[image: image7]KeyStone 1 PCIE Self Test Kit

[image: image8]December 2013

[image: image9][image: image10.wmf] KeyStone 1 PCIE Self Test Kit User’s Guide
 KeyStone 1 PCIE Self Test Kit User’s Guide

KeyStone 1

PCIE Self Test Kit

User’s Guide

Revision history

	Version
	Date
	Author
	Description of Change

	1.0
	December 23, 2013
	Thomas Yang
	Initial Release

	
	
	
	

Contents

31
Introduction

2
Test Methods
3
2.1
Integrity Test
3
2.1.1
Data filling Test
3
2.1.2
Addressing test
4
2.2
PCIE Performance Test
4
2.2.1
PCIE Latency Test
4
2.2.2
PCIE Throughput Test
5
2.3
PCIE error reporting and checking
5
2.4
PCIE initialization process
6
3
Test cases
7
3.1
Data transfer by different masters
7
3.2
Test through different data path
7
3.3
Test different memories in the system
8
3.3.1
Test from RC to EP
8
3.3.2
Test from EP to RC
11
3.3.3
PHY loopback test
12
4
Test code/project
13
4.1
CCS project
13
4.2
To run the test program on KeyStone EVM
14
4.3
Test configuration
15
4.4
Migrate the test to custom board
16
References
16
Appendix: Typical test output
17

Figures

8Figure 1.
PHY Loopback Data Path

Figure 2.
Example of PCIE mapping different memories of EP to RC
9
Figure 3.
Mapping of test buffers in STK
10
Figure 4.
Example of PCIE data transfer from EP to RC
11
Figure 5.
Example of PCIE MSI interrupt from EP to RC
12
Figure 6.
Directory structure of test project
13

Tables

9Table 1.
Example of memory map between RC and EP

Table 2.
Mapping of test buffers in STK
10
Table 3.
Example of memory map of RC to EP
11
Table 4.
Example of memory map in PHY loopback mode
12
Table 5.
Source files of the test codes
13

Introduction
The PCI Express (PCIe) module is a multi-lane I/O interconnect providing low pin count, high reliability, and high-speed data transfer at rates of up to 5.0 Gbps per lane per direction, for serial links on backplanes and printed wiring boards. It is a 3rd Generation I/O Interconnect technology succeeding ISA and PCI bus that is designed to be used as a general-purpose serial I/O interconnect in multiple market segments, including desktop, mobile, server, storage and embedded communications.
The PCIe STK test covers below test cases and work modes:

DSP works in RC mode or EP mode respectively

Remote access or PHY loopback transfer mode

 Access PCIE with DSP core or EDMA

Access different memories through PCIE

EP generate MSI interrupt to RC through PCIE
Test Methods
Integrity Test

Two memory test algorithms are used to test the memory access through PCIE, and the purpose of these test algorithms is discussed below.

Data filling Test

The pseudocode for data pattern filling test is:

for(memory range under test)

fill the memory with a value;

for(memory range under test)

read back the memory and compare the readback value to the written value

Normally, this test is done several times with different test data value. The common values used for test include 0, 0xFFFFFFFF, 0x55555555, 0xAAAAAAAA.

This test can detect stuck data bit, for example, if

written value = 0, readback value = 0x8,

It indicates bit 3 sticks to 1. If

written value = 0xFFFFFFFF, readback value = 0xFFFFFFFE,

It indicates bit 0 sticks to 0.

If this test fails, the possible reasons include PCIE physical layer error, target memory error. Trying internal loopback test against test between two devices may isolate the reason.

Addressing test

The pseudo code for addressing test is:

for(memory range under test)

fill each memory unit with its address value;

for(memory range under test)

read back the memory and compare the readback value to the written value

This test can detect stuck bit on address bus, for example, if

written value = 0 at address 0

written value = 1 at address 1

written value = 2 at address 2

written value = 3 at address 3

……

readback value = 2 at address 0

readback value = 3 at address 1

readback value = 2 at address 2

readback value = 3 at address 3

……

For this case, it indicates bit 1 of address bus sticks. So, the contents in address 0 and 2 are same, and the contents in address 1 and 3 are same.

If the data filling test passes, while this test fails, the possible reasons include PCIE address translation error, the PCIE buffer error or target memory error. Trying internal loopback test against test between two devices may isolate the reason.

PCIE Performance Test

The performance of PCIE is also measured. If the test shows performance degradation, normally we should check clock speed related configuration.

PCIE Latency Test

The pseudo codes for measuring the latency of DSP core access a memory unit through PCIE are like following:

flushCache();

startCycle= getTimeStampCount();

for(i=0; i< accessTimes; i++)

{

Access Memory at address;

address+= stride;

}

cycles = getTimeStampCount()-startCycle;

cycles/Access= cycles/accessTimes;

The latency of the interrupt generated by PCIE is also measured with following pseudo code:

……

startTSC= TimeStampCount;

manually trigger a MSI interrupt

asm(“ IDLE”);
//wait for the queue pending interrupt

delay= intTSC - startTSC;

……
interrupt void PCIE_ISR()
//PCIE Interrupt Service Routine

{

intTSC= TimeStampCount;
//save the Time Stamp Count when the interrupt happens

……
}

This test is done with internal loopback mode only.

