[image: image9.wmf]KeyStone 1 AIF2 Self Test Kit

[image: image10.wmf]March 2015

[image: image11.wmf][image: image12.wmf] KeyStone 1 AIF2 Self Test Kit User’s Guide
 KeyStone 1 AIF2 Self Test Kit User’s Guide

KeyStone 1
AIF2 Self Test Kit

User’s Guide
Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 12, 2013
	Lin Feng
	First release

	1.1
	March 20, 2015
	Brighton Feng
	1. Print device information including device type, speed grade, boot mode, required voltage, ID…
2. Fix SD_PLL_Bx_STS check bug in AIF_debug.c

Contents

31
Overview

2
Test methods
3
2.1
Internal loopback test
3
2.2
Data transfer between two devices
4
2.3
LTE test
4
2.4
WCDMA test
5
2.5
Debug
…………………………………………………………………………………………………7
2.5.1
The status information
8
2.5.2
The error status interrupt records
8
2.5.3
The throughput statistics
10
3
Test code/project
11
3.1
CCS project
11
3.2
To run the test program on KeyStone 1 EVM
12
3.3
Test configuration
14
3.4
Migrate the test to custom board
18
References
19
Appendix: Typical test output
20

Figures

3Figure 1.
Internal loopback test

Figure 2.
Data transfer between two devices
4
Figure 3.
LTE test flow
5
Figure 4.
WCDMA test flow
6
Figure 5.
RAC antenna data buffer structure
7
Figure 6.
TAC antenna data buffer structure
7
Figure 7.
data buffer structure for core test
7
Figure 8.
AIF2 EE (Error and Exception) Module
9
Figure 9.
Directory structure of example projects
11
Figure 10.
AIF connections between two DSPs on TCI6618 EVM
13
Figure 11.
define symbols in CCS compiler options
14

Tables

10Table 1.
AIF2 common errors and possible reasons

Table 2.
Source files of the example codes
12

1 Overview
The AIF2 self test kit is designed to verify diversiform working modes of AIF2:

· Radio Standard: LTE (FDD/TDD, normal/extended symbol), WCDMA
· Protocol: OBSAI, CPRI

· Link rate: 2x, 4x, 8x
· Data Path

· Internal loopback

· Data transfer between 2 DSPs
· Multiple links and multiple channels run in parallel

· Continuous data transfer (not one short)

· data buffer in LL2, SL2, or DDR
Refer to “KeyStone_1_Self_Test_Kit_User's_Guide(READ ME FIRST).doc” for some common information about K1 STK.

2 Test methods
2.1 Internal loopback test

Following figure shows data path of internal loopback test.

[image: image1.emf]DSP 0

PE

TM

PDRM

TX

SERDES

RX

SERDES

SERDES

RT

Figure 1. Internal loopback test

The key purpose of the internal loopback test is to verify the functions of AIF2 and related internal modules. If AIF2 internal loopback test fails, normally, we should check configuration firstly, and then check input signals such as reference clock, power suppliers and synchronization signal…
2.2 Data transfer between two devices

Following figure shows two data path for data transfer between two DSPs. The simple path is DSP0->DSP1; the other case is that the data received in DSP1 is redirected (by RT module) to DSP0, this is a kind of external loopback test.

[image: image2.emf]DSP 0

PE

TM

PDRM

TX

SERDES

RX

SERDES

SERDES

DSP 1

PE

TM

PD

RM

TX

SERDES

RX

SERDES

SERDES

RT

RT

Figure 2. Data transfer between two devices
To simplify the STK usage, same test program are used on two DSPs. The trick is that user must load the program into core 0 of DSP0, and load same program into core 1 of DSP1. The program detect the core number at run time, if it is core 0, then it executes the configuration and functions for DSP0; if it is core 1, then it executes the configuration and functions for DSP1.
If internal loopback test passes, while external test fails, then, it normally means the AIF2 and related internal modules work well, the problem should on external signals or the other device connected to AIF2. Normally, we should check the signal integrity on PCB and check the synchronization signals for the two devices.

2.3 LTE test
Following figure shows the basic test flow for LTE mode.

[image: image3.emf]Packet DMA

AIF2

PE

TM

PDRM

TX

SERDES

RX

SERDES

SERDES

RT

TX

queue

RX

queue

FDQ

in

LL2

FDQ

in

SL2

FDQ

in

DDR

Interrupt service routine for TX:

1, Get a packet from proper FDQ according

to buffer type configuration

2, Construct the packet according to symbol

number and radio standard configuration

3, push the packet to TX queue

Symbol interrupt

triggered by AIF2 timer

AT

Interrupt Service Routine for RX:

1, Get packet from Accumulation buffer

2, Verify the packet

3, return the packet to FDQ

QMSS

Accumulation

interrupt

Figure 3. LTE test flow
To verify the data transferred, the following information are filled into the head of the data packet at TX side and verified at RX side:
typedef struct
{

Uint32 uiMagicNumber;
/*indication of payload head*/

Uint32 uiSequenceNum;

Uint16 uiChannelNum;

Uint16 uiSymNum;

Uint32 uiPacketSize;

Bool bGenericPacket;

TestDataPath testDataPath;

}AifTestInfo;
2.4 WCDMA test
Following figure shows the basic test flow for WCDMA mode.

[image: image4.emf]AIF2

PE

TM

PDRM

TX

SERDES

RX

SERDES

SERDES

RT

Interrupt service routine:

1, select the data buffer

according to test mode and

slot number

2, Compare the TX data and

RX data

3, modify the slot number in

TX data buffer

Slot interrupt triggered

by AIF2 timer

AT

RX buffer in

RAC format

RX buffer in

TAC format

TX buffer in

core data

format

TX buffer in

RAC format

TX buffer in

TAC format

TX buffer in

core data

format

DIO

Figure 4. WCDMA test flow
In the WCDMA test, there are 3 test types:

· RAC test

· TAC test

· Core test

For each AIF2 link, you could set the test type as one of the 3 types.

