
Application Report

Lit. Number – March 2011

1

KeyStone DSP Memory System Test

Brighton Feng DSP System

ABSTRACT

Memory related issues are very common on DSP application. This application note
introduces some methods to test memory. Example code based on KeyStone DSP is
provided.

Contents

1 KeyStone DSP memory system introduction ... 2

2 Memory test algorithms ... 3

2.1 Data filling Test ... 3

2.2 Addressing test ... 4

2.3 Bit walking test .. 5

3 Memory Test Coverage .. 6

3.1 Test by different masters .. 6

3.2 Test all memories in the system.. 7

3.2.1 internal L1 memory ... 7

3.2.2 Internal Local L2 memory .. 7

3.2.3 Internal Shared L2 memory ... 8

3.2.4 External DDR SDRAM .. 8

3.3 Test through different paths .. 8

4 Example code based on KeyStone DSP ... 8

4.1 CCS project .. 8

4.2 Test time ... 10

4.3 Test configuration ... 11

References ... 12

Figures

Figure 1. KeyStone DSP memory architecture .. 2

Figure 2. Directory structure of example projects .. 9

Tables

Table 1. KeyStone Memory system comparison ... 3

Table 2. Source files of the example codes ... 9

Table 3. Typical Test time on EVMs .. 10

Overwrite this text with the Lit. Number

2 KeyStone DSP Memory System Test

1 KeyStone DSP memory system introduction

Figure 1 shows the common KeyStone DSP memory architecture.

EDMA

Transfer Controller N

…….

CorePac N

…...

CorePac 0

Switch Fabric Center

Shared

Memory

Controller

DSP Core 32KB L1D32KB L1P

Local

L2

IDMA

EMC

EDMA

Transfer Controller 0

XMC

Other master

peripherals such as

SRIO and EMAC

External DDR

Shared

L2
Switch Fabric Center

Figure 1. KeyStone DSP memory architecture

Overwrite this text with the Lit. Number

 KeyStone DSP Memory System Test 3

For different DSP, the size of memory are different, the number of DSP core and the number of
EDMA transfer controller are also different. Table 1 summarizes these differences of KeyStone
DSPs.

Table 1. KeyStone Memory system comparison

 C6678 C6670

L1D(KB/core) 32 32

L1P(KB/core) 32 32

Local L2 (KB/core) 512 1024

Shared L2 (KB) 4096 2048

DSP core number 8 4

EDMA transfer controller number 10 10

Memory tests should be implemented to cover:

 All memories in the system;

 All DSP cores and DMA transfer controllers which can access memory

 All data paths for accessing memory

2 Memory test algorithms

Three memory test algorithms are introduced in this section, and the purpose of these test
algorithms is discussed.

2.1 Data filling Test

The pseudocode for data pattern filling test is:

for(memory range under test)

 fill the memory with a value;

for(memory range under test)

 read back the memory and compare the readback value to the written value

Normally, this test is done several times with different test data value. The common values used
for test include 0, 0xFFFFFFFF, 0x55555555, 0xAAAAAAAA.

This test can detect stuck data bit, for example, if

written value = 0, readback value = 0x8,

It indicates bit 3 sticks to 1. If

written value = 0xFFFFFFFF, readback value = 0xFFFFFFFE,

It indicates bit 0 sticks to 0.

Overwrite this text with the Lit. Number

4 KeyStone DSP Memory System Test

2.2 Addressing test

The pseudocode for addressing test is:

for(memory range under test)

 fill each memory unit with its address value;

for(memory range under test)

 read back the memory and compare the readback value to the written value

This test can be done for two times. Firstly, from lower address to higher address; and then,
from higher address to lower address.

This test can detect stuck bit on address bus, for example, if

written value = 0 at address 0

written value = 1 at address 1

written value = 2 at address 2

written value = 3 at address 3

……

readback value = 2 at address 0

readback value = 3 at address 1

readback value = x at address 2

readback value = x at address 3

……

The readback value x means don’t care the value.

For this case, it indicates bit 1 of address bus sticks to 0. When you write 2 to address 2, it
actually writes to address 0 because the bit 1 of address bus sticks to 0; when you write 3 to
address 3, it actually writes to address 1 because the bit 1 of the address bus sticks to 0…

Similarly, if

……

written value = 3 at address 3

written value = 2 at address 2

written value = 1 at address 1

written value = 0 at address 0

Overwrite this text with the Lit. Number

 KeyStone DSP Memory System Test 5

……

readback value = 1 at address 3

readback value = 0 at address 2

readback value = x at address 1

readback value = x at address 0

For this case, it indicates bit 1 of address bus sticks to 1.

