
On Matrix Inversion for LTE MIMO Applications Using Texas
Instruments Floating Point DSP

Mingjian Yan
WBI Engineering, Texas Instruments

Germantown, Maryland, USA
m-yan2@ti.com

Brighton Feng and Tommy Song
China Communication Infrastructure Application

Semiconductor Group, Texas Instruments
Shanghai, P. R. China

bf@ti.com; tommy-song@ti.com

Abstract— Multiple-Input Multiple-Output (MIMO) is one of the
key technologies for the current and future broadband wireless
services. Matrix inversion is the most costly computational
module within the Minimum Mean-Square Error (MMSE) based
MIMO receiver. For LTE Release 8, the order of the matrix to be
inverted for an MMSE receiver is 2×2 for 2-stream MIMO.
Going forward to LTE release 10, 4-stream MIMO can
potentially double the throughput, but the matrix to be inverted
will grow to 4×4, which is computationally intensive. In this
paper, we will exam several software implementations of 4×4
matrix inversion. We will demonstrate how we can significantly
reduce the cost (both in terms of cycle counts and development
time) while maintaining enough output precision to meet
performance requirements by using the floating-point feature of
Texas Instruments’ (TI) new multicore System-on-a-Chip (SoC)
architecture.

Keywords-component; 4×4 matrix inversion; Floating-point
DSP; MIMO; LTE; Texas Instruments

I. INTRODUCTION

MIMO is one of the key technologies in broadband wireless
services to improve bandwidth utilization efficiency. Figure 1
shows the example of LTE uplink 2-stream multi-user MIMO.

Figure 1. Uplink multi user MIMO

 In the LTE application, an MMSE-based algorithm is most
common and the solution can be written as follows:

��
�

�
��
�

�
�	

TN
S

ZZ
H IHRHB 2

1 1
�

������������������������

YRHBD ZZ
H

MMSE
11ˆ

	 ��������������������������������

Where:

MMSED̂ is the output of the equalizer;

H is the channel matrix with size RxAnts by TxStreams,
RxAnts is the number of receive antennas, and TxStreams is the
number of transmit streams;

1

ZZR is the inverse of the noise covariance matrix with size

RxAnts by RxAnts;
2
S� is the variance of the input signal;

Y is the input received signal to the equalizer, with size
RxAnts by 1.

Here both matrices that need to be inverted are Hermitian
matrices. B is a 2×2 matrix for 2-stream MIMO and a 4×4
matrix for 4-stream MIMO.

In this paper, we will focus on 4×4 matrix inversion and
evaluate three matrix inversion algorithms: Cholesky
decomposition based matrix inversion, a blockwise method,
and the cofactor method. Using a fixed-point implementation
of the Cholesky decomposition-based matrix inversion as the
reference, we will look at the cycle count cost of the blockwise
and cofactor methods in floating-point using TI’s new
multicore SOC, as well as the error performances of each
algorithm.

II. NEW MULTICORE SYSTEM-ON-CHIP ARCHITECTURE FOR
WIRELESS APPLICATIONS FROM TI

In February 2010, TI announced a new SoC architecture
based on its multicore DSPs that integrates fixed and floating
point capabilities in the industry's highest performing CPU at
up to 1.2GHz clock speed.

A. Floating-point computational capability of the new TI
SOC architecture
The new TI SOC architecture offers the industry highest

floating-point computational capability. In summary:

1. The floating-point engine runs at the same clock speed
as the fixed-point engine.

2. The floating-point engine has the same single precision
floating-point operations efficiency as the fixed-point
32-bit operation efficiency, which is:

ICSP2010 Proceedings

633

978-1-4244-5899-8/10/$26.00 ©2010 IEEE

� 8 real multiplications per clock cycle;

� 2 complex multiplications per clock cycle;

� 8 real additions/subtractions per clock cycle;

� 2 real inverse or 2 square root inverse operations per
clock cycle (8-bit mantissa precision, Newton-
Raphson interpolation is needed for higher precision).
These are fully pipelineable operations, while fixed-
point division often involves in iterative subtraction,
or table lookups;

� 8 conversions per clock cycle to convert between 16-
bit/32-bit integer and single-precision floating-point
numbers. This makes mixed floating/fixed-point
coding more efficient.

3. In addition to the single-precision operations, the
floating-point engine also has offers fast pipelinable
double precision floating-point operations

B. Floating-point advantages in wireless application
For wireless applications, especially in the area of receiver

algorithms, floating-point brings some key advantages over
fixed-point implementations:

� Most of the time, simulation of algorithms starts on
floating-point (MATLAB, C, or C++) platforms. While
there is rarely a need to re-tune/test precision of the
algorithm after implementation on single-precision
floating-point for wireless application, fixed-point
implementation can run into many rounds of
adjustment and retest within the link/system level
simulator to ensure the performance under different
scaling, rounding, and data bit-width precisions
combinations. In addition, these fixed-point scaling,
rounding, and data bit-width precisions may not be run
efficiently on a particular fixed-point DSP architecture
and could cost more cycles to execute.