Normally, in real application, AIF2 DIO reads data from buffer inside TAC, and writes data to buffer inside RAC. Since the RAC and TAC internal buffer can not be directly accessed by DSP core software, so it is hard for DSP core to verify whether AIF2 transfers data correctly or not. To simplify the AIF2 test, the STK is designed to have AIF2 transfer data to/from buffers in DSP memory.
The format of the buffer for RAC test is same as the internal buffer of RAC as shown in following figure:
	
	Stream 0
Sample 0
	Stream 0
Sample 1
	…….
	Stream 53
Sample 0
	Stream 53
Sample 1
	Stream 54
Sample 0
	…….
	Stream 63
Sample 1

	Chip0~7
	S0S0C0~7
	S0S1C0~7
	……
	S53S0C0~7
	S53S1C0~7
	Not used
	……
	Not used

	Chip8~15
	S0S0C8~15
	S0S1C8~15
	……
	S53S0C8~15
	S53S1C8~15
	Not used
	……
	Not used

	Chip16~23
	S0S0C16~23
	S0S1C16~23
	……
	S53S0C16~23
	S53S1C16~23
	Not used
	……
	Not used

	Chip24~31
	S0S0C24~31
	S0S1C24~31
	……
	S53S0C24~31
	S53S1C24~31
	Not used
	……
	Not used

	
	16 Bytes
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	Chip 8n+0
	Chip 8n+1
	Chip 8n+3
	……
	Chip 8n+6
	Chip 8n+7
	
	

	
	
	2 bytes
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	8 bits I
	8 Bits Q
	
	
	
	
	

Figure 5. RAC antenna data buffer structure

The format of the buffer for TAC test is same as the internal buffer of TAC as shown in following figure.
	
	Stream 0
	Stream 1
	……
	Stream 62
	Stream 63

	Chip0~3
	S0C0~3
	S1C0~3
	……
	S62C0~3
	S63C0~3

	
	16 Bytes
	
	
	
	

	
	
	
	
	
	

	
	Chip 4n+0
	Chip 4n+1
	Chip 4n+2
	Chip 4n+3
	

	
	
	4 bytes
	
	
	

	
	
	
	
	
	

	
	
	16 bits I
	16 Bits Q
	
	

Figure 6. TAC antenna data buffer structure

In this way the data transfer between AIF2 and TAC/RAC is simulated and tested.
For some application, WCDMA antenna stream may be processed by DSP core or RSA (Rake Search Accelerator) instead of RAC or TAC. For the case, the antenna data structure in DSP memory can be freely defined by software. Above buffer structure for RAC and TAC can also be used, but those structures interleave antenna streams, which is not good for DSP core to process them efficiently. The STK uses a structure to collect antenna data for each stream into separate buffers as shown in following figure.
	Stream 0
	Slot 0
	Slot 1
	……
	Slot M

	Stream 1
	Slot 0
	Slot 1
	……
	Slot M

	……
	……
	……
	……
	Slot M

	Stream N
	Slot 0
	Slot 1
	……
	Slot M

Figure 7. data buffer structure for core test

The data buffer is used as a circular buffer in all three test types.

To help data verification and debug, the memory units for different slot/chip and stream in TX buffer are initialized with different value before test; during the test, the first unit of the TX buffer is modified on-the-fly with current slot number. All these data pattern are verified in RX buffer.

2.5 Debug
AIF2 is very complicated and relative hard for debug.

Some common debug methods, such as breakpoint, step through, or printf() during AIF2 running, may affects the operation of AIF2, because AIF2 is very timing sensitive, once these debug operation happens, AIF2 timing may be broken, so, after these operations, AIF2 may not function properly.

So, normally, for debug purpose, AIF2 status is checked after expected data have been transferred. Additionally, some AIF2 status registers are volatile after normal data transfer, when you manually check them, they may have changed. So, the best way is to dump AIF2 status registers to a data buffer or structure by software right after the expected data transfer completes. And then, user can check the data structure manually, or software can print these statuses later. The code in “aif_debug.c” in the STK is implemented in this way.

At the end of each test, the information of the test result will be printed in the output window. The printed information include:

1. the status information of the AIF,

2. the error interrupt information and

3. the throughput statistics.

2.5.1 The status information
All status registers are checked and information is printed when the test complete. The AIF2 statuses may be helpful for debug include:

· AD EOP counter (24-bit), this counter will wrap when it reaches its maximum value.
· In packet DMA mode, it counts the packet number.

· In DIO mode, it counts the ingress data burst (normally, 64 bytes) only; egress DIO data is not counted.
· AT frame, symbol/slot, clock count.

· RM/TM state

· Captured RM Pi offset

· All other error/status
If there is any error, we can see it in the error/status register, but we can not know when the error happens according to the error/status register. Sometimes, the timing of the error is key to find the root cause. To find the timing of error we must use error interrupt.
2.5.2 The error status interrupt records
AIF2 EE module detects/monitors error/status of 18 AIF2 internal modules. For each of these modules, there is a set of registers defined for error/status reporting. Error happens in any module will trigger interrupt, and corresponding bit in ERR_ALRM_ORGN is set.

