

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

基于 OMAPL138 的多核软件开发组件--MCSDK 开发教程

1 MCSDK 介绍 ... 3

2 MCSDK 相关软件安装 .. 4

2.1 在 ubuntu 虚拟机中安装 CCSV5 ... 4

2.2 安装 MCSDK ... 9

3 设置 MCSDK 开发环境参数 .. 13

4 syslink 配置、编译、安装 .. 18

5.1 配置 syslink .. 18

5.2 编译 syslink 源码 ... 22

5.3 编译 syslink 示例程序 ... 25

5 syslink 示例程序演示 .. 26

5.1 安装 syslink 驱动和示例程序到文件系统 ... 26

5.2 运行 syslink 示例程序 ... 27

5.2.1 设置 uboot 参数 ... 27

5.2.2 安装 syslink 驱动 .. 27

5.2.3 运行 syslink 示例程序 .. 28

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.3 syslink 示例程序解析 .. 29

5.3.1 ex01_helloworld .. 30

5.3.2 ex02_messageq ... 31

5.3.3 ex03_notify.. 35

5.3.4 ex04_sharedregion .. 38

5.3.5 ex05_heapbufmp .. 40

5.3.6 ex06_listmp ... 42

5.3.7 ex07_gatemp ... 45

5.3.8 ex08_ringio .. 47

5.3.9 ex09_readwrite ... 51

5.3.10 ex33_umsg .. 54

5.3.11 ex34_radar .. 55

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

1 MCSDK 介绍

 德州仪器(TI)2013 年 11 月推出基于低功耗 OMAP-L138 DSP+ARM9™处理器的多核软件开

发组件——MCSDK（Multicore Software Development Kits），帮助开发人员缩短开发时间，实

现针对 TI TMS320C6000™高性能数字信号处理器(DSP)的扩展。为工业、通信、电信以及医

疗市场开发各种应用的客户现在无需转移其它软件平台，便可升级至高性能器件。

 TI MCSDK 提供高度优化的特定平台基础驱动器捆绑包，可实现基于 TI器件的开发。此

外，MCSDK 还可为实现便捷编程提供定义明确的应用编程接口，支持未来向更高性能的 TI

多核平台的移植，因此开发人员无需从头设计通用层。MCSDK 不仅可帮助开发人员评估特定

器件开发平台的软硬件功能，而且还可帮助他们快速开发多核应用。此外，它还有助于应用

在统一平台上使用 SYS/BIOS 或 Linux。MCSDK 的各内核通常还可指定运行 Linux 应用，作为

控制平台，而其它内核则可同时分配高性能信号处理工作。借助这种异构配置的高灵活性，

软件开发人员可在 TI 多核处理器上实施全面解决方案。在 TI OMAP-L138 应用实例中，内部

ARM9处理器可分配嵌入式Linux等高级操作系统执行复杂的IO协议栈处理，而TMS320C647x

DSP 则可运行 TI RTOS（上述 SYS/BIOS）实时处理任务。

 TI DSP 业务经理 Ramesh Kumar 指出：“能为 OMAP-L138 处理器提供 MCSDK 我们深感振

奋。新老客户都将受益，包括在整个 TI C6000™ DSP 中可使用相同的软件、支持编程高效率、

加速产品上市进程以及更高的投资回报等。”

