Community Linux PSP for
DaVinci devices

PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Wed, 20 Apr 2011 13:47:56 CST

Community Linux PSP for DaVinci devices

Community Linux PSP for DaVinci devices

I3 TExAs
INSTRUMENTS

Document License

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a
copy of this license, visit http:// creativecommons. org/ licenses/ by-sa/ 3. 0/ us/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

PSP Overview

Linux Platform Support Package (PSP) provides support for Linux kernel, U-Boot, UBL and utilities to flash boot
software on the EVM. The latest PSP package can be obtained from TI's Technology and Software Publicly
Available (TSPA) download site [This package includes the following components:

Note: Specific version information of each component is included in the PSP Release Notes for the release. PSP
drivers features and performance guide provides an overview, features, constraints and performance for each of the
drivers included in the PSP release.

+ DaVinei Linux kernel. This Linux kernel is based on a kernel version available from the DaVinci GIT tree .
The pre-built kernel binary included with the PSP package is built with Sourcery G++ Lite 2009q1-203 for ARM
GNU/Linux ' from CodeSourcery 4,

« U-Boot. This U-Boot is based on an U-Boot version available from the U-Boot GIT tree °!. The pre-built U-Boot
binary included with this release is built with Sourcery G++ Lite 2009q1-203 for ARM GNU/Linux B from
CodeSourcery 4]

* User Boot Loader (UBL). This is the primary boot software which copies U-Boot to external RAM and starts it.
This software requires Code Composer Studio (CCStudio) version 5.0 for building it.

* Flash writers. This software requires Code Composer Studio (CCStudio) version 5.0 for building.

You can copy any portions of the PSP that need to be run on a Microsoft Windows host (such as CCStudio projects
for building the UBL and flash writers) to a Microsoft Windows host. Alternately, you can install the PSP package in
a disk partition that can be accessed both from a Microsoft Windows and Linux host.

Most of the components of the PSP need to be untar-ed or extracted in order to be used. The following files and
directories are provided in the PSP:

———-Davinci-PSP-SDK—#.#.#.#

| -—— Software-manifest.html

| -—— docs

| | -—— FeaturesPerformanceGuide—#.#.#.#.pdf
| | -—— GPLv2.pdf

| | -— ReleaseNotes—#.#.#.#.pdf

| ‘—— UserGuide—#.#.#.#.pdf

|== hogt=teols

| |-— linux

| | —— src

| "—— windows

http://processors.wiki.ti.com/index.php?title=File:TIBanner.png
http://creativecommons.org/licenses/by-sa/3.0/us/
http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/DaVinci_03_21/03_21_00_03/index_FDS.html
http://processors.wiki.ti.com/index.php?title=DaVinci_GIT_Linux_Kernel_Releases
http://processors.wiki.ti.com/index.php?title=DaVinci_Linux_Drivers_Datasheet
http://processors.wiki.ti.com/index.php?title=DaVinci_Linux_Drivers_Datasheet
http://git.kernel.org/?p=linux/kernel/git/khilman/linux-davinci.git;a=summary
http://www.codesourcery.com/sgpp/lite/arm/portal/release858
http://www.codesourcery.com
http://git.denx.de/?p=u-boot.git;a=summary
http://www.codesourcery.com/sgpp/lite/arm/portal/release858
http://www.codesourcery.com

Community Linux PSP for DaVinci devices

| -—— images

—— boot-strap
| -— ccs
| —— dm36x
| | —— NANDWriter_ DM36x.out
| ' —— NANDEraser_DM36x.out

|
|
|
| —— omapllx8
| | | -—— NANDWriter_ARM.out
| | | —— NORWriter_ ARM.out
| | ‘—— SPIWriter_OMAP-L138.out
"—— serial_flash
| | —— dm36x
| | | -—— sfh_DM36x.exe
| | | -— ubl_DM36x_NAND.bin
| | "—— ubl_DM36x_SDMMC.bin
| —— omapllx8
| | |-— sfh_OMAP-L138.exe
| | | -—— ubl_OMAPL138_NAND.bin
| | | —— ubl_ OMAPL138_NOR.bin
| | | -—— ubl_OMAPL138_SDMMC.bin
| | "—— ubl_OMAPL138_SPI_MEM.bin
—-— examples
| —— dm36x
| —— edma
| "—— edma_test.ko
| -—— fbdev
| |-— blend
| | -—— fbdev_display_bands
| ‘—— fbdev_display_rgb

| -—— display_lcd

| —— mc_enumerate

|—— mt9p031_ccdc_aew

| -— mt9p031_ccdc_af

| —— mt9p031_ccdc_file

| —— mt9p031_ccdc_prv_file

| —— mt9p031_ccdc_prv_rsz_file

| —— mt9p031_ccdc_prv_rsz_loopback

| -—— previewer_resizer_ss

| -—— previewer_ss

| —— resizer_ss

| —— tvp5l4x_ccdc_crop_loopback
| —— tvp5l4x_ccdc_file

| —— tvpb5l4x_ccdc_loopback

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | —— tvp5l4x_ccdc_loopback_mmap
|

|
|
|
|
|
|
|
|
| |—— mt9p031_ccdc_prv_rsz_loopback_mmap
|
|
|
|
|
|
|
|

| —— tvp51l4x_ccdc_prv_file

Community Linux PSP for DaVinci devices

| —— tvp5l4dx_ccdc_prv_rsz_file
| —— tvp7002_ccdc_file

|—— tvp7002_ccdc_loopback

| —— tvp7002_ccdc_loopback_mmap

|
|
|
|
| |—— tvp7002_ccdc_prv_file
| | —— tvp7002_ccdc_prv_rsz_file
| | —— v412_colors

| | —— v412_colors_hd

| "—— v41l2_display

‘—— omapllx8

| —— edma

| '—— edma_test.ko

| | —— vpif_mmap_loopback
| —— vpif_userptr_loopback_cmem
| -— vpif_display

|

|

| | —— vpif_userptr_loopback_sd
| ‘—— vpif_mmap_loopback_sd

|

|

-- gpio
—— gpilo_test.ko
" —— mcbsp
| | ' —— mcbsp_test.ko
—— kernel
| —— dm36x
| | -— modules\
| —— ulmage
| —— omapllx8
| | —— modules\
| —— ulmage
== UW=1000t
| —— dm36x
| ‘—— u-boot.bin
| —— omapllx8
| ‘—— u-boot.bin
T—— utils
| | —— dm36x
| —— omapllx8
—-— scripts

== grE
| —— boot-strap
| "—— flash-utils—#.#.#.#.tar.gz
| —— examples
| ‘—— examples-—#.#.#.#.tar.gz
| -— kernel
| | -—— ChangeLog—#.#.#.#
| | —— ShortLog
| | -—— Unified-patch-#.#.#.#.g9z

Community Linux PSP for DaVinci devices

| —— diffstat—#.#.#.4#
| -—— kernel-patches-#.#.#.#.tar.gz
C—— linux-#.#.#.#.tar.gz

|

|

|

|

| | -—— ChangeLog—#.#.#.#
| | —— ShortLog

| | -—— Unified-patch-#.#.#.#.9z

| | —— diffstat—#.#.#.4#

| | —— u-boot-#.#.#.#.tar.gz

| '—— u-boot-patches-#.#.#.#.tar.gz

T—— utils

Host platform Requirements
Building and running all of the PSP components requires both a Windows and a Linux machine.

The Windows machine is required for running CCStudio 5.0. CCStudio is required for building the User Boot
Loader (UBL) and Flash writers. CCStudio is also used to burn the boot images (UBL, U-Boot) into the flash using
the flash writers provided in the PSP package.

Linux host is required:

* for compiling UBL, Serial flash writers, U-Boot and Linux kernel.
* to host the TFTP server required for downloading kernel and file system images from U-Boot using Ethernet.
* to host the NFS server to boot the EVM with NFES as root filesystem

Host Software Requirements

¢ CCstudio 5.0 (needed only to rebuild UBL/flash writers or to re-flash UBL/U-Boot image on the EVM)
* TI Code Generation Tools 4.5.1 and above for TMS470Rx (needed only to rebuild UBL/flash writers)

* CodeSourcery tool chain for ARM

* MONO Framework

* Serial console terminal application

* TFTP and NFS servers.

Getting Started Quickly

Get started with setting up the EVMs for - OMAP-L138, DA850 or AM18x or — DM36x.

To help you get started quickly, pre-built binaries for the UBL, U-Boot, Linux kernel, and flash writers are provided
in the images directory under PSP installation.

In order to create your own applications running on Linux or to rebuild U-Boot or the Linux kernel provided with the

PSP package, you will need to install the CodeSourcery tools for cross compilation.

http://processors.wiki.ti.com/index.php?title=GSG:_Setting_up_OMAP-L1/AM1x_Target_File_System%23Writing_a_Simple_Program_and_Running_it_on_the_EVM
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23Downloading_and_installing_the_Code_Sourcery_tools

Community Linux PSP for DaVinci devices

Running PSP Components on OMAP-L.138

Booting U-Boot provides information on setting up the EVM to boot U-Boot from various boot media.
Booting the Linux kernel provides information on booting Linux on the EVM.
Re-flashing boot images provides information on re-flashing the boot software (UBL, U-Boot) on the EVM.

Using Linux Kernel Drivers
— Linux drivers usage has specific usage information on various Linux drivers and features.

Loading Linux kernel modules provides information on how to use various kernel features and drivers as loadable

kernel modules.

Running PSP Components on DM36x

Booting DM36x Out of the Box provides information on setting up the EVM to boot U-Boot and Linux from
various boot media.

Re-flashing boot images provides information on re-flashing the boot software (UBL, U-Boot) on the EVM.

Building PSP Components

Building Software Components for OMAP-L1 provides procedures for rebuilding the following software
components used on the OMAP-L1 processors or to flash software to the board.

¢ Linux kernel

¢ U-Boot

¢ ARM User Boot Loader

¢ SPI Flash writer

¢ NAND Flash writer

¢ NOR Flash writer for OMAP-1.138

Building Software Components for DaVinci devices provides procedures for rebuilding the following software
components used on the DaVinci processors or to flash software to the board.

¢ Linux kernel

* U-Boot

* User Boot Loader for DM36x

* NAND Flash writer for DM36x

Configuring Linux Kernel provides information on how to reconfigure the Linux kernel to include and exclude

various drivers and kernel features.

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_the_Linux_kernel_using_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Loading_Linux_Kernel_Modules
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Booting_the_DM36x_EVM_using_pre-built_binaries
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Flashing_DM36x_EVM_using_NAND_Writer_utilities_.28CCS_environment.29
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_ARM_Side_User_Boot_Loader
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_NAND_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_NOR_Flash_writer
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Building_PSP_Components
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Rebuilding_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Rebuilding_U-Boot
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Building_the_User_Boot_Loader_.28UBL.29
http://processors.wiki.ti.com/index.php?title=UG:_DaVinci_PSP_Installation_on_DM36x_EVM%23Building_the_NAND_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Driver_configuration_in_the_Linux_kernel

Community Linux PSP for DaVinci devices

Additional topics

* The additional procedures topic documents some additional useful procedures aside from the usual usage
procedures.
e The —» Writing V4L2 Media Controller Applications on Dm36x Video Capture is an introduction to Media

Controller and tutorial for writing applications for Video Capture

References

[1] http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/DaVinci_03_21/03_21_00_03/index_FDS.html
[2] http://git.kernel.org/?p=linux/kernel/git/khilman/linux-davinci.git;a=summary

[3] http://www.codesourcery.com/sgpp/lite/arm/portal/release858

[4] http://www.codesourcery.com

[5] http://git.denx.de/?p=u-boot.git;a=summary

GSG: Booting the OMAP-L138/AM18x Out of
the Box

A Up to main Getting Started Guide for OMAP-L1 Table of Contents

A Up to main Getting Started Guide for AM18x Table of Contents
IMPORTANT

By default, DAS50/OMAP-L138/AM18xx EVM comes up with CPU operating at 300MHz. UBL has to be re-built

to boot at a higher CPU frequency. You can also use the Linux CPUFreq driver to change the operating point after

Linux has booted up.

Booting the EVM

NOTE: The EVM (beta version and later) is configured at manufacturing to allow the board to boot up Linux out of

the box without having to build or install any additional software. For earlier versions of EVM (alpha or pre-alpha),

user still needs to flash U-Boot and UBL to flash. Please refer to the topic on flashing the boot images.

Use the following steps to boot the board:

(1]

1. Refer to the usage information available on LogicPD " website.

2. Make sure that the SOM module is properly plugged into the EVM baseboard.

3. Connect the serial cable included with the kit to the serial port of the EVM board and connect the other end to the

serial port of a workstation.
4. Make sure the the boot switch pins on switch S7 are in the correct position:

S7:8 S7:7 S7:6 S7:5
(BOOT[4]) (BOOT(3]) (BOOT(2]) (BOOT(1])
OFF OFF OFF OFF

5. Run a terminal session on your workstation and configure it to connect to the serial port with the following
settings
* Bits per second: 115,200
* Data bits: 8
* Parity: None
e Stop bits: 1
* Flow control: None

http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L1%23Additional_procedures
http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/DaVinci_03_21/03_21_00_03/index_FDS.html
http://git.kernel.org/?p=linux/kernel/git/khilman/linux-davinci.git;a=summary
http://www.codesourcery.com/sgpp/lite/arm/portal/release858
http://www.codesourcery.com
http://git.denx.de/?p=u-boot.git;a=summary
http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L138
http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_AM18x
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1/AM1x%23Rebuilding_the_ARM_Side_User_Boot_Loader
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images
http://logicpd.com/products/development-kits/zoom-omap-l138-evm-development-kit

GSG: Booting the OMAP-L138/AM18x Out of the Box

e Transmit delay: O msec/char, 100 msec/line

6. Upon powering up the board, you should see U-Boot start up and then messages indicating that the Linux kernel
is starting up. When the boot sequence has completed, you should see a login prompt. NOTE
Initial kits that ship may power up to a U-Boot prompt rather than automatically boot Linux. If you have such a
kit, you will need to set up U-Boot to boot Linux.

7. Log in as root (no password).

* At the Linux prompt, you can use existing Linux commands to test various features and use examples from the
"examples" folder under the "images" directory.
* While U-Boot is booting, you can press any key to interrupt the automatic boot of the Linux kernel. This will

leave you in U-Boot, where you can type commands in the U-Boot command shell.

NOTE: The AM18x EVM / eXperimenter’s Kit comes with a demo that should boot out of the box according to the
instructions in this video °1. If you changed the u-boot default environmental variables and want to restore them,

please follow the instructions on this page or use the following u-boot commands to set them:
setenv bootcmd 'sf probe 0;sf read 0xc0700000 0x80000 0x220000;bootm 0xc0700000'
setenv bootargs mem=32M console=ttyS2,115200n8 root=/dev/mmcblkOp1 rw rootdelay=3 ip=off
setenv bootfile "ulmage"

saveenv

What's next?

Please continue on to the Installing the SDK software for OMAP-L1 or to Installing_the_SDK_software for AM18x
section of the Getting Started Guide

References

[1] http://logicpd.com/products/development-kits/zoom-omap-1138-evm-development-kit
[2] http://e2e.ti.com/videos/m/digital_signal processors/181433.aspx

http://processors.wiki.ti.com/index.php?title=Booting_Linux_kernel_using_U-Boot
http://e2e.ti.com/videos/m/digital_signal_processors/181433.aspx
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Restoring_factory_default_U-Boot_environment_variables
http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L1%23Installing_the_SDK_software
http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_AM18x%23Installing_the_SDK_software
http://logicpd.com/products/development-kits/zoom-omap-l138-evm-development-kit
http://e2e.ti.com/videos/m/digital_signal_processors/181433.aspx

Booting DM36x Out of the Box

Booting DM36x Out of the Box

NOTE: The EVM (beta version and later) is configured at manufacturing to allow the board to boot up Linux out of

the box without having to build or install any additional software. For earlier versions of EVM (alpha or pre-alpha),
user still needs to flash U-Boot and UBL to flash.

Use the following steps to boot the board:

1. Connect the serial cable included with the kit to the serial port of the EVM board and connect the other end to the

serial port of a workstation.

2. Make sure the the boot switch pins on switch SW4 are in the correct position:
3. For NAND boot mode:

S4:1 (BITSEL2) | S4:2 (BITSEL1) | S4:3 (BITSELO) | S4:4 S4:5 S4:6
(AECFG2) (AECFG1) (AECFGO0)
OFF OFF OFF OFF OFF OFF

5. For MMC/SD boot mode:

S4:1 (BITSEL2) | S4:2 (BITSEL1) | S4:3 (BITSELO) | S4:4 S4:5 S4:6
(AECFG2) (AECFG1) (AECFGO0)
OFF ON OFF OFF OFF OFF

7. Run a terminal session on your workstation and configure it to connect to the serial port with the following

settings

Bits per second: 115,200
Data bits: 8

Parity: None

Stop bits: 1

Flow control: None

Transmit delay: O msec/char, 100 msec/line

8. Upon powering up the board, you should see U-Boot start up and then messages indicating that the Linux kernel

is starting up. When the boot sequence has completed, you should see a login prompt.

9. Log in as root (no password).

At the Linux prompt, you can use existing Linux commands to test various features and use examples from the
"examples" folder under the "images" directory.

While U-Boot is booting, you can press any key to interrupt the automatic boot of the Linux kernel. This will
leave you in U-Boot, where you can type commands in the U-Boot command shell.

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

GSG: DASX/OMAP-L1/AM1x DVEVM
Additional Procedures

A Up to main Getting Started Guide for OMAP-L1 Table of Contents
Flashing images

DAS850/OMAP-L138/AM18xx

On the OMAP-L138 (or AM18xx) SoC, the ARM boots first. On boot-up, the ARM runs the ARM UBL in AIS file
format. The purpose of the ARM UBL is to initialize the PLLs, mDDR, and other hardware. Once done, it copies the
U-Boot into mDDR and starts it.

U-Boot is an open source boot loader and is responsible for booting the Linux kernel.

Flashing images to SPI Flash
There are two ways to flash images to SPI Flash:
* Serial flasher

1. See this page for instructions on using the command line serial flashing utility, which requires only a UART
cable: Serial Boot and Flash Loading Utility for OMAP-L138

* CCS
1. The embedded emulation that comes with the EVM is XDS100 version 1, that does not support the ARM. So to

connect to the ARM, an external emulator is necessary. Also, to use an external emulator, you need the full
version of CCS, not the one that comes with the evm. If you do not have an external emulator, please use the
Serial Flasher above.

2. Set the boot pins to emulation boot mode. This is done by setting switch S7 on the EVM according to the
following table:
For LogicPD EVM

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | ON | OFF | OFF | ON

For Spectrum Digital EVM

Pin# 1 2 3 4 516 |78

Position | OFF | OFF | OFF | OFF | ON | ON | ON | ON

¢ For 03.20.xx.xx Releases:

1. Start CCStudio and connect to the ARM. See details at: How to connect to the OMAP-L138/C6748 EVM
board using CCS?. Ensure that you have the latest ARM GEL file from [[1]] for LogicPD EVM and [[2]]for
Spectrum Digital EVM correctly specified.

2. Execute the GEL function "Full EVM-->SPI1_PINMUX" incase of LogicPD and "Test_setup-->SPI_setup"
on Spectrum Digital. In case of CCSv3, this appears under the GEL menu. In case of CCSv4, this appears
under Scripts menu.