For external memory bus, once we identify the stuck bit. Normally, there are three possible
causes:

1. PCB issue. Normally, it is soldering issue, for example, one bus bit is connected to power or
ground. We can use multimeter to measure the resistance between the bus signal and the
power or ground. If the resistance to power or ground closes to 0, it normally indicates
soldering issue.

2. external memory failure. We can use oscilloscope to monitor the bus, if the bit only sticks
when read back, it normally indicates external memory failure.

3. DSP memory controller failure. If we exclude above possibilities, then we can swap the
DSPs on a good board and the problematic board, if the problem goes with the DSP, then it
normally indicates it is DSP memory controller failure.

2.3 Bit walking test

The pseudocode for bit walking test is:

test_value = 1;

for(0 to 31)

{

 write test_value to memory;

 readback the data and compared to written value;

 inversed_test_value = bit inverse of test_value;

 write inversed_test_value to memory;

 readback the data and compared to written value;

 test_value = test_value<<1; //bit walking

}

This test is used to identify cross-talk issue. The test intentionally make one bit on the bus or
memory cells different from all other bits, thus the negative cross-talk from all other bits is
strongest. If there is cross-talk issue, it should be exposed by this test.

Overwrite this text with the Lit. Number

6 KeyStone DSP Memory System Test

For example, if

written value = 0x00000010, readback value = 0

written value = 0xFFFFFFEF, readback value = 0xFFFFFFFF

It indicates the bit 4 is affected by cross-talk issue.

To indentify cross-talk issue on a data bus, this test only need be executed at one address; to
identify cross-talk of memory bit cells, this test need be executed for whole memory range under
test.

For external memory interface, once we identify this, we should use oscilloscope to check the
signal integrity of all related signals to find the source of cross-talk, and then PCB re-layout may
be necessary to solve it.

3 Memory Test Coverage

Memory tests should be implemented to cover:

 All memories in the system;

 All DSP cores and DMA transfer controllers which can access memory

 All paths for memory access

3.1 Test by different masters

As shown in figure 1, there are mainly three types of masters can be used to access memory:

 DSP core, can access all memories

 EDMA, can access all memories

 IDMA, can only access Local L1 and L2 memories

All masters should be covered by memory test. However, if all masters are used to test all
available memories, there are too much combinations, the test time may be very long. So,
memory test should be optimized to use proper master to test proper memories and make sure
all of them are covered.

Normally, DMA is much faster than DSP for memory access. So, for big external memory test,
EDMA is preferred.

To use DMA to test memory, we need an extra DMA buffer for the test, the test flow is:

DSP core wirtes test data to the DMA buffer

DMA copy the contents of the DMA buffer to the memory under test

DMA copy the contents of the memory under test back to the DMA buffer

Overwrite this text with the Lit. Number

 KeyStone DSP Memory System Test 7

DSP core read the contents in DMA buffer and compare to expected value.

Normally, the DMA buffer is a small buffer allocated in L2 memory, the memory under test may
be much larger than the DMA buffer, so, above operation need be repeated for multiple times to
complete the test.

EDMA has multiple transfer controller, they should be used alternately to make sure all of them
are covered. For example, we can use EDMA TC1 to executed data filling test with the first data
pattern, and then we use EDMA TC2 to executed data filling test with the second data pattern,
and so on…

Please note, on multi-core DSP, EDMA must use global address to access L1 and L2 memory.

3.2 Test all memories in the system

As shown in figure 1, there are mainly four types of memories in the system, all of them should
be covered by memory test.

3.2.1 internal L1 memory

Normally, it is recommended use IDMA to test local L1 memory. Before L1 memory is tested, the
L1 memory needs to be configured as normal memory instead of cache.

On multi-core DSP, if we want to run a test program on one DSP core to test other core’s L1
memory, IDMA can not be used, since IDMA can only access local memory. EDMA should be
used in this case. The other cores must be halted when this test is been executing.

DSP core can be used to test L1D memory, but L1P can not be tested with DSP core.

3.2.2 Internal Local L2 memory

L2 may be tested by all masters in the system. According to common use cases, both DSP core
and EDMA should be used to test local L2 memory.