 MCSDK包含的库兼容于TI C647x DSP以及基于KeyStone™的DSP，其中包括C665x、C667x、

66AK2Hx 以及 66AK2Ex 处理器。有了 MCSDK，开发人员可获得各种优化型 DSP 库，包括数学

库、数字信号处理库、影像视频处理库、电信库以及语音视频编解码器等，并可从中获益。

此外，TI OMAP-L138 处理器还具有应用优化型特性与外设的独特组合，包括以太网、USB、

SATA、视频端口接口(VPIF)以及 uPP 等。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

2 MCSDK 相关软件安装

2.1 在 ubuntu 虚拟机中安装 CCSV5

 此处安装的是 linux 下的 CCS，版本号是：CCS5.5.0。在光盘资料 tools 目录下可以找

到文件 CCS5.5.0.00077_linux.tar.gz，将其拷贝到共享目录，解压到 ti 目录下，命令如

下：

Host# mkdir -p /home/tl/ti

Host# cd /home/tl/ti

Host# tar -xvzf /mnt/hgfs/shareVM/CCS5.5.0.00077_linux.tar.gz -C ./

Host# cd CCS5.5.0.00077_linux/

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 执行以下命令安装安装 CCSV5：

Host# sudo ./ccs_setup_5.5.0.00077.bin

 弹出以下界面，点击 ，然后点击 Next。

 弹出以下界面，路径选择：/home/tl/ti，然后点击 Next。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 弹出以下界面，选择“Complete Feature Set”，然后点击 Next（安装过程中需要下载组

件，请保证虚拟机网络畅通）。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 弹出以下界面，点击 Next。

 弹出以下界面，点击 Next。

 弹出以下界面，点击 Next。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 弹出以下界面，说明 CCS5 正在安装。

 安装完成后，点击 finish 退出。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

2.2 安装 MCSDK

 在光盘资料 tools 目录中找到 mcsdk_1_01_00_02_setuplinux.bin 安装文件，先将其复

制到共享目录，然后执行如下命令：

Host# cp -a /mnt/hgfs/shareVM/mcsdk_1_01_00_02_setuplinux.bin /home/tl/ti/

Host# cd /home/tl/ti

Host# ./mcsdk_1_01_00_02_setuplinux.bin

 弹出如下界面，点击 Next。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 弹出如下界面，点击 Next。

 安装路经选择默认，即/home/tl/ti，点击 Next。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 弹出如下界面，点击 Next。

 弹出如下界面，开始安装 MCSDK。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 等待如下界面出现，点击 Finish 完成安装。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

3 设置 MCSDK 开发环境参数

 进入 mcsdk_1_01_00_02 目录下，启动 MCSDK 设置脚本，根据不同主机设置，进行 tftp、

nfs、u-boot 等配置。在设置之前，务必保证虚拟机网络畅通。

Host# cd /home/tl/ti/mcsdk_1_01_00_02/

Host# sudo ./setup.sh

 按 Enter 将 MCSDK 的文件系统安装到默认路经，出现如下界面：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 按 Enter，出现如下界面：

 按 Enter 将 MCSDK 的 linux 内核镜像安装到默认路径，出现如下界面：

 按 Enter 设置可以进行 nfs 访问，出现如下界面：

 按 Enter 设置 tftp 服务器下载目录为默认路径（/tftpboot），出现如下界面：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 按 Enter,出现如下界面：

 按 Enter 设置串口为默认设置，出现如下界面：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 按 Enter 设置 uboot nfs 网络变量，出现如下界面：

 按 Enter 变量中设置为默认的 tftp 启动方式，出现如下界面：

 按 Enter 设置为默认的 nfs 文件系统启动方式，出现如下界面：

 按 Enter 设置启动时 tftp 下载的为默认内核镜像，出现如下界面：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 输入：n,按 Enter,出现如下界面：

 输入:Y，按 Enter, 现如下界面：

 最后看到“TISDK setup completed!”，说明设置已经完成。

备注：由于之后不使用 MCSDK 的 uboot、内核、文件系统，因此以上部分相关设置可以忽视。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

