[image: image10.wmf]KeyStone 1 GE Self Test Kit
[image: image11.wmf]March 2015

[image: image12.wmf][image: image13.wmf] KeyStone 1 GE Self Test Kit User’s Guide
 KeyStone 1 GE Self Test Kit User’s Guide

KeyStone 1
GE Self Test Kit
User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 25, 2013
	Kevin Cai
	Initial release

	1.1
	March 20, 2015
	Brighton Feng
	1. Print device information including device type, speed grade, boot mode, required voltage, ID…

2. Fixed SGMII and MDIO status check bug in KeyStone_GE_Init_drv.c, GE_debug.c and GE_test.c.

Contents

31
Overview

2
Test Methods
4
2.1
MAC loopback Test
5
2.2
SGMII loopback test
6
2.3
SerDes loopback test
7
2.4
External FIFO loopback test
7
2.5
DSP 0 to DSP 1 test
9
3
Test Coverage and test cases
10
3.1
Test with varying packet size
10
3.2
Test with different data pattern
10
3.3
Test with different packet location in LL2/SL2/DDR memory
11
3.4
Test with single/multi port transmission
12
3.5
Test by different accumulation list length
13
4
Test code/project
13
4.1
CCS project
13
4.2
To run the test program on KeyStone 1 EVM
15
4.3
Test configuration
15
4.4
Migrate the test to custom board
16
4.5
Trouble shooting
16
4.5.1
Descrcriptor stays in TX queue
16
4.5.2
TX carrier sense errors detected
16
4.5.3
Interrupt not triggered
16
References
17
Appendix: Typical test output
18

Figures

3Figure 1.
KeyStone I Gigabit Ethernet Hardware Structure

Figure 2.
KeyStone I Ethernet Internal Test
4
Figure 3.
KeyStone I Ethernet External Test
4
Figure 4.
KeyStone I Internal MAC Loopback Test
5
Figure 5.
KeyStone I Internal SGMII Loopback Test
6
Figure 6.
KeyStone I Internal SerDes Loopback Test
7
Figure 7.
KeyStone I External FIFO Loopback Test
8
Figure 8.
KeyStone I DSP 0 to DSP 1 Test
9
Figure 9.
Directory structure of example projects
13

Tables

11Table 1.
Source location of the packets

Table 2.
Destination location of the packets
11
Table 3.
Source files of the example codes
14
Table 4.
Debug functionality
14

Overview
Keystone I device provide 3 port Gigabit Ethernet switch, among of them, port 1 and port 2 can be used to connect to external network, working in 10/100/1000M mode; port 0 is used to connect to DSP cores. Figure 1 show the hardware structure.
[image: image1.png]
Figure 1. KeyStone I Gigabit Ethernet Hardware Structure
Gigabit Ethernet provides MAC/SGMII/SerDes/FIFO loopback functionality for debug purpose. With these features, Gigabit Ethernet self tests are designed to verify whether Ethernet working in correct status, error information will be collected in case wrong status detected. For above purpose, the tests are implemented to cover:

· All loopback functionality inside DSP
· All external data transmission
· Ethernet features supported by hardware
· Packet size from 64 bytes to 10K bytes

· Different data type

· Packet source/destination location in LL2/SL2/DDR memory
· Single/Multi port transmission
· Configurable accumulation list length, which decide how many receiving packets will trigger an interrupt
Refer to “KeyStone_1_Self_Test_Kit_User's_Guide(READ ME FIRST).doc” for some common information about K1 STK.

1 Test Methods
Five test methods are introduced in this section, and the purpose of these test methods is discussed. The algorithms are divided into two classes: internal test and external test. Figure 2 and Figure 3 show different test path.

[image: image2.png]
Figure 2. KeyStone I Ethernet Internal Test
[image: image3.png]
Figure 3. KeyStone I Ethernet External Test

1.1 MAC loopback Test
 [image: image4.png]
Figure 4. KeyStone I Internal MAC Loopback Test

The MAC loopback is the basic internal test to verify:
. Input packet push to proper TX queue

. Packet DMA working correctly to move data between cores/switch
. ALE engine inside switch working correctly to route the packet to right port

. MAC port working in correct status to loopback packet

. RX flow/queue setting properly to receive loopbacked packet.

To enable MAC loopback test, test operator need to configure test mode in the code:
GE_Test_Data_Path test_data_path= GE_TEST_EMAC_LOOPBACK;
1.2 SGMII loopback test

 [image: image5.png]
Figure 5. KeyStone I Internal SGMII Loopback Test
The SGMII loopback is the internal test to verify:

. Input packet push to proper TX queue

. Packet DMA working correctly to move data between cores/switch

. ALE engine inside switch working correctly to route the packet to right port

. MAC port working in correct status to transmit/receive packet

. SGMII working correctly to loopback packet

. RX flow/queue setting properly to receive loopbacked packet.

To enable SGMII loopback test, test operator need to configure test mode in the code:
GE_Test_Data_Path test_data_path= GE_TEST_SGMII_LOOPBACK;
By default, the SGMII works in ETHERNET_1000M_FULLDUPLEX mode, test operator can modify the speed in following code:
Ethernet_Mode Ethernet_mode = ETHERNET_1000M_FULLDUPLEX;

1.3 SerDes loopback test
 [image: image6.png]
Figure 6. KeyStone I Internal SerDes Loopback Test
The SerDes loopback is the internal test to verify:

. Input packet push to proper TX queue

. Packet DMA working correctly to move data between cores/switch

. ALE engine inside switch working correctly to route the packet to right port

. MAC port working in correct status to transmit/receive packet

. SGMII working correctly to do 8b/10b encoding and decoding

. SerDes configured correctly and loopback packet correctly
. RX flow/queue setting properly to receive loopbacked packet.