Normally, test code and test data buffer are allocated at the beginning of local L2 memory. So,
the test program should determine how much memory is occupied by test code and test data
buffer, only the remainder part of the L2 memory can be tested by normal memory test
algorithms.

Though the part of memory for test code can not be covered by normal memory test algorithms,
it is actually used by the test program, if it has problem, the test program will fail somehow. So,
to some extent, this part of memory is actually covered by the test. If you really want to cover
this part of memory by normal memory test algorithms, you need implement two test programs.
One program has the test code in the first half of the memory and test the other part of the
memory; and the other program has the test code in the second half of the memory and test the
first half of the memory.

On multi-core DSP, if we want to run a test program on one DSP core to test other core’s L2
memory, both DSP core and EDMA can be used as well. The other cores must be halted when
this test is been executing.

Overwrite this text with the Lit. Number

8 KeyStone DSP Memory System Test

3.2.3 Internal Shared L2 memory

Each DSP core and DMA has separated bus to access Shared L2 memory, so each DSP core
and DMA should be used to test shared L2 memory.

DSP core accesses to SL2 at its default space at 0x0C000000 will always go through cache and
prefetch buffer. To access SL2 without cache and prefetch buffer, the SL2 can be remapped to
another region with can be configured through MAR registers. Both these cases should be
covered.

3.2.4 External DDR SDRAM

External DDR SDRAM should be configured properly before test. If DDR test failed on some
boards but passed on some other boards, you may try to relax some timing configuration, if it
makes some failed board passes, then it may indicate timing issue on DDR interface.

Both DSP cores and EDMA should be used to test DDR SDRAM. For DSP core test, DDR
SDRAM should be test with both cache enabled and disabled.

DDR size may be up to 8GB, DDR test consumes most of the test time. So, we should use
EDMA to test full space of DDR, since EDMA is the fastest master to access DDR. And them,
for other masters, such as DSP core or SRIO, they do not need test the full space of DDR again,
they only need test a relative small part of the DDR, the purpose is just to cover the data path
from those masters to DDR memory since the DDR memory itself has been fully tested by
EDMA. For example, to test DSP core access DDR through L2 cache, we only need test a DDR
space larger than L2 cache, thus cover the data path and L2 cache.

3.3 Test through different paths

Since each master has its own bus, same memory may be accessed by different masters from
different data paths. For example, DSP core and EDMA access Local L2 through different path.

Same memory may be accessed thought different data path by same master. For example,
DDR SDRAM can be accessed by DSP core through cache or directly without cache.

All these different paths should be covered by memory test.

4 Example code based on KeyStone DSP

This section introduces the implementation of these memory tests on KeyStone DSP.

4.1 CCS project

Following figure shows the directory structure of the example projects

Overwrite this text with the Lit. Number

 KeyStone DSP Memory System Test 9

Figure 2. Directory structure of example projects

The project files are in “Memory_Test” folder. There is some commonly used initialization code
put in “common” folder. The main source code files are in the “Memory_Test\src” subfolder.
Below table describes these source files.

Table 2. Source files of the example codes

Source files Descriptions

DMA_drv EDMA and IDMA initialization; implementation code for EDMA and IDMA copy

DMA_mem_test Implementation of memory test algorithms by EDMA and IDMA, the key API
include:

int EDMA_MEM_Test(unsigned int uiStartAddress,

unsigned int uiStopAddress,

unsigned int uiDmaBufAddress,

unsigned int uiDmaBufSize);

int IDMA_MEM_Test(unsigned int uiStartAddress,

unsigned int uiStopAddress,

unsigned int uiDmaBufAddress,

unsigned int uiDmaBufSize);

DSP_core_mem_test Implementation of memory test algorithms by DSP core. The key API is:

int DSP_core_MEM_Test(unsigned int uiStartAddress,

unsigned int uiStopAddress,

Overwrite this text with the Lit. Number

10 KeyStone DSP Memory System Test

unsigned int uiStep);

get_unused_L2_address parser .map file to determine the start address of unused L2 for test

The test flow is controlled by the code in “KeyStone_mem_test_main.c”. The basic test flow is:

Disable all caches

Test Local L1 with IDMA

Test other core’s L1 with EDMA

Enable 32KB L1P cache

Test Local L2 with DSP core

Test other core’s L2 with DSP core

Test Shared L2 with DSP core

Test 1KB of external memory with DSP core (just cover the data path)

Enable 32KB L1D cache

Test Local L2 with EDMA

Test Local L2 with DSP core

Test other core’s L2 with EDMA

Test other core’s L2 with DSP core

Test Shared L2 with EDMA

Test Shared L2 with DSP core

Test external memory with EDMA (cover full external memory space)

Test 64KB of external memory with DSP core (just cover the data path and L1D cache)

Enable 256KB L2 cache

Test other core’s L2 with DSP core

Test 512KB external memory with DSP core (just cover the data path and L1D, L2 caches)

Test Shared L2 with DSP core through remmapped noncacheable nonprefetchable window

4.2 Test time

The test time depends on memory size, DSP and memory speed. Following table shows the
time measured on demo boards for full memory test introduced in above section.