3. Load the SPI flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/utils/omapllx8/ directory of the PSP installation (spiflash-writer.out), or you can
build your own by following the steps in the section on Rebuilding the SPI Flash writer

http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L138
http://processors.wiki.ti.com/index.php?title=Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L138
http://processors.wiki.ti.com/index.php?title=How_to_connect_to_the_OMAP-L138/C6748_EVM_board_using_CCS%3F
http://processors.wiki.ti.com/index.php?title=How_to_connect_to_the_OMAP-L138/C6748_EVM_board_using_CCS%3F
http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit|LogicPD
http://support.spectrumdigital.com/boards/evmam1808/revb/
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

10

4. Run the SPI flasher program. You will be prompted for the input file type and the file path. For booting from

SPI, an ARM AIS image and U-Boot are required.
* To burn the ARM AIS image, for OMAP-L138/AM18xx, type armais as the image type. When

prompted for a file name, provide the path to arm-spi-ais.bin file. A pre-built image is located in the
images/boot-strap/omapllx8/ directory of the PSP installation.

e To burn U-Boot, run the SPI flasher program again, and type uboot as the image type. When prompted
for a file name, provide the path to the u-boot .bin file. A pre-built image is located in the
images/u-boot/omapl1x8/ directory of the PSP installation.

For 03.21.xx.xx Releases:

. Start CCStudio v5 and connect to the ARM. Ensure that you have the latest ARM GEL file from [[1]] for

LogicPD EVM and [[2]]for Spectrum Digital EVM correctly specified.

. Execute the GEL function "Full EVM-->SPI1_PINMUX" incase of LogicPD and "Test_setup-->SPI_setup"

on Spectrum Digital. This appears under the Scripts menu.

. Load the SPI flasher tool on to the ARM. You can either use the pre-built binary shipped in the

images/boot-strap/ccs/omapllx8/ directory of the PSP installation
(SPIWriter_OMAP-L138.out), or you can build your own by following the steps in the section on
Rebuilding the SPI Flash writer

. Run the SPI flasher program. You will be prompted for the file path of ARM AIS image and U-Boot. For

booting from SPI, an ARM AIS image and U-Boot are required.

* First it prompts this message "Will you be writing UBL image ? (y or Y) ", Entering 'N' will skip the
flashing of UBL. Y will allow to flash UBL.

* To burn the ARM AIS image, for OMAP-L138/AM18xx . When prompted for a file name, provide the path
to ubl_OMAPL138_SPI_MEM.bin file. A pre-built image is located in the images
/boot-strap/serial_flash/omapl1x8/ directory of the PSP installation. Entering 'none' will skip this step.

e To burn U-Boot. When prompted for a file name, provide the path to the u-boot.bin file. A pre-built image
is located in the images/u-boot/omapl1x8/ directory of the PSP installation. Entering none' will skip this

step.

7. Once the SPI flash has been written with the all the required files, disconnect CCStudio and power off the EVM.

Proceed to boot from SPI flash

Flashing images to NAND Flash
Follow these steps to flash images to NAND Flash:

1.

For Spectrum Digital EVM

The embedded emulation that comes with the EVM is XDS100 version 1, that does not support the ARM. So to
connect to the ARM, an external emulator is necessary. Also, to use an external emulator, you need the full
version of CCS, not the one that comes with the evm. If you do not have an external emulator, you cannot load
the NAND Flash using these instructions.

. Set the boot pins to emulation boot mode. This is done by setting switch S7 on the EVM according to the
following table:

For LogicPD EVM

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | ON | OFF | OFF | ON

Pin# 1 2 3 4 516 |78

Position | OFF | OFF | OFF | OFF | ON | ON | ON | ON

http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit|LogicPD
http://support.spectrumdigital.com/boards/evmam1808/revb/
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_SPI_Flash

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

¢ For 03.20.xx.xx Releases:

1. Start CCStudio and connect to the ARM. See details at: How to connect to the OMAP-L138/C6748 EVM
board using CCS?. Ensure that you have the latest ARM GEL file from LogicPD B3l Spectrum Digital 21
correctly specified.

2. Execute the GEL function "Full EVM-->EMIFA_NAND_PINMUX" for LogicPD and
"Test_setup-->NAND_setup" for Spectrum Digital. In case of CCSv3, this appears under the GEL menu. In
case of CCSv4, this appears under Scripts menu.

3. Load the NAND flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/utils/omapllx8 directory of the PSP installation (nand-writer.out), or you can build
your own by following the steps in the section on Rebuilding the NAND Flash writer

4. Run the NAND flasher program. You will be prompted for the input file type and the file path. For booting
from NAND, an ARM AIS image and U-Boot are required.

e To burn the ARM AIS image, for OMAP-L138/AM18xx, type armais as the image type. When
prompted for a file name, provide the path to arm-nand-ais.bin file. A pre-built image is located in
the images/boot—-strap/omapllx8/ directory of the PSP installation.

* To burn U-Boot, type uboot as the image type. When prompted for a file name, provide the path to the
u-boot.bin file.

¢ For 03.21.xx.xx Releases:

1. Start CCStudio v5 and connect to the ARM. Ensure that you have the latest ARM GEL file from LogicPD B3l
Spectrum Digital 21 correctly specified.

2. Execute the GEL function "Full EVM-->EMIFA_NAND_PINMUX" for LogicPD and
"Test_setup-->NAND_setup" for Spectrum Digital. This appears under Scripts menu.

3. Load the NAND flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/boot-strap/ccs/omapllx8 directory of the PSP installation
(NANDWriter_ OMAP-L138.out), or you can build your own by following the steps in the section on
Rebuilding the NAND Flash writer

4. Run the NAND flasher program. You will be prompted for the file path of ARM AIS and U-BOOT. For
booting from NAND, an ARM AIS image and U-Boot are required.

e CCS will prompt this message "Do you want to global erase NAND flash", Entering 'n' or 'N' will not erase
the NAND flash.

* To burn the ARM AIS image,for OMAP-L138/AM18xx. When prompted for a file name, provide the path
toubl_OMAP-L138_NAND.bin file. A pre-built image is located in the
images/boot-strap/serial_flash/omapl1x8/ directory of the PSP installation. Entering 'none' will skip this
step.

* To burn U-Boot, When prompted for a file name, provide the path to the u-boot.bin file. Entering none’'
will skip this step.

7. Once the NAND flash has been written with the all the required files, disconnect CCStudio and power off the
EVM. Proceed to boot from NAND flash.

http://processors.wiki.ti.com/index.php?title=How_to_connect_to_the_OMAP-L138/C6748_EVM_board_using_CCS%3F
http://processors.wiki.ti.com/index.php?title=How_to_connect_to_the_OMAP-L138/C6748_EVM_board_using_CCS%3F
http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit
http://support.spectrumdigital.com/boards/evmam1808/revb/
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_NAND_Flash_writer
http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit
http://support.spectrumdigital.com/boards/evmam1808/revb/
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_NAND_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

12

Flashing images to NOR Flash
Follow these steps to boot from NOR Flash:

1. The embedded emulation that comes with the EVM is XDS100 version 1, that does not support the ARM. So to
connect to the ARM, an external emulator is necessary. Also, to use an external emulator, you need the full
version of CCS, not the one that comes with the evm. If you do not have an external emulator, you cannot load
the NOR Flash using these instructions.

2. Obtain the latest ARM GEL file from LogicPD B3l Spectrum Digital 21 Run the CCStudio Setup tool and ensure
that the ARM GEL file is correctly specified.

3. Set the boot pins to emulation boot mode. This is done by setting switch S7 on the EVM according to the
following table:

For Logic PD

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | ON | OFF | OFF | ON

For Spectrum Digital

Pin# 1 2 3 4 S516 |78

Position | OFF | OFF | OFF | OFF | ON | ON | ON | ON

¢ For 03.20.xx.xx Releases:

1. Start CCStudio and connect to the ARM. See details at: How to connect to the OMAP-L138/C6748 EVM
board using CCS?.

2. Execute the GEL function "Full EVM-->EMIFA_NOR_PINMUX" for Logic PD and
"Test_setup-->NOR_setup" for Spectrum Digital. In case of CCSv3, this appears under the GEL menu. In case
of CCSv4, this appears under Scripts menu.

3. Load the NOR flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/utils/omapllx8 directory of the PSP installation (norflash-writer.out), or you can
build your own by following the steps in the section on Rebuilding the NOR Flash writer.

4. Run the NOR flasher program. You will be prompted for the input file type and the file path. For booting from
NOR, an ARM AIS image and U-Boot are required.

* To burn the ARM AIS image, for OMAP-L138/AM18xx, type armais as the image type. When
prompted for a file name, provide the path to arm-nor-ais.bin file. A pre-built image is located in the
images/boot-strap/omapll1x8/ directory of the PSP installation.

* To burn U-Boot, type uboot as the image type. When prompted for a file name, provide the path to the
u-boot.bin file built for NOR.

¢ For 03.21.xx.xx Releases:

1. Start CCStudio v5 and connect to the ARM.

2. Execute the GEL function "Full EVM-->EMIFA_NOR_PINMUX" for Logic PD and
"Test_setup-->NOR_setup" for Spectrum Digital. This appears under Scripts menu.

3. Load the NOR flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/boot-strap/ccs/omapllx8 directory of the PSP installation
(NORWriter_OMAP-L138.out), or you can build your own by following the steps in the section on
Rebuilding the NOR Flash writer.

4. Run the NOR flasher program. You will be prompted for the input file paths. For booting from NOR, an ARM
AIS image and U-Boot are required.

http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit
http://support.spectrumdigital.com/boards/evmam1808/revb/
http://processors.wiki.ti.com/index.php?title=How_to_connect_to_the_OMAP-L138/C6748_EVM_board_using_CCS%3F
http://processors.wiki.ti.com/index.php?title=How_to_connect_to_the_OMAP-L138/C6748_EVM_board_using_CCS%3F
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_NOR_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_NOR_Flash_writer

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

13

8.

e To burn the ARM AIS image, for OMAP-L138/AM18xx. When prompted for a file name, provide the path
to ubl_OMAP-L138_NOR.bin file. A pre-built image is located in the
images/boot—-strap/serial_flash/omapl1x8/ directory of the PSP installation. Entering
‘none’ will skip this step.

e To burn U-Boot, when prompted for a file name, provide the path to the u—boot .bin file built for NOR.
Entering 'none' will skip this step.

Once the NOR flash has been written with the all the required files, disconnect CCStudio and power off the

EVM. Proceed to boot from NOR flash

DAS830/OMAP-L137

On the OMAP-L137 and DAS830 SoCs, the DSP boots first, on boot-up, the DSP runs the DSP UBL in AIS file
format. The purpose of the DSP UBL is to wake up the ARM and start the ARM UBL which is present in raw binary
form. The purpose of the ARM UBL is to initialize the PLLs, SDRAM, and other hardware. Once done, it copies the

U-Boot into SDRAM and starts it. U-Boot is an open source boot loader and is responsible for booting the Linux

kernel.

Flashing images to SPI Flash

There are two ways to flash images to SPI Flash:

1.

Serial flasher

See this page for instructions on using the command line serial flashing utility, which requires only a UART
cable: Serial Boot and Flash Loading Utility for OMAP-L137

CCS

. Setup the EVM in "emulation debug" mode by setting SW2 switch as follows:

For EVM revisions A and B:

Pin # 7/2(1{0(3

—_
—
—_
—_
—

Position

For EVM revisions after B:

Pin # 712|103

Position [1|1]1|1]0

. Start CCStudio and connect to the DSP. Once done, connect to the ARM. Ensure that you have the latest DSP

(4]

GEL file from Spectrum Digital Support site * ' correctly specified.

. Load the SPI flasher tool on to the ARM. You can either use the pre-built binary shipped in the

images/utils/omapllx7/ directory of the PSP installation (spiflash_writer.out), or you can build

your own by following the steps in the section on Rebuilding the SPI Flash writer

. Run the SPI flasher program. You will be prompted for the input file type and the file path. Three files are

required: DSP AIS, ARM UBL and U-Boot.

* To burn the DSP AIS image, type dspais as the image type. When prompted for a file name, provide the
path to dsp—-spi-ais.bin file. A pre-built image is located in the
images/boot-strap/omapllx7/ directory of the PSP installation.

* To burn the ARM UBL image, type armubl as the image type. When prompted for a file name, provide the
pathto ubl-spi.bin file. A pre-built image is located in the images/boot-strap/omapllx7/

http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_NOR_Flash
http://processors.wiki.ti.com/index.php?title=Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L137
http://support.spectrumdigital.com/boards/evmomapl137/revd/
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

directory of the PSP installation.

e To burn U-Boot, run the SPI flasher program again, and type uboot as the image type. When prompted for a
file name, provide the path to the u—-boot .bin file. A pre-built image is located in the
images/u-boot/omapllx7/ directory of the PSP installation.

5. Once the SPI flash has been written with the all the required files, disconnect CCStudio and power off the EVM.

Proceed to boot from SPI flash.

Flashing images to NAND Flash

1. Setup the EVM in "emulation debug" mode by setting SW2 switch on base board as follows:

For EVM revisions A and B:

Pin # 712|103

._.
—
—_
—
—

Position

For EVM revisions after B:

Pin # 712/1/03

Position [1|1 |1|1/|0

2. On the User Interface card, set the SW1 switch as follows:

Pin # 1234

Position [1|0 1|1

3. Start CCStudio and connect to the DSP. Once done, connect to the ARM. Ensure that you have the latest DSP

4] correctly specified.

GEL file from Spectrum Digital Support site

4. Execute the GEL function Setup_EMIFA_PinMux (). In case of CCSv3, this appears under the GEL menu.
In case of CCSv4, this appears under Scripts menu.

5. Load the NAND flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/utils/omapllx7/ directory of the PSP installation (nand_writer.out), or you can build your
own by following the steps in the section on Rebuilding the SPI Flash writer

6. Run the NAND flasher program. You will be prompted for the input file type and the file path. Three files are

required: DSP AIS, ARM UBL and U-Boot.

e To burn the DSP AIS image, type dspais as the image type. When prompted for a file name, provide the
path to dsp-nand-ais.bin file. A pre-built image is located in the
images/boot—-strap/omapllx7/ directory of the PSP installation.

* To burn the ARM UBL image, type armubl as the image type. When prompted for a file name, provide the
path to ubl-nand.bin file. A pre-built image is located in the images/boot-strap/omapllx7/
directory of the PSP installation.

e To burn U-Boot, run the SPI flasher program again, and type uboot as the image type. When prompted for a
file name, provide the path to the u-boot .bin file. A pre-built image is located in the
images/u-boot/omapllx7/ directory of the PSP installation.

7. Once the NAND flash has been written with the all the required files, disconnect CCStudio and power off the

EVM. Proceed to boot from NAND flash

http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_SPI_Flash_2
http://support.spectrumdigital.com/boards/evmomapl137/revd/
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash_2

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

15

AM17xx

On the AM17xx SoC, the ARM boots first, on boot-up, the ARM runs the ARM UBL in AIS file format. The
purpose of the ARM UBL is to initialize the PLLs, SDRAM, and other hardware. Once done, it copies the U-Boot

into SDRAM and starts it. U-Boot is an open source boot loader and is responsible for booting the Linux kernel.

Flashing images to SPI Flash
1. Setup the EVM in "emulation debug" mode by setting SW2 switch as follows:

Pin # 7/2(1{0(3

Position [1|1[1|1]0

2. Start CCStudio and connect to the ARM. Ensure that you have the latest ARM GEL file from Spectrum Digital

Support site 151 correctly specified.

3. Load the SPI flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/utils/omapllx7/ directory of the PSP installation (spiflash_writer.out), or you can build
your own by following the steps in the section on Rebuilding the SPI Flash writer

4. Run the SPI flasher program. You will be prompted for the input file type and the file path. Two files are

required: ARM AIS and U-Boot.

* To burn the ARM AIS image, type armais as the image type. When prompted for a file name, provide the
pathto arm-spi-ais.bin file. A pre-built image is located in the images/boot—-strap/aml7xx/
directory of the PSP installation.

* To burn U-Boot, run the SPI flasher program again, and type uboot as the image type. When prompted for a
file name, provide the path to the u—boot .bin file. A pre-built image is located in the
images/u-boot/omapllx7/ directory of the PSP installation.

5. Once the SPI flash has been written with the all the required files, disconnect CCStudio and power off the EVM.

Proceed to boot from SPI flash

Flashing images to NAND Flash
1. Setup the EVM in "emulation debug" mode by setting SW2 switch on the base board as follows:

Pin # 712/1/03

Position [1|1 |1|1/|0

2. On the User Interface card, set the SW1 switch as follows:

Pin # 1234

Position [1|0 1|1

3. Start CCStudio and connect to the ARM. Ensure that you have the latest ARM GEL file from Spectrum Digital

Support site (51 correctly specified.

4. Execute the GEL function Setup_EMIFA_PinMux (). In case of CCSv3, this appears under the GEL menu.
In case of CCSv4, this appears under Scripts menu.

5. Load the NAND flasher tool on to the ARM. You can either use the pre-built binary shipped in the
images/utils/omapllx7/ directory of the PSP installation (nand_writer.out), or you can build your
own by following the steps in the section on Rebuilding the SPI Flash writer

6. Run the NAND flasher program. You will be prompted for the input file type and the file path. Two files are

required: ARM AIS and U-Boot.

http://support.spectrumdigital.com/boards/evmam1707
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer
http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_SPI_Flash_2
http://support.spectrumdigital.com/boards/evmam1707
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_SPI_Flash_writer

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

16

e To burn the ARM AIS image, type armais as the image type. When prompted for a file name, provide the
path to arm-nand-ais.bin file. A pre-built image is located in the images/boot—-strap/aml7xx/
directory of the PSP installation.

e To burn U-Boot, run the NAND flasher program again, and type uboot as the image type. When prompted
for a file name, provide the path to the u—boot .bin file.

7. Once the NAND flash has been written with the all the required files, disconnect CCStudio and power off the

EVM. Proceed to boot from NAND flash

Flashing Boot Images on Linux Without CCS

This procedure mirrors that found for the Hawkboard (61 1 requires the Serial boot and Flash Package available here

7l and a compiled u-boot binary. The AIS boot image that is generated makes use of built-in ROM functions and

does not use a UBL for booting.
Note: The following tools require the Mono Framework to run on a Linux system. Refer to your Linux distribution's

package management instructions for information on how to check if Mono is installed or to install/update it.

OMAP-L138
1. Prepare a UART AIS boot image using the command-line HexAIS_OMAP-L138.exe and the attached INI file:

. Note that there are different versions of the INI files for the DS0O0K002 ROM, as that ROM
revision (which was part of the first silicon revision) does not correctly handle mDDR initialization. Also, each
file has mDDR configuration setup for the either 132MHz or 150MHz operation. Comment out the one you do
not want to use and un-comment the one you do intend to use. Alternatively, you can use the AISGen GUI tool to
perform this step.

host$ mono ./HexAIS_OMAP-L138.exe —-ini OMAP-L138_EVM uart.ini -o

u-boot_uart.ais

3. Prepare a SPI AIS boot image using the command-line HexAIS_OMAP-L138.exe and the attached INI file.
Alternatively, you can use the AISGen GUI tool to perform this step. This file should be placed in the /tftproot
directory of your TFTP server so that it can be transferred to the EVM under u-boot using the Ethernet port.

host$ mono ./HexAIS_OMAP-L138.exe —ini OMAP-L138_EVM_spi.ini -o

u-boot_spi.ais

5. Set the EVM to boot in UART2 boot mode. This is done by setting switch S7 on the EVM according to the
following table:

Pin# 1 2 3 4 5 6 7| 8

Position | OFF | OFF | OFF | OFF | OFF | OFF | ON | ON

6. Start the command-line slh_ OMAP-L138.exe tool to boot the board from your host PC.

host$ mono ../slh OMAP-L138.exe —-waitForDevice -v
AISUtils/u-boot_uart_L138.ais

8. Power up the EVM. The UART boot process will start. It may take as long as 15 seconds to complete.

http://processors.wiki.ti.com/index.php?title=GSG:_DA8x/OMAP-L1/AM1x_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash_2
http://elinux.org/Hawkboard#Booting
http://sourceforge.net/projects/dvflashutils/files/OMAP-L138/v2.11/OMAP-L138_FlashAndBootUtils_2_11.tar.gz/download
http://processors.wiki.ti.com/index.php?title=File:OMAP-L138_inifiles.zip
http://processors.wiki.ti.com/index.php?title=File:OMAP-L138_inifiles.zip

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

TI Serial Loader Host Program for OMAP-L138
(C) 2010, Texas Instruments, Inc.