4 syslink 配置、编译、安装

 安装 MCSDK 时，会将自动将 syslink 安装在相同的目录下，下文将介绍 Syslink 配置、编

译和示例演示。在开始 syslink 编译之前，请确保以下几点：

（1） 已安装 arm-none-linux- gnueabi-gcc-4.3.3 交叉编译工具链。

（2） 内核源码正确编译。

（3） 文件系统正确解压在 ubuntu 虚拟机。

5.1 配置 syslink

 进入/home/tl/ti/syslink_2_21_01_05，打开配置文件 products.mak。

Host# cd /home/tl/ti/syslink_2_21_01_05

Host# gedit products.mak

 修改如下地方：

备注：由于配置容易出错，已将配置文件 product.mak 放在光盘 shell 目录下，可以将此文

件覆盖/home/tl/ti/syslink_2_21_01_05/ products.mak，然后再根据个人的实际情况小修

改即可。

（1） DEVICE = _your_device_

改为 DEVICE = OMAPL1XX //表示编译 OMAPL138

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

（2） SDK = _your_sdk_

改为 SDK = NONE //SDK 类型为 NONE

（3） EXEC_DIR = _your_filesys_

改为 EXEC_DIR = /home/tl/omapl138/demo-rootfs //syslink 驱动和演示程序安

装路劲，一般设置为 nfs 或者 SD 卡的文件系统

（4） DEPOT = _your_depot_folder_

改为 DEPOT = /home/tl/ti //MCSDK 的安装路径

（5）

######## For OMAPL1XX device ########

else ifeq ("$(DEVICE)","OMAPL1XX")

LINUXKERNEL = $(DEPOT)/_your_linux_kernel_install_

CGT_ARM_INSTALL_DIR = $(DEPOT)/_your_arm_code_gen_install_

CGT_ARM_PREFIX = $(CGT_ARM_INSTALL_DIR)/bin/arm-none-linux-gnueabi-

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

IPC_INSTALL_DIR = $(DEPOT)/_your_ipc_install_

BIOS_INSTALL_DIR = $(DEPOT)/_your_bios_install_

XDC_INSTALL_DIR = $(DEPOT)/_your_xdctools_install_

If LOADER=ELF then below elf tools path is required else set C674 path

ifeq ("$(LOADER)","ELF")

CGT_C674_ELF_INSTALL_DIR= $(DEPOT)/_your_c674elf_code_gen_install_

else

CGT_C674_INSTALL_DIR= $(DEPOT)/_your_c674_code_gen_install_

endif

改为

######## For OMAPL1XX device ########

else ifeq ("$(DEVICE)","OMAPL1XX")

LINUXKERNEL = /home/tl/omapl138/linux-3.3 //内核源码路径

CGT_ARM_INSTALL_DIR = /home/tl/arm-2009q1 //交叉编译工具链安装路径

CGT_ARM_PREFIX = $(CGT_ARM_INSTALL_DIR)/bin/arm-none-linux-gnueabi-

IPC_INSTALL_DIR = $(DEPOT)/ipc_1_25_03_15 //ipc 安装路径

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

BIOS_INSTALL_DIR = $(DEPOT)/bios_6_35_04_50 //bios 安装路径

XDC_INSTALL_DIR = $(DEPOT)/xdctools_3_25_03_72 //xdc 安装路径

If LOADER=ELF then below elf tools path is required else set C674 path

ifeq ("$(LOADER)","ELF")

CGT_C674_ELF_INSTALL_DIR= $(DEPOT)/ccsv5/tools/compiler/c6000_7.4.4 //dsp 编译器路径

else

CGT_C674_INSTALL_DIR= $(DEPOT)/_your_c674_code_gen_install_

endif

 配置完成后，保存退出。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.2 编译 syslink 源码

 编译 syslink 之前，先将以下两个宏定义添加到 syslink 中的 Omapl1xxIpcInt.c、

omapl1xx_phy_shmem.c、omapl1xxpwr.c 文件开头,否则编译会出错。

#undef __ASM_ARCH_HARDWARE_H

#include <mach/hardware.h>

 以上三个文件的路径是：

（1） /home/tl/ti/syslink_2_21_01_05/packages/ti/syslink/ipc/hlos/knl/notifyD

rivers/arch/omapl1xx/Omapl1xxIpcInt.c

（2） /home/tl/ti/syslink_2_21_01_05/packages/ti/syslink/family/hlos/knl/omap

l1xx/omapl1xxdsp/Linux/omapl1xx_phy_shmem.c

（3） /home/tl/ti/syslink_2_21_01_05/packages/ti/syslink/family/hlos/knl/omap

l1xx/omapl1xxdsp/omapl1xxpwr.c

 修改 Omapl1xxIpcInt.c

 执行以下命令修改：

Host# cd /home/tl/ti/syslink_2_21_01_05/packages/ti/syslink

Host# gedit ipc/hlos/knl/notifyDrivers/arch/omapl1xx/Omapl1xxIpcInt.c

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 添加内容后，保存退出。

 修改 omapl1xx_phy_shmem.c

 在当前路径下，执行以下命令：

Host# gedit family/hlos/knl/omapl1xx/omapl1xxdsp/Linux/omapl1xx_phy_shmem.c

 添加内容后，保存退出。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 修改 omapl1xxpwr.c

