
Application Report

Lit. Number – September, 2012

1

AIF2 Programming

Brighton Feng Communication Infrastructure

ABSTRACT

This document is intended to provide some complementary information about the usage
of the AIF2. AIF2 examples based on C6670 EVM are introduced.

Overwrite this text with the Lit. Number

2 AIF2 Programming

Contents

1 Introduction .. 4
2 AIF2 configuration ... 7

2.1 Serdes configuration ... 7
2.2 AIF2 synchronization configuration ... 9
2.3 DB configuration ... 14
2.4 PE/PD configuration ... 15

2.4.1 Bandwidth allocation between channels .. 15
2.4.2 Radio framing counter configuration .. 18
2.4.3 TDD configuration (with packet DMA only) .. 19

2.5 DIO engines configuration .. 20
2.5.1 DIO configuration for AIF2 Data buffer .. 21
2.5.2 DIO configuration for RAC .. 22
2.5.3 DIO configuration for TAC ... 23
2.5.4 DIO configuration for antenna data buffer in DSP memory .. 24

3 Generic packet data over AIF2 .. 26
4 AIF2 debug tips .. 27
5 Example Projects ... 29

5.1 Packet DMA based example projects ... 33
5.2 DIO based example projects .. 37
5.3 To use these example code on other boards .. 40

References ... 41

Figures

Figure 1. AIF2 in a LTE baseband solution .. 5
Figure 2. AIF2 in a WCDMA baseband solution .. 5
Figure 3. AIF2 block diagram ... 6
Figure 4. AIF2 Serdes configuration .. 8
Figure 5. AIF2 Timer block diagram ... 9
Figure 6. C6670 Antenna Interface Synchronization .. 10
Figure 7. Synchronization of two DSPs on C6670 EVM .. 11
Figure 8. Typical delay of AIF2 events ... 12
Figure 9. PE OBSAI Transmission Rules ... 15
Figure 10. Example of Dual Bit Map Rule .. 16
Figure 11. Example of bandwidth equally allocated between channels 16
Figure 12. CPRI DBM rules ... 17
Figure 13. Example of 16 antenna streams pack into 4x CPRI Link .. 17
Figure 14. Radio framing counters .. 18
Figure 15. DIO configuration for AIF2 data buffer ... 21
Figure 16. RAC antenna data buffer structure .. 22
Figure 17. DIO configuration for RAC .. 23
Figure 18. TAC antenna data buffer structure ... 24
Figure 19. DIO configuration for TAC .. 24
Figure 20. DIO configuration for antenna buffer in DSP memory .. 25
Figure 21. AIF2 EE (Error and Exception) Module .. 28
Figure 22. AIF connections between two DSPs on C6670 EVM ... 30
Figure 23. Internal loopback test .. 31

Overwrite this text with the Lit. Number

 AIF2 Programming 3

Figure 24. External redirection test .. 31
Figure 25. Directory structure of example codes .. 32

Tables

Table 1. OBSAI v.s. CPRI ... 6
Table 2. Number of antenna streams per link .. 7
Table 3. Serdes configuration example for different link speed ... 8
Table 4. C6670 AIF2 Synchronization Events .. 9
Table 5. Event offset calculation example ... 13
Table 6. Event offset calculation example for daisy chain .. 13
Table 7. Recommended FIFO size for packet DMA channel with different bandwidth 14
Table 8. Utilization of rules for different cases .. 16
Table 9. Unit of radio framing counters .. 19
Table 10. DIO configuration parameters .. 20
Table 11. DIO configuration for AIF2 data buffer ... 21
Table 12. DIO configuration for RAC .. 22
Table 13. DIO configuration for TAC .. 24
Table 14. DIO configuration for antenna buffer in DSP memory .. 25
Table 15. Generic data transfer in different cases ... 26
Table 16. AIF2 common errors and possible resaons ... 29
Table 17. Source files of the example codes ... 32

Overwrite this text with the Lit. Number

4 AIF2 Programming

1 Introduction

The Antenna InterFace version 2 (AIF2) on Keystone DSPs is a peripheral that supports
transfers of baseband antenna IQ data between uplink and downlink baseband DSP
processors and a high speed SERDES interface. Control data is the secondary data type
that is transferred through AIF2 and is nomarlly utilized by the Control & Managment unit
of the base station.

The Keystone Communications Infrastructure SoC (System on Chip) is designed to support
multiple radio standards including LTE, WCDMA, TD-SCDMA, Wimax, GSM (OBSAI only).

AIF2 is very flexible; it provides a lot of options for customer to configure it. The
“KeyStone Architecture Antenna Interface 2 (AIF2) User Guide” describes a lot about AIF
configurations. This document is intended to provide some complementary information
about the usage of the AIF2.

For WCDMA baseband processing, because of legacy compatibility, the data transfer between
AIF2 and RAC (Receiver Accelerator Coprocessor for WCDMA) and TAC (Transmitter
Accelerator Coprocessor for WCDMA) use DIO (Direct IO) mode, which is a mode like using the
EDMA in the AIF version 1. The DIO engines are optimized for WCDMA processing. DIO
requires less memory overhead than the packet DMA and accommodates circular buffering
much more favorably than the packet DMA.

For other radio standards, such as LTE and TD-SCDMA, because these standards favor chunk
based processing, as opposed to WCDMA which favors streaming, it is recommended to use
packet DMA to transfer data between AIF2 and internal processing modules, which is called
CPPI (Common Port Programming Interface) mode. The Packet DMA, together with QMSS
(Queue Manager SubSystem) are called Multicore Navigator, which control and implement high-
speed data packet movement within the DSP, these are new features on Keystone DSPs. These
reduce the traditional internal communications load on the DSP core significantly, increasing
overall system performance.

Example codes for LTE, WCDMA and TD-SCDMA are provided with this application notes.

The functional block diagrams of a LTE solution and a WCDMA solution with AIF2 is shown in
below figures.

Overwrite this text with the Lit. Number

 AIF2 Programming 5

Figure 1. AIF2 in a LTE baseband solution

Figure 2. AIF2 in a WCDMA baseband solution

There are 6 AIF2 links on Keystone DSPs, following figure shows the block diagram of AIF2. For
more details about the functionality of every module, please refer to Antenna interface user’s
guide.

Overwrite this text with the Lit. Number

6 AIF2 Programming

AT

AIF

TimerR
P

1
/T

R
T

VC

VBUSP

(Slave)

RM

RX

MAC

RT

Re-

Transmitter

PE

Protocol

Encoder

SCR

SD

SERDES

TM

TX

MAC

PD

Protocol

Decoder

Serial

RX

Data

Rx

Byte_Clk

AIF2 (Antenna Interface Mega-Module)
CI

CPRI

Input

Format

Convert

Serial

TX

Data

CO

CPRI

Output

Format

Convert

AD

AIF2

DMA

Interface

EE

Errors &

Events Events

from all

modules

to and from

all modules
SCR

DB

Data Buffer

FIFOs

CPPI

I/F
CPPI

DMA

Sched.
CPPI

QM

Rd/Wr

R
a

d
io

S
ta

n
d

a
rd

C
lo

c
k

Time

Input

Tx

Byte_Clk

VBUS_Clk

Figure 3. AIF2 block diagram

The AIF2 supports both the OBSAI (Open Base Station Architecture Initiative) and CPRI
(Common Public Radio Interface) protocols. Following table compares OBSAI and CPRI.

Table 1. OBSAI v.s. CPRI

 OBSAI CPRI

Link rate 2x 1.536Gbps 1.2288Gbps,

4x 3.072Gbps 2.4576Gbps

8x 6.144Gbps 4.9152Gbps

Data precision 8 bits, 16 bits 7 bits, 15 bits (support same number of
streams as OBSAI)

8 bits, 16 bits (support less streams
than OBSAI)

Packet Efficiency for
antenna streams

(16/19)*(399/400)*(20/21)=
0.8

(15/16)= 0.9375

Generally speaking, OBSAI offers more flexibility. For example, when using OBSAI we can
configure the DBMRs in conjunction with the modulo rules to provide more flexibility than when
using CPRI. With CPRI we only have 1 DBMR per link, and no modulo rules. See section 2.4.1
for more details. But OBSAI has more overhead and requires higher link speed.

Overwrite this text with the Lit. Number

 AIF2 Programming 7

CPRI and OBSAI are originally designed for WCDMA, the link rate are tailored to carrier just
multiple of WCDMA antenna streams.

