
Application Report

Lit. Number – July, 2012

1

HyperLink Programming and Performance consideration

Brighton Feng Communication Infrastructure

ABSTRACT

HyperLink provides a highest-speed, low-latency, and low-pin-count communication
interface between two Keystone DSPs. The HyperLink user’s guide describes a lot about
these. This application note provides some complementary information about the
programming of the HyperLink.

This application report also discusses the performance of HyperLink, provides measured
performance data achieved under various operating conditions. Some factors affecting
HyperLink performance are discussed.

Example code is provided along with this application note.

Overwrite this text with the Lit. Number

2 HyperLink Programming and Performance consideration

Contents

1 Introduction .. 3
2 HyperLink configuration .. 3

2.1 Serdes configuration ... 3
2.2 HyperLink memory map configuration .. 4

3 HyperLink performance consideration ... 8
3.1 Performance for memory copy over HyperLink ... 8
3.2 Latency for DSP core access remote memory through HyperLink .. 9
3.3 Overhead of DMA Transfer over HyperLink .. 12
3.4 Delay for HyperLink interrupt .. 13

4 Example Projects ... 13
References ... 17

Figures

Figure 1. HyperLink Serdes configuration ... 3
Figure 2. Example of HyperLink mapping different memories ... 4
Figure 3. Example of HyperLink mapping DDR only .. 7
Figure 4. DSP Core Load/Store on remote DDR through HyperLink ... 11
Figure 5. DSP Core Load/Store on remote SL2 through HyperLink .. 11
Figure 6. DSP Core Load/Store on remote LL2 through HyperLink ... 12
Figure 7. Directory structure of example codes .. 14

Tables

Table 1. Example of memory map at different cores ... 4
Table 2. Simple example of memory map at different cores... 7
Table 3. Bandwidth (MB/s) for memory copy over HyperLink with DSP core 8
Table 4. Bandwidth (MB/s) for memory copy over HyperLink with EDMA 8
Table 5. memory copy Comparison between local and remote memory 9
Table 6. Average EDMA Transfer Overhead .. 12
Table 7. Key codes of the example ... 14

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 3

1 Introduction

HyperLink provides a highest-speed, low-latency, and low-pin-count communication
interface between two Keystone DSPs.

The speed of HyperLink was designed for 12.5Gbps, on most Keystone DSPs, the speed
is limited to 10Gbps because of Serdes or Layout limitation. The HyperLink is a TI-specific
peripheral, compared to the traditional 8b10b encoding scheme for high speed Serdes
interfaces, HyperLink reduces the encoding overhead; the efficient encoding scheme in
HyperLink is equivalent to 8b9b. There are 4 Serdes lanes for HyperLink, so the theoretic
throughput of 10Gbps HyperLink is 10*4*(8/9)= 35.5Gbps= 4.44GB/s.

The HyperLink uses similar memory map scheme like PCIE, but it provides more flexible
features designed for multicore DSP. This application note illustrates it with some usage
cases.

This application report also discusses the performance of HyperLink, provides measured
performance data achieved under various operating conditions. Some factors affecting
HyperLink performance are discussed.

2 HyperLink configuration

This section provides some complementary information for the configuration of some HyperLink
modules.

2.1 Serdes configuration

Serdes need be configured to achieve expected link speed. Following figure shows the
relationship between input reference clock and clocks derived from it.

Serdes PLL

x4, x5, x6 x8, x10, x12

x12.5, x15, x16, x16.5,

x20, x22, x25

Link Rate

8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

1.5625GHz to 3.125GHz

Link Rate

8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

Link Rate

8x (x2)

4x (x1)

5x (x1.25)

2x (/2)

Link Rate
Full (x4)

Half (x2)

Quarter (x1)

Eighth (/2)

Output clockInput reference

clock

Figure 1. HyperLink Serdes configuration

Input clock are recommended to be between 156.25MHz and 312.5MHz, the Serdes PLL
multiply factor should be setup to generate internal clock between 1.5625GHz and 3.125GHz.

The final link speed are derived from the internal clock according to the link rate configuration.

Overwrite this text with the Lit. Number

4 HyperLink Programming and Performance consideration

2.2 HyperLink memory map configuration

The HyperLink memory map is very flexible. The HyperLink user’s guide describes a lot about
these. This section illustrates it with two examples. Following figure shows the first example.