 在当前路径下，执行以下命令：

Host# gedit family/hlos/knl/omapl1xx/omapl1xxdsp/omapl1xxpwr.c

 添加内容后，保存退出。

 接下来开始编译 syslink，执行以下命令：

Host# cd /home/tl/ti/syslink_2_21_01_05

Host# make syslink

 编译成功如下图所示：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.3 编译 syslink 示例程序

 在当前目录，执行以下命令：

Host# make samples

 编译成功如下图所示：

 至此，整个 syslink 已经编译完成。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5 syslink 示例程序演示

5.1 安装 syslink 驱动和示例程序到文件系统

 在当前目录，执行以下命令将 syslink 驱动和示例程序安装到文件系统：

Host# sudo make install

 安装成功如下图所示：

 执行以下命令查看是否已经安装了 syslink 驱动和示例程序。

Host# cd /home/tl/omapl138/demo-rootfs/

Host# ls

Host# ls lib/modules/3.3.0/kernel/drivers/dsp/

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 可以看到在文件系统lib/modules/3.3.0/kernel/drivers/dsp/目录下有syslink驱动

程序 syslink.ko 文件和文件系统根目录下有“ex**_##”的示例程序。

5.2 运行 syslink 示例程序

 可以通过sd卡或者nfs的方式启动此文件系统。下面以SD卡启动方式为例讲解syslink

示例程序的运行方法。

5.2.1 设置 uboot 参数

 将以上文件系统拷贝到 SD启动卡的 EXT3 格式 root 分区，然后将 SD 启动卡插到开发板

上，拨码开关打到 SD 卡启动方式，上电启动后在 uboot 命令行执行以下命令：

Target# setenv bootargs console=ttyS2,115200n8 root=/dev/mmcblk0p2 rw rootfstype=ext3

mem=32M@0xc0000000 mem=64M@0xc4000000

Target# sveenv

Target# boot

备注：通过nfs方式只需要修改参数mem=128M为mem=32M@0xc0000000 mem=64M@0xc4000000。

5.2.2 安装 syslink 驱动

 进入开发板后，执行以下命令安装 syslink 驱动：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

Target# insmod /lib/modules/3.3.0/kernel/drivers/dsp/syslink.ko TRACE=1 TRACEFAILURE=1

5.2.3 运行 syslink 示例程序

Target# cd /

Target# ./runall.sh

 成功运行如下图所示：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.3 syslink 示例程序解析

 每个示例目录中有 readme.txt 和 run.sh 文件说明如何使用示例，而在开发板中运行

/runall.sh 是运行了所有的 syslink 示例程。

备注：以下内容摘录于 http://blog.csdn.net/crushonme/article/details/10287693

Slaveloader

 在 OMAPL138 的 ARM Linux 操作系统中，syslink 提供了“slaveloader”组件去加载、

启动、停止 DSP 处理器，实现了对 DSP 核的管理，同时也是使用“slaveloader”组件去运

行 syslink 示例程序。

 运行“slaveloader”组件有四个参数：

参数 1：startup|shutdown|all|powerup|load|start|stop|unload|powerdown|list

参数 2：Core name //远程处理器名称，一般是 DSP

参数 3：File path //可执行文件路径，当参数 2为 startup/load/all/时必填

http://blog.csdn.net/crushonme/article/details/10287693

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

参数 4：map-file //map 文件，当远程处理器 MMU 功能开启时必填

 运行命令格式如下图所示：

 可以通过各个 syslink 示例目录下的 run.sh 脚本查看使用 slaveloader 运行示例程序

的具体方法。下图是各个示例的功能简介：

备注：在单独运行各个示例程序前，务必先安装 syslink 驱动,安装命令：

Target# insmod /lib/modules/3.3.0/kernel/drivers/dsp/syslink.ko TRACE=1 TRACEFAILURE=1