[image: image5.emf]EV0 Enable Set Register

EVO Enable Clear Register

Raw Status Set Register

Raw Status Clear Register

EV1 Enable Set Register

EV1 Enable Clear Register

Error Enabled Status

Register

R

a

w

S

t

a

t

u

s

R

e

g

i

s

t

e

r

E

V

0

E

n

a

b

l

e

R

e

g

i

s

t

e

r

E

V

1

E

n

a

b

l

e

R

e

g

i

s

t

e

r

Alarm Enabled Status

Register

VBUS interface

IRS_SET

IRS_CLR

E

N

_

E

V

0

EN_SET_EV0

EN_CLR_EV0

EN_SET_EV1

EN_CLR_EV1

I

R

S

E

N

_

E

V

1

E

N

_

S

T

S

_

E

V

0

E

N

_

S

T

S

_

E

V

1

Clock

Errors interrupt to DSP core

Alarms

ERR_ALRM_ORGN

Figure 8. AIF2 EE (Error and Exception) Module
The STK enabled these interrupts, and Interrupt Service Routine is implemented to record the interrupt information in following data structure:
typedef struct {

AIF_Error_Status_Regs_Index IRS_index; //index of the error module

Uint32
IRS_value; //value of the error status register

Uint32
frame_cnt; //frame number when the error happens

Uint32
AT_RADT_VALUE_LSBS; //symbol/clock number
} Aif_Error_Status_Log;

#define NUM_AIF_ERR_STS_LOG
128
Aif_Error_Status_Log err_sts_log[NUM_AIF_ERR_STS_LOG];
The STK only records number of “NUM_AIF_ERR_STS_LOG” error, the following error are discarded when the record buffer is full. So, define larger number for “NUM_AIF_ERR_STS_LOG” can save more information but consume more memory. Normally, the first few error information is most important, so it is not necessary to capture too much error information.
All the error status records will be printed in the output window when the test complete. User should analyze the root cause if there is any error information.

The common error and possible reason are summarized in following table.

Table 1. AIF2 common errors and possible reasons
	Errors
	Possible reasons

	RM Line Code Violations, or RM not in SYNC state.
	Hardware signal integrity is not good, or the other side of the AIF link does not run properly.

	PI out of window
	The AIF2 event timing is not configured properly.

	data shift
	the AIF2 AxC offset is not configured properly

	PE DB did not have data for a channel
	The packet DMA does not transfer data in time.

	PE Symbol index in Navigator protocol specific header did not match for one or more symbol.
	The packet is not pushed into the TX queue in correct time, or the symbol index in the protocol specific header is not set correctly.

	Packet DMA descriptor starvation
	The descriptors are not returned to the FDQ in time, or RX data is generated faster than processing.

The frame/symbol/clock number recorded when the error happens is also very important information for analysis, user may check what is doing in the software at that time to find clue of the error.
2.5.3 The throughput statistics
The throughput statistics information is recorded in a data structure array defined as following:
typedef struct
{

Uint32 uiNumTxPackets;

Uint32 uiNumRxPackets;

Uint32 uiNumGoodPackets;

Uint32 uiNumBadPackets;

Uint32 uiBandwidth;

unsigned long long ullNumBytes;
}AifChStat;
//Aif state for 128 channels, one more stat buffer for error/unknown channel
AifChStat aifChStat[129];
The number of packets and number of bytes are accumulated during test, the bandwidth is calculated at the end of test as:

Bandwidth = (number of bytes)/(data transfer time);

At the end of a test, the throughput for each link is calculated as the sum of all channels in a link; the total throughput is calculated as the sum of all channels.
3 Test code/project
This section introduces the implementation of these tests on KeyStone 1 DSP.
3.1 CCS project

Following figure shows the directory structure of the test projects.
[image: image6.png]
Figure 9. Directory structure of example projects
Each of below folder is a project for a specific radio standard:

· AIF2_ LTE_FDD

· AIF2_ LTE_TDD

· AIF2_WCDMA
The main source code files are in the “AIF2_xxxx\src” subfolder. There is some commonly used initialization and driver code for DDR, multicore navigator and PLL… in “common” folder.
The main contents of the codes are list in following table.

Table 2. Source files of the example codes

	Files
	Descriptions

	aif_main
	main() function and the top level control codes

	aif_Test_Config
	This file includes basic configuration structure for test. User can modify the basic parameters to change the test mode to verify most functionalities of AIF. The codes in this file calculate many other parameters for AIF based on the basic configuration.

	aif_setup
	Setup AIF registers according the configuration parameters from aif_Test_Config module.

	aif_Data
	This file includes code for sending data and processing RX data,

TX/RX packets statistics information is collected and summarized

	aif_PktDMA_Init
	This file setup Packet DMA and QMSS for AIF2.

	aif_intc
	This file setup interrupt controller, and includes ISR for Frame/Slot/Symbol, data transfer are triggered by them. ISR of QMSS accumulation triggers RX packet processing. ISR for error log is also in this file.

	aif_debug
	This file include functions to log and print status and error for debug.

3.2 To run the test program on KeyStone 1 EVM

The test program can be run on EVMs of C6670, TCI6618 or TCI6614.

The steps to run the test cases on EVM board are:

1. extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)

2. import the project to CCS

3. build the project. You may need to change the CSL including path, by default the project use CSL header files in: C:\ti\pdk_tci6614_1_02_01_03\packages\ti\csl
4. Set the boot mode of the device on EVM to no boot.

5. load the program into core 0 of the DSP;
6. For two devices test, load the program to core 1 of the second DSP.

7. For two devices test, run core 1 of the second DSP firstly;
8. Run core 0 of the first DSP.

9. After predefined test time, you should see output in console window.

Refer to appendix of this document to see the typical test output.
To rerun the test, it is suggested to reset the device before rerun.
To run two devices tests, we need the dual TCI6618 EVM, which has two TCI6618 DSPs.

