking RAM v.s. internal linking RAM 8

Table 4. Average accumulation delay .. 9

Table 5. Packet DMA Transfer overhead .. 11

Overwrite this text with the Lit. Number

 Performance of Multicore Navigator on KeyStone DSPs 3

1 Introduction to Multicore Navigator

The Multicore Navigator uses a Queue Manager Subsystem (QMSS) and a Packet DMA
(PKTDMA) to control and implement high-speed data packet movement within the device. This
reduces the traditional internal communication load on the DSP core significantly, increases
overall system performance.

The following figure shows the block diagram of the Multicore Navigator on KeyStone DSP
family.

DSP CorePac

Queue Manage SubSystem

DSP core

Packet

DMA

(SRIO)

Packet

DMA

(PA)

Packet

DMA

(FFTC)

Packet

DMA

(AIF2)

VBUS

Accumulation

Memory

Buffer

Memory

.

.

.

external

Linking

RAM

Descriptor

RAM
Queue

Manager

Q1

IF

Q0

IF

Qx

IF

Queue Events

Queue

Events

Queue

Events

Queue

Events

Queue

Events

Packet

DMA

(QMSS

Internal)

PDSP

PDSP

Queue

Interrupts

Queue

Interrupts

Packet

DMA

(BCP)

Queue

Events

Internal Linking RAM

Figure 1. Multicore Navigator Architecture

Hardware queues are the base of the system. Queue manager manages all 8192 queues and
provides services including pushing to and popping from all queues.

The key data structure the queue manager maintains is a linking table. Each linking entry
occupies 64 bits, which represents the linking information of a packet descriptor, i.e. what is the
next descriptor of current descriptor.

The typical activities of a queue PUSH operation are:

1. A master in the system writes the address of a descriptor to a register for a queue, which
actually generates a PUSH request to the Queue Manager.

2. Queue Manager reads the tail pointer of the queue to get the last descriptor in the queue.

3. Queue Manager modifies the linking entry of the last descriptor; make it point to the new
descriptor pushed in.

Overwrite this text with the Lit. Number

4 Performance of Multicore Navigator on KeyStone DSPs

4. Queue Manager modifies the tail pointer of the queue; make it point to the new descriptor
pushed in.

5. Queue manager modifies the linking entry of the new descriptor, make it NULL.

The typical activities of a queue POP operation are:

1. A master in the system reads a register for a queue, which actually generates a POP
request to the Queue Manager.

2. Queue Manager reads the header pointer of the queue to get the first descriptor in the
queue, the address of the first descriptor is returned to the master.

3. Queue Manager reads the linking entry of the first descriptor to find the second descriptor in
the queue.

4. Queue Manager modifies the header pointer of the queue, make it point to the second
descriptor in the queue, and then it becomes the first descriptor.

The queue manager subsystem includes an internal linking RAM for 16K entries. If your system
has more than 16K descriptors, any memory including LL2 (Local Level 2 memory), SL2
(Shared Level 2 memory), DDR (Double Data Rate external memory) in the DSP system can be
used as external linking RAM of Queue Manager to store other linking entries.

PUSH operation normally takes few cycles of a master, because it is normally a write operation
of the master, normally, it does not stall master; While POP operation stalls the master because
it is actually a read operation, and master need wait response from the queue manager.

To minimize the stall of DSP cores by POP operation, two embedded micro-controller (PDSP) is
integrated into the QMSS (Queue Manager SubSystem). According to user’s configuration, the
PDSP monitors one or more specific queues called accumulation queues, once there is a
descriptor in the queue, PDSP pops it from the queue, and write the descriptor pointer to some
scratch RAM, which is call accumulation buffer, normally it is in the local L2 of a DSP core. Each
accumulation can be configured with specific accumulation buffer size. The PDSP generates an
event for the accumulation queue when the buffer is full. This event can be routed to either DSP
or other system masters to process those packets. Since all the descriptors have been
accumulated to the scratch RAM close to the system master, it can significantly reduce the
processing overhead. The masters can access the hardware queues include:

 All DSP cores

 All modules including Packet DMA

 Queue Manager Subsystem

 Serial RapidIO

 Packet Accelerator

 FFT Coprocessor (only available on some DSPs)

 Antenna Interface 2 (only available on some DSPs)

 Bit CoProcessor (only available on some DSPs)

Overwrite this text with the Lit. Number

 Performance of Multicore Navigator on KeyStone DSPs 5

The Packet DMA is a DMA (Direct Memory Access) engine designed for packet based data
transfer. The traditional EDMA transfer request is defined in the PaRAM (Parameter RAM); while
Packet DMA transfer request is defined in a descriptor, which can be popped from or pushed to
hardware queues. Additionally, EDMA supports 3 dimensions data block and indexing, while
Packet DMA only supports one dimension linear data block.