To enable SerDes loopback test, test operator need to configure test mode in the code:
GE_Test_Data_Path test_data_path= GE_TEST_SERDES_LOOPBACK;
By default, the SGMII work in ETHERNET_1000M_FULLDUPLEX mode. Test operator can modify the speed in following code:

Ethernet_Mode Ethernet_mode = ETHERNET_1000M_FULLDUPLEX;
1.4 External FIFO loopback test

[image: image7.png]
Figure 7. KeyStone I External FIFO Loopback Test
Two DSP used for external FIFO test, the test path is DSP 0->DSP 1->DSP 0.
To simplify the STK usage, same test program are used on two Devices test. The trick is that user must load the program into core 0 of Device 0, and load the same program into core 1 of Device 1. The program will detect the core number at run time, if it is core 0, then it executes the configuration and functions for Device 0; if it is core 1, then it executes the configuration and functions for Device 1.
The external FIFO loopback is the external test to verify:

. Input packet push to proper TX queue in DSP 0
. Packet DMA working correctly to move data between cores/switch in DSP 0
. ALE engine inside switch working correctly to route the packet to right port in DSP 0
. MAC port working in correct status to transmit/receive packet in DSP 0
. SGMII working correctly to do 8b/10b encoding and decoding in DSP 0
. SerDes configured correctly and transmit/receive packet correctly in DSP 0
.The signals transmission on PCB are good.
. SerDes configured correctly and transmit/receive packet correctly in DSP 1

. SGMII working correctly to do 8b/10b encoding and decoding in DSP 1
. MAC port working in correct status to loopback packet in DSP 1

. RX flow/queue setting properly to receive loopbacked packet in DSP 0.

To enable external FIFO loopback test, test operator need to configure test mode in the code:
GE_Test_Data_Path test_data_path= GE_TEST_EXTERNAL_FIFO_LOOPBACK;
In external test case, two DSPs may be connected through SGMII directly, or connected through Ethernet PHY and cable. For SGMII direct connection, one DSP should be configured as ETHERNET_AUTO_NEGOTIAT_SLAVE, and the other DSP should be configured as ETHERNET_AUTO_NEGOTIAT_MASTER. If two DSPs are connected through Ethernet PHY and cable, both DSP should be configured as ETHERNET_AUTO_NEGOTIAT_SLAVE because the PHY is master in this case.
1.5 DSP 0 to DSP 1 test
[image: image8.png]
Figure 8. KeyStone I DSP 0 to DSP 1 Test
The DSP 0 to DSP 1 test is the external test to verify:

. Input packet push to proper TX queue in DSP 0

. Packet DMA working correctly to move data between cores/switch in DSP 0

. MAC port working in correct status to transmit packet in DSP 0

. SGMII working correctly to do 8b/10b encoding and decoding in DSP 0

. SerDes configured correctly and transmit/receive packet correctly in DSP 0

. SerDes configured correctly and transmit/receive packet correctly in DSP 1

. SGMII working correctly to do 8b/10b encoding and decoding in DSP 1

. MAC port working in correct status to receive packet in DSP 1
. ALE engine inside switch working correctly to route the packet to right port in DSP 1
. Packet DMA working correctly to move data between cores/switch in DSP 1

. RX flow/queue setting properly to receive packet in DSP 1.

If there are no two DSPs to do this test, a PC can be used instead of DSP 1. In this case, an Ethernet cable is used to connect DSP board and PC. On the PC, an Ethernet packet capturing tool should be used to receive and verify the packets from DSP 0. Please note, in this case, DSP 0 may receive many broadcasting packets from PC.
To enable external two DSP test, test operator need to configure test mode in the code:
GE_Test_Data_Path test_data_path= GE_TEST_DSP0_TO_DSP1;
2 Test Coverage and test cases
To fully cover the use cases in practice, Gigabit Ethernet tests should be implemented to cover:

· Packet size from 64 bytes to 10K bytes

· Different data pattern
· Packet source/destination location in L2/SL2/DDR memory

· Single/Multi port transmission

· Configurable accumulation list length, which decide how many receiving packets will trigger an interrupt
2.1 Test with varying packet size
In all test path described in chapter 2(except DSP 0 to DSP 1 test), varying packet size from 64 bytes, 2 x 64 bytes …n x 64 bytes to10k bytes are covered.
In DSP 0 to DSP 1 test, the packet size can be configured by user in following configuration structure.
/*Following table specifies the packet transfered on 2 ports,
number of packets of each port should be less than 64 for this test
Note that Keystone 1 has 2 SGMII ports only, port 0 and port 1 used */
GE_2DSP_Transfer_Param test_2DSP_cfg[GE_NUM_ETHERNET_PORT]=
{
 /*payloadNumBytes, dataPattern, numPackets*/
 {1500, 0x00, 2}, /*SGMII port 0 */
 {46, 0xFF, 32} /* SGMII port 1 */
};
2.2 Test with different data pattern
For all loopback test, the data in each packet are increased sequentially to differentiate the packets. That is, the payload of the first packet is 0x01010101 and the second is 0x02020202 and so on.
In DSP 0 to DSP 1 test, the data pattern is configurable in above configuration structure.
2.3 Test with different packet location in LL2/SL2/DDR memory
Gigabit Ethernet self test code define 12 FDQ, each FDQ mapped to different packet source location:

Table 1. Source location of the packets

	TX FDQ
	Location

	SL2_HOST_SIZE0_FDQ
	SL2

	SL2_HOST_SIZE1_FDQ
	SL2

	CORE0_LL2_HOST_SIZE0_FDQ
	Core 0 L2

	CORE0_LL2_HOST_SIZE1_FDQ
	Core 0 L2

	CORE1_LL2_HOST_SIZE0_FDQ
	Core 1 L2

	CORE1_LL2_HOST_SIZE1_FDQ
	Core 1 L2

	CORE2_LL2_HOST_SIZE0_FDQ
	Core 2 L2

	CORE2_LL2_HOST_SIZE1_FDQ
	Core 2 L2

	CORE3_LL2_HOST_SIZE0_FDQ
	Core 3 L2

	CORE3_LL2_HOST_SIZE1_FDQ
	Core 3 L2

	DDR_HOST_SIZE0_FDQ
	DDR

	DDR_HOST_SIZE1_FDQ
	DDR

Gigabit Ethernet self test code define 4 RX flows, each flow mapped to different packet destination location:

Table 2. Destination location of the packets

	RX flow
	Location

	GE_RX_FLOW_DDR
	DDR

	GE_RX_FLOW_SL2
	SL2

	GE_RX_FLOW_CORE0_LL2
	Core 0 L2

	GE_RX_FLOW_CORE1_LL2
	Core 1 L2

For two DSP test, packets buffer are in DDR. For loopback test, test operator can modify the message_src_dest and multiPortTest in the following code to define source/destination for their test. Keystone 1 has 2 Ethernet ports, thus in multi ports test, only 2 ports used.
Uint32 message_src_dest[][2]=

{

 {DDR_HOST_SIZE1_FDQ, GE_RX_FLOW_DDR }, /*DDR->DDR*/

 {DDR_HOST_SIZE1_FDQ, GE_RX_FLOW_SL2 }, /*DDR->SL2*/

 {DDR_HOST_SIZE1_FDQ, GE_RX_FLOW_CORE0_LL2}, /*DDR->LL2*/

 {DDR_HOST_SIZE1_FDQ, GE_RX_FLOW_CORE1_LL2}, /*DDR->LL2*/

 {SL2_HOST_SIZE1_FDQ, GE_RX_FLOW_DDR }, /*SL2->DDR*/

 {CORE0_LL2_HOST_SIZE1_FDQ, GE_RX_FLOW_DDR } /*LL2->DDR*/

};

GE_Transfer_Param_multiPortTest[GE_NUM_ETHERNET_PORT] =
{
/* numPackets, sourceQueue, destFlow, payloadNumBytes */
 {4, SL2_HOST_SIZE1_FDQ, GE_RX_FLOW_DDR, 1500},
 {4, DDR_HOST_SIZE1_FDQ, GE_RX_FLOW_SL2, 46}
} ;
2.4 Test with single/multi port transmission
As show in Figure 1, Keystone I device has 2 ports available for external network connection. Self test code define single/multi port transmission mode accordingly. All test path described in chapter 2 cover both single/multi port mode. Following configuration structure are used to control the ports used for the test. If a port is not used for the test, then it should be set as “GE_PORT_NOT_USED”, if a port is used for test but no external cable or SGMII connection, it should be set as “GE_PORT_NO_CONNECT”, and this port will only be used for internal loopback test.
GE_Port_Connnection_port_connect[GE_NUM_ETHERNET_PORT]=

{

GE_PORT_CABLE_CONNECT, //SGMII port 0

GE_PORT_SGMII_CONNECT //SGMII port 1

};

2.5 Test by different accumulation list length
Keystone 1 QMSS is able to trigger interrupt when RX queue receive packets. Accumulation list length decides how many received packet will trigger an interrupt. In single port loopback test, self test code covers accumulation list length 1, 2, 4, 8, 16 cases. Varying list length is helpful to see how interrupt latency impact Ethernet performance.
3 Test code/project
This section introduces the implementation of Gigabit Ethernet tests on KeyStone 1 DSP.
3.1 CCS project

Following figure shows the directory structure of the example projects

 [image: image9.png]
Figure 9. Directory structure of example projects

The project files are in “GE” folder. The main source code files are in the “GE\src” subfolder. There is some commonly used initialization and driver code for GE, DDR, EDMA, SerDes and PLL… in “common” folder. Below table describes these source files.

Table 3. Source files of the example codes

	Source files
	Descriptions

	KeyStone_common.c
	Initialization for PLL. The key API include:
void KeyStone_main_PLL_init (float ref_clock_MHz,

unsigned int main_PLLM, unsigned int main_PLLD);

	KeyStone_DDR_Init.c
	Low level DDR initialization. The key API include:
void KeyStone_DDR_init(float ref_clock_MHz, unsigned int DDR_PLLM,

unsigned int DDR_PLLD, DDR_ECC_Config * ecc_cfg);

	KeyStone_GE_Init_drv.c
	Low level GE initialization and driver. The key APIs are:
void KeyStone_GE_Init(KeyStone_GE_Config * ge_cfg) ;

void Fill_EMAC_header(Uint8 *buffer, Ethernet_Packet_Type type,

unsigned long long sourceMAC, unsigned long long destMAC);

 void KeyStone_Ethernet_Ports_Init(KeyStone_GE_Config * ge_cfg);

	Keystone_Serdes_init.c
	Low level Serdes initialization. The key API include:
void Keystone_SGMII_Serdes_init(