Ver. 1.65

Platform is Windows.
Attempting to connect to device COMIl...
Press any key to end this program at any time.

Entering AIS Parser

Waiting for the OMAP-L138...

(AIS Parse) Read magic word 0x41504954.

(AIS Parse): Waiting for BOOTME... (power on or reset target now)
(AIS Parse): BOOTME received!

(AIS Parse): Performing Start-Word Sync...

(ATIS Parse): Performing Ping Opcode Sync...

(AIS Parse): Processing command 0: 0x5853590D.

(AIS Parse): Performing Opcode Sync...

(AIS Parse): Executing function...

(AIS Parse) Processing command 1: 0x5853590D.

(AIS Parse): Performing Opcode Sync...

(AIS Parse): Executing function...

(AIS Parse): Processing command 2: 0x58535901.

(AIS Parse): Performing Opcode Sync...

(AIS Parse): Loading section...

(AIS Parse) Loaded 156384-Byte section to address 0xC1080000.
(AIS Parse): Processing command 3: 0x58535906.

(AIS Parse): Performing Opcode Sync...

(AIS Parse): Performing jump and close...

(AIS Parse) AIS complete. Jump to address 0xC1080000.
(AIS Parse) Waiting for DONE...

(AIS Parse) Boot completed successfully.

Operation completed successfully.

10. When boot is completed, start a serial terminal program (Hyperterminal, minicom) to connect to the EVM. Press
"enter" to see the u-boot prompt.
11. Erase first 256 KB of the serial flash

U-Boot > sf probe 0
U-Boot > sf erase 0 40000

13. Setup the u-boot enviroment for TFTP download.

U-Boot > setenv serverip 172.24.156.199
U-Boot > dhcp

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

18

15. Use TFTP to transfer the SPI u-boot image generated earlier.
U-Boot > tftpboot 0xc0700000 u-boot_spi.ais

17. Write the SPI AIS u-boot image to the start of the SPI flash.

U-Boot > sf write c0700000 0 40000

19. Power off the EVM, and change the boot mode switches to SPI0 master boot. This is done by setting switch S7
on the EVM according to the following table:

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF

20. Power on the EVM and the u-boot should start.

Booting U-Boot

U-Boot is an open source boot loader and is responsible for booting the Linux kernel.

Connect a serial cable from the serial port on the EVM to the COM port on the host machine. Set up the serial
terminal software as described in Booting the EVM out of the box.
Note: Boot images may not have been pre-flashed on the EVM for all boot modes. In this case, follow the

procedures in Flashing images to flash the required boot images.

DAS8S0/OMAP-L138/AM18xx

Booting from SPI Flash

In order to boot from SPI flash, which has been written with the boot images, set the SW7 switch on the base board

as follows:

For LogicPD EVM

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF

For Spectrum Digital EVM

Pin# 1 2 3 4 5 6 | 7 8

Position | OFF | OFF | OFF | OFF | OFF | ON | ON | OFF

Booting from NAND Flash

In order to boot from NAND flash, which has been written with the boot images, set the SW7 switch on the base
board as follows:
For LogicPD EVM

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF

For Spectrum Digital EVM

Pin# 1 2 3 4 516 |7 8

http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L138%23Booting_the_EVM_out_of_the_box
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

19

Position | OFF | OFF | OFF | OFF | ON | ON | ON | OFF

Booting from NOR Flash

In order to boot from NOR flash, which has been written with the boot images, set the SW7 switch on the base board
as follows:
For LogicPD EVM

Pin# 1 2 3 4 516 |7 8

Position | OFF | OFF | OFF | OFF | ON | ON | ON | OFF

For Spectrum Digital EVM

Pin# 1 2 3 4 5 6 7 8

Position | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF

DAS830/OMAP-L137/AM17xx

Booting from SPI Flash

* Set the SW2 switch on the DSK board as follows. (X indicates the setting is 'don't care')

Pin# 712/1/0|3

Position [0 | 10| 1|X

Booting from NAND Flash

e Set the SW2 switch on the DSK board as follows. (X indicates the setting is 'don't care')

Pin# 712|103

Position |0 | 1|11 |X

On the User Interface card, set the SW1 switch as follows:

Pin # 11234

—_
(=]
—
—_

Position

Booting the Linux kernel using U-Boot

Booting the kernel requires a valid kernel image (uImage) and a target filesystem. A pre-built kernel image is

included in the images/kernel directory of the PSP installation.

Booting Linux kernel using U-Boot describes various methods to boot Linux kernel.

Using extended memory available on OMAP-L138 EVM board

The OMAP-L138 eXperimenter board has 64MB of memory and the OMAP-L138 EVM has 128 MB available. Out
of this 128 MB, some amount is used for Linux and the rest can be used for DSP or as DSP/ARM shared memory.

Sometimes it is convenient to allow Linux to use discontinuous blocks of memory. Kernel parameter mem= can be

http://processors.wiki.ti.com/index.php?title=Booting_Linux_kernel_using_U-Boot

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

20

used for this purpose. One example is shown here:

U-Boot> setenv bootargs console=ttyS2,115200n8 root=/dev/ram0 rw
initrd=0xcl1180000,4M ip=dhcp mem=32MQ@0xc0000000 mem=64M@0xc4000000

If you plan on using Codec Engine (or DSPLink and CMEM alone), you need to make sure that the insmod
command for the cmemk.ko kernel module uses the "allowOverlap=1" option (see the CMEM documentation
available in the LinuxUtils package). Failure to use this option will result in an error message, since the kernel still

reports its memory usage to CMEM as a contiguous 96M range.

Creating bootable SD card for OMAP-L138 EVM board

The UBL on OMAP-L138 expects the u-boot descriptor to be present in sectors 1 to 25 of the SD card. Sector 0 is
used for storing DOS partition information. Hence the u-boot descriptor is stored from sectors 1 till 24. The

descriptor is 512 bytes in size and is replicated in each of these sectors. U-Boot binary starts at Sector 117.

The SD card shall be re-partitioned and formated to create some room for storing u-boot. Use fdisk utility (as super

user) to delete the existing partition and create a new one.

host$ fdisk /dev/mmcblk0 (device name might change if USB card reader

is used)

* Delete the existing partitions with 'd' command.

* Create a new partition with 'n' command, followed by 'p' command

* Mark the first cylinder as 20. Typical cylinder size is 32KBytes. So starting the first cylinder at 20 provides us
about 600Kbytes for storing UBL and u-boot. If the fdisk utility displays a different cylinder size, make sure that
you are leaving atleast 500K space before the first cylinder.

* Leave the last cylinder to default value (or) any other value depending on the partition size requirements.

e Save and exit with 'w' command

Using the uflash utility, place the u-boot binary on the SD card. Copy the u-boot.bin to uflash directory,

host$./uflash -d /dev/mmcblk0 -b u-boot.bin -p OMAPL138 -vv
u-boot Size 252087

U-Boot Magic Number : alacedé66
U-Boot Entry Point : c1080000
U-Boot Number of Blocks : 00000lec
U-Boot Starting Block : 00000075
Load U-Boot Address : cl1080000

Writing U-Boot Signature
Writing U-Boot

Done. ..

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23SD_Card_Writer_Utility_%28uflash%29

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

21

SD Card Writer Utility (uflash)

This is a Linux command line tool specific to TI's Davinci platforms, for flashing UBL/U-Boot to SD card.

Building uflash

1. Use your Linux host to extract the uflash source code from the
src/utils/mmcsd-writer—#.#.#.#.tar.gz tarball from the OMAP-L138 Linux PSP package, which
is located in the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the tar
command to extract the sources.

2. Use the native Linux host gcc compiler to build uflash

host$ gcc uflash.c -o uflash

Loading Linux Kernel Modules
Many of the kernel features can be built as run-time loadable modules so that they are not part of the kernel image,
but can be inserted into the kernel at run-time to increase the running kernel’s functionality.

To understand how to configure some features as modules and how to build them, refer to Rebuilding the Linux

Kernel and Driver configuration in the Linux kernel.

Pre-built binaries for features configured by default as kernel modules are included in the PSP package in the
images/kernel/omapllx7/modules/1lib directory for OMAP-L137 and in the
images/kernel/omapllx8/modules/1ib directory for OMAP-L138. To use these modules, copy the
contents of this directory to the /lib directory of your root file system.

On the target Linux command prompt use command modprobe command to load the module. rmmod command
can be used to remove the module. Below is an example of loading the USB file storage gadget module. Similar

steps can be followed for any driver module.

Loading USB 2.0
To load the USB file backed storage gadget:

1. Insert the g_file_storage.ko module with the following command where /dev/blockdevX is the storage
device acting as the actual storage space. Replace it with the path to the actual block device name acting as

physical storage, such as a MMC/SD card.

target$ modprobe g_file_storage file=/dev/blockdevX

3. Remove the module by using

target$ rmmod g_file_storage

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Driver_configuration_in_the_Linux_kernel

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

22

DSP wakeup in U-Boot

On the OMAP-L138 SoC, the U-Boot wakes up the DSP by default. The DSP reset vector is set to 0x80000000,
and after wakeup it executes the idle instruction. To prevent the DSP from being woken up by U-Boot, you can

do the following:

1. Setthe dspwake environment variable to "no".
2. Save the environment space.
3. Reset the board.

This feature has been added to help DSP users wake up the DSP quickly, since on the OMAP-L138 EVM only the
on-board emulation can access the DSP.

Modifying SPI Frequency in U-Boot
On DA850/OMAP-L138/AM18xx EVMs, in U-Boot, SPI flash has been configured to work at 30MHz. But in some
situations one may have to modify the SPI frequency. For example:

* When operating at different voltages.

* When customer has a different SPI flash which operates at different frequency.

In such cases, SPI frequency can be changed in U-Boot by modifying the CONFIG_SF_DEFAULT_SPEED
variable in u—-boot/include/configs/da850evm.h file. After this modification, rebuild u-boot and flash
the new u-boot binary file to SPI flash.

Restoring factory default U-Boot environment variables

To restore factory default U-Boot environment variables, the existing environment variables need to be erased from
flash. You will need to know the offset in flash were environment variables are stored and the size of flash dedicated

to storing the environment variables.

These values are represented by CONFIG_ENV_OFFSET and CONFIG_ENV_SIZE respectively in U-Boot EVM

configuration file.

For OMAP-L138 (or DA850, AM18xx) SoCs, this file is include/configs/da850_evm.h inside the
U-Boot source tree.
For OMAP-L137 (or DA830, AM17xx) SoCs, this file is include/configs/da830_evm.h inside the

U-Boot source tree.

Follow this procedure based on the flash U-Boot stores its environment variables on. The size and offset values

given below are to considered representative only.

SPI flash

On SPI flash, environment variables are stored at offset 256 KByes into the flash and environment variables sector
size is 64 KBytes.

1. On the U-Boot command prompt:

U-Boot> sf probe 0

3. Erase environment sector length bytes (64 KBytes) from environment sector offset (256 KBytes) as follows:

U-Boot> sf erase 40000 10000

5. Reset the board and it will come up with default environment variables.

6. Save the new set of environment variables.

http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

23

U-Boot> saveenv

NAND Flash

On the NAND flash, env variables are stored at offset O (zero) and environment variables sector size is 128 KBytes.

1. Erase environment sector length bytes (128 KBytes) from environment sector offset O (zero) as follows:

U-Boot> nand erase 0 20000

3. Reset the board and it will come up with default environment variables.

4. Save the new set of environment variables.

U-Boot> saveenv

NOR Flash
On the NOR flash, env variables are stored at the 4th sector of NOR flash and environment variables sector size is
128 KBytes.

1. Unprotect the 4th sector using:

U-Boot> protect off 60060000 +20000

3. Erase environment sector length bytes (128 KBytes) from environment sector offset 60060000 as follows:

U-Boot> erase 60060000 +20000

5. Reset the board and it will come up with default environment variables.

6. Save the new set of environment variables.

U-Boot> saveenv

Restoring MAC address on SPI Flash

On DA850/OMAP-L138/AM18x EVMSs, Logic-PD would be pre-flashing the MAC address to the SPI flash. If SPI
flash is completely erased then even the MAC address gets erased. MAC address can be written to SPI flash from
U-Boot. The following commands need to be entered from U-Boot prompt.

1. Modify the DDR content at address c0000000. MAC address is printed on a sticker pasted on SoC module of
EVM.

U-Boot> mm.b c0000000
c0000000: fb ? 00
c0000001: ef 2 08
c0000002: fd ? ee
c0000003: df 2 03
c0000004: ff ? 6a
c0000005: ff 2 c4
c0000006: bf ? g

3. Make sure that modification is correct:

U-Boot> md.b c0000000
c0000000: 00 08 ee 03 6a c4 bf ff £f3 fd fb ff fe fd bf ef

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

24

c0000010: f£ff ff fb fd 3f fd ff ff bb df 7f fd £7 f£ff£f 77 ff
c0000020: 7f ee £7 fd 3f fd fb fd ed ef bf ce 77 bf fb ff

c0000030: 6f bc b7 fe ff de fd ff 7b fd ff ff b7 fd ff ff

5. Initialize SPI flash from u-boot.

U-Boot> sf probe 0

7. Write the MAC address from DDR to SPI flash:

U-Boot> sf write c0000000 7£0000 6

9. Reset the EVM. U-Boot/Kernel should read the MAC address which was written to the flash.

Enabling Write-Back Cache on DA830/OMAP-L137

On the DA830 and OMAP-L137 SoCs silicon revisions 1.1 and earlier, the ARM cache in write-back mode is not
functional. This has been resolved starting silicon revision 2.0. To maintain backward compatibility with affected
silicon revisions, the Linux kernel keeps write-back mode disabled in the default configuration. Users of silicon

revisions 2.0 and higher can enable write-back cache from kernel configuration.

System Type -—--——>

[] Force write through D-cache

Message logging on UART in ARM UBL

One may wish to enable messaging logging on the UART console. This feature can be enabled by supplying
DEVICE_UART<n>_FOR_DEBUG, where <n> is the UART number. Presently UARTO, UART1 and UART2 can
be enabled for logging. However, UART<n> may be available for logging depending on the PINMUXing with core
peripheral like NAND/SPI/NOR etc and the BOOT mode one wishes to have. Please check this and the settings in
device.c/UARTInit()

For example if one wishes to send the console debug messages over UART2 the compiler flag needs to supplied as
below (shown for NAND boot mode):

Options=-g —-03 —fr"$(Proj_dir)\..\nand" -fs"$(Proj_dir)\..\nand"
-i"$(Proj_dir)\..\include" -d"UBL_NAND" -d"USE_IN_ROM"
—d"DEVICE_UART2_FOR_DEBUG" -me -mv5e —--abi=ti_arm9_abi

http://www.ti.com/lit/pdf/sprz291
http://www.ti.com/lit/pdf/sprz291
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Driver_configuration_in_the_Linux_kernel

GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures

Linux Functional Test Bench

The Linux Functional Test Bench (LFTB) is the set of tools used to verify the various driver features. The test bench
is included in the test-suite directory of the PSP installation. Use the tar command to extract the LFTB

package.

Information on how to use LFTB and its various features is included in the LFTB package itself.

What's next?

Please continue on to the Additional information section of the OMAP-L1 Getting Started Guide.

References

[1] http://www.logicpd.com/products/development-kits/zoom-omap-1138-experimenter-kitlLogicPD

[2] http://support.spectrumdigital.com/boards/evmam1808/revb/

[3] http://www.logicpd.com/products/development-kits/zoom-omap-1138-experimenter-kit

[4] http://support.spectrumdigital.com/boards/evmomapl137/revd/

[5] http://support.spectrumdigital.com/boards/evmam1707

[6] http://elinux.org/Hawkboard#Booting

[7] http://sourceforge.net/projects/dvflashutils/files/OMAP-L138/v2.11/OMAP-L138_FlashAndBootUtils_2_11.tar.gz/download

OMAP-L1 Linux Drivers Usage

Before starting to use the drivers please read information on how to configure and rebuild the Linux kernel.

Ethernet

To test the ethernet interface, you need a valid IP address. To set a static IP address:

target$ ifconfig eth0 <static IP address>

To obtain an IP address dynamically using DHCP server on the network use:

target$ udhcpc

To test network connectivity, use ping command to the the network gateway

target$ ping <IP address of network gateway>

Audio

ALSA commands aplay and arecord can be used to playback and record audio respectively. ALSA mixer
commands can be used to adjust the playback and capture volume. The command amixer contents lists all the

params that can be controlled by mixer. To record and playback the content enter:

target$ arecord -f dat | aplay —-f dat

To know the current volume settings enter:

target$ amixer cget numid=1

To change the playback volume, the following command can be used

target$ amixer cset numid=1 80,80 # Sets the volume to 80

target$ amixer cset numid=2 80,80 #This is also used to adjust playback

http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L138%23Additional_information
http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit|LogicPD
http://support.spectrumdigital.com/boards/evmam1808/revb/
http://www.logicpd.com/products/development-kits/zoom-omap-l138-experimenter-kit
http://support.spectrumdigital.com/boards/evmomapl137/revd/
http://support.spectrumdigital.com/boards/evmam1707
http://elinux.org/Hawkboard#Booting
http://sourceforge.net/projects/dvflashutils/files/OMAP-L138/v2.11/OMAP-L138_FlashAndBootUtils_2_11.tar.gz/download
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L138%23Driver_configuration_in_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L138%23Rebuilding_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=ALSA
http://processors.wiki.ti.com/index.php?title=ALSA

OMAP-L1 Linux Drivers Usage

26

volume

Character LCD

Character LCD can be tested by writing some characters/strings to the LCD device:

target$ echo "Hello, World" > /dev/lcd

The above command will display the string "Hello, World" on the character LCD.
The LCD device can be controlled by writing the following escape sequences to the LCD device (echo <escape
sequence> > /dev/1lcd):

NOTE
Pressing "Ctrl-v", "Ctrl-[" on keyboard will generate the "~ [" escape sequence. In some file systems,

the escape sequences may not appear on the serial console but the input will still reach the character LCD.

Escape Sequence Functionality
~l2d Clear the display
~MILT Reinitialize display
e Cursor to home
~[[LD Display ON
~[[Ld Display OFF
~[[LC Cursor ON
[[Le Cursor OFF
~[[LB Blink ON
~[[Lb Blink OFF
~[[Ll Shift Cursor Left
~[[Lr Shift Cursor Right
~[[LL Shift Display Left
~[[LR Shift Display Right

RTC

Use the hwelock [utility to test RTC. The RTC device node created is /dev/rtc0

McBSP

The McBSP test setup on the EVM comprises of two EVMs connected via the audio expansion slot. One EVM will
act as the master and the other as slave. There is a sample kernel module provided in the examples included in the

PSP package which demonstrates the working of McBSP peripheral.

For McBSPs to be interfaced via the audio expansion slot, S7-2 should be turned ON. Note that on doing this audio

will not work anymore.

