ddr3之sw leveling参数优化过程

参考文件：
1、 根据PCB量出EMIF0、EMIF1的CLK、DQS信号线的长度（单位inch）;
2、 根据实际量出来的长度，代入Ratio Seed.xls表格中，自动计算出在各个频率点（400、531、675、796）需要输入测试代码的WR DQS、RD DQS、RD DQS GATE的值；
3、 在CCS中加载DDR3_slave_ratio_search.out文件，并运行；
4、 在对应的提示输入中选择EMIF0/1，并输入相应的WR DQS、RD DQS、RD DQS GATE值，待此应用测试代码计算出WR DQS、RD DQS、RD DQS GATE的值范围和最优值；
5、 更改GEL文件在各个DDR运行频率点，重新加载GEL文件、DDR3_slave_ratio_search.out文件，运行，分别输入各频率点的WR DQS、RD DQS、RD DQS GATE参数，计算出不同频率点的WR DQS、RD DQS、RD DQS GATE的值范围和最优值；
6、 修改Uboot对应的参数，在uboot 里也同样将__raw_writel(0x16, (DDRPHY_CONFIG_BASE + 0x358));添加进去。
7、 重新编译Uboot。

GEL文件更改了：如下标记处，DDR3读写就不会出错了。
ddr_sw_levelling(int emif)
{
/*
*__raw_writel(0x6, (DDRPHY_CONFIG_BASE + 0x358));//old setting of DDR_VTP_CTRL
*/
 __raw_writel(0x16, (DDRPHY_CONFIG_BASE + 0x358)); //2014-08-29
	

RatioSeed_531_0 .xls
Work

		Parameters

		DDR3 clock frequency		531		MHz

		Invert Clkout		1

		Trace Length (inches)

				Byte 0		Byte 1		Byte 2		Byte 3

		CLK trace		2.37		2.38		1.76		1.77

		DQS trace		1.21		1.13		1.35		1.16

		Seed values (per byte lane)

		WR DQS		9C		9E		8A		8E

		RD DQS		40		40		40		40

		RD DQS GATE		135		131		12D		124

		Seed Values to input to program

		WR DQS		94

		RD DQS		40

		RD DQS GATE		12D

Data

		Delay per inch		180		ps

image4.emf
RatioSeed_531_1 .xls

RatioSeed_531_1 .xls
Work

		Parameters

		DDR3 clock frequency		531		MHz

		Invert Clkout		1

		Trace Length (inches)

				Byte 0		Byte 1		Byte 2		Byte 3

		CLK trace		2.36		2.38		1.74		1.74

		DQS trace		1.2		1.18		1.13		1.25

		Seed values (per byte lane)

		WR DQS		9C		9D		8E		8B

		RD DQS		40		40		40		40

		RD DQS GATE		134		133		121		127

		Seed Values to input to program

		WR DQS		94

		RD DQS		40

		RD DQS GATE		12B

Data

		Delay per inch		180		ps

image5.emf
RatioSeed_675_0 .xls

RatioSeed_675_0 .xls
Work

		Parameters

		DDR3 clock frequency		675		MHz

		Invert Clkout		1

		Trace Length (inches)

				Byte 0		Byte 1		Byte 2		Byte 3

		CLK trace		2.37		2.38		1.76		1.77

		DQS trace		1.21		1.13		1.35		1.16

		Seed values (per byte lane)

		WR DQS		A4		A6		8C		92

		RD DQS		40		40		40		40

		RD DQS GATE		154		150		14A		13F

		Seed Values to input to program

		WR DQS		9A

		RD DQS		40

		RD DQS GATE		14B

Data

		Delay per inch		180		ps

image6.emf
RatioSeed_675_1 .xls

RatioSeed_675_1 .xls
Work

		Parameters

		DDR3 clock frequency		675		MHz

		Invert Clkout		1

		Trace Length (inches)

				Byte 0		Byte 1		Byte 2		Byte 3

		CLK trace		2.36		2.38		1.74		1.74

		DQS trace		1.2		1.18		1.13		1.25

		Seed values (per byte lane)

		WR DQS		A4		A5		92		8F

		RD DQS		40		40		40		40

		RD DQS GATE		154		153		13C		143

		Seed Values to input to program

		WR DQS		9A

		RD DQS		40

		RD DQS GATE		149

Data

		Delay per inch		180		ps

image7.emf
RatioSeed_796_0 .xls

RatioSeed_796_0 .xls
Work

		Parameters

		DDR3 clock frequency		796		MHz

		Invert Clkout		1

		Trace Length (inches)

				Byte 0		Byte 1		Byte 2		Byte 3

		CLK trace		2.37		2.38		1.76		1.77

		DQS trace		1.21		1.13		1.35		1.16

		Seed values (per byte lane)

		WR DQS		AA		AD		8F		96

		RD DQS		40		40		40		40

		RD DQS GATE		16F		16A		163		156

		Seed Values to input to program

		WR DQS		9F

		RD DQS		40

		RD DQS GATE		164

Data

		Delay per inch		180		ps

image8.emf
RatioSeed_796_1 .xls

RatioSeed_796_1 .xls
Work

		Parameters

		DDR3 clock frequency		796		MHz

		Invert Clkout		1

		Trace Length (inches)

				Byte 0		Byte 1		Byte 2		Byte 3

		CLK trace		2.36		2.38		1.74		1.74

		DQS trace		1.2		1.18		1.13		1.25

		Seed values (per byte lane)

		WR DQS		AA		AC		96		91

		RD DQS		40		40		40		40

		RD DQS GATE		16E		16D		152		15B

		Seed Values to input to program

		WR DQS		9F

		RD DQS		40

		RD DQS GATE		162

Data

		Delay per inch		180		ps

image9.emf
evm816x_PG1.1_201 4-08-29.gel

evm816x_PG1.1_2014-08-29.gel
/* -- *

 * *

 * evm816x.gel *

 * Version 1.02 *

 * *

 * This GEL file is designed to be used in conjunction with *

 * CCStudio 4.2+ and the 816x based EVMs. *

 * *

 * Version History *

 * 0.01 Initial Release *

 * 0.02 Added PRCM setup for I2C0, I2C1, UARTs *

 * 0.03 Added PRCM setup for most on-board peripherals *

 * 0.04 Added TI 1.5 AVV GEL file hotmenu options *

 * 0.05 Added masks to PRCM setup checking *

 * 0.06 Added DDR PLL setup *

 * 0.07 Set EVM_1V0_AVS supply to 1.0V *

 * 0.08 Main PLL divider lowered, Cleanup *

 * 0.09 Added Pad Control Setup for EMAC1 *

 * 0.10 Added Pad Control Setup for GPMC NOR Flash *

 * 0.11 Added DDR2 Initialization *

 * 0.12 GEL file Cleanup *

 * 1.00 Public Release *

 * 1.01 New DDR2 and DDR3 Setup *

 * 1.02 Updated Memory Map and Cleanup *

 * -- */

#define PG1_0_DDR2 0 // Set to 0 for PG 1.1

#define DDR2 0 // Set to 1 for DDR2 board

#define DDR3 1 // Set to 1 for DDR3 board

#define DDR_FREQ 796 // Define frequency

 // Options:

 // DDR3 - 400, 531, 621, 634, 648, 675,

 // 702, 729, 756, 783, 796 (796.5)

/* -- *

 * *

 * OnTargetConnect() *

 * Setup PADCTRL, Power, PLLs, DDR, & EMIF *

 * *

 * -- */

OnTargetConnect()

{

 GEL_TextOut("\EVM816x Startup Sequence\n\n");

 Setup_PRCM();

 Setup_Power();

 Setup_PADCTRL();

 Setup_MainPLL();

 Setup_DDR();

 GEL_TextOut("Startup Complete.\n\n");

}

/* -- *

 * *

 * StartUp() *

 * Setup Memory Map *

 * *

 * -- */

StartUp()

{

 Setup_Memory_Map();

}

/* -- *

 * *

 * OnPreFileLoaded() *

 * This function is called automatically when the 'Load Program' *

 * Menu item is selected. *

 * *

 * -- */

OnPreFileLoaded()

{

 /*

 * GEL_Reset() is used to deal with the worst case senario of

 * unknown target state. If for some reason a reset is not desired

 * upon target connection, GEL_Reset() may be removed and replaced

 * with something "less brutal" like a cache initialization

 * function.

 */

 GEL_Reset();

 GEL_TextOut("GEL Reset\n");

}

/* -- *

 * *

 * OnRestart() *

 * This function is called by CCS when you do Debug->Restart. *

 * *

 * -- */

OnRestart(int nErrorCode)

{

}

menuitem "Memory Map";

/* -- *

 * *

 * Setup_Memory_Map() *

 * Setup the Memory Map for the Cortex A8 *

 * *

 * -- */

hotmenu

Setup_Memory_Map()

{

 GEL_MapOn();

 GEL_MapReset();

 /* Device Memory Map */

 /* L3 Memory Map */

 GEL_MapAddStr(0x00000000, 0, 0x20000000, "R|W|AS4", 0); // GPMC

 GEL_MapAddStr(0x20000000, 0, 0x10000000, "R|W|AS4", 0); // PCIe Gen2

 GEL_MapAddStr(0x40300000, 0, 0x00040000, "R|W|AS4", 0); // L3 OCMC0 SRAM

 GEL_MapAddStr(0x40400000, 0, 0x00040000, "R|W|AS4", 0); // L3 OCMC1 SRAM

 GEL_MapAddStr(0x40800000, 0, 0x00040000, "R|W|AS4", 0); // C674x UMAP0 (L2 RAM)

 GEL_MapAddStr(0x40E00000, 0, 0x00008000, "R|W|AS4", 0); // C674x L1P Cache/RAM

 GEL_MapAddStr(0x40F00000, 0, 0x00008000, "R|W|AS4", 0); // C674x L1D Cache/RAM

 GEL_MapAddStr(0x44000000, 0, 0x00400000, "R|W|AS4", 0); // L3Fast configuration registers

 GEL_MapAddStr(0x44400000, 0, 0x00400000, "R|W|AS4", 0); // L3Mid configuration registers

 GEL_MapAddStr(0x44800000, 0, 0x00400000, "R|W|AS4", 0); // L3Slow configuration registers

 GEL_MapAddStr(0x46000000, 0, 0x00400000, "R|W|AS4", 0); // McASP0

 GEL_MapAddStr(0x46400000, 0, 0x00400000, "R|W|AS4", 0); // McASP1

 GEL_MapAddStr(0x46800000, 0, 0x00400000, "R|W|AS4", 0); // McASP2

 GEL_MapAddStr(0x46C00000, 0, 0x00400000, "R|W|AS4", 0); // HDMI 1.3 Tx

 GEL_MapAddStr(0x47000000, 0, 0x00400000, "R|W|AS4", 0); // McBSP

 GEL_MapAddStr(0x47400000, 0, 0x00400000, "R|W|AS4", 0); // USB2.0 Registers / CPPI

 GEL_MapAddStr(0x49000000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPCC Registers

 GEL_MapAddStr(0x49800000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC0 Registers

 GEL_MapAddStr(0x49900000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC1 Registers

 GEL_MapAddStr(0x49A00000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC2 Registers

 GEL_MapAddStr(0x49B00000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC3 Registers

 GEL_MapAddStr(0x4B000000, 0, 0x01000000, "R|W|AS4", 0); // EMU Subsystem region

 GEL_MapAddStr(0x4C000000, 0, 0x01000000, "R|W|AS4", 0); // EMIF0 Configuration registers

 GEL_MapAddStr(0x4D000000, 0, 0x01000000, "R|W|AS4", 0); // EMIF1 Configuration registers

 GEL_MapAddStr(0x4E000000, 0, 0x02000000, "R|W|AS4", 0); // DMM Configuration registers

 GEL_MapAddStr(0x50000000, 0, 0x01000000, "R|W|AS4", 0); // GPMC Configuration registers

 GEL_MapAddStr(0x51000000, 0, 0x01000000, "R|W|AS4", 0); // PCIE Gen2 Configuration registers

 GEL_MapAddStr(0x53000000, 0, 0x01000000, "R|W|AS4", 0); // IVA-HD 2 Host Port

 GEL_MapAddStr(0x54000000, 0, 0x01000000, "R|W|AS4", 0); // IVA-HD 2 SL2 Port

 GEL_MapAddStr(0x55000000, 0, 0x01000000, "R|W|AS4", 0); // Ducati Slave Port

 GEL_MapAddStr(0x56000000, 0, 0x01000000, "R|W|AS4", 0); // SGX530 Slave Port

 GEL_MapAddStr(0x57000000, 0, 0x01000000, "R|W|AS4", 0); // TPPSS Slave Port

 GEL_MapAddStr(0x58000000, 0, 0x01000000, "R|W|AS4", 0); // IVA-HD 0 Host Port

 GEL_MapAddStr(0x59000000, 0, 0x01000000, "R|W|AS4", 0); // IVA-HD 0 SL2 Port

 GEL_MapAddStr(0x5A000000, 0, 0x01000000, "R|W|AS4", 0); // IVA-HD Host Port

 GEL_MapAddStr(0x5B000000, 0, 0x01000000, "R|W|AS4", 0); // IVA-HD 1 SL2 Port

 GEL_MapAddStr(0x60000000, 0, 0x20000000, "R|W|AS4", 0); // Tiler

 /* DDR Data */

 // Addresses may be contiguous interleaved, depending on configuration of DMM.

 GEL_MapAddStr(0x80000000, 0, 0x40000000, "R|W|AS4", 0); // DDR EMIF0/1

 GEL_MapAddStr(0xC0000000, 0, 0x40000000, "R|W|AS4", 0); // DDR EMIF0/1

 /* Firewall Configuration domain */

 //GEL_MapAddStr(0x47C00000, 0, 0x00400000, "R|W|AS4", 0); // Firewall Configuration domain

 GEL_MapAddStr(0x47C00000, 0, 0x00000800, "R|W|AS4", 0); // L4_Firewall configuration-Address/Protection (AP)

 GEL_MapAddStr(0x47C00800, 0, 0x00000800, "R|W|AS4", 0); // L4_Firewall configuration-Link Agent (LA)

 GEL_MapAddStr(0x47C01000, 0, 0x00000400, "R|W|AS4", 0); // L4_Firewall configuration-Initiator Port (IP0)

 GEL_MapAddStr(0x47C06000, 0, 0x00001000, "R|W|AS4", 0); // VLYNQ-T Firewall-Module

 GEL_MapAddStr(0x47C07000, 0, 0x00001000, "R|W|AS4", 0); // VLYNQ-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C0C000, 0, 0x00001000, "R|W|AS4", 0); // DDR EMIF Firewall-Module

 GEL_MapAddStr(0x47C0D000, 0, 0x00001000, "R|W|AS4", 0); // DDR EMIF Firewall-L4 interconnect

 GEL_MapAddStr(0x47C0E000, 0, 0x00001000, "R|W|AS4", 0); // GPMC Firewall-Module

 GEL_MapAddStr(0x47C0F000, 0, 0x00001000, "R|W|AS4", 0); // GPMC Firewall-L4 interconnect

 GEL_MapAddStr(0x47C10000, 0, 0x00001000, "R|W|AS4", 0); // OCMC RAM0 Firewall-Module

 GEL_MapAddStr(0x47C11000, 0, 0x00001000, "R|W|AS4", 0); // OCMC RAM0 Firewall-L4 interconnect

 GEL_MapAddStr(0x47C12000, 0, 0x00001000, "R|W|AS4", 0); // OCMC RAM1 Firewall-Module

 GEL_MapAddStr(0x47C13000, 0, 0x00001000, "R|W|AS4", 0); // OCMC RAM1 Firewall-L4 interconnect

 GEL_MapAddStr(0x47C14000, 0, 0x00001000, "R|W|AS4", 0); // SGX530-T Firewall-Module

 GEL_MapAddStr(0x47C15000, 0, 0x00001000, "R|W|AS4", 0); // SGX530-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C16000, 0, 0x00001000, "R|W|AS4", 0); // C674x+™SDMA Firewall-Module

 GEL_MapAddStr(0x47C17000, 0, 0x00001000, "R|W|AS4", 0); // C674x+™SDMA Firewall-L4 interconnect

 GEL_MapAddStr(0x47C18000, 0, 0x00001000, "R|W|AS4", 0); // Media Ctrl-T Firewall-Module

 GEL_MapAddStr(0x47C19000, 0, 0x00001000, "R|W|AS4", 0); // Media Ctrl-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C1A000, 0, 0x00001000, "R|W|AS4", 0); // PCIe Gen2-T Firewall-Module

 GEL_MapAddStr(0x47C1B000, 0, 0x00001000, "R|W|AS4", 0); // PCIe Gen2-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C1C000, 0, 0x00001000, "R|W|AS4", 0); // TPPSS-T Firewall-Module

 GEL_MapAddStr(0x47C1D000, 0, 0x00001000, "R|W|AS4", 0); // TPPSS-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C1E000, 0, 0x00001000, "R|W|AS4", 0); // IVA-HD SL2-T Firewall-Module

 GEL_MapAddStr(0x47C1F000, 0, 0x00001000, "R|W|AS4", 0); // IVA-HD SL2-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C20000, 0, 0x00001000, "R|W|AS4", 0); // IVA-HD CFG-T Firewall-Module

 GEL_MapAddStr(0x47C21000, 0, 0x00001000, "R|W|AS4", 0); // IVA-HD CFG-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C28000, 0, 0x00001000, "R|W|AS4", 0); // McASP Firewall-Module

 GEL_MapAddStr(0x47C29000, 0, 0x00001000, "R|W|AS4", 0); // McASP Firewall-L4 interconnect

 GEL_MapAddStr(0x47C2A000, 0, 0x00001000, "R|W|AS4", 0); // SECSS-T Firewall-Module