[image: image7.emf]TCI6618 EVM

DSP 0

PHYT_SYNC/RADT_SYNC

Serdes clock

AIF2

Timer

153.6MHz

Clock

One shot trigger

DSP 1PHYT_SYNC/RADT_SYNC

Serdes clock

AIF2

S

W

6

TIMO0

L

i

n

k

0

L

i

n

k

1

Link 2

Link3

Link 4

Link 5

Link 2

Link 3

Link 4

Link 5

To AMC

Connector

Figure 10. AIF connections between two DSPs on TCI6618 EVM
In this test, the AIF2 of two DSP are triggered simultaneously by the one shot pulse of the timer. AIF2 timers on both DSP are configured to run freely, external periodical frame synchronization signal is not required for this test. This configuration is for test on EVM only, in a real system, an external periodical Frame synchronization signal should globally trigger AIF2 for keeping synchronization.
Before the test, make sure all switches on SW6 on dual TCI6618 EVM are all “ON”.
Please note, only link 0~1 could be used for this test. It means only the link 0~1 could be configured in two devices test mode..
3.3 Test configuration
These tests are implemented based on TI’s EVM boards. To configure AIF2 in OBSAI mode, the “AIF2_LINK_PROTOCOL_OBSAI” should be defined; to configure the AIF2 in CPRI mode, it should be undefined or removed.

[image: image8.png]
Figure 11. define symbols in CCS compiler options

There are some macros defined in the source code to configure the test.
In “aif_test_config.h”, some macros define the test time, trigger method and symbol type for LTE mode.
/*number of 10ms frame for test*/

#define TEST_NUM_FRAME

50
#define AIF2_TRIGGER_MANUALLY
/*Number of AIF links be used <= 6*/

#define NUM_AIF2_LINK 6

/*--------select between LTE normal symbol and extended symbol--------*/

#if 1

#define LTE_NORMAL_SYMBOL_FRAME

#else

#define LTE_EXTENDED_SYMBOL_FRAME
#endif
For loopback test, AIF2_TRIGGER_MANUALLY should be defined; for two devices test, it must be undefined.
User can change the initialization values of basic configuration structure in “aif_Test_Config.c”, which configure the test parameter for each link. Following is the example of configuration for LTE mode.
AifLinkConfig aifLinkCfg[6]=
{
 /*Configuration for link 0*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_8x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 AIF2_AXC_DATA_ONLY, /*testDataType*/
 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/
 LTE_20MHZ, /*lteBandwidth*/
 3 /*numberAxC: 0 means maximum number*/
 },
 /*Configuration for link 1*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 AIF2_AXC_DATA_ONLY, /*testDataType*/
 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/
 LTE_10MHZ, /*lteBandwidth*/
 2 /*numberAxC: 0 means maximum number*/
 },
 /*Configuration for link 2*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_2x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 AIF2_AXC_AND_GENERIC_DATA, /*testDataType*/
 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/
 LTE_5MHZ, /*lteBandwidth*/
 2 /*numberAxC: 0 means maximum number*/
 },
 /*Configuration for link 3*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 AIF2_GENERIC_DATA_ONLY, /*testDataType*/
 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/
 LTE_20MHZ, /*lteBandwidth*/
 0 /*numberAxC: 0 means maximum number*/
 },
 /*Configuration for link 4*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 AIF2_AXC_DATA_ONLY, /*testDataType*/
 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/
 LTE_20MHZ, /*lteBandwidth*/
 0 /*numberAxC: 0 means maximum number*/
 },
 /*Configuration for link 5*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 AIF2_AXC_DATA_ONLY, /*testDataType*/
 AIF_MONO_PACKET_SIZE-16, /*genericPacketSize*/
 LTE_20MHZ, /*lteBandwidth*/
 0 /*numberAxC: 0 means maximum number*/
 }
};
Please note, AIF2 transfers 64-byte of data channel by channel in round-robin manner, so, memory is not accessed consecutively, this is very inefficient for DDR, and so, DDR can not support more than three 8x links. But SL2 or LL2 may support six 8x links simultaneously.
In LTE test, buffer or FDQ used for AIF2 packets can be changed in the “AIF_PktDMA_Init.c” as below, each row specify the packet buffer for a channel.

/*flow look up table for each channels,
specify which flow be used for each channel*/
unsigned char flowTable[]=
{

AIF_RX_FLOW_SL2,

AIF_RX_FLOW_CORE0_LL2,

AIF_RX_FLOW_CORE1_LL2,

AIF_RX_FLOW_CORE2_LL2,

AIF_RX_FLOW_CORE3_LL2,

AIF_RX_FLOW_DDR,

……
};
In LTE TDD mode, the downlink/uplink partition is defined with following macro in “aif_test_config.h”. “1” means a slot is used for downlink, “0” means the slot is used for uplink.

/*11110011111111001111*/
#define LTE_TDD_DL_SLOT_BITMAP (0xF3FCF)
Following is the basic configuration structure for WCDMA test in “aif_test_config.c”.

