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1  实例编译  

 光盘中 demo/syslink/ex10_led 实例实现了利用 MCSDK 的 SYSLINK 组件在

ARM 端控制 DSP 端来操作开发板外设 LED 执行跑马灯程序。本实例是基于

ex03_notify 增加 DSP 控制 LED 功能。 

 先按照广州创龙 OMAPL138 开发板的用户手册《基于 OMAPL138 的多核软

件开发组件--MCSDK 开发教程.pdf》安装 MCSDK，配置、编译和安装 SYSLINK。

然后将 ex10_led 文件夹拷贝到虚拟机/home/tl/ti/syslink_2_21_01_05/examples 目

录下（该路径不可随意放置，否者无法包含到 SYSLINK 里面的头文件），然后进

入 ex10_led 目录，如下图所示： 

 

 

图 1 

 

 执行“sudo make clean”清除编译生成文件，执行“sudo make”命令重新编

译该例程，如下图所示： 

 

 

图 2 



 

 

图 3 

 

在该目录的 dsp/bin/debug/目录下生成.xe674 格式文件 server_dsp.xe674，如

下图所示： 

 

 

图 4 

 

 在该目录的 host/bin/debug/目录下生成 Linux 端可执行程序 app_host，如

下图所示： 

 

 

图 5 

2  实例演示 

 执行此实例双核通信需要 4 个文件，syslink.ko、slaveloader、server_dsp.xe674

和 app_host。按照《基于 OMAPL138 的多核软件开发组件--MCSDK 开发教程.pdf》

教程完成 SYSLINK 编译和安装后，syslink.ko 和 slaveloader 将位于开发板文件系

统如下位置： 



 

syslink.ko：/lib/modules/3.3.0/kernel/drivers/dsp/syslink.ko 

slaveloader：开发板任意example的debug目录中，如/ex03_notify/debug/slaveloader。 

 以下为各个文件的作用： 

syslink.ko：双核通信驱动。 

slaveloader：用于 ARM 端启动 DSP 并加载.xe674 格式的 DSP/BIOS 文件，例如

server_dsp.xe674。 

server_dsp.xe674：DSP 端应用程序。在此实例中，增加的 DSP 端控制 LED 流水

灯功能的代码镜像就是 server_dsp.xe674。 

app_host：ARM 端应用程序。 

 将以上编译出来的 slaveloader、server_dsp.xe674、app_host 和 ex10_led 中的

run.sh 拷贝到开发板同一个目录下，例如开发板的根目录： 

 

 

图 6 

 

 进入开发板的 Linux 文件系统后，执行如下命令安装双核通信驱动： 

Targert# insmod /lib/modules/3.3.0/kernel/drivers/dsp/syslink.ko TRACE=1 

TRACEFAILURE=1 

 

 

图 7 



 

 然后执行“./run.sh”命令，观察发现 LED 会先闪烁两次，再依次点亮所有

LED，接着依次熄灭所有 LED。 

Target# ./run.sh 

 

 

图 8 

 

 使用“cat run.sh”命令可以查看到 run.sh 脚本中的内容是： 

 

 

图 9 

 以下为脚本内容的解释： 

./slaveloader startup DSP server_dsp.xe674：加载 DSP/BIOS 应用程序和启动 DSP

核。 



 

./app_host DSP：启动 ARM 端 Linux 应用程序。 

./slaveloader shutdown DSP：关闭 DSP 核。 

3  实例解析 

3.1  实例程序结构解析  

 在 ex10_led 目录中运行“tree -L 3”命令,可以看到实例程序目录的结构如下

图所示： 

 

 

图 10 



 

dsp：DSP/BIOS 源代码。 

host：ARM 端 Linux 应用程序。 

shared：ARM 和 DSP 内存共享相关。 

products.mak：makefile 调用的配置文件，用于识别编译的头文件和库文件路径。 

3.2  实例 DSP/BIOS 应用程序解析 

 dsp/main_dsp.c 中创建了 smain 任务，smain 任务会先执行 Server_init()，如下

图所示： 

 

 

图 11 

 

 Server_init()在 dsp/Server.c 中定义，Server.c 是最常修改的 DSP/BIOS 文件。

此实例在 Server.c 中增加了 LED 控制函数 led_init()，如下图所示： 



 

 

图 12 

 

 dsp/Server.c 中的 led_init()函数实现了 LED 对应的 GPIO 的基本配置。在初始

化配置时让 4 个 LED 连续闪烁 2 次，如下图所示： 

 

 

图 13 



 

 LED 对应的 GPIO 相关寄存器定义如下图所示： 

 

 

图 14 

 

 DSP/BIOS 的 smain 任务完成后会执行 dsp/Server.c 中的 Server_create()函数。

如下图所示： 

 

 

图 15 

 

 Server_create()函数在 dsp/Server.c 中定义，代码如下图所示： 



 

 

图 16 

 

 Server_create()函数会注册 notify 事件。当 ARM 端 notify 事件注册时，DSP

会触发 Server_notifyCB 函数，接着执行 dsp/Server.c 中的 Server_exec()函数。如

下图所示：  



 

 

图 17 

 

 Server_exec()函数在 dsp/Server.c 中定义，该函数轮询等待 ARM 端发来的命

令，其中 Server_waitForEvent()是一种信号量等待方式，当 ARM 端有命令传送过

来时会解除等待，然后解析 ARM 端传入的命令，解析命令代码如下图所示： 

 

 

图 18 

 



 

 从上图可以看出，ARM 传到 DSP 并解析出来的是 num 和 event 两个变量。

APP_CMD_ON_PAYLOAD 将在下一章节解释。 

3.3  实例 Linux 应用程序解析 

 host/main_host.c 功能和 dsp/main_dsp.c 类似，它初始化 SYSLINK，然后执行

host/App.c 中的 App_create()函数注册 notify 事件，等待 DSP 端创建 notify 事件后,

接着执行 host/App.c 中 App_exec()函数。ARM 端在 App_exec()函数中向 DSP 发

送控制 LED 的命令，代码如下： 

 

 

图 19 

 



 

 可以看出 ARM 端发送给 DSP 的命令有 8 个，分别是依次点亮 4 个 LED，再

依次熄灭 4 个 LED。APP_CMD_ON_PAYLOAD 和 APP_CMD_OFF_PAYLOAD

分别表示控制 LED 亮和灭，x 分别为 4 个 LED 编号。控制状态和编号需要 DSP

端解析。所以 APP_CMD_ON_PAYLOAD 和 APP_CMD_OFF_PAYLOAD 是共享

数据，其宏定义存放在 shared/AppCommon.h 中，如下图所示： 

 

 

图 20 

  

 APP_CMD_ON_PAYLOAD和APP_CMD_OFF_PAYLOAD宏是用户根据实际

情况在 shared/AppCommon.h 中修改或者添加的，ARM 端和 DSP 端都会使用到。 


	实例编译
	实例演示
	实例解析
	实例程序结构解析
	实例DSP/BIOS应用程序解析
	实例Linux应用程序解析


