[image: image9.wmf]KeyStone 1 STK Automation Test
[image: image10.wmf]December 2013

[image: image11.wmf][image: image12.wmf] KeyStone 1 STK Automation Test User’s Guide
 KeyStone 1 STK Automation Test User’s Guide

KeyStone 1
Self Test Kit
Automation Test
User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 15, 2013
	Brighton Feng
	Initial release

	
	
	
	

Contents

31
Overview

2
Scripts for automation test
3
3
Steps to run the automation test
5
4
Test results
7
5
Tips
10
References
10

Figures

3Figure 1.
Directory structure of the automation scripts

Figure 2.
Execute script in command window
6
Figure 3.
Script output in command window
6
Figure 4.
Script test completes
7
Figure 5.
Debug Server Log
8
Figure 6.
Compare test result to reference result
9

Tables

3Table 1.
Files/folder of automation test

Overview
The main purpose of the STK (Self Test Kit) is to help hardware debug including new board bring-up and failure analysis. The STK also measures the performance of most modules in the KeyStone device. The STK is implemented based on TI’s EVM, but it is designed in the way that it is easy to be modified to test other custom boards.
There are about 20 test programs in the STK, to run all these programs manually in CCS may take about one hour, to run all these programs on multiple boards is not only time consuming but also tedious.
Automation test script based on DSS (Debug Server Script) is provided with STK to improve test efficiency. Refer to following Wiki page for more information about DSS:
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting
1 Scripts for automation test
The scripts for automation test are in the auto_test subfolder of the STK installation folder.
[image: image1.png]
Figure 1. Directory structure of the automation scripts
Table 1 describes the contents in the auto_test folder.
Table 1. Files/folder of automation test
	File/folder
	Descriptions

	auto_test.bat
	The batch file to be used to execute scripts in command window. It setup the environment path of DSS firstly, and then calls DSS to execute the scripts in “auto_test.js”.

	auto_test.js
	JavaScript to execute programs of STK.

	STK_Log.xml
	DSS log file generated during the automation test, can be opened in browser such as Internet Explorer.

	xxx_ref_result
	The folder contains multiple text files, each file includes typical test output of one test program. These files can be used as reference to check the test result on user’s board. There may be multiple of folders, C6678_ref_result is the reference result on C6678 device, TCI6614_ref_result is the reference result on TCI6614 device, and so on…

	
	

Before run the scripts, user may need modify the scripts according to his own test conditions and environments.
The DSS environment path may be modified in the “auto_test.bat” if it is different from “C:\ti\ccsv5\ccs_base\scripting\bin”.

PATH=%PATH%;C:\ti\ccsv5\ccs_base\scripting\bin
The path/name of the target configuration file and test programs may be modified in the “auto_test.js”.
Normally, the path/name of target configuration file need be modified according to customer’s board and emulator used. The target configuration file are created in the target configuration window of CCS, it is normally saved in the C:/Users/xxxxx/ti/CCSTargetConfigurations folder.
Please note, in the script file, “/” should be used as separator in path name, “\” is illegal.

//the configuration file for the target board to run the test programs

var target_board_cfg= "C:/Users/a038916/ti/CCSTargetConfigurations/C6678_EVM.ccxml"

//var target_board_cfg= "C:/Users/a038916/ti/CCSTargetConfigurations/TCI6614_EVM.ccxml"

//var target_board_cfg= "C:/Users/a038916/ti/CCSTargetConfigurations/C6670_EVM.ccxml"
//list of test programs and timeout value in ms for execute the program

var test_cases = [

{program: "../AIF2_LTE_FDD/LE/AIF2_LTE_FDD.out" , timeOut: 30000},

{program: "../AIF2_LTE_TDD/LE/AIF2_LTE_TDD.out" , timeOut: 30000},

{program: "../AIF2_WCDMA/LE/AIF2_WCDMA.out" , timeOut: 30000},

{program: "../EMIF/Debug/EMIF.out" , timeOut: 500000},

{program: "../GE/Debug/GE.out" , timeOut: 40000},

{program: "../GPIO/Debug/GPIO.out" , timeOut: 30000},

{program: "../HyperLink/Debug/HyperLink.out" , timeOut: 300000},

{program: "../I2C/Debug/I2C.out" , timeOut: 100000},

{program: "../Memory_Performance/Debug/Memory_Performance.out" , timeOut: 300000},

{program: "../Memory_Test/Debug/Memory_Test.out" , timeOut: 1000000},

{program: "../Multicore_Navigator/Debug/Multicore_Navigator.out", timeOut: 200000},

{program: "../PCIE/Debug/PCIE.out" , timeOut: 150000},

{program: "../Robust/Debug/Robust.out" , timeOut: 150000},

{program: "../SPI/Debug/SPI.out" , timeOut: 500000},

{program: "../SRIO/Debug/SRIO.out" , timeOut: 700000},

{program: "../Timer/Debug/Timer.out" , timeOut: 30000},

{program: "../UART/Debug/UART.out" , timeOut: 20000}];

Each line in “test_cases” structure represents a test program. User can modify, add or remove any test program.