PCIE Throughput Test

The throughput is measured for different memory copy cases with DSP core or EDMA. The throughput is measured by taking total bytes copied and dividing it by the time it used.

PCIE error reporting and checking

PCIE detects error during transfer and reports them through some error/status registers.

The PCIE error can also trigger interrupt to DSP core. Interrupt Service Routine is also implemented to print/report the error information.

PCIE initialization process

The PCIE initialization process in the STK is implemented to match real PCIE network initialization as much as possible.
Following is the basic flow for RC and EP remote loopback test:

RC: Linux; EP:TMS320C6655
EP initializes BAR mask and properties, which indicates the PCI address space request to RC. In the STK, one BAR is initialized for prefetchable space, one BAR is initialized for non-prefetchable space.
EP 端步骤一：EP写BAR mask（1010h，1014等）表示PCIe地址及空间大小的寄存器，提供给RC。//实际操作中，我这个配置由LINUX端来完成，也能完成连接和数据收发
EP initializes MSI Capabilities Register, which indicates the number of interrupt vectors request to RC.
EP 端步骤二：EP写中断向量号到MSI_CAP（1050h）寄存器，提供给RC。//实际上EP写了0x000B7005到1050h
EP starts physical link training, and waits for link training completion…
EP 端步骤三：EP启动物理链接训练，等待链接完成//实验结果，连接完成
RC initializes the base and limit of PCIE address space.
RC 端步骤四：初始化基地址和PCIE地址空间//实验结果，连接完成
RC starts physical link training, and waits for link training completion …
RC 端步骤五：RC开始物理链接训练，此时EP正在等待链接//实验结果，连接完成
RC reads BAR mask and properties from EP, allocates PCI address space accordingly, writes the PCI start address to the BAR register of EP, and then RC configures its own outbound memory regions to map the PCI address space to its own local access window.
RC 端步骤六：RC端读取BAR mask（远程+1010h，1014等），并分配地址空间。写PCI起始地址到EP端的BAR寄存器（300h-33ch），然后RC配置linux自身的outboud地址映射到本地存储空间//实验结果，连接完成
EP polls the BAR register value, once it gets valid PCIE address set by RC, EP configures its own inbound memory regions to map the PCI address space to its own local address space.
RC 端步骤七：EP端查询BAR寄存器（300h-33ch）的值，一旦有被RC配置，EP就设置自身的inbound地址映射到本地的存储空间//实验结果，连接完成
RC reads the MSI capabilities register of EP, allocates interrupt vectors accordingly, writes start index and number of the allocated interrupt vectors to EP MSI registers.
RC 端步骤八：RC读取MSI_CAP（远程1050h）寄存器的值，同时分配中断向量号，写start index（这个是什么？）和中断向量号到MSI_IRQ寄存器（远程054h）。//实验结果，未完成，不明白这一步RC如何操作。
Following is the basic flow for RC Phy loopback test:

RC (acting EP) initializes BAR mask and properties, which indicates the PCI address space request to RC. In the STK, one BAR is initialized for prefetchable space in PHY loopback test

RC (acting EP) initializes MSI Capabilities Register through internal access bus directly, which indicates the number of interrupt vectors request to RC.

RC forces physical link training skipped, as it is only PHY internal loopback and no PCle training set in the lane

RC initializes the base and limit of PCIE address space through memory access method directly

RC reads BAR mask and properties by PHY loopback mode, allocates PCI address space accordingly, writes the PCI start address to the BAR register of acting EP, and then RC configures its own outbound memory regions to map the PCI address space to its own local access window.

RC (acting EP) polls the BAR register value, once it gets valid PCIE address set by RC through PHY loopback mode, it configures its own inbound memory regions to map the PCI address space to its own local address space.

RC reads the MSI capabilities register through PHY loopback method, allocates interrupt vectors accordingly, writes start index and number of the allocated interrupt vectors to RC MSI registers.

Test cases
PCIE Tests should be implemented to cover:

Internal loopback and test between two devices

Access PCIE with DSP core or EDMA

Access different memories through PCIE
MSI interrupt test in internal loopback and remote mode

Data transfer by different masters

The test cases executed with DSP core including:

Throughput test

Latency of Memory access through PCIE

PCIE Interrupt latency test

The test cases executed with EDMA including:

Throughput test

overhead of EDMA transfer through PCIE

Test through different data path

Internal PHY loopback test is done with the TX data loopback in Serdes module. The internal loopback test can be used to check the function of PCIE modules inside the KeyStone SOC. If internal loopback test failed, normally, we should check the PCIE related powers and clocks.

[image: image1.png]Vausm sce
(Confgursicn
Dstaana

ot -

Address

PHY Internal loopback

—Transtator;
BUSM

tetsce)

Master/Slave

Interrupts

Clock /
Reset /
Power
Control

PCle
Core

PIPE

PCle PHY

(14}

PHY Loopback Data Path

For the test between two DSPs, DSP1's memory are mapped to DSP0 through PCIE, so, DSP0 accesses DSP 1 through the PCIE memory window just like access it’s own memories.

If internal loopback test passes, while the test between two devices fails, normally, we should check the signal integrity on board, and measure the eye-diagram.

Test different memories in the system

All memories of DSP can be accessed through PCIE. The PCIE memory map is very flexible. Following sections discuss the memory map configuration for different test cases.