DSP1DSP0

Core 0 LL2

Core 1 LL2

Core 2 LL2

SL2

DDR

DDR

DDR

DDR

DDR

DDR

DDR

DDR

DDR

DDR

DDR

DDR

DDR

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Core 0

Memory Map

Core 1

Memory Map

Other Master

Memory Map ...

63

HyperLink

Outbound

window at

0x40000000

HyperLink

Inbound

Memory map

Segements

Figure 2. Example of HyperLink mapping different memories

In this example, DSP1’s memory are mapped to DSP0’s memory window from 0x40000000 to
0x50000000, the DSP0 can access all memory types in DSP1 including LL2 (Local L2), SL2
(Shared L2) and DDR just like access DSP0’s local memory. In DSP0, all masters access same
outbound window at 0x40000000, but they may actually access different memory space in DSP1,
because the PrivID of the masters in DSP0 is carried with address and the inbound memory
segment configuration of DSP1 is set up separately for different PrivID.

The memory map for DSP core 0 and core1 in this example are summarized in following table.

Table 1. Example of memory map at different cores

Local Address (Size)
Address at remote DSP

For core 0 For core 1

0x40000000 (16MB) 0x10000000 (LL2) 0x10000000 (LL2)

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 5

0x41000000 (16MB) 0x11000000 (LL2) 0x11000000 (LL2)

0x42000000 (16MB) 0x12000000 (LL2) 0x12000000 (LL2)

…… …… ……

0x48000000 (16MB) 0x88000000 (DDR) 0x88000000 (DDR)

0x49000000 (16MB) 0x89000000 (DDR) 0x89000000 (DDR)

…… …… ……

0x4C000000 (16MB) 0x0C000000 (SL2) 0x0C000000 (SL2)

0x4D000000 (16MB) 0x8C000000 (DDR) 0x8F000000 (DDR)

0x4E000000 (16MB) 0x8D000000 (DDR) 0x90000000 (DDR)

0x4F000000 (16MB) 0x8E000000 (DDR) 0x91000000 (DDR)

With this configuration, when DSP0 accesses address 0x40800000, it actually accesses the LL2
memory of DSP1. When core 0 of DSP0 access address 0x4D000000, it actually accesses the
0x8C000000 in DDR of DSP1; while core 1 of DSP0 accesses address 0x4D000000 will actually
access the 0x8F000000 in DDR of DSP1.

The example project along with this application note configures HyperLink in this way. Below is
the key part of the configuration code.

/*----------------Initialize Hyperlink address map----------------------*/

/*use 28 bits address for TX (256 MB) */

hyperLink_cfg.address_map.tx_addr_mask = TX_ADDR_MASK_0x0FFFFFFF;

/*overlay PrivID to higher 4 bits of address for TX*/

hyperLink_cfg.address_map.tx_priv_id_ovl = TX_PRIVID_OVL_ADDR_31_28;

/*Select higher 4 bits of address as PrivID for RX*/

hyperLink_cfg.address_map.rx_priv_id_sel = RX_PRIVID_SEL_ADDR_31_28;

/*use bit 24~29 (4 bits (24~27) MSB address, 2 bits (28~29)

remote PriviID) as index to lookup segment/length table*/

hyperLink_cfg.address_map.rx_seg_sel = RX_SEG_SEL_ADDR_29_24;

/*map local memory into the same segments for all PrivID (remote masters)*/

for(iSeg= 0; iSeg<8; iSeg++)

for(iPrvId=0; iPrvId<4; iPrvId++)

{

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|iSeg].Seg_Base_Addr=

 0x10000000+iSeg*0x01000000;

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|iSeg].Seg_Length=

 RX_SEG_LEN_0x0_0100_0000;

}

/*map a part of DDR3 into the same segments for all PrvID (remote masters)*/

for(iSeg= 8; iSeg<0xC; iSeg++)

for(iPrvId=0; iPrvId<4; iPrvId++)

Overwrite this text with the Lit. Number

6 HyperLink Programming and Performance consideration

{

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|iSeg].Seg_Base_Addr=

 DDR_SPACE_ACCESSED_BY_HYPERLINK+(iSeg-8)*0x01000000;