Sample rate of TD-SCDMA and typical LTE cases is multiple of WCDMA, so they fit into OBSAI
and CPRI very well (Do not really require the feature of DBM (Dual Bit Map)). Following table
summarizes number of antenna streams carried by an AIF2 link with typical configuration.

Table 2. Number of antenna streams per link

Radio
Standards

Sample

Rate

AxC per Link (Typical case)

2x 4x 8x

TD-SCDMA 1.28MHz 24 48 96

WCDMA 3.84MHz 8 16 32

LTE 5MHz 7.68MHz 4 8 16

LTE 10MHz 15.36MHz 2 4 8

LTE 20MHz 30.72MHz 1 2 4

Please note, total antenna carrier channels support by AIF2 is up to 128 channels per link.

Sample rate of GSM, Wimax or 15MHz LTE is not multiple of WCDMA, DBM (Dual Bit Map)
mechanism is required for rate matching.

2 AIF2 configuration

This section provides some complementary information for the configuration of some AIF2
modules.

2.1 Serdes configuration

Serdes need be configured to achieve expected link speed. Following figure shows the
relationship between input reference clock and clocks derived from it.

Overwrite this text with the Lit. Number

8 AIF2 Programming

Serdes Macro B4
/10

Serdes Macro B8

Serdes PLL

x4, x5, x6 x8, x8.25, x10,

x12 x12.5, x15, x16, x16.5,

x20, x22, x25

Link Rate

8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

OBSAI

3.072GHz

CPRI

2.4576GHz

/10

Dual byte clock

(AIF2 internal system clock)

Link Rate

8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

Link Rate

8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

Link Rate
8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

Serdes Tx Clocks
AIF2 input

reference clock

0 1

Figure 4. AIF2 Serdes configuration

Input clock are recommended to be between 122.88MHz and 800MHz, the Serdes multiply
factor should be setup to generate 3.072GHz internal clock for OBSAI or 2.4576GHz for CPRI.
So, the PLL multiply factor should be calculated as:

(PLL multiply factor) = (3.072GHz or 2.4576GHz) / (input clock speed)

The final link speed are derived from the 3.072GHz (for OBSAI) or 2.4576GHz (for CPRI)
internal clock according to the link rate configuration. Please note, each link can be configured
with different link rate. Following table summarizes the PLL and link rate configuration on
TCI6614 EVM with 122.88MHz input clock for AIF2 Serdes.

Table 3. Serdes configuration example for different link speed

Standard PLL
x

Link
Rate

SerDes Clock Speed

OBSAI 25 8x 122.88*25*2= 6.144Gbps

4x 122.88*25*1= 3.072Gbps

2x 122.88*25/2= 1.536Gbps

CPRI 20 8x 122.88*20*2= 4.9152Gbps

4x 122.88*20*1= 2.4576Gbps

2x 122.88*20/2= 1.2288Gbps

Please note, the dual byte clock (internal clock for TM, AT, PE, PD…) is 307.2MHz for OBSAI or
245.76MHz for CPRI.

Overwrite this text with the Lit. Number

 AIF2 Programming 9

2.2 AIF2 synchronization configuration

Antenna data require strict synchronization, in AIF2, the antenna frame synchronization are
handled by the AIF2 Timer (AT) module. AIF2 timers run at the AIF2 dual-byte clock (307.2MHz
for OBSAI, 245.76MHz for CPRI), and is synchronized to external system frame synchronization
signal. Following figure shows the block diagram of AT.

Figure 5. AIF2 Timer block diagram

Basically, PHYT generates events for AIF2 internal timing control, including TM delta, RM Pi,
PE1 event and PE2 event. The period of PHYT should be 10ms corresponding to the OBSAI or
CPRI frame structure, the offset of these events are programmable with respect to the PHYT
frame boundary.

RADT supports various frame size for various radio standards, it generates events mainly for the
modules out of AIF2 to facilitate the implementation of different radio standards or different
application, and it also generates events to trigger DIO channels to transfer data between AIF2
and other modules. Both period and offset of these events are programmable.

Both the PHYT and RADT must be armed by software and receive sync pulses before they can
start counting.

Following table summarize these events generated from AIF2 timers on C6670.

Table 4. C6670 AIF2 Synchronization Events

Events Typical Period

Event 0~7 to DSP cores
and EDMA

Frame, Slot or symbol according to
application’s requirements

Event 8 for TAC 4 chips

Overwrite this text with the Lit. Number

10 AIF2 Programming

Event 9 for RAC_A

Event 10 for RAC_B

32 chips

6 DIO events for AIF2 4~32 chips

Delta, PE1, PE2 and Pi
for AIF2

10ms

Following figure show the block diagram of C6670 antenna interface synchronization.

RP1_SYNC

PHYT_SYNC

RADT_SYNC

EXT_FRAME_EVENT

EDMA

Delta

Clocks

and

Syncs

Derived

from

Same

Clock

Source

TM

PE

AD

RM

Serdes

TAC
RAC

RAC

Serdes

PE1 Event

PE2 Event

Pi

PHYT

(PHY Timer)

RADT

(Radio Timer)

GEM Core x

RSA for DL

GEM Core x

RSA for DL
DSP Core xDSP Core x

Event 9, 10

Event 8

DIO events

Event 0~7

Serdes reference clock

Figure 6. C6670 Antenna Interface Synchronization

To transfer antenna data between two devices, the two devices should be synchronized.
Following figure shows the block diagram of the synchronization between two DSPs on C6670
EVM.

Overwrite this text with the Lit. Number

 AIF2 Programming 11

TCI6618 EVM

DSP 0
Serdes clock

PHYT_SYNC/RADT_SYNC

AIF2

Timer

153.6MHz

Clock

One shot trigger

DSP 1
Serdes clock

PHYT_SYNC/RADT_SYNC

AIF2

S
W

6

TIMO0

Figure 7. Synchronization of two DSPs on C6670 EVM

On C6670 EVM, the timer output pin TIMO0 of DSP0 can be connected to the single end frame
synchronization pins (PHYT_SYNC and RADT_SYNC) of two DSPs through SW6 switch. To run
the examples along with this application note, all switches on SW6 should be set to ON state.

In the example, DSP0 timer is configured to generate one shot pulse, which triggers both AIF2
on the DSP0 and DSP1 to run simultaneously. AIF2 timers on both DSP are configured to run
freely, external periodical frame synchronization signal is not required for this test. This
configuration is for test on EVM only, in a real system, an external periodical Frame
synchronization signal should globally trigger AIF2 for keeping synchronization.

Since the basestation is a timing sensitive system, the timing configuration for AIF2 events is
very important for AIF to work properly. Blow figure shows the typical delay of the key AIF2
events.

Overwrite this text with the Lit. Number

12 AIF2 Programming

DSP0

Packet DMA

Trigger by first

Sync Frame

boundary

PE

1
TM

Delta

PD
RM

Pi

TX

SERDES

RX

SERDES

SERDES

DSP1

DB

PE

1

TM

Delta

PD
RM

Pi

TX

SERDES

RX

SERDES

SERDES
DB

DB -> PE

OBSAI: 28 clocks

CPRI: 0 clocks

PE

2

PE

2

PE1 -> PE2

10 clocks

PE2 -> TM

60 clocks

TM <- PE2

60 clocks

TM->RM including Serdes Delay:

24 clocks for 2x

15 clocks for 4x

10 clocks for 8x

TM->RM including Serdes Delay:

24 clocks for 2x

15 clocks for 4x

10 clocks for 8x

RM -> PE1

100 clocks

DIO triggerred

by DIO event
DMA -> DB

PktDMA (L2): 150+30*channels

PktDMA (DDR): 150+50*channels

DIO (RAC/TAC): 150+10*channels

DIO (L2): 150+30*channels

DIO (DDR): 150+50*channels

DB <- PD <- RM

180 clocks

Figure 8. Typical delay of AIF2 events

The delay values in above figures are typical values that can be used for most cases. The unit of
the delay is dual-bye clock.

Please note, the TM->RM delay in above figure does not consider the propagation delay
between two devices, this is OK for internal loopback or two devices closely connected in a
board. For the connection between two boards or through fiber, additional propagation delay
should be added.

For antenna data stream, the packet DMA begins fill DB (Data Buffer) in first frame boundary
after TM/RM state machines enter the synchronized state (normally, this will take one frame for
loopback test; for real application, it depends on the device on the other end of AIF2 link). So,
the antenna data should be pushed into the packet DMA TX queue at least one packet before
that frame boundary.

If DIO mode is used, DIO events should be configured properly to trigger the DIO engines to
transfer data to/from DB.

