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Abstract— Multiple-Input Multiple-Output (MIMO) is one of the 
key technologies for the current and future broadband wireless 
services. Matrix inversion is the most costly computational 
module within the Minimum Mean-Square Error (MMSE) based 
MIMO receiver. For LTE Release 8, the order of the matrix to be 
inverted for an MMSE receiver is 2×2 for 2-stream MIMO. 
Going forward to LTE release 10, 4-stream MIMO can 
potentially double the throughput, but the matrix to be inverted 
will grow to 4×4, which is computationally intensive. In this 
paper, we will exam several software implementations of 4×4 
matrix inversion. We will demonstrate how we can significantly 
reduce the cost (both in terms of cycle counts and development 
time) while maintaining enough output precision to meet 
performance requirements by using the floating-point feature of 
Texas Instruments’ (TI) new multicore System-on-a-Chip (SoC) 
architecture. 

Keywords-component; 4×4 matrix inversion; Floating-point 
DSP; MIMO; LTE; Texas Instruments 

I. INTRODUCTION 

MIMO is one of the key technologies in broadband wireless 
services to improve bandwidth utilization efficiency. Figure 1 
shows the example of LTE uplink 2-stream multi-user MIMO. 

Figure 1. Uplink multi user MIMO 

 In the LTE application, an MMSE-based algorithm is most 
common and the solution can be written as follows: 
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Where: 

MMSED̂  is the output of the equalizer; 

H  is the channel matrix with size RxAnts by TxStreams,
RxAnts is the number of receive antennas, and TxStreams is the 
number of transmit streams; 

1

ZZR  is the inverse of the noise covariance matrix with size 

RxAnts by RxAnts;
2
S�  is the variance of the input signal; 

Y  is the input received signal to the equalizer, with size 
RxAnts by 1. 

Here both matrices that need to be inverted are Hermitian 
matrices. B is a 2×2 matrix for 2-stream MIMO and a 4×4 
matrix for 4-stream MIMO.  

In this paper, we will focus on 4×4 matrix inversion and 
evaluate three matrix inversion algorithms: Cholesky 
decomposition based matrix inversion, a blockwise method, 
and the cofactor method. Using a fixed-point implementation 
of the Cholesky decomposition-based matrix inversion as the 
reference, we will look at the cycle count cost of the blockwise 
and cofactor methods in floating-point using TI’s new 
multicore SOC, as well as the error performances of each 
algorithm.  

II. NEW MULTICORE SYSTEM-ON-CHIP ARCHITECTURE FOR 
WIRELESS APPLICATIONS FROM TI

In February 2010, TI announced a new SoC architecture 
based on its multicore DSPs that integrates fixed and floating 
point capabilities in the industry's highest performing CPU at 
up to 1.2GHz clock speed.  

A. Floating-point computational capability of the new TI 
SOC architecture 
The new TI SOC architecture offers the industry highest 

floating-point computational capability. In summary: 

1. The floating-point engine runs at the same clock speed 
as the fixed-point engine. 

2. The floating-point engine has the same single precision 
floating-point operations efficiency as the fixed-point 
32-bit operation efficiency, which is: 

ICSP2010 Proceedings 
    

633

___________________________________ 
978-1-4244-5899-8/10/$26.00 ©2010 IEEE
  



� 8 real multiplications per clock cycle; 

� 2 complex multiplications per clock cycle; 

� 8 real additions/subtractions per clock cycle; 

� 2 real inverse or 2 square root inverse operations per 
clock cycle (8-bit mantissa precision, Newton-
Raphson interpolation is needed for higher precision). 
These are fully pipelineable operations, while fixed-
point division often involves in iterative subtraction, 
or table lookups; 

� 8 conversions per clock cycle to convert between 16-
bit/32-bit integer and single-precision floating-point 
numbers. This makes mixed floating/fixed-point 
coding more efficient. 

3. In addition to the single-precision operations, the 
floating-point engine also has offers fast pipelinable 
double precision floating-point operations 

B. Floating-point advantages in wireless application 
For wireless applications, especially in the area of receiver 

algorithms, floating-point brings some key advantages over 
fixed-point implementations: 

� Most of the time, simulation of algorithms starts on 
floating-point (MATLAB, C, or C++) platforms. While 
there is rarely a need to re-tune/test precision of the 
algorithm after implementation on single-precision 
floating-point for wireless application, fixed-point 
implementation can run into many rounds of 
adjustment and retest within the link/system level 
simulator to ensure the performance under different 
scaling, rounding, and data bit-width precisions 
combinations. In addition, these fixed-point scaling, 
rounding, and data bit-width precisions may not be run 
efficiently on a particular fixed-point DSP architecture 
and could cost more cycles to execute.  