Refer to the README file present with the McBSP example to know more about the module parameters that have to
be passed to the sample module to configure the peripheral.

http://linux.die.net/man/8/hwclock

OMAP-L1 Linux Drivers Usage

27

Power Management

CPUFreq

The cpufreq driver (21in kernel allows scaling of clock speed of the CPU on the fly to save power. CPU consumes

lower power at lower frequencies.

Please see CPUFreq User's Guide Blor a comprehensive list of supported features.

Operating point

An operating point is a voltage frequency pair that defines a specific power state that the SoC has been characterized

for. To see the list of available OPPs (frequencies):

target$ cat
/sys/devices/system/cpu/cpul/cpufreq/scaling_available_frequencies
300000 200000 96000

target$

Governors

[4]

CPUfreq governor ' is responsible to making the decision on the OPP to be used among the available OPPs. You

can change the governor being used using sysfs entries.
To see the list of governers (the output of this command depends on the governors chosen at kernel configuration

step):

target$ cat
/sys/devices/system/cpu/cpul/cpufreq/scaling_available_governors
ondemand userspace performance

target$

To see the governor being used currently:

target$ cat /sys/devices/system/cpu/cpul/cpufreq/scaling_governor
userspace

target$

To change governor at runtime:

target$ echo performance >
/sys/devices/system/cpu/cpul/cpufreq/scaling_governor

target$ cat /sys/devices/system/cpu/cpul/cpufreq/scaling_governor
performance

target$

Frequency and Voltage scaling

When using the 'ondemand’' governor, the kernel takes care of frequency transitions based on processor load. When

using 'userspace' governor, the frequency transitions can be initiated from command line. For example:
To set the frequency to 96 MHz

target$ echo 96000 >
/sys/devices/system/cpu/cpul/cpufreq/scaling_setspeed

NOTE
When using cpufreq only peripherals on a clock domain asynchronous with PLLO will function correctly. The

drivers in this release are not updated to take care of clock input changes. ASYNC3 domain has been configured to

http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/
http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/user-guide.txt
http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/governors.txt

OMAP-L1 Linux Drivers Usage

28

derive from PLL1, so is immune to CPU frequency changes.

To see the PLLO frequency changes occurring because of frequency transitions:

target$ cat /sys/devices/system/cpu/cpul/cpufreq/scaling_cur_freq

To see the CVDD voltage changes occurring because of CPU load:

target$ cat /sys/class/regulator/regulator.2/microvolts
1150000
target$

CPUldle

The cpuidle driver 151

in Linux kernel allows CPU to idle efficiently by moving to a state with lower power
consumption during idle. Once built in cpuidle driver works automatically and does not require any user

intervention.

OMAP-L138 cpuidle driver implements two states

target$ 1ls /sys/devices/system/cpu/cpu0O/cpuidle
state0 statel
target$

cpuidle state0 keeps ARM in WFI mode. statel in addition puts the DDR2/mDDR in power-down mode. Details
regarding DDR2/mDDR power down mode are documented in DDR2/mDDR Memory Controller User's Guide
section 2.10.

target$ cat /sys/devices/system/cpu/cpul/cpuidle/statel/desc
Wait for interrupt

target$ cat /sys/devices/system/cpu/cpul/cpuidle/statel/desc
WEI and DDR Self Refresh

target$

To find usage of state0 and statel so far since boot-up:

target$ cat /sys/devices/system/cpu/cpul/cpuidle/statel/usage
6736

target$ cat /sys/devices/system/cpu/cpul/cpuidle/statel/usage
92724

target$

Suspend-to-RAM

Suspend-to-RAM 61 allows the system to save power by freezing all tasks, asking all drivers to move the devices to
a low power state (by disabling the peripheral clock using its LPSC), cutting the clock to external RAM and finally
moving the SoC to DeepSleep mode. This user-initiated transtition saves the maximum power among all the power

saving mechanisms available.

To put the system into Suspend-to-RAM state use rtcwake command.
rtcwake -d /dev/rtcO0 -s 20 -m mem

In the above example, the system remains in suspended state for 20 seconds before coming back up.

IMPORTANT
If you are using MMC/SD card in your system, before suspending the system the MMC/SD card has to be

http://lxr.linux.no/linux+v2.6.32/Documentation/cpuidle/
http://www.ti.com/lit/pdf/sprugj4
http://lxr.linux.no/#linux+v2.6.32/Documentation/power

OMAP-L1 Linux Drivers Usage

29

unmounted. If the system is suspended without unmounting the card, the behaviour is undefined, the system may

hang and not resume at all. This is a known behaviour for MMC/SD cards in Linux kernel.

Video Port Interface (VPIF)

The Video port interface (VPIF) driver supports NTSC and PAL standards for both display and capture. Currently
the driver supports Composite and S-video capture and display.

The bootargs to be set for NTSC display and capture are
u-boot> setenv bootargs console=ttyS2,115200n8 noinitrd rw
ip=<ipaddr> root=/dev/nfs nfsroot=<nfs path> ,nolock

mem=32M@0xc0000000 mem=64M@0xc4000000 vpif_capture.chO_bufsize=692224
vpif_display.ch2_bufsize=692224

The bootargs to be set for PAL display and capture are

u-boot> setenv bootargs console=ttyS2,115200n8 noinitrd rw
ip=<ipaddr> root=/dev/nfs nfsroot=<nfs path> ,nolock
mem=32M@0xc0000000 mem=64M@0xc4000000 vpif_capture.chO0_bufsize=831488
vpif_display.ch2_bufsize=831488

NOTE

The entire bootargs has to be entered in a single line.

Example test applications for standalone display and capture-display loopback are included in PSP package under

src/examples/vpif. Please refer to the included README file for usage instructions.

Touchscreen

The touchscreen device node is created as /dev/input/touchscreen0. Before using the touchscreen, it needs
to be calibrated. Use the command ts_calibrate to do that. To test the touchscreen functionality ts_test

can be used.

Note that the SoC does not have a touchscreen controller integrated. The touchscreen functionality is provided by
on-board components like TPS65070 or TSC2004.

Timers

Timers in Linux kernel are used to provide clock tick to the kernel and as watchdog timer.
DAS830/OMAP-L137/AM17xx

The DA830/OMAP-L137/AM17xx SoCs have two 64-bit timers.

* Timer O is configured as two 32-bit timers by kernel at boot-up.

¢ Bottom half (12) is used as clockevent and free-run counter.
* Top half (34) left unused

* Timer 1 will be configured as watchdog timer if support is enabled.
DAS850/OMAP-L138/AM18xx

The DA850/OMAP-L138/AM18xx SoCs have four 64-bit timers.

* Timer O is configured as two 32-bit timers by kernel at boot-up.

¢ Bottom half (12) is used as clockevent.

* Top half (34) is used as free-run counter.

OMAP-L1 Linux Drivers Usage

30

* Timer 1 will be configured as watchdog timer if support is enabled.
* Timer 2 is left untouched.
* Timer 3 is left untouched.

References

[1] http://linux.die.net/man/8/hwclock

[2] http://1xr.linux.no/linux+v2.6.32/Documentation/cpu-freq/

[3] http://1xr.linux.no/linux+v2.6.32/Documentation/cpu-freq/user-guide. txt
[4] http://Ixr.linux.no/linux+v2.6.32/Documentation/cpu-freq/governors.txt
[5] http://1xr.linux.no/linux+v2.6.32/Documentation/cpuidle/

[6] http://Ixr.linux.no/#linux+v2.6.32/Documentation/power

UG: DaVinci PSP Installation on DM36x EVM

Flashing DM36x EVM using NAND Writer utilities (CCS
environment)

For flashing the DaVinci DM36x EVM using NAND Writer utilities, refer to the following instructions. The
pre-built binaries for NAND Writer, UBL and U-Boot can be downloaded from DaVinci GIT Linux Kernel
Releases

* System Requirements — CCS 3.3.38 or above installed on Windows XP with Service Pack 2

* Use the Configuration and gel file to set up CCS from the Spectrum Digital Website (1

* Make sure the Boot Mode / Configuration Select Switch SW4 is set for the NAND boot mode and 8-bit AEMIF

configuration -
S4:1 S4:2 S4:3 S4:4 (BITSELO) | S4:5 (BITSEL1) | S4:6 (BITSEL2)
(AECFGO0) (AECFG1) (AECFG2)
OFF OFF OFF OFF OFF OFF

Also make sure the Board Configuration Select Switch SW5 is set for the Vcore=1.35 Volts configuration -

S5:1 (NAND/ONE NAND) | S5:2 S5:3 S5:4 S5:5 (VCORE ADIJ) | S5:6
(EXTRATI) (EXTRA2) (EXTRA3) (NTSC/PAL)
OFF OFF OFF OFF ON OFF

Connect the XDS510 to the TI JTAG

Setup CCS 3.3 with the CCS configuration and GEL files corresponding to the DM36x EVM

Open CCS 3.3, Alt+C to connect to the device. Ctrl+R to reset from CCS

If the EVM has been loaded with older flash utilities then run the NAND eraser binary that is now supplied as
part of the release. This is essential if the EVM has been flashed with utilities from older LSP releases. This is
done so that the entire NAND is erased and we want the Bad Block Tables to be re written

Load the NANDEraser_DM36x.out from the release and run it (Press F5). The eraser will ask for an input. Input
“0x02000000”. Run the eraser again. This time input “0x02004000”. The program need not be run the second time
if the 4K NAND from SAMSUNG that is going to be tested as part of the release is being flashed. The need to re
run the eraser is dependent on whether the NAND being flashed is internally 1 or 2 devices.

Load the NAND programmer - NANDWriter_DM36x.out and run it

The NAND programmer will ask for input for the UBL binary. Choose the UBL._DM?36x_NAND.bin file from
the release.

http://linux.die.net/man/8/hwclock
http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/
http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/user-guide.txt
http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/governors.txt
http://lxr.linux.no/linux+v2.6.32/Documentation/cpuidle/
http://lxr.linux.no/#linux+v2.6.32/Documentation/power
http://processors.wiki.ti.com/index.php?title=DaVinci_GIT_Linux_Kernel_Releases
http://processors.wiki.ti.com/index.php?title=DaVinci_GIT_Linux_Kernel_Releases
http://support.spectrumdigital.com/boards/evmdm365/

UG: DaVinci PSP Installation on DM36x EVM

31

e NAND programmer will then ask for the U-Boot binary. Choose the binary u-boot-dm365-evm.bin. Set
0x81080000 for the Application Entry Point and set 0x81080000 for the Application Load Address

e Turn off the board and disconnect the CCS from the device. Alt+C and disconnect XDS510 from the device

* Connect the RS232 cable between your PC and EVM

* You will see console messages, UBL identifying the U-Boot magic number and giving control to U-Boot

MMC/SD boot mode and SD flashing tool

For booting DM36x via SD card and flashing the EVM for MMC/SD boot mode, refer to SD card boot and
flashing tool for DM36x.

SPI boot mode and SPI flashing tool

For booting DM36x via SPI flash and flashing the EVM for SPI boot mode, refer to SPI flash boot and flashing
tool for DM36x. The link also describes how to setup the kernel for SPI FLASH on the DM36x

Flashing DM36x EVM (PG 1.2 Silicon or newer) using Serial flash
utilities

For flashing the DaVinci DM36x EVM using Serial Flash utilities, refer to the following instructions. The pre-built
binaries for Serial Flash, UBL and U-Boot can be downloaded from DaVinci GIT Linux Kernel Releases.

e Connect the RS232 cable between your PC and EVM .
* Make sure the Boot Mode / Configuration Select Switch SW4 is set for the UART boot mode and 8-bit AEMIF

configuration -

* Also make sure the Board Configuration Select Switch SWS5 is set for the Vcore=1.35 Volts configuration -

S4:1 (BITSEL2) | S4:2 (BITSEL1) | S4:3 (BITSELO) | S4:4 S4:5 S4:6
(AECFG2) (AECFG1) (AECFGO0)
OFF ON ON OFF OFF OFF

S5:1 (NAND/ONE NAND) | S5:2 S5:3 S5:4 S5:5 (VCORE AD)J) | S5:6
(EXTRATI) (EXTRA2) (EXTRA3) (NTSC/PAL)
OFF OFF OFF OFF ON OFF

¢ There will be a serial flasher for DM36x "sth. DM36x.exe" and a UBL "ubl_DM36x_nand.bin" in the release

package

* Use the above utilities and a U-Boot binary meant for DM365 to flash the NAND on the DM36x EVM.

* Issue the following command in CYGWIN or DOS.

sfh_DM36x.exe —-nandflash

application file>

e Turn off the board
* Once this is done, change to NAND boot mode

e Make sure the Boot Mode / Configuration Select Switch SW4 is set for the NAND boot mode and 8-bit AEMIF

configuration -

<UBL binary file> <binary

S4:1 (BITSEL2)

S4:2 (BITSEL1)

S4:3 (BITSELO)

S4:4
(AECFG2)

S4:5
(AECFG1)

S4:6
(AECFGO0)

http://processors.wiki.ti.com/index.php?title=SD_card_boot_and_flashing_tool_for_DM36x
http://processors.wiki.ti.com/index.php?title=SD_card_boot_and_flashing_tool_for_DM36x
http://processors.wiki.ti.com/index.php?title=SPI_flash_boot_and_flashing_tool_for_DM36x
http://processors.wiki.ti.com/index.php?title=SPI_flash_boot_and_flashing_tool_for_DM36x
http://processors.wiki.ti.com/index.php?title=DaVinci_GIT_Linux_Kernel_Releases

UG: DaVinci PSP Installation on DM36x EVM

32

OFF OFF OFF OFF OFF OFF

* Power cycle the EVM. You will see console messages, UBL identifying the U-Boot magic number and giving
control to U-Boot

* NOTE: The serial utility has an issue where the utility just hangs and is unable to flash the NAND on the DM36x
EVM. This is an issue with the core drivers inherited from the flash utilities repository in the GFORGE server. It

affects other SOCs as well. Resetting the EVM and running the serial flasher again results in success.

Booting the DM36x EVM using pre-built binaries

After flashing the EVM for UBL and U-Boot binaries, using one of the above methods (using CCS utilities or Serial
flash utilities), the EVM can now be loaded with Kernel and Filesystem images for the complete out-of-box

experience.

Refer to — Booting DM36x Out of the Box for information on booting the EVM.

Booting Linux Kernel from a SDRAM (via TFTP download to SDRAM)

e Copy the Linux Kernel image (ulmage-dm365-evm.bin) from the images/dm365-evm/ directory of the DaVinci
PSP installation to the /tftpboot (TFTP root) directory of your host workstation. If you do not have a TFTP server
configured please see the Setting up a TFTP Server.

* Set the following U-Boot ENV variables to download the Linux Kernel image to the SDRAM location

setenv bootfile ulImage-dm365-evm.bin
setenv serverip <ipaddress-of-your-host-workstation>
setenv bootcmd 'dhcp; bootm'

saveenv

* These commands will download the ulmage-dm365-evm.bin to the default SDRAM location - 0x80700000. Note
that U-Boot will get its [P Address from DHCP on each reboot.

Hit any key to stop autoboot: 0
BOOTP broadcast 1
*** Unhandled DHCP Option in OFFER/ACK: 44
*** Unhandled DHCP Option in OFFER/ACK: 46
*** Unhandled DHCP Option in OFFER/ACK: 150
*** Unhandled DHCP Option in OFFER/ACK: 44
*** Unhandled DHCP Option in OFFER/ACK: 46
*** Unhandled DHCP Option in OFFER/ACK: 150
DHCP client bound to address 192.168.1.197
TFTP from server 192.168.1.25; our IP address is 192.168.1.197
Filename 'uImage-dm365-evm.bin'.
Load address: 0x80700000
Loading:
FHAFFH AR A R R R R A

FHEHE A A H A AR A R R R
FHEHHHAHHAS
done
Bytes transferred = 2066356 (1£87b4 hex)

http://processors.wiki.ti.com/index.php?title=Setting_Up_a_TFTP_Server

UG: DaVinci PSP Installation on DM36x EVM

33

Booting kernel from Legacy Image at 80700000

Image Name: Arago/2.6.31+2.6.32-rcl-r26+gitr
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2066292 Bytes = 2 MB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK

Loading Kernel Image ... OK
OK

Starting kernel

Booting Linux Kernel from NAND flash

To boot the Linux Kernel image from NAND flash, it has to be downloaded first and copied to the NAND partition.

* Download the Linux Kernel image (ulmage-dm365-evm.bin) from the TFTP server and copy to the NAND

partition
tftp 0x80700000 uImage-dm365-evm.bin

nand erase 0x400000 0x200000
nand write 0x80700000 0x400000 0x200000

* The above commands will download the image and write to the NAND partition

DM365 EVM > tftp 0x80700000 ulImage-dm365-evm.bin
TFTP from server 192.168.1.25; our IP address is 192.168.1.197
Filename 'uImage—-dm365-evm.bin'.
Load address: 0x80700000
Loading:
FHAS A A A AR A A AR A A A

FHAS A A A AR A A AR A A A
FHEHHH S HAS
done
Bytes transferred = 2066356 (1£87b4 hex)

DM365 EVM > nand erase 0x400000 0x200000

NAND erase: device 0 offset 0x400000, size 0x200000
Erasing at 0x400000 -- 100% complete.
OK

DM365 EVM > nand write 0x80700000 0x400000 0x200000

NAND write: device 0 offset 0x400000, size 0x200000
2097152 bytes written: OK

* Setup the bootcmd ENV variable to boot the Linux Kernel image from NAND partition

setenv bootcmd 'nboot 0x80700000 0 0x400000; bootm'

UG: DaVinci PSP Installation on DM36x EVM

e On each reboot, the Linux Kernel image will be read from NAND partition and copied to SDRAM location

Hit any key to stop autoboot: 0

Loading from NAND 1GiB 3,3V 8-bit, offset 0x400000

Image Name: Arago/2.6.31+2.6.32-rcl-r26+gitr
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2066292 Bytes = 2 MB

Load Address: 80008000
Entry Point: 80008000
Booting kernel from Legacy Image at 80700000

Image Name: Arago/2.6.31+2.6.32-rcl-r26+gitr
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2066292 Bytes = 2 MB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK

Loading Kernel Image ... OK
OK

Starting kernel

Setting up the target filesystem

DaVinci PSP 03.xx release uses Arago filesystem. The latest filesystem images can be downloaded from DaVinci
GIT Linux Kernel Releases.