Test from RC to EP
In this test, DSP1’s memory are mapped to DSP0’s PCIE memory window from 0x60000000 to 0x6FFFFFFF, the DSP0 can access all memory types in DSP1 including LL2 (Local L2), SL2 (Shared L2) and DDR just like access DSP0’s local memory. Following figure shows an example.

[image: image2.emf]DSP1(EP) DSP0(RC)

DDR3(64MB)

 SL2(1MB)

CORE1 LL2(256K)

BAR0(0x1000 0000)

BAR1(0x8000 0000)

BAR2

BAR3

BAR4

BAR5

PCIE Outbound

window address

PCIEEP Inbound

BAR configuration

IB_BAR =1

IB_START_LO =0x8000 0000

IB_START_HI = 0

IB_OFFSET = 0x8000 0000

IB_BAR= 1

IB_START_LO =0x8400 0000

IB_START_HI = 0

IB_OFFSET = 0x0C10 0000

IB_BAR=1

IB_START_LO =0x8410 0000

IB_START_HI = 0

IB_OFFSET = 0x1182 0000

PCIEEP IB BAR

configuration

OB_OFFSET[0] = 0x10000000

OB_OFFSET[1] = 0x80000000

OB_OFFSET[2] =0x80800000

OB_OFFSET[3] = 0x81000000

OB_OFFSET[4]=0x81800000

OB_OFFSET[5]=0x82000000

OB_OFFSET[6]=0x82800000

OB_OFFSET[7]=0x83000000

OB_OFFSET[8]=0x83800000

OB_OFFSET[9] = 0x84000000

PCIE RC

outbound

translation region

Memory map in

EP side

PCIE registers

0x60000000

0x60800000

0x64800000

Example of PCIE mapping different memories of EP to RC
The memory map in this example is summarized in following table.
Example of memory map between RC and EP
	RC DSP PCIE data space
	EP DSP memory space
	Size

	0x60800000 (To EP DDR)
	0x80000000 (DDR3)
	64MB

	0x64800000 (To EP SL2)
	0x0C100000 (SL2)
	1MB

	0x64900000 (To EP core1 L2)
	0x11820000 (core1 L2)
	256KB

Following figure shows the mapping of the test buffers used in the STK.

[image: image3.emf]DSP1(EP) DSP0(RC)

DDR3SRC

SL2 SRC

CORE1 LL2 SRC

CORE1 LL2 DST

BAR0

BAR1(0x8000 0000)

BAR2

BAR3

BAR4

BAR5

0x60800000(DDR3_SRC)

0x61800000(DDR3_DST)

0x64800000(SL2_SRC)

0x64840000(SL2_DST)

0x64900000(Core1

LL2_SRC)

0x64920000(Core1

LL2_DST)

Virtual Buffer in

RC side

PCIEEP Inbound

BAR configuration

IB BAR0

IB_START_LO =0x8000

0000 IB_START_HI = 0

IB_OFFSET = 0x8000 0000

IB BAR1

IB_START_LO =0x8400

0000 IB_START_HI = 0

IB_OFFSET = 0x0C10 0000

IB BAR2

IB_START_LO =0x8410

0000 IB_START_HI = 0

IB_OFFSET = 0x1182 0000

IB BAR3

IB_START_LO =0x8414

0000 IB_START_HI = 0

IB_OFFSET = 0x1000 0000

PCIEEP IB BAR

configuration

DDR3DST

 SL2 DST

OB_Translation[0]

OB_OFFSET_Index[1] =

0x80000000

OB_Translation[2] =

0x80800000

OB_OFFSET_Index[3] =

0x81000000

OB_Translation[4]=

0x81800000

OB_Translation[5]=

0x82000000

OB_Translation[6]=

0x82800000

OB_Translation[7]=

0x83000000

OB_Translation[8]=

0x83800000

OB_OFFSET_Index[9] =

0x84000000

PCIE RC

outbound

translation region

Test Buffer

in EP side

Mapping of test buffers in STK
The memory map in this example is summarized in following table.
Mapping of test buffers in STK
	Virtual buffer at RC side
	Test buffer at EP side
	Size

	0x60800000 (To EP ddr3)
	0x80000000 (DDR3)
	16MB

	0x61800000 (To EP ddr3)
	0x81000000 (DDR3)
	16MB

	0x64800000 (To EP SL2)
	0x0C100000 (SL2)
	256KB

	0x64840000 (To EP SL2)
	0x0C140000 (SL2)
	256KB

	0x64900000 (To EP core1 L2)
	0x11820000 (core1 L2)
	128KB

	0x64920000 (To EP core1 L2)
	0x11840000 (core1 L2)
	128KB

With this configuration, when DSP0 core0 or EDMA accesses address 0x64900000, it actually accesses the LL2 memory of DSP1,starting from 0x11820000. When DSP0 core 0 or EDMA access address 0x64800000, it actually accesses the 0x0C100000 in share memory of DSP1;. When DSP0 core 0 or EDMA access address 0x60800000, it actually accesses the 0x80000000 in DDR3 memory of DSP1.