 GEL_MapAddStr(0x47C2B000, 0, 0x00001000, "R|W|AS4", 0); // SECSS-T Firewall-L4 interconnect

 GEL_MapAddStr(0x47C2C000, 0, 0x00001000, "R|W|AS4", 0); // HDMI 1.3 Tx Firewall-Module

 GEL_MapAddStr(0x47C2D000, 0, 0x00001000, "R|W|AS4", 0); // HDMI 1.3 Tx Firewall-L4 interconnect

 GEL_MapAddStr(0x47C2E000, 0, 0x00001000, "R|W|AS4", 0); // McBSP Firewall-Module

 GEL_MapAddStr(0x47C2F000, 0, 0x00001000, "R|W|AS4", 0); // McBSP Firewall-L4 interconnect

 GEL_MapAddStr(0x47C30000, 0, 0x00001000, "R|W|AS4", 0); // EDMA TPTC Firewall-Module

 GEL_MapAddStr(0x47C31000, 0, 0x00001000, "R|W|AS4", 0); // EDMA TPTC Firewall-L4 interconnect

 GEL_MapAddStr(0x47C38000, 0, 0x00001000, "R|W|AS4", 0); // EDMA TPCC Firewall-Module

 GEL_MapAddStr(0x47C39000, 0, 0x00001000, "R|W|AS4", 0); // EDMA TPCC Firewall-L4 interconnect

 GEL_MapAddStr(0x47C3A000, 0, 0x00001000, "R|W|AS4", 0); // USB2.0 Firewall-Module

 GEL_MapAddStr(0x47C3B000, 0, 0x00001000, "R|W|AS4", 0); // USB2.0 Firewall-L4 interconnect

 /* L4 Memory Map */

 // L4 Standard Peripheral

 GEL_MapAddStr(0x48000000, 0, 0x00000800, "R|W|AS4", 0); // L4_Standard Configuration-Address/Protection (AP)

 GEL_MapAddStr(0x48000800, 0, 0x00000800, "R|W|AS4", 0); // L4_Standard Configuration-Link Agent (LA)

 GEL_MapAddStr(0x48001000, 0, 0x00000400, "R|W|AS4", 0); // L4_Standard Configuration-Initiator Port (IP0)

 GEL_MapAddStr(0x48001400, 0, 0x00000400, "R|W|AS4", 0); // L4_Standard Configuration-Initiator Port (IP1)

 GEL_MapAddStr(0x48008000, 0, 0x00001000, "R|W|AS4", 0); // eFuse Controller Peripheral Registers

 GEL_MapAddStr(0x48009000, 0, 0x00001000, "R|W|AS4", 0); // eFuse Controller Support Registers

 GEL_MapAddStr(0x48010000, 0, 0x00001000, "R|W|AS4", 0); // System DEMMU Peripheral Registers

 GEL_MapAddStr(0x48011000, 0, 0x00001000, "R|W|AS4", 0); // System DEMMU Support Registers

 GEL_MapAddStr(0x48020000, 0, 0x00001000, "R|W|AS4", 0); // UART0 Peripheral Registers

 GEL_MapAddStr(0x48021000, 0, 0x00001000, "R|W|AS4", 0); // UART0 Support Registers

 GEL_MapAddStr(0x48022000, 0, 0x00001000, "R|W|AS4", 0); // UART1 Peripheral Registers

 GEL_MapAddStr(0x48023000, 0, 0x00001000, "R|W|AS4", 0); // UART1 Support Registers

 GEL_MapAddStr(0x48024000, 0, 0x00001000, "R|W|AS4", 0); // UART2 Peripheral Registers

 GEL_MapAddStr(0x48025000, 0, 0x00001000, "R|W|AS4", 0); // UART2 Support Registers

 GEL_MapAddStr(0x48028000, 0, 0x00001000, "R|W|AS4", 0); // I2C0 Peripheral Registers

 GEL_MapAddStr(0x48029000, 0, 0x00001000, "R|W|AS4", 0); // I2C0 Support Registers

 GEL_MapAddStr(0x4802A000, 0, 0x00001000, "R|W|AS4", 0); // I2C1 Peripheral Registers

 GEL_MapAddStr(0x4802B000, 0, 0x00001000, "R|W|AS4", 0); // I2C1 Support Registers

 GEL_MapAddStr(0x4802E000, 0, 0x00001000, "R|W|AS4", 0); // TIMER1 Peripheral Registers

 GEL_MapAddStr(0x4802F000, 0, 0x00001000, "R|W|AS4", 0); // TIMER1 Support Registers

 GEL_MapAddStr(0x48030000, 0, 0x00001000, "R|W|AS4", 0); // SPIOCP Peripheral Registers

 GEL_MapAddStr(0x48031000, 0, 0x00001000, "R|W|AS4", 0); // SPIOCP Support Registers

 GEL_MapAddStr(0x48032000, 0, 0x00001000, "R|W|AS4", 0); // GPIO0 Peripheral Registers

 GEL_MapAddStr(0x48033000, 0, 0x00001000, "R|W|AS4", 0); // GPIO0 Support Registers

 GEL_MapAddStr(0x48038000, 0, 0x00002000, "R|W|AS4", 0); // McASP0 CFG Peripheral Registers

 GEL_MapAddStr(0x4803A000, 0, 0x00001000, "R|W|AS4", 0); // McASP0 CFG Support Registers

 GEL_MapAddStr(0x4803C000, 0, 0x00002000, "R|W|AS4", 0); // McASP1 CFG Peripheral Registers

 GEL_MapAddStr(0x4803E000, 0, 0x00001000, "R|W|AS4", 0); // McASP1 CFG Support Registers

 GEL_MapAddStr(0x48040000, 0, 0x00001000, "R|W|AS4", 0); // TIMER2 Peripheral Registers

 GEL_MapAddStr(0x48041000, 0, 0x00001000, "R|W|AS4", 0); // TIMER2 Support Registers

 GEL_MapAddStr(0x48042000, 0, 0x00001000, "R|W|AS4", 0); // TIMER3 Peripheral Registers

 GEL_MapAddStr(0x48043000, 0, 0x00001000, "R|W|AS4", 0); // TIMER3 Support Registers

 GEL_MapAddStr(0x48044000, 0, 0x00001000, "R|W|AS4", 0); // TIMER4 Peripheral Registers

 GEL_MapAddStr(0x48045000, 0, 0x00001000, "R|W|AS4", 0); // TIMER4 Support Registers

 GEL_MapAddStr(0x48046000, 0, 0x00001000, "R|W|AS4", 0); // TIMER5 Peripheral Registers

 GEL_MapAddStr(0x48047000, 0, 0x00001000, "R|W|AS4", 0); // TIMER5 Support Registers

 GEL_MapAddStr(0x48048000, 0, 0x00001000, "R|W|AS4", 0); // TIMER6 Peripheral Registers

 GEL_MapAddStr(0x48049000, 0, 0x00001000, "R|W|AS4", 0); // TIMER6 Support Registers

 GEL_MapAddStr(0x4804A000, 0, 0x00001000, "R|W|AS4", 0); // TIMER7 Peripheral Registers

 GEL_MapAddStr(0x4804B000, 0, 0x00001000, "R|W|AS4", 0); // TIMER7 Support Registers

 GEL_MapAddStr(0x4804C000, 0, 0x00001000, "R|W|AS4", 0); // GPIO1 Peripheral Registers

 GEL_MapAddStr(0x4804D000, 0, 0x00001000, "R|W|AS4", 0); // GPIO1 Support Registers

 GEL_MapAddStr(0x48050000, 0, 0x00002000, "R|W|AS4", 0); // McASP2 CFG-Module

 GEL_MapAddStr(0x48052000, 0, 0x00001000, "R|W|AS4", 0); // McASP2 CFG-L4 interconnect

 GEL_MapAddStr(0x48060000, 0, 0x00010000, "R|W|AS4", 0); // SD/SDIO-Registers

 GEL_MapAddStr(0x48070000, 0, 0x00001000, "R|W|AS4", 0); // SD/SDIO-L4 interconnect

 GEL_MapAddStr(0x48080000, 0, 0x00010000, "R|W|AS4", 0); // ELM-Error Location Module

 GEL_MapAddStr(0x48090000, 0, 0x00001000, "R|W|AS4", 0); // ELM-L4 interconnect

 GEL_MapAddStr(0x480C0000, 0, 0x00001000, "R|W|AS4", 0); // RTC-Module

 GEL_MapAddStr(0x480C1000, 0, 0x00001000, "R|W|AS4", 0); // RTC-L4 interconnect

 GEL_MapAddStr(0x480C2000, 0, 0x00001000, "R|W|AS4", 0); // WDT1-Module

 GEL_MapAddStr(0x480C3000, 0, 0x00001000, "R|W|AS4", 0); // WDT1-L4 interconnect

 GEL_MapAddStr(0x480C8000, 0, 0x00001000, "R|W|AS4", 0); // Mailbox-Module

 GEL_MapAddStr(0x480C9000, 0, 0x00001000, "R|W|AS4", 0); // Mailbox-L4 interconnect

 GEL_MapAddStr(0x480CA000, 0, 0x00001000, "R|W|AS4", 0); // Spinlock-Module

 GEL_MapAddStr(0x480CB000, 0, 0x00001000, "R|W|AS4", 0); // Spinlock-L4 interconnect

 GEL_MapAddStr(0x48100000, 0, 0x00020000, "R|W|AS4", 0); // HDVPSS-Module

 GEL_MapAddStr(0x48120000, 0, 0x00001000, "R|W|AS4", 0); // HDVPSS-L4 interconnect

 GEL_MapAddStr(0x48122000, 0, 0x00001000, "R|W|AS4", 0); // HDMI 1.3 Tx-Module

 GEL_MapAddStr(0x48123000, 0, 0x00001000, "R|W|AS4", 0); // HDMI 1.3 Tx-L4 interconnect

 GEL_MapAddStr(0x48140000, 0, 0x00020000, "R|W|AS4", 0); // Control Module-Module

 GEL_MapAddStr(0x48160000, 0, 0x00001000, "R|W|AS4", 0); // Control Module-L4 interconnect

 GEL_MapAddStr(0x48180000, 0, 0x00003000, "R|W|AS4", 0); // PRCM-Module

 GEL_MapAddStr(0x48183000, 0, 0x00001000, "R|W|AS4", 0); // PRCM-L4 interconnect

 GEL_MapAddStr(0x48188000, 0, 0x00001000, "R|W|AS4", 0); // SmartReflex0-Module

 GEL_MapAddStr(0x48189000, 0, 0x00001000, "R|W|AS4", 0); // SmartReflex0-L4 interconnect

 GEL_MapAddStr(0x4818A000, 0, 0x00001000, "R|W|AS4", 0); // SmartReflex1-Module

 GEL_MapAddStr(0x4818B000, 0, 0x00001000, "R|W|AS4", 0); // SmartReflex1-L4 interconnect

 GEL_MapAddStr(0x4818C000, 0, 0x00001000, "R|W|AS4", 0); // OCP Watchpoint-Module

 GEL_MapAddStr(0x4818D000, 0, 0x00001000, "R|W|AS4", 0); // OCP Watchpoint-L4 interconnect

 GEL_MapAddStr(0x48198000, 0, 0x00001000, "R|W|AS4", 0); // DDR0 Phy Ctrl Regs-Module

 GEL_MapAddStr(0x48199000, 0, 0x00001000, "R|W|AS4", 0); // DDR0 Phy Ctrl Regs-L4 interconnect

 GEL_MapAddStr(0x4819A000, 0, 0x00001000, "R|W|AS4", 0); // DDR1 Phy Ctrl Regs-Module

 GEL_MapAddStr(0x4819B000, 0, 0x00001000, "R|W|AS4", 0); // DDR1 Phy Ctrl Regs-L4 interconnect

 GEL_MapAddStr(0x48200000, 0, 0x00001000, "R|W|AS4", 0); // Interrupt controller(Cortex™-A8 Accessible Only)

 GEL_MapAddStr(0x48240000, 0, 0x00001000, "R|W|AS4", 0); // MPUSS config register(Cortex™-A8 Accessible Only)

 GEL_MapAddStr(0x48280000, 0, 0x00001000, "R|W|AS4", 0); // SSM(Cortex™-A8 Accessible Only)

 // L4 High Speed Peripheral

 GEL_MapAddStr(0x4A000000, 0, 0x00000800, "R|W|AS4", 0); // L4_High Speed configuration-Address/Protection (AP)

 GEL_MapAddStr(0x4A000800, 0, 0x00000800, "R|W|AS4", 0); // L4_High Speed configuration-Link Agent (LA)

 GEL_MapAddStr(0x4A001000, 0, 0x00000400, "R|W|AS4", 0); // L4_High Speed configuration-Initiator Port (IP0)

 GEL_MapAddStr(0x4A001400, 0, 0x00000400, "R|W|AS4", 0); // L4_High Speed configuration-Initiator Port (IP1)

 GEL_MapAddStr(0x4A100000, 0, 0x00004000, "R|W|AS4", 0); // EMAC0-Registers

 GEL_MapAddStr(0x4A104000, 0, 0x00001000, "R|W|AS4", 0); // EMAC0-L4 Interconnect

 GEL_MapAddStr(0x4A120000, 0, 0x00004000, "R|W|AS4", 0); // EMAC1-Registers

 GEL_MapAddStr(0x4A124000, 0, 0x00001000, "R|W|AS4", 0); // EMAC1-L4 Interconnect

 GEL_MapAddStr(0x4A140000, 0, 0x00010000, "R|W|AS4", 0); // SATA-Registers

 GEL_MapAddStr(0x4A150000, 0, 0x00001000, "R|W|AS4", 0); // SATA-L4 Interconnect

 /* Cortex™-A8 Memory Map */

 // L3 Target Space not redefined

 GEL_MapAddStr(0x00000000, 0, 0x00100000, "R|W|AS4", 0); // Boot Space

 GEL_MapAddStr(0x40020000, 0, 0x0000C000, "R|W|AS4", 0); // ROM internal

 GEL_MapAddStr(0x48200000, 0, 0x00040000, "R|W|AS4", 0); // Cortex™-A8 Interrupt Controller

 /* C674x Memory Map */

 GEL_MapAddStr(0x00400000, 0, 0x00040000, "R|W|AS4", 0); // C674x UMAP1 (HDVICP2-0 SL2)

 GEL_MapAddStr(0x00500000, 0, 0x00040000, "R|W|AS4", 0); // C674x UMAP1 (HDVICP2-1 SL2)

 GEL_MapAddStr(0x00800000, 0, 0x00040000, "R|W|AS4", 0); // C674x UMAP0 (L2 RAM)

 GEL_MapAddStr(0x00E00000, 0, 0x00008000, "R|W|AS4", 0); // C674x L1P Cache/RAM

 GEL_MapAddStr(0x00F00000, 0, 0x00008000, "R|W|AS4", 0); // C674x L1D Cache/RAM

 GEL_MapAddStr(0x01800000, 0, 0x00400000, "R|W|AS4", 0); // C674x Internal CFG registers

 GEL_MapAddStr(0x08000000, 0, 0x01000000, "R|W|AS4", 0); // L4 Standard Domain

 GEL_MapAddStr(0x09000000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPCC Registers

 GEL_MapAddStr(0x09800000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC0 Registers

 GEL_MapAddStr(0x09900000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC1 Registers

 GEL_MapAddStr(0x09A00000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC2 Registers

 GEL_MapAddStr(0x09B00000, 0, 0x00100000, "R|W|AS4", 0); // EDMA TPTC3 Registers

 GEL_MapAddStr(0x0A000000, 0, 0x01000000, "R|W|AS4", 0); // L4 High-Speed Domain

 GEL_MapAddStr(0x10000000, 0, 0x01000000, "R|W|AS4", 0); // C674x L1/L2 C674x Internal Global Address

}

/* -- *

 * *

 * Clear_Memory_Map() *

 * Clear the Memory Map *

 * *

 * -- */

hotmenu

Clear_Memory_Map()

{

 GEL_MapOff();

 GEL_MapReset();

}

#define WR_MEM_32(addr, data) *(unsigned int*)(addr) =(unsigned int)(data)

#define RD_MEM_32(addr) *(unsigned int*)(addr)

/* -- *

 * Constant Definitions *

 * -- */

#define SIZE 1

#define TWO_EMIF 1

#define SWLEVELINNG 1 // When using DDR3 in sw leveling mode, enable this define

/* EMIF Paramters */

#define DDR3_WR_DQS_RATIO3 0x20

#define DDR3_WR_DQS_RATIO2 0x20

#define DDR3_WR_DQS_RATIO1 0x20

#define DDR3_WR_DQS_RATIO0 0x20

#define DDR3_RD_GATE_RATIO3 0x20

#define DDR3_RD_GATE_RATIO2 0x20

#define DDR3_RD_GATE_RATIO1 0x20

#define DDR3_RD_GATE_RATIO0 0x20

/*

 * DDR2 EMIF Paramters 400 MHz

 */

#define EMIF_TIM1_DDR2 0xAAB15E2

#define EMIF_TIM2_DDR2 0x423631D2

#define EMIF_TIM3_DDR2 0x80032F

#define EMIF_SDREF_DDR2 0x10000C30

#define EMIF_SDCFG_DDR2 0x43801A3A // 32 bit ddr2, CL=6, CWL=5, 13 rows, 8 banks, 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR2 0x0000030B // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 400 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_400 0x0CCCE524

#define EMIF_TIM2_DDR3_400 0x30308023

#define EMIF_TIM3_DDR3_400 0x009F82CF

#define EMIF_SDREF_DDR3_400 0x10000C30

#define EMIF_SDCFG_DDR3_400 0x62A41032 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