There are two types of filesystems generated by Arago build system:

* Minimal base filesystem:
arago-base-image-arago.ext2.gz
arago-base-image—arago.jffs2

arago-base-image-arago.tar.gz

* "Demo" filesystem for DM36x EVM

arago—-demo—image-dm365-evm.ext2.gz
arago—-demo—image-dm365-evm. jffs2

arago—demo—-image-dm365-evm.tar.gz

Booting with RAMDISK as a root filesystem

* Download the Arago minimal base filesystem image (RAMDISK: arago-base-image-arago.ext2.gz) from the
TFTP server and copy to the NAND partition

tftp 0x82000000 arago-base-image-arago.ext2.gz
nand erase 0xC00000 0x300000
nand write 0x82000000 0xC00000 0x300000

* The above commands will download the Arago base filesystem image and write to the NAND partition

DM365 EVM > tftp 0x82000000 arago-base-image-arago.ext2.gz
operating at 100M full duplex mode

http://processors.wiki.ti.com/index.php?title=DaVinci_GIT_Linux_Kernel_Releases
http://processors.wiki.ti.com/index.php?title=DaVinci_GIT_Linux_Kernel_Releases

UG: DaVinci PSP Installation on DM36x EVM

35

TFTP from server 192.168.1.25; our IP address is 192.168.1.199
Filename 'arago-base-image-arago.ext2.gz'.
Load address: 0x82000000
Loading:
FHEFFHAHHASH AR AR H AR H AR H AR AR AR H AR H AR H AR H AR AR

FHE A A A AR R A A A A R R

FHE A A A AR R A A A A R R
FHASFH AR AA

done
Bytes transferred = 3148726 (300bb6 hex)

DM365 EVM > nand erase 0xC00000 0x300000

NAND erase: device 0 offset 0xc00000, size 0x300000
Erasing at 0xc00000 —-- 100% complete.
OK

DM365 EVM > nand write 0x82000000 0xC00000 0x300000

NAND write: device 0 offset 0xc00000, size 0x300000
3145728 bytes written: OK

* Setup the bootcmd ENV variable to boot the Linux Kernel image from NAND partition and also load Arago base
filesystem (RAMDISK) into SDRAM from NAND partition

setenv bootcmd 'nand read 0x82000000 0xCO00000 0x300000; nboot
0x80700000 0 0x400000; bootm'

* Setup the bootargs ENV variable to boot with RAMDISK as the root filesystem

setenv bootargs mem=116M console=ttyS0,115200n8 root=/dev/ram0 rw
initrd=0x82000000, 4M ip=dhcp

* On each reboot, the Linux Kernel and Arago base filesystem images (RAMDISK) will be read from the
corresponding NAND partition and copied to corresponding SDRAM location

Hit any key to stop autoboot: 0

NAND read: device 0 offset 0xc00000, size 0x300000
3145728 bytes read: OK

Loading from NAND 1GiB 3,3V 8-bit, offset 0x400000

Image Name: Arago/2.6.31+2.6.32-rcl-r26+gitr
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2066292 Bytes = 2 MB

Load Address: 80008000
Entry Point: 80008000

Booting kernel from Legacy Image at 80700000
Image Name: Arago/2.6.31+2.6.32-rcl-r26+gitr

UG: DaVinci PSP Installation on DM36x EVM

36

Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2066292 Bytes = 2 MB
Load Address: 80008000
Entry Point: 80008000
Verifying Checksum ... OK
Loading Kernel Image ... OK
OK

Starting kernel

RAMDISK: gzip image found at block 0

VEFS: Mounted root (ext2 filesystem) on device 1:0.
Freeing init memory: 128K

INIT: version 2.86 booting

Please wait: booting...

Starting udev

Populating dev cachetar: short write

Remounting root file system...

Mon Oct 19 13:53:00 UTC 2009
INIT: Entering runlevel: 5
Starting telnet daemon.
Starting syslogd/klogd: done
o |
| I " o 1 o | | e I I
S 2 () P B DU DU P

Arago Project http://arago-project.org dm365-evm ttySO
Arago 2009.09 dm365-evm ttySO
dm365-evm login:

Booting with NFS as a root filesystem

The "demo" filesystem for DM36x EVM (arago-demo-image-dm365-evm.tar.gz) should be exported from the

NFS server on your host Linux workstation. Perform the following steps (You only need to perform these steps

once)

Log in with a user account on the host Linux workstation

Perform the following commands to prepare a location for the Arago target file system. For example:

host $ cd /home/<useracct>
host $ mkdir -p workdir/filesys
host $ cd workdir/filesys

Switch user to root on the host Linux workstation

host $ su root

http://arago-project.org

UG: DaVinci PSP Installation on DM36x EVM

* Perform the following commands to create a copy of the target file system with permissions set for writing to the

shared area as <useracct>. Substitute you user name for <useracct>.

host $ cp -a

<release-location>/images/dm365-evm/arago-demo—image-dm365-evm.tar.gz

host $ tar xvfz arago-demo-image-dm365-evm.tar.gz
host $ chmod 777 -R /home/<useracct>/workdir/filesys

» Edit the /etc/exports file on the host Linux workstation (not the exports file on the target file system). Add the
following line for exporting the filesys directory, substituting your user name for <useracct>. Use the full path

from root; ~ may not work for exports on all file systems.

/home/<useracct>/workdir/filesys

* (rw, no_root_squash,no_all_squash, sync)

NOTE: Make sure you do not add a space between the * and the (in the

above command.

» Still as root, use the following commands to make the NFS server aware of the change to its configuration and to
invoke an NFS restart.

host $ /usr/sbin/exportfs —-av

host $ /sbin/service nfs restart

NOTE: Use exportfs —-rav to re-export all directories. Use

/etc/init.d/nfs status to verify that the NFS status is running.

* Setup the following ENV variables for NFS at the U-Boot commandline prompt

setenv nfshost <Linux Host IP address>

setenv rootpath <directory to mount>

» Setup the bootargs ENV variable to boot with NFS target filesystem as the root filesystem

setenv bootargs mem=116M console=ttyS0,115200n8 root=/dev/nfs rw
nfsroot=$ (nfshost) : $ (rootpath) ip=dhcp

* Here is an example of the console dump

DM365 EVM > setenv nfshost 192.168.1.25

DM365 EVM > setenv rootpath /opt/workdir/filesys

DM365 EVM > setenv bootargs mem=116M console=ttyS0,115200n8
root=/dev/nfs rw nfsroot=$ (nfshost) :$ (rootpath) ip=dhcp

DM365 EVM > print

nfshost=192.168.1.25

rootpath=/opt/workdir/filesys

bootargs=mem=116M console=ttyS0,115200n8 root=/dev/nfs rw
nfsroot=192.168.1.25:/opt/workdir/filesys ip=dhcp

DM365 EVM >

UG: DaVinci PSP Installation on DM36x EVM

38

ethO: attached PHY driver [Generic PHY] (mii_bus:phy_addr=1:01,
1d=221613)
Sending DHCP requests
PHY: 1:01 - Link is Up - 100/Full., OK
IP-Config: Got DHCP answer from 0.0.0.0, my address is 192.168.1.197
IP-Config: Complete:
device=eth0, addr=192.168.1.197, mask=255.255.255.0,
gw=192.168.1.1,
host=192.168.1.197, domain=xxx.com,
bootserver=0.0.0.0, rootserver=192.168.1.25,
rootpath=/opt/workdir/filesys
Looking up port of RPC 100003/2 on 192.168.1.25
Looking up port of RPC 100005/1 on 192.168.1.25
VFS: Mounted root (nfs filesystem) on device 0:14.
Freeing init memory: 128K
INIT: version 2.86 booting
Please wait: booting...
Starting udev
Populating dev cache
Remounting root file system...
NET: Registered protocol family 10
INIT: Entering runlevel: 5
Starting telnet daemon.
Starting syslogd/klogd: done
Starting thttpd.

| e L L L e I I B B B
e e o (P

Arago Project http://arago-project.org dm365-evm ttySO
Arago 2009.09 dm365-evm ttySO
dm365-evm login:

Video Input/Output Source Configuration

The video capture (VPFE) and display (VPBE) drivers in DaVinci PSP release allow input and output sources to be
configured from the bootargs ENV variable in U-Boot.

* VPEFE input source can be configured via vpfe_capture.interface settings in the bootargs (replace if it is already
there, append to current bootargs otherwise). The VPFE capture driver on DM36x also allows dynamic switching
of TVP5146 and TVP7002 video input decoder sources.

vpfe_capture.interface=2
for TVP7002 (default)

http://arago-project.org

UG: DaVinci PSP Installation on DM36x EVM

vpfe_capture.interface=1

for Micron sensor - MTO9TO031

vpfe_capture.interface=0
for TVP5146

e Default VPFE input standard is Composite and mode is NTSC. The input standard can be switched to Component
or S-Video using S_INPUT IOCTL and mode can be switched to PAL or any other resolutions (720P-60,
1080I-30 etc) using the S_STD IOCTL.

* Buffer allocation for the VPFE capture driver can be configured using vpfe_capture.bufsize settings in the
bootargs (replace if it is already there, append to current bootargs otherwise).

vpfe_capture.bufsize=4147200
for 1080I-30 (1920*1080*2=4147200)

vpfe_capture.bufsize=1843200
for 720P-60 (1280*720%2=1843200)

vpfe_capture.bufsize=829440
for PAL (720*576*2=829440) - default

vpfe_capture.bufsize=691200
for NTSC (720%480*2=691200)

* Default VPBE ouput is Composite and mode is NTSC. The output/mode can be switched to different output/mode
using the davinci_enc_mngr settings in the bootargs (replace if it is already there, append to current bootargs
otherwise). Currently there is an issue with the sequencing of driver loading. The Video display drivers seem to
initialize before the I2C probing of video encoders/decoders. Due to this, configuring the video display
output/mode settings from the bootargs are known to fail. The same configuration can be achieved at run time
using the sysfs attributes - /sys/class/davinci_display/chO/output and /sys/class/davinci_display/chO/mode.

davinci_enc_mngr.ch0_output=COMPOSITE davinci_enc_mngr.ch0_mode=pal

davinci_enc_mngr.ch0_output=COMPONENT

davinci_enc_mngr.ch0O_mode=720P-60

davinci_enc_mngr.chO_output=COMPONENT

davinci_enc_mngr.ch0_mode=1080I-30

davinci_enc_mngr.chO_output=LCD davinci_enc_mngr.ch0_mode=480x272
for LCD mounted on the DM36x EVM

UG: DaVinci PSP Installation on DM36x EVM

40

Building PSP Components

Rebuilding the Linux kernel

The rebuild the Linux kernel, follow the steps below.

Preparing your Environment

1. If you have not already done so, install the CodeSourcery tools on your Linux host. For additional documentation
on installing the CodeSourcery tools, please visit the CodeSourcery website 21

2. If U-Boot is not built yet, build U-Boot first, as building Linux Kernel requires mkimage utility, which gets
built along with U-Boot. Refer to Rebuilding U-Boot for steps to build U-Boot. Once built, mkimage will be
present under the tools folder of U-Boot source
(/home/<user>/DaVinci-PSP-SDK-xXX.XX.XX.XX/src/u-boot/uboot—-xx.xx.xx.xx/tools).

Ensure that this path is added to the $PATH variable by adding the following
host$ export PATH=home/<user>/DaVinci-PSP-SDK-xx.xx.xx.xx/src/u-boot/uboot-xx.xx.xx.xx/tools:3PATH

4. to the ~/.bashrc file. You can then
5. source

6. the ~/.bashrc file with the following command

host$ source ~/.bashrc
8. Use your Linux host to extract source files for building the target Linux kernel from the
src/kernel/linux—#.#.#.#.tar.gz tarball from the Linux PSP package, which is located in the
DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory
(/home/<user>/DaVinci-PSP-SDK-xx.xx.xx.xx/src/kernel for default path installation). Use the tar command
to extract the sources.
host$ tar zxf linux-#.#.#.#.tar.gz
NOTE
Patches from the kernel-patches-#.#.#.#.tar.gz file have already been applied on Linux Kernel. This is the list of
patches which have been developed on top of the base Linux kernel version. You can find information about the base
Linux kernel version from the release notes accompanying the PSP release.
11. Change directory (cd command) to the top-level directory of the Linux kernel source files obtained in the

previous step.

host$ cd linux-xx.xx.xXx.Xx

Basic Configuration of the Kernel

Based on what chip and development board you are using, you will need to configure the kernel for different options.
Most of these setings are build into the Make file provided by TI, and you can switch between builds using some

simple make options.
1. Clean your installation of previous build settings

host$ make distclean ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

3. Configure the kernel according to the default configuration provided. The steps below assume that the
CodeSourcery tools are already present in your $PATH variable. Information on how to add the tools to your
SPATH can be obtained form the Getting Started Guide for the CodeSourcery tools.

* For DM36x (DM365 and DM368)

host$ make davinci_dm365_defconfig ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23Downloading_and_installing_the_Code_Sourcery_tools
http://codesourcery.com
http://processors.wiki.ti.com/index.php?title=Building_Software_Components_for_DaVinci_devices%23Rebuilding_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

UG: DaVinci PSP Installation on DM36x EVM

41

5. Modify the kernel options you would like to run. This may take some planning, but the default settings are a good

place to start. For more information on these settings, look further down the page at Driver configuration in the

[3]]

Linux kernel or see detaile instructions for | a different processors root file system '~]. there are two menu configs

that are commmon to run:
host$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- menuconfig
(or)
host$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- xconfig

Building ulmage
Run the following command to build the kernel image:
host$ make ulmage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
The compiled uImage is copied into the arch/arm/boot directory under the kernel tree.

Once the kernel has been compiled, if you are using tftp boot, use the following commands to copy the ulmage to a
place where U-Boot can use TFTP to download it to the EVM. These commands assume you are using the default
TFTP root area, which is /tftpboot. If you use another TFTP root location, please change /tftpboot to your own TFTP

root location:
host$ cp arch/arm/boot/ulmage /tftpboot
Note

If the ulmage build fails with a similar message as follows:

"mkimage" command not found - U-Boot images will not be built

it could be that the path to the u-boot ulmage script has not been added to the command search path. Include the path

"{u-boot source path}/tools" to your PATH environment variable.

Building Modules
To build all features configured as modules (M), issue the following command:

host$ make modules ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

Installing modules to Target File System
To install the compiled modules into the target root file system, issue the following command:

host$ make modules_install INSTALL_MOD_PATH=<root fs path> ARCH=arm
CROSS_COMPILE=arm-none-linux-gnueabi-

where the <root fs path> 1is the path of your target root file system on the host machine

(/home/user/workdir/filesys for example).

See Loading Linux Kernel Modules for more information on using kernel modules after you build them.

http://processors.wiki.ti.com/index.php?title=Building_Software_Components_for_DaVinci_devices%23Driver_configuration_in_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=Building_Software_Components_for_DaVinci_devices%23Driver_configuration_in_the_Linux_kernel
http://processors.wiki.ti.com/index.php/Creating_a_Root_File_System_for_Linux_on_OMAP35x#Configure_the_Linux_Kernel_to_Support_File_Systems
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Loading_Linux_Kernel_Modules

UG: DaVinci PSP Installation on DM36x EVM

42

Rebuilding U-Boot

Follow these steps to rebuild U-Boot:

1. If you have not already done so, install the CodeSourcery tools on your Linux host. For documentation on
installing the CodeSourcery tools, please visit the CodeSourcery website 21

2. Use your Linux host to extract source files for building U-Boot from the
src/u-boot/u-boot—#.#.#.#.tar.gz tarball from the Linux PSP package, which is located in the
DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the tar command to
extract the sources.
Note: Patches from the uboot-patches-#.#.#.#.tar.gz file have already been applied to U-Boot. This is the list of
patches which have been developed on top of the base version. You can find information about the base U-Boot
version from the release notes accompanying the PSP release.

3. Go to the u-boot directory created when you extracted the files.

4. Run the following commands on your Linux host to build U-Boot. Note: The steps below assume that the
CodeSourcery tools are already present in your SPATH variable. Information on how to add the tools to your

SPATH can be obtained form the Getting Started Guide for the CodeSourcery tools.

host$ make distclean CROSS_COMPILE=arm-none-linux—-gnueabi-

e for DM36x (DM365 and DM368) EVM

host$ make davinci_dm365evm_config

CROSS_COMPILE=arm-none—linux—gnueabi-

host$ make all CROSS_COMPILE=arm-none-linux—-gnueabi-

8. The compiled u-boot .bin file will be created in the same directory.
9. To change the default options, the EVM configuration file needs to be edited.

* for DM36x (DM365 and DM368) EVM are specified in the include file
include/configs/davinci_dm365evm.h
To change U-Boot environment area location or size:

e CONFIG_ENV_SIZE Configures the environment variable size.
* CONFIG_ENV_OFFSET Configures the environment variable offset.

Building the User Boot Loader (UBL)

Follow the steps mentioned below for releases before the 03.21.xx.xx release:

The latest source code for UBL can be downloaded from Arago GIT server. Once the source is extracted (from
source tarball), following steps can be followed to build UBL.

1. Start CCStudio v3.3.

2. From the menus, choose Project->Open.

3. Browse to the extracted UBL source and open the UBL.pjt project. Project file can be found under
<flash-utils-install-dir>\DM36x\CCS\UBL\ folder of the extracted source.

4. To build for different ARM and DDR frequencies, select the "Config" option suitably in CCStudio window.

5. From the menus, choose Project->Build.

6. When the build is complete, the binary file (UBL_DM36x_NAND#*.bin) suitable for flashing is generated in the
Project Root directory (<flash-utils-install-dir>\DM36x\CCS\UBL\)

For 03.21.xx.xx Release:

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23Downloading_and_installing_the_Code_Sourcery_tools
http://codesourcery.com
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

UG: DaVinci PSP Installation on DM36x EVM

43

Use your Linux host to extract the UBL code from the src/boot-strap/flash-utils—#.#.#.#.tar.gz
tarball from the Linux PSP package, which is located in the DaVinci-PSP-SDK-#.# ## directory under the main
SDK installation directory. Use the tar command to extract the sources. If the extracted files are not accessible

from your Microsoft Windows host, copy all the extracted files to a location that is accessible.
When using CCStudiovs:

1. Start CCStudiovs.
2. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse Project. Browse to
DM36x/CCS directory inside the extracted UBL source and select the UBL folder.

3. From the list of Discovered projects:

¢ Select UBL_NAND for NAND boot mode.
* Select UBL_SDMMC for MMC/SD boot mode.
4. From the menus, choose Project->Build Project

5. When build is complete:

* The binary file (ubl_DM36x_NAND.bin) suitable for flashing is created in the directory
(<flash-utils—-install-dir>\DM36x\CCS\UBL\UBL_NAND)

When using Cygwin or Linux Host:

1. For a particular platform, the extracted package will consist of a 'Common' directory and a '<PlatformName>'
directory.
2. Enter into the '<PlatformName>/GNU' directory.

cd '<PlatformName>/GNU'

3. If you wish to rebuild everything, simply run 'make" at this point.
4. When build is complete:

e The binary files (ubl_DM?36x_xxx.bin) for supported ARM and DDR frequencies, suitable for flashing is
created in the directory (<flash-utils-install-dir>\DM36x\GNU\ubl).
* The serial flasher (sth_DM?36x.exe) which can be used for flashing NAND is created in the directory
(<flash-utils—install-dir>\DM36x\GNU). Note
Currently, serial flasher built from the source code will not work. Till this problem is resolved, please use the
serial flasher available in pre-built binaries folder.
5. If you wish to clean-up already built components, run 'make clean' from the path you wish to clean.

Building the NAND Flash writer
NAND flash writer is used to flash the UBL and U-Boot images to NAND flash. The flash writer also supports

flashing a given image at a chosen offset.
Use the following steps to build NAND Flash writer using CCStudio v5:

1. Use your Linux host to extract the flash utilities code from the
src/boot-strap/flash-utils—#.#.#.#.tar.gz tarball from the Linux PSP package, which is
located in the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the tar
command to extract the sources. If the extracted files are not accessible from your Microsoft Windows host, copy
all the extracted files to a location that is accessible.

2. Start CCStudio v5.

3. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse Project. Browse to
DM36x/CCS directory inside the extracted source and select the NANDWriter folder.

4. From the list of Discovered projects, select NANDWriter.

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

UG: DaVinci PSP Installation on DM36x EVM

44

5. From the menus, choose Project->Build Project. The built image NANDWriter_DM36x.out is placed in the
ccsv4/Debug under the top directory.

To flash images to NAND Flash, see Flashing images to NAND Flash.
To boot U-Boot from NAND Flash, see Booting from NAND Flash.
To boot the Linux kernel from NAND Flash using U-Boot, see Booting the Linux kernel from NAND Flash.

NAND Partitions
The NAND writer writer the UBL to Block 1 and U-boot to block 25. We reserve 24 blocks for UBL becuase RBL
will search for a valid UBL header from blocks 1 to 24

* Block 1 through 24 : UBL
* Block 25 through 30 : U-Boot
* Block 31 to 32 : Environment

Building and using the MT9P031 CMOS image sensor driver
This section contains the information on compiling and installing the CMOS sensor driver, as well as the use of an
application demo to capture video at 1080p30 (1920x1080 30fps) and display up to 1080160.