SerdesSetup_2links * serdes_cfg, SerdesRegs * serdesRegs)

	GE_2DSP_Test.c
	Implementation of Gigabit Ethernet test between DSP and PC/DSP. The key API include:

void GE_2DSP_Test()

	GE_Interrupts.c
	Implementation of interrupt initialization and interrupt handling. The key APIs are:

 void GE_Interrupts_Init(void) ;
 interrupt void GE_Message_ISR()

	GE_loopback_Test.c
	Implementation of loopback functionality. The key APIs are:
 void GE_signle_port_loopback_test();
 void GE_multiple_port_transfer();

 void GE_signle_port_transfer(GE_Transfer_Param * transferParam)

	GE_PktDMA_Init.c
	Implementation of QMSS PktDMA initialization. The key APIs are:
 void GE_PktDMA_init();

	GE_Test.c
	Implementation of Gigabit Ehternet main function. The key APIs are:

void GE_internal_loopback_test(Ethernet_Loopback_Mode loopback_mode)
void GE_external_loopback_test(Ethernet_Loopback_Mode loopback_mode)
void GE_DSP0_to_DSP1_test();

For test convenience, self test code provide debug functionality in “GE_PktDMA_Init.c” and “GE_debug.c”, which cover following items
Table 4. Debug functionality

	Debug code
	Description

	GE_Check_Free_Queues()
	Monitor number of descriptors change in FDQ

	GE_Check_TxRx_Queues()
	Monitor number of descriptors change in TX/RX queue

	print_GE_statistics()
	Record number of packets TX/RX in 3 Ethernet ports

	print_GE_Ethernet_ports_status()
	Record Ethernet port status

	print_GE_MDIO_status()
	Record PHY status

3.2 To run the test program on KeyStone 1 EVM

The test programs can be run on EVM of C6678, C6670, or TCI6614. The type of the device on EVM is detected by STK code automatically.
The steps to run the test cases on EVM board are:
1. Extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)

2. Import the project to CCS

3. Build the project. You may need to change the CSL including path, by default the project use CSL header files in: C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl for C6678.
4. Set the boot mode of the device on EVM to no boot.

5. For loopback test, load the program to core 0 of a DSP. For test between two DSPs, load the program to core 0 or first DSP, and load the program to core 1 of the second DSP.

6. For loopback test, run core 0; for test between two DSPs, run the core 1 of the second DSP firstly and then run the core 0 of the first DSP.

7. See output in console window.
Refer to appendix of this document to see the typical test output.
3.3 Test configuration
There are several configurations can be modified to run different test case in “GE_test.c”

/*select between internal/external loopback test or test between two DSPs*/
GE_Test_Data_Path test_data_path= GE_TEST_SGMII_LOOPBACK;
/*select between 10/100/1000Mbps or auto negotiation mode*/
Ethernet_Mode ethernet_mode = ETHERNET_1000M_FULLDUPLEX;
//The port connection state for the test
GE_Port_Connection port_connect[GE_NUM_ETHERNET_PORT]=
{

GE_PORT_SGMII_CONNECT, //SGMII port 0

GE_PORT_SGMII_CONNECT //SGMII port 1
};
Refer to Chapter 2 and 3 for more details about the definition of these test cases.
3.4 Migrate the test to custom board
These examples are implemented based on TI’s EVM boards. In your real system, the DDR configuration may be changed according to your hardware design in the function KeyStone_DDR_init () in “KeyStone_DDR_Init.c”.
The DSP core speed and PASS speed may also be changed in the main() function, for example:

KeyStone_main_PLL_init(100, 10, 1);

KeyStone_PASS_PLL_init(100, 7, 2);
The GE SerDes reference clock speed may be configured in the following code:
ge_cfg.serdes_cfg.commonSetup.inputRefClock_MHz = 156.25
To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) header files are used by these projects, you may need change CSL including path in your system before you rebuild the project.
3.5 Trouble shooting
User may encounters problem after they modify the test code, this section introduces some common problem and suggestions for trouble shooting.
3.5.1 Descrcriptor stays in TX queue

In this error case, descriptor stays in TX queue, not consumed by Ethernet. This scenario could be caused by incorrect PktDMA initialization or incorrect switch initialization. In either of error case, PktDMA will not move the packet into switch.

3.5.2 TX carrier sense errors detected

In the test log, test operator might find TX carrier sense error. Normally this happens in port 1 and port 2. It could be caused by wrong SGMII connection configuration. For example, port 2 is connected with cable, but in test code, port 1 is set enable, port 2 is disabled. Besides, SGMII negotiation fail might also lead to such kind of problem.
3.5.3 Interrupt not triggered
Self test code send test packet and then wait for interrupt. In case interrupt not triggered, test code will be pending……

Test operator need to check whether descriptor arrive in RX queue. In case yes, check whether RX queue is the right one to trigger interrupt. Common problem is that low priority queue used to receive packet, but in QMSS, high priority queue is used to trigger interrupt. Otherwise, test operator need to check TX->RX path step by step carefully. For example, to see whether port 0 receive packet from DSP, whether loopback set correctly in MAC/SGMII/SerDes, whether SerDes initialized correctly, whether interrupt route set properly.
References

1. KeyStone Gigabit Ethernet (GbE) Switch Subsystem User's Guide (SPRUGV9C)
2. KeyStone Multicore Navigator User's Guide (SPRUGR9F)
3. KeyStone Network Coprocessor (NETCP) User's Guide (SPRUGZ6)
Appendix: Typical test output
Below is the test output on C6678 EVM for loopback test.
JTAG ID= 0x1009e02f. This is C6678/TCI6608 device, version variant = 1.