AifLinkConfig aifLinkCfg[6]=
{
 /*Configuration for link 0*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 WCDMA_AIF2_RAC_TEST, /*testType*/
 1, /*numberAxC: 0 means maximum number*/
#ifdef AIF2_LINK_PROTOCOL_OBSAI
 FALSE /*bUseControlMsg*/
#else //AIF2_LINK_PROTOCOL_CPRI
 20, /*firstCtlWordUsed*/
 20-20, /*numCtlWord*/
 CSL_AIF2_DATA_WIDTH_7_BIT /*dataWidth*/
#endif
 },
 /*Configuration for link 1*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 WCDMA_AIF2_RAC_TEST, /*testType*/
 1, /*numberAxC: 0 means maximum number*/
#ifdef AIF2_LINK_PROTOCOL_OBSAI
 FALSE /*bUseControlMsg*/
#else //AIF2_LINK_PROTOCOL_CPRI
 20, /*firstCtlWordUsed*/
 20-20, /*numCtlWord*/
 CSL_AIF2_DATA_WIDTH_7_BIT /*dataWidth*/
#endif
 },
 /*Configuration for link 2*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 WCDMA_AIF2_CORE_TEST, /*testType*/
 2, /*numberAxC: 0 means maximum number*/
#ifdef AIF2_LINK_PROTOCOL_OBSAI
 FALSE /*bUseControlMsg*/
#else //AIF2_LINK_PROTOCOL_CPRI
 32, /*firstCtlWordUsed*/
 32-32, /*numCtlWord*/
 CSL_AIF2_DATA_WIDTH_16_BIT /*dataWidth*/
#endif
 },
 /*Configuration for link 3*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 WCDMA_AIF2_RAC_TEST, /*testType*/
 3, /*numberAxC: 0 means maximum number*/
#ifdef AIF2_LINK_PROTOCOL_OBSAI
 TRUE /*bUseControlMsg*/
#else //AIF2_LINK_PROTOCOL_CPRI
 20, /*firstCtlWordUsed*/
 20-20, /*numCtlWord*/
 CSL_AIF2_DATA_WIDTH_7_BIT /*dataWidth*/
#endif
 },
 /*Configuration for link 4*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 WCDMA_AIF2_TAC_TEST, /*testType*/
 8, /*numberAxC: 0 means maximum number*/
#ifdef AIF2_LINK_PROTOCOL_OBSAI
 FALSE /*bUseControlMsg*/
#else //AIF2_LINK_PROTOCOL_CPRI
 32, /*firstCtlWordUsed*/
 32-32, /*numCtlWord*/
 CSL_AIF2_DATA_WIDTH_16_BIT /*dataWidth*/
#endif
 },
 /*Configuration for link 5*/
 {
 1, /*Link Enable: 1=enable, 0=disable*/
 CSL_AIF2_LINK_RATE_4x,
 TEST_PATH_INTERNAL_LOOPBACK, /*test data path*/
 WCDMA_AIF2_CORE_TEST, /*testType*/
 2, /*numberAxC: 0 means maximum number*/
#ifdef AIF2_LINK_PROTOCOL_OBSAI
 FALSE /*bUseControlMsg*/
#else //AIF2_LINK_PROTOCOL_CPRI
 32, /*firstCtlWordUsed*/
 32-32, /*numCtlWord*/
 CSL_AIF2_DATA_WIDTH_16_BIT /*dataWidth*/
#endif
 }
3.4 Migrate the test to custom board

These examples are implemented based on TI’s EVM boards. In your real system, the reference clock for AIF2 may be different, this can be configured with following code in “aif_setup.c”

#ifdef AIF2_LINK_PROTOCOL_OBSAI

pllMpy= CSL_AIF2_PLL_MUL_FACTOR_20X; /*153.6*20=3072*/
#else

pllMpy= CSL_AIF2_PLL_MUL_FACTOR_16X; /*153.6*16=2457.6*/
#endif
DSP core PLL and DDR configuration may need be changed in “aif_main.c”:

//DSP core speed: 122.88*236/29= 999.9889655MHz

KeyStone_main_PLL_init(122.88, 236, 29);

//DDR init 66.667*20/1= 1333

KeyStone_DDR_init (66.667, 20, 1);
To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) are used by these projects, you may need change CSL including path in your system before you rebuild the project.

References

1. KeyStone Architecture Antenna Interface 2(AIF2) User's Guide (SPRUGV7)
2. KeyStone DDR3 Memory Controller User's Guide (SPRUGV8)
3. KeyStone Architecture Enhanced Direct Memory Access (EDMA3) Controller User Guide (SPRUGS5)

4. KeyStone Architecture Multicore Navigator User's Guide(SPRUGR9)
Appendix: Typical test output
A1. Below is the internal loopback test output on TCI6614EVM for CPRI mode of AIF2_LTE_FDD project.
JTAG ID= 0x0b96202f. This is TCI6614 device, version variant = 0.

DEVSTAT= 0x00003781. little endian, EMIF16(NOR FLASH) or UART or No Boot boot, PLL configuration implies the input clock for core is 312.5MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x0c004012, 0x0401017a, 0x00000000, 0x1e780001

Device speed grade = 1200MHz.

Enable Exception handling...

Initialize DSP main clock = 122.88MHz/29x236 = 999MHz

Initialize DDR speed = 66.67MHzx/1x20 = 1333.340MTS

=================AIF CPRI mode test for 2000 ms (200 frames, LTE FDD normal cyclic prefix)=================

link 0 runs at 8x rate, internal loopback test, LTE 20 MHz AxC, antenna data in AxC slot only

link 1 runs at 4x rate, internal loopback test, LTE 10 MHz AxC, antenna data in AxC slot only

link 2 runs at 2x rate, internal loopback test, LTE 5 MHz AxC, antenna data on AxC slot, generic data on control slot, generic packet size = 10240

link 3 runs at 4x rate, internal loopback test, generic data in AxC slot only, generic packet size = 10240

link 4 runs at 4x rate, internal loopback test, LTE 20 MHz AxC, antenna data in AxC slot only

link 5 runs at 4x rate, internal loopback test, LTE 20 MHz AxC, antenna data in AxC slot only

----------------runtime error/status interrupt log--------------

0 error/status interrupt EE_LK_STS_A0 happens at frame 0, slot/symbol 0, clock 15277

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

1 error/status interrupt EE_LK_STS_A1 happens at frame 0, slot/symbol 0, clock 15277

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

2 error/status interrupt EE_LK_STS_A0 happens at frame 1, slot/symbol 0, clock 603

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

3 error/status interrupt EE_LK_STS_B0 happens at frame 1, slot/symbol 0, clock 603

 20 pe_ee_db_starve_err: Link-by-Link (Error), DB did not have antenna data for a AxC channel. Likely to occur if DMA was late.