For internal loopback test, the memory map configuration is same, the only difference is that, DSP0 actually access its own local memory through PCIE memory window.
Test from EP to RC

Test PCIE data transfer from EP to RC

According to PCIE protocol, in RC, if the incoming TLP address is outside of the range defined by the three Base/Limit register sets (for non-prefetchable memory, prefetchable memory, and I/O), and then that TLP is accepted. That is PCIE engine doesn’t do address translation and just use the inbound address from PCIE bus. Table 3and Figure 4 is an example of the address info in this case:

Example of memory map of RC to EP
	RC DSP memory space
	EP DSP PCIE data space

	0x90120000(DDR3)
	0x61120000

[image: image4.emf]DSP0(RC) DSP1(EP)

To RC DDR3

(0X61120000)

NonPrefetchBase(0x10000000)

NonPrefetchEnd(0x1FFFFFFF)

PCIE overall

address overview

from RC point

PCIEDATA

windowat

0x60000000

OB_Translation[0]

OB_Translation[4]

OB_Translation[5]

OB_Translation[6]

OB_Translation[7]

OB_Translation[8]

OB_Translation[10]

OB_Translation[11]

OB_Translation[12]

OB_Translation[13]

OB_Translation[14]

OB_Translation[15]

OB_Translation[16]

OB_Translation[17]

PCIE EP outbound

translation region

OB_Translation[3]

OB_Translation[1]

OB_Translation[9]

OB_OFFSET_Index[2] =

0x90000000

PrefetchBase(0x80000000)

PrefetchEnd(0x8FFFFFFF)

0x00000000~0x0FFFFFFF

0x90000000~0xFFFFFFFF

OB_Translation[4]

PCIE BUS

Address

0x90120000

PCIE Inbound

address translation

module

PCIE Inbound

address translation

module

RC DSP

DDR3

RC DSP Local

L2 memory

RC DSP SL2

RC DSP

DDR3

（

No

mapped

part

）

By pass inbound

address

translation

RC DSP

memory

map

Example of PCIE data transfer from EP to RC

EP to RC MSI interrupt test
EP发送MSI中断到RC
EP MSI interrupts are generated by a PCIe 32-bit memory write transaction from EP PCIE window to MSI_IRQ register in RC. To generate MSI interrupts, following steps need to be taken:

1. Ensure that the MSI support has been enabled in the device (Set MSI_EN bit in MSI Capabilities Register (MSI_CAP).)
确认MSI_CAP（1050h）中的MSI_EN已经被使能//实测MSI_CAP = 0x00b70005
2. EP Reads the value of the MSI Data Register in the local PCIe configuration space and determines the number of MSI vectors allocated from RC, generates the MSI_DATA which will be used to write to MSI_IRQ
EP读取MSI_DATA（105ch），这样EP就得到了RC的中断向量号，到时候产生中断就是将这个值写到MSI_IRQ（054h）//失败，读上来的MSI_DATA值都是0
3. EP issues a memory write transaction to the RC MSI_IRQ register’s mapping address in EP’s outbound window. In RC, the access to MSI_IRQ goes through BAR0 with default mapping.
EP发布一个内存写传输中断到EP端的outbound，地址映射到RC 端的MSI_IRQ寄存器。//失败
In PCIE STK test, if RC runs on core 0, to generate MSI interrupt to core 0, the MSI_data is set as “8” (DNUM+8).
在PCIE STK测试中，EP要发送一个MSI中断到RC，MSI_data（原105ch，不是64bit模式，1050h）需要被设置成8(DNUM+8)//这个MSI_data的设置由EP端来写还是RC写，什么时候写？DNUM是什么值？//失败

[image: image5.emf]DSP1(EP)

DSP0(RC)

MSI interrupt generation

MSI_number = 8

Address = 0x60000000+

Offset_MSI_IRQ_Reg

RC DSP PCIE

BAR Configuration

PCIEDATA window

at 0x60000000

OB_Translation[4]

OB_Translation[5]

OB_Translation[6]

OB_Translation[7]

OB_Translation[8]

OB_Translation[10]

OB_Translation[11]

OB_Translation[12]

OB_Translation[13]

OB_Translation[14]

OB_Translation[15]

OB_Translation[16]

OB_Translation[17]

PCIE EP outbound

translation region

OB_Translation[3]

OB_Translation[1]

OB_Translation[9]

PCIE BUS

Address

0x10000000+offset

of MSI_IRQ_Reg

PCIE Configuration Space

MSI_IRQ_Reg

RC DSP memory

map

OB_OFFSET_Index[0] =

0x10000000

OB_Translation[2]

BAR0(0x10000000)

BAR1

Start: 0x21800000

End: 0x21807FFF

MSI_number = 8,

means PCIE msi

interrupt to core0

RC DSP0 CORE0

RC DSP Core0

Example of PCIE MSI interrupt from EP to RC

PHY loopback test

This mode can be used to perform TLP loopback in single Keystone device. The memory partition is shown as Table 4table3

Example of memory map in PHY loopback mode

	RC DSP PCIE data space
	RC DSP memory address

	0x61800000
	0x81000000

	0x64800000
	0x0C100000 (SL2)

	0x64900000
	0x11820000 (core1 L2)

Test code/project
This section introduces the implementation of these PCIE tests on KeyStone DSP.
CCS project

Following figure shows the directory structure of the test project.
 [image: image6.png]&= PCIE [Active - Debug]
35 Binaries
) Incudes

[3) DSP_core_access Test.asm
[2) MemCopya.c

16) PClE 5P _core parformance.c
[9) PCIE_Edma_Performance.c
9 pre_tnte.c.