 下面将针对每个示例进行解析。

5.3.1 ex01_helloworld

示例名字：helloworld

功能说明：GPP（ARM）端注册一个来自 DSP 端的简单一次性通知事件。

参考英文资料：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

运行命令：

Target# cd /ex01_helloworld/debug

Target# ls

Target# ./run.sh

 成功运行提示如下图：

5.3.2 ex02_messageq

示例名字：MessageQ

功能说明：基于队列的消息传递，负责 GPP 与 DSP 端的可变长度的短消息交互。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

参考英文资料：

运行命令：

Target# cd /ex02_messageq/debug/

Target# ls

Target# ./run.sh

 成功运行提示如下图：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

特点：

（1） 实现了处理期间变长消息的传递；

（2） 消息的传递都是通过操作消息队列来实现的；

（3） 每个消息队列可以有多个写者，但只能有一个读者；每个任务(task)可以对多个消

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

息队列进行读写；

（4） 一个宿主在准备接收消息时，必须先创建消息队列，而在发送消息前，需要打开预

定的接收消息队列；

常用在以下场景中：

（1） 在消息传递中有多个写者，但仅有一个读者；

（2） 所需要传递的消息超过 32bit，且长度可变；读写者的缓冲区大小相同；

（3） 处理期间需要频繁传递消息，在这种情况下，消息被依次放入队列，能保证不会丢

消息；

（4） 消息队列为空时，调用 MessageQ_get()获取消息时会被阻塞，直到消息队列被写入

消息；

（5） 支持处理器间移动消息队列，在这种情况下，调用 MessageQ_open()来定位队列位

置，而消息传递部分代码不需要改动；

提供的 API 接口：

（1） 消息队列初始化：MessageQ_Params_init()

（2） 消息队列创建/销毁：MessageQ_create()/MessageQ_delete()，create 创建消息队列，

并分配相应存储空间

（3） 消息队列打开/关闭：MessageQ_open()/MessageQ_close()，open 时会返回远程处理

器上的 QueID 的地址

（4） 为消息队列分配堆内存：MessageQ_alloc()/MessageQ_free()

（5） 为消息队列注册/注销堆内存：MessageQ_registerHeap()/MessageQ_unregisterHeap()

（6） 向消息队列中放入/获取消息：MessageQ_put()/MessageQ_get()

（7） 获取消息队列 ID：MessageQ_getQueueId()

（8） 获取消息队列中消息数：MessageQ_count()

（9） 在消息队列中嵌入消息：MessageQ_setReplyQueue()

（10） 为消息队列解阻塞：MessageQ_unblock()

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

（11） 为调试消息队列加入 Trace：MessageQ_setMsgTrace()

5.3.3 ex03_notify

示例名字：Notify

功能说明：将硬件中断抽象成多组逻辑事件，是一种简单快捷的发送低于 32bit 信息的通信

方式。

参考英文资料：

运行命令：

Target# cd /ex03_notify/debug/

Target# ls

Target# ./run.sh

 成功运行提示如下图：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

特点：

（1） 同一个中断号可以注册多个事件，同一个事件可以有多个回调函数或者多个宿主

（可以是处理器、线程或者任务），事件被触发后所有宿主都会被唤醒；

（2） 一个事件可以接收多个宿主发送来的通知（notification），事件所携带的参数最大

支持 32bit；

（3） 事件是有优先级的，EventId 越小优先级越高，事件 0 的优先级最高，随着 EventId

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

增大优先级依次递减；当多个事件被触发，优先级最高的会最先响应；

（4） Notify 模块使用硬件中断，因此不能被频繁调度。

提供的 API 接口：

（1） 初始化并配置 Notify 组件：Notify_attach();

（2） 注册/注销事件：Notify_registerEvent()/Notify_unregisterEvent()/

Notify_registerEventSingle()/Notify_unregisterEventSingle()

（3） 发送带参数的事件给某处理器；Notify_sendEvent()

（4） 通过回调函数接收事件；Notify_FnNotifyCbck()

（5） 使能/禁用事件；Notify_disableEvent()/Notify_enableEvent()