� Very often for an advanced algorithm, fixed-point 
implementation can run into the conflict of precision vs 
dynamic range. The developer has to either increase 
the bit-width of the value which leads to much more 
cycles used, or scale dynamic range along the 
calculation which also cost more MIPS, or sacrifice the 
performance. Single-precision floating point can easily 
solve this problem with much wider dynamic range 
than 32-bit integer operations.  

All these advantages can result in fast prototyping and 
productization, and possibly lower cost of wireless algorithm 
implementations. In addition, combining with an advanced 
compiler, floating-point coding on TI’s new SOC is mostly 
native C with a few Single Instruction Multiple Data (SIMD) 
instructions needed for manual optimization with C function-
like intrinsic calls because of no need for the variations of 
instructions for rounding, saturation, bit-width, and extra shifts 
as fixed-point arithmetic does. This also reduces the time for 
prototyping and productization. 

III. MATRIX INVERSION ALGORITHMS AND 
IMPLEMENTATION

To invert a matrix of size bigger than 2×2 in fixed-point 
implementation, it is often suggested to avoid simple analytic 
types of approach and use more stable decomposition-based 
algorithms such as Cholesky, QRD, LUD or LDL 
decomposition ([1], [2]). They easily require 1000 cycles or 
more to invert a 4×4 matrix. We will use the Cholesky 
decomposition-based fixed-point inverse in this paper as the 
reference for fixed-point implementation.  

Having floating-point precision and dynamic range in mind, we 
will compare the Cholesky decomposition method to two 
algorithms that are often avoided in fixed point because of the 
poor stability, but work well in floating point and require fewer 
cycles: a cofactor method and a blockwise method.  

All three methods are implemented and optimized in C with 
intrinsics on TI new SOC architecture. For the fixed-point 
implementation, 32-bit intermediate results are used. For the 
floating-point methods, all intermediate values are kept in 
single-precision floating-point. More implementation details 
can be found in the following subsections. 

A. Cofactor method for matrix inversion 
Use 4×4 matrix as an example, the inversion of matrix A

can be written as: 
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Where |A| is the determinant of A, Cij is the matrix of 
cofactors, and CH represents the matrix conjugate transpose. 
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Where Mij is the (i,j)th minor of A, and is defined to be the 
determinant of the submatrix obtained by removing from A its 
i-th row and j-th column. For example, M11 of 4x4 matrix is 
generated as below. 
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The determinant of a 3x3 matrix can be calculated by its 
diagonals like below. The sum of the products of three diagonal 
north-west to south-east lines of matrix elements, minus the 
sum of the products of three diagonal south-west to north-east 
lines of elements when the copies of the first two columns of 
the matrix are written beside it as below: 
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In our floating-point implementation, one division is used 
for calculation of 1/|A|. There is no requirement on pre-scaling 
the input matrix, or internal scaling to preserve the dynamic 
range. We also fully unrolled the calculation and only the lower 
half of the matrix is calculated to take advantage of the 
Hermitian property of the input matrix. All calculations are 
done using single-precision floating-point. 

B. Blockwise method for matrix inversion 
Matrices can also be inverted blockwise by using the 

following analytic inversion formula: 
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where A, B, C and D are matrix sub-blocks of arbitrary size. 
(A and D must be square, so that they can be inverted). In this 
example, the 4×4 matrix is equally split into four, 2×2 matrices. 

In the floating-point implementation, two divisions are used 
to calculate the inverse of two, 2×2 matrices. All calculations 
are done using single-precision floating-point. 

C. Cholesky decomposition based matrix inversion 
If A is Hermitian and positive definite, then A can be 

decomposed as 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

		















 )1)(1(

1)1(11

0)1(1000

)1)(1(1)1(0)1(

1110

00

......
...
...

...

.........

nn

n

n

nnnn

H

l

lL
lll

lll

ll
l

LLA
��� ��

Where L is a lower triangular matrix with strictly positive 
diagonal entries, and LH denotes the conjugate transpose of L. 
This is the Cholesky decomposition. 

The Cholesky decomposition is implemented step by step 
as shown below 
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Where a is the matrix element in the first row and first 
column, V is an (n-1)×1 matrix, B is (n-1) × (n-1) matrix. L0 is 
the first column of the solution L. A0 is still a Hermitian matrix, 

and can be further decomposed in the same way and get the 
next column of L. This continues until the size of the last Ai is 
one, then the last element of L is simply a , and the Cholesky 
decomposition has been accomplished.  