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|iSeg].Seg_Length=

 RX_SEG_LEN_0x0_0100_0000;

}

/*map SL2 into same segement for all PrvID (remote masters)*/

for(iPrvId=0; iPrvId<4; iPrvId++)

{

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|0xC].Seg_Base_Addr=

 0x0C000000;

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|0xC].Seg_Length=

 RX_SEG_LEN_0x0_0100_0000;

}

/*map different DDR3 sections into the segements

of different PrvID (remote masters)*/

for(iPrvId=0; iPrvId<4; iPrvId++)

for(iSeg= 0xD; iSeg<=0xF; iSeg++)

{

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|iSeg].Seg_Base_Addr=

 DDR_SPACE_ACCESSED_BY_HYPERLINK+0x04000000+(iPrvId*3+iSeg-0xD)*0x01000000;

 hyperLink_cfg.address_map.rx_addr_segs[(iPrvId<<4)|iSeg].Seg_Length=

 RX_SEG_LEN_0x0_0100_0000;

}

For some simple applications just need access large DDR space in remote DSP, below is a
simple example for it.

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 7

DSP0 DSP1

DDR

DDR

DDR

0

1

2

3

4

5

6

7

8

9

Core 0

Memory Map

Core 1

Memory Map

Other Master

Memory Map

...

63

HyperLink

Outbound

window at

0x40000000

HyperLink

Inbound

Memory map

Segements

Figure 3. Example of HyperLink mapping DDR only

This is the simplest example, while the largest memory space in remote DSP can be accessed.
Each master in DSP0 can access 256MB dedicated DDR space in DSP1.

The memory map for DSP core 0 and core 1 in this example are summarized in following table.

Table 2. Simple example of memory map at different cores

Local Address (Size)
Address at remote DSP

For core 0 For core 1

0x40000000 (256MB) 0x90000000 (DDR) 0xA0000000 (DDR)

Overwrite this text with the Lit. Number

8 HyperLink Programming and Performance consideration

3 HyperLink performance consideration

This Section gives designers a basis for estimating HyperLink performance for access remote
memory, provides measured performance data achieved under various operating conditions.
Most of the tests operate under best-case situations to estimate maximum throughput that can
be obtained. The transfers described in this document serve as a sample of interesting or typical
performance conditions.

Most of the performance data in this document is examined on the C6670 EVM (EValuation
Module) with 64-bit 1333M DDR memory, HyperLink link rate is set as 10Gbps.

Some factors affecting HyperLink access performance are discussed in this section.

3.1 Performance for memory copy over HyperLink

Following table shows the transfer bandwidth measured for large linear memory block copy
between local LL2 and remote memory through HyperLink. In these tests, the memory block
size is 64KB. The bandwidth is measured by taking total bytes copied and dividing it by the time
it used.

Table 3. Bandwidth (MB/s) for memory copy over HyperLink with DSP core

Bandwidth (MB/s) Remote memory

Local configuration Source->Destination DDR SL2 LL2

NoneCacheable, nonprefetchable LL2->HyperLink 908 908 908

HyperLink->LL2 50 63 52

HyperLink->HyperLink 43 55 49

32KB L1 cache, prefetchable LL2->HyperLink 1164 1164 1164

HyperLink->LL2 323 383 294

HyperLink->HyperLink 214 258 219

32KB L1 cache, and 256K L2 cache,
prefetchable

LL2->HyperLink 514 583 461

HyperLink->LL2 538 620 474

HyperLink->HyperLink 460 628 504

Above data show cache improves the performance of DSP core reading through HyperLink
dramatically.

But L2 cache throttles the performance of writing through HyperLink dramatically because L2
cache is write-allocate cache. For write operation with L2 cache, it always read 128 bytes
including the accessed data into a cache line firstly, and then modify the data in the L2 cache.
This data will be written back to memory through HyperLink if cache conflict happens or by
manual writeback.