//#define EMIF_PHYCFG_DDR3_400 0x0000030B // local odt = 3, read latency = 11 (max = 12, min=6

#define EMIF_PHYCFG_DDR3_400 0x0000010B // local odt = 1, read latency = 11 (max = 12, min=6

//#define EMIF_PHYCFG_DDR3_400 0x0000000B // local odt = 0, read latency = 11 (max = 12, min=6

/*

 * DDR3 EMIF Paramters set for 531 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_531 0x0EF136AC

#define EMIF_TIM2_DDR3_531 0x30408063

#define EMIF_TIM3_DDR3_531 0x009F83AF

#define EMIF_SDREF_DDR3_531 0x1000102E

#define EMIF_SDCFG_DDR3_531 0x62A51832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_531 0x0000030C // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 621 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_621 0x111567B5

#define EMIF_TIM2_DDR3_621 0x404B806B

#define EMIF_TIM3_DDR3_621 0x009F844F

#define EMIF_SDREF_DDR3_621 0x100012EC

#define EMIF_SDCFG_DDR3_621 0x62A62832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_621 0x0000030E // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 634 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_634 0x133577F5

#define EMIF_TIM2_DDR3_634 0x404C806B

#define EMIF_TIM3_DDR3_634 0x009F845F

#define EMIF_SDREF_DDR3_634 0x10001356

#define EMIF_SDCFG_DDR3_634 0x62A63032 // 32 bit ddr3, CL=10, 8 banks, CWL=7 10 bit column, 1 CS

#define EMIF_PHYCFG_DDR3_634 0x0000030F // local odt = 3, read latency = 15

/*

 * DDR3 EMIF Paramters set for 648 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_648 0x133577F5

#define EMIF_TIM2_DDR3_648 0x504E806C

#define EMIF_TIM3_DDR3_648 0x009F847F

#define EMIF_SDREF_DDR3_648 0x100013BF

#define EMIF_SDCFG_DDR3_648 0x62A63032 // 32 bit ddr3, CL=10, 8 banks, CWL=7 10 bit column, 1 CS

#define EMIF_PHYCFG_DDR3_648 0x0000030F // local odt = 3, read latency = 15

/*

 * DDR3 EMIF Paramters set for 675 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_675 0x13358875

#define EMIF_TIM2_DDR3_675 0x5051806C

#define EMIF_TIM3_DDR3_675 0x009F84AF

#define EMIF_SDREF_DDR3_675 0x10001491

#define EMIF_SDCFG_DDR3_675 0x62A63032 // 32 bit ddr3, CL=10, 8 banks, CWL=7 10 bit column, 1 CS

#define EMIF_PHYCFG_DDR3_675 0x0000030F // local odt = 3, read latency = 15

/*

 * DDR3 EMIF Paramters set for 702 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_702 0x155798BE

#define EMIF_TIM2_DDR3_702 0x40558074

#define EMIF_TIM3_DDR3_702 0x009F84DF

#define EMIF_SDREF_DDR3_702 0x10001564

#define EMIF_SDCFG_DDR3_702 0x62A73832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_702 0x00000310 // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 729 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_729 0x1557A8FE

#define EMIF_TIM2_DDR3_729 0x50588074

#define EMIF_TIM3_DDR3_729 0x009F850F

#define EMIF_SDREF_DDR3_729 0x10001637

#define EMIF_SDCFG_DDR3_729 0x62A73832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_729 0x00000310 // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 756 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_756 0x1559B97E

#define EMIF_TIM2_DDR3_756 0x505B8074

#define EMIF_TIM3_DDR3_756 0x009F853F

#define EMIF_SDREF_DDR3_756 0x10001709

#define EMIF_SDCFG_DDR3_756 0x62A73832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_756 0x00000310 // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 783 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_783 0x1779C9BE

#define EMIF_TIM2_DDR3_783 0x505E8074

#define EMIF_TIM3_DDR3_783 0x009F856F

#define EMIF_SDREF_DDR3_783 0x100017DC

#define EMIF_SDCFG_DDR3_783 0x62A73832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_783 0x00000310 // local odt = 3, read latency = 11 (max = 12, min=6)

/*

 * DDR3 EMIF Paramters set for 796.5 MHz Clock Frequency

 */

#define EMIF_TIM1_DDR3_796 0x1779C9FE

#define EMIF_TIM2_DDR3_796 0x50608074

#define EMIF_TIM3_DDR3_796 0x009F857F

#define EMIF_SDREF_DDR3_796 0x10001841

#define EMIF_SDCFG_DDR3_796 0x62A73832 // 32 bit ddr3, CL=11, 8 banks, CWL=8 10 bit column, 2 CS

#define EMIF_PHYCFG_DDR3_796 0x00000310 // local odt = 3, read latency = 11 (max = 12, min=6)

/* EVM 400 MHz clock Settings */

#define WR_DQS_RATIO_BYTE_LANE3 ((0x2f << 10) | 0x2f)

#define WR_DQS_RATIO_BYTE_LANE2 ((0x2f << 10) | 0x2f)

#define WR_DQS_RATIO_BYTE_LANE1 ((0x2f << 10) | 0x2f)

#define WR_DQS_RATIO_BYTE_LANE0 ((0x2f << 10) | 0x2f)

#define WR_DATA_RATIO_BYTE_LANE3 (((0x2f + 0x40) << 10) | (0x2f + 0x40))

#define WR_DATA_RATIO_BYTE_LANE2 (((0x2f + 0x40) << 10) | (0x2f + 0x40))

#define WR_DATA_RATIO_BYTE_LANE1 (((0x2f + 0x40) << 10) | (0x2f + 0x40))

#define WR_DATA_RATIO_BYTE_LANE0 (((0x2f+ 0x40) << 10) | (0x2f + 0x40))

#define RD_DQS_RATIO ((0x49 << 10) | 0x49)

#define DQS_GATE_BYTE_LANE0 ((0x124 << 10) | 0x124)

#define DQS_GATE_BYTE_LANE1 ((0x124 << 10) | 0x124)

#define DQS_GATE_BYTE_LANE2 ((0x124 << 10) | 0x124)

#define DQS_GATE_BYTE_LANE3 ((0x124 << 10) | 0x124)

#define DDRPHY_CONFIG_BASE ((emif == 0) ? 0x48198000 : 0x4819a000)

/* -- *

 * Register Definitions *

 * -- */

#define PRCM_BASE_ADDR 0x48180000

#define DMM_BASE_ADDR 0x4E000000

#define EMIF4_0_CFG_BASE_ADDR 0x4C000000

#define EMIF4_1_CFG_BASE_ADDR 0x4D000000

#define DUCATI_BASE_ADDR 0x55020000

#define DUCATI_MMU_CFG 0x55080000

#define CTRL_MODULE_BASE_ADDR 0x48140000

#define GEM_L2RAM_BASE_ADDR 0x40800000

#define TPPIRAM_BASE_ADDR 0x57180000

#define OCMC0RAM_BASE_ADDR 0x40300000

#define OCMC1RAM_BASE_ADDR 0x40400000

/* Control Module */

#define DSPBOOTADDR (CTRL_MODULE_BASE_ADDR + 0x0048)

#define DSPMEM_SLEEP (CTRL_MODULE_BASE_ADDR + 0x0650)

#define CM_ALWON_L3_SLOW_CLKSTCTRL (PRCM_BASE_ADDR + 0x1400)

/* UART PRCM Memory declarations */

#define CM_ALWON_UART_0_CLKCTRL (PRCM_BASE_ADDR + 0x1550)

#define CM_ALWON_UART_1_CLKCTRL (PRCM_BASE_ADDR + 0x1554)

#define CM_ALWON_UART_2_CLKCTRL (PRCM_BASE_ADDR + 0x1558)

/* Ducati PRCM Memory declarations */

#define CM_DEFAULT_DUCATI_CLKSTCTRL (PRCM_BASE_ADDR + 0x0518)

#define CM_DEFAULT_DUCATI_CLKCTRL (PRCM_BASE_ADDR + 0x0574)

#define RM_DEFAULT_RSTCTRL (PRCM_BASE_ADDR + 0x0B10)

#define RM_DEFAULT_RSTST (PRCM_BASE_ADDR + 0x0B14)

/* OCMC PRCM Memory declarations */

#define CM_ALWON_OCMC_0_CLKSTCTRL (PRCM_BASE_ADDR + 0x1414)

#define CM_ALWON_OCMC_1_CLKSTCTRL (PRCM_BASE_ADDR + 0x1418)

#define CM_ALWON_OCMC_0_CLKCTRL (PRCM_BASE_ADDR + 0x15B4)

#define CM_ALWON_OCMC_1_CLKCTRL (PRCM_BASE_ADDR + 0x15B8)

/* IVAHD0 PRCM memory declarations */

#define CM_IVAHD0_CLKSTCTRL (PRCM_BASE_ADDR + 0x0600)

#define CM_IVAHD0_IVAHD_CLKCTRL (PRCM_BASE_ADDR + 0x0620)

#define CM_IVAHD0_SL2_CLKCTRL (PRCM_BASE_ADDR + 0x0624)

#define PM_IVAHD0_PWRSTST (PRCM_BASE_ADDR + 0x0C04)

#define RM_IVAHD0_RSTCTRL (PRCM_BASE_ADDR + 0x0C10)

#define RM_IVAHD0_RSTST (PRCM_BASE_ADDR + 0x0C14)

/* IVAHD1 PRCM Definition */

#define CM_IVAHD1_CLKSTCTRL (PRCM_BASE_ADDR + 0x0700)

#define CM_IVAHD1_IVAHD_CLKCTRL (PRCM_BASE_ADDR + 0x0720)

#define CM_IVAHD1_SL2_CLKCTRL (PRCM_BASE_ADDR + 0x0724)

#define PM_IVAHD1_PWRSTST (PRCM_BASE_ADDR + 0x0D04)

#define RM_IVAHD1_RSTCTRL (PRCM_BASE_ADDR + 0x0D10)

#define RM_IVAHD1_RSTST (PRCM_BASE_ADDR + 0x0D14)

/* IVAHD2 PRCM Definition */

#define CM_IVAHD2_CLKSTCTRL (PRCM_BASE_ADDR + 0x0800)

#define CM_IVAHD2_IVAHD_CLKCTRL (PRCM_BASE_ADDR + 0x0820)

#define CM_IVAHD2_SL2_CLKCTRL (PRCM_BASE_ADDR + 0x0824)

#define PM_IVAHD2_PWRSTST (PRCM_BASE_ADDR + 0x0E04)

#define RM_IVAHD2_RSTCTRL (PRCM_BASE_ADDR + 0x0E10)

#define RM_IVAHD2_RSTST (PRCM_BASE_ADDR + 0x0E14)

/* GEMSS PRCEM definition */

#define CM_GEM_CLKSTCTRL (PRCM_BASE_ADDR + 0x0400)

#define CM_ACTIVE_GEM_CLKCTRL (PRCM_BASE_ADDR + 0x0420)

#define PM_ACTIVE_PWRSTST (PRCM_BASE_ADDR + 0x0A04)

#define RM_ACTIVE_RSTCTRL (PRCM_BASE_ADDR + 0x0A10)

#define RM_ACTIVE_RSTST (PRCM_BASE_ADDR + 0x0A14)

#define CM_MMU_CLKSTCTRL (PRCM_BASE_ADDR + 0x140C)

#define CM_ALWON_MMUDATA_CLKCTRL (PRCM_BASE_ADDR + 0x159C)

#define CM_MMUCFG_CLKSTCTRL (PRCM_BASE_ADDR + 0x1410)

#define CM_ALWON_MMUCFG_CLKCTRL (PRCM_BASE_ADDR + 0x15A8)

/* TPPSS PRCEM definition */

#define CM_DEFAULT_TPPSS_CLKSTCTRL (PRCM_BASE_ADDR + 0x50C)

#define CM_DEFAULT_TPPSS_CLKCTRL (PRCM_BASE_ADDR + 0x554)

/* EMIF4 PRCM Defintion */

#define CM_DEFAULT_L3_FAST_CLKSTCTRL (PRCM_BASE_ADDR + 0x0508)

#define CM_DEFAULT_EMIF_0_CLKCTRL (PRCM_BASE_ADDR + 0x0520)

#define CM_DEFAULT_EMIF_1_CLKCTRL (PRCM_BASE_ADDR + 0x0524)

#define CM_DEFAULT_DMM_CLKCTRL (PRCM_BASE_ADDR + 0x0528)

#define CM_DEFAULT_FW_CLKCTRL (PRCM_BASE_ADDR + 0x052C)

/* DMM & EMIF4 MMR Declaration */

#define DMM_LISA_MAP__0 (DMM_BASE_ADDR + 0x40)

#define DMM_LISA_MAP__1 (DMM_BASE_ADDR + 0x44)

#define DMM_LISA_MAP__2 (DMM_BASE_ADDR + 0x48)

#define DMM_LISA_MAP__3 (DMM_BASE_ADDR + 0x4C)

#define DMM_PAT_BASE_ADDR (DMM_BASE_ADDR + 0x460)

#define EMIF4_0_SDRAM_CONFIG (EMIF4_0_CFG_BASE_ADDR + 0x08)

#define EMIF4_0_SDRAM_CONFIG2 (EMIF4_0_CFG_BASE_ADDR + 0x0C)

#define EMIF4_0_SDRAM_REF_CTRL (EMIF4_0_CFG_BASE_ADDR + 0x10)

#define EMIF4_0_SDRAM_REF_CTRL_SHADOW (EMIF4_0_CFG_BASE_ADDR + 0x14)

#define EMIF4_0_SDRAM_TIM_1 (EMIF4_0_CFG_BASE_ADDR + 0x18)

#define EMIF4_0_SDRAM_TIM_1_SHADOW (EMIF4_0_CFG_BASE_ADDR + 0x1C)

#define EMIF4_0_SDRAM_TIM_2 (EMIF4_0_CFG_BASE_ADDR + 0x20)

#define EMIF4_0_SDRAM_TIM_2_SHADOW (EMIF4_0_CFG_BASE_ADDR + 0x24)

#define EMIF4_0_SDRAM_TIM_3 (EMIF4_0_CFG_BASE_ADDR + 0x28)

#define EMIF4_0_SDRAM_TIM_3_SHADOW (EMIF4_0_CFG_BASE_ADDR + 0x2C)

#define EMIF4_0_DDR_PHY_CTRL_1 (EMIF4_0_CFG_BASE_ADDR + 0xE4)

#define EMIF4_0_DDR_PHY_CTRL_1_SHADOW (EMIF4_0_CFG_BASE_ADDR + 0xE8)

#define EMIF4_1_SDRAM_CONFIG (EMIF4_1_CFG_BASE_ADDR + 0x08)

#define EMIF4_1_SDRAM_CONFIG2 (EMIF4_1_CFG_BASE_ADDR + 0x0C)

#define EMIF4_1_SDRAM_REF_CTRL (EMIF4_1_CFG_BASE_ADDR + 0x10)

#define EMIF4_1_SDRAM_REF_CTRL_SHADOW (EMIF4_1_CFG_BASE_ADDR + 0x14)

#define EMIF4_1_SDRAM_TIM_1 (EMIF4_1_CFG_BASE_ADDR + 0x18)

#define EMIF4_1_SDRAM_TIM_1_SHADOW (EMIF4_1_CFG_BASE_ADDR + 0x1C)

#define EMIF4_1_SDRAM_TIM_2 (EMIF4_1_CFG_BASE_ADDR + 0x20)

#define EMIF4_1_SDRAM_TIM_2_SHADOW (EMIF4_1_CFG_BASE_ADDR + 0x24)

#define EMIF4_1_SDRAM_TIM_3 (EMIF4_1_CFG_BASE_ADDR + 0x28)

#define EMIF4_1_SDRAM_TIM_3_SHADOW (EMIF4_1_CFG_BASE_ADDR + 0x2C)

#define EMIF4_1_DDR_PHY_CTRL_1 (EMIF4_1_CFG_BASE_ADDR + 0xE4)

#define EMIF4_1_DDR_PHY_CTRL_1_SHADOW (EMIF4_1_CFG_BASE_ADDR + 0xE8)

#define MAINPLL_CTRL (CTRL_MODULE_BASE_ADDR + 0x400)

#define MAINPLL_PWD (CTRL_MODULE_BASE_ADDR + 0x404)

#define MAINPLL_FREQ1 (CTRL_MODULE_BASE_ADDR + 0x408)

#define MAINPLL_DIV1 (CTRL_MODULE_BASE_ADDR + 0x40C)

#define MAINPLL_FREQ2 (CTRL_MODULE_BASE_ADDR + 0x410)

#define MAINPLL_DIV2 (CTRL_MODULE_BASE_ADDR + 0x414)

#define MAINPLL_FREQ3 (CTRL_MODULE_BASE_ADDR + 0x418)

#define MAINPLL_DIV3 (CTRL_MODULE_BASE_ADDR + 0x41C)

#define MAINPLL_FREQ4 (CTRL_MODULE_BASE_ADDR + 0x420)

#define MAINPLL_DIV4 (CTRL_MODULE_BASE_ADDR + 0x424)

#define MAINPLL_FREQ5 (CTRL_MODULE_BASE_ADDR + 0x428)

#define MAINPLL_DIV5 (CTRL_MODULE_BASE_ADDR + 0x42C)

#define MAINPLL_DIV6 (CTRL_MODULE_BASE_ADDR + 0x434)

#define MAINPLL_DIV7 (CTRL_MODULE_BASE_ADDR + 0x43C)

#define DDRPLL_CTRL (CTRL_MODULE_BASE_ADDR + 0x440)

#define DDRPLL_PWD (CTRL_MODULE_BASE_ADDR + 0x444)

#define DDRPLL_DIV1 (CTRL_MODULE_BASE_ADDR + 0x44C)