4 error/status interrupt EE_LK_STS_A1 happens at frame 1, slot/symbol 0, clock 603

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

5 error/status interrupt EE_LK_STS_B1 happens at frame 1, slot/symbol 0, clock 603

 20 pe_ee_db_starve_err: Link-by-Link (Error), DB did not have antenna data for a AxC channel. Likely to occur if DMA was late.

6 error/status interrupt EE_LK_STS_A2 happens at frame 1, slot/symbol 0, clock 603

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

7 error/status interrupt EE_LK_STS_A3 happens at frame 1, slot/symbol 0, clock 603

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

8 error/status interrupt EE_LK_STS_A4 happens at frame 1, slot/symbol 0, clock 603

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

9 error/status interrupt EE_LK_STS_A5 happens at frame 1, slot/symbol 0, clock 603

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

10 error/status interrupt EE_LK_STS_A0 happens at frame 2, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

 16 rm_ee_hfnsync_state_err: Per Link, CPRI only (Error): Indicates RX FSM in the hyperframe state that is, state ST3. (as defined by CPRI)

11 error/status interrupt EE_LK_STS_A1 happens at frame 2, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

12 error/status interrupt EE_LK_STS_A2 happens at frame 2, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

13 error/status interrupt EE_LK_STS_B2 happens at frame 2, slot/symbol 0, clock 16927

 20 pe_ee_db_starve_err: Link-by-Link (Error), DB did not have antenna data for a AxC channel. Likely to occur if DMA was late.

14 error/status interrupt EE_LK_STS_A3 happens at frame 2, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

15 error/status interrupt EE_LK_STS_A4 happens at frame 2, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

16 error/status interrupt EE_LK_STS_B4 happens at frame 2, slot/symbol 0, clock 16927

 20 pe_ee_db_starve_err: Link-by-Link (Error), DB did not have antenna data for a AxC channel. Likely to occur if DMA was late.

17 error/status interrupt EE_LK_STS_A5 happens at frame 2, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

18 error/status interrupt EE_LK_STS_B5 happens at frame 2, slot/symbol 0, clock 16927

 20 pe_ee_db_starve_err: Link-by-Link (Error), DB did not have antenna data for a AxC channel. Likely to occur if DMA was late.

------------------status when test complete---------------------

Ingress End Of Packet count = 336383

Egress End Of Packet count = 341009

AT PHYT Frame= 200, Clock= 1100

AT RADT Frame= 200, Symbol= 0, Clock= 339

----------------link 0 status----------------

captured PI value = 380

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 1 status----------------

captured PI value = 484

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 2 status----------------

captured PI value = 643

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 3 status----------------

captured PI value = 736

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 4 status----------------

captured PI value = 834

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 5 status----------------

captured PI value = 935

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

 AxC Channel 0 transfer 27720 packets, receive 27299 packets (27299 good, 0 bad), 239607232 bytes in CORE1_LL2, achieve 120 MB/s

 AxC Channel 1 transfer 27720 packets, receive 27299 packets (27299 good, 0 bad), 239607232 bytes in CORE2_LL2, achieve 120 MB/s

 AxC Channel 2 transfer 27720 packets, receive 27299 packets (27299 good, 0 bad), 239607232 bytes in CORE3_LL2, achieve 120 MB/s

Throughput of link 0 = 360 MB/s (81897 good packets, 0 bad packets)

 AxC Channel 3 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 119799232 bytes in SL2, achieve 60 MB/s

 AxC Channel 4 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 119799232 bytes in SL2, achieve 60 MB/s

Throughput of link 1 = 120 MB/s (54596 good packets, 0 bad packets)

 AxC Channel 5 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 59899616 bytes in SL2, achieve 30 MB/s

 AxC Channel 6 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 59899616 bytes in SL2, achieve 30 MB/s

 generic Channel 7 transfer 1010 packets, receive 1005 packets (1005 good, 0 bad), 10291200 bytes in SL2, achieve 5 MB/s

Throughput of link 2 = 65 MB/s (55601 good packets, 0 bad packets)

 generic Channel 8 transfer 17546 packets, receive 17541 packets (17541 good, 0 bad), 179619840 bytes in CORE1_LL2, achieve 90 MB/s

 generic Channel 9 transfer 17546 packets, receive 17541 packets (17541 good, 0 bad), 179619840 bytes in CORE2_LL2, achieve 90 MB/s

Throughput of link 3 = 180 MB/s (35082 good packets, 0 bad packets)

 AxC Channel 10 transfer 27720 packets, receive 27299 packets (27299 good, 0 bad), 239607232 bytes in CORE3_LL2, achieve 120 MB/s

 AxC Channel 11 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 239598464 bytes in SL2, achieve 120 MB/s

Throughput of link 4 = 240 MB/s (54597 good packets, 0 bad packets)

 AxC Channel 12 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 239598464 bytes in SL2, achieve 120 MB/s

 AxC Channel 13 transfer 27720 packets, receive 27298 packets (27298 good, 0 bad), 239598464 bytes in SL2, achieve 120 MB/s

Throughput of link 5 = 240 MB/s (54596 good packets, 0 bad packets)

Total throughput of AIF = 1205 MB/s (336369 good packets, 0 bad packets)
A.2 Below is the internal loopback test output on TCI6614EVM for CPRI mode of AIF2_LTE_TDD project.
JTAG ID= 0x0b96202f. This is TCI6614 device, version variant = 0.