Table 4. Bandwidth (MB/s) for memory copy over HyperLink with EDMA

Bandwidth (MB/s) Remote memory

Source -> Destination DDR SL2 LL2

LL2 -> HyperLink 3584 3584 3583

SL2->HyperLink 3597 3596 3596

DDR->HyperLink 3571 3583 3584

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 9

HyperLink->LL2 1818 1849 1522

HyperLink->SL2 1828 1848 1525

HyperLink->DDR 1811 1848 1525

HyperLink->HyperLink 1032 1849 1525

Above EDMA throughput data are measured on TC0 (Transfer Controller 0) of EDMA CC0
(Channel Controller 0). The throughput with other TCs are slightly less than TC0. The bottleneck
of the throughput is on HyperLink, not on EDMA transfer controller.

Above data show the performance of writing over HyperLink is much better than read over
HyperLink.

The remote memory type does not affect the bandwidth obviously. Accessing DDR and SL2 on
remote DSP is slightly faster than LL2 on remote DSP.

Though HyperLink is the highest throughput interface on current DSPs, access remote memory
through HyperLink is still much slower than access local memory. Following table compares the
throughput for copying from local LL2 to local DDR and remote DDR.

Table 5. memory copy Comparison between local and remote memory

destination
source

DSP core with L1 and L2
cache (MB/s)

EDMA (MB/s)

Local DDR Remote DDR Local DDR Remote DDR

Local LL2 2109 514 5252 3584

Generally speaking, the throughput for writing local memory is about 3 times as the throughput
for writing remote memory through HyperLink. Read from remote memory through HyperLink is
much worse, so we should try to avoid it.

3.2 Latency for DSP core access remote memory through HyperLink

DSP core access remote memory through HyperLink highly depends on the cache. When the
DSP core accesses remote memory through HyperLink, a TR (transfer request) may be
generated (depending on whether the data are cached and prefetchable) to the XMC. The TR
will be for one of the following:

 a single element - if the memory space is non-cacheable, nonprefetchable

 a L1 cache line - if the memory space is cacheable and the L2 cache is disabled,

 a L2 cache line - if the memory space is cacheable and L2 cache is enabled.

 If the space is prefetchable, prefetch may be generated for a prefetch buffer slot.

No transfer request is generated in the case of an L1/L2 cache or prefetch hit.

Remote memory can be cached by L1 cache, L2 cache, or neither. If the PC (Permit Copy) bit of
appropriate MAR (Memory Attribute Register) for a HyperLink mapped memory space is not set,
it is not cacheable. If the PC bit of MAR is set and L2 cache size is zero (all L2 is defined as
SRAM), the external memory space is cached by L1. If the MAR bit is set and L2 cache size is
greater than 0, the external memory space is cached by L2 and L1.

Overwrite this text with the Lit. Number

10 HyperLink Programming and Performance consideration

Read to remote memory can also utilize the prefetch buffer in XMC, which is programmable by
software through PFX (PreFetchable eXternally) bit of MAR (Memory Attribute Register).

The address increment (or memory stride) affects cache and prefetch buffer utilization.
Contiguous accesses utilize cache and prefetch memory to the fullest. A memory stride of 64
bytes or more causes every access to miss in the L1 cache because the L1 line size is 64 bytes.
A memory stride of 128 bytes causes every access to miss in L2 because the L2 line size is 128
bytes.

If cache miss happens, the DSP Core will stall, waiting for the return data. The length of the stall
is equal to the sum of the transfer latency, transfer duration, data return time, and some small
cache request overhead.

The following sections examine the latency for DSP Core accesses memory through HyperLink.
The pseudo codes for this test are like following:

flushCache();

preCycle= getTimeStampCount();

for(i=0; i< accessTimes; i++)

{

 Access a Memory unit at address;

 address+= stride;

}

cycles = getTimeStampCount()-preCycle;

cycles/Access= cycles/accessTimes;

Following figures show data collected from 1GHz C6670 EVM with 64-bit 1333M DDR. The time
required for 512 LDDW (LoaD Double Word) or STDW (STore Double Word) operations on
remote memory through HyperLink was measured, and the average time for each operation is
reported. The cycles for LDB/STB, and LDW/STW are same as LDDW/STDW. Though cache
and prefetch buffer can be configured independently, for these test cases with cache enabled,
the prefetch buffer is enabled as well; the prefetch buffer is also disabled for the cases with
cache disabled.