#define DDRPLL_FREQ2 (CTRL_MODULE_BASE_ADDR + 0x450)

#define DDRPLL_DIV2 (CTRL_MODULE_BASE_ADDR + 0x454)

#define DDRPLL_FREQ3 (CTRL_MODULE_BASE_ADDR + 0x458)

#define DDRPLL_DIV3 (CTRL_MODULE_BASE_ADDR + 0x45C)

#define DDRPLL_FREQ4 (CTRL_MODULE_BASE_ADDR + 0x460)

#define DDRPLL_DIV4 (CTRL_MODULE_BASE_ADDR + 0x464)

#define DDRPLL_FREQ5 (CTRL_MODULE_BASE_ADDR + 0x468)

#define DDRPLL_DIV5 (CTRL_MODULE_BASE_ADDR + 0x46C)

#define VIDEOPLL_CTRL (CTRL_MODULE_BASE_ADDR + 0x470)

#define VIDEOPLL_PWD (CTRL_MODULE_BASE_ADDR + 0x474)

#define VIDEOPLL_FREQ1 (CTRL_MODULE_BASE_ADDR + 0x478)

#define VIDEOPLL_DIV1 (CTRL_MODULE_BASE_ADDR + 0x47C)

#define VIDEOPLL_FREQ2 (CTRL_MODULE_BASE_ADDR + 0x480)

#define VIDEOPLL_DIV2 (CTRL_MODULE_BASE_ADDR + 0x484)

#define VIDEOPLL_FREQ3 (CTRL_MODULE_BASE_ADDR + 0x488)

#define VIDEOPLL_DIV3 (CTRL_MODULE_BASE_ADDR + 0x48C)

#define AUDIOPLL_CTRL (CTRL_MODULE_BASE_ADDR + 0x4A0)

#define AUDIOPLL_PWD (CTRL_MODULE_BASE_ADDR + 0x4A4)

#define AUDIOPLL_FREQ2 (CTRL_MODULE_BASE_ADDR + 0x4B0)

#define AUDIOPLL_DIV2 (CTRL_MODULE_BASE_ADDR + 0x4B4)

#define AUDIOPLL_FREQ3 (CTRL_MODULE_BASE_ADDR + 0x4B8)

#define AUDIOPLL_DIV3 (CTRL_MODULE_BASE_ADDR + 0x4BC)

#define AUDIOPLL_FREQ4 (CTRL_MODULE_BASE_ADDR + 0x4C0)

#define AUDIOPLL_DIV4 (CTRL_MODULE_BASE_ADDR + 0x4C4)

#define AUDIOPLL_FREQ5 (CTRL_MODULE_BASE_ADDR + 0x4C8)

#define AUDIOPLL_DIV5 (CTRL_MODULE_BASE_ADDR + 0x4CC)

#define CONTROL_STATUS (CTRL_MODULE_BASE_ADDR + 0x040)

#define DDR_RCD (CTRL_MODULE_BASE_ADDR + 0x70C)

#define CM_CLKOUT_CTRL (PRCM_BASE_ADDR + 0x100)

/* Pad Control Registers */

#define conf_mtsi_dclk (CTRL_MODULE_BASE_ADDR + 0x08C8)

#define conf_mtsi_data0 (CTRL_MODULE_BASE_ADDR + 0x08CC)

#define conf_mtsi_data1 (CTRL_MODULE_BASE_ADDR + 0x08D0)

#define conf_mtsi_data2 (CTRL_MODULE_BASE_ADDR + 0x08D4)

#define conf_mtsi_data3 (CTRL_MODULE_BASE_ADDR + 0x08D8)

#define conf_mtsi_data4 (CTRL_MODULE_BASE_ADDR + 0x08DC)

#define conf_mtsi_data5 (CTRL_MODULE_BASE_ADDR + 0x08E0)

#define conf_mtsi_data6 (CTRL_MODULE_BASE_ADDR + 0x08E4)

#define conf_mtsi_data7 (CTRL_MODULE_BASE_ADDR + 0x08E8)

#define conf_mtsi_bytstrt (CTRL_MODULE_BASE_ADDR + 0x08EC)

#define conf_mtso_dclk (CTRL_MODULE_BASE_ADDR + 0x08F0)

#define conf_mtso_data0 (CTRL_MODULE_BASE_ADDR + 0x08F4)

#define conf_mtso_data1 (CTRL_MODULE_BASE_ADDR + 0x08F8)

#define conf_mtso_data2 (CTRL_MODULE_BASE_ADDR + 0x08FC)

#define conf_mtso_data3 (CTRL_MODULE_BASE_ADDR + 0x0900)

#define conf_mtso_data4 (CTRL_MODULE_BASE_ADDR + 0x0904)

#define conf_mtso_data5 (CTRL_MODULE_BASE_ADDR + 0x0908)

#define conf_mtso_data6 (CTRL_MODULE_BASE_ADDR + 0x090C)

#define conf_mtso_data7 (CTRL_MODULE_BASE_ADDR + 0x0910)

#define conf_mtso_bytstrt (CTRL_MODULE_BASE_ADDR + 0x0914)

#define conf_mctl_sclk (CTRL_MODULE_BASE_ADDR + 0x0918)

#define conf_mctl_sctl (CTRL_MODULE_BASE_ADDR + 0x091C)

#define conf_mctl_sdi (CTRL_MODULE_BASE_ADDR + 0x0920)

#define conf_mctl_sdo (CTRL_MODULE_BASE_ADDR + 0x0924)

#define conf_spi_scs2 (CTRL_MODULE_BASE_ADDR + 0x0AA0)

#define conf_spi_scs3 (CTRL_MODULE_BASE_ADDR + 0x0AA4)

#define conf_uart0_dtrn (CTRL_MODULE_BASE_ADDR + 0x0AC0)

#define conf_uart0_dsrn (CTRL_MODULE_BASE_ADDR + 0x0AC4)

#define conf_uart0_dcdn (CTRL_MODULE_BASE_ADDR + 0x0AC8)

#define conf_uart0_rin (CTRL_MODULE_BASE_ADDR + 0x0ACC)

#define conf_uart1_txd (CTRL_MODULE_BASE_ADDR + 0x0AD4)

#define conf_uart1_rtsn (CTRL_MODULE_BASE_ADDR + 0x0AD8)

#define conf_uart1_ctsn (CTRL_MODULE_BASE_ADDR + 0x0ADC)

#define conf_uart2_rtsn (CTRL_MODULE_BASE_ADDR + 0x0AE8)

#define conf_uart2_ctsn (CTRL_MODULE_BASE_ADDR + 0x0AEC)

#define conf_sc0_data (CTRL_MODULE_BASE_ADDR + 0x0AFC)

#define conf_sc1_rst (CTRL_MODULE_BASE_ADDR + 0x0B10)

#define conf_tim6_out (CTRL_MODULE_BASE_ADDR + 0x0B30)

#define conf_tim7_out (CTRL_MODULE_BASE_ADDR + 0x0B34)

#define conf_gpmc_a27 (CTRL_MODULE_BASE_ADDR + 0x0BA0)

#define conf_gp0_io6 (CTRL_MODULE_BASE_ADDR + 0x0CA0)

/* -- *

 * *

 * Setup_PRCM() *

 * Enable all required PRCM modules. *

 * *

 * -- */

Setup_PRCM()

{

 /* Enable the OCMC0RAM Clocks */

 WR_MEM_32(CM_ALWON_OCMC_0_CLKSTCTRL, 2);

 WR_MEM_32(CM_ALWON_OCMC_0_CLKCTRL, 2);

 while(((RD_MEM_32(CM_ALWON_OCMC_0_CLKSTCTRL) & 0x100)>>8)!=1);

 while(((RD_MEM_32(CM_ALWON_OCMC_0_CLKCTRL)&0x30000)>>17)!=0);

 /* Enable the OCMC1RAM Clocks */

 WR_MEM_32(CM_ALWON_OCMC_1_CLKSTCTRL, 2);

 WR_MEM_32(CM_ALWON_OCMC_1_CLKCTRL, 2);

 while(((RD_MEM_32(CM_ALWON_OCMC_1_CLKSTCTRL) & 0x100)>>8)!=1);

 while(((RD_MEM_32(CM_ALWON_OCMC_1_CLKCTRL)&0x30000)>>17)!=0);

 WR_MEM_32(CM_ALWON_L3_SLOW_CLKSTCTRL, 0x2); // Enable the Power Domain Transition of L3 Slow Domain Peripheral

 while((RD_MEM_32(CM_ALWON_L3_SLOW_CLKSTCTRL) & 0x2) !=0x2);

 WR_MEM_32(CM_ALWON_UART_0_CLKCTRL, 0x2); // Enable UART0 Clock

 while((RD_MEM_32(CM_ALWON_UART_0_CLKCTRL) & 0x2) !=0x2);

 WR_MEM_32(CM_ALWON_UART_1_CLKCTRL, 0x2); // Enable UART1 Clock

 while((RD_MEM_32(CM_ALWON_UART_1_CLKCTRL) & 0x2) !=0x2);

 WR_MEM_32(CM_ALWON_UART_2_CLKCTRL, 0x2); // Enable UART2 Clock

 while((RD_MEM_32(CM_ALWON_UART_2_CLKCTRL) & 0x2) !=0x2);

 WR_MEM_32(0x48181564, 0x2); // Enable I2C0 Clock

 while((RD_MEM_32(0x48181564) & 0x3) !=0x2);

 WR_MEM_32(0x48181568, 0x2); // Enable I2C1 Clock

 while((RD_MEM_32(0x48181568) & 0x3) !=0x2);

 WR_MEM_32(0x48181590, 0x2); // Enable SPI Clock

 while((RD_MEM_32(0x48181590) & 0x3) !=0x2);

 WR_MEM_32(0x481815C4, 0x2); // Enable Control Module

 while((RD_MEM_32(0x481815C4) & 0x3) !=0x2);

 WR_MEM_32(0x48181404, 0x2); // Enable Ethernet Clock

 while((RD_MEM_32(0x48181404) & 0x3) !=0x2);

 WR_MEM_32(0x48181540, 0x2); // Enable McASP0 Clock

 while((RD_MEM_32(0x48181540) & 0x3) !=0x2);

 WR_MEM_32(0x48181544, 0x2); // Enable McASP1 Clock

 while((RD_MEM_32(0x48181544) & 0x3) !=0x2);

 WR_MEM_32(0x48181548, 0x2); // Enable McASP2 Clock

 while((RD_MEM_32(0x48181548) & 0x3) !=0x2);

 WR_MEM_32(0x4818154c, 0x2); // Enable McBSP Clock

 while((RD_MEM_32(0x4818154c) & 0x3) !=0x2);

 WR_MEM_32(0x4818155c, 0x102); // Enable GPIO0 Clock

 while((RD_MEM_32(0x4818155c) & 0x3) !=0x2);

 WR_MEM_32(0x48181560, 0x102); // Enable GPIO1 Clock

 while((RD_MEM_32(0x48181560) & 0x3) !=0x2);

 WR_MEM_32(0x481815B0, 0x2); // Enable SDIO Clock

 while((RD_MEM_32(0x481815B0) & 0x3) !=0x2);

 WR_MEM_32(0x481815D4, 0x2); // Enable ENET0 Clock

 while((RD_MEM_32(0x481815D4) & 0x3) !=0x2);

 WR_MEM_32(0x481815D8, 0x2); // Enable ENET1 Clock

 while((RD_MEM_32(0x481815D8) & 0x3) !=0x2);

 WR_MEM_32(0x48180558, 0x2); // Enable USB Clock

 while((RD_MEM_32(0x48180558) & 0x3) !=0x2);

 WR_MEM_32(0x48180560, 0x2); // Enable SATA Clock

 while((RD_MEM_32(0x48180560) & 0x3) !=0x2);

 while(RD_MEM_32(CM_ALWON_L3_SLOW_CLKSTCTRL) & 0x2100 !=0x2100);

 GEL_TextOut("PRCM Setup Complete\n");

}

/* -- *

 * *

 * Setup_Power() *

 * Set EVM_1V0_AVS to 1.0V *

 * *

 * -- */

Setup_Power()

{

 *(unsigned int *)0x4803213c = 0x00000001; // Set GP0_IO0 to 1, GP0_IO1 to GP0_IO3 to 0 for 1.0V

 *(unsigned int *)0x48032134 = 0xfffffff0; // Set GP0_IO0 to GP0_IO3 as outputs

}

/* -- *

 * *

 * Setup_PADCTRL() *

 * Configure Pin Multiplexing *

 * *

 * -- */

Setup_PADCTRL()

{

 GEL_TextOut("Configuring Pad Functions...\n");

 /* GPMC NOR */

 WR_MEM_32(conf_tim7_out , 1); // GPMC A12

 WR_MEM_32(conf_uart1_ctsn , 1); // GPMC A13

 WR_MEM_32(conf_uart1_rtsn , 1); // GPMC A14

 WR_MEM_32(conf_uart2_rtsn , 1); // GPMC A15

 WR_MEM_32(conf_sc1_rst , 1); // GPMC A15

 WR_MEM_32(conf_uart2_ctsn , 1); // GPMC A16

 WR_MEM_32(conf_uart0_rin , 1); // GPMC A17

 WR_MEM_32(conf_uart0_dcdn , 1); // GPMC A18

 WR_MEM_32(conf_uart0_dsrn , 1); // GPMC A19

 WR_MEM_32(conf_uart0_dtrn , 1); // GPMC A20

 WR_MEM_32(conf_spi_scs3 , 1); // GPMC A21

 WR_MEM_32(conf_spi_scs2 , 1); // GPMC A22

 WR_MEM_32(conf_gp0_io6 , 2); // GPMC A23

 WR_MEM_32(conf_tim6_out , 1); // GPMC A24

 WR_MEM_32(conf_sc0_data , 1); // GPMC A25

 WR_MEM_32(conf_uart1_txd , 1); // GPMC A25 for catalog card

 WR_MEM_32(conf_gpmc_a27 , 1); // GPMC A27 as GPIO to select higher bits

 /* EMAC1 */

 WR_MEM_32(conf_mtsi_dclk , 1);

 WR_MEM_32(conf_mtsi_data0 , 1);

 WR_MEM_32(conf_mtsi_data1 , 1);

 WR_MEM_32(conf_mtsi_data2 , 1);

 WR_MEM_32(conf_mtsi_data3 , 1);

 WR_MEM_32(conf_mtsi_data4 , 1);

 WR_MEM_32(conf_mtsi_data5 , 1);

 WR_MEM_32(conf_mtsi_data6 , 1);

 WR_MEM_32(conf_mtsi_data7 , 1);

 WR_MEM_32(conf_mtsi_bytstrt , 1);

 WR_MEM_32(conf_mtso_dclk , 1);

 WR_MEM_32(conf_mtso_data0 , 1);

 WR_MEM_32(conf_mtso_data1 , 1);

 WR_MEM_32(conf_mtso_data2 , 1);

 WR_MEM_32(conf_mtso_data3 , 1);

 WR_MEM_32(conf_mtso_data4 , 1);

 WR_MEM_32(conf_mtso_data5 , 1);

 WR_MEM_32(conf_mtso_data6 , 1);

 WR_MEM_32(conf_mtso_data7 , 1);

 WR_MEM_32(conf_mtso_bytstrt , 1);

 WR_MEM_32(conf_mctl_sclk , 1);

 WR_MEM_32(conf_mctl_sctl , 1);

 WR_MEM_32(conf_mctl_sdi , 1);

 WR_MEM_32(conf_mctl_sdo , 1);

}

/* -- *

 * *

 * Setup_MainPLL() *

 * *

 * -- */

Setup_MainPLL()

{

 GEL_TextOut("\tMain PLL Init is in Progress, Please wait \n","Output",1,1,1);

 /* mainPLL(MAIN_N, MAIN_P, MAIN_INTFREQ1, MAIN_FRACFREQ1, MAIN_MDIV1,

 MAIN_INTFREQ2, MAIN_FRACFREQ2, MAIN_MDIV2,

 MAIN_INTFREQ3, MAIN_FRACFREQ3, MAIN_MDIV3,

 MAIN_INTFREQ4, MAIN_FRACFREQ4, MAIN_MDIV4,

 MAIN_INTFREQ5, MAIN_FRACFREQ5, MAIN_MDIV5,

 MAIN_MDIV6, MAIN_MDIV7)*/

 mainPLL(64, 0x1, 0x8, 0x800000, 0x2, // 800 MHz GEM

 0xE, 0x0, 0x1, // 987 MHz A8, SGX derives from this

 0x8, 0xAAAAB0, 0x3, // 530 MHz IVA

 0x9, 0x55554F, 0x3, // 493 MHz L3

 0x9, 0x374BC6, 0xC, // 125 MHz CPGMAC

 0x48, 0x4); // 24 MHz USB, 432 MHz for Audio PLL

 GEL_TextOut("\tMain PLL Init is Done \n","Output",1,1,1);

}

mainPLL(unsigned int MAIN_N, unsigned int MAIN_P, unsigned int MAIN_INTFREQ1, unsigned int MAIN_FRACFREQ1, unsigned int MAIN_MDIV1, unsigned int MAIN_INTFREQ2, unsigned int MAIN_FRACFREQ2, unsigned int MAIN_MDIV2, unsigned int MAIN_INTFREQ3, unsigned int MAIN_FRACFREQ3, unsigned int MAIN_MDIV3, unsigned int MAIN_INTFREQ4, unsigned int MAIN_FRACFREQ4, unsigned int MAIN_MDIV4, unsigned int MAIN_INTFREQ5, unsigned int MAIN_FRACFREQ5, unsigned int MAIN_MDIV5, unsigned int MAIN_MDIV6, unsigned int MAIN_MDIV7)