（6） 其他逻辑接口：Notify_eventAvailable()/Notify_intLineRegistered()/

Notify_numIntLines()/Notify_restore()

 Notify 组件常用于传递附带消息少于 32bit 的场景，如信令传递、buffer 指针传递等。

在信令传递时使用高优先级的事件，如事件 0。而在传递 buffer 指针是可以使用低优先级的

事件，如事件 30 等。

 在 Notify_sentEvent() API 中带有参数 waitClear，该参数为可选参数，如果 waitClear 为

TRUE，这就意味着多宿主事件无法及时响应，必须等待前一宿主事件结束后才能响应下一

宿主；如果 waitClear 为 FALSE，最好不要为事件附带参数，否则多宿主事件可能会由于消息

被覆盖而出现丢消息的现象。

 该 API 最好不要在中断服务程序(ISR)中调用(特别是 waitClear = TRUE 时)，否则会导致中

断调度出现异常(表现之一：高优先级的中断响应会延迟)。此外该 API 不能再使用 GateMP

模块锁保护的程序段中调用，否则可能会导致操作系统死锁。

 由于其他模块使用了 Notify 机制，因此在 SysLink 中预留了部分事件号，这部分事件号

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

用户需要慎重选用（如果你没有使用其他组建的话，可以考虑占用这部分事件号），在注册

事件前可以使用 Notify_eventAvailable()来检查该事件是否可用，即该中断号上的该事件号是

否被注册。

Module Event Ids

FrameQBufMgr 0

FrameQ 1

MessageQ(TransportShm) 2

RingIO 3

NameServerRemoteNotify 4

5.3.4 ex04_sharedregion

示例名字：SharedRegion

功能说明： SharedRegion 模块负责管理共享内存区。在一个有共享内存的多核架构中，普

遍会遇到共享内存映射虚拟地址转换问题。

参考英文资料：

运行命令：

Target# cd /ex04_sharedregion/debug/

Target# ls

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

Target# ./run.sh

 成功运行提示如下图：

提供的 API 接口：

（1） SharedRegion_clearEntry()

（2） SharedRegion_entryInit()

（3） SharedRegion_getCacheLineSize()

（4） SharedRegion_getEntry()、SharedRegion_setEntry()

（5） SharedRegion_getHeap()

（6） SharedRegion_getId()

（7） SharedRegion_getIdByName()

（8） SharedRegion_getNumRegions()

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

（9） SharedRegion_getPtr()

（10） SharedRegion_getSRPtr()

（11） SharedRegion_isCacheEnabled()

（12） SharedRegion_translateEnabled()

 一般来说配置一个 SharedRegion 需要关心以下几个参数：

（1） base：The base address，共享内存区的基地址，这个所谓的基地址实际上是映射后

的虚拟地址，并非物理地址；

（2） len：The length，共享内存区的大小，对于同一片共享内存，其所有者的查找表中

该项值应该是相同的；

（3） name：The name of the region，该共享内存区的名字；

（4） isValid：Whether the region is valid，对于该处理器而言，是否具有权限去访问该共

享内存区；

（5） ownerProcId：The id of the processor which owns the region，管理该内存区的处理

器 ID，该处理器具有创建 HeapMemMP 的权限，而其他处理器只有使用的权限；

（6） cacheEnable：Whether the region is cacheable，是否为该共享内存区创建 cache；

（7） cacheLineSize：The cache line size，cache 的大小；

（8） createHeap：Whether a heap is created for the region，是否使用 Heap（堆）管理该

内存区域；

5.3.5 ex05_heapbufmp

示例名字：HeapBufMP

功能说明：为用户提供了固定大小的缓冲池管理接口。

参考英文资料：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

运行命令：

Target# cd /ex05_heapbufmp/debug/

Target# ls

Target# ./run.sh

 成功运行提示如下图：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

提供的 API 接口：

（1） HeapBufMP 创建/删除：HeapBufMP_create()/HeapBufMP_delete()

（2） HeapBufMP 打开/关闭：HeapBufMP_open()/HeapBufMP_close()

（3） HeapBufMP 参数初始化：HeapBufMP_Params_init()