Table 3. Typical Test time on EVMs

 Shannon EVM Nyquist EVM

Overwrite this text with the Lit. Number

 KeyStone DSP Memory System Test 11

DSP speed 1GHz x 8 cores 1GHz x 4 cores

DDR speed 1333MHz 1333MHz

DDR size 512MB 1GB

Test time (second) 287 419

The proportion of test time between data filling test, addressing test and bit walking test is about
4:2:128, because the data filling test is done for four patterns; the addressing test is done for two
times; the bit walking test is done on 64 bits for two times.

Most of the time is spent on DDR SDRAM test. For example, on Shannon EVM, 270 seconds is
spent on external DDR SDRAM test; about 17 seconds is spent on internal memory test.

The EDMA test is faster than DSP core test. For example, on Shannon, to test the 4MB SL2, the
EDMA takes about 1.5 seconds, while the DSP core takes about 2 seconds.

To reduce test time with DSP core, the DSP core memory test function has a parameter “uiStep”:

int DSP_core_MEM_Test(unsigned int uiStartAddress, unsigned int uiStopAddress, unsigned int uiStep)

Normally, it is called with uiStep= 1 for full coverage like below:

DSP_core_MEM_Test(DDR_TEST_START_ARRD, DDR_TEST_STOP_ADDR, 1)

uiStep= 1 means to test all DDR memory sequentially. This parameter can be set to a bigger
value which means to test one memory unit for every “uiStep” units, thus save time.

The EDMA memory test function does not have this parameter because the efficiency of EDMA
index transfer is not good.

4.3 Test configuration

There are multiple macros defined in the source code to configure the test.

The data pattern used for data filling test is defined in “DSP_core_mem_test.c” as below. You
can add, remove or modify the values.

unsigned int uiDataPatternTable[] = {

0x0000000000000000,

0xffffffffffffffff,

0xaaaaaaaaaaaaaaaa,

0x5555555555555555 };

The three memory test algorithms introduced in above section can be enabled or disabled
separately through following macros in “DSP_core_mem_test.c” and “DMA_mem_test.c”. “1”
means enable, “0” means disable.

#define BIT_PATTERN_FILLING_TEST 1

#define ADDRESS_TEST 1

Overwrite this text with the Lit. Number

12 KeyStone DSP Memory System Test

#define BIT_WALKING_TEST 1

Normally, disable bit walking test or only executing bit walking test on several memory address
is a good option to save test time.

Each memory can be configured to be tested or not through following macros in
“KeyStone_mem_test_main.c”

#define LL1_MEM_TEST 1

#define OTHER_L1_TEST 1

#define LL2_MEM_TEST 1

#define OTHER_L2_TEST 1

#define SL2_MEM_TEST 1

#define EXTERNAL_MEM_TEST 1

Whether DSP core or DMA be used for test can be configured through following macros in
“KeyStone_mem_test_main.c”

#define TEST_BY_DSP_CORE 1

#define TEST_BY_DMA 1

These examples are implemented based on TI’s demo board. In your real system, the DDR
configuration may be changed according to your hardware design in “KeyStone_DDR_Init.c”.

The PLL multiplier may also be changed through KeyStone_main_PLL_init() function in
“KeyStone_common.c”

To make your own configurations take effect, you must rebuild the project. Since CSL (Chip
Support Library) header files are used by these projects, you may need change CSL including
path in your system before you rebuild the project.

References

1. TMS320C66x DSP CorePac User's Guide (SPRUGW0A)

2. KeyStone Multicore Shared Memory Controller (MSMC) User's Guide (SRPUGW7)

3. KeyStone DDR3 Memory Controller User's Guide (SPRUGV8)

4. KeyStone Architecture Enhanced Direct Memory Access (EDMA3) Controller User Guide

(SPRUGS5)