{

 unsigned int main_pll_ctrl=0, k=0;

 /* Put the Main PLL in Bypass Mode */

 main_pll_ctrl = RD_MEM_32(MAINPLL_CTRL);

 main_pll_ctrl &=0xFFFFFFFB;

 main_pll_ctrl |=4;

 WR_MEM_32(MAINPLL_CTRL, main_pll_ctrl);

 /* Bring Main PLL out of Power Down Mode */

 main_pll_ctrl = RD_MEM_32(MAINPLL_CTRL);

 main_pll_ctrl &=0xFFFFFFF7;

 main_pll_ctrl |=8;

 WR_MEM_32(MAINPLL_CTRL, main_pll_ctrl);

 /* Program the Main PLL Multiplier and Pre-dividr value */

 main_pll_ctrl = RD_MEM_32(MAINPLL_CTRL);

 main_pll_ctrl &=0xFF;

 main_pll_ctrl |=(MAIN_N<<16) | (MAIN_P<<8);

 WR_MEM_32(MAINPLL_CTRL, main_pll_ctrl);

 /* Bring the Main PLL Individual output clocks out of Power Down Mode

 1->Power Down

 0->Normal Mode i.e., out of Power Down Mode

 */

 WR_MEM_32(MAINPLL_PWD, 0x0);

 /* GEM Clock Generation, Configure the FREQ1 MMR */

 WR_MEM_32(MAINPLL_FREQ1, (1<<31)|(1<<28)|(MAIN_INTFREQ1<<24)| MAIN_FRACFREQ1);

 /* Program GEM Post divider register */

 WR_MEM_32(MAINPLL_DIV1, (1<<8)|MAIN_MDIV1);

 /* Program the PLL to generate Host ARM SYSCLK1 */

 WR_MEM_32(MAINPLL_FREQ2, (1<<31)|(1<<28)|(MAIN_INTFREQ2<<24)|MAIN_FRACFREQ2);

 WR_MEM_32(MAINPLL_DIV2, (1<<8)|MAIN_MDIV2);

 /* Program the PLL to generate IVA-HD SYSCLK3 */

 WR_MEM_32(MAINPLL_FREQ3, (1<<31)|(1<<28)|(MAIN_INTFREQ3<<24)|MAIN_FRACFREQ3);

 WR_MEM_32(MAINPLL_DIV3, (1<<8)|MAIN_MDIV3);

 /* Program the PLL to generate SYSCLK4 to SYSCLK7 */

 WR_MEM_32(MAINPLL_FREQ4, (1<<31)|(1<<28)|(MAIN_INTFREQ4<<24)|MAIN_FRACFREQ4);

 WR_MEM_32(MAINPLL_DIV4, (1<<8)|MAIN_MDIV4);

 /* Program the PLL to generate SYSCLK24, CPGMAC rft_clk */

 WR_MEM_32(MAINPLL_FREQ5, (1<<31)|(1<<28)|(MAIN_INTFREQ5<<24)|MAIN_FRACFREQ5);

 WR_MEM_32(MAINPLL_DIV5, (1<<8)|MAIN_MDIV5);

 /* Program the PLL to generate USB Reference Clock */

 WR_MEM_32(MAINPLL_DIV6, (1<<8)|MAIN_MDIV6);

 /* Program the PLL to generate Audio Reference Clock */

 WR_MEM_32(MAINPLL_DIV7, (1<<8)|MAIN_MDIV7);

 /* Wait for PLL to Lock */

 while((RD_MEM_32(MAINPLL_CTRL) & 0x80) !=0x80);

 /* Put the Main PLL in Normal(PLL) Mode */

 main_pll_ctrl = RD_MEM_32(MAINPLL_CTRL);

 main_pll_ctrl &=0xFFFFFFFB;

 WR_MEM_32(MAINPLL_CTRL, main_pll_ctrl);

}

DDRPLL(unsigned int DDR_N, unsigned int DDR_P, unsigned int DDR_MDIV1, unsigned int DDR_INTFREQ2, unsigned int DDR_FRACFREQ2, unsigned int DDR_MDIV2, unsigned int DDR_INTFREQ3, unsigned int DDR_FRACFREQ3, unsigned int DDR_MDIV3, unsigned int DDR_INTFREQ4, unsigned int DDR_FRACFREQ4, unsigned int DDR_MDIV4, unsigned int DDR_INTFREQ5, unsigned int DDR_FRACFREQ5, unsigned int DDR_MDIV5)

{

 unsigned int ddr_pll_ctrl=0;

 /* Put the Main DDR PLL in Bypass Mode

 0->Bypass Mode

 1->PLL Mode

 */

 ddr_pll_ctrl = RD_MEM_32(DDRPLL_CTRL);

 ddr_pll_ctrl &=0xFFFFFFFB;

 WR_MEM_32(DDRPLL_CTRL, ddr_pll_ctrl);

 /* Bring DDR PLL out of Power Down Mode

 0->Normal Mode i.e., out of Power Down Mode

 1->Power Down Mode

 */

 ddr_pll_ctrl = RD_MEM_32(DDRPLL_CTRL);

 ddr_pll_ctrl &=0xFFFFFFF7;

 ddr_pll_ctrl |=8;

 WR_MEM_32(DDRPLL_CTRL, ddr_pll_ctrl);

 /* Program the DDR PLL Multiplier and Pre-dividr value */

 ddr_pll_ctrl = RD_MEM_32(DDRPLL_CTRL);

 ddr_pll_ctrl &=0xFF;

 ddr_pll_ctrl |=(DDR_N<<16) | (DDR_P<<8);

 WR_MEM_32(DDRPLL_CTRL, ddr_pll_ctrl);

 /* Bring the DDR PLL Individual output clocks out of Power Down Mode

 1->Power Down

 0->Normal Mode i.e., out of Power Down Mode

 */

 WR_MEM_32(DDRPLL_PWD, 0x0);

 /* Program the DDR Post Divider to generate the DDR clock, DDR phy clock is source directly from DDR VCO output */

 WR_MEM_32(DDRPLL_DIV1, (1<<8)|DDR_MDIV1);

 /* Program the PLL to generate SYSCLK9 (16 MHz - VTP) and SYSCLK10 (48 MHz - UART, SPI, CEC, etc.) clock */

 WR_MEM_32(DDRPLL_FREQ2, (1<<31)|(1<<28)|(DDR_INTFREQ2<<24)|DDR_FRACFREQ2);

 WR_MEM_32(DDRPLL_DIV2, (1<<8)|DDR_MDIV2);

 /* Program the PLL to generate SYSCLK8 (400 MHz DMM, EMIF clock) */

 WR_MEM_32(DDRPLL_FREQ3, (1<<31)|(1<<28)|(DDR_INTFREQ3<<24)|DDR_FRACFREQ3);

 WR_MEM_32(DDRPLL_DIV3, (1<<8)|DDR_MDIV3);

 /* Program the PLL to generate expansion DDR PLL */

 WR_MEM_32(DDRPLL_FREQ4, (1<<31)|(1<<28)|(DDR_INTFREQ4<<24)|DDR_FRACFREQ4);

 WR_MEM_32(DDRPLL_DIV4, (1<<8)|DDR_MDIV4);

 /* Program the PLL to generate expansion DDR PLL */

 WR_MEM_32(DDRPLL_FREQ5, (1<<31)|(1<<28)|(DDR_INTFREQ5<<24)|DDR_FRACFREQ5);

 WR_MEM_32(DDRPLL_DIV5, (1<<8)|DDR_MDIV5);

 /* Wait for PLL to Lock */

 while((RD_MEM_32(DDRPLL_CTRL) & 0x80) !=0x80);

 /* Put the Main PLL in Normal(PLL) Mode */

 ddr_pll_ctrl = RD_MEM_32(DDRPLL_CTRL);

 ddr_pll_ctrl &=0xFFFFFFFB;

 ddr_pll_ctrl |=0x4;

 WR_MEM_32(DDRPLL_CTRL, ddr_pll_ctrl);

 /* Bring DDR RCD Module out of Power Down Mode

 0->Power Down Mode

 1->Normal Mode i.e., out of Power Down Mode

 */

 WR_MEM_32(DDR_RCD, 0x1);

}

EMIF4PRCM()

{

 GEL_TextOut("\tEVM816x DDR2/3 PRCM Init is in progress \n","Output",1,1,1);

 WR_MEM_32(CM_DEFAULT_FW_CLKCTRL, 0x2); // Enable the EMIF FireWall Clocks

 WR_MEM_32(CM_DEFAULT_L3_FAST_CLKSTCTRL, 0x2); // Enable the Power Domain Transition of L3 Fast Domain Peripheral

 WR_MEM_32(CM_DEFAULT_EMIF_0_CLKCTRL, 0x2); // Enable EMIF0 Clock

 WR_MEM_32(CM_DEFAULT_EMIF_1_CLKCTRL, 0x2); // Enable EMIF1 Clock

 while((RD_MEM_32(CM_DEFAULT_L3_FAST_CLKSTCTRL) & 0x300)!=0x300); // Poll for L3_FAST_GCLK & DDR_GCLK are active

 while(RD_MEM_32(CM_DEFAULT_EMIF_0_CLKCTRL)!=0x2); // Poll for Module is functional

 while(RD_MEM_32(CM_DEFAULT_EMIF_1_CLKCTRL)!=0x2); // Poll for Module is functional

 WR_MEM_32(CM_DEFAULT_DMM_CLKCTRL, 0x2); // Enable DMM clock Clock

 while(RD_MEM_32(CM_DEFAULT_DMM_CLKCTRL)!=0x2); // Poll for Module is functional

 ddr_init_settings(0);

 if(TWO_EMIF)

 ddr_init_settings(1);

 /*Program the DMM to Access EMIF0 and 1*/

 WR_MEM_32(DMM_LISA_MAP__0, 0x80640300); // Interleaved 1GB section from 0x80000000

 WR_MEM_32(DMM_LISA_MAP__1, 0xC0640320); // Interleaved 1GB section from 0xC0000000

 WR_MEM_32(DMM_LISA_MAP__2, 0x80640300);

 WR_MEM_32(DMM_LISA_MAP__3, 0xC0640320);

 /*Enable Tiled Access*/

 WR_MEM_32(DMM_PAT_BASE_ADDR, 0x80000000);

 GEL_TextOut("\tEVM816x DDR2/3 PRCM Init is Done \n","Output",1,1,1);

}

/* -- *

 * *

 * ddr3_sw_levelling(int emif) *

 * Configure DDR3 SW leveling *

 * modify_time:2014-08-29

 * modify_men:weizhongke

 * -- */

/* For Asymmetric EMIF setting, provide different values for EMIF0 and EMIF1 in the following lines */

//DDR3

#define DDR3_WR_DQS_SLAVE_BYTE0 		((emif == 0) ? 0xB2 : 0xB0)	//BYTE0 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_WR_DQS_SLAVE_BYTE1 		((emif == 0) ? 0xA2 : 0xA5)	//BYTE1 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_WR_DQS_SLAVE_BYTE2 		((emif == 0) ? 0x8F : 0x87)	//BYTE2 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_WR_DQS_SLAVE_BYTE3 		((emif == 0) ? 0x7D : 0x6F)	//BYTE3 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_SLAVE_BYTE0 		((emif == 0) ? 0x3B : 0x38)	//BYTE0 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_SLAVE_BYTE1 		((emif == 0) ? 0x38 : 0x3F)	//BYTE1 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_SLAVE_BYTE2 		((emif == 0) ? 0x37 : 0x43)	//BYTE2 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_SLAVE_BYTE3 		((emif == 0) ? 0x37 : 0x35)	//BYTE3 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_GATE_SLAVE_BYTE0		((emif == 0) ? 0x1D6 : 0x1D3) //BYTE0 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_GATE_SLAVE_BYTE1		((emif == 0) ? 0x1B3 : 0x1B5) //BYTE1 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_GATE_SLAVE_BYTE2		((emif == 0) ? 0x178 : 0x171) //BYTE2 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_RD_DQS_GATE_SLAVE_BYTE3		((emif == 0) ? 0x160 : 0x15F) //BYTE3 optimum value after running the CCS based slave ratio program should be configured

#define DDR3_WR_DATA_SLAVE_BYTE3		(DDR3_WR_DQS_SLAVE_BYTE3 + 0x40)

#define DDR3_WR_DATA_SLAVE_BYTE2		(DDR3_WR_DQS_SLAVE_BYTE2 + 0x40)

#define DDR3_WR_DATA_SLAVE_BYTE1		(DDR3_WR_DQS_SLAVE_BYTE1 + 0x40)

#define DDR3_WR_DATA_SLAVE_BYTE0		(DDR3_WR_DQS_SLAVE_BYTE0 + 0x40)

#define DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE0 DDR3_WR_DQS_SLAVE_BYTE3

#define DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE1 DDR3_WR_DQS_SLAVE_BYTE2

#define DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE2 DDR3_WR_DQS_SLAVE_BYTE1

#define DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE3 DDR3_WR_DQS_SLAVE_BYTE0

#define DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE0 DDR3_WR_DATA_SLAVE_BYTE3

#define DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE1 DDR3_WR_DATA_SLAVE_BYTE2

#define DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE2 DDR3_WR_DATA_SLAVE_BYTE1

#define DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE3 DDR3_WR_DATA_SLAVE_BYTE0

#define DDR3_SWLEVEL_RD_DQS_RATIO_LANE0 DDR3_RD_DQS_SLAVE_BYTE3

#define DDR3_SWLEVEL_RD_DQS_RATIO_LANE1 DDR3_RD_DQS_SLAVE_BYTE2

#define DDR3_SWLEVEL_RD_DQS_RATIO_LANE2 DDR3_RD_DQS_SLAVE_BYTE1

#define DDR3_SWLEVEL_RD_DQS_RATIO_LANE3 DDR3_RD_DQS_SLAVE_BYTE0

#define DDR3_SWLEVEL_DQS_GATE_BYTE_LANE0 DDR3_RD_DQS_GATE_SLAVE_BYTE3

#define DDR3_SWLEVEL_DQS_GATE_BYTE_LANE1 DDR3_RD_DQS_GATE_SLAVE_BYTE2

#define DDR3_SWLEVEL_DQS_GATE_BYTE_LANE2 DDR3_RD_DQS_GATE_SLAVE_BYTE1

#define DDR3_SWLEVEL_DQS_GATE_BYTE_LANE3 DDR3_RD_DQS_GATE_SLAVE_BYTE0

#define __raw_readl(a) (*(unsigned int *)(a))

#define __raw_writel(v, a) (*(unsigned int *)(a) = (v))

ddr_sw_levelling(int emif)

{

/*

*__raw_writel(0x6, (DDRPHY_CONFIG_BASE + 0x358));//old setting of DDR_VTP_CTRL

*/

 __raw_writel(0x16, (DDRPHY_CONFIG_BASE + 0x358)); //2014-08-29

	if(DDR3)

	{

 __raw_writel(DDR3_SWLEVEL_DQS_GATE_BYTE_LANE0, (DDRPHY_CONFIG_BASE + 0x108));

 __raw_writel(0x00000000, (DDRPHY_CONFIG_BASE + 0x10C));

 __raw_writel(DDR3_SWLEVEL_DQS_GATE_BYTE_LANE1, (DDRPHY_CONFIG_BASE + 0x1AC));

 __raw_writel(0x00000000, (DDRPHY_CONFIG_BASE + 0x1B0));

 __raw_writel(DDR3_SWLEVEL_DQS_GATE_BYTE_LANE2, (DDRPHY_CONFIG_BASE + 0x250));

 __raw_writel(0x00000000, (DDRPHY_CONFIG_BASE + 0x254));

 __raw_writel(DDR3_SWLEVEL_DQS_GATE_BYTE_LANE3, (DDRPHY_CONFIG_BASE + 0x2F4));

 __raw_writel(0x00000000, (DDRPHY_CONFIG_BASE + 0x2F8));

 __raw_writel(DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE0, (DDRPHY_CONFIG_BASE + 0x0DC));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x0E0));

 __raw_writel(DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE1, (DDRPHY_CONFIG_BASE + 0x180));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x184));

 __raw_writel(DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE2, (DDRPHY_CONFIG_BASE + 0x224));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x228));

 __raw_writel(DDR3_SWLEVEL_WR_DQS_RATIO_BYTE_LANE3, (DDRPHY_CONFIG_BASE + 0x2C8));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x2CC));

 __raw_writel(DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE0, (DDRPHY_CONFIG_BASE + 0x120));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x124));

 __raw_writel(DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE1, (DDRPHY_CONFIG_BASE + 0x1C4));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x1C8));

 __raw_writel(DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE2, (DDRPHY_CONFIG_BASE + 0x268));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x26C));

 __raw_writel(DDR3_SWLEVEL_WR_DATA_RATIO_BYTE_LANE3, (DDRPHY_CONFIG_BASE + 0x30C));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x310));

 __raw_writel(DDR3_SWLEVEL_RD_DQS_RATIO_LANE0, (DDRPHY_CONFIG_BASE + 0x0C8));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x0CC));

 __raw_writel(DDR3_SWLEVEL_RD_DQS_RATIO_LANE1, (DDRPHY_CONFIG_BASE + 0x16C));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x170));

 __raw_writel(DDR3_SWLEVEL_RD_DQS_RATIO_LANE2, (DDRPHY_CONFIG_BASE + 0x210));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x214));

 __raw_writel(DDR3_SWLEVEL_RD_DQS_RATIO_LANE3, (DDRPHY_CONFIG_BASE + 0x2B4));

 __raw_writel(0x0, (DDRPHY_CONFIG_BASE + 0x2B8));

	}

	

}

EMIF4P_Init(unsigned int TIM1, unsigned int TIM2, unsigned int TIM3, unsigned int SDREF, unsigned int SDCFG, unsigned int RL){