Once the L is calculated, instead of doing matrix inversion 
of L to get an MMSE solution in Equation (2), we can use a 
lower and upper equation solver to calculate MMSED̂ :
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In our fixed-point implementation, the a/1  (for 
Cholesky decomposition) and a/1 (for equation solvers) are 
calculated using table look up and Newton Raphson 
interpolation to achieve 32-bit output precision.  All 
intermediate values are 32-bit real and 32-bit imaginary 
precision. 

IV. PERFORMANCE TEST SETUP

This section describes the setups for performance testing of 
the matrix inversion algorithms we have selected to evaluate. 

For our 4×4 matrix inversion performance test study we use 
a simplified MMSE receiver as the target. Here we assume that 
the noise covariance matrix 1


ZZR  in equation (1) is a diagonal 
matrix with equal diagonal elements, meaning that we assume 
white noise and equal noise variance for all receive antennas. 
The equation can be further simplified to  
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Figure 2 shows the block diagram of the test bench for our 
4×4 matrix performance study.  

In this test bench, we inject a very small input noise to limit 
the matrix condition to under 2×103.

The matrix condition is defined as the maximum eigenvalue 
divided by the minimum eigenvalue for the matrix. It indicates 
the “invertibility” of a matrix. The bigger the condition 
number, the more singular the matrix is. In this test the matrix 
condition is calculated using the MATLAB function cond().

The error statistics are defined as the output signal to error 
ratio (SER): 
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This calculates the log ratio of the MATLAB equalizer 
output of MMSED̂  as the signal, over the error between 

MATLAB and corresponding inversion method for MMSED̂ .

Statistics are collected from 10,000 runs of the test. 

Figure 2. Block diagram of 4×4 matrix inversion performance study 

V. BENCHMARK SUMMARIES AND PERFORMANCE RESULTS

This section summarizes the benchmark from TI’s SOC and 
performance results from the 4×4 matrix inversion algorithms 
we tested. 

TABLE I. TI SOC 4×4 MATRIX INVERSION BENCHMARK SUMMARY

Algorithms 4×4 inversion 
benchmarks (cycles) 

Floating-point C blockwise 
+ B-1Y

188 + 8 = 196 

Floating-point C co-factor + 
B-1Y

265 + 8 = 273 

Fixed-point C Cholesky + 2 
EQ solver 

668 + 80 = 748 

Figure 3. Performance scatter plot for 4×4 matrix inversion algorithms 

As we can see from Table 1 and Figure 3, while all three 
method we evaluated have nearly the same performance in 
terms of output SER, floating-point blockwise has the lowest 
cycle counts, which is about a factor of 4 improvement over the 
fixed-point Cholesky decomposition costs. The floating-point 
cofactor method has about a 2.5 times improvement factor over 
the cycle counts of fixed-point Cholesky decomposition. In 
addition, all floating-point implementations are mostly 
serialized code with limited parallelization. In the equalization 
application, we can calculate the inversion of matrices for 
multiple frequency subcarriers. Putting these floating-point 
matrix inversions into a loop and using the compiler to better 
pipeline the loop can result in higher parallelization and further 
reduce the cost of the inversions. 

This shows that with floating-point precision and dynamic 
range, we can achieve the same performance using much 
efficient algorithms such as blockwise and cofactor methods, 
while fixed-point implementation has to use more complex but 
more computational stable algorithm such as Cholesky 
decomposition to avoid false results. 

VI. CONCLUSION

In this paper, we evaluated three methods for 4×4 matrix 
inversion for LTE MIMO: Cholesky decomposition in fixed-
point, and blockwise and cofactor methods in floating-point. 
We implemented all three methods using TI’s new baseband 
SOC architecture and measured cycle counts.  We also 
developed performance test benches to evaluate the numerical 
performance of these methods. As shown in Section V, 
floating-point blockwise and cofactor method save about 2.7 to 
3.8 times the fixed-point Cholesky decomposition based 
inversion in terms of cycle counts, while maintaining very 
close output signal to error ratio performance. Floating point 
DSP saves MIPS (cost) and saves time (is easier to develop) for 
the same or better performance than older fixed-point as shown 
in the study of 4x4 matrix inversion.  

REFERENCES
[1] N.J. Higham, Accuracy and Stability of Numerical Algorithms 2nd

Edition, 2002 
[2] Di Wu, Johan Eilert and Dake Liu, Dandan Wang, Naofal Al-Dhahir and 

Hlaing Minn, “Fast Complex Valued Matrix Inversion for Multi-User 
STBC-MIMO Decoding” VLSI, 2007. ISVLSI '07. IEEE Computer 
Society Annual Symposium, pp. 325 - 330, March 2007 

636