B PCiE_Tntch

1 pCiE estc

[B) PCIE_Testh

57 PcE_vectors.asm

[Keystone_common.c

[Keystone_DDR_n.c

L Keystons_pCIE_int_dv.c

[Keystone _serdes_ink.c

& Keystone.cnd

[PCIE _test_result.txt

Directory structure of test project

The project files are in “PCIE” folder. There is some commonly used initialization and driver code for PCIE, DDR, EDMA, Serdes and PLL… in “common” folder. The main source code files are in the “PCIE\src” subfolder. Below table describes these source files.

Source files of the test codes

	Source files
	Descriptions

	KeyStone_common
	Initialization for EDMA and PLL, and driver code for simple memory test. The key API include:

void KeyStone_main_PLL_init (float ref_clock_MHz,

unsigned int multiplier, unsigned int divisor);

void EDMA_init ();

unsigned int Memory_Fill_Test(unsigned int uiStartAddress,

unsigned int uiByteCount, unsigned int uiPattern,

unsigned int uiMaxFails, int iStep);

unsigned int Memory_Address_Test(unsigned int uiStartAddress,

unsigned int uiByteCount, unsigned int uiMaxFails, int iStep);

	KeyStone_DDR_Init
	Low level DDR initialization. The key API is:

void KeyStone_DDR_init(float ref_clock_MHz, unsigned int DDR_PLLM,

unsigned int DDR_PLLD, DDR_ECC_Config * ecc_cfg)

	KeyStone_PCIE_Init
	Low level PCIE initialization. The key API is:

void KeyStone_PCIE_Init(KeyStone_PCIE_Config * pcie_cfg)

	
	

	PCIE_Test
	main function of the tests, PCIE configuration, integrity test and interrupt latency test.

	PCIE_DSP_core_performance
	PCIE throughput test with DSP core; test latency of memory access through PCIE with DSP core.

	PCIE_EDMA_performance
	PCIE throughput test with EDMA; test overhead for EDMA transfer through PCIE

	PCIE_Intc
	Interrupts configuration and ISR for PCIE

To run the test program on KeyStone EVM

The test program can be run on EVM of C6678, C6670 or TCI6614. The type of the device on EVM is detected by STK code automatically..

The steps to run the test cases on EVM board are:

extract (or install) the package, and switch CCS workspace to the extracted folder (or installation folder)

import the project to CCS

build the project. You may need to change the CSL including path, by default the project use CSL header files in: C:\ti\pdk_C6678_1_1_2_6\packages\ti\csl for C6678, C:\ti\pdk_C6670_1_1_2_6\packages\ti\csl for C6670, or C:\ti\pdk_tci6614_1_02_00_02\packages\ti\csl for TCI6614.

Set the boot mode of the device on EVM to no boot.

For loopback test, Load the program to core 0 of a DSP. For test between two DSPs, load the program to core 0 of first DSP(RC), and load the program to core 1 of the second DSP(EP).

For loopback test, run core 0; for test between two DSPs, run the core 1 of the second DSP firstly and then run the core 0 of the first DSP.

See output in console window.

Refer to appendix of this document to see the typical test output.

Test configuration
These tests are implemented based on TI’s EVM boards. There are multiple macros defined in the source code to configure the test.

Following variable in the “PCIE_Test.c” is used to switch between the internal loopback test and the two devices test. The value of “PCIE_PHY_LOOPBACK” means internal loopback test, and “PCIE_LOOPBACK_DISABLE” means test between two devices.

PCIE_Loopback_Mode loop_mode= PCIE_LOOPBACK_DISABLE;//PCIE_LOOPBACK_DISABLE;

Following variable in the “PCIE_Test.c” is used to set the memory access address width. The value of” PCIE_ADDRESS_32_BITS” means PCIE access through 32bit memory width, and “PCIE_ADDRESS_64_BITS” means PCIE access through 64bit memory width

PCIE_Address_Width address_width= PCIE_ADDRESS_32_BITS;// PCIE_ADDRESS_64_BITS

The base address of prefetch region and non-prefetch region be accessed through PCIE are defined with following macros in “PCIE_Test.c”.
#define PCIE_PREFETCH_BASE_ADDRESS
0x80000000

#define PCIE_NONFETCH_BASE_ADDRESS
0x10000000
The target memories be accessed through PCIE is configured with following configuration structure in “PCIE_Test.c”.

PCIE_Memory_Region memory_regions[]=

{

{0x80000000, 64*1024*1024}, //DDR3

{0x0C100000, 1*1024*1024},
//SL2

{0x11820000, 256*1024}
//LL2

};

If above configuration structure is modified, following configuration structure should be modified accordingly.