For example, if a user does not use AIF2 on their board, then, he can remove following lines in the “test_cases” structure.

{program: "../AIF2_LTE_FDD/LE/AIF2_LTE_FDD.out" , timeOut: 30000},

{program: "../AIF2_LTE_TDD/LE/AIF2_LTE_TDD.out" , timeOut: 30000},

{program: "../AIF2_WCDMA/LE/AIF2_WCDMA.out" , timeOut: 30000},

If a user rebuilds the AIF2_LTE_FDD project in big endian mode and the new generated programs are in the “BE” subfolder of the project, then he may modify the program path like below:

{program: "../AIF2_LTE_FDD/BE/AIF2_LTE_FDD.out" , timeOut: 30000},

A test program will be terminated if it consumes more than the time specified in the “timeOut” value. If a user has a big DDR3 memory on their board, testing the full memory consumes more than “1000000” ms, then, he can increase the “timeOut” value like below:

{program: "../Memory_Test/Debug/Memory_Test.out" , timeOut: 5000000},

It is recommended to setup the “timeOut” value to be 2 or 3 times of the expected test time for a test program.
Currently, the script only executes test program on core 0 of a device. User may modify the scripts to execute more complicated test, for example, executing multiple cores in parallel.

2 Steps to run the automation test
1. Build all test programs in CCS (Do not connect CCS to target board when run the scripts). If test programs have already been built before, this step can be skipped.
2. Open Command window

3. Change current directory to the STK auto_test folder

4. Execute the “auto_test.bat”. The script will list all test programs in command window, and then waits user to select test programs to be executed: [image: image2.png]
Figure 2. Execute script in command window

5. Enter the number of the selected programs or press “return” key without any number to execute all programs.
6. The scripts executes selected programs one by one, and information is printed like below:

[image: image3.png]
Figure 3. Script output in command window

Between the execution of each program, the script executes “CPU Reset” and “System Reset”.
7. When all tests complete, it should show information like below.

[image: image4.png]
Figure 4. Script test completes

If it shows “0 exception happened”, that means all programs are executed and complete in time.

If it shows more than 0 exceptions, then we should check the information in the command window or DSS log file to find which programs encounter errors.

Some programs may not execute properly without hardware reset, while the script only executes soft reset between executing multiple test programs. If user suspects this is the possible reason for the error of a program, then, he may reset his board manually, rerun the script and select to run that program only.
3 Test results

Error and warming information generated by DSS will be displayed in the command window, more detailed information will be logged into the “STK_Log.xml”, which can be opened in browser such as Internet Explorer, below is an example.
[image: image5.png]
Figure 5. Debug Server Log

The script creates a subfolder to save the CIO (output of pintf, puts…) of the test programs. The subfolder is named as the concatenation of target configuration name and “_result”. For example, if the target configuration file name is “TCI6614_EVM.ccxml”, then, the folder name is “TCI6614_EVM_result”. When running each program, a text file is created in the folder to save the CIO of that program. The file name is the concatenation of the program name and “_test_result.txt”. For example, if a program name is “Memory_Test.out”, then, the CIO output file name is “Memory_Test_test_result.txt”.
After completion of the tests, user may use a text comparison tool to compare the result to reference result. Below figures show an example:
[image: image6.png]
[image: image7.png]
Figure 6. Compare test result to reference result

4 Tips

The running of the scripts does not depend on CCS, that is, CCS is not required to be lunched when run the scripts. On the other hand, CCS can be opened when running DSS as long as CCS does not connect target. For example, user can use CCS to create and compile another test program when the script is running a program.

Executing all test programs takes relative long time, if for some reason, user wants to terminate the test, he can do it by pressing “Ctrl+C” keys in the command window.
User may modify these test scripts to implement more complicated automation test. If user encounters problem with the new script, he may debug the new script in Rhino debugger window (single step, breakpoint, viewing script variables...). To run the script in Rhino debugger window, -dss.debug option should be used when executed the auto_test.bat, below is example:

[image: image8.png]
References

1. http://processors.wiki.ti.com/index.php/Debug_Server_Scripting
2. <CCSv5 INSTALL DIR>\ccsv5\ccs_base\scripting\docs\GettingStarted.htm
3. http://docs.oracle.com/javase/6/docs/api/overview-summary.html
1
2
Error! No text of specified style in document.

Error! No text of specified style in document.
3

_948891555.doc