Antenna data for all channels should arrive at the DB before PE1 event triggered. The delay for
DMA fill DB FIFO depends on number of channels, the more channels, the longer the delay.
Additionally, if the DMA of AIF2 competes against other masters for same bus or memory, the
delay of DMA may become much longer. Since AIF2 is sensitive to delay, so it is recommended
to give the packet DMA of AIF2 highest priority on DSP internal bus system. Smaller DMA delay
number can be used if the delay in your application is very deterministic, otherwise, you should
use larger number for safe.

Overwrite this text with the Lit. Number

 AIF2 Programming 13

The DB will push back to packet DMA when the egress buffer is full, so we do not need worry
the packet DMA is start too early than PE.

However, in DIO mode, the DB can not push back to the DIO, so, the DIO can not be started too
early, otherwise, the data in the DB will be over written before PE read it. Normally, AIF2 timing
events can be setup to make PE start when the egress DB is half-full; ingress DIO starts when
the ingress DB is half-full.

Please note, packet data transferred over the OBSAI control messages or CPRI control words
always use packet DMA, no matter the antenna data is transferred by DIO or packet DMA. The
packet data channel does not like antenna stream channel, the packet DMA begin transfer data
packet immediately when the descriptor is pushed into the TX queue. So, packet to the control
data channel must be pushed into the TX queue after the first frame boundary after TM/RM
state machines enter the synchronized state.

The offset of an event is the accumulation of the delays of all the stages before that stage. Let’s
take the delay values in above figure as example to show how to calculate the delay of each
event (assume 8x link rate for Serdes delay, 1500 clocks for DMA filling DB).

Table 5. Event offset calculation example

Event Offset (dual-byte clocks)

Calculation Result

PE1 1500 1500

PE2 1500+10 1510

TM Delta 1500+10+60 1570

RM Pi 1500+10+60+10 1580

If multiple DSPs are connected in daisy chain, the offset of these events should be accumulated
along the daisy chain. Below table shows the event offset configuration for redirection test on
C6670 EVM.

Table 6. Event offset calculation example for daisy chain

Event Offset (dual-byte clocks)

Calculation Result

PE1 on first TX node 1500 1500

PE2 on first TX node 1500+10 1510

TM Delta on first TX node 1500+10+60 1570

RM Pi on first RX node 1500+10+60+10 1580

PE1 on second TX node 1500+10+60+10+100 1680

Overwrite this text with the Lit. Number

14 AIF2 Programming

PE2 on second TX node 1500+10+60+10+100+10 1690

TM Delta on second TX node 1500+10+60+10+100+10+60 1750

RM Pi on second RX node 1500+10+60+10+100+10+60+10 1760

… … …

2.3 DB configuration

The total size of the data buffer RAM for all channels is 16KB for ingress and 16KB for egress,
which can be flexible allocated between channels. The FIFO/Buffer for each channel is allocated
with following parameters:

 Base address. The actual address = 128 * (configured value for this field)

 FIFO depth for Packet DMA (each channel can be configured differently). The actual size =
128 << (configured value for this field)

 DIO buffer length (128 bytes or 256 bytes, global configuration for all DIO channels)

If only a few channels are used with packet DMA, the FIFO size of these channels may be set
as large as possible. Otherwise, the FIFO size of each channel should be configured according
to the bandwidth of the channel, following table recommends the minimal FIFO size for different
bandwidth of packet DMA channel.

Table 7. Recommended FIFO size for packet DMA channel with different bandwidth

Equivalent Bandwidth of channel Value for FIFO size
configuration

Actual FIFO size (Bytes)

8x link (e.g. 80MHz LTE stream) 4 2048

4x link (e.g. 40MHz LTE stream) 3 1024

2x link (e.g. 20MHz LTE stream) 2 512

1x link (e.g. 10MHz LTE stream) 1 256

Less than 1x link bandwidth (e.g.
control slot/words of a link)

0 128

Following pseudo code show the configuration for multiple channels.

dbFifoBaseAddress= 0;

for(i=0; i< (number of channels); i++)

{

 DbChannel[i].BaseAddress= dbFifoBaseAddress;

 DbChannel[i].BufDepth= (FIFO size according to bandwidth of this channel);

Overwrite this text with the Lit. Number

 AIF2 Programming 15

 dbFifoBaseAddress += (FIFO size);

}

2.4 PE/PD configuration

PE/PD configuration is the relative complicated part of AIF2 configuration. PD/PE was designed
to meet different requirements of multiple radio standards. So, for some typical radio standards,
the AIF2 seems been over designed, and the configuration for these typical radio standard
actually can be simplified.

2.4.1 Bandwidth allocation between channels

AIF2 implements two methods to allocate bandwidth between channels: modulo rules and DBM
(Dual Bit Map) rules.

Rules 63

Modulo rule

parameters

DBM rule

parameters

Channel LUT 0

Channel LUT 1

Channel LUT 63

…...

mod

ctl_msg

index

link

dbm_x

Bit map 1

Bit map 2

dbm_1mult

dbm_1size

dbm_2size

Rules 1

Modulo rule

parameters

DBM rule

parameters

Channel LUT 0

Channel LUT 1

Channel LUT 63

…...

mod

ctl_msg

index

link

dbm_x

Bit map 1

Bit map 2

dbm_1mult

dbm_1size

dbm_2size

64x

Frame

FSM

Rules 0

Modulo rule

parameters

DBM rule

parameters

Channel LUT 0

Channel LUT 1

Channel LUT 63

…...

mod

ctl_msg

index

link

dbm_x

Bit map 1

Bit map 2

dbm_1mult

dbm_1size

dbm_2size

Figure 9. PE OBSAI Transmission Rules

Module rules can allocate bandwidth equally between channels. To use this method solely, it
requires that available link bandwidth is multiple of the bandwidth for an individual antenna
carrier channel; this is the case for some radio stream channels, such as WCDMA, TD-SCDMA
and LTE (5MHz, 10MHz, 20MHz). Refer to Table 2 for more information.

DBM rules can also allocate bandwidth equally between channels. The real enhancement of
DBM rules is to support radio stream, such as GSM, Wimax, or 15MHz LTE, the available link
bandwidth is not multiple of these radio stream channels. The DBM rules actually implement rate
matching by insert some dummy data (called “bubble”).

For example, if (available link bandwidth)/(antenna stream bandwidth) = 10/3= 3.33333…

Following figure shows how the 3 antenna streams fit into the AIF2 link with DBM rules.

Bubb

le

AxC

1

AxC

3

AxC

2

AxC

1

AxC

3

AxC

2

AxC

1

AxC

3

AxC

2

AxC

1

AxC

3

AxC

2

AxC

1

AxC

3

AxC

2

AxC

1

AxC

3

AxC

2

Bubb

le

One message group

Overwrite this text with the Lit. Number

16 AIF2 Programming

Figure 10. Example of Dual Bit Map Rule

For above example, the key DBM configuration is: X=3, bit map= 001, bit map size =3

On the other hand, if the link bandwidth is exact multiple of antenna streams, for example,
(available link bandwidth)/(antenna stream bandwidth) = 4, then this can be handled by either
modulo rules or DBM rules.

AxC

1

AxC

4

AxC

3

AxC

2

AxC

1

AxC

4

AxC

3

AxC

2

AxC

1

AxC

4

AxC

3

AxC

2

AxC

1

AxC

4

AxC

3

AxC

2

AxC

1

AxC

4

AxC

3

AxC

2

One message group

Figure 11. Example of bandwidth equally allocated between channels

For above example, if DBM rules is used, the configuration is: X=4, bit map = 0, bit map size=1;
if modulo rules is used, the configuration is: modulo= 4.

If only one method is really needed, the other one can be bypassed. To bypass modulo rules,
just set modulo = 0, this is the case of the example code for this application note; to bypass
DBM rules, just set X=0;

If both methods are used, the modulo rule will get the bandwidth of 1/mod, and then this
bandwidth is further divided by DBM rule by 1/X.

The utilization of these rules for PD or PE is different, and they are also different for OBSAI or
CPRI mode. Following table summarizes it.

Table 8. Utilization of rules for different cases

 PE (TX) PD (RX)

OBSAI Module, DBM N/A

CPRI AxC slots DBM DBM

Only PE in OBSAI mode can utilize both methods. Additionally, OBSAI control slot and AxC
(Antenna stream Carrier) slots must use different modulo rule configuration entry. There are
totally 64 rule configuration entries.

For CPRI mode, DBM rules only apply to CPRI AxC slots. The mapping between CPRI control
words and data channels are handled with different method, refer to AIF2 user’s guide for more
details.