 /* Program EMIF0 CFG Registers */

 WR_MEM_32(EMIF4_0_SDRAM_TIM_1, TIM1);

 WR_MEM_32(EMIF4_0_SDRAM_TIM_1_SHADOW, TIM1);

 WR_MEM_32(EMIF4_0_SDRAM_TIM_2, TIM2);

 WR_MEM_32(EMIF4_0_SDRAM_TIM_2_SHADOW, TIM2);

 WR_MEM_32(EMIF4_0_SDRAM_TIM_3, TIM3);

 WR_MEM_32(EMIF4_0_SDRAM_TIM_3_SHADOW, TIM3);

 WR_MEM_32(EMIF4_0_SDRAM_CONFIG, SDCFG);

 /* WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, SDREF); */

 /* WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL_SHADOW, SDREF); */

 WR_MEM_32(EMIF4_0_DDR_PHY_CTRL_1, RL);

 WR_MEM_32(EMIF4_0_DDR_PHY_CTRL_1_SHADOW, RL);

 if(TWO_EMIF)

 {

 /* Program EMIF1 CFG Registers */

 WR_MEM_32(EMIF4_1_SDRAM_TIM_1, TIM1);

 WR_MEM_32(EMIF4_1_SDRAM_TIM_1_SHADOW, TIM1);

 WR_MEM_32(EMIF4_1_SDRAM_TIM_2, TIM2);

 WR_MEM_32(EMIF4_1_SDRAM_TIM_2_SHADOW, TIM2);

 WR_MEM_32(EMIF4_1_SDRAM_TIM_3, TIM3);

 WR_MEM_32(EMIF4_1_SDRAM_TIM_3_SHADOW, TIM3);

 WR_MEM_32(EMIF4_1_SDRAM_CONFIG, SDCFG);

 /* WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, SDREF); */

 /* WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL_SHADOW, SDREF); */

 WR_MEM_32(EMIF4_1_DDR_PHY_CTRL_1, RL);

 WR_MEM_32(EMIF4_1_DDR_PHY_CTRL_1_SHADOW, RL);

 }

 if(DDR2)

 {

 /* Setup a small refresh period */

 WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, 0x0000613B); // Initially a large refresh period

 WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, 0x1000613B); // Trigger initialization

 WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, (0x10000000|SDREF)); // Move to a smaller more correct one

 if(TWO_EMIF)

 {

 /* Setup a small refresh period */

 WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, 0x0000613B); // Initially a large refresh period

 WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, 0x1000613B); // Trigger initialization

 WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, (0x10000000|SDREF)); // Move to a smaller more correct one

 }

 }

 if(DDR3)

 {

 /* Setup a small refresh period */

 WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, 0x0000613B); // Initially a large refresh period

 WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, 0x1000613B); // Trigger initialization

 WR_MEM_32(EMIF4_0_SDRAM_REF_CTRL, (0x10000000|SDREF)); // Move to a smaller more correct one

 if(TWO_EMIF)

 {

 GEL_TextOut("\tInitializing EMIF1 \n","Output",1,1,1);

 /* Setup a small refresh period */

 WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, 0x0000613B); // Initially a large refresh period

 WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, 0x1000613B); // Trigger initialization

 WR_MEM_32(EMIF4_1_SDRAM_REF_CTRL, (0x10000000|SDREF)); // Move to a smaller more correct one

 }

 }

 if (DDR3 & SWLEVELINNG)

 {

 ddr_sw_levelling(0);

 GEL_TextOut("\tDDR3 SWLEVELING DONE FOR EMIF0 \n","Output",1,1,1);

 ddr_sw_levelling(1);

 GEL_TextOut("\tDDR3 SWLEVELING DONE FOR EMIF1 \n","Output",1,1,1);

 }

}

ddr_init_settings(int emif)

{

 /* DLL Lockdiff */

 if(PG1_0_DDR2)

 {

 /* The below programming is not required on EVM816x PG1.1 */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x028, 0xF);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x05C, 0xF);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x090, 0xF);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x138, 0xF);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1DC, 0xF);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x280, 0xF);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x324, 0xF);

 }

 /* Setup use rank delays */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x134, 1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1d8, 1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x27c, 1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x320, 1);

 if(DDR2)

 {

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x02C, 0x0); // invert_clk_out cmd0

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x060, 0x0); // invert_clk_out cmd0

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x094, 0x0); // invert_clk_out cmd0

 /* with inv clkout: 0x100. no inv clkout: 0x80 */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x01C, 0x80); // cmd0 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x050, 0x80); // cmd1 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x084, 0x80); // cmd2 slave ratio

 }

 if(DDR3)

 {

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x02C, 0x1); // invert_clk_out cmd0

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x060, 0x1); // invert_clk_out cmd0

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x094, 0x1); // invert_clk_out cmd0

 /* with inv clkout: 0x100. no inv clkout: 0x80 */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x01C, 0x100); // cmd0 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x050, 0x100); // cmd1 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x084, 0x100); // cmd2 slave ratio

 }

 if(DDR3) // DDR3

 {

 /* Verify whether following code is required on PG1.1 Samples */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0F8,0x1); // Init mode

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x104,0x1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x19C,0x1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1A8,0x1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x240,0x1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x24C,0x1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2E4,0x1);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2F0,0x1);

 /**** Setup the initial levelinihg ratios ****/

 /* These are derived from board delays and may be different for different boards */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0F0, (DDR3_WR_DQS_RATIO3 << 10) | DDR3_WR_DQS_RATIO3); // Data0 writelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0F4,0x00000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x194, (DDR3_WR_DQS_RATIO2 << 10) | DDR3_WR_DQS_RATIO2); // Data1 writelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x198,0x00000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x238, (DDR3_WR_DQS_RATIO1 << 10) | DDR3_WR_DQS_RATIO1); // Data2 writelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x23c,0x00000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2dc, (DDR3_WR_DQS_RATIO0 << 10) | DDR3_WR_DQS_RATIO0); // Data3 writelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2e0,0x00000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0FC,(DDR3_RD_GATE_RATIO3 << 10) | DDR3_RD_GATE_RATIO3); // Data0 gatelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x100,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1A0,(DDR3_RD_GATE_RATIO2 << 10) | DDR3_RD_GATE_RATIO2); // Data1 gatelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1A4,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x244,(DDR3_RD_GATE_RATIO1 << 10) | DDR3_RD_GATE_RATIO1); // Data2 gatelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x248,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2E8,(DDR3_RD_GATE_RATIO0 << 10) | DDR3_RD_GATE_RATIO0); // Data3 gatelvl init ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2EC,0x0);

 }

 if(DDR2) // DDR2

 {

 if(!PG1_0_DDR2)

 {

 /* Needed only in 1.1 */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x358,0x6);

 }

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x108,DQS_GATE_BYTE_LANE0); // Data0 fifo_we

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x10C,0x00000000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1AC,DQS_GATE_BYTE_LANE1); // Data1 fifo_we

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1B0,0x00000000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x250,DQS_GATE_BYTE_LANE2); // Data2 fifo_we

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x254,0x00000000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2F4,DQS_GATE_BYTE_LANE3); // Data3 fifo_we

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2F8,0x00000000);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0DC,WR_DQS_RATIO_BYTE_LANE0); // Data0 WR DQS

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0E0,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x180,WR_DQS_RATIO_BYTE_LANE1); // Data1 WR DQS

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x184,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x224,WR_DQS_RATIO_BYTE_LANE2); // Data2 WR DQS

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x228,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2C8,WR_DQS_RATIO_BYTE_LANE3); // Data3 WR DQS

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2CC,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x120,WR_DATA_RATIO_BYTE_LANE0); // Write data0 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x124,0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1C4,WR_DATA_RATIO_BYTE_LANE1); // Write data1 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1C8,0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x268,WR_DATA_RATIO_BYTE_LANE2); // Write data2 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x26C, 0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x30C,WR_DATA_RATIO_BYTE_LANE3); // Write data3 slave ratio

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x310, 0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0C8,RD_DQS_RATIO); // Data0 RD DQS */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0CC,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x16C,RD_DQS_RATIO); // Data1 RD DQS */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x170,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x210,RD_DQS_RATIO); // Data2 RD DQS */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x214,0x0);

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2B4,RD_DQS_RATIO); // Data3 RD DQS */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x2B8,0x0);

 }

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x00C,0x5); // cmd0 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x010,0x5); // cmd0 io clk config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x040,0x5); // cmd1 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x044,0x5); // cmd1 io clk config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x074,0x5); // cmd2 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x078,0x5); // cmd2 io clk config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0A8,0x4); // data0 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x0AC,0x4); // data0 io clk config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x14C,0x4); // data1 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x150,0x4); // data1 io clk config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1F0,0x4); // data2 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x1F4,0x4); // data2 io clk config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x294,0x4); // data3 io config - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x298,0x4); // data3 io clk config - output impedance of pad

 if(PG1_0_DDR2)

 {

 /* The below programming is not required on EVM816x PG1.1 */

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x338,0x5); // fifo_we_out0 - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x340,0x5); // fifo_we_out1 - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x348,0x5); // fifo_we_in2 - output impedance of pad

 WR_MEM_32(DDRPHY_CONFIG_BASE + 0x350,0x5); // fifo_we_in3 - output impedance of pad

 }

}

/* -- *

 * *

 * Setup_DDR() *

 * Configure DDR2/DDR3 at specified frequency. *

 * *

 * -- */

Setup_DDR()

{

 GEL_TextOut("\tEVM816x DDR PLL Init is in Progress for %d MHz DDR Clock, Please wait \n","Output",1,1,1,DDR_FREQ);

 /* SYS_CLKOUT selection */

 WR_MEM_32(CM_CLKOUT_CTRL, 0xA1); // 16 divider is selected

 /* DDR2 Initialization */

 if(DDR2)

 {

 GEL_TextOut("\tDDR2 Selected. \n","Output",1,1,1);

 DDRPLL(59, 0x1, 0x4, 0x8, 0xD99999, 0x1E, 0x8, 0x0, 0x4, 0xE, 0x0, 0x4, 0xE, 0x0, 0x4);

 GEL_TextOut("\tEVM816x DDR PLL Init is Done \n","Output",1,1,1);

 EMIF4PRCM();

 /* HACK: do the init with bad termination value */

 EMIF4P_Init(EMIF_TIM1_DDR2, EMIF_TIM2_DDR2, EMIF_TIM3_DDR2, EMIF_SDREF_DDR2 & 0xfffffff, EMIF_SDCFG_DDR2, EMIF_PHYCFG_DDR2);

 }

 /* DDR3 Initialization */

 if(DDR3)

 {

 GEL_TextOut("\tDDR3 Selected. \n","Output",1,1,1);

 if (DDR_FREQ == 400)

 DDRPLL(59, 0x000001, 4, 8, 0xD99999, 0x1E, 8, 0x00 , 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 531)

 DDRPLL(59, 0x000001, 3, 8, 0xD99999, 30, 8, 0x00 , 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 621)

 DDRPLL(46, 0x000001, 2, 6, 0xE66666, 30, 6, 0x35C28F, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 634)

 DDRPLL(47, 0x000001, 2, 7, 0x0CCCCC, 30, 6, 0x5851EB, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 648)

 DDRPLL(48, 0x000001, 2, 7, 0x333333, 30, 6, 0x7AE147, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 675)

 DDRPLL(50, 0x000001, 2, 7, 0x800000, 30, 6, 0xC00000, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 702)

 DDRPLL(52, 0x000001, 2, 7, 0xCCCCCC, 30, 6, 0xFFF972, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 729)

 DDRPLL(54, 0x000001, 2, 7, 0xFFFFEF, 30, 7, 0x4A3D70, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 756)

 DDRPLL(56, 0x000001, 2, 8, 0x666666, 30, 7, 0x8F5C28, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 783)

 DDRPLL(58, 0x000001, 2, 8, 0xB33333, 30, 7, 0xD47AE1, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 if (DDR_FREQ == 796)

 DDRPLL(59, 0x000001, 2, 8, 0xD99999, 30, 8, 0x000000, 4, 0xE, 0x00, 0x4, 0xE, 0x00, 0x4);

 GEL_TextOut("\tDM816x DDR PLL Init is Done \n","Output",1,1,1);

 EMIF4PRCM();

 /* HACK: do the init with bad termination value */

 if (DDR_FREQ == 400)

 EMIF4P_Init(EMIF_TIM1_DDR3_400, EMIF_TIM2_DDR3_400, EMIF_TIM3_DDR3_400, EMIF_SDREF_DDR3_400 & 0xfffffff, EMIF_SDCFG_DDR3_400, EMIF_PHYCFG_DDR3_400);

 if (DDR_FREQ == 531)

 EMIF4P_Init(EMIF_TIM1_DDR3_531, EMIF_TIM2_DDR3_531, EMIF_TIM3_DDR3_531, EMIF_SDREF_DDR3_531 & 0xfffffff, EMIF_SDCFG_DDR3_531, EMIF_PHYCFG_DDR3_531);

 if (DDR_FREQ == 621)

 EMIF4P_Init(EMIF_TIM1_DDR3_621, EMIF_TIM2_DDR3_621, EMIF_TIM3_DDR3_621, EMIF_SDREF_DDR3_621 & 0xfffffff, EMIF_SDCFG_DDR3_621, EMIF_PHYCFG_DDR3_621);

 if (DDR_FREQ == 634)

 EMIF4P_Init(EMIF_TIM1_DDR3_634, EMIF_TIM2_DDR3_634, EMIF_TIM3_DDR3_634, EMIF_SDREF_DDR3_634 & 0xfffffff, EMIF_SDCFG_DDR3_634, EMIF_PHYCFG_DDR3_634);

 if (DDR_FREQ == 648)

 EMIF4P_Init(EMIF_TIM1_DDR3_648, EMIF_TIM2_DDR3_648, EMIF_TIM3_DDR3_648, EMIF_SDREF_DDR3_648 & 0xfffffff, EMIF_SDCFG_DDR3_648, EMIF_PHYCFG_DDR3_648);

 if (DDR_FREQ == 675)

 EMIF4P_Init(EMIF_TIM1_DDR3_675, EMIF_TIM2_DDR3_675, EMIF_TIM3_DDR3_675, EMIF_SDREF_DDR3_675 & 0xfffffff, EMIF_SDCFG_DDR3_675, EMIF_PHYCFG_DDR3_675);

 if (DDR_FREQ == 702)

 EMIF4P_Init(EMIF_TIM1_DDR3_702, EMIF_TIM2_DDR3_702, EMIF_TIM3_DDR3_702, EMIF_SDREF_DDR3_702 & 0xfffffff, EMIF_SDCFG_DDR3_702, EMIF_PHYCFG_DDR3_702);

 if (DDR_FREQ == 729)

 EMIF4P_Init(EMIF_TIM1_DDR3_729, EMIF_TIM2_DDR3_729, EMIF_TIM3_DDR3_729, EMIF_SDREF_DDR3_729 & 0xfffffff, EMIF_SDCFG_DDR3_729, EMIF_PHYCFG_DDR3_729);

 if (DDR_FREQ == 756)

 EMIF4P_Init(EMIF_TIM1_DDR3_756, EMIF_TIM2_DDR3_756, EMIF_TIM3_DDR3_756, EMIF_SDREF_DDR3_756 & 0xfffffff, EMIF_SDCFG_DDR3_756, EMIF_PHYCFG_DDR3_756);

 if (DDR_FREQ == 783)

 EMIF4P_Init(EMIF_TIM1_DDR3_783, EMIF_TIM2_DDR3_783, EMIF_TIM3_DDR3_783, EMIF_SDREF_DDR3_783 & 0xfffffff, EMIF_SDCFG_DDR3_783, EMIF_PHYCFG_DDR3_783);

 if (DDR_FREQ == 796)

 EMIF4P_Init(EMIF_TIM1_DDR3_796, EMIF_TIM2_DDR3_796, EMIF_TIM3_DDR3_796, EMIF_SDREF_DDR3_796 & 0xfffffff, EMIF_SDCFG_DDR3_796, EMIF_PHYCFG_DDR3_796);

 }

	if(DDR3)

	{

		ddr_sw_levelling(0);

		GEL_TextOut("DDR3 SWLEVELING DONE FOR EMIF0 \n","Output",1,1,1);

		ddr_sw_levelling(1);

		GEL_TextOut("DDR3 SWLEVELING DONE FOR EMIF1 \n","Output",1,1,1);

 }

 GEL_TextOut("\tDM816x EMIF Init is Done @ %dMHz Clock Rate..... \n","Output",1,1,1,DDR_FREQ);

}

menuitem "EVM816X CPUs BRINGUP"

hotmenu Ducati()

{

 GEL_TextOut("\tPRCM for Ducati (CortexM3_0 & M3_1) is in Progress \n","Output",1,1,1);

 DucatiClkEnable();

 if((RD_MEM_32(CM_DEFAULT_TPPSS_CLKSTCTRL) & 0x7F00) ==0x7F00)

 {

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xE0); // Bring TPPSS out of Reset

 GEL_TextOut("\tTPPSS is Already out of Reset, Bring Ducati out of Reset \n","Output",1,1,1);

 }

 else

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xE3); //Bring Ducati M3_0 & M3_1 jointly out of Reset

 /* Check for Ducati M3_0 out of Reset */

 while(((RD_MEM_32(RM_DEFAULT_RSTST)&0x14))!=0x14) ;

 /* Check for Ducati M3_1 out of Reset */

 while(((RD_MEM_32(RM_DEFAULT_RSTST)&0x18))!=0x18) ;

 /* Check Module is in Functional Mode */

 while(((RD_MEM_32(CM_DEFAULT_DUCATI_CLKCTRL)&0x30000)>>16)!=0) ;