This application report discusses the performance of QMSS and Packet DMA, provides
measured performance data achieved under various operating conditions. Some factors
affecting Multicore Navigator performance are discussed.

Without special note, all data in this application report are measured on 1GHz C6678
EVM with 1333M 64-bit DDR3.

2 Performance of QMSS

The Key performance data of QMSS include the delay for PUSH, POP operations, and the delay
of queue pending interrupt and descriptor accumulation interrupt.

2.1 DSP core cycles for PUSH operation

The performance of PUSH operation is tested with code like following pseudo code:

preTSC= TimeStampCount;

for(i=0; i< Number_of_Descriptors; i++)

{

 queueRegs->REG_D_Descriptor= uiDescriptor[i];

}

AverageCycles= (TimeStampCount - preTSC)/ Number_of_Descriptors;

The result measured on C6678 is shown in following table.

Table 1. Average DSP core cycles for different PUSH operation

number of
descriptors

Push through different regions

Queue
Manage
Register

queue manage
proxy register

Queue
manage

VBUSM space

Queue manage
proxy VBUSM

space

512 15 15 14 14

256 15 15 13 13

128 14 14 11 11

64 14 14 7 7

32 12 12 1 1

16 10 9 1 1

8 6 5 1 1

4 7 8 1 1

2 7 6 1 1

1 6 6 1 1

Overwrite this text with the Lit. Number

6 Performance of Multicore Navigator on KeyStone DSPs

According to the test result, a PUSH operation takes about 1 to 15 DSP core cycles for different
cases.

PUSH operation is actually write operation, DSP core may return after it posts the write data into
write buffer. Before the write buffer full, the DSP core may not encounter any stall, which is the
case when few descriptors are pushed; while if a lot of descriptors were pushed, after the write
buffer full with several descriptors, the DSP core will be stalled until there is room in the write
buffer for the later descriptor. The number of cycles be stalled is actually the time the queue
manager handles one PUSH operation, according to above test result, it is about 15 cycles.

So, as a conclusion, if masters PUSH descriptors with an interval larger than 15 cycles, it will not
see any stall, otherwise, it may be stalled 1 to 15 DSP core cycles.

2.2 DSP core cycles for POP operation

The performance of POP operation is tested with code like following pseudo code:

preTSC= TimeStampCount;

for(i=0; i< Number_of_Descriptors; i++)

{

 uiDescriptor[i]= queueRegs->REG_D_Descriptor;

}

AverageCycles= (TimeStampCount - preTSC)/ Number_of_Descriptors;

The result measured on C6678 is shown in following table.

Table 2. Average DSP core cycles for different POP operation

number of
descriptors

Pop through different regions

Queue Manage
Register

Queue manage
VBUSM space

512 45 87

256 45 87

128 45 87

64 45 87

32 45 87

16 45 87

8 45 87

4 46 87

2 47 88

1 47 88

According to the test result, a POP operation takes at least 45 cycles. The cycles for POP are
much larger than PUSH because POP is actually a read operation. The master must wait until
the read data returned from queue manager.

Overwrite this text with the Lit. Number

 Performance of Multicore Navigator on KeyStone DSPs 7

If there are multiple descriptors to be popped, accumulator may be used to accumulate multiple
descriptors from queue manager into DSP core’s local memory, then DSP core can read
descriptors in its local memory, it only takes about 5 cycles to read a descriptor in LL2, which
saves at lease 40 cycles for each descriptor read.

2.3 Access queue through different access regions

The queue manager provides four regions or windows for masters to access a queue, they are:

1. Normal registers through VBUSP configuration bus (only for DSP core)

2. Proxy registers through VBUSP configuration bus (only for DSP core PUSH)

3. Normal data space through VBUSM data bus

4. Proxy data space through VBUSM data bus (only for PUSH)

They are mapped to different address, from master’s point view, to access through different
region is actually access different address.

Proxy region is used for PUSH only. It is used for PUSH operations with additional information
such as packet size. For this case, the master need write the additional information to the proxy
region first, and then write the descriptor pointer to the proxy region lastly. The proxy ensures
that all these writes are atomic, i.e. may not be interrupted by other masters, which eliminates
the need for locking mechanisms in the device.