Please note, PD channel receives OBSAI message according to the message header. A
channel receives a message only if the information (such as type and address) in the header
matches the setup for that channel. This requires the TX side uses different header information
for different channels. In the examples for this application note, address field of the OBSAI
message is set different for different channel at TX side (PE).

While for CPRI, since channel or stream can not be differentiated with in-band information, so
PD in CPRI mode still needs the DBM rules, and both TX side and RX side of the link must use
same predefined position for a specific stream or channel.

Overwrite this text with the Lit. Number

 AIF2 Programming 17

Rules for link 5

Channel LUT 0

Channel LUT 1

Channel LUT 127

…...

DBM rule

parameters

dbm_x

Bit map 1

Bit map 2

dbm_1mult

dbm_1size

dbm_2size

Rules for link 1

Channel LUT 0

Channel LUT 1

Channel LUT 127

…...

DBM rule

parameters

dbm_x

Bit map 1

Bit map 2

dbm_1mult

dbm_1size

dbm_2size

Frame

FSM

6x

Rules for link 0

Channel LUT 0

Channel LUT 1

Channel LUT 127

…...

DBM rule

parameters

dbm_x

Bit map 1

Bit map 2

dbm_1mult

dbm_1size

dbm_2size

Figure 12. CPRI DBM rules

For following example of CPRI, the DBM configuration is: X=16, bit map = 0, bit map size=1

Figure 13. Example of 16 antenna streams pack into 4x CPRI Link

Please note, in PE, an internal RAM is used to store channels LUT for both OBSAI mode and
CPRI mode. The size of the RAM is design for 64x64 channel LUTs, it can be looked as a two
dimension channel LTU array for OBSAI mode:

ChannelLutStruct channelLuts[64][64];

This just match the channel LUT numbers of OBSAI rules. Based on this structure definition, the
LUT for a channel of a rule can be indexed as:

channelLUT[ruleIndex][channelIndex];

For CPRI, only part of the channel LUT RAM is used. For this case, the RAM can be looked as a
two dimension channel LTU array:

ChannelLutStruct channelLuts[8][512];

Based on this structure definition, the LUT for a channel of a link can be indexed as:

channelLUT[linkIndex][channelIndex]; (linkIndex<6; channelIndex<64)

Overwrite this text with the Lit. Number

18 AIF2 Programming

So, index 6 and 7 of the second dimension are not used, index 64~511 of the first dimension are
not used.

2.4.2 Radio framing counter configuration

If packet DMA is used, the size of each packet is configured by the radio framing counters.

PD/PE support very flexible radio framing structure through multiple radio framing counters. The
frame structure is defined with two levels of counters:

1. one level specifies the size of a packet that will be transferred to/from packet DMA; the size
of different packet in a single frame may be different, that is why there is multiple packet
size counters.

2. the other level specifies number of packets in a frame. A system may need support multiple
frame structures, which is why there are totally 6 sets of counters.

Symbol counter for Frame type 0

(Number of Packet in Frame type 0)

Frame type 0 TC index

Frame type 0 SC index

Message type 0 Terminal Counter

(Packet Size Counter)

Message type 1 Terminal Counter

(Packet Size Counter)

Message type 2 Terminal Counter

(Packet Size Counter)

Message type 3 Terminal Counter

(Packet Size Counter)

Message type 4 Terminal Counter

(Packet Size Counter)

Message type 5 Terminal Counter

(Packet Size Counter)

Message type 6 Terminal Counter

(Packet Size Counter)

…...

Message type 127 Terminal Counter

(Packet Size Counter)

Symbol counter for Frame type 1

(Number of Packet in Frame type 1)

Frame type 1 TC index

Frame type 1 SC index

…...

…...

…...

Symbol counter for Frame type 5

(Number of Packet in Frame type 5)

Frame type 5 TC index

Frame type 5 SC index

Figure 14. Radio framing counters

This counting mechanism is similar as AT, but is different from:

1. PD/PE simultaneously supports 6 different sets of terminal counts (6 different frame
structures); while AT supports only one set of terminal counts (one frame structure).

2. AT counts dual-byte clocks, while PD/PE counts data bytes (CPRI) or messages (OBSAI).
Below table summarize the difference.

Overwrite this text with the Lit. Number

 AIF2 Programming 19

Table 9. Unit of radio framing counters

AT Dual-byte clocks

OBSAI OBSAI messages (16 bytes payload)

CPRI Groups of 4 bytes (PE) Groups of 16 bytes (PD)

An application may define up to 6 frame structures with above counters. Each channel can be
configured to use one of these frame structures. For one channel, it can switch between one
frame structure to another frame structure on any frame boundary.

Each AxC stream channel can be programmed with different AxC offset, the framing counters
for that channel begin counting from the AxC offset, and packet are actually transferred from that
AxC offset. Please note, in PD in CPRI mode, AxC Offset programmed in the number of four
samples (QW), relative to the received CPRI link frame boundary (sync byte K28.5), so it is
normally programmed as 0. For all other cases, the AxC offset is relative to AT frame boundary.

2.4.3 TDD configuration (with packet DMA only)

The actual TDD air channel is simplex but the SERDES is full duplex. What this results in is the
impact that only half of the available SERDES bandwidth of AIF2 is usable when in TDD mode.

TDD mode can be supported by packet DMA, it is implement in following ways:

 TX: only sends packet in active TDD time slots

 RX: only receive packets in active TDD time slots

For TX, TDD_AXC mode should be enabled in PE, if it is turned on, PE will insert symbol only
when it receives the packet from packet DMA. So, it is user’s responsibility to not push packets
into the packet DMA TX queue during inactive TDD time slots; and for active TDD timer slots,
user should take care the time to push packet into the TX queue. A packet should only be
pushed into TX queue just one packet ahead, for example, if packet of LTE symbol N need be
sent in active TDD time slot, then packet N must be pushed into the TX queue in the time period
of symbol (N-1).

For RX, PD implements programmable bit map for each channel, each bit corresponds to one
packet in a radio Frame, “1” means corresponding packet will be received, “0” means that
packet will be dropped. Please note, in LTE protocol level, the TDD is controlled in the unit of
sub frame, but the AIF2 PD TDD bit map is defined in the unit of packets, and one LTE sub
frame includes multiple packets (symbols), so the LTE TDD “bit map” in sub frame should be
expanded to PD TDD “bit map” in packets, that is, we need to program multiple bits to select
each LTE symbol in a sub frame.

Overwrite this text with the Lit. Number

20 AIF2 Programming

2.5 DIO engines configuration

Data structure is the basis of software programming, understanding the antenna data buffer
structure is very important for programming DIO.

There are three egress DIO engines and three ingress DIO engines. Each engine can be
configured to support:

 Uplink WCDMA antenna data format for RAC. It is also called “UL RSA” data format in some
documents for compatibility with old AIF1.

 Downlink WCDMA antenna data format for TAC.

 User defined antenna data structure. For some application, WCDMA antenna stream may
be processed by DSP core or RSA (Rake Search Accelerator) instead of RAC or TAC. For
the case, the antenna data structure in DSP memory can be freely defined by software. A
typical structure is collect antenna data for each stream into a separate buffer instead of
interleaving antenna streams into a single buffer link RAC or TAC buffer.

The DIO example code with this application note defined three tests corresponding to above
three data formats:

typedef enum

{

 /*test (simulate) antenna data from AIF2 to RAC*/

 WCDMA_AIF2_RAC_TEST = 0,

 /*test (simulate) antenna data from TAC to AIF2*/

 WCDMA_AIF2_TAC_TEST,

 /*test AIF2 antenna data to/from DSP core buffer*/

 WCDMA_AIF2_CORE_TEST

} WcdmaAif2TestType;

DIO can be looked as a customized EDMA for AIF2. Following table summarizes the DIO
configuration parameters and compares to EDMA.

Table 10. DIO configuration parameters

DIO parameter Equivalent EDMA parameter

Number of quad words (at AIF2 DB buffer) ACNT

Number of AxC (at AIF2 DB buffer) BCNT

DBCN (Dio Buffer Channel Number) table
(addressing inside AIF2 DB buffer)

N/A

Number of blocks CCNT

burst size (1,2,4 QW) (at DSP memory) ACNT

Burst address stride (at DSP memory) BIDX

Block address stride (at DSP memory) CIDX

DIO base address (at DSP memory) SRC, DST

Following sections describe the structure of each data format and corresponding configurations
of DIO engine.