DEVSTAT= 0x00010081. little endian, No boot or EMIF16(NOR FLASH) or UART boot, PLL configuration implies the input clock for core is 50MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x02011014, 0x04010169, 0x00000000, 0x40680021

Device speed grade = 1000MHz.

Enable Exception handling...

Initialize DSP main clock = 100.00MHz/1x10 = 1000MHz

Initialize PASS PLL clock = 100.00MHz/2x21 = 1050.000MHz

Initialize DDR speed = 66.67MHzx/1x20 = 1333.333MTS

GE 1000M fullduplex internal SERDES loopback test...

GE transfer from 0x820c0000 to 0x820c2800, 1 packets x 64 bytes, 7433 cycles, 68 Mbps

GE transfer from 0x820c5000 to 0x820c7800, 1 packets x 128 bytes, 9269 cycles, 110 Mbps

GE transfer from 0x820ca000 to 0x820cc800, 1 packets x 256 bytes, 12969 cycles, 157 Mbps

GE transfer from 0x820cf000 to 0x820d1800, 1 packets x 512 bytes, 19589 cycles, 209 Mbps

GE transfer from 0x820d4000 to 0x820d6800, 1 packets x 1024 bytes, 31423 cycles, 260 Mbps

GE transfer from 0x820d9000 to 0x820db800, 1 packets x 2048 bytes, 57119 cycles, 286 Mbps

GE transfer from 0x820de000 to 0x820e0800, 1 packets x 4096 bytes, 107967 cycles, 303 Mbps

GE transfer from 0x820e3000 to 0x820e5800, 1 packets x 8192 bytes, 209205 cycles, 313 Mbps

GE transfer from 0x820e8000 to 0x c018000, 1 packets x 64 bytes, 7465 cycles, 68 Mbps

GE transfer from 0x820ea800 to 0x c01a800, 1 packets x 128 bytes, 9027 cycles, 113 Mbps

GE transfer from 0x820ed000 to 0x c01d000, 1 packets x 256 bytes, 12943 cycles, 158 Mbps

GE transfer from 0x820ef800 to 0x c01f800, 1 packets x 512 bytes, 18751 cycles, 218 Mbps

GE transfer from 0x820f2000 to 0x c022000, 1 packets x 1024 bytes, 31599 cycles, 259 Mbps

GE transfer from 0x820f4800 to 0x c024800, 1 packets x 2048 bytes, 57459 cycles, 285 Mbps

GE transfer from 0x820f7000 to 0x c027000, 1 packets x 4096 bytes, 107565 cycles, 304 Mbps

GE transfer from 0x820f9800 to 0x c029800, 1 packets x 8192 bytes, 209381 cycles, 312 Mbps

GE transfer from 0x c02c000 to 0x820fc000, 1 packets x 64 bytes, 7383 cycles, 69 Mbps

GE transfer from 0x c02e800 to 0x820fe800, 1 packets x 128 bytes, 9297 cycles, 110 Mbps

GE transfer from 0x c031000 to 0x82101000, 1 packets x 256 bytes, 12349 cycles, 165 Mbps

GE transfer from 0x c033800 to 0x82103800, 1 packets x 512 bytes, 19235 cycles, 212 Mbps

GE transfer from 0x c036000 to 0x82106000, 1 packets x 1024 bytes, 31819 cycles, 257 Mbps

GE transfer from 0x c038800 to 0x82108800, 1 packets x 2048 bytes, 56705 cycles, 288 Mbps

GE transfer from 0x c03b000 to 0x8210b000, 1 packets x 4096 bytes, 107323 cycles, 305 Mbps

GE transfer from 0x c03d800 to 0x8210d800, 1 packets x 8192 bytes, 209007 cycles, 313 Mbps

GE transfer from 0x c040000 to 0x c042800, 1 packets x 64 bytes, 7053 cycles, 72 Mbps

GE transfer from 0x c045000 to 0x c047800, 1 packets x 128 bytes, 9041 cycles, 113 Mbps

GE transfer from 0x c04a000 to 0x c04c800, 1 packets x 256 bytes, 12459 cycles, 164 Mbps

GE transfer from 0x c04f000 to 0x c051800, 1 packets x 512 bytes, 19359 cycles, 211 Mbps

GE transfer from 0x c054000 to 0x c056800, 1 packets x 1024 bytes, 31425 cycles, 260 Mbps

GE transfer from 0x c059000 to 0x c05b800, 1 packets x 2048 bytes, 57253 cycles, 286 Mbps

GE transfer from 0x c05e000 to 0x c060800, 1 packets x 4096 bytes, 107711 cycles, 304 Mbps

GE transfer from 0x c063000 to 0x c065800, 1 packets x 8192 bytes, 209131 cycles, 313 Mbps

GE transfer from 0x82112800 to 0x82117800, 2 packets x 64 bytes, 7708 cycles, 132 Mbps

GE transfer from 0x8211c800 to 0x82121800, 2 packets x 128 bytes, 10665 cycles, 192 Mbps

GE transfer from 0x82126800 to 0x8212b800, 2 packets x 256 bytes, 15278 cycles, 268 Mbps

GE transfer from 0x82130800 to 0x82135800, 2 packets x 512 bytes, 23997 cycles, 341 Mbps

GE transfer from 0x8213a800 to 0x8213f800, 2 packets x 1024 bytes, 40629 cycles, 403 Mbps

GE transfer from 0x82144800 to 0x82149800, 2 packets x 2048 bytes, 73785 cycles, 444 Mbps