 GEL_TextOut("\tPRCM for DucatiCortexM3_0 & M3_1 are done Successfully\n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to Ducati \n","Output",1,1,1);

}

hotmenu CortexM3_0()

{

 GEL_TextOut("\tPRCM for DucatiCortexM3_0 is in Progress \n","Output",1,1,1);

 DucatiClkEnable();

 if((RD_MEM_32(CM_DEFAULT_TPPSS_CLKSTCTRL) & 0x7F00) ==0x7F00)

 {

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xE0); // Bring TPPSS out of Reset

 GEL_TextOut("\tTPPSS is Already out of Reset, Bring Ducati out of Reset \n","Output",1,1,1);

 }

 else

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xEB); // Bring Ducati M3_0 out of Reset

 /* Check for Ducati M3_0 out of Reset*/

 while(((RD_MEM_32(RM_DEFAULT_RSTST)&0x14))!=0x14) ;

 /* Check Module is in Functional Mode */

 while(((RD_MEM_32(CM_DEFAULT_DUCATI_CLKCTRL)&0x30000)>>16)!=0) ;

 GEL_TextOut("\tPRCM for DucatiCortexM3_0 is Done Successfully\n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to DucatiCortexM3_0 of DucatiSS \n","Output",1,1,1);

}

hotmenu CortexM3_1()

{

 GEL_TextOut("\tPRCM for DucatiCortexM3_1 is in Progress \n","Output",1,1,1);

 DucatiClkEnable();

 if((RD_MEM_32(CM_DEFAULT_TPPSS_CLKSTCTRL) & 0x7F00) ==0x7F00)

 {

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xE0); // Bring TPPSS out of Reset

 GEL_TextOut("\tTPPSS is Already out of Reset, Bring Ducati out of Reset \n","Output",1,1,1);

 }

 else

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xE7); // Bring Ducati M3_1 out of Reset

 /* Check for Ducati M3_1 out of Reset */

 while(((RD_MEM_32(RM_DEFAULT_RSTST)&0x18))!=0x18) ;

 /* Check Module is in Functional Mode */

 while(((RD_MEM_32(CM_DEFAULT_DUCATI_CLKCTRL)&0x30000)>>16)!=0) ;

 GEL_TextOut("\tPRCM for DucatiCortexM3_1 is Done Successfully \n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to DucatiCortexM3_1 of DucatiSS \n","Output",1,1,1);

}

hotmenu IVAHD0()

{

 GEL_TextOut("\tPRCM for IVHD0 is in Progress, Please wait..... \n","Output",1,1,1);

 WR_MEM_32(CM_IVAHD0_CLKSTCTRL, 2); // Enable Power Domain Transition

 while(RD_MEM_32(PM_IVAHD0_PWRSTST)!=0x37); // Check Power is ON

 WR_MEM_32(CM_IVAHD0_IVAHD_CLKCTRL, 2); // Enable IVHD0 Clocks

 WR_MEM_32(CM_IVAHD0_SL2_CLKCTRL, 2); // Enable IVHD0 SL2 Clocks

 while(((RD_MEM_32(CM_IVAHD0_CLKSTCTRL)&0x100))!=0x100); //IVAHD0_GCLK is Active

 WR_MEM_32(RM_IVAHD0_RSTCTRL, 3); // Enable IVHD0 logic & SL2

 while(RD_MEM_32(RM_IVAHD0_RSTST)!=4);

 WR_MEM_32(0x58088000, 0xEAFFFFFE); // Write Self Branch Instruction in ICONT1 ITCM 0 Location

 WR_MEM_32(0x58098000, 0xEAFFFFFE); // Write Self Branch Instruction in ICONT2 ITCM 0 Location

 WR_MEM_32(RM_IVAHD0_RSTCTRL, 0); // Bring ICONT1 & ICONT2 out of Reset

 while(RD_MEM_32(RM_IVAHD0_RSTST)!=7); // ICONT1 & ICONT2 are out of Reset

 GEL_TextOut("\tPRCM for IVHD0 is Done Successfully \n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to ICONT1 & ICONT2 of IVHD0 \n","Output",1,1,1);

}

hotmenu IVAHD1()

{

 GEL_TextOut("\tPRCM for IVHD1 is in Progress, Please wait..... \n","Output",1,1,1);

 WR_MEM_32(CM_IVAHD1_CLKSTCTRL, 2); // Enable Power Domain Transition

 while(RD_MEM_32(PM_IVAHD1_PWRSTST)!=0x37); // Check Power is ON

 WR_MEM_32(CM_IVAHD1_IVAHD_CLKCTRL, 2); // Enable IVHD1 Clocks

 WR_MEM_32(CM_IVAHD1_SL2_CLKCTRL, 2); // Enable IVHD1 SL2 Clocks

 while(((RD_MEM_32(CM_IVAHD1_CLKSTCTRL)&0x100))!=0x100); // IVAHD1_GCLK is Active

 WR_MEM_32(RM_IVAHD1_RSTCTRL, 3); // Enable IVHD1 logic & SL2

 while(RD_MEM_32(RM_IVAHD1_RSTST)!=4);

 WR_MEM_32(0x5A088000, 0xEAFFFFFE); // Write Self Branch Instruction in ICONT1 ITCM 0 Location

 WR_MEM_32(0x5A098000, 0xEAFFFFFE); // Write Self Branch Instruction in ICONT2 ITCM 0 Location

 WR_MEM_32(RM_IVAHD1_RSTCTRL, 0); // Bring ICONT1 & ICONT2 out of Reset

 while(RD_MEM_32(RM_IVAHD1_RSTST)!=7); // ICONT1 & ICONT2 are out of Reset

 GEL_TextOut("\tPRCM for IVHD1 is Done Successfully \n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to ICONT1 & ICONT2 of IVHD1 \n","Output",1,1,1);

}

hotmenu IVAHD2()

{

 GEL_TextOut("\tPRCM for IVHD2 is in Progress, Please wait..... \n","Output",1,1,1);

 WR_MEM_32(CM_IVAHD2_CLKSTCTRL, 2); // Enable Power Domain Transition

 while(RD_MEM_32(PM_IVAHD2_PWRSTST)!=0x37); // Check Power is ON

 WR_MEM_32(CM_IVAHD2_IVAHD_CLKCTRL, 2); // Enable IVHD2 Clocks

 WR_MEM_32(CM_IVAHD2_SL2_CLKCTRL, 2); // Enable IVHD2 SL2 Clocks

 while(((RD_MEM_32(CM_IVAHD2_CLKSTCTRL)&0x100))!=0x100); // IVAHD2_GCLK is Active

 WR_MEM_32(RM_IVAHD2_RSTCTRL, 3); // Enable IVHD1 logic & SL2

 while(RD_MEM_32(RM_IVAHD2_RSTST)!=4);

 WR_MEM_32(0x53088000, 0xEAFFFFFE); // Write Self Branch Instruction in ICONT1 ITCM 0 Location

 WR_MEM_32(0x53098000, 0xEAFFFFFE); // Write Self Branch Instruction in ICONT2 ITCM 0 Location

 WR_MEM_32(RM_IVAHD2_RSTCTRL, 0); // Bring ICONT1 & ICONT2 out of Reset

 while(RD_MEM_32(RM_IVAHD2_RSTST)!=7); // ICONT1 & ICONT2 are out of Reset

 GEL_TextOut("\tPRCM for IVHD2 is Done Successfully \n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to ICONT1 & ICONT2 of IVHD2 \n","Output",1,1,1);

}

hotmenu TPPSS()

{

 unsigned int fail=0, k=0;

 GEL_TextOut("\tPRCM for TPPSS is in Progress, Please wait..... \n","Output",1,1,1);

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xFD); // Bring TPP ARM out of Reset

 /* Enable the TPPSS Clocks */

 WR_MEM_32(CM_DEFAULT_TPPSS_CLKSTCTRL, 2);

 WR_MEM_32(CM_DEFAULT_TPPSS_CLKCTRL, 2);

 while(((RD_MEM_32(CM_DEFAULT_TPPSS_CLKSTCTRL) & 0x7F00)>>8)!=0x7F);

 while(((RD_MEM_32(CM_DEFAULT_TPPSS_CLKCTRL)&0x30000)>>16)!=0);

 GEL_TextOut("\tPRCM for TPPSS Initialization in Done \n","Output",1,1,1);

 for(k=0; k<10; k++)

 WR_MEM_32(TPPIRAM_BASE_ADDR+4*k, 0xEAFFFFFE);

 /* Check CLKIN200TR & CLKINTR are active */

 /* Implement Different Logic in C, Based on Application requirement for TPPSS, Ducati */

 if((RD_MEM_32(CM_DEFAULT_DUCATI_CLKSTCTRL)&0x300) ==0x300)

 GEL_TextOut("\tDucati is Already out of Reset, Bring TPPSS out of Reset \n","Output",1,1,1);

 else

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xFC); // Bring TPP out of Local Reset

 GEL_TextOut("\tPRCM for TPPSS is Done Successfully \n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to ARM968 of TPPSS \n","Output",1,1,1);

}

hotmenu C674x()

{

 unsigned int i=0, k=0, fail=0;

 GEL_TextOut("\tPRCM for C674x is in Progress, Please wait..... \n","Output",1,1,1);

 /* Cortex A8 must be in Supervisor Mode to Access the following two registers */

 WR_MEM_32(DSPMEM_SLEEP, 0); // Bring GEM L2RAM out of Power down Mode

 WR_MEM_32(DSPBOOTADDR, 0x00800000); // DSPBOOT ADDRESS

 /*Enable Clock to MMU CFG*/

 WR_MEM_32(CM_MMUCFG_CLKSTCTRL, 2);

 WR_MEM_32(CM_ALWON_MMUCFG_CLKCTRL, 2);

 while(((RD_MEM_32(CM_ALWON_MMUCFG_CLKCTRL)&0x0))!=0x0);

 while(((RD_MEM_32(CM_MMUCFG_CLKSTCTRL)&0x100))!=0x100);

 /*Enable Clock to Data*/

 WR_MEM_32(CM_MMU_CLKSTCTRL, 2);

 WR_MEM_32(CM_ALWON_MMUDATA_CLKCTRL, 2);

 while(((RD_MEM_32(CM_ALWON_MMUDATA_CLKCTRL)&0x0))!=0x0);

 while(((RD_MEM_32(CM_MMU_CLKSTCTRL)&0x100))!=0x100);

 /*Enable Clock to GEMSS*/

 WR_MEM_32(CM_GEM_CLKSTCTRL, 2); // Enable Power Domain Transition

 while(RD_MEM_32(PM_ACTIVE_PWRSTST)!=0x37); // Check Power is ON

 WR_MEM_32(CM_ACTIVE_GEM_CLKCTRL, 2); // Enable GEMSS Clocks

 while(((RD_MEM_32(CM_GEM_CLKSTCTRL)&0x700))!=0x700); // GME Clocks are Active

 WR_MEM_32(RM_ACTIVE_RSTCTRL, 1); // Issue GEM Warm Reset To access GEMSS memories

 while(((RD_MEM_32(RM_ACTIVE_RSTST)&0x2))!=0x2); // GEMSS Warm Reset has been Asserted

 for(i=0; i<8; i++)

 WR_MEM_32((GEM_L2RAM_BASE_ADDR+4*i), 0x12); // Write Self Branch Instruction

 WR_MEM_32(RM_ACTIVE_RSTCTRL, 0); // Bring GEM Core out of Reset

 while(((RD_MEM_32(RM_ACTIVE_RSTST)&0x3))!=0x3); // GEM core core is out of Reset

 for(k=0; k<SIZE; k++)

 {

 WR_MEM_32(GEM_L2RAM_BASE_ADDR+0x100+4*k, 0x12345678+k);

 }

 for(k=0; k<SIZE; k++)

 {

 if(RD_MEM_32(GEM_L2RAM_BASE_ADDR+0x100+4*k) != (0x12345678+k))

 fail++;

 }

 if(fail!=0)

 {

 GEL_TextOut("\tC674x L2 RAM Accesses are FAILED \n","Output",1,1,1);

 }

 GEL_TextOut("\tC674x L2 RAM Accesses are PASSED \n","Output",1,1,1);

 GEL_TextOut("\tUser Can Connect to C674x \n","Output",1,1,1);

}

DucatiClkEnable()

{

 WR_MEM_32(RM_DEFAULT_RSTCTRL, 0xEF); // Enable the Ducati Logic

 WR_MEM_32(CM_DEFAULT_DUCATI_CLKSTCTRL, 2); // Enable Power Domain Transition

 WR_MEM_32(CM_DEFAULT_DUCATI_CLKCTRL, 2); // Enable Ducati Clocks

 /* Check CLKIN200TR & CLKINTR are active */

 while(((RD_MEM_32(CM_DEFAULT_DUCATI_CLKSTCTRL)&0x300)>>8)!=3) ;

 /* Write Ducate IRAM Boot Image */

 WR_MEM_32(DUCATI_BASE_ADDR, 0x10000);

 WR_MEM_32(DUCATI_BASE_ADDR+0x4, 0x9);

 WR_MEM_32(DUCATI_BASE_ADDR+0x8, 0xE7FEE7FE);

 /* DUcati Ammu COnfig */

 /* AmmuConfig(); */

}

AmmuConfig()

{

 /* Large Page Translations */

 WR_MEM_32(DUCATI_MMU_CFG+0x800, 0x40000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x804, 0x80000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x808, 0xA0000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x80C, 0x60000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x820, 0x40000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x824, 0x80000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x828, 0xA0000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x82C, 0x60000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x840, 0x00000007);

 WR_MEM_32(DUCATI_MMU_CFG+0x844, 0x000B0007);

 WR_MEM_32(DUCATI_MMU_CFG+0x848, 0x00020007);

 WR_MEM_32(DUCATI_MMU_CFG+0x84C, 0x00020007);

 /* Medium Page */

 WR_MEM_32(DUCATI_MMU_CFG+0x860, 0x00300000);

 WR_MEM_32(DUCATI_MMU_CFG+0x864, 0x00400000);

 WR_MEM_32(DUCATI_MMU_CFG+0x868, 0x00000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x86C, 0x00000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x8A0, 0x40300000);

 WR_MEM_32(DUCATI_MMU_CFG+0x8A4, 0x40400000);

 WR_MEM_32(DUCATI_MMU_CFG+0x8A8, 0x00000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x8AC, 0x00000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x8E0, 0x00000007);

 WR_MEM_32(DUCATI_MMU_CFG+0x8E4, 0x00020007);

 WR_MEM_32(DUCATI_MMU_CFG+0x8E8, 0x00000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x8EC, 0xC0000000);

 /* Small Page */

 WR_MEM_32(DUCATI_MMU_CFG+0x920, 0x00000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x924, 0x40000000);

 WR_MEM_32(DUCATI_MMU_CFG+0x928, 0x00004000);

 WR_MEM_32(DUCATI_MMU_CFG+0x92C, 0x00008000);

 WR_MEM_32(DUCATI_MMU_CFG+0x930, 0x0000C000);

 WR_MEM_32(DUCATI_MMU_CFG+0x9A0, 0x55020000);

 WR_MEM_32(DUCATI_MMU_CFG+0x9A4, 0x55080000);

 WR_MEM_32(DUCATI_MMU_CFG+0x9A8, 0x55024000);

 WR_MEM_32(DUCATI_MMU_CFG+0x9AC, 0x55028000);

 WR_MEM_32(DUCATI_MMU_CFG+0x9B0, 0x5502C000);

 WR_MEM_32(DUCATI_MMU_CFG+0xA20, 0x0001000B);

 WR_MEM_32(DUCATI_MMU_CFG+0xA24, 0x0000000B);

 WR_MEM_32(DUCATI_MMU_CFG+0xA28, 0x00010007);

 WR_MEM_32(DUCATI_MMU_CFG+0xA2C, 0x00000007);

 WR_MEM_32(DUCATI_MMU_CFG+0xA30, 0x00000007);

}

#define SWLEVEL_WR_DQS_RATIO_BYTE_LANE3 ((0x93 << 10) | 0x93)

#define SWLEVEL_WR_DQS_RATIO_BYTE_LANE2 ((0x93 << 10) | 0x93)

#define SWLEVEL_WR_DQS_RATIO_BYTE_LANE1 ((0x93 << 10) | 0x93)

#define SWLEVEL_WR_DQS_RATIO_BYTE_LANE0 ((0x93 << 10) | 0x93)

#define SWLEVEL_WR_DATA_RATIO_BYTE_LANE3 (((0x93 + 0x40) << 10) | (0x93 + 0x40))

#define SWLEVEL_WR_DATA_RATIO_BYTE_LANE2 (((0x93 + 0x40) << 10) | (0x93 + 0x40))

#define SWLEVEL_WR_DATA_RATIO_BYTE_LANE1 (((0x93 + 0x40) << 10) | (0x93 + 0x40))

#define SWLEVEL_WR_DATA_RATIO_BYTE_LANE0 (((0x93 + 0x40) << 10) | (0x93 + 0x40))

#define SWLEVEL_RD_DQS_RATIO ((0x35 << 10) | 0x35)

#define SWLEVEL_DQS_GATE_BYTE_LANE0 ((0x1B3 << 10) | 0x1B3)

#define SWLEVEL_DQS_GATE_BYTE_LANE1 ((0x1B3 << 10) | 0x1B3)

#define SWLEVEL_DQS_GATE_BYTE_LANE2 ((0x1B3 << 10) | 0x1B3)

#define SWLEVEL_DQS_GATE_BYTE_LANE3 ((0x1B3 << 10) | 0x1B3)

image1.emf
DDR3_slave_ratio_ search.out

DDR3_slave_ratio_search.out

image2.emf
DM816x DDR3 Init Wordwise SWleveling.pdf

DM816x DDR3 Init Wordwise SWleveling.pdf
2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

DM816x C6A816x AM389x DDR3 Init Wordwise
SWleveling

Contents [hide]

1 DDR3 Initialization with SW Leveling
2 ReadMe First

3 Prerequisites

4 Overview

5 Obtaining the seed values

6 Generating the static values

6.1 Hardware Setup
6.2 Starting CCS
6.3 Loading GEL File
6.4 Loading the CCS app
6.5 Running the app
7 Modifying U-Boot
8 Run mtest
8.1 Interpreting the mtest result

DDR3 Initialization with SW Leveling
ReadMe First

The purpose of this document is to describe how to initialize DDR3 on all
DM816x/C6A816x/AM389x devices using software leveling. The current
approach uses static values for the software leveling process. Support for

Asymmetric DDR2/3 memory interfaces is included.