Overwrite this text with the Lit. Number

 AIF2 Programming 21

2.5.1 DIO configuration for AIF2 Data buffer

Following figure and table show the key DIO configuration for AIF2 data buffer.

AIF2 data buffer

DIO buffer length for each channel (128 or 256 bytes)

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Number of Quad word

per AxC per transfer

(1, 2 or 4)

…...

AxC 0 Channel number

AxC 1 Channel number

AxC N Channel number

Number

of AxC

per DIO

Buffer Channel

Number Table

Figure 15. DIO configuration for AIF2 data buffer

Table 11. DIO configuration for AIF2 data buffer

Parameters Configuration Comments

DIO buffer length 128 or 256 bytes For WCDMA stream, 128 bytes is OK. For LTE stream,
256 bytes should be used.

Number of Quad
word per AxC

1, 2 or 4 Number of quad word (16 bytes) transferred by one
trigger.

Number of AxC <= 64 Support maximum 64 antenna streams per DIO engine.

Each DIO engine has a DMA Buffer Channel Number Table (DBCNT), which is used to select
channels be serviced by this DIO engine. With this flexible mechanism, the DIO does NOT
require the channels to be continuous in AIF2 data buffer.

Each DIO engine is trigger by corresponding DIO events from AIF2 timer. With each trigger
event, the DIO engine transfers a block of (number of quad word) x (number of AxC). For the
next event, the DIO engine will increase the access pointer in each channel buffer by (number of
quad word), if the address reaches the end of the buffer, the DIO will automatically wrap it to the
beginning of the buffer. So, the buffer for each channel is actually used as a circular buffer by
DIO engine.

Overwrite this text with the Lit. Number

22 AIF2 Programming

Please note, some configuration register fields should be configured with expected value minus
one. For example, if you want to support 4 AxC, the num_axc field should be set as 4-1 = 3.

2.5.2 DIO configuration for RAC

The RAC supports 54 streams, but the buffer is organized for the size of 64 streams, the
location for stream 54~63 are not used. The RAC input buffer is a circular buffer which can hold
32 chips of data. Following figure shows the RAC front end buffer organization.

Stream 0
Sample 0

Stream 0
Sample 1 …….

Stream 53
Sample 0

Stream 53
Sample 1

Stream 54
Sample 0 …….

Stream 63
Sample 1

Chip0~7 S0S0C0~7 S0S1C0~7 …… S53S0C0~7 S53S1C0~7 Not used …… Not used

Chip8~15 S0S0C8~15 S0S1C8~15 …… S53S0C8~15 S53S1C8~15 Not used …… Not used

Chip16~23 S0S0C16~23 S0S1C16~23 …… S53S0C16~23 S53S1C16~23 Not used …… Not used

Chip24~31 S0S0C24~31 S0S1C24~31 …… S53S0C24~31 S53S1C24~31 Not used …… Not used

 16 Bytes

 Chip 8n+0 Chip 8n+1 Chip 8n+3 …… Chip 8n+6 Chip 8n+7

 2 bytes

 8 bits I 8 Bits Q

Figure 16. RAC antenna data buffer structure

DIO is triggered every 8 chips for antenna data transferred to RAC. DIO transfers 8 chips for
multiple streams with each trigger event. Following table shows the configuration of key DIO
parameters for this case.

Table 12. DIO configuration for RAC

Parameters Configuration Comments

Number of Quad word
per AxC

2 Corresponding to 8 chips

Number of AxC <= 54 Support maximum 54 antenna streams per
RAC.

Number of blocks 4 4 x 8 = 32 chips, this is the size of RAC input
buffer.

DMA burst length 4 quad words One burst include data of two antennas

burst address stride 4 quad words

block address stride 64 x 2 quad words

Following figure illustrates DIO transfer for RAC.

Overwrite this text with the Lit. Number

 AIF2 Programming 23

Stream 0

Sample 0

Num_qw = 2

for 8 chips

Stream 0

Sample 1
…...

Stream M-1

Sample 0
…... Stream 63

Burst length = 4 quad words

Chip0~7

Block address stride

= 64x2 qw

Chip8~15

Number of

block = 4

Stream M-1

Sample 1

Stream 0

Sample 0

Stream 0

Sample 1
…...

Stream M-1

Sample 0
…... Stream 63

Stream M-1

Sample 1

Stream 0

Sample 0

Stream 0

Sample 1
…...

Stream M-1

Sample 0
…... Stream 63

Stream M-1

Sample 1

Stream 0

Sample 0

Stream 0

Sample 1
…...

Stream M-1

Sample 0
…... Stream 63

Stream M-1

Sample 1

Chip16~23

Chip24~31

Trigger event

Trigger event

Trigger event

Trigger event, each event transfer 8 chips for all available streams

Figure 17. DIO configuration for RAC

Please note, the read and write operations of DIO engine are independent. Actually, num_qw
specifies the minimal size of DIO accessing AIF2 buffer; burst length specifies the minimal size
of DIO accessing RAC buffer. So, with above configuration, num_qw = 2 and burst length = 4,
the DIO operations include:

1. DIO reads 2 quad words from the first AIF2 antenna channel buffer

2. DIO reads 2 quad words from the second AIF2 antenna channel buffer

3. DIO combines the 4 quad words and writes them to the RAC buffer.

2.5.3 DIO configuration for TAC

The TAC supports 64 streams. The TAC buffer is a circular buffer which can only hold 4 chips of
data. Following figure shows the TAC output buffer organization.

 Stream 0 Stream 1 …… Stream 62 Stream 63

Chip0~3 S0C0~3 S1C0~3 …… S62C0~3 S63C0~3

 16 Bytes

 Chip 4n+0 Chip 4n+1 Chip 4n+2 Chip 4n+3

 4 bytes

 16 bits I 16 Bits Q

Overwrite this text with the Lit. Number

24 AIF2 Programming

Figure 18. TAC antenna data buffer structure

DIO is triggered every 4 chips for antenna data transferred from TAC. DIO transfers 4 chips for
multiple streams with each trigger event. Following table shows the configuration of key DIO
parameters for this case.

Table 13. DIO configuration for TAC

Parameters Configuration Comments

Number of Quad word
per AxC

1 Corresponding to 4 chips

Number of AxC <= 64 Support maximum 64 antenna streams per
TAC.

DMA burst length 4 quad words One burst include data of 4 antennas

burst address stride 4 quad words

block address stride 0 Wrap around to the beginning after every
transfer

Number of blocks 32 Since block stride =0, any value for this field
should be OK. But a relative larger number may
reduce average DIO overhead.

Following figure illustrates DIO transfer for TAC.

Stream 0

num_qw = 1

for 4 chips

Stream 1 …... Stream M-1 …... Stream 64Chip0~3

Trigger event, each event transfer 4 chips for all available streams

Burst length = 4 quad words

Block

address

stride = 0

Figure 19. DIO configuration for TAC

Please note, the TAC buffer is a circular buffer, after one transfer, the next transfer will restart
from the beginning of the buffer when next trigger event happens.

2.5.4 DIO configuration for antenna data buffer in DSP memory

For antenna stream be processed by DSP core or RSA (Rake Search Accelerator), the antenna
data structure in DSP memory can be freely defined by software. Above buffer structure for RAC
and TAC can also be used, but those structures interleave antenna streams, which is not good
for DSP core to process them efficiently. A typical structure is to collect antenna data for each
stream into separate buffers.

Overwrite this text with the Lit. Number

 AIF2 Programming 25

For this case, the period of DIO trigger event can also be freely configured. The largest period,
16 chips, can be used to improve the throughput because the largest burst size can be utilized.
Following table shows the configuration of key DIO parameters for this case.

Table 14. DIO configuration for antenna buffer in DSP memory

Parameters Configuration Comments

Number of Quad word
per AxC

4 Corresponding to 16 chips

Number of AxC <= 64 Support maximum 64 antenna streams per DIO.

Number of blocks <= 8192 num_blks is a 13-bit field. So, the maximum buffer

size is limited to 8192*16= 131072 chips≈ 3.4

frames

DMA burst length 4 quad words One burst include data of 4 antennas

burst address stride Size of the buffer
per AxC

brst_addr_stride is a 12-bit field. So, the maximum

buffer size is limited to 4096*4= 16384 chips≈ 6.4

WCDMA slots≈ 0.43 frames

block address stride 4 quad words

Following figure illustrates DIO transfer for antenna data buffer in DSP memory.

Chip 0~15 Chip 16~31 …...