GE transfer from 0x8214e800 to 0x82153800, 2 packets x 4096 bytes, 141433 cycles, 463 Mbps

GE transfer from 0x82158800 to 0x8215d800, 2 packets x 8192 bytes, 274855 cycles, 476 Mbps

GE transfer from 0x82162800 to 0x c01a800, 2 packets x 64 bytes, 8574 cycles, 119 Mbps

GE transfer from 0x82167800 to 0x c01f800, 2 packets x 128 bytes, 10283 cycles, 199 Mbps

GE transfer from 0x8216c800 to 0x c024800, 2 packets x 256 bytes, 15106 cycles, 271 Mbps

GE transfer from 0x82171800 to 0x c029800, 2 packets x 512 bytes, 23703 cycles, 345 Mbps

GE transfer from 0x82176800 to 0x c02e800, 2 packets x 1024 bytes, 40203 cycles, 407 Mbps

GE transfer from 0x8217b800 to 0x c033800, 2 packets x 2048 bytes, 73801 cycles, 444 Mbps

GE transfer from 0x82180800 to 0x c038800, 2 packets x 4096 bytes, 140965 cycles, 464 Mbps

GE transfer from 0x82185800 to 0x c03d800, 2 packets x 8192 bytes, 275185 cycles, 476 Mbps

GE transfer from 0x c042800 to 0x8218a800, 2 packets x 64 bytes, 7797 cycles, 131 Mbps

GE transfer from 0x c047800 to 0x8218f800, 2 packets x 128 bytes, 10371 cycles, 197 Mbps

GE transfer from 0x c04c800 to 0x82194800, 2 packets x 256 bytes, 14992 cycles, 273 Mbps

GE transfer from 0x c051800 to 0x82199800, 2 packets x 512 bytes, 23110 cycles, 354 Mbps

GE transfer from 0x c056800 to 0x8219e800, 2 packets x 1024 bytes, 39902 cycles, 410 Mbps

GE transfer from 0x c05b800 to 0x821a3800, 2 packets x 2048 bytes, 73558 cycles, 445 Mbps

GE transfer from 0x c060800 to 0x821a8800, 2 packets x 4096 bytes, 140722 cycles, 465 Mbps

GE transfer from 0x c065800 to 0x821ad800, 2 packets x 8192 bytes, 275252 cycles, 476 Mbps

GE transfer from 0x c01a800 to 0x c01f800, 2 packets x 64 bytes, 7644 cycles, 133 Mbps

GE transfer from 0x c024800 to 0x c029800, 2 packets x 128 bytes, 10144 cycles, 201 Mbps

GE transfer from 0x c02e800 to 0x c033800, 2 packets x 256 bytes, 14853 cycles, 275 Mbps

GE transfer from 0x c038800 to 0x c03d800, 2 packets x 512 bytes, 23608 cycles, 347 Mbps

GE transfer from 0x c042800 to 0x c047800, 2 packets x 1024 bytes, 40526 cycles, 404 Mbps

GE transfer from 0x c04c800 to 0x c051800, 2 packets x 2048 bytes, 73424 cycles, 446 Mbps

GE transfer from 0x c056800 to 0x c05b800, 2 packets x 4096 bytes, 140406 cycles, 466 Mbps

GE transfer from 0x c060800 to 0x c065800, 2 packets x 8192 bytes, 274900 cycles, 476 Mbps

GE transfer from 0x821b7800 to 0x821c1800, 4 packets x 64 bytes, 9662 cycles, 211 Mbps

GE transfer from 0x821cb800 to 0x821d5800, 4 packets x 128 bytes, 13125 cycles, 312 Mbps

GE transfer from 0x821df800 to 0x821e9800, 4 packets x 256 bytes, 19492 cycles, 420 Mbps

GE transfer from 0x821f3800 to 0x821fd800, 4 packets x 512 bytes, 32595 cycles, 502 Mbps

GE transfer from 0x82207800 to 0x82211800, 4 packets x 1024 bytes, 57219 cycles, 572 Mbps

GE transfer from 0x8221b800 to 0x82225800, 4 packets x 2048 bytes, 107023 cycles, 612 Mbps

GE transfer from 0x8222f800 to 0x82239800, 4 packets x 4096 bytes, 207165 cycles, 632 Mbps

GE transfer from 0x82243800 to 0x8224d800, 4 packets x 8192 bytes, 406599 cycles, 644 Mbps

GE transfer from 0x82257800 to 0x c01f800, 4 packets x 64 bytes, 10244 cycles, 199 Mbps

GE transfer from 0x82261800 to 0x c029800, 4 packets x 128 bytes, 12729 cycles, 321 Mbps

GE transfer from 0x8226b800 to 0x c033800, 4 packets x 256 bytes, 19374 cycles, 422 Mbps

GE transfer from 0x82275800 to 0x c03d800, 4 packets x 512 bytes, 31847 cycles, 514 Mbps

GE transfer from 0x8227f800 to 0x c047800, 4 packets x 1024 bytes, 57129 cycles, 573 Mbps

GE transfer from 0x82289800 to 0x c051800, 4 packets x 2048 bytes, 107021 cycles, 612 Mbps

GE transfer from 0x82293800 to 0x c05b800, 4 packets x 4096 bytes, 207143 cycles, 632 Mbps

GE transfer from 0x8229d800 to 0x c065800, 4 packets x 8192 bytes, 406397 cycles, 645 Mbps