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 11

Figure 4. DSP Core Load/Store on remote DDR through HyperLink

Figure 5. DSP Core Load/Store on remote SL2 through HyperLink

Overwrite this text with the Lit. Number

12 HyperLink Programming and Performance consideration

Figure 6. DSP Core Load/Store on remote LL2 through HyperLink

Non-cachable write is post operation, so it stalls DSP core very shortly; while read is non-post,
DSP core will wait for the return data, so, it stalls DSP core relative long time.

When cache is enabled, DSP core access remote memory highly depends on the cache. The
address increment (or memory stride) affects cache utilization. Contiguous accesses utilize
cache to the fullest. A memory stride larger than cache line size (64 Bytes for L1 cache, 128
Bytes for L2 cache) causes every access to miss, results in a full cache line fetch for only one
access, thus throttles the performance. So, for contiguous access (like memory copy discussed
in above section), cache should be enabled; otherwise, cache should be disabled.

Above figures do not show obvious difference between accessing DDR, SL2 and LL2 through
HyperLink. So, normally, sharing DDR through HyperLink is a good idea because its large size
and low cost.

3.3 Overhead of DMA Transfer over HyperLink

Initial latency is defined as the time between EDMA event happen to real data transfer begin.
Since initial latency is hard to measure. We measured transfer overhead instead; it is defined as
the sum of the Latency, and the time to transfer smallest element. The values vary based on the
type of source/destination endpoints. Following tables show the average cycles measured
between EDMA trigger (write ESR) and EDMA completion (read IPR=1) for smallest transfer (1
word) between different ports on 1GHz C6670 EVM.

Table 6. Average EDMA Transfer Overhead

destination
source

Local memory Remote memory

Local Memory 325 322

Remote memory 853 700

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 13

Because write is post operation, while read is non-post operation, so, latency for read from
Hyperlink is much higher than the write to HyperLink.

Transfer overhead is a big concern for short transfers and need to be included when scheduling
DMA traffic in a system. Single-element transfer performance will be latency-dominated. So, for
small transfer, you should make the trade off between DMA and DSP core. The latency for
single random DSP core access is much less than DMA, refer to above section 3.2 for more
details.

3.4 Delay for HyperLink interrupt

One DSP can trigger the interrupt on another DSP through HyperLink. The delay for HyerLink
interrupt is measured with following pseudo code:

 ……

 preTSC= TimeStampCount;

 // manually trigger the hardware event, which will generate interrupt packet to remote side

 hyperLinkRegs->SW_INT= HW_EVENT_FOR_INT_TEST;

 asm(“ IDLE”); //wait for the queue pending interrupt

 delay= intTSC - preTSC;

 ……

interrupt void HyperLinkISR() //HyperLink Interrupt Service Routine

{

 intTSC= TimeStampCount; //save the Time Stamp Count when the interrupt happens

 ……

}

This test is done with internal loopback mode.

This delay measured on 1GHz C6670 is about 710 DSP core cycles.

4 Example Projects

The example codes along with this application note are based on the dual C6670 EVM. The
EVM board has two C6670 DSPs, they are connected through HyperLink.

In this example, DSP1’s memory are mapped to DSP0 through HyperLink (see above section
2.2 for details), so, DSP0 accesses DSP 1 through the HyperLink memory window just like
access other local memory space. Internal loopback is also supported in this example, for this
case, DSP0 actually access its own local memory through HyperLink memory window.

Interrupt generation through HyperLink is also demonstrated in this example.

The directory structure of the projects is as below:

Overwrite this text with the Lit. Number

14 HyperLink Programming and Performance consideration

Figure 7. Directory structure of example codes

The example code can also be run on other Keystone DSP EVMs, but only internal loopback
test can be run if there is only one DSP on the EVM.

The key codes are listed in following table.

Table 7. Key codes of the example

Files Function Descriptions

KeyStone_HyperLin
k_Init.c

 Low level initialization code.

Hyperlink_Test.c Hyperlink_config() Application level initialization code.

HyperLink_Mem_Test() this function write data to remote memory unit
and then readback from remote memory for
verification. This make sure memory access
through HyperLink is correct.

HyperLink_Interrupt_Test() this interrupt test is done in loopback mode, a
hardware event is trigger manually, a interrupt
packet is generated and loopback to this DSP
and trigger interrupt to the DSP core. The latency
between trigger and the entry of the ISR are
measured.