Burst length =

block stride =

4 quad words

num_blks depends on buffer size

Stream 0

Burst address stride =

Size of the buffer per AxC

Stream 1 num_axc = M

Trigger event , each event transfer 16 chips for all available streams

Stream M-1

Chip 0~15 Chip 16~31 …...

Chip 0~15 Chip 16~31 …...

Trigger event

Chip 32~47 Chip 48~63

Chip 32~47 Chip 48~63

Chip 32~47 Chip 48~63

Trigger event Trigger event Trigger event

Figure 20. DIO configuration for antenna buffer in DSP memory

Overwrite this text with the Lit. Number

26 AIF2 Programming

3 Generic packet data over AIF2

AIF2 supports generic data transfer with packet DMA. Generic data can be transferred over
control message slot (for OBSAI) or control words (for CPRI) in parallel with antenna stream. If
one link is not used for antenna stream, generic data can also be transferred over AxC (Antenna
stream Carrier) slots. Following table summarize the bandwidth for generic packet transfers in
different cases.

Table 15. Generic data transfer in different cases

 OBSAI CPRI

Over
control
message
slots or
control
words

Bandwidth utilization is about 1/21
(one control message slot in every 21
message slots).

For 8x link, bandwidth is about
6.144*0.8*(16/19)*(399/400)/21=
196Mbps

(16/19 means 16 byte payload in a
message with 19 bytes; 399/400
excludes the K28.5 in a message
group with 400 bytes)

Packet Size = n*16 bytes (n>0)

Can use 4B/5B or NULL delimiter.
Bandwidth utilization is about 1/16*(64-P)/64
(1/16 means one control word in every 16
words. P is the start pointer of generic data
in the control words array with 64 rows).

For 8x link, assume NULL delimiter, P=20,
bandwidth is about 4.9152*0.8/16*44/64=
168Mbps

Over
AxC
slots

Bandwidth utilization is about 20/21

For 8x link, bandwidth is about
6.144*0.8*(16/19) *(399/400)*(20/21)=
3.9Gbps

Packet Size = n*16 bytes (n>0)

4B/5B delimiter must be used; Bandwidth
utilization is about (4/5)*(15/16).

For 8x link, bandwidth is about
4.9152*0.8*15/16*(4/5)= 2.9Gbps

Notes: The factor 0.8 in above formula is for 8B/10B coding.

OBSAI support generic message in nature. To support generic data transfer, CPRI need
additional delimiter, 4B/5B or NULL delimiter can be used for generic data over control words,
since 4B/5B introduce more overhead, so NULL delimiter can be used for generic data over
control words to improve it. But for generic data over AxC slots in CPRI mode, 4B/5B must be
used, which waste 20% bandwidth.

Generic packet mode does not support concept of time stamps in OBSAI. It does not support
terminal counters such as those used when processing antenna carrier data. When transferring
generic packet data the user does not need to follow strict concept of timing or packet size
without worrying about PD or PE failing to process.

Additionally, CPRI packets cannot be starved, that is, packet DMA must transfer the data in time,
if the latter data of a packet is not transfer in time by packet DMA, the PE will truncate the packet,
thus RX side may receive a smaller packet without special notification. OBSAI has a mechanism
for handling generic packet starvation, so, user does not need worry about this in OBSAI mode.

Overwrite this text with the Lit. Number

 AIF2 Programming 27

AIF2 Egress Scheduler (ESCH) has a configuration (AD_ESCH_CFG.PRI) to control the priority
between AxC channel and generic packet channel. For CPRI, this field should be set to 1, which
actually gives same priority for AxC channel and generic packet channel. For OBSAI, this field
can be leave as 0, which gives higher priority to AxC channel.

So, generally speaking, OBSAI mode supports generic data transfer better.

4 AIF2 debug tips

AIF2 is very complicated and relative hard for debug.

Some common debug methods, such as breakpoint, step through, or printf() during AIF2 running,
may affects the operation of AIF2, because AIF2 is very timing sensitive, once these debug
operation happens, AIF2 timing may be broken, so, after these operations, AIF2 may not
function properly.

So, normally, for debug purpose, AIF2 status is checked after expected data have been
transferred. Additionally, some AIF2 status registers are volatile after normal data transfer, when
you manually check them, they may have changed. So, the best way is to dump AIF2 status
registers to a data buffer or structure by software right after the expected data transfer
completes. And then, user can check the data structure manually, or software can print these
statuses later. The example code in “aif_debug.c” in the example projects for this application
notes is implemented in this way.

The AIF2 statuses may be helpful for debug include:

 AD EOP counter (24-bit), this counter will wrap when it reaches its maximum value.

 In packet DMA mode, it counts the packet number.

 In DIO mode, it counts the ingress data burst (normally, 64 bytes) only; egress DIO data
is not counted.

 AT frame, symbol/slot, clock count.

 RM/TM state

 Captured RM Pi offset

 All other error/status

AIF2 EE module detects/monitors error/status of 18 AIF2 internal modules. For each of these
modules, there is a set of registers defined for error/status reporting. Error happens in any
module will trigger interrupt, and corresponding bit in ERR_ALRM_ORGN is set.

Overwrite this text with the Lit. Number

28 AIF2 Programming

EV0 Enable Set Register

EVO Enable Clear Register

Raw Status Set Register

Raw Status Clear Register

EV1 Enable Set Register

EV1 Enable Clear Register

Error Enabled Status

Register

R
a

w
 S

ta
tu

s
 R

e
g

is
te

r
E

V
0

 E
n

a
b

le
 R

e
g

is
te

r
E

V
1

 E
n

a
b

le
 R

e
g

is
te

r

Alarm Enabled Status

Register

VBUS interface

IRS_SET

IRS_CLR

E
N

_
E

V
0

EN_SET_EV0

EN_CLR_EV0

EN_SET_EV1

EN_CLR_EV1

IR
S

E
N

_
E

V
1

E
N

_
S

T
S

_
E

V
0

E
N

_
S

T
S

_
E

V
1

Clock

Errors interrupt to DSP core

Alarms

ERR_ALRM_ORGN

Figure 21. AIF2 EE (Error and Exception) Module

The Interrupt Service Routine should:

1. check the ERR_ALRM_ORGN to determine which module has error

2. Check the EN_STS of that mondule to determine what the error is.

3. Clear the IRS

The common error and possible reason are summarized in following table.

Overwrite this text with the Lit. Number

 AIF2 Programming 29

Table 16. AIF2 common errors and possible resaons

Errors Possible reasons

RM Line Code Violations, or
RM not in SYNC state.

Hardware signal integrity is not good, or the other
side of the AIF link does not run properly.

PI out of window The AIF2 event timing is not configured properly.

data shift the AIF2 AxC offset is not configured properly

PE DB did not have data for a
channel

The packet DMA does not transfer data in time.

PE Symbol index in Navigator
protocol specific header did
not match for one or more
symbol.

The packet is not pushed into the TX queue in
correct time, or the symbol index in the protocol
specific header is not set correctly.

Packet DMA descriptor
starvation

The descriptors are not returned to the FDQ in time,
or RX data is generated faster than processing.

5 Example Projects

The example codes along with this application note were originally developed on the dual C6670
EVM, which has two C6670 DSPs. Following figure shows the AIF connection between two
DSPs on C6670 EVM. The 6 AIF links are used to allow the following in the default
configuration:

 Support 2 full DSP to DSP connections. The 2 connections can be used to test antenna
data transfer between DSPs.

 Support 4 full links connection to the AMC Connector.

Overwrite this text with the Lit. Number

30 AIF2 Programming

TCI6618 EVM

DSP 0

PHYT_SYNC/RADT_SYNC

Serdes clock

AIF2

Timer

153.6MHz

Clock

One shot trigger

DSP 1PHYT_SYNC/RADT_SYNC

Serdes clock

AIF2

S
W

6

TIMO0

L
in

k
 0

L
in

k
 1

Link 2
Link3

Link 4
Link 5

Link 2
Link 3

Link 4
Link 5

To AMC

Connector

Figure 22. AIF connections between two DSPs on C6670 EVM

The example codes along with this application note demonstrate diversiform working modes of
AIF2:

 Protocol: OBSAI, CPRI

 Radio Standard: LTE (FDD/TDD, normal/extended symbol), WCDMA, TD-SCDMA

 Link rate: 2x, 4x, 8x

 Change data buffer between LL2, SL2, DDR

 Data Type

 Antenna data only (on AxC slots)

 Generic data only (on AxC slots)

 Antenna data (on AxC slots) and generic data (on control slots)

 Data Path

 Internal loopback

 External redirection (between 2 DSPs)

Following figures show different test data path.