GE transfer from 0x c01f800 to 0x822a7800, 4 packets x 64 bytes, 10068 cycles, 203 Mbps

GE transfer from 0x c029800 to 0x822b1800, 4 packets x 128 bytes, 13588 cycles, 301 Mbps

GE transfer from 0x c033800 to 0x822bb800, 4 packets x 256 bytes, 20039 cycles, 408 Mbps

GE transfer from 0x c03d800 to 0x822c5800, 4 packets x 512 bytes, 32530 cycles, 503 Mbps

GE transfer from 0x c047800 to 0x822cf800, 4 packets x 1024 bytes, 56934 cycles, 575 Mbps

GE transfer from 0x c051800 to 0x822d9800, 4 packets x 2048 bytes, 107264 cycles, 610 Mbps

GE transfer from 0x c05b800 to 0x822e3800, 4 packets x 4096 bytes, 206862 cycles, 633 Mbps

GE transfer from 0x c065800 to 0x822ed800, 4 packets x 8192 bytes, 406996 cycles, 644 Mbps

GE transfer from 0x c01f800 to 0x c029800, 4 packets x 64 bytes, 10112 cycles, 202 Mbps

GE transfer from 0x c033800 to 0x c03d800, 4 packets x 128 bytes, 13050 cycles, 313 Mbps

GE transfer from 0x c047800 to 0x c051800, 4 packets x 256 bytes, 19342 cycles, 423 Mbps

GE transfer from 0x c05b800 to 0x c065800, 4 packets x 512 bytes, 32102 cycles, 510 Mbps

GE transfer from 0x c01f800 to 0x c029800, 4 packets x 1024 bytes, 56895 cycles, 575 Mbps

GE transfer from 0x c033800 to 0x c03d800, 4 packets x 2048 bytes, 106703 cycles, 614 Mbps

GE transfer from 0x c047800 to 0x c051800, 4 packets x 4096 bytes, 206498 cycles, 634 Mbps

GE transfer from 0x c05b800 to 0x c065800, 4 packets x 8192 bytes, 406476 cycles, 644 Mbps

GE transfer from 0x82301800 to 0x82315800, 8 packets x 64 bytes, 13672 cycles, 299 Mbps

GE transfer from 0x82329800 to 0x8233d800, 8 packets x 128 bytes, 18903 cycles, 433 Mbps

GE transfer from 0x820d1800 to 0x820e5800, 8 packets x 256 bytes, 29920 cycles, 547 Mbps

GE transfer from 0x820f9800 to 0x8210d800, 8 packets x 512 bytes, 49902 cycles, 656 Mbps

GE transfer from 0x82121800 to 0x82135800, 8 packets x 1024 bytes, 91871 cycles, 713 Mbps

GE transfer from 0x82149800 to 0x8215d800, 8 packets x 2048 bytes, 174465 cycles, 751 Mbps

GE transfer from 0x82171800 to 0x82185800, 8 packets x 4096 bytes, 339067 cycles, 773 Mbps

GE transfer from 0x82199800 to 0x821ad800, 8 packets x 8192 bytes, 670701 cycles, 781 Mbps

GE transfer from 0x821c1800 to 0x c029800, 8 packets x 64 bytes, 12968 cycles, 315 Mbps

GE transfer from 0x821d5800 to 0x c03d800, 8 packets x 128 bytes, 18199 cycles, 450 Mbps

GE transfer from 0x821e9800 to 0x c051800, 8 packets x 256 bytes, 29638 cycles, 552 Mbps

GE transfer from 0x821fd800 to 0x c065800, 8 packets x 512 bytes, 49861 cycles, 657 Mbps

GE transfer from 0x82211800 to 0x c029800, 8 packets x 1024 bytes, 91765 cycles, 714 Mbps

GE transfer from 0x82225800 to 0x c03d800, 8 packets x 2048 bytes, 173541 cycles, 755 Mbps

GE transfer from 0x82239800 to 0x c051800, 8 packets x 4096 bytes, 338953 cycles, 773 Mbps

GE transfer from 0x8224d800 to 0x c065800, 8 packets x 8192 bytes, 669711 cycles, 782 Mbps

GE transfer from 0x c029800 to 0x82261800, 8 packets x 64 bytes, 13092 cycles, 312 Mbps

GE transfer from 0x c03d800 to 0x82275800, 8 packets x 128 bytes, 19007 cycles, 430 Mbps

GE transfer from 0x c051800 to 0x82289800, 8 packets x 256 bytes, 29172 cycles, 561 Mbps

GE transfer from 0x c065800 to 0x8229d800, 8 packets x 512 bytes, 49834 cycles, 657 Mbps

GE transfer from 0x c029800 to 0x822b1800, 8 packets x 1024 bytes, 91409 cycles, 716 Mbps

GE transfer from 0x c03d800 to 0x822c5800, 8 packets x 2048 bytes, 174004 cycles, 753 Mbps

GE transfer from 0x c051800 to 0x822d9800, 8 packets x 4096 bytes, 339814 cycles, 771 Mbps

GE transfer from 0x c065800 to 0x822ed800, 8 packets x 8192 bytes, 669878 cycles, 782 Mbps

GE transfer from 0x c029800 to 0x c03d800, 8 packets x 64 bytes, 13222 cycles, 309 Mbps

GE transfer from 0x c051800 to 0x c065800, 8 packets x 128 bytes, 18047 cycles, 453 Mbps

GE transfer from 0x c029800 to 0x c03d800, 8 packets x 256 bytes, 28837 cycles, 568 Mbps