（4） HeapBufMP 分配/释放内存：HeapBufMP_alloc()/HeapBufMP_free()

（5） HeapBufMP 获取所有状态：HeapBufMP_getExtendedStats()/HeapBufMP_getStats()

5.3.6 ex06_listmp

示例名字：ListMP

功能说明：实现了多宿主双向循环链表，即该双向循环链表为多个处理器共同拥有，可以由

多个处理器共同维护，共同使用。

参考英文资料：

运行命令：

Target# cd /ex06_listmp/debug/

Target# ls

Target# ./run.sh

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

 成功运行提示如下图：

特点：

 ListMP 的实现区别于一般的双向循环链表，因此它不仅具有双向循环链表的特性外，还

增添了其他的特性，比如以下几点：

（1） 实现了简单的多宿主协议，支持多个读写者（multi-reader、multi-writee）；

（2） 使用 Gate 作为内部保护机制，防止多个宿主处理器同时访问该链表；

 ListMP 的实现并未加入通知机制，如果需要的话，可以在外部封装时引入 Notify 机制来

实现；使用 ListMP 机制来管理的 buffers 都需要从共享内存区分配，包括从堆内存分配的

buffers 以及动态分配的内存。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

常用在以下场景中：

（1） 需要被多个宿主访问并且需要频繁传递消息或者数据；

（2） 可用于无规则的消息传递，基于链表实现，因此读者可以遍历所有对象，并选出需

要的对象进行处理；如果硬件支持快速队列，则无法完成队列遍历操作；

（3） 可以自定义消息优先级，同样是基于链表实现，读者可以随意的选择在链表头部还

是链表的尾部来插入消息或者实现链表对象的位置调整，进而实现消息的优先级选择；

如果硬件支持快速队列，则无法完成队列遍历操作；

（4） 无内置通知机制，可以灵活的外部通知机制来实现。譬如根据实际情况，选用 Notify

来实现，亦或是使用选用 MessageQ 则可以使用最少的中断资源实现性能优良的通知机

制，缺点是需要额外的代码实现通知机制；

提供的 API 接口：

（1） 参数初始化：ListMP_Params_init()

（2） 创建/销毁：ListMP_create()/ListMP_delete()

（3） 打开/关闭：ListMP_open()/ListMP_close()

（4） 相关链表操作：

 判断链表空：ListMP_empty()

 获取保护锁：ListMP_getGate()

 获取链表头/表尾：ListMP_getHead()/ListMP_getTail()

 链表插入操作：ListMP_insert()

 获取链表上游元素/下游元素：ListMP_next()/ListMP_prev()

 插入元素到链表头/尾：ListMP_putHead()/ListMP_putTail()

 删除元素：ListMP_remove()

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.3.7 ex07_gatemp

示例名字：GateMP

功能说明：GateMP 是针对于多处理器共享资源的一种保护机制，就如其名字一样，把共享

资源比作房子，那么 GateMP 就是这个房子的门。GateMP 组件实现了开关门的机制，用于

保护共享资源一次只被一个处理器读写。根据 SOC 硬件资源配置的不同，GateMP 的实现有

所不同。对于硬件支持 Hardware Spinlock 的可以基于 H/W spinlock 来实现 GateHwSpinlock；

而对于没有该硬件资源的系统中，则使用软件方法(Peterson 算法)来实现 GatePeterson。

GateMP 组件框架如下：

参考英文资料：

http://zh.wikipedia.org/wiki/Peterson%E7%AE%97%E6%B3%95

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

运行命令：

Target# cd /ex07_gatemp/debug/

Target# ls

Target# ./run.sh

 成功运行提示如下图：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

提供的 API 接口：

（1） 初始化：GateMP_Params_init()

（2） 创建/删除：GateMP_create()/GateMP_delete()

（3） 打开/关闭：GateMP_open()/GateMP_close()

（4） 进入/离开保护：GateMP_enter()/GateMP_leave()

（5） 获取当前的保护类型：GateMP_getLocalProtect()/GateMP_getRemoteProtect()