PCIERemoteTestAddress PcieRemoteTestAddr=

{

PCIE_OUTBOUND_DATA_WINDOW+0x0000000,//DDR_SRC_ADDR;

PCIE_OUTBOUND_DATA_WINDOW+0x1000000,//DDR_DST_ADDR;

PCIE_OUTBOUND_DATA_WINDOW+0x4000000,//SL2_SRC_ADDR;

PCIE_OUTBOUND_DATA_WINDOW+0x4040000,//SL2_DST_ADDR;

PCIE_OUTBOUND_DATA_WINDOW+0x4100000,//LL2_SRC_ADDR;

PCIE_OUTBOUND_DATA_WINDOW+0x4120000,//LL2_DST_ADDR;

};
Migrate the test to custom board
These tests are implemented based on TI’s EVM boards. In your real system, the DDR configuration may be changed according to your hardware design in the function KeyStone_DDR_init() in “KeyStone_DDR_Init.c”..
DSP core speed configuration may need be changed in main function like below:

//DSP core speed: 122.88*236/29= 999.9889655MHz

KeyStone_main_PLL_init(122.88, 236, 29);

The PCIE Serdes reference clock speed may be changed through following code in main() function:

PCIE_cfg.serdes_cfg.inputRefClock_MHz = 100;

To make your own configurations take effect, you must rebuild the project. Since CSL (Chip Support Library) header files are used by these projects, you may need change CSL including path in your system before you rebuild the project.

References

KeyStone Architecture PCIE User Guide (sprugs6)

KeyStone Architecture Enhanced Direct Memory Access (EDMA3) Controller User Guide (SPRUGS5)

TMS320C66x DSP CorePac User's Guide (SPRUGW0)
Appendix: Typical test output

Below is the test output on 2 KeyStone EVM connection test. Take one KeyStone EVM as RC and one KeyStone EVM as EP