DEVSTAT= 0x00003781. little endian, EMIF16(NOR FLASH) or UART or No Boot boot, PLL configuration implies the input clock for core is 312.5MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x0c004012, 0x0401017a, 0x00000000, 0x1e780001

Device speed grade = 1200MHz.

Enable Exception handling...

Initialize DSP main clock = 122.88MHz/29x236 = 999MHz

Initialize DDR speed = 66.67MHzx/1x20 = 1333.340MTS

=================AIF CPRI mode test for 2000 ms (200 frames, LTE TDD normal cyclic prefix)=================

link 0 runs at 8x rate, internal loopback test, LTE 20 MHz AxC, antenna data in AxC slot only

link 1 runs at 4x rate, internal loopback test, LTE 10 MHz AxC, antenna data in AxC slot only

link 2 runs at 2x rate, internal loopback test, LTE 5 MHz AxC, antenna data on AxC slot, generic data on control slot, generic packet size = 10240

link 3 runs at 4x rate, internal loopback test, generic data in AxC slot only, generic packet size = 10240

link 4 runs at 4x rate, internal loopback test, LTE 20 MHz AxC, antenna data in AxC slot only

link 5 runs at 4x rate, internal loopback test, LTE 20 MHz AxC, antenna data in AxC slot only

----------------runtime error/status interrupt log--------------

0 error/status interrupt EE_LK_STS_A0 happens at frame 0, slot/symbol 0, clock 15162

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

1 error/status interrupt EE_LK_STS_A0 happens at frame 1, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

2 error/status interrupt EE_LK_STS_A1 happens at frame 1, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

3 error/status interrupt EE_LK_STS_A2 happens at frame 1, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

4 error/status interrupt EE_LK_STS_A3 happens at frame 1, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

5 error/status interrupt EE_LK_STS_A4 happens at frame 1, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

6 error/status interrupt EE_LK_STS_A5 happens at frame 1, slot/symbol 0, clock 16927

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

7 error/status interrupt EE_LK_STS_A0 happens at frame 2, slot/symbol 0, clock 16926

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

 16 rm_ee_hfnsync_state_err: Per Link, CPRI only (Error): Indicates RX FSM in the hyperframe state that is, state ST3. (as defined by CPRI)

8 error/status interrupt EE_LK_STS_A1 happens at frame 2, slot/symbol 0, clock 16926

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

9 error/status interrupt EE_LK_STS_A2 happens at frame 2, slot/symbol 0, clock 16926

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

10 error/status interrupt EE_LK_STS_A3 happens at frame 2, slot/symbol 0, clock 16926

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

11 error/status interrupt EE_LK_STS_A4 happens at frame 2, slot/symbol 0, clock 16926

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

12 error/status interrupt EE_LK_STS_A5 happens at frame 2, slot/symbol 0, clock 16926

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

------------------status when test complete---------------------

Ingress End Of Packet count = 362131

Egress End Of Packet count = 367183

AT PHYT Frame= 200, Clock= 1116

AT RADT Frame= 200, Symbol= 0, Clock= 344

----------------link 0 status----------------

captured PI value = 380

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 1 status----------------

captured PI value = 584

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 2 status----------------

captured PI value = 846

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 3 status----------------

captured PI value = 935

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 4 status----------------

captured PI value = 1035

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 5 status----------------

captured PI value = 1135

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

 AxC Channel 0 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in CORE1_LL2, achieve 96 MB/s

 AxC Channel 1 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in CORE2_LL2, achieve 96 MB/s

 AxC Channel 2 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in CORE3_LL2, achieve 96 MB/s

Throughput of link 0 = 288 MB/s (65514 good packets, 0 bad packets)

 AxC Channel 3 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 95837632 bytes in SL2, achieve 48 MB/s

 AxC Channel 4 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 95837632 bytes in SL2, achieve 48 MB/s

 AxC Channel 5 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 95837632 bytes in SL2, achieve 48 MB/s

 AxC Channel 6 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 95837632 bytes in SL2, achieve 48 MB/s

Throughput of link 1 = 192 MB/s (87352 good packets, 0 bad packets)

 AxC Channel 7 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 47918816 bytes in SL2, achieve 24 MB/s

 AxC Channel 8 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 47918816 bytes in CORE1_LL2, achieve 24 MB/s

 AxC Channel 9 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 47918816 bytes in CORE2_LL2, achieve 24 MB/s

 AxC Channel 10 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 47918816 bytes in CORE3_LL2, achieve 24 MB/s

 generic Channel 11 transfer 1010 packets, receive 1005 packets (1005 good, 0 bad), 10291200 bytes in SL2, achieve 5 MB/s

Throughput of link 2 = 101 MB/s (88357 good packets, 0 bad packets)

 generic Channel 12 transfer 16774 packets, receive 16769 packets (16769 good, 0 bad), 171714560 bytes in SL2, achieve 86 MB/s

 generic Channel 13 transfer 16774 packets, receive 16769 packets (16769 good, 0 bad), 171714560 bytes in SL2, achieve 86 MB/s

Throughput of link 3 = 172 MB/s (33538 good packets, 0 bad packets)

 AxC Channel 14 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in SL2, achieve 96 MB/s

 AxC Channel 15 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in SL2, achieve 96 MB/s

Throughput of link 4 = 192 MB/s (43676 good packets, 0 bad packets)

 AxC Channel 16 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in CORE1_LL2, achieve 96 MB/s

 AxC Channel 17 transfer 22176 packets, receive 21838 packets (21838 good, 0 bad), 191675264 bytes in CORE2_LL2, achieve 96 MB/s

Throughput of link 5 = 192 MB/s (43676 good packets, 0 bad packets)

Total throughput of AIF = 1137 MB/s (362113 good packets, 0 bad packets)
A.3 Below is the internal loopback test output on TCI6614EVM for CPRI mode of AIF2_WCDMA project.
JTAG ID= 0x0b96202f. This is TCI6614 device, version variant = 0.