5.3.8 ex08_ringio

示例名字：RingIO

功能说明：该组件提供基于数据流的循环缓冲区。该组件允许在共享存储空间创建循环缓冲

区，不同的处理都能够读取或者写入循环缓冲区。RingIO 组件允许通过写指针来获取数据缓

冲区的空存储空间，当该存储空间被释放之后，相应存储空间可以被再次写入。

 RingIO 组件允许读指针获取缓冲区中读取空间的有效数据。当被释放之后，相应存储空

间的数据被标记为无效。每个 RingIO 实体拥有一个读指针和一个写指针。RingIO 组件也有

API 函数可以使能数据属性的同步传输。如：EOS(End Of Stream)、事件戳、流偏移地址等，

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

也可能伴随着循环缓冲区的偏移值。

参考英文资料：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

运行命令：

Target# cd /ex08_ringio/debug/

Target# ls

Target# ./run.sh

 成功运行提示如下图：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

特点：

（1） 仅支持一个读者和一个写者；

（2） 读写相对独立，可以在不同的进程或者处理器中同时进行读写操作；

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

提供的 API 接口：

（1） RingIO 参数初始化：RingIO_Params_init()

（2） 创建/删除 RingIO 对象：RingIO_create()/RingIO_delete()

（3） 打开/关闭 RingIO 对象：RingIO_open()/RingIO_close()，RingIO_openByAddr()

（4） 获取共享内存请求：RingIO_sharedMemReq()

（5） 注册/注销 RingIO 通知：RingIO_registerNotifier()/RingIO_unregisterNotifier()

（6） 强制发送 RingIO 通知：RingIO_sendNotify()

（7） 获取 RingIO 通知类型：RingIO_setNotifyType()

（8） 设置/获取水印标志/通知类型：RIngIO_setWaterMark()/RIngIO_getWaterMark()

（9） 获取/释放 RingIO 数据：RingIO_acquire()/RingIO_release()

（10） 设置/获取 RingIO 属性：RingIO_setvAttribute()/RingIO_getvAttribute()

（11） 设置/获取 RingIO 固定大小的属性：RingIO_setAttribute()/RingIO_getAttribute()

（12） 刷新 RingIO 的 buffer：RingIO_flush()

（13） 获取有效/空 buffer 大小：RingIO_getValidSize()/RingIO_getEmptySize()

（14） 获取有效/空属性大小：RingIO_getValidAttrSize()/RingIO_getEmptyAttrSize()

（15） 获取需求 buffer 的大小/位置：RingIO_getAcquiredSize()/RingIO_getAcquiredOffset()

5.3.9 ex09_readwrite

示例名字：ProcMgr read/write

功能说明：ProcMgr read/write 示例阐明了大缓冲区通过直接读写 DSP 内部 RAM 来进行传输

的概念。它实现了在 GPP 端和使用 ProcMgr_read()和 ProcMgr_write() API 的 DSP 端以及两个

DSP 端之间的大尺寸数据缓冲器之间的数据与信息的传递和转换。ProcMgr read/write 示例

中数据与信息流向图如下：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

运行命令：

Target# cd /ex09_readwrite/debug/

Target# ls

Target# ./run.sh

 成功运行提示如下图：

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.3.10 ex33_umsg

示例名字：umsg(Inter-processor Unidirectional Messaging)

功能说明：编译 usmg 库文件和 umsg 相关驱动。

参考英文资料：

运行命令：

Target# cd /ex33_umsg/

Target# ls

Target# ./load_umsg.sh

 成功运行提示如下图：

备注：由于 ex34_radar 示例用到了 ex33_umsg 示例编译出来的驱动程序和库文件，因此在

使用 ex34_radar 示例之前，一定要运行 ex33_umsg 示例。

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

5.3.11 ex34_radar

示例名字：radar

功能说明：阐明如何利用 umsg 库在 GPP 和 DSP 之间传递信息。

参考英文资料：

Target# cd /ex34_radar/debug/

销售邮箱：sales@tronlong.com 技术支持邮箱：support@tronlong.com

公司总机：020-89986280 公司网站：www.tronlong.com

Target# ls

Target# ./run.sh

 成功运行提示如下图：