GE transfer from 0x c051800 to 0x c065800, 8 packets x 512 bytes, 50168 cycles, 653 Mbps

GE transfer from 0x c029800 to 0x c03d800, 8 packets x 1024 bytes, 91139 cycles, 719 Mbps

GE transfer from 0x c051800 to 0x c065800, 8 packets x 2048 bytes, 173544 cycles, 755 Mbps

GE transfer from 0x c029800 to 0x c03d800, 8 packets x 4096 bytes, 339577 cycles, 771 Mbps

GE transfer from 0x c051800 to 0x c065800, 8 packets x 8192 bytes, 670088 cycles, 782 Mbps

GE transfer from 0x82315800 to 0x8233d800, 16 packets x 64 bytes, 20433 cycles, 400 Mbps

GE transfer from 0x820e5800 to 0x8210d800, 16 packets x 128 bytes, 29728 cycles, 551 Mbps

GE transfer from 0x82135800 to 0x8215d800, 16 packets x 256 bytes, 48516 cycles, 675 Mbps

GE transfer from 0x82185800 to 0x821ad800, 16 packets x 512 bytes, 85233 cycles, 768 Mbps

GE transfer from 0x821d5800 to 0x821fd800, 16 packets x 1024 bytes, 159289 cycles, 822 Mbps

GE transfer from 0x82225800 to 0x8224d800, 16 packets x 2048 bytes, 307565 cycles, 852 Mbps

GE transfer from 0x82275800 to 0x8229d800, 16 packets x 4096 bytes, 604257 cycles, 867 Mbps

GE transfer from 0x822c5800 to 0x822ed800, 16 packets x 8192 bytes, 1197223 cycles, 875 Mbps

GE transfer from 0x82315800 to 0x c03d800, 16 packets x 64 bytes, 20180 cycles, 405 Mbps

GE transfer from 0x8233d800 to 0x c065800, 16 packets x 128 bytes, 29287 cycles, 559 Mbps

GE transfer from 0x820e5800 to 0x c03d800, 16 packets x 256 bytes, 48541 cycles, 675 Mbps

GE transfer from 0x8210d800 to 0x c065800, 16 packets x 512 bytes, 85255 cycles, 768 Mbps

GE transfer from 0x82135800 to 0x c03d800, 16 packets x 1024 bytes, 159175 cycles, 823 Mbps

GE transfer from 0x8215d800 to 0x c065800, 16 packets x 2048 bytes, 307587 cycles, 852 Mbps

GE transfer from 0x82185800 to 0x c03d800, 16 packets x 4096 bytes, 604543 cycles, 867 Mbps

GE transfer from 0x821ad800 to 0x c065800, 16 packets x 8192 bytes, 1196783 cycles, 876 Mbps

GE transfer from 0x c03d800 to 0x821d5800, 16 packets x 64 bytes, 20077 cycles, 408 Mbps

GE transfer from 0x c065800 to 0x821fd800, 16 packets x 128 bytes, 29691 cycles, 551 Mbps

GE transfer from 0x c03d800 to 0x82225800, 16 packets x 256 bytes, 48632 cycles, 673 Mbps

GE transfer from 0x c065800 to 0x8224d800, 16 packets x 512 bytes, 85324 cycles, 768 Mbps

GE transfer from 0x c03d800 to 0x82275800, 16 packets x 1024 bytes, 159682 cycles, 820 Mbps

GE transfer from 0x c065800 to 0x8229d800, 16 packets x 2048 bytes, 307884 cycles, 851 Mbps

GE transfer from 0x c03d800 to 0x822c5800, 16 packets x 4096 bytes, 604464 cycles, 867 Mbps

GE transfer from 0x c065800 to 0x822ed800, 16 packets x 8192 bytes, 1197046 cycles, 875 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 64 bytes, 19439 cycles, 421 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 128 bytes, 29122 cycles, 562 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 256 bytes, 48581 cycles, 674 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 512 bytes, 85059 cycles, 770 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 1024 bytes, 159681 cycles, 820 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 2048 bytes, 307927 cycles, 851 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 4096 bytes, 604307 cycles, 867 Mbps

GE transfer from 0x c03d800 to 0x c065800, 16 packets x 8192 bytes, 1196651 cycles, 876 Mbps

Multiple ports test...

 transfer 4 x 1500 bytes from SL2_HOST_SIZE1_FDQ (2049) to FLOW_TO_DDR (0)

 transfer 4 x 46 bytes from DDR_HOST_SIZE1_FDQ (2059) to FLOW_TO_SL2 (1)

Transferred 6184 bytes with 80813 cycles, throughput= 612Mbps.

STATSA.RxGoodFrames =1000

STATSA.RxOctets =2047864

STATSA.TxGoodFrames =1000

STATSA.TxOctets =2047864

STATSA.Frame64 =8

STATSA.Frame65t127 =248

STATSA.Frame128t255 =248

STATSA.Frame256t511 =248

STATSA.Frame512t1023 =248

STATSA.Frame1024tUp =1000

STATSA.NetOctets =4095728

STATSB.RxGoodFrames =1000

STATSB.RxOctets =2047864

STATSB.TxGoodFrames =1000

STATSB.TxOctets =2047864

STATSB.Frame64 =8

STATSB.Frame65t127 =248

STATSB.Frame128t255 =248

STATSB.Frame256t511 =248

STATSB.Frame512t1023 =248

STATSB.Frame1024tUp =1000

STATSB.NetOctets =4095728

GE test complete.

1
2
Error! No text of specified style in document.

Error! No text of specified style in document.
3

_948891555.doc