� Very often for an advanced algorithm, fixed-point
implementation can run into the conflict of precision vs
dynamic range. The developer has to either increase
the bit-width of the value which leads to much more
cycles used, or scale dynamic range along the
calculation which also cost more MIPS, or sacrifice the
performance. Single-precision floating point can easily
solve this problem with much wider dynamic range
than 32-bit integer operations.

All these advantages can result in fast prototyping and
productization, and possibly lower cost of wireless algorithm
implementations. In addition, combining with an advanced
compiler, floating-point coding on TI’s new SOC is mostly
native C with a few Single Instruction Multiple Data (SIMD)
instructions needed for manual optimization with C function-
like intrinsic calls because of no need for the variations of
instructions for rounding, saturation, bit-width, and extra shifts
as fixed-point arithmetic does. This also reduces the time for
prototyping and productization.

III. MATRIX INVERSION ALGORITHMS AND
IMPLEMENTATION

To invert a matrix of size bigger than 2×2 in fixed-point
implementation, it is often suggested to avoid simple analytic
types of approach and use more stable decomposition-based
algorithms such as Cholesky, QRD, LUD or LDL
decomposition ([1], [2]). They easily require 1000 cycles or
more to invert a 4×4 matrix. We will use the Cholesky
decomposition-based fixed-point inverse in this paper as the
reference for fixed-point implementation.

Having floating-point precision and dynamic range in mind, we
will compare the Cholesky decomposition method to two
algorithms that are often avoided in fixed point because of the
poor stability, but work well in floating point and require fewer
cycles: a cofactor method and a blockwise method.

All three methods are implemented and optimized in C with
intrinsics on TI new SOC architecture. For the fixed-point
implementation, 32-bit intermediate results are used. For the
floating-point methods, all intermediate values are kept in
single-precision floating-point. More implementation details
can be found in the following subsections.

A. Cofactor method for matrix inversion
Use 4×4 matrix as an example, the inversion of matrix A

can be written as:

 � �
�
�
�
�

�

�

�
�
�
�

�

�

			

33231303

32221202

31211101

30201000

1

||
1

||
1

||
1

CCCC
CCCC
CCCC
CCCC

A
C

A
C

A
A jiij

H ������

Where |A| is the determinant of A, Cij is the matrix of
cofactors, and CH represents the matrix conjugate transpose.

ij
ji

ij MC �
)1(
��

Where Mij is the (i,j)th minor of A, and is defined to be the
determinant of the submatrix obtained by removing from A its
i-th row and j-th column. For example, M11 of 4x4 matrix is
generated as below.

333230

232220

030200

333230

232220

030200

33323130

23222120

13121110

03020100

11

aaa
aaa
aaa

aaa
aaa

aaa

aaaa
aaaa
aaaa
aaaa

M �����

�
�
�
�

�

�

�
�
�
�

�

� ����������

The determinant of a 3x3 matrix can be calculated by its
diagonals like below. The sum of the products of three diagonal
north-west to south-east lines of matrix elements, minus the
sum of the products of three diagonal south-west to north-east
lines of elements when the copies of the first two columns of
the matrix are written beside it as below:

634

In our floating-point implementation, one division is used
for calculation of 1/|A|. There is no requirement on pre-scaling
the input matrix, or internal scaling to preserve the dynamic
range. We also fully unrolled the calculation and only the lower
half of the matrix is calculated to take advantage of the
Hermitian property of the input matrix. All calculations are
done using single-precision floating-point.

B. Blockwise method for matrix inversion
Matrices can also be inverted blockwise by using the

following analytic inversion formula:

�
�

�
�
�

�

�

	�
�

�
�
�

�

11111

111111111

)()(
)()(

BCADCABCAD
BCADBACABCADBAA

DC
BA

��������

where A, B, C and D are matrix sub-blocks of arbitrary size.
(A and D must be square, so that they can be inverted). In this
example, the 4×4 matrix is equally split into four, 2×2 matrices.

In the floating-point implementation, two divisions are used
to calculate the inverse of two, 2×2 matrices. All calculations
are done using single-precision floating-point.

C. Cholesky decomposition based matrix inversion
If A is Hermitian and positive definite, then A can be

decomposed as

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

		

)1)(1(

1)1(11

0)1(1000

)1)(1(1)1(0)1(

1110

00

......
...
...

...

.........

nn

n

n

nnnn

H

l

lL
lll

lll

ll
l

LLA
��� ��

Where L is a lower triangular matrix with strictly positive
diagonal entries, and LH denotes the conjugate transpose of L.
This is the Cholesky decomposition.

The Cholesky decomposition is implemented step by step
as shown below

H

H

H
h

LALa
Va

a
VVB

a
V
a

BV
Va

A 000

10
0

01

1

0
	

�
�

�

�

�
�

�

�
�

�
�
�

�

�
�
�

�

�
�
�

�

�

�
�

�

�
	�

�

�
�
�

�
	

������!��

Where a is the matrix element in the first row and first
column, V is an (n-1)×1 matrix, B is (n-1) × (n-1) matrix. L0 is
the first column of the solution L. A0 is still a Hermitian matrix,

and can be further decomposed in the same way and get the
next column of L. This continues until the size of the last Ai is
one, then the last element of L is simply a , and the Cholesky
decomposition has been accomplished.