If only descriptor need be pushed to queue, i.e. only one write operation, both normal region and
proxy region can be used.

According to above test result, pushing to proxy region takes same cycles as pushing to normal
region.

VBUSP bus is much different from VBUSM bus. DSP core can use both VBUSP and VBUSM,
while all other Packet DMAs only use VBUSM.

According to above test result, pushing to the VBUSM address is faster than the VBUSP
address due to the deeper write buffer (and no stalls before the buffer full), but popping is faster
via the VBUSP address due to the higher VBUSM latency for read operations.

If DSP core need push to a queue which will be popped by a Packet DMA, the DSP core should
use VBUSM region for the pushing to avoid potential race condition. One of the possible
scenarios is,

1. DSP core writes data to packet buffer in DDR3 through VBUSM,

2. DSP core pushes descriptor to PktDMA through VBUSP

3. PktDMA reads the descriptor

4. PktDMA reads data from DDR3

Since descriptor and payload data are go through different VBUS, it is possible that PktDMA
reads the descriptor before the payload data lands the DDR3 memory. If the descriptor is also
pushed through VBUSM, then this issue can be avoided.

Overwrite this text with the Lit. Number

8 Performance of Multicore Navigator on KeyStone DSPs

The other way to avoid race condition is to use MFENCE instruction to make sure the data is
landed before pushing the descriptors to the QM. Refer to “TMS320C66x CPU and Instruction
Set Reference Guide (sprugh7)” for more details about MFENCE instruction.

Without special note, all tests for this application report use VBUSM region for PUSH, and use
VBUSP region for POP for DSP

2.4 Using external linking RAM

The queue manager subsystem includes internal linking RAM for 16K entries. If your system has
more than 16K descriptors, any memory including LL2 (Local Level 2 memory), SL2 (Shared
Level 2 memory), DDR (Double Data Rate external memory) in the DSP system can be used as
external linking RAM of Queue Manager to store other linking entries.

Queue manager access linking entry in external linking RAM consumes more cycle than access
its internal linking RAM. Generally speaking, DDR is very inefficient to be used as external
linking RAM because linking entry access is normally discrete; to use LL2 as external linking
RAM should achieve good performance, but LL2 is relative small. So, SL2 is a good trade-off. In
the test for this application report, SL2 is used as external linking RAM for test.

Following table compares the average cycles consumed to PUSH/POP descriptors with external
linking RAM and internal linking RAM.

Table 3. Average PUSH/POP cycles with External linking RAM v.s. internal linking RAM

number of
descriptors

PUSH POP

Internal
linking RAM

External
linking RAM

Internal
linking RAM

External
linking RAM

512 14 14 45 100

256 13 13 45 100

128 11 11 45 99

64 7 7 45 99

32 1 1 45 98

16 1 1 45 96

8 1 1 45 92

4 1 1 46 86

2 1 1 47 74

1 1 1 50 48

According to the test result, we can not see any effect of external linking RAM for PUSH
operation since it is post operation; while external linking RAM increases average cycles for
POP operation about 50 cycles. As mentioned in above sections, accumulation can also be
used to save these additional cycles for POP operation.

Without special note, all results in this application report are tested with internal linking RAM.

Overwrite this text with the Lit. Number

 Performance of Multicore Navigator on KeyStone DSPs 9

2.5 Delay for queue pending interrupt

Queue manager monitors some queues, if any of these queues is not empty, a queue pending
interrupt is sent to DSP core. The delay for queue pending interrupt is measured with following
pseudo code:

 ……

 preTSC= TimeStampCount;

 queueRegs->REG_D_Descriptor= uiDescriptor; //push to an empty queue

 asm(“ IDLE”); //wait for the queue pending interrupt

 delay= intTSC - preTSC;

 ……

interrupt void QueuePendISR() //queue pending Interrupt Service Routine

{

 intTSC= TimeStampCount; //save the Time Stamp Count when the interrupt happens

 ……

}

This delay measured on C6678 is about 130 DSP core cycles.

2.6 Delay for descriptor accumulation interrupt

To save the cycles of DSP cores for POP operation, a small programmable controller (PDSP) is
integrated into the QMSS. According to user’s configuration, the PDSP monitors one or more
specific queues, once there is a descriptor in the queue, PDSP pops it from the queue, and
writes the pointer of the descriptor to a buffer, which is call accumulation buffer; normally it is in
the local L2 of a DSP core. When PDSP accumulates a specific number of descriptors to the
accumulation buffer, it triggers an interrupt to the DSP core, and then the DSP core reads the
descriptors in its local L2 instead of from Queue Manager, which saves about 40 cycles of DSP
core for each descriptor read according to the analysis in above section.

