//函数功能描述:

通过GP8_9信号通知FPGA，利用UPP传输数据给FPGA，FPGA做处理后反馈GP8_8信号进中断，通知DSP通过UPP接收来自FPGA传输的数据。

void main(void)
{

int target_int_count=1;

//int result=1;

upp_interrupt_count_1 = 0;

upp_error_count = 0;

dsp_init();


ini_GPIO();

open_int();

UPP_init();
//UPP接收FPGA传过来的数据，UPID0数据不能多行传输时什么原因


UPID0  =   (unsigned int)&fpga8way; //Window Address

UPID1  =   0x0001fff8; //Line Count,Byte Count

UPID2  =   0x0000fff8; //Line Offset Address

while(UPIS2 & 0x2){};
//************************************//

 for(i=0;i<LUTLength;i++)

 {


 Ic_fpga[i]=para_10M_I[i];//对上电参数进行赋值；


 Qc_fpga[i]=para_10M_Q[i];

 }


 GPIO_OUT_DATA8 &=(0<<9);           //GP8_9信号给FPGA传输数据的信号

 for(i=0;i<1000;i++);

 GPIO_OUT_DATA8 |=(1<<9);

//传输数据给FPGA，两次传输,会不会有问题？
 
upp_test1(IQC_para_UPP_1);
 
upp_test1(IQC_para_UPP_1);
 
while(upp_interrupt_count_sd<target_int_count)//等待数据发送完成,发送给FPGA

{


asm(" nop");

}

while(upp_interrupt_count_re<target_int_count)//等待数据接收完成

{


asm(" nop");


if(flag_8way==1)         //UPP不能正常接收来自FPGA的数据，请求








//FPGA重新发送，但是有的时候一直不能正常








//的接收到数据  flag_8way是FPGA给DSP

//的一个信号产生的中断中置成1通知dsp   
//UPP接收数据


{



UPP_init();                       //UPP重新初始化？？是否需












//要？？



UPID0  =   (unsigned int)&fpga8way; //Window Address



UPID1  =   0x0001fff8; //Line Count,Byte Count



UPID2  =   0x0000fff8; //Line Offset Address



while(UPIS2 & 0x2){};




//delay(1000000);



printf("delay1000\n");



GPIO_OUT_DATA8 &=(0<<9);



for(i=0;i<1000;i++);



GPIO_OUT_DATA8 |=(1<<9);



upp_test1(IQ_GUIYI_first);



upp_test1(IQC_para_UPP_1);


}

}

//UPP发送代码

void upp_test1(short* uppsdbuff)
{

int i;

for(i=0;i<6;i++)

{


printf("uppsdbuff=%d\n",uppsdbuff[i]);

}

    UPQD0  =   (unsigned int)uppsdbuff; //Window Address

    UPQD1  =   0x00011000; //Line Count,Byte Count

    UPQD2  =   0x00001000; //Line Offset Address

    while(UPQS2 & 0x2){};
//UPP初始化代码

void UPP_init()
{

UPPCR = 0x00000010;                        //复位 Set the SWRST bit in the uPP peripheral control register (UPPCR) to 1

sw_wait(300);   //Wait at least 200 device clock cycles

UPPCR = 0;                           //复位结束

UPCTL = 0x02020006;     //16位数据，CHA收,CHB发

UPICR = 0X053f051f;         //UPP I/o 时钟为12.5MHZ    300/2/12=12.5MHZ

UPIVR = 0x10000000;    //0x10000000    4096

UPTCR = 0;                    //64byte DMA bursts read / write

UPDLB |= 1<<13 ;     //回环模式

UPIES = 0X00001818;                      //关掉所有中断

UPPCR = 0x0000000e;                //使能UPP
}
//UPP中断服务子程序
interrupt void serv_upp(void)
{

interrupt_status = UPIER;

while (interrupt_status != 0)

{


if (interrupt_status & 0x0010 )//EOLI


{



UPIER |= 0x10; // clear EOLI


}


if (interrupt_status & 0x0008)//EOWI


{



UPIER |= 0x0008;// clear EOWI



upp_interrupt_count_re++;


}


if (interrupt_status & 0x0004)//ERRI


{



UPIER |= 0x0004; // clear ERRI



upp_error_count++;


}


if (interrupt_status & 0x0002)//UORI


{



UPIER |= 0x0002; // clear UORI



upp_error_count++;


}


if (interrupt_status & 0x0001)//DPEI


{



UPIER |= 0x0001; // clear DPEI



upp_error_count++;


}


if (interrupt_status & 0x1000)//EOLQ


{



UPIER |= 0x1000; // clear EOLQ


}


if (interrupt_status & 0x0800)//EOWQ


{



UPIER |= 0x0800; // clear EOWQ





// Handle EOWQ...



upp_interrupt_count_sd++;


}


if (interrupt_status & 0x0400)//ERRQ


{



UPIER |= 0x0400; // clear ERRQ



upp_error_count++;


}


if (interrupt_status & 0x0200)//UORQ


{



UPIER |= 0x0200;// clear UORQ



upp_error_count++;


}


if (interrupt_status & 0x0100)//DPEQ


{



UPIER |= 0x0100; // clear DPEQ



upp_error_count++;


}


// loop again if any interrupts are left


interrupt_status = UPIER;

} // end of while

// write end of interrupt vector to allow future calls

UPEOI = 0;
} // end of function

//GP8_8中断
interrupt void gpio8_8(void)
{

printf("m equals to %d\n",m);

flag_8way=1;
}