DEVSTAT= 0x00003781. little endian, EMIF16(NOR FLASH) or UART or No Boot boot, PLL configuration implies the input clock for core is 312.5MHz.

SmartReflex VID= 47, required core voltage= 1.001V.

Die ID= 0x0c004012, 0x0401017a, 0x00000000, 0x1e780001

Device speed grade = 1200MHz.

Enable Exception handling...

Initialize DSP main clock = 122.88MHz/29x236 = 999MHz

Initialize DDR speed = 66.67MHzx/1x20 = 1333.340MTS

=================AIF CPRI mode test for 2000 ms (200 WCDMA frames)=================

link 0 runs at 4x rate, internal loopback test, RAC antenna data data only

link 1 runs at 4x rate, internal loopback test, RAC antenna data data only

link 2 is disabled

link 3 is disabled

link 4 runs at 4x rate, internal loopback test, TAC antenna data data only

link 5 is disabled

----------------runtime error/status interrupt log--------------

0 error/status interrupt EE_LK_STS_A0 happens at frame 0, slot/symbol 0, clock 15829

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

1 error/status interrupt EE_LK_STS_A0 happens at frame 1, slot/symbol 0, clock 17690

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

2 error/status interrupt EE_LK_STS_A1 happens at frame 1, slot/symbol 0, clock 17690

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

3 error/status interrupt EE_LK_STS_A4 happens at frame 1, slot/symbol 0, clock 17690

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

4 error/status interrupt EE_LK_STS_A0 happens at frame 2, slot/symbol 0, clock 17692

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

 16 rm_ee_hfnsync_state_err: Per Link, CPRI only (Error): Indicates RX FSM in the hyperframe state that is, state ST3. (as defined by CPRI)

5 error/status interrupt EE_LK_STS_A1 happens at frame 2, slot/symbol 0, clock 17692

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

 16 rm_ee_hfnsync_state_err: Per Link, CPRI only (Error): Indicates RX FSM in the hyperframe state that is, state ST3. (as defined by CPRI)

6 error/status interrupt EE_LK_STS_A4 happens at frame 2, slot/symbol 0, clock 17692

 0 rm_ee_sync_status_change_err: Per Link (Information): Indicates that the RX state machine changed state

 16 rm_ee_hfnsync_state_err: Per Link, CPRI only (Error): Indicates RX FSM in the hyperframe state that is, state ST3. (as defined by CPRI)

------------------status when test complete---------------------

Ingress End Of Packet count = 7641564

Egress End Of Packet count = 0

AT PHYT Frame= 200, Clock= 1104

AT RADT Frame= 200, Symbol= 0, Clock= 341

----------------link 0 status----------------

captured PI value = 1109

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 1 status----------------

captured PI value = 1110

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

----------------link 4 status----------------

captured PI value = 1110

RM ST3 State FRAME_SYNC

TM FSM in FRAME_SYNC state

 AxC Channel 0 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 1 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 2 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 3 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 link 0 transfer 11640 good antenna slots, 0 bad antenna slots

Throughput of link 0 = 59 MB/s

 AxC Channel 4 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 5 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 6 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 7 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 link 1 transfer 11640 good antenna slots, 0 bad antenna slots

Throughput of link 1 = 59 MB/s

 AxC Channel 8 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 9 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 10 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 11 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 12 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 13 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 14 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 AxC Channel 15 transfer 2910 good packets, 0 bad packets, 29798400 bytes, achieve 14974 KB/s

 link 4 transfer 23280 good antenna slots, 0 bad antenna slots

Throughput of link 4 = 119 MB/s

Total throughput of AIF = 239 MB/s
1
2

Error! No text of specified style in document.
3

_1448198155.vsd
DSP 0

_1448207535.vsd
AIF2

_1448211824.vsd
TX buffer in TAC format

TX buffer in RAC format

 AIF2

_1378573801.vsd
DSP 0

_1402582984.vsd
EV0 Enable Set Register

EVO Enable Clear Register

Raw Status Set Register

Raw Status Clear Register

EV1 Enable Set Register

EV1 Enable Clear Register

Error Enabled Status Register

Raw Status Register

EV0 Enable Register

EV1 Enable Register

Alarm Enabled Status Register

VBUS interface

IRS_SET

IRS_CLR

EN_EV0

EN_SET_EV0

EN_CLR_EV0

EN_SET_EV1

EN_CLR_EV1

IRS

EN_EV1

EN_STS_EV0

EN_STS_EV1

Clock

Errors interrupt to DSP core

Alarms

ERR_ALRM_ORGN

_1378572124.vsd

TCI6618 EVM

Link 0

Link 1

Link 2

Link3

Link 4

Link 5

Link 2

Link 3

Link 4

Link 5

To AMC Connector

DSP 0

PHYT_SYNC/RADT_SYNC
Serdes clock

AIF2

Timer

153.6MHz
Clock

One shot trigger

DSP 1

PHYT_SYNC/RADT_SYNC
Serdes clock

AIF2

SW6

TIMO0

_948891555.doc