KeyStone EVM(RC) log output

[C66xx_0] Initialize DSP main clock = 122.88MHzx236/29 = 999MHz
DDR3 initialization
Initialize DDR data rate = 100.000x40/3= 1333.3 MTS
Enable Exception handling...
PCIE normal and RC mode at 5.0GHz, should be running on core0.
PCIE start link training.
PCIE link training is finished.
RC starts to transfer data to EP!
RC starts to transfer data to EP!
PCIE MSI8 interrupt generated!
#########RC starts sent data to EP!#########
RC has received echo data from EP!
#########RC is verifying the received data!#########
All the data are correct, Rc->EP->RC echo test passed!
#########RC starts core access performance test!#########
 noncacheable, nonprefetchable memory copy
 238 MB/s, copy 65536 bytes from 0x810000 to 0x54920000 consumes 274554 cycles
 20 MB/s, copy 65536 bytes from 0x54920000 to 0x810000 consumes 3203498 cycles
 18 MB/s, copy 65536 bytes from 0x54920000 to 0x54930000 consumes 3460286 cycles
 32KB L1D cache, prefetchable memory copy
 366 MB/s, copy 65536 bytes from 0x810000 to 0x54920000 consumes 178994 cycles
 147 MB/s, copy 65536 bytes from 0x54920000 to 0x810000 consumes 443732 cycles
 120 MB/s, copy 65536 bytes from 0x54920000 to 0x54930000 consumes 542425 cycles
 32KB L1D cache, 256KB L2 cache, prefetchable memory copy
 261 MB/s, copy 65536 bytes from 0x810000 to 0x54920000 consumes 250319 cycles
 261 MB/s, copy 65536 bytes from 0x54920000 to 0x810000 consumes 250716 cycles
 207 MB/s, copy 65536 bytes from 0x54920000 to 0x54930000 consumes 315682 cycles
 noncacheable, nonprefetchable memory copy
 238 MB/s, copy 65536 bytes from 0x810000 to 0x54840000 consumes 274423 cycles
 19 MB/s, copy 65536 bytes from 0x54840000 to 0x810000 consumes 3283070 cycles
 18 MB/s, copy 65536 bytes from 0x54840000 to 0x54850000 consumes 3542635 cycles
 32KB L1D cache, prefetchable memory copy
 366 MB/s, copy 65536 bytes from 0x810000 to 0x54840000 consumes 178984 cycles
 144 MB/s, copy 65536 bytes from 0x54840000 to 0x810000 consumes 453528 cycles
 117 MB/s, copy 65536 bytes from 0x54840000 to 0x54850000 consumes 555965 cycles
 32KB L1D cache, 256KB L2 cache, prefetchable memory copy
 256 MB/s, copy 65536 bytes from 0x810000 to 0x54840000 consumes 255134 cycles
 257 MB/s, copy 65536 bytes from 0x54840000 to 0x810000 consumes 254985 cycles
 203 MB/s, copy 65536 bytes from 0x54840000 to 0x54850000 consumes 321804 cycles
 noncacheable, nonprefetchable memory copy
 238 MB/s, copy 65536 bytes from 0x810000 to 0x51800000 consumes 274789 cycles
 18 MB/s, copy 65536 bytes from 0x51800000 to 0x810000 consumes 3505495 cycles
 16 MB/s, copy 65536 bytes from 0x51800000 to 0x51810000 consumes 3879625 cycles
 32KB L1D cache, prefetchable memory copy
 366 MB/s, copy 65536 bytes from 0x810000 to 0x51800000 consumes 178989 cycles
 135 MB/s, copy 65536 bytes from 0x51800000 to 0x810000 consumes 482151 cycles
 106 MB/s, copy 65536 bytes from 0x51800000 to 0x51810000 consumes 615088 cycles
 32KB L1D cache, 256KB L2 cache, prefetchable memory copy
 242 MB/s, copy 65536 bytes from 0x810000 to 0x51800000 consumes 269884 cycles
 242 MB/s, copy 65536 bytes from 0x51800000 to 0x810000 consumes 270102 cycles
 185 MB/s, copy 65536 bytes from 0x51800000 to 0x51810000 consumes 352631 cycles
#########RC starts EDMA performance test!#########
Throughput test with EDMA0 TC0
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x54920000, consumes 89751 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x54840000, consumes 89802 cycles, achieve bandwidth 729 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x51800000, consumes 89700 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x11830000, consumes 82203 cycles, achieve bandwidth 797 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x11830000, consumes 81591 cycles, achieve bandwidth 803 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x11830000, consumes 82662 cycles, achieve bandwidth 792 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x54920000, consumes 89751 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x54840000, consumes 89547 cycles, achieve bandwidth 731 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x51800000, consumes 89802 cycles, achieve bandwidth 729 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x c0c0000, consumes 82203 cycles, achieve bandwidth 797 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x c0c0000, consumes 81387 cycles, achieve bandwidth 805 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x c0c0000, consumes 82305 cycles, achieve bandwidth 796 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x54920000, consumes 89700 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x54840000, consumes 89751 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x51800000, consumes 89598 cycles, achieve bandwidth 731 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x88100000, consumes 81897 cycles, achieve bandwidth 800 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x88100000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x88100000, consumes 82407 cycles, achieve bandwidth 795 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x54920000, consumes 95463 cycles, achieve bandwidth 686 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x54840000, consumes 93576 cycles, achieve bandwidth 700 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x51800000, consumes 102348 cycles, achieve bandwidth 640 MB/s
Throughput test with EDMA1 TC0
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x54920000, consumes 89598 cycles, achieve bandwidth 731 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x54840000, consumes 89394 cycles, achieve bandwidth 733 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x51800000, consumes 89955 cycles, achieve bandwidth 728 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x11830000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x11830000, consumes 81948 cycles, achieve bandwidth 799 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x11830000, consumes 81540 cycles, achieve bandwidth 803 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x54920000, consumes 89751 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x54840000, consumes 89955 cycles, achieve bandwidth 728 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x51800000, consumes 89802 cycles, achieve bandwidth 729 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x c0c0000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x c0c0000, consumes 81489 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x c0c0000, consumes 81642 cycles, achieve bandwidth 802 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x54920000, consumes 90108 cycles, achieve bandwidth 727 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x54840000, consumes 89751 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x51800000, consumes 89802 cycles, achieve bandwidth 729 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x88100000, consumes 81489 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x88100000, consumes 81744 cycles, achieve bandwidth 801 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x88100000, consumes 81642 cycles, achieve bandwidth 802 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x54920000, consumes 95412 cycles, achieve bandwidth 686 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x54840000, consumes 93525 cycles, achieve bandwidth 700 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x51800000, consumes 100155 cycles, achieve bandwidth 654 MB/s
Throughput test with EDMA1 TC1
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x54920000, consumes 89700 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x54840000, consumes 89700 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x11810000 to 0x51800000, consumes 90057 cycles, achieve bandwidth 727 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x11830000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x11830000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x11830000, consumes 81489 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x54920000, consumes 89802 cycles, achieve bandwidth 729 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x54840000, consumes 89598 cycles, achieve bandwidth 731 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x c080000 to 0x51800000, consumes 89649 cycles, achieve bandwidth 731 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x c0c0000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x c0c0000, consumes 81540 cycles, achieve bandwidth 803 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x c0c0000, consumes 81642 cycles, achieve bandwidth 802 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x54920000, consumes 89955 cycles, achieve bandwidth 728 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x54840000, consumes 89751 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x88000000 to 0x51800000, consumes 89700 cycles, achieve bandwidth 730 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x88100000, consumes 81438 cycles, achieve bandwidth 804 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x88100000, consumes 81540 cycles, achieve bandwidth 803 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x88100000, consumes 81642 cycles, achieve bandwidth 802 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54900000 to 0x54920000, consumes 95412 cycles, achieve bandwidth 686 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x54800000 to 0x54840000, consumes 93525 cycles, achieve bandwidth 700 MB/s
transfer 4 * 16384 Bytes with index=16384 from 0x50800000 to 0x51800000, consumes 100512 cycles, achieve bandwidth 652 MB/s
EDMA test complete
PCIE test process is finished on Core 0!
K1 EVM(EP) log output

[C66xx_1] Initialize DSP main clock = 122.88MHzx236/29 = 999MHz
DDR3 initialization
Initialize DDR data rate = 100.000x40/3= 1333.3 MTS
Enable Exception handling...
PCIE normal and EP mode at 5.0GHz, should be running on core1.
PCIE start link training.
PCIE link training is finished.
#########EP starts MSI interrupt to RC!#########
 EP is waiting for receiving data from RC!
 EP has received data from RC!
 #########EP starts to do RC memory base and limit range test!#########
 EP is sending received data back to RC....
 EP has sent data to RC, completed the loopback test on EP!
1
16

Error! No text of specified style in document.
17

_1234567891.doc

_1234567893.vsd
DDR3(64MB)

PCIE registers

 SL2(1MB)

CORE1 LL2(256K)

0x60000000

0x60800000

0x64800000

BAR0(0x1000 0000)

BAR1(0x8000 0000)