The demo has a semi-auto exposure and semi-auto white balance algorithm, which only requires one-time calibration
under unchanged lighting condition. The calibration is simple and easy. It is performed by pointing the camera to a
white scene and pressing one key. This algorithm is contributed to the open source by Leopard Imaging, Inc.

The demo is tested on DM36x EVM with LI-SM02 rev2 ¥ image sensor board from Leopard Imaging,Inc.

1. Building the driver

[5]

The CMOS sensor driver is available at arago git tree " in this directory : drivers/media/video/davinci/. The major

part of the driver is in mt9p031.c.
* Getting the latest linux git tree
git clone git://arago-project.org/git/projects/linux-davinci.git

linux—davinci

* building the kernel with the driver enabled
Follow the steps in section “Building the Kernel” on this page. Make sure “CONFIG_SOC_CAMERA_MT9P031=y”

is included in linux-davinci/arch/arm/configs/davinci_dm365_deconfig. If not, it can be configured using:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- menuconfig

check “device drivers -> Multimedia Support -> Video for Linux” and “device drivers -> Multimedia Support ->

Video Capture Adapters -> mt9p031 support”. It can be built in the kernel or dynamically loaded as a module.

* To load the driver using the dynamically-loadable modules, copy the modules (.ko files) to the target file system.
Execute the following command on the DM36x to load the CMOS sensor driver (If the driver is built inside the

kernel, this step can be ignored):

insmod mt9p031.ko

» Execute the following command on the DM36x to unload the CMOS sensor Driver:

rmmod mt9p031.ko

2 . Building the demo application

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images_to_NAND_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash_2
http://processors.wiki.ti.com/index.php?title=Www.leopardimaging.com
https://www.leopardimaging.com/DM365_5M_HD_Camera_Board.html
http://arago-project.org/git/projects/linux-davinci.git

UG: DaVinci PSP Installation on DM36x EVM

45

The latest sample application code for DaVinci PSP release can be downloaded/cloned from examples-davinci Git

tree [6].

* Getting the examples:

git clone git://arago-project.org/git/projects/examples—davinci.git

examples—-davinci

* Go to the root directory of sample application. (the demo application is capture_prev_rsz_onthe_fly_bayer_mew)

cd examples—-davinci/imp-prev-rsz/dm365/

* Export the Linux Kernel directory and the LINUXLIBS_DIR. Linuxlibs is available in Davinci PSP release.

export KERNEL_DIR=<kernel directory>
export LINUXLIBS_DIR=<linuxlibs directory>

* Clean any object files previously created

make ARCH=arm CROSS_COMPILE=arm-none-linux—-gnueabi- clean

* Build the application

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

* Copy the application to the target file system.

cp capture_prev_rsz_onthe_ fly bayer mew <target filesys addr>/opt/

3. Running the demo

* To run the demo, bootargs should be set as follows. The bootargs is for booting with NFS.
setenv bootargs console=ttyS0,115200n8 noinitrd rw ip=dhcp
root=/dev/nfs nfsroot=<linux host IP>:<nfs host
directory>,nolock mem=60M

video=davincifb:vid0=0FF :vidl=0FF:0sd0=1920x1080x4, 32400K
dm365_imp.oper_mode=0 vpfe_capture.interface=1

vpfe_capture.bufsize=4147200 davinci_enc_mngr.ch0_mode=1080I-30

the meaning of the parameters:

- dm365_imp.oper_mode

select the image mode, O:default, 1:continuous,2: XOR mode
- vpfe_capture.interface

select the vpfe input interface, O:tvp5146 composite input. 1:mt9p031 CMOS sensor bayer input. 2:tvp7002
component input.

-vpfe_capture.bufsize

make sure the buffer size is equal to or larger than : 1920*1080%2 = 4147200 bytes

-davinci_enc_mngr.chO_mode

Select the display mode, 1080I-30 standards for 1920*1080 interleaved @30fps

* Make sure the loadmodules_hd.sh and binary files are under /opt in the file system. After boot up the file system,

log in as root and enter the commands below:

cd /opt

http://arago-project.org/git/projects/?p=examples-davinci.git;a=summary

UG: DaVinci PSP Installation on DM36x EVM

46

./loadmodules_hd. sh
./capture_prev_rsz_onthe_fly bayer_mew —-il -m4 -h50

or ./capture_prev_rsz_onthe_fly bayer_mew —-il -m4 -h60
or ./capture_prev_rsz_onthe_fly bayer_mew —-il -m10 —h50

or ./capture_prev_rsz_onthe_fly bayer _mew —-il -ml10 -h60

For the arguments that follows “./capture_prev_rsz_onthe_fly_bayer_mew”:
-11: select input type is CMOS sensor input

-m4/m10: select standard is 720P-30/1080P-30

-h50/h60: select S0Hz/60Hz anti-flicker

* semi-auto exposure and semi-auto white balance

When the loop-back video is on the TV screen, point the camera to a white or grey area, such as a piece of white
paper, a white wall, or the professional 18% grey card, type 'w' key, a square frame will show up in the center of the
video, make sure the frame covers a uniform white/grey area, type 'w' key again, it will ajust sensor exposure time
and gain, IPIPE white balance gains and RGB matrix to get a decent quality video.

MT9P031 CMOS Sensor Driver Overview

This section provides a brief overview of the driver and its features. The driver is under GPL license, contributed to

the open source community by Leopard Imaging, Inc.
1. Overview

The MT9P031 CMOS sensor driver can work as built-in driver or loadable module. It mainly handles the

communication and configuration of the CMOS sensor. And it fits into the V412 structure as a video capture device.
* building Blocks

The CMOS sensor driver can be divided into the following blocks:

Module init:

This block handles all the initialization activities including driver registration, driver un-registration, probe and

remove registration.

Sensor init:

This block handles CMOS sensor reset and enable.

Configuration and Control:

This block handles the CMOS sensor function.

Standard and Format:

This block handles standard and format supported by the CMOS sensor.
2. Features

The CMOS sensor driver supports communication and configuration of sensor through I2C bus, as well as other

features such as:
Multiple Standards

Binning or non-binning mode

http://processors.wiki.ti.com/index.php?title=Www.leopardimaging.com

UG: DaVinci PSP Installation on DM36x EVM 47

Set and get control status

Set, set and query standard

Set and try(check) format

Get and set sensor registers

» Standards

The CMOS sensor driver supports the following standards:

-V4L2_STD_720P_30 (1280%720 progressive 30fps), binning mode, tested
-V4L2_STD_1080P_30 (1920*1080 progressive 30fps), non-binning mode, tested
-V4L2_STD_525_60, non-tested

-V4L2_STD_625_50, non-tested

-V4L2_STD_525P_60, non-tested

-V4L2_STD_625P_50, non-tested

* Get and Set sensor control

The CMOS sensor drive can supports set and get the current control, the control type includes:
- VFLIP control

- HFLIP control

- Gain control

- Exposure and Auto-Exposure control

* Get, Set and query standard support
The CMOS sensor driver supports set and get the standard.

e Set and try(check) format

* The CMOS sensor driver supports checking the width & height setting as well as setting different registers, such
as:

- PLL config

- Enable or Disable sensor

- Bin and Skip mode - Width and Height

- Row start and Column start

- Horizontal blank and Vertical blank

* Get and Set the sensor registers

The CMOS sensor driver supports reading and setting the sensor register values.
e Default

By default, the driver initializes the CMOS sensor in V4L2_STD_1080P_30 standard, which is 1920*1080
progressive 30fps, non-binning mode.

UG: DaVinci PSP Installation on DM36x EVM 48

References

[1] http://support.spectrumdigital.com/boards/evmdm365/

[2] http://codesourcery.com

[3] http://processors.wiki.ti.com/index.php/
Creating_a_Root_File_System_for_Linux_on_OMAP35x#Configure_the_Linux_Kernel_to_Support_File_Systems

[4] https://www.leopardimaging.com/DM365_5M_HD_Camera_Board.html

[5] http://arago-project.org/git/projects/linux-davinci.git

[6] http://arago-project.org/git/projects/?p=examples-davinci.git;a=summary

GSG: Building Software Components for OMAP-
L1/AMI1x

A Up to main Getting Started Guide for OMAP-L1 Table of Contents

Rebuilding the Linux kernel

The rebuild the Linux kernel, follow the steps below.

Preparing your Environment

1. If you have not already done so, install the CodeSourcery tools on your Linux host. For additional documentation
on installing the CodeSourcery tools, please visit the CodeSourcery website 21
2. If U-Boot is not built yet, build U-Boot first, as building Linux Kernel requires mkimage utility, which gets
built along with U-Boot. Refer to Rebuilding U-Boot for steps to build U-Boot. Once built, mkimage will be
present under the tools folder of U-Boot source
(/home/<user>/OMAP_L138_arm_x_xxX_xX_xxX/DaVinci-PSP-SDK-xx.xxX.xxX.xx/src/u-boot/uboot—-xx.

Ensure that this path is added to the $SPATH variable by adding the following

host$ export
PATH=home/<user>/OMAP_L138_arm_x_xx_xx_xx/DaVinci-PSP-SDK-xx.xXx.xX.xx/src/u-boot/uboot-xx.xx.xx.xx/tools:$P
4. to the ~/.bashrc file. You can then
5. source

6. the ~/.bashrc file with the following command

host$ source ~/.bashrc
8. Use your Linux host to extract source files for building the target Linux kernel from the
src/kernel/linux—#.#.#.#.tar.gz tarball from the OMAP-L138 Linux PSP package, which is located
in the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory
(/home/<user>/OMAP_L138_arm_x_xx_xx_xx/DaVinci-PSP-SDK-xx.xx.xx.xx/src/kernel for default path

installation). Use the tar command to extract the sources.
host$ tar zxf linux-#.#.#.#.tar.gz

NOTE

Patches from the kernel-patches-#.#.#.#.tar.gz file have already been applied on Linux Kernel. This is the list of
patches which have been developed on top of the base Linux kernel version. You can find information about the base
Linux kernel version from the release notes accompanying the PSP release.

11. Change directory (cd command) to the top-level directory of the Linux kernel source files obtained in the

previous step.

host$ cd linux-xx.xX.XX.XX

http://support.spectrumdigital.com/boards/evmdm365/
http://codesourcery.com
http://processors.wiki.ti.com/index.php/Creating_a_Root_File_System_for_Linux_on_OMAP35x#Configure_the_Linux_Kernel_to_Support_File_Systems
http://processors.wiki.ti.com/index.php/Creating_a_Root_File_System_for_Linux_on_OMAP35x#Configure_the_Linux_Kernel_to_Support_File_Systems
https://www.leopardimaging.com/DM365_5M_HD_Camera_Board.html
http://arago-project.org/git/projects/linux-davinci.git
http://arago-project.org/git/projects/?p=examples-davinci.git;a=summary
http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L138
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23Downloading_and_installing_the_Code_Sourcery_tools
http://codesourcery.com
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Rebuilding_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

GSG: Building Software Components for OMAP-L1/AM1x

49

Basic Configuration of the Kernel

Based on what chip and development board you are using, you will need to configure the kernel for different options.

Most of these setings are build into the Make file provided by TI, and you can switch between builds using some

simple make options.

1. Clean your installation of previous build settings

host$ make distclean ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

3. Configure the kernel according to the default configuration provided. The steps below assume that the
CodeSourcery tools are already present in your $PATH variable. Information on how to add the tools to your
SPATH can be obtained form the Getting Started Guide for the CodeSourcery tools.

* For OMAP-L138 (or DA850, AM18xx)

host$ make da850_omapl138_defconfig ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
* For OMAP-L137 (or DA830, AM17xx)

host$ make da830_omapl137_defconfig ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

5. Modify the kernel options you would like to run. This may take some planning, but the default settings are a good

place to start. For more information on these settings, look further down the page at Driver configuration in the

[3]]

Linux kernel or see detaile instructions for | a different processors root file system '~]. there are two menu configs

that are commmon to run:
host$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- menuconfig

(or)
host$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- xconfig

Building ulmage
Run the following command to build the kernel image:
host$ make ulmage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
The compiled uImage is copied into the arch/arm/boot directory under the kernel tree.

Once the kernel has been compiled, if you are using tftp boot, use the following commands to copy the ulmage to a
place where U-Boot can use TFTP to download it to the EVM. These commands assume you are using the default
TFTP root area, which is /tftpboot. If you use another TFTP root location, please change /tftpboot to your own TFTP
root location:

host$ cp arch/arm/boot/ulmage /tftpboot
Note

If the ulmage build fails with a similar message as follows:

"mkimage" command not found - U-Boot images will not be built

it could be that the path to the u-boot ulmage script has not been added to the command search path. Include the path

"{u-boot source path}/tools" to your PATH environment variable.

http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Driver_configuration_in_the_Linux_kernel
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Driver_configuration_in_the_Linux_kernel
http://processors.wiki.ti.com/index.php/Creating_a_Root_File_System_for_Linux_on_OMAP35x#Configure_the_Linux_Kernel_to_Support_File_Systems

GSG: Building Software Components for OMAP-L1/AM1x

50

Building Modules
To build all features configured as modules (M), issue the following command:

host$ make modules ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

Installing modules to Target File System

To install the compiled modules into the target root file system, issue the following command:

host$ make modules_install INSTALL_MOD_PATH=<root fs path> ARCH=arm
CROSS_COMPILE=arm-none-linux-gnueabi-

where the <root fs path> is the path of your target root file system on the host machine
(/home/user/workdir/filesys for example).

See Loading Linux Kernel Modules for more information on using kernel modules after you build them.

Driver configuration in the Linux kernel

This section describes the procedure to configure the kernel to support various drivers.

» To begin, if you have not done basic configuration of the kernel go to that section, and do that first. Once you

have compiled with base configuration, return here.

Once you base configuration is set, you can use menu based configurations to change details about your kernel's
build.

host$ make menuconfig ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

* To select/de-select a feature, press 'space' after bringing cursor over selection box. When "*' appears in selection

box, the feature is selected, when the selection box is empty, the feature is de-selected.
» To configure a particular feature as module, press 'space’ until an 'M' appears in the selection box.

Note that some of the menu options which are required to be deselected here (selection box empty) may not appear
at all because the internal checks which render the option invalid. In this case, it is safe to assume that the options

have been automatically disabled.

USB 2.0

USB2.0 interface is build into the default config in Dual Role mode meaning it can either be a Host or Device (OTG
is not supported) automatically without need for user intervention. In the Dual Role mode support for MSC
application is available in Host mode while RNDIS/CDC gadget application is available in Device mode by default.
User can choose to change the application/mode supported by following the below steps if needed.

WARNING
When removing the support for USB2.0 from the kernel please ensure that "CPPI support" under "System Type-->
TI DaVinci Implementations" is also disabled.

Configuring for Host

Device Drivers —-——>

USB support —-——>
<*> Support for Host-side USB
——— Miscellaneous USB options
[*] USB device filesystem

——— USB Host Controller Drivers

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Loading_Linux_Kernel_Modules
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Basic_Configuration_of_the_Kernel

GSG: Building Software Components for OMAP-L1/AM1x 51

<*> Inventra USB Highspeed Dual Role Controller Support
——— DA830/OMAP-L137 USB support
Driver Mode (USB Host) ———>
(X) USB Host

(please see Inventra HDRC USB Controller for more details on the underlying driver)

When required to support HID devices (mouse, keyboard etc), choose the following

Device Drivers —--->
Input device support —--—-—>
<*> Mouse interface
[*] Keyboards —--——>
<*> AT keyboard

HID Devices ———>

<*> USB Human Interface Device(full HID) support

When required to support MSC devices (pen drive etc), choose the following

Device Drivers —--->

SCSI device support —-——>
——— SCSI device support
[*] legacy /proc/scsi/support
—-—— SCSI support type (disk, tape, CD-ROM)
<*> SCSI disk support

USB support ———>
<*> USB Mass Storage support

When required to support UVC, UAC class (Webcam, Speakers, Microphone etc.) choose the following

Device Drivers —--->
Multimedia support —-—-—>
Video capture adapters —-——>
V4L USB devices ———>
<*> USB Video Class (UVC)
[*] UVC input events device support
Sound card support —--——>
Advanced Linux Sound Architecture —--—-—>
USB sound devices —--->
<*> USB Audio/MIDI driver
Configuring for Gadget
Device Drivers —--->
USB support —-——>

< > Support for Host-side USB
<*> Inventra Highspeed Dual Role Controller
(TT, ...)
(*)USB Peripheral (gadget stack)

When required to support Ethernet gadget choose the following

http://processors.wiki.ti.com/index.php?title=Inventra_HDRC_USB_Controller

GSG: Building Software Components for OMAP-L1/AM1x

52

Device Drivers ———>
USB support —-——>
USB Gadget Support —-——>

<*> USB Gadget Drivers (Ethernet Gadget
(with CDC Ethernet support))
%] RNDIS support (EXPERIMENTAL)

When required to support File backed storage gadget, choose the following

Device Drivers —-——>
USB support —-——>
USB Gadget Support —-——>

<M> USB Gadget Drivers
<M> File-backed Storage Gadget
[*] File-backed Storage Gadget testing version
(NEW)

USB 1.1

Device Drivers —-——>
USB support —-——>
<*> Support for Host-side USB
——— Miscellaneous USB options
[*] USB device filesystem
——— USB Host Controller Drivers
<E> OHCI HCD support

To support MSC, HID, UVC, UAC applications over USB 1.1 interface refer to USB2.0 procedures for the same.

Audio
Device Drivers ———>
<*> Sound card support —--——>
<*> Advanced Linux Sound Architecture --——>
<*> ALSA for SoC audio support —-——>

<*> SoC Audio for the TI DAVINCI chip

For OMAP-L138 (or DA850, AM18xx) EVM board:

<*> SoC Audio support for DA850/OMAP-L138/AM18xx
EVM

For OMAP-L137 (or DA830, AM17xx) EVM board:

<*> SoC Audio support for DA830/OMAP-L137/AM17xx
EVM

GSG: Building Software Components for OMAP-L1/AM1x

53

Graphical LCD
Device Drivers —-——>
Graphics support -—--——->
<*> Support for frame buffer devices —--——>

<*> DA8xx/OMAP-L1lxx/AMlxxx Framebuffer support

When using OMAP-L137 (or DA830, AM17xx) EVM:

System Type —-——>
TI DaVinci Implementations -—--->

Select DA830/OMAP-L137/AM17xx UI board peripheral (LCD)

———>
Character LCD
Device Drivers —--->
Graphics support -—-—-——>
<*> Support for frame buffer devices —--——>
< > DA8xx/OMAP-Ll1xx/AMlxxx Framebuffer support
<*> Parallel port support -—-—-——>
[*] Staging drivers -—--->
[] Exclude Staging drivers from being built
<*> Parallel port LCD/Keypad Panel support
(0) Default parallel port number (0=LPT1)
(3) Default panel profile (0-5, O=custom)
[] Change LCD initialization message *?
== DABXX/OMAP-L1/AMlxxx Dummy Parallel Port
System Type —-——>
TI DaVinci Implementations ——->
Select peripherals connected to expander on UI board
(Character LCD) ———>
NAND
Device Drivers —-——>
< > MMC/SD/SDIO card support ———>
<*> Memory Technology Device (MID) support —--——>
[%] MTD partitioning support
[*] Command line partition table parsing

<E> Direct char device access to MID devices
<*> Common interface to block layer for MTD
'translation layers'
<> Caching block device access to MID devices
LF> NAND Device Support —-—-—>
<*> Support NAND on DaVinci SoC

GSG: Building Software Components for OMAP-L1/AM1x

WARNING
Please disable MMC support when NAND has to be used. They are pin multiplexed and NAND will not work when
MMC is enabled.