The features of PDSP are different with different firmware. The Acc48 firmware monitors up to
32 queues with high priority, and monitor up to 512 (16x32) queues with low priority. The Acc32
firmware monitors up to 32 queues. The Acc16 firmware monitors up to 512 (16x32) queues.

The delay between queue push operation and accumulation completion interrupt depends on
how many queues the PDSP monitors, and how busy these queues are.

For the simplest case, that is, PDSP only monitors one queue, and accumulates one descriptor
to DSP core’s LL2, the average delay measured on C6678 is show in following table.

Table 4. Average accumulation delay

Firmware Cycles

Acc 48 High priority channel 2953

Low priority channel 7875

Acc 32 2841

Acc 16 1862

Overwrite this text with the Lit. Number

10 Performance of Multicore Navigator on KeyStone DSPs

Though the delay is relative large, the DSP core is free to do anything else during this delay
period. So, this method is good for transfer large quantity of packets which can tolerate high
latency. For packet transfer with very tight timing, polling method or queue pending interrupt
should be used instead of accumulation.

2.7 Delay for descriptor reclamation

Normally, to return a used descriptor to a free descriptor queue, DSP core software need

1, parse the “return queue number”, “return policy” and “return push policy” fields in the
descriptor.

2, push the descriptor to the specified return queue.

To simplify these operations, PDSP provides a feature, reclamation queue, to save DSP core
cycles by the first step above.

With the reclamation queue, DSP core software just pushes any used descriptor into the
reclamation queue; the PDSP monitors any incoming descriptor in the reclamation queue, and
return them to proper free descriptor queue according to the “return queue number”, “return
policy” and “return push policy” fields in the descriptor.

Since reclamation is done by PDSP firmware, the delay between pushing a used descriptor to
reclamation queue and getting the descriptor in the free descriptor queue depends on how busy
the PDSP is.

For the simplest case, that is, PDSP only does reclamation, the delay measured on C6678 is
about 900 cycles.

So, this method is good for recycling large quantity of descriptors with relative flexible timing
requirement. If you want a descriptor to be recycled immediately, you should use normal method.

2.8 Other performance considerations for queue operation

DSP core write/read full descriptor content may consume many cycles. For most applications,
DSP core may initialize all descriptors during initialization, and only write/read few fields (such
as packet size) of the descriptor during run time.

Since host packet has separate descriptor and packet buffer, they are normally not continuous in
memory. Access descriptor and packet buffer separately introduces extra overhead, especially
when the descriptor or packet buffer is in cacheable memory space. So, host packet provides
more flexibility, but monolithic packet may achieve better memory access performance.
Designer should carefully consider these facts to choose between host packet and monolithic
packet.

If descriptor is in cacheable SL2 or DDR2 memory space, software need maintain cache
coherency for it. Host packet descriptor is relative small, normally, 32~64 bytes, it may not fully
utilize 64 bytes L1D cache line or 128 bytes L2 cache line, and it is relative costly to maintain
cache coherency for small descriptor. So, for small descriptors, you should try to put them in LL2
to avoid these cache related penalty.

Overwrite this text with the Lit. Number

 Performance of Multicore Navigator on KeyStone DSPs 11

By default, we get a descriptor from the head of a queue, and return a descriptor to the tail of a
queue. But we can change the “Return Push Policy” field of a descriptor to make it return to the
head of a queue. This policy makes recently used descriptor be reused more quickly; this may
utilize cache better for some cases.

3 Performance of Packet DMA

The performance of Packet DMA engines is measured with loopback mode (infrastructure
mode), i.e. the TX packet is looped back to RX side.

3.1 Packet DMA Transfer overhead

In this application report, Packet DMA transfer overhead is defined as the time to transfer
minimum data element (1 word), it is measured as the time between pushing packet to the TX
queue and getting the packet in the RX queue.

Following table shows the average measured Packet DMA transfer overhead on C6678.

Table 5. Packet DMA Transfer overhead

Packet DMA in Average overhead

QMSS 550

PASS 715

SRIO 545

Transfer overhead is a big concern for short transfers and need to be included when scheduling
DMA traffic in a system. Single-element transfer performance is overhead-dominated. So, for
small transfer inside DSP, you should make the trade off between using DMA and using DSP
core.