Please refer to the attached presentation File:DDR3-Bring—up—

Overview. pdffor an overview of the bring—up procedure.

The attached spreadsheet File:DM816x C6A816x AM389x EMIF4 Register
Settings. zip can be used to calculate the DDR Register values based on the
selected DDR SDRAM datasheet values.

Prerequisites

1. Excel spreadsheet for obtaining the seed values which is the input
to the CCS based app File:RatioSeed. zip

2. CCS based program DDR3 slave ratio search. out which generates
the static values for the software leveling process

3. TI816x U-Boot source code based on PSP release 04.00.00.07

4. U-Boot—DDR3. patch File:U-Boot—-DDR3. zip for adding support for DDR3
in the U-Boot. This needs to be applied on top of the PSP release
04. 00. 00. 07

5. Asymmetric—-DDR3—memory—inteface. patch File:Asymmetric DDR3

interface. zip for adding support for Asymmetric DDR3 memory

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling 171

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

interface with PSP Release 04. 00. 00. 13
6. U-Boot User Guide which is a part of the PSP release

Overview

In order to correctly setup DDR3 in these devices the approach used is
software (slave ratio) leveling. The values to be used for software
leveling are for specific board type and needs to be estimated using the
CCS based program DDR3 slave ratio_search. out which can be downloaded

from here File:DDR3 slave ratio search. zip

The program DDR3 slave ratio search. out searches the window for the
following Slave Ratio values on board based on the initial seed values to
be keyed in on the command line(calculated based on DDR2/3 board

topology), as explained in the next section.

1. Read DQS Slave Ratio
2. Read DQS Gate Slave Ratio
3. Write DQS Slave Ratio

Note that this program needs to be run for each new board type and for

each operating frequency of DDR3.

Obtaining the seed values

The seed values for the ratios may be obtained using
theFile:RatioSeed. zip spreadsheet. The spreadsheet takes the following as

inputs:
1. DDR3 clock frequency

2. Invert Clkout setting (Possible values: 0/1; Use 1 as the gel files are
with this setting)

3. CK and DQS trace lengths in inches for each of the byte lanes.

The user inputs should be on these cells that are marked green. Once these
fields are input, feed the values for B17, BI8 and B19 for respective

parameters to the CCS program.

Generating the static values

Hardware Setup

s Connect the JTAG emulator to the board using the JTAG ribbon cable and
the 20/14 pin JTAG adapter (board specific).

e Connect the serial port output of the board to the serial port of the
PC.

e Connect an Ethernet cable to the board with the other end connected to

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling

2111

20144E9H 1H

the local network.
Make sure the Boot Mode / Configuration Select Switch are set to all
0Os.

Starting CCS

System Requirements - CCS 4.2.0.0700 or above installed on Windows XP
with Service Pack 2
Start CCSv4 by navigating to ~Start’ menu in Windows XP
Select the workspace folder where you want to store your project
Use target configuration file ti816x.ccxml. If there is a need to crate
a new configuration, then follow steps below
e Select new Target Configuration “Target —> New Target Configuration”
¢ Connection = TI XDS560 Emulator
Board or Device = TI816xEVM
Save configuration, e.g., ti816x.ccxml (On some CCS versions you
might have to use the internal name of TI816x for this)
#« From next run, the project and target configuration will be readily
available and can be skipped
Select ”“Debug Perspective” in CCS if it is not there already: Window —>
Open Perspective —> Debug
Select View —> Target Configurations. Look for the target
configurationti816x. ccxml created in the previous step
Right click and click “Launch Selected Configuration”
This should launch debug session
In Debug view select “TI XDS560 Emulator 0/Cortex A8” connection.
Right click and select ”“Set Debug Scope” option. This will make remove
all the cores except Cortex A8 from the debug view.
Right click on the Cortex A8 core listed and click on “Connect Target”
A “Disassembly” view with PC halted should pop up in one of the tabs.

If not, issue a System Reset’ from Target menu and then click on Halt

Loading GEL File

Ensure that the GEL file Ti816x ddr.gel File:Ti816x ddr.zip is copied
to the Windows Machine

Select Tools —> GEL Files in CCS

This opens a new tab in the Debug view. On right hand side empty area

in this window, right click and use “Load GEL”

Navigate to the directory containing gel file and select Ti816x

ddr. gel.

e A “Scripts” menu item (on top) should now be available

e Select Scripts —> NETRA External Memory Initialization —>

DDR3 xMHz do all()

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling

DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

31

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

Note: The GEL file has different menu options which to be used for different speeds of DDR3.
Select the appropriate operating frequency in this step.

This will perform system initialization and basic setup needed to load
programs to the Cortex A8 core on the EVM.

On success, you should see following at the CCS console:

PRCM for OCMCRAMO/1 Initialization in Done

s Note that sometimes the Scripts menu is disabled. In this case, go to
Debug window and select “TI XDS560 Emulator 0/CortexA8 (top level node)

and the Scripts menu should get activated.

Loading the CCS app

e At this point you will be in user mode on the A8 (marked as USR in the
bottom right corner of CCS Status Bar). You will need to be in
Supervisor (SPV) to run UBoot and the Linux Kernel. You can do that as

follows:

1. View all Registers

2. Expand CPSR

3. Select “M” and set it to 0x13

4. These steps set the CPSR.M to 0x13 (SPV mode).
e Fnsure that the CCS app <FIX ME> is copied to the Windows machine.
Select Target ——> Load program. Select the CCS

programDDR3 slave ratio search. out for loading.

Running the app
Select the CCS program DDR3 slave ratio search. out for loading.

e Select Target ——> Run
The program will prompt for the seed values. Enter the values estimated

from the Excel spreadsheet.

The following shows an example run of the program

Enter 0 for EMIFO & 1 for EMIF1

0
DDR AADR=80000000

Enter the Seed Read DQS Gate Ratio Value in Hex to search the RD DQS Gate Window
120

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling 411

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

Enter the Seed Read DQS Ratio Value in Hex to search the RD DQS Ratio Window
40

Enter the Seed Write DQS Ratio Value in Hex to search the Write DQS Ratio Window
80

In the above example the seed values calculated based on the DDR3 board

topology are entered.

Based on the seed value, the search window may or may not converge for the

the slave ratios listed in Overview section.

For Asymmetric DDR2/3 memory interface (where trace lengths of DDRO & DDR1
for CK & DQS are different), then DDR3 slave ratio search.out should be
run twice to calculate the Slave Ratio values for DDRO(Memory Map Address
=0x8000 0000) & DDR1 (Memory Map Address=0xC000 0000).

For Symmetric DDR2/3 memory interface (where trace lengths of DDRO & DDRI
for CK & DQS are almost equal or exactly equal), then

DDR3 slave ratio. search. out can be run for DDRO interface only to
calculate the Slave ratio values and the same slave ratio values can be

used for DDR1 interface also.

Scenario A: It is applicable when the seed values calculated from the
excel sheet are correct and all the slave ratios converge in a single run

itself, as shown below.

Run 1:

Enter 0 for EMIFO & 1 for EMIF1
0
DDR AADR=80000000

Enter the Seed Read DQS Gate Ratio Value in Hex to search the RD DQS Gate Window
120

Enter the Seed Read DQS Ratio Value in Hex to search the RD DQS Ratio Window
40

Enter the Seed Write DQS Ratio Value in Hex to search the Write DQS Ratio Window
80
DLL Lock Values at Start f0, f3, 3, {3

RD DQS GATE RATIO MAX VALUE=1e0
RD DQS GATE RATIO MIN VALUE=dc
The RD DQS GATE OPTIMUM VAL=15e

RD DQS RATIO MAX VALUE=6e

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling 511

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

RD DQS RATIO MIN VALUE=c
The RD DQS OPTIMUM VAL=3d

WR DQS RATIO MAX VALUE=e4
WR DQS RATIO MIN VALUE=a
The WR DQS RATIO OPTIMUM VAL=77

All slave ratios converges in Run 1. You may choose to run it one more
time to be sure that the converged “optimum values” are same. However,

there can be small variations across different run based on the voltage
and temperature on the board. In that case you can choose to enter

converged values from either run 1 or run 2.

Key—in the optimum values for Run 2

Run 2:

Enter 0 for EMIFO & 1 for EMIF1
0
DDR AADR=80000000

Enter the Seed Read DQS Gate Ratio Value in Hex to search the RD DQS Gate Window
15e

Enter the Seed Read DQS Ratio Value in Hex to search the RD DQS Ratio Window
3d

Enter the Seed Write DQS Ratio Value in Hex to search the Write DQS Ratio Window
77
DLL Lock Values at Start ef, f3, f3, {3

RD DQS GATE RATIO MAX VALUE=1e0
RD DQS GATE RATIO MIN VALUE=d8
The RD DQS GATE OPTIMUM VAL=15c

RD DQS RATIO MAX VALUE=6d
RD DQS RATIO MIN VALUE=b
The RD DQS OPTIMUM VAL=3c

WR DQS RATIO MAX VALUE=eb
WR DQS RATIO MIN VALUE=9

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling

6/11

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki
The WR DQS RATIO OPTIMUM VAL=77

If you compare Run 1 and Run 2 results the search values for the slave
ratios are almost same. Note down the Optimum value for each slave ratio

and enter either in the GEL file or the U-Boot code as described below.

Scenario B : It is applicable when the seed values calculated from the
excel sheet don’t help converge all the slave ratios in a single run. The
example below shows that DQS Slave Ratio Converges but other slave ratios
do not. In this case the values which have converged needs to be used

iteratively until all three values converge.

Run 1:

Enter 0 for EMIFO & 1 for EMIF1
0
DDR AADR=80000000

Enter the Seed Read DQS Gate Ratio Value in Hex to search the RD DQS Gate Window
80

Enter the Seed Read DQS Ratio Value in Hex to search the RD DQS Ratio Window
40

Enter the Seed Write DQS Ratio Value in Hex to search the Write DQS Ratio Window
80

DLL Lock Values at Start f0, f3, f3, {3

RD DQS GATE RATIO MAX VALUE=1d4
RD DQS GATE RATIO MINIMUM VALUE DIDN’ T CONVERGE
The RD DQS GATE OPTIMUM VAL=ea

RD DQS RATIO MAXIMUM VALUE DIDN' T CONVERGE
RD DQS RATTO MINIMUM VALUE DIDN' T CONVERGE

WR DQS RATIO MAXIMUM VALUE DIDN’ T CONVERGE
WR DQS RATIO MINIMUM VALUE DIDN' T CONVERGE

In Run 1, all the slave ratios did not converged. Re—run the program and

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling 7M1

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

key—in the converged value to program, to search the window.

Run 2:

Enter 0 for EMIFO & 1 for EMIF1
0
DDR AADR=80000000

Enter the Seed Read DQS Gate Ratio Value in Hex to search the RD DQS Gate Window

ea —> This value has converged above and used in this iteration instead

of earlier value.

Enter the Seed Read DQS Ratio Value in Hex to search the RD DQS Ratio Window
40

Enter the Seed Write DQS Ratio Value in Hex to search the Write DQS Ratio Window
80
DLL Lock Values at Start ef, f3, f3, {3

RD DQS GATE RATIO MAX VALUE=1e0
RD DQS GATE RATIO MIN VALUE=dc
The RD DQS GATE OPTIMUM VAL=15e

RD DQS RATIO MAX VALUE=50
RD DQS RATIO MIN VALUE=c
The RD DQS OPTIMUM VAL=2e

WR DQS RATIO MAX VALUE=e4
WR DQS RATIO MIN VALUE=8
The WR DQS RATIO OPTIMUM VAL=76

In Run 2, all the values converged. If all the three values would not have

converged, run 1 more search and key—in the Run 2 seed values for Run 3

Run 3:
Enter 0 for EMIFO & 1 for EMIF1

0
DDR AADR=80000000

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling

8/11

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

Enter the Seed Read DQS Gate Ratio Value in Hex to search the RD DQS Gate Window
15E

Enter the Seed Read DQS Ratio Value in Hex to search the RD DQS Ratio Window
2e

Enter the Seed Write DQS Ratio Value in Hex to search the Write DQS Ratio Window
76
DLL Lock Values at Start ef, f3, f3, f3

RD DQS GATE RATIO MAX VALUE=1e0
RD DQS GATE RATIO MIN VALUE=c8
The RD DQS GATE OPTIMUM VAL=154

RD DQS RATIO MAX VALUE=6e
RD DQS RATIO MIN VALUE=c
The RD DQS OPTIMUM VAL=3d

WR DQS RATIO MAX VALUE=e4
WR DQS RATIO MIN VALUE=8
The WR DQS RATIO OPTIMUM VAL=76

If you compare Run 2 and Run 3 results the search values for the slave
ratios are almost same. Note down the Optimum value for each slave ratio

and enter either in the GEL file or the U-Boot code as described below.

Reset the Board or Issue POR. Repeat the steps for searching for the slave

ratios for different DDR2/3 frequencies.

Modifying U-Boot

The values generated in the previous step are used in U-Boot (with
theFile:U-Boot-DDR3. zip patch applied) for the software leveling process
While plugging in the values in U-Boot please ensure that the changes are
done for the same clock speed for which the program was executed in the

previous step.

® Open the file arch/arm/include/asm/arch-ti81xx/ddr defs.h. For EZSDK
5.0.0.56 this is psp/u—boot—2010. 06—
psp04. 00. 00. 07/arch/arm/include/asm/arch-ti81xx/ddr defs.h

At the top of the file add the #defines shown below as appropriate

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling 911

20144E9H 1H

[...]

DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

#ifdef CONFIG_TI816X_EVM_DDR3

#define CONFIG TI816X DDR3 400 /* Values supported 400, 531, 675, 796 */

#define CONFIG TI816X DDR3 SW LEVELING /* Enable software leveling as part of DDR3 init %/

[...]

The values obtained in the previous step need to be plugged under the

appropriate #define

Eg: For DDR3-800 (I/0 Bus Clock of 400MHz)

[...]

#if defined (CONFIG_TI816X DDR3 400)

/% For 400 MHz */
ftidefine EMIF TIMI1
ftdefine EMIF TIM2
ftdefine EMIF TIM3
#tdefine EMIF SDREF
ftdefine EMIF SDCFG
#tdefine EMIF PHYCFG

#if defined (CONFIG TI816X DDR3 SW LEVELING)
/* These values are obtained from the CCS app */

#define RD DQS GATE
#define RD_DQS
ftdefine WR_DQS
#endif

Hendif /% CONFIG TI816X _DDR3_400 */

[...]

0x0CCCE524
0x30308023
0x009F82CF
0x10000C30
0x62A41032
0x0000030B

0x154 ——> obtained in the previous section

0x3D
0x76

Note that the values used here are for representative purposes only. Use

the values obtained from the CCS program over here

e Open the file arch/arm/include/asm/arch—-ti81xx/clocks ti816x. h which is
in /psp/u-boot-2010. 06—psp04. 00. 00. 07/ in EZSDK 5.0.0.56 and add the

ftidefine shown below as appropriate

#define DDR_PLL_796

/* Values supported 400, 531, 675, 796 */

Open the file include/configs/ti8168 evm.h, for EZSDK 5.0.0.56 this
ispsp/u—boot—2010. 06—psp04. 00. 00. 07/include/configs/ti8168 evm. hand

make sure the following changes are there

[...]

#define CONFIG_TI816X_EVM_DDR3

//#define CONFIG_TI816X_EVM_DDR2

[...]

/% Configure DDR3 in U-Boot */
/% Configure DDR2 in U-Boot */

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling

10/11

2014%E9H1H DM816x C6A816x AM389x DDR3 Init Wordwise SWieveling - Texas Instruments Wiki

® Rebuild and flash U-Boot as described in the U-Boot user guide.
Run mtest

Simple memory test can be run from the U-Boot prompt using the mtest

command. The syntax of the command mtest command is given below:
mtest <{start—address> <end—address> <test pattern> <# of iterations>

This command incrementally writes the test pattern to the memory range
specified and then reads it back. Running the memory test with a few

patterns should be sufficient for checking out the memory.

Run the memory test over the DDR address space of the EMIFs one by one:

TI8168 EVM# mtest 0x80000000 0xA0000000 Oxaabbaab5 3 (referred as Test A)
TI8168 EVM# mtest 0xA0000000 0xC0000000 Oxaab5baab5 3 (referred as Test B)

You can try different patterns (say all Os, then all Fs and so on) to be

sure of the memory reliability.

Interpreting the mtest result

s Test A and Test B both pass consistently — Memory corruption can be
ruled out

s Test A passes but Test B fails — Only 512MB can be used if needed. The
memory part needs to be changed

e Test A fails but Test B passes — Only 512MB can be used if needed. The
memory part needs to be changed

Test A and Test B both fail — The setup cannot be used. The memory part

needs to be changed

http://processors.wiki.ti.com/index php/DM816x_C6A816x AM389x_ DDR3_Init_Wordwise_SWleweling 1111

image3.emf
RatioSeed_531_0 .xls