NOR
Note: NOR flash is supported only on OMAP-L138 (or DA850, AM18xx) EVM
Device Drivers —--—-—>
< > MMC/SD/SDIO card support ———>
<*> Memory Technology Device (MID) support ———>
[*] MTD partitioning support
[%] Command line partition table parsing

<*> Direct char device access to MTID devices
LTS Common interface to block layer for MTD

'translation layers'

<*x> Caching block device access to MID devices

RAM/ROM/Flash chip drivers —--->

<*> Detect flash chips by Common Flash Interface
(CFI) probe

<*> Support for Intel/Sharp flash chips

Mapping drivers for chip access —-——>
<*> TI DaVinci board mappings

WARNING

Please disable MMC support when NOR has to be used. They are pin multiplexed and NOR will not work when
MMC is enabled.

SP1

Device Drivers ———>

[*] SPI support -—--——>

<*> SPI controller driver for DaVinci SoC
<*> Memory Technology Device (MTID) support -—-——>
=] MTD partitioning support
[*] Command line partition table parsing

<F> Direct char device access to MID devices
LHE> Common interface to block layer for MTD
'translation layers'
<k > Caching block device access to MID devices
Self-contained MTD device drivers -—--->
<*> Support most SPI Flash chips (AT26DF, M25P,
W25X, ...)
L%] Use FAST_READ OPCode allowing SPI CLK <=
50MHz

GSG: Building Software Components for OMAP-L1/AM1x

55

MMC/SD

Device Drivers —-———>

<*>MMC/SD/SDIO card support -—---—>
<x> MMC block device driver

<E> TI DAVINCI Multimedia Card Interface support

RTC
Device Drivers —-——>
<*> Real Time Clock —-———>
<k > TI OMAP1
SATA
Device Drivers ———>
<*> Serial ATA (prod) and Parallel ATA (experimental)
drivers —--——>
[*] SATA Port Multiplier support
<*> AHCI SATA support
McBSP
System Type —-——>
TI DaVinci Implementations —--——>
[*] DaVinci McBSP (serial API) support
[] Support for McBSP instance 0
[*] Support for McBSP instance 1
WARNING

Note: Since the McBSP peripheral has a kernel API based driver, menuconfig options are present under System

Type. If sound driver is selected in menuconfig then McBSP cannot be configured. They are mutually exclusive.

Power Management

CPUFreq

CPU Power Management -—--——>
[*] CPU Frequency scaling
<F> 'userspace' cpufreq policy governor
Default CPUFreq governor (userspace) -—-——>
(X) usespace
Device Drivers --->
Multifunction device drivers -—--——>
<*> TPS6507x Power Management / Touch Screen chips
[*] Voltage and Current Regulator Support -—-—-—->
<*> TI TPS6507X Power regulators

GSG: Building Software Components for OMAP-L1/AM1x

56

CPUldle

CPU Power Management -—--—-—>

[*] CPU idle PM support

Suspend-to-RAM

Power management options -—-—->
[*] Power Management support
[*] Suspend to RAM and standby

Ethernet
[*] Networking support -—--—->
Networking options -—--->
[*] TCP/IP networking
[IP: kernel level autoconfiguration
| IP: DHCP support
Device Drivers —--—-—>
[*] Network device support -—-—-—-—>
[%] Ethernet (10 or 100Mbit) -—--—->
<*> Generic Media Independent Interface

device support
<*> TI DaVinci EMAC Support

Using the RMII PHY on OMAP-L138 (or DA850, AM18xx) UI card

System Type —-——>
TI DaVinci Implementations —--——>
[*] Use RMII Ethernet PHY on DA850/OMAP-1L138 EVM
Device Drivers —-——>
=%= GRPIO SupPpert =—=—=>
<*> PCA953x, PCA955x, TCA64xx, and MAX7310 I/O
ports

WARNING
Note: When using RMII PHY, MII ethernet PHY will not be functional. Do not plug in ethernet cables to both the
PHYs.

VPIF

System Type -—--——>
TI DaVinci Implementations —--——->
[*] TI DA850/OMAP-L138/AM18xx Reference Platform
Select peripherals connected to expander on UI

board (Video Port Interface) —_——>

Device Drivers —-——>
<*> Multimedia support --->
<F> Video For Linux
[*] Video capture adapters -—--—->
<*> DaVinci Video VPIF Display

GSG: Building Software Components for OMAP-L1/AM1x

57

<*> DaVinci Video VPIF Capture
—*— DaVinci VPIF Driver
[] Autoselect pertinent encoders/decoders and other
helper chips

Encoders/decoders and other helper chips -—-——>

<*> Texas Instruments TVP514x video
decoder

—*— THS7303 Video Amplifier

—*— ADV7343 video encoder

Note: To run the vpif examples add the following to your bootargs
vpif_capture.ch0_bufsize=831488 vpif_display.ch2_bufsize=831488
WARNING

Please disable the graphical LCD frame buffer driver and the character LCD driver when VPIF display has to be
used. They are pin multiplexed and VPIF display will not work when LCD is enabled.

Device Drivers —-——>
Graphics support -—-—-—-—>
< > DA8xx/OMAP-Ll1xx/AMlxxx Framebuffer support

Touchscreen

TSC2004
TSC2004 touchscreen controller is found on DA830 (or OMAP-L137, AM17xx) EVM when using new UI cards

Device Drivers ———>
Input device support -—--->
[]] Touchscreens ———>
<*k> TSC2004 based touchscreens
TPS65070

TPS65070 touchscreen controller is found on DA850 (or OMAP-L138, AM18xx) EVM

Device Drivers —--——>
Multifunction device drivers -—--—->
<*> TPS6507x Power Management / Touch Screen chips
Input device support -—-——>
L%] Touchscreens —-——>

<x> TPS6507x based touchscreens

GSG: Building Software Components for OMAP-L1/AM1x

58

Rebuilding U-Boot

Follow these steps to rebuild U-Boot:

1. If you have not already done so, install the CodeSourcery tools on your Linux host. For documentation on
installing the CodeSourcery tools, please visit the CodeSourcery website 21

2. Use your Linux host to extract source files for building U-Boot from the
src/u-boot/u-boot—#.#.#.#.tar.gz tarball from the OMAP-L138 Linux PSP package, which is
located in the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the tar
command to extract the sources.
Note: Patches from the uboot-patches-#.#.#.#.tar.gz file have already been applied to U-Boot. This is the list of
patches which have been developed on top of the base version. You can find information about the base U-Boot
version from the release notes accompanying the PSP release.

3. Go to the u-boot directory created when you extracted the files.

4. Run the following commands on your Linux host to build U-Boot. Note: The steps below assume that the
CodeSourcery tools are already present in your SPATH variable. Information on how to add the tools to your

SPATH can be obtained form the Getting Started Guide for the CodeSourcery tools.

host$ make distclean CROSS_COMPILE=arm-none-linux—-gnueabi-

e for OMAP-L138 (or DA850, AM18xx) EVM

host$ make da850_omapll38_evm_config
CROSS_COMPILE=arm-none—linux—gnueabi-

e for OMAP-L137 (or DA830, AM17xx) EVM

host$ make da830_omapll37_evm_config
CROSS_COMPILE=arm-none—linux—gnueabi-

host$ make all CROSS_COMPILE=arm-none-linux-gnueabi-

8. The compiled u-boot .bin file will be created in the same directory.
9. To change the default options, the EVM configuration file needs to be edited.

* for OMAP-L138 (or DA850, AM18xx) EVM are specified in the include file
include/configs/da850_evm.h

e for OMAP-L137 (or DA830, AM17xx) EVM are specified in the include file
include/configs/da830_evm.h

To change U-Boot environment area location or size:

e CONFIG_ENV_SIZE Configures the environment variable size.

* CONFIG_ENV_OFFSET Configures the environment variable offset.

Choice of Flash supported. Note: Only one of these Flash options should be defined at a time. Defining more than

one Flash option results in a compilation error when you build U-Boot:

* CONFIG_USE_SPIFLASH If this flag is defined, U-Boot supports the SPI flash on the EVM board. The
environment variables are stored on the SPI flash. This option is switched on by default.

* CONFIG_SYS_USE_NAND If this flag is defined, U-Boot supports U-Boot NAND flash access using the
OMAP-L1 SoC. Environment variables are also stored on the NAND flash.

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23Downloading_and_installing_the_Code_Sourcery_tools
http://codesourcery.com
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

GSG: Building Software Components for OMAP-L1/AM1x

Rebuilding the ARM Side User Boot Loader

Use your Linux host to extract the ARM UBL code from the src/boot-strap/armubl-#.#.#.#.tar.gz
tarball from the Linux PSP package, which is located in the DaVinci-PSP-SDK-#.#.#.# directory under the main
SDK installation directory. Use the tar command to extract the sources. If the extracted files are not accessible

from your Microsoft Windows host, copy all the extracted files to a location that is accessible.

NOTE
By default, the ARM UBL configures the SoC to work at 300MHz, 1.2V operating point. Changing the Operating

Point describes the procedure to change the default operating point.

For OMAP-L138 (or DA850, AM18xx)
When using CCStudiov3.3:

1. Start CCStudio v3.3.
2. From the menus, choose Project->Open.
3. Browse to the extracted ARM UBL source and open the ubl-omapllx8.pJjt project.

* To build for SPI Flash, select the "Config" option as BOOT_SPI in CCStudio window.

* To build for NOR Flash, select the "Config" option as BOOT_NOR in CCStudio window.

e To build for NAND Flash, select the "Config" option as BOOT_NAND in CCStudio window.

* To build for MMC/SD boot, select the "Config" option as BOOT_SDMMC in CCStudio window. NOTE
DA850/OMAP-L138/AM18xx does not support MMC/SD boot mode, but UBL can read U-Boot from SD
card and boot it.

4. From the menus, choose Project->Build. When the build is complete:

* The executable ELF binary (ubl-xxx.out) file is generated in the Project Root directory

(<armubl-install-dir>\ccsv3.3\)

5. Proceed to convert the UBL object file obtained above to AIS format file suitable for flashing.
When using CCStudiov4:
1. Start CCStudiov4.

2. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse Project. Browse to
ccsv4/omap—11x8 directory inside the extracted ARM UBL source and select it.

* To build for SPI Flash, select the "Configuration" option as BOOT_SPI in Project->Properties menu.

* To build for NOR Flash, select the "Configuration" option as BOOT_NOR in Project->Properties menu.

* To build for NAND Flash, select the "Configuration" option as BOOT_NAND in Project->Properties menu.

* To build for MMC/SD boot, select the "Configuration" option as BOOT_SDMMC in Project->Properties menu.
3. From the menus, choose Project->Build Project
4. When build is complete:

* The executable ELF binary (ubl-xxx.out) file is generated in the Project Root directory

(<armubl-install-dir>\ccsv4\omapllx8\)

5. Proceed to convert the executable ELF binary obtained above to AIS format file suitable for flashing.

Generating ARM AIS File For OMAP-L138 (or DA850, AM18xx)

1. Obtain the AIS file format generator tool described in the Bootloader Application Report document.

2. Use the tool as shown below to obtain AIS format files ready to be flashed into NAND/SPI/NOR flash.
For NAND Flash:

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package
http://processors.wiki.ti.com/index.php?title=OMAPL1:_Changing_the_Operating_Point
http://processors.wiki.ti.com/index.php?title=OMAPL1:_Changing_the_Operating_Point
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Generating_ARM_AIS_File
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Generating_ARM_AIS_File
http://www.ti.com/lit/pdf/sprab41

GSG: Building Software Components for OMAP-L1/AM1x

AlSgen for DBOOKOODG6

File Help

General .FEh ,

Device Tyne: | dBOOKO0E v | [ARM |

Eoot Mode: |NAND Flash V|

Clock Source: ICrystaI v| | 24| MHz
[Configure PLLD [Canfigurs PLL1

[] Configure SDRAM [] Canfigure DDA

[] Corfigure PSC [] Canfigure Pinmus

[] Enable CRC
[Specify Entrypoaint:
AR Application File: i"\ccsv4\ubl-nand.out !‘) E]
AlS Output File: I"\ccsv4\arm-nand-ais.bid | D
[Ready] Generate &15
For SPI Flash:

AlSgen for, DEOOKOOS

File Help

Gereral | Peripheral |

Devics Type: [dB0OKODE ~ | [8RM]
Boot Mode: @

Clock Saurce: | Crystal ~|[2] Mue
[] Configue PLLD [Configure PLLT

[] Configure SDR&M [Configure DDR

[Configure PSC [Configure Pinmux

[] Enable CRC
[Specify Entrypaint;
ARM Application File: |"\ccsv4\ubl-spi.out |0 D
AlS Output File: i"\ccsv4\arm-spi—ais. bir | D
[Ready] Generate AlS
For NOR Flash:

AlSgen for DBOOKOOG
File Help

Device Type: [dB00KDDS | [aFM]
Boat Mode: ’@

Clock Source: | Crpstal v [24 MHe
[] Configure PLLO [] Configure PLL1

[] Configure SDRAM [Configure DDR

[] Configure PSC [Configure Pirrmus

[] Enable CRC

[Specify Entrupaint: |-_
ARM Application File: i"\ccswl\ubl-nor.out |Q E]
AlS Output File: !"\ccsv4\alm-nor-ais.bin | D

[Ready] Generate A5

Note: Before generating the AIS image for NOR, make sure that Flash Data Width is set to 16 bit in AIS file

format generator's "Flash" tab.

GSG: Building Software Components for OMAP-L1/AM1x

61

For OMAP-L137 (or DA830, AM17xx)
When using CCStudiov3.3:

1. Start CCStudio v3.3.
2. From the menus, choose Project->Open.
3. Browse to the extracted ARM UBL source and open the ubl-omapllx7.pjt project.

* To build for SPI Flash, select the "Config" option as BOOT_SPI in CCStudio window.
* To build for NAND Flash, select the "Config" option as BOOT_NAND in CCStudio window.
4. From the menus, choose Project->Build. When the build is complete:

e The Intel hex format binary (ubl-xxx.bin) file is generated in the Project Root directory.
* The executable ELF binary (ubl-xxx.out) file is generated in the Project Root directory.
* The Project Root directory is <armubl-install-dir>\ccsv3.3\

5. The files generated by the build procedure, have to be flashed.

e In case of DSP BOOT devices like OMAP-L137 or DA830, the Intel hex format binary file is suitable for
flashing.

¢ In case of ARM BOOT devices like AM17xx, proceed to convert the executable ELF binary obtained above to
AIS format file suitable for flashing.

When using CCStudiov4:

1. Start CCStudiov4.
2. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse Project. Browse to
ccsv4/omap—11x7 directory inside the extracted ARM UBL source and select it.

* To build for SPI Flash, select the "Configuration" option as BOOT_SPI in Project->Properties menu.
* To build for NAND Flash, select the "Configuration" option as BOOT_NAND in Project->Properties menu.
3. From the menus, choose Project->Build Project.
4. When build is complete
* The Intel hex format binary (ubl-xxx.bin) file is generated in the Project Root directory.
* The executable ELF binary (ubl-xxx.out) file is generated in the Project Root directory.
* The Project Root directory is <armubl-install-dir>\ccsv4\omapllx7\
5. The files generated by the build procedure, have to be flashed.
* In case of DSP BOOT devices like OMAP-L137 or DA830, the Intel hex format binary file is suitable for
flashing.
* Incase of ARM BOOT devices like AM17xx, proceed to convert the executable ELF binary obtained above to
AIS format file suitable for flashing.

Generating ARM AIS File For AM17xx

1. Obtain the AIS file format generator tool described in the Bootloader Application Report document.
2. Use the tool as shown below to obtain AIS format files ready to be flashed into NAND/SPI flash.
For NAND Flash:

http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Generating_ARM_AIS_File_For_AM17xx
http://processors.wiki.ti.com/index.php?title=GSG:_Building_Software_Components_for_OMAP-L1%23Generating_ARM_AIS_File_For_AM17xx
http://www.ti.com/lit/pdf/sprab41

GSG: Building Software Components for OMAP-L1/AM1x

AlSgen for DEOOKDO3 1S

Fle Help
Boot mode:
Clock Source: MHz] (=21
[] Corfigure PLL [] (2]
[] Corfigure EMIF& SDRAM] [2410]
[Cerfigure EMIFE SDRAM] [z40]
[Corfigure LPSE
[[] Configure PIMMLE
[Eratle CAC [L]
L1 L1
L 1 L]
L 1 L]
[|
[|
\ | \ | | | | |
\ | \ | | | | |
\ | \ | [| [|
\ | \ | [| [|
\ | \ | [| [|
Application: [bbnand.out |]
AI5 File: | amenand-aiz.bin | &
For SPI Flash:
File Help
Boot mode: | ELIIEEE
Clock Source: MHz l:l l:l
[] Corfigure PLL [] [240]
[] Configure EMIFA SDRAM I:l I:l
[] Corfigure EMIFE SDRAM] [z40]
[Corfigure LPSE
[Corfigure PINMLE — —]
[] Ersbls CRC
L 1 L1
5Pl Speed MHz L] L1
Sequential Read l:l l:l
[|
[|
\ | \ | | | | |
\ \ \ \ | | | |
\ | \ | [| [|
\ | \ | [| [|
\ | \ | | | | |
Application. | ublspi.out [
AIS File: |amrspiais.bin | CJ

Rebuilding DSP Side User Boot Loader

For the DSP boot devices OMAP-L137 and DA830, DSP UBL is required to wake up the ARM during the boot
process.

When using CCStudiov3.3:

1. Use your Linux host to extract the DSP UBL code from the
src/boot-strap/dspubl-#.#.#.#.tar.gz tarball from the OMAP-L138 Linux PSP package, which is
located in the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the tar
command to extract the sources.

2. If the extracted files are not accessable from your Microsoft Windows host, copy all the extracted files to a
location that is accessable.

http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

GSG: Building Software Components for OMAP-L1/AM1x

63

3. Start CCStudio v3.3.

4. From the menus, choose Project->Open. Browse to the extracted DSP UBL source and open the
ubl-omapllx7.pjt project.

5. By default, the project builds DSP UBL for NAND flash. To build for SPI Flash, select the "Config" option as
BOOT_SPI in CCStudio window.

6. From the menus, choose Project->Build. When the build is complete for SPI flash, the build places
ubl-spi.out inthe spi directory under the top level directory. Similarly, the build for NAND flash places

the ubl-nand.out inthe nand directory.
CCStudiov4 specific steps to build the DSP side User Boot Loader:
1. Extract the DSP UBL code from the src/boot-strap/dspubl-MM.mm.pp.bb.tar.gz filein PSP

installation.

2. Start CCStudiov4. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse Project.
Browse to the extracted DSP UBL source and select the root directory where the ccsv4 project resides. By default,
the project builds DSP UBL for NAND flash. To build for SPI Flash, select the "Configuration" option as
BOOT_SPI in Project->Properties menu.

3. From the menus, choose Project->Build Project. When build is complete for SPI flash, the build places
ubl-spi.out inspi directory under the top level directory. Similarly, the build for NAND flash places the
ubl-nand.out innand directory.

Once the .out file is obtained using CCStudiov3.3 or CCStudiov4, convert to AIS File format. Obtain and install the

AIS file format generator tool described in Section 5 of the Using the DSO0OKO001 Bootloader document.

* Open an MS-DOS command window and change (cd command) to the AIS Generation tool installation directory.