Overwrite this text with the Lit. Number

 AIF2 Programming 31

DSP 0

PE TM

PD RM

TX

SERDES

RX

SERDES

SERDES

RT

Figure 23. Internal loopback test

DSP 0

PE TM

PD RM

TX

SERDES

RX

SERDES

SERDES DSP 1

PETM

PDRM

TX

SERDES

RX

SERDES

SERDES

RT

RT

Figure 24. External redirection test

Please note, link 2~5 of two DSPs are not directly connected to each other on C6670 EVM,
without external connection, they can only be used for internal loopback test.

The example can also be run on other TI EVMs, but since there is only one DSP on them, only
internal loopback test can be run on them.

The directory structure of the projects is as below:

Overwrite this text with the Lit. Number

32 AIF2 Programming

Figure 25. Directory structure of example codes

Each of below folder is a project for a specific case:

 AIF2_CPRI_LTE_FDD

 AIF2_CPRI_LTE_TDD

 AIF2_CPRI_TDSCDMA

 AIF2_OBSAI_LTE_FDD

 AIF2_OBSAI_LTE_TDD

The “AIF2_PktDMA” is a combined project supporting all above cases.

The “AIF2_CPRI_WCDMA” is examples for WCDMA in CPRI mode.

“common” folder includes some common code such as DDR initialization, Multicore navigator
driver…

There is a “src” folder in each project. The contents of the codes are list in following table.

Table 17. Source files of the example codes

Files Descriptions

aif_main main() function and the top level control codes

Overwrite this text with the Lit. Number

 AIF2 Programming 33

aif_Test_Config This file includes basic configuration structure for test. User can modify the
basic parameters to change the test mode to verify most functionalities of
AIF. The codes in this file calculate many other parameters for AIF based
on the basic configuration.

aif_setup Setup AIF registers according the configuration parameters from
aif_Test_Config module.

aif_Data This file includes code for sending data and processing RX data,

TX/RX packets statistics information is collected and summarized

aif_PktDMA_Init This file setup Packet DMA and QMSS for AIF2.

aif_intc This file setup interrupt controller, and includes ISR for Frame/Slot/Symbol,
data transfer are triggered by them. ISR of QMSS accumulation triggers RX
packet processing. ISR for error log is also in this file.

aif_debug This file include functions to log and print status and error for debug.

The steps to run the examples on dual C6670 EVM are:

1, make sure all switches on SW6 on dual C6670 EVM are all ON before you run this program.

2, Conncet CCS to the DSP.

3, Load the program to core 0 of DSP0.

4, Load the program to core 0 of DSP1.

5, Run DSP1 firstly, then run DSP0. (To run internal loopback only on one DSP, just load the
program to the first DSP and run it.)

6, Check the stdout window of each DSP for test result.

5.1 Packet DMA based example projects

The typical output information of the packet DMA based project is as below:

=================AIF OBSAI mode test for 1000 ms (100 frames, LTE FDD 20MHz normal cyclic prefix)=================

link 0 runs at 8x rate, redirection test, antenna data on AxC slot, generic data on control slot, generic packet size = 10240

link 1 runs at 4x rate, redirection test, antenna data in AxC slot only

link 2 runs at 8x rate, internal loopback test, generic data in AxC slot only, generic packet size = 10240

link 3 runs at 4x rate, internal loopback test, antenna data on AxC slot, generic data on control slot, generic packet size = 10240

link 4 runs at 8x rate, internal loopback test, antenna data in AxC slot only

link 5 runs at 4x rate, internal loopback test, generic data in AxC slot only, generic packet size = 10240

Ingress End Of Packet count = 237425

Egress End Of Packet count = 238265

AT PHYT Frame= 100, Clock= 50788

AT RADT Frame= 100, Symbol= 0, Clock= 12773

Overwrite this text with the Lit. Number

34 AIF2 Programming

AT RADT captures Frame= 3, Symbol= 19, Clock= 153599 at PHYT boundary

----------------link 0 status----------------

captured PI value = 3250

RM ST3 State FRAME_SYNC

RM captured scrambling code = 0x0

TM FSM in FRAME_SYNC state

----------------link 1 status----------------

captured PI value = 3264

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 2 status----------------

captured PI value = 3080

RM ST3 State FRAME_SYNC

RM captured scrambling code = 0x2

TM FSM in FRAME_SYNC state

----------------link 3 status----------------

captured PI value = 3085

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 4 status----------------

captured PI value = 3080

RM ST3 State FRAME_SYNC

RM captured scrambling code = 0x4

TM FSM in FRAME_SYNC state

----------------link 5 status----------------

captured PI value = 3085

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

SL2_FDQ entry count = 133 (initial value 192)

AIF TX queue 0 entry count = 4

AIF TX queue 7 entry count = 2

AIF TX queue 8 entry count = 4

AIF TX queue 15 entry count = 3

 generic Channel 0 transfer 1180 packets, receive 1175 packets (1175 good, 0 bad), 12032000 bytes in SL2, achieve 12 MB/s

 AxC Channel 1 transfer 13861 packets, receive 13719 packets (13719 good, 0 bad), 120413632 bytes in SL2, achieve 121 MB/s

 AxC Channel 2 transfer 13861 packets, receive 13719 packets (13719 good, 0 bad), 120413632 bytes in SL2, achieve 121 MB/s

 AxC Channel 3 transfer 13861 packets, receive 13719 packets (13719 good, 0 bad), 120413632 bytes in SL2, achieve 121 MB/s

 AxC Channel 4 transfer 13861 packets, receive 13719 packets (13719 good, 0 bad), 120413632 bytes in SL2, achieve 121 MB/s

Throughput of link 0 = 496 MB/s (56051 good packets, 0 bad packets)

 AxC Channel 5 transfer 13861 packets, receive 13719 packets (13719 good, 0 bad), 120413632 bytes in SL2, achieve 121 MB/s

 AxC Channel 6 transfer 13861 packets, receive 13719 packets (13719 good, 0 bad), 120413632 bytes in SL2, achieve 121 MB/s

Throughput of link 1 = 242 MB/s (27438 good packets, 0 bad packets)

 generic Channel 7 transfer 46678 packets, receive 46673 packets (46673 good, 0 bad), 477931520 bytes in SL2, achieve 482 MB/s

Throughput of link 2 = 482 MB/s (46673 good packets, 0 bad packets)

Overwrite this text with the Lit. Number

 AIF2 Programming 35

 generic Channel 8 transfer 592 packets, receive 587 packets (587 good, 0 bad), 6010880 bytes in SL2, achieve 6 MB/s

 AxC Channel 9 transfer 13861 packets, receive 13859 packets (13859 good, 0 bad), 121642432 bytes in SL2, achieve 122 MB/s

 AxC Channel 10 transfer 13861 packets, receive 13859 packets (13859 good, 0 bad), 121642432 bytes in SL2, achieve 122 MB/s

Throughput of link 3 = 250 MB/s (28305 good packets, 0 bad packets)

 AxC Channel 11 transfer 13861 packets, receive 13859 packets (13859 good, 0 bad), 121642432 bytes in SL2, achieve 122 MB/s

 AxC Channel 12 transfer 13861 packets, receive 13859 packets (13859 good, 0 bad), 121642432 bytes in SL2, achieve 122 MB/s

 AxC Channel 13 transfer 13861 packets, receive 13859 packets (13859 good, 0 bad), 121642432 bytes in SL2, achieve 122 MB/s

 AxC Channel 14 transfer 13861 packets, receive 13859 packets (13859 good, 0 bad), 121642432 bytes in SL2, achieve 122 MB/s

Throughput of link 4 = 488 MB/s (55436 good packets, 0 bad packets)

 generic Channel 15 transfer 23512 packets, receive 23507 packets (23507 good, 0 bad), 240711680 bytes in SL2, achieve 243 MB/s

Throughput of link 5 = 243 MB/s (23507 good packets, 0 bad packets)

Total throughput of AIF = 2201 MB/s (237410 good packets, 0 bad packets)

User can change the initialization values of basic configuration structure in “aif_Test_Config.c”
as following and rebuild the project to verify most functionalities of AIF.