Once the L is calculated, instead of doing matrix inversion
of L to get an MMSE solution in Equation (2), we can use a
lower and upper equation solver to calculate MMSED̂ :

YDLL

YRHYwhereYDB

YRHBD

MMSE
H

ZZ
H

MMSE

ZZ
H

MMSE

ˆˆ

ˆ,ˆˆ

ˆ
1

11

	

		

	

�����������������"��

In our fixed-point implementation, the a/1 (for
Cholesky decomposition) and a/1 (for equation solvers) are
calculated using table look up and Newton Raphson
interpolation to achieve 32-bit output precision. All
intermediate values are 32-bit real and 32-bit imaginary
precision.

IV. PERFORMANCE TEST SETUP

This section describes the setups for performance testing of
the matrix inversion algorithms we have selected to evaluate.

For our 4×4 matrix inversion performance test study we use
a simplified MMSE receiver as the target. Here we assume that
the noise covariance matrix 1

ZZR in equation (1) is a diagonal
matrix with equal diagonal elements, meaning that we assume
white noise and equal noise variance for all receive antennas.
The equation can be further simplified to

��
�

�
��
�

�
�	

TN
S

nH IHHB 2

2

�
�

��������������������������������#��

YHBD H
MMSE

1ˆ
	 ���

Figure 2 shows the block diagram of the test bench for our
4×4 matrix performance study.

In this test bench, we inject a very small input noise to limit
the matrix condition to under 2×103.

The matrix condition is defined as the maximum eigenvalue
divided by the minimum eigenvalue for the matrix. It indicates
the “invertibility” of a matrix. The bigger the condition
number, the more singular the matrix is. In this test the matrix
condition is calculated using the MATLAB function cond().

The error statistics are defined as the output signal to error
ratio (SER):

635

�))
MatD

DMat-D(mean(*-SER x
x |ˆ|

|ˆˆ|log20 10	 ��������������������

This calculates the log ratio of the MATLAB equalizer
output of MMSED̂ as the signal, over the error between

MATLAB and corresponding inversion method for MMSED̂ .

Statistics are collected from 10,000 runs of the test.

Figure 2. Block diagram of 4×4 matrix inversion performance study

V. BENCHMARK SUMMARIES AND PERFORMANCE RESULTS

This section summarizes the benchmark from TI’s SOC and
performance results from the 4×4 matrix inversion algorithms
we tested.

TABLE I. TI SOC 4×4 MATRIX INVERSION BENCHMARK SUMMARY

Algorithms 4×4 inversion
benchmarks (cycles)

Floating-point C blockwise
+ B-1Y

188 + 8 = 196

Floating-point C co-factor +
B-1Y

265 + 8 = 273

Fixed-point C Cholesky + 2
EQ solver

668 + 80 = 748

Figure 3. Performance scatter plot for 4×4 matrix inversion algorithms

As we can see from Table 1 and Figure 3, while all three
method we evaluated have nearly the same performance in
terms of output SER, floating-point blockwise has the lowest
cycle counts, which is about a factor of 4 improvement over the
fixed-point Cholesky decomposition costs. The floating-point
cofactor method has about a 2.5 times improvement factor over
the cycle counts of fixed-point Cholesky decomposition. In
addition, all floating-point implementations are mostly
serialized code with limited parallelization. In the equalization
application, we can calculate the inversion of matrices for
multiple frequency subcarriers. Putting these floating-point
matrix inversions into a loop and using the compiler to better
pipeline the loop can result in higher parallelization and further
reduce the cost of the inversions.

This shows that with floating-point precision and dynamic
range, we can achieve the same performance using much
efficient algorithms such as blockwise and cofactor methods,
while fixed-point implementation has to use more complex but
more computational stable algorithm such as Cholesky
decomposition to avoid false results.

VI. CONCLUSION

In this paper, we evaluated three methods for 4×4 matrix
inversion for LTE MIMO: Cholesky decomposition in fixed-
point, and blockwise and cofactor methods in floating-point.
We implemented all three methods using TI’s new baseband
SOC architecture and measured cycle counts. We also
developed performance test benches to evaluate the numerical
performance of these methods. As shown in Section V,
floating-point blockwise and cofactor method save about 2.7 to
3.8 times the fixed-point Cholesky decomposition based
inversion in terms of cycle counts, while maintaining very
close output signal to error ratio performance. Floating point
DSP saves MIPS (cost) and saves time (is easier to develop) for
the same or better performance than older fixed-point as shown
in the study of 4x4 matrix inversion.

REFERENCES
[1] N.J. Higham, Accuracy and Stability of Numerical Algorithms 2nd

Edition, 2002
[2] Di Wu, Johan Eilert and Dake Liu, Dandan Wang, Naofal Al-Dhahir and

Hlaing Minn, “Fast Complex Valued Matrix Inversion for Multi-User
STBC-MIMO Decoding” VLSI, 2007. ISVLSI '07. IEEE Computer
Society Annual Symposium, pp. 325 - 330, March 2007

636