BAR2

BAR3

BAR4

BAR5

IB_BAR =1
IB_START_LO =0x8000 0000 IB_START_HI = 0
IB_OFFSET = 0x8000 0000

IB_BAR= 1
IB_START_LO =0x8400 0000 IB_START_HI = 0
IB_OFFSET = 0x0C10 0000

IB_BAR=1
IB_START_LO =0x8410 0000 IB_START_HI = 0
IB_OFFSET = 0x1182 0000

PCIE EP IB BAR configuration

OB_OFFSET[0] = 0x10000000

OB_OFFSET[1] = 0x80000000

OB_OFFSET[2] =0x80800000

OB_OFFSET[3] = 0x81000000

OB_OFFSET[4]=0x81800000

OB_OFFSET[5]=0x82000000

OB_OFFSET[6]=0x82800000

OB_OFFSET[7]=0x83000000

OB_OFFSET[8]=0x83800000

OB_OFFSET[9] = 0x84000000

PCIE Outbound window address

PCIE EP Inbound BAR configuration

DSP0(RC)

DSP1(EP)

PCIE RC outbound translation region

Memory map in EP side

_1234567895.vsd
OB_Translation[3]

OB_Translation[1]

OB_Translation[9]

OB_OFFSET_Index[2] = 0x90000000

PrefetchBase(0x80000000)

PrefetchEnd(0x8FFFFFFF)

0x00000000~0x0FFFFFFF

0x90000000~0xFFFFFFFF

OB_Translation[4]

PCIE BUS
Address
0x90120000

PCIE Inbound address translation module

PCIE Inbound address translation module

RC DSP DDR3

By pass inbound address translation

RC DSP Local L2 memory

RC DSP SL2

To RC DDR3 (0X61120000)

RC DSP DDR3 （No mapped part）

RC DSP memory map

NonPrefetchBase(0x10000000)

NonPrefetchEnd(0x1FFFFFFF)

OB_Translation[0]

OB_Translation[4]

OB_Translation[5]

OB_Translation[6]

OB_Translation[7]

OB_Translation[8]

OB_Translation[10]

OB_Translation[11]

OB_Translation[12]

OB_Translation[13]

OB_Translation[14]

OB_Translation[15]

OB_Translation[16]

OB_Translation[17]

PCIE overall address overview from RC point

PCIE DATA window at 0x60000000

DSP0(RC)

DSP1(EP)

PCIE EP outbound translation region

_1234567896.vsd
OB_Translation[3]

OB_Translation[1]

OB_Translation[9]

OB_Translation[2]

BAR0(0x10000000)

BAR1

Start: 0x21800000

End: 0x21807FFF

PCIE BUS
Address
0x10000000+offset of MSI_IRQ_Reg

MSI_number = 8, means PCIE msi interrupt to core0

RC DSP0 CORE0

RC DSP Core0

PCIE Configuration Space

MSI interrupt generation
MSI_number = 8
Address = 0x60000000+ Offset_MSI_IRQ_Reg

MSI_IRQ_Reg

RC DSP memory map

OB_OFFSET_Index[0] = 0x10000000

OB_Translation[4]

OB_Translation[5]

OB_Translation[6]

OB_Translation[7]

OB_Translation[8]

OB_Translation[10]

OB_Translation[11]

OB_Translation[12]

OB_Translation[13]

OB_Translation[14]

OB_Translation[15]

OB_Translation[16]

OB_Translation[17]

RC DSP PCIE
BAR Configuration

PCIE DATA window at 0x60000000

DSP0(RC)

DSP1(EP)

PCIE EP outbound translation region

_1234567894.vsd
DDR3 SRC

DDR3 DST

 SL2 DST

 SL2 SRC

CORE1 LL2 SRC

CORE1 LL2 DST

BAR0

BAR1(0x8000 0000)

BAR2

BAR3

BAR4

BAR5

IB BAR0
IB_START_LO =0x8000 0000 IB_START_HI = 0
IB_OFFSET = 0x8000 0000

IB BAR1
IB_START_LO =0x8400 0000 IB_START_HI = 0
IB_OFFSET = 0x0C10 0000

IB BAR2
IB_START_LO =0x8410 0000 IB_START_HI = 0
IB_OFFSET = 0x1182 0000

IB BAR3
IB_START_LO =0x8414 0000 IB_START_HI = 0
IB_OFFSET = 0x1000 0000

PCIE EP IB BAR configuration

0x60800000(DDR3_SRC)

0x61800000(DDR3_DST)

0x64800000(SL2_SRC)

0x64840000(SL2_DST)

0x64900000(Core1 LL2_SRC)

0x64920000(Core1 LL2_DST)

OB_Translation[0]

OB_OFFSET_Index[1] = 0x80000000

OB_Translation[2] =
0x80800000

OB_OFFSET_Index[3] = 0x81000000

OB_Translation[4]=
0x81800000

OB_Translation[5]=
0x82000000

OB_Translation[6]=
0x82800000

OB_Translation[7]=
0x83000000

OB_Translation[8]=
0x83800000

OB_OFFSET_Index[9] = 0x84000000

Virtual Buffer in RC side

PCIE EP Inbound BAR configuration

DSP0(RC)

DSP1(EP)

PCIE RC outbound translation region

Test Buffer in EP side

_1234567892.doc

_1234567890.doc