HyperLink_DSP_cor
e_performance.c

MemCopyTest() Measure the throughput of memory copy with
DSP core over HyperLink

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 15

LoadStoreCycleTest() Measure the latency of DSP core access
memory throughput HyperLink

HyperLink_Edma_P
erformance.c

 Measure the throughput of memory copy with
EDMA over HyperLink

The steps to run the examples are:

1. Conncet CCS to the DSP.

2. Load the program to core 0 of DSP0.

3. Load the program to core 0 of DSP1.

4. Run DSP1 firstly, then run DSP0. (To run internal loopback only on one DSP, just load
the program to the first DSP and run it.)

5. Check the stdout window of each DSP for test result.

The typical output information is as below:

Initialize main PLL = x236/29

Initialize DDR PLL = x20/1

configure DDR at 666 MHz

HyperLink test at 10.00 GHz

HyperLink memory test passed at address 0x41800000, 0x10000 bytes

HyperLink memory test passed at address 0x48000000, 0x10000 bytes

HyperLink memory test passed at address 0x4c100000, 0x10000 bytes

 noncacheable, nonprefetchable memory copy

 908 MB/s, copy 65536 bytes from 0x820000 to 0x41800000 consumes 72137 cycles

 52 MB/s, copy 65536 bytes from 0x41800000 to 0x820000 consumes 1239592 cycles

 49 MB/s, copy 65536 bytes from 0x41800000 to 0x41810000 consumes 1336908 cycles

……

……

Throughput test with EDMA1 TC1

transfer 4 * 16384 Bytes with index=16384 from 0x11820000 to 0x42840000, consumes 18274 cycles, achieve bandwidth 3586 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x11820000 to 0x4c140000, consumes 18274 cycles, achieve bandwidth 3586 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x11820000 to 0x48300000, consumes 18274 cycles, achieve bandwidth 3586 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x42820000 to 0x11840000, consumes 53209 cycles, achieve bandwidth 1231 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x4c100000 to 0x11840000, consumes 44947 cycles, achieve bandwidth 1458 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x48200000 to 0x11840000, consumes 51679 cycles, achieve bandwidth 1268 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x42840000, consumes 18274 cycles, achieve bandwidth 3586 MB/s

Overwrite this text with the Lit. Number

16 HyperLink Programming and Performance consideration

transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x4c140000, consumes 18274 cycles, achieve bandwidth 3586 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x48300000, consumes 18274 cycles, achieve bandwidth 3586 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x42820000 to 0x c0c0000, consumes 53260 cycles, achieve bandwidth 1230 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x4c100000 to 0x c0c0000, consumes 45508 cycles, achieve bandwidth 1440 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x48200000 to 0x c0c0000, consumes 51985 cycles, achieve bandwidth 1260 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x42840000, consumes 18886 cycles, achieve bandwidth 3470 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x4c140000, consumes 19192 cycles, achieve bandwidth 3414 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x48300000, consumes 18835 cycles, achieve bandwidth 3479 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x42820000 to 0x88100000, consumes 53311 cycles, achieve bandwidth 1229 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x4c100000 to 0x88100000, consumes 45559 cycles, achieve bandwidth 1438 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x48200000 to 0x88100000, consumes 52087 cycles, achieve bandwidth 1258 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x42820000 to 0x42840000, consumes 57340 cycles, achieve bandwidth 1142 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x4c100000 to 0x4c140000, consumes 48313 cycles, achieve bandwidth 1356 MB/s

transfer 4 * 16384 Bytes with index=16384 from 0x48200000 to 0x48300000, consumes 103444 cycles, achieve bandwidth 633 MB/s

EDMA test completeInitialize DDR PLL = x20/1

User can change the initialization values in Hyperlink_config() function in “Hyperlink_Test.c” and
rebuild the project to verify different configuration of HyperLink.

This example project are built with CCS5.1, pdk_c6618_1_0_0_5. To rebuild the project with
your new configurations on your PC, you may need to change the CSL include path.

Overwrite this text with the Lit. Number

 HyperLink Programming and Performance consideration 17

References
1. KeyStone Architecture HyperLink User Guide (SPRUGW8)

2. TMS320C6670 datasheet (SPRS688)