3.2 Packet DMA bandwidth

Following figure shows throughput measured on single Packet DMA channel in QMSS for
transferring 4 bytes to 8K bytes.

Overwrite this text with the Lit. Number

12 Performance of Multicore Navigator on KeyStone DSPs

QMSS PktDMA throughput

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 1024 2048 3072 4096 5120 6144 7168 8192

Packet Size (Bytes)

B
a
n
d
w

id
th

 (
M

B
/s

)

host packet LL2->LL2

mono packet LL2->LL2

host packet LL2->SL2

mono packet LL2->SL2

host packet LL2->DDR

mono packet LL2->DDR

host packet SL2->LL2

mono packet SL2->LL2

host packet SL2->DDR

mono packet SL2->DDR

host packet DDR->LL2

mono packet DDR->LL2

host packet DDR->SL2

mono packet DDR->SL2

Figure 2. Throughput of single packet DMA channel in QMSS

Since overhead is fixed, the bigger the packet size, the more bandwidth can be utilized.

The different source or destination affects the throughput a little bit. Packet DMA accesses LL2 a
little bit faster than SL2; and SL2 a little bit faster than DDR.

The packet type affects the throughput a little bit, Packet DMA achieves a little bit higher
throughput for monolithic packet transfer.

The Packet DMA has a full-duplex, 128-bit, 1/3 DSP core speed bus. The theoretical bandwidth
on 1GHz DSP is 128/8*1000/3= 5333MB/s. Above figure shows much less bandwidth because
only one channel is used for the tests.

Overwrite this text with the Lit. Number

 Performance of Multicore Navigator on KeyStone DSPs 13

The Packet DMA has a priority-based scheduler to manage the bandwidth among multiple
channels. Since the Packet DMA needs to continuously fetch data and descriptor information for
multiple channels to construct packets, one channel can not fully utilize the bandwidth of the
Packet DMA (that is, the bus will be idle during Packet DMA reads as there can only be one
pending transaction per channel). If multiple channels are used then multiple pending
transactions can exist, making more use of the bandwidth capabilities. The following figure
shows the total bandwidth achieved with multiple channels.

QMSS PktDMA total throughput with multiple channels, LL2->LL2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1024 2048 3072 4096 5120 6144 7168 8192

Size (Bytes)

B
a
n
d
w

id
th

 (
M

B
/s

)

8 Channels

4 Channels

2 Channels

1 Channel

Figure 3. Total Throughput of multiple packet DMA channels in QMSS

Above figure shows 4 channels can fully utilize the bandwidth of QMSS Packet DMA bus. For
more than 4 channels, the total throughput is limited by the bus.

3.3 Packet DMA v.s. EDMA

There are multiple Packet DMA engines on each KeyStone DSP; these packet DMA engines are
not exactly same.

Following figure compares the throughput of different Packet DMA channel to an EDMA channel
for data transfer between two cores’ LL2 memory.

Overwrite this text with the Lit. Number

14 Performance of Multicore Navigator on KeyStone DSPs

Single Channel PktDMA v.s. EDMA, LL2->LL2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1024 2048 3072 4096 5120 6144 7168 8192

Size (Bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

EDMA

SRIO PktDMA

QMSS PktDMA

PASS PktDMA

Figure 4. Single Channel Packet DMA v.s. EDMA

The figure shows the throughput of a QMSS packet DMA channel is similar as the PASS
(Packet Accelerator SubSystem) packet DMA channel; they are almost half of the throughput of
a SRIO packet DMA channel. The throughput of those packet DMA channels are much less than
an EDMA channel, which can fully utilize the bus bandwidth with one channel.

As a conclusion, Packet DMA provides convenient features for packet transfer; its throughput
meets the requirement of most applications. Single packet DMA channel does not fully utilize the
bandwidth of memory and bus system. For data transfer who requires huge bandwidth through
single channel, EDMA is a good choice.

References
1. KeyStone Architecture Multicore Navigator User Guide (SPRUGR9)

2. TMS320C66x DSP CorePac User Guide (SPRUGW0)

3. KeyStone Architecture Enhanced Direct Memory Access (EDMA3) Controller User Guide

(SPRUGS5)

4. TMS320C6678 data manual (SPRS691)

5. TMS320C66x CPU and Instruction Set Reference Guide (sprugh7)