AifLinkConfig aifLinkCfg[6]=

{

 /*Configuration for link 0*/

 {

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_8x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 AIF2_AXC_DATA_ONLY, /*testDataType*/

 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/

 0, /*numberAxC: 0 means maximum number*/

 LTE_20MHZ /*lteBandwidth*/

 },

 /*Configuration for link 1*/

 {

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_4x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 AIF2_AXC_DATA_ONLY, /*testDataType*/

 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/

 2, /*numberAxC: 0 means maximum number*/

 LTE_10MHZ /*lteBandwidth*/

 },

 /*Configuration for link 2*/

 {

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_2x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 AIF2_AXC_AND_GENERIC_DATA, /*testDataType*/

 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/

 2, /*numberAxC: 0 means maximum number*/

 LTE_5MHZ /*lteBandwidth*/

 },

 /*Configuration for link 3*/

 {

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_4x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 AIF2_GENERIC_DATA_ONLY, /*testDataType*/

Overwrite this text with the Lit. Number

36 AIF2 Programming

 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/

 0, /*numberAxC: 0 means maximum number*/

 LTE_20MHZ /*lteBandwidth*/

 },

In the “AIF2_PktDMA” project, the radio standard, and OBSAI/CPRI mode are selected with
following macros in “aif_Test_Config.h”:

/*---select between antenna interface protocol: CPRI or OBSAI---*/

#if 0

#define AIF2_LINK_PROTOCOL_CPRI

#else

#define AIF2_LINK_PROTOCOL_OBSAI

#endif

/*--------select between radio standard--------*/

//#define AIF2_RADIO_STANDARD_TDSCDMA

#define AIF2_RADIO_STANDARD_LTE_FDD

//#define AIF2_RADIO_STANDARD_LTE_TDD

Buffer used for AIF2 packets can be changed in the “AIF_PktDMA_Init.c” as below, each row
specify the packet buffer for a channel.

/*flow look up table for each channels,

specify which flow be used for each channel*/

unsigned char flowTable[]=

{

 AIF_RX_FLOW_SL2,

 AIF_RX_FLOW_CORE0_LL2,

 AIF_RX_FLOW_CORE1_LL2,

 AIF_RX_FLOW_CORE2_LL2,

 AIF_RX_FLOW_CORE3_LL2,

 AIF_RX_FLOW_DDR,

 ……

};

Please note, AIF2 transfers 64-byte of data channel by channel in round-robin manner, so,
memory is not accessed consecutively, this is very inefficient for DDR, and so, DDR can not
support more than three 8x links. But SL2 or LL2 can support six 8x links simultaneously.

These example projects are built with CCS5.1, pdk_tci6614_1_00_00_06. To rebuild the project
with your new configurations on your PC, you may need to change the CSL include directory.

Overwrite this text with the Lit. Number

 AIF2 Programming 37

5.2 DIO based example projects

The typical output information of the DIO based project is as below:

=================AIF CPRI mode test for 1000 ms (100 WCDMA frames)=================

link 0 runs at 4x rate, redirection test, RAC antenna data and control words

link 1 runs at 4x rate, redirection test, TAC antenna data data only

link 2 runs at 4x rate, internal loopback test, DSP core antenna data only

link 3 is disabled

link 4 is disabled

link 5 is disabled

Ingress End Of Packet count = 11419832

Egress End Of Packet count = 14700

AT PHYT Frame= 100, Clock= 35764; TSC= 1000085507

AT RADT Frame= 100, Symbol= 0, Clock= 9004

----------------link 0 status----------------

captured PI value = 1011

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 1 status----------------

captured PI value = 1294

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 2 status----------------

captured PI value = 1108

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

 AxC Channel 0 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 1 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 2 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 3 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 4 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 5 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 6 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 7 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 8 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 9 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 10 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 11 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 12 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 13 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 14 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 15 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

link 0 transfer 23744 good antenna slots, 0 bad antenna slots

Overwrite this text with the Lit. Number

38 AIF2 Programming

 control Channel 48 transfer 14700 good packets, 0 bad packets, 3763200 bytes, achieve 3801 KB/s

Throughput of link 0 = 249 MB/s

 AxC Channel 16 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 17 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 18 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 19 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 20 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 21 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 22 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 23 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 24 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 25 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 26 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 27 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 28 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 29 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 30 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 31 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

link 1 transfer 23744 good antenna slots, 0 bad antenna slots

Throughput of link 1 = 245 MB/s

 AxC Channel 32 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 33 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 34 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 35 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 36 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 37 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 38 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 39 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 40 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 41 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 42 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 43 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 44 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 45 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 46 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

 AxC Channel 47 transfer 1484 good packets, 0 bad packets, 15196160 bytes, achieve 15349 KB/s

link 2 transfer 23744 good antenna slots, 0 bad antenna slots

Throughput of link 2 = 245 MB/s

Total throughput of AIF = 740 MB/s

User can change the initialization values of basic configuration structure in “aif_Test_Config.c”
as following and rebuild the project to verify most functionalities of AIF with DIO.

AifLinkConfig aifLinkCfg[6]=

{

 /*Configuration for link 0*/

 {

Overwrite this text with the Lit. Number

 AIF2 Programming 39

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_8x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 WCDMA_AIF2_RAC_TEST, /*testType*/

 4, /*numberAxC: 0 means maximum number*/

#ifdef AIF2_LINK_PROTOCOL_OBSAI

 TRUE /*bUseControlMsg*/

#else //AIF2_LINK_PROTOCOL_CPRI

 32, /*firstCtlWordUsed*/

 64-32, /*numCtlWord*/

 CSL_AIF2_DATA_WIDTH_8_BIT /*dataWidth */

#endif

 },

 /*Configuration for link 1*/

 {

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_4x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 WCDMA_AIF2_TAC_TEST, /*testType*/

 2, /*numberAxC: 0 means maximum number*/

#ifdef AIF2_LINK_PROTOCOL_OBSAI

 FALSE /*bUseControlMsg*/

#else //AIF2_LINK_PROTOCOL_CPRI

 32, /*firstCtlWordUsed*/

 32-32, /*numCtlWord*/

 CSL_AIF2_DATA_WIDTH_16_BIT /*dataWidth */

#endif

 },

 /*Configuration for link 2*/

 {

 1, /*Link Enable: 1=enable, 0=disable*/

 CSL_AIF2_LINK_RATE_2x,

 TEST_PATH_INTERLNAL_LOOPBACK, /*test data path*/

 WCDMA_AIF2_CORE_TEST, /*testType*/

 2, /*numberAxC: 0 means maximum number*/

#ifdef AIF2_LINK_PROTOCOL_OBSAI

 FALSE /*bUseControlMsg*/

#else //AIF2_LINK_PROTOCOL_CPRI

 32, /*firstCtlWordUsed*/

 32-32, /*numCtlWord*/

 CSL_AIF2_DATA_WIDTH_16_BIT /*dataWidth*/

#endif

 },

In the “AIF2_WCDMA” project, the OBSAI/CPRI mode is selected with following macros in
“aif_Test_Config.h”:

/*---select between antenna interface protocol: CPRI or OBSAI---*/

#if 0

#define AIF2_LINK_PROTOCOL_CPRI

#else

#define AIF2_LINK_PROTOCOL_OBSAI

#endif

These example projects are built with CCS5.1, pdk_tci6614_1_00_00_06. To rebuild the project
with your new configurations on your PC, you may need to change the CSL include directory.

Overwrite this text with the Lit. Number

40 AIF2 Programming

5.3 To use these example code on other boards

To use these example code on other boards, below may need be changed:

1. on other board, if timer is not used to trigger the AIF2, other methods must be used. For
example, for simple test, the AIF2 can be triggered by manually writing specific registers.
This can be enabled by the macro defined in the “aif_Test_Config.h”:

//#define AIF2_TRIGGER_MANUALLY

2. on other boards, the reference clock for AIF2 may be different, this can be configured
with following code in “aif_setup.c”

#ifdef AIF2_LINK_PROTOCOL_OBSAI

 pllMpy= CSL_AIF2_PLL_MUL_FACTOR_20X; /*153.6*20=3072*/

#else

 pllMpy= CSL_AIF2_PLL_MUL_FACTOR_16X; /*153.6*16=2457.6*/

#endif

3. DSP core PLL and DDR configuration may need be changed in “aif_main.c”, or GEL or
other methods should be used to initialize them.

//DSP core speed: 122.88*236/29= 999.9889655MHz

KeyStone_main_PLL_init(122.88, 236, 29);

//DDR init 66.667*20/1= 1333

KeyStone_DDR_init (66.667, 20, 1);

Overwrite this text with the Lit. Number

 AIF2 Programming 41

References
1. KeyStone Architecture Antenna Interface 2 (AIF2) User Guide (sprugv7)

2. Multicore Navigator for KeyStone Devices User's Guide (sprugr9)

3. TMS320C66x CorePac User's Guide (sprugw0)

4. TMS320C6670 datasheet (SPRS688)