* Execute the following command:

For SPI:

hexgen —-romid D800K001 -seqgread -crc 1 -spiclk 0 —appln <PATH to

ubl-spi.out> -output <dsp-spi-ais.bin>

For NAND:

hexgen —-romid D800K001 -seqgread -crc 1 -spiclk 0 —appln <PATH to

ubl-nand.out> -output <dsp-nand-ais.bin>

The resulting output file is the DSP AIS binary.

Rebuilding the SPI Flash writer
SPI flash writer is used to flash UBL and U-Boot images to SPI flash. The flash writer also supports flashing a given

image at a chosen offset.
* For 03.20.xx.xx Releases:

1. Use the following steps to build SPI Flash writer using
2. CCStudio v3.3
3.

1. Use your Linux host to extract the SPI flash writer code from the
src/utils/spiflash-writer—#.#.#.#.tar.gz tarball from the OMAP-L138 Linux PSP package,
which is located in the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the
tar command to extract the sources.

2. If the extracted files are not accessable from your Microsoft Windows host, copy all the extracted files to a

location that is accessable.

http://www.ti.com/lit/pdf/sprab04
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

GSG: Building Software Components for OMAP-L1/AM1x

64

Start CCStudio v3.3.

From the menus, choose Project->Open.

Browse to the the extracted source directory, and open the spiflash_writer.pjt project.

Select the active configuration as SPIO if the flash writer is being built for DA830/OMAP-L137/AM17xx or as
SPI1 if it is being built for DA8S0/OMAP-L138/AM18xx.

7. From the menus, choose Project->Build. The built image spiflash-writer.out is placedin the

N

ccsv3.3/Debug subdirectory under the project directory.
5. Use the following steps to build SPI Flash writer using
6. CCStudio v4

[y

. Extract the SPI flash writer code from src/utils/spiflash-writer-MM.mm.bb.pp.tar.gz file
in PSP installation.

2. Start CCStudio v4. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse
Project.

3. Browse to the the extracted source directory, select the root directory where the ccsv4 project resides.

4. Select the active configuration as SPIO if the flash writer is being built for DA830/OMAP-L137/AM17xx or as
SPI1 if it is being built for DA850/OMAP-L138/AM18xx.

5. From the menus, choose Project->Build Project. The built image spiflash-writer.out is placedin

the ccsv4/Debug under the top directory.

¢ For 03.21.xx.xx Releases:

1. Extract the SPI flash writer code from src/boot-strap/flash-utils-03.21.00.03.tar.gz file
in PSP installation.

2. Start CCStudio v5. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse
Project.

3. Browse to the the extracted source directory, select the SPIWriter ARM directory where the ccsv5 project
resides.

4. From the menus, choose Project->Build Project. The built image SPIWriter_ OMAP-L138.out is
placed in the
/src/boot-strap/flash-utils-03.21.00.03/0MAP-1.138/CCS/SPIWriter/ARM under the
top directory.

To flash images to SPI Flash, see Flashing images to SPI Flash.
To boot U-Boot from SPI Flash, see Booting from SPI Flash.
To boot the Linux kernel from SPI Flash using U-Boot, see Booting the Linux kernel from SPI Flash.

Rebuilding the NAND Flash writer
NAND flash writer is used to flash the ARM UBL and U-Boot images to NAND flash. The flash writer also supports

flashing a given image at a chosen offset.
* For 03.20.xx.xx Releases:

1. Use the following steps to build NAND Flash writer using
2. CCStudio v3.3
3.

1. Use your Linux host to extract the NAND flash writer code from the
src/utils/nand-writer—#.#.#.#.tar.gz tarball from the Linux PSP package, which is located in
the DaVinci-PSP-SDK-#.#.#.# directory under the main SDK installation directory. Use the tar command to

extract the sources.

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images_to_SPI_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_from_SPI_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_from_SPI_Flash_2
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L138%23About_the_PSP_package

GSG: Building Software Components for OMAP-L1/AM1x

65

[\

. If the extracted files are not accessable from your Microsoft Windows host, copy all the extracted files to a
location that is accessable.

. Start CCStudio v3.3.

. From the menus, choose Project->Open.

. Browse to the extracted source directory and open the nand_writer.pjt project file.

AN N W

. From the menus, choose Project->Build. The built image nand-writer.out is placed in the
ccsv3.3/Debug subdirectory under the project directory.

5. Use the following steps to build NAND Flash writer using

6. CCStudio v4

¢ Extract the NAND flash writer code from src/utils/nand-writer-MM.mm.bb.pp.tar.gz filein
PSP installation.

e Start CCStudio v4. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse
Project.

* Browse to the the extracted source directory, select the root directory where the CCSv4 project resides.

* From the menus, choose Project->Build Project. The built image nand-writer.out is placed in the

ccsv4/Debug under the top directory.
* For 03.21.xx.xx Releases:

1. Extract the NAND flash writer code from src/boot-strap/flash-utils-03.21.00.03.tar.gz
file in PSP installation.

2. Start CCStudio v5. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse
Project.

3. Browse to the the extracted source directory, select the NANDWriter_ARM directory where the ccsvS project
resides.

4. From the menus, choose Project->Build Project. The built image NANDWriter_ OMAP-L138.out is
placed in the
/src/boot-strap/flash-utils-03.21.00.03/0OMAP-L138/CCS/NANDWriter/Debug/
under the top directory.

To flash images to NAND Flash, see Flashing images to NAND Flash.
To boot U-Boot from NAND Flash, see Booting from NAND Flash.
To boot the Linux kernel from NAND Flash using U-Boot, see Booting the Linux kernel from NAND Flash.

Rebuilding NOR Flash writer
Note: NOR flash writer is supported only on the EVMs for OMAP-L138 (or DA850, AM18xx).
NOR flash writer is used to flash UBL and U-Boot images to NOR flash. The flash writer also supports flashing a

given image at a chosen offset.

For 03.20.xx.xx Releases:

—_

. Use the following steps to build NOR Flash writer using
. CCStudio v3.3

[\

1. Extract the NOR flash writer code from src/utils/norflash-writer—#.#.#.#.tar.gz directory
in PSP installation.
2. Start CCStudio v3.3. From the menus, choose Project->Open

3. Browse to the extracted source directory and open the ccsv3.3/norflash_writer.pjt project file.

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Flashing_images_to_NAND_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Booting_from_NAND_Flash_2

GSG: Building Software Components for OMAP-L1/AM1x

66

4.

From the menus, choose Project->Build. The built image norflash-writer.out is placed in the

ccsv3.3/Debug directory under the top level source directory.

5. Use the following steps to build NOR Flash writer using
6. CCStudio v4

7. :
1. Extract the NOR flash writer code from src/utils/norflash-writer—#.#.#.#.tar.gz filein
PSP installation.

2. Start CCStudio v4. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse
Project.

3. Browse to the the extracted source directory, select the root directory where the CCSv4 project resides.

4. From the menus, choose Project->Build Project. The built image norflash-writer.out is placedin
the ccsv4/Debug under the top directory.

* For 03.21.xx.xx Releases:

1. Extract the NOR flash writer code from src/boot-strap/flash-util1s-03.21.00.03.tar.gz
file in PSP installation.

2. Start CCStudio v5. From the menus, choose File->Import. Choose CCS->Existing CCS/CCE Eclipse
Project.

3. Browse to the the extracted source directory, select the NORWriter_ ARM directory where the ccsv5 project
resides.

4. From the menus, choose Project->Build Project. The built image NORWriter_ OMAP-L138.out is
placed in the
/src/boot-strap/flash-utils-03.21.00.03/0OMAP-1.138/CCS/NORWriter/Debug under
the top directory.

What's next?

Please continue on to the Building the SDK section of the OMAP-L1 Getting Started Guide.

http://processors.wiki.ti.com/index.php?title=Getting_Started_Guide_for_OMAP-L1%23Building_the_SDK

Getting Started Guide for OMAP-L1

67

Getting Started Guide for OMAP-L1

This Getting Started Guide (GSG) walks you through setting up the OMAP-L137 and OMAP-L138 EVM and
installing the software. You should proceed through this guide in the order given for best results. By the end of this
Getting Started Guide you will have the EVM booting to Linux and the Linux host development environment
configured. You should also bookmark the OMAPLI category since new articles will continue to appear on this
wiki.

ATTENTION OMAP-L138 DEVELOPERS: The Generally Available (GA) Linux DVSDK 4.x for the
OMAP-L138 device is now available here !\, There are various capabilities and improvements that have been added
to this version. This is the recommended release kit for development which supersedes the SDK 1.00.xx Beta. The
majority of the information below is only applicable to the SDK 1.00.xx Beta.

EVM overview
EVM Overview - OMAP-L138 provides an overview of the OMAP-L138 EVM Kkits and boards.
EVM Overview - OMAP-L137 provides an overview of the OMAP-L137 EVM Kkits and boards.

Hardware setup

For information on setting up the OMAP-L138 EVM hardware, please follow the steps in the ZOOM OMAP-L138
eXperimenter Kit QuickStart Guide, which is available for downloading at http://support.logicpd.com/downloads/
1213/.

Spectrum Digital, Inc has a Technical Reference Guide 2] for OMAP-L137 EVM.

Booting the EVM out of the box
This section describes how to boot the EVM board when you first set it up.

¢ For OMAP-L138 (or DA850) details are provided here
e For OMAP-L137 (or DA830) details are provided here

Installing the SDK software
OMAP-L138 DEVELOPERS - See attention note at the top of the page.

Installing the Software for OMAP-L1 covers how to install the SDK software and CodeSourcery Sourcery G++
tools for the OMAP-L1 processors.

As host platforms for the development software, you need both a Windows PC and a Linux machine to build and run

all of the components.

* The Windows machine is used to run CCStudio 3.3/CCStudio 4, which you will use if you want to build the User
Boot Loader (UBL) and Flash writers. CCStudio is also used to burn the boot images (UBL, U-Boot) into the
flash using the flash writers provided.

* The Linux host is used for the following:

* Recompiling U-Boot and the Linux kernel.
* Hosting the TFTP server required for downloading kernel and file system images from U-Boot using Ethernet.
* Hosting the NFS server to boot the EVM with NFS as root filesystem
* Running a serial console terminal application
The Installing the Software for OMAP-L137 page covers how to install the MontaVista tools, SDK software, and
Linux Support Pack for the OMAP-L137 processor.

http://processors.wiki.ti.com/index.php?title=Category:OMAPL1
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/dvsdk/DVSDK_4_00/latest/index_FDS.html
http://processors.wiki.ti.com/index.php?title=GSG:_EVM_Overview_-_OMAP-L138
http://processors.wiki.ti.com/index.php?title=EVM_Overview_-_OMAP-L137
http://support.logicpd.com/downloads/1213/.
http://support.logicpd.com/downloads/1213/.
http://support.spectrumdigital.com/boards/evmomapl137/revd/files/EVMOMAPL137_TechRef_RevD.pdf
http://processors.wiki.ti.com/index.php?title=GSG:_Booting_the_OMAP-L138_Out_of_the_Box
http://processors.wiki.ti.com/index.php?title=OMAP-L137_EVM_Hardware_Setup
http://processors.wiki.ti.com/index.php?title=GSG:_Installing_the_Software_for_OMAP-L1
http://processors.wiki.ti.com/index.php?title=Installing_the_Software_for_OMAP-L137

Getting Started Guide for OMAP-L1

68

Note: If you are migrating from the early adopter version of the SDK software you can check the differences in this

document.

Setting up target file system
OMAP-L138 DEVELOPERS - See attention note at the top of the page.

Setting up OMAP-L1 Target File System explains how to set up an NFS target file system for use on the
OMAP-L1 EVMs.

For information on setting up an NFS target file system for use on the OMAP-L137 EVM please see the Setting up
OMAP-L137 Target File System page.

For information on creating other types of target file systems such as SD/MMC and USB please see the Creating file

systems on removable media page.

Building software components

Building PSP components provides procedures for rebuilding the platform software components used on the

processors or to flash software on to the EVM.

Building the SDK
OMAP-L138 DEVELOPERS - See attention note at the top of the page.

Building the OMAP-L1 SDK provides information on building the SDK software for both OMAP-L137 and
OMAP-L138.

Note: In general, the instructions for building the SDK for OMAP-L138 are the same as for OMAP-L137. Follow

the steps on this page that are specific to your device.

The SDK software provided with this EVM contains examples for communicating between the ARM and DSP
processors as well as driver modules used in that communication. It also contains development packages, such as

Codec Engine, which allow for easy communication between the ARM and DSP.

Running PSP Components

Running PSP Components describes the steps to boot Linux and to how to re-flash UBL and U-boot images if

needed.

Additional procedures
OMAP-L138 DEVELOPERS - See attention note at the top of the page.

Linux Functional Test Bench introduces a set of tools used to verify the various driver features.

Loading Linux kernel modules describes the procedure to load kernel modules into a running kernel.

Message logging on UART in UBL describes the procedure to enable message logging in ARM UBL.

Modifying SPI Frequency in U-Boot describes how to modify the SPI frequency in U-Boot.

Restoring factory default U-Boot environment variables describes how to revert to factory default U-Boot
environment variables.

Using extended memory available on DA850/OMAP-L138/AM18x EVM describes how Linux can be configured
to utilize the additional RAM available on the EVM board when compared to the eXperimenter board.

Creating bootable SD card for DA850/OMAP-1.138/AM18x EVM describes the steps to write U-Boot to SD card
using uflash utility.

Creating custom boot images for OMAP-L138 describes how to create your own bootable images from scratch

http://processors.wiki.ti.com/index.php?title=Media:Primus_beta_ea2_compare.pdf
http://processors.wiki.ti.com/index.php?title=Media:Primus_beta_ea2_compare.pdf
http://processors.wiki.ti.com/index.php?title=GSG:_Setting_up_OMAP-L1_Target_File_System
http://processors.wiki.ti.com/index.php?title=Setting_up_OMAP-L137_Target_File_System
http://processors.wiki.ti.com/index.php?title=Setting_up_OMAP-L137_Target_File_System
http://processors.wiki.ti.com/index.php?title=Creating_filesystems_on_removable_media
http://processors.wiki.ti.com/index.php?title=Creating_filesystems_on_removable_media
http://processors.wiki.ti.com/index.php?title=Community_Linux_PSP_for_OMAP-L1%23Building_PSP_Components
http://processors.wiki.ti.com/index.php?title=Building_The_OMAP-L1_SDK
http://processors.wiki.ti.com/index.php?title=Community_Linux_PSP_for_OMAP-L1%23Running_PSP_Components
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Linux_Functional_Test_Bench
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Loading_Linux_Kernel_Modules
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Message_logging_on_UART_in_ARM_UBL
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Modifying_SPI_Frequency_in_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Restoring_factory_default_U-Boot_environment_variables
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Using_extended_memory_available_on_EVM_board
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Creating_bootable_SD_card_for_OMAP-L138_EVM_board
http://processors.wiki.ti.com/index.php?title=Boot_Images_for_OMAP-L138

Getting Started Guide for OMAP-L1

69

and flash them to run on the ARM or DSP.

For OMAP-L138 and DA850 SoCs, DSP wakeup in U-Boot explains how to prevent the DSP from being woken up
by U-Boot.

For DA850/OMAP-L138/AM18x EVMs, Restoring MAC address on SPI Flash explains the steps to Restore
MAC address on SPI flash.

For OMAP-L137 and DA830 SoCs, enabling Write-Back cache explains how to enable write-back cache support

in Linux kernel when using silicon revision 2.0 and higher.
The following pages provide additional procedures that apply to a variety of platforms, including the OMAP-L1:

¢ Setting up a TFTP Server explains how to set up a TFTP server.
e TeraTerm Scripts provides example TeraTerm scripts that can be used with your board.

Enabling UART1 on AMI18X/DA850/OMAP-L138 running Linux describes steps to enable and verify the
UART1/ttyS1 on AM18x/DA850/OAMP-L138 EVMs running linux.

Additional information

* Additional hardware information can be found at the Logic PD OMAPL138 webpage: http://www.logicpd.
com/products/development-kits/zoom-omap-1138-evm-development-kit

» References about some SDK components (Codec Engine, Framework Components): http://focus.ti.com/docs/
toolsw/folders/print/tmdmfp.html

* The standalone version of the PSP device drivers is located here: http://focus.ti.com/docs/toolsw/folders/
print/supportpkg.html

¢ Also, look around in this DaVinci wiki site for additional information

References

[1] http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/dvsdk/DVSDK_4_00/latest/index_FDS.html
[2] http://support.spectrumdigital.com/boards/evmomapl137/revd/tiless EVMOMAPL137_TechRef_RevD.pdf

http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23DSP_wakeup_in_U-Boot
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Restoring_MAC_address_on_SPI_Flash
http://processors.wiki.ti.com/index.php?title=GSG:_OMAP-L138_DVEVM_Additional_Procedures%23Enabling_Write-Back_Cache_on_DA830.2FOMAP-L137
http://processors.wiki.ti.com/index.php?title=Setting_Up_a_TFTP_Server
http://processors.wiki.ti.com/index.php?title=Teraterm_Scripts
http://processors.wiki.ti.com/index.php?title=Enabling_UART1_on_AM18X/DA850/OMAP-L138_running_Linux
http://www.logicpd.com/products/development-kits/zoom-omap-l138-evm-development-kit
http://www.logicpd.com/products/development-kits/zoom-omap-l138-evm-development-kit
http://focus.ti.com/docs/toolsw/folders/print/tmdmfp.html
http://focus.ti.com/docs/toolsw/folders/print/tmdmfp.html
http://focus.ti.com/docs/toolsw/folders/print/supportpkg.html
http://focus.ti.com/docs/toolsw/folders/print/supportpkg.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/dvsdk/DVSDK_4_00/latest/index_FDS.html
http://support.spectrumdigital.com/boards/evmomapl137/revd/files/EVMOMAPL137_TechRef_RevD.pdf

Writing V4L2 Media Controller Applications on Dm36x Video Capture

70

Writing V4L.2 Media Controller Applications on
Dm36x Video Capture

Writing Media Controller Applications for Video Capture on
DM36X

Media Controller Basics

Media Controller is a framework for developing V4L2 based drivers which, compared the earlier implementation of
plain V4L2 has a broader view device architecture. While the plain v4L2 had a view of the device as a plain DMA
based image drabber which connects the input data to the host memory, the Media Controller takes into
consideration the fact that a typical video device might consist of multiple sub-devices in form of either sensors,
video decoders, video encoders working in tandem, and also the fact that image grabbing and display is not a simple
DMA but might consist of smaller sub-blocks which might do some processing like resizing, format conversion etc.
The document below explains these changes in design philosophy and elaborates on the nuts and bolts that make the
media Controller as it is today. It also dwells upon the DM365 specifics implementation details for the VPFE capture

driver.

Media Device

A Media device is the umbrella device under which multiple sub-entities called Media entities can be accessed,
modified and worked upon. The Media Device is exposed to the user in form of a device file, which can be opened
to enumerate, set and get the parameters of each of the media entities. For example, in DM365 implementation the
entire VPFE capture device with its IPIPE, IPIPEIF, CCDC etc is exposed as a Media Device - /dev/media0. If there

were a display driver, it would be exposed as a Media device too.

Media Entity

A Media entity is a sub-block of a a particular media device which usually does a particular function, can be though
about as an connect-able but self-contained block which might have a register set f its own for setting the parameters
and can be programed in an independent way. This could be a sub-IP, or a helping device on the same board which
offloads a particular function like RAW Capture, YUV Capture, filter etc. On DM365 all the sensors, Video
Decoders are media entities and the core itself has been modeled with CCDC, Previewer, Resizer, H3A, AEW as
entities. These could be enumerated in the standard V4L2 way using the Media device as the enumerating device.
Each of these entities has one or more input and output pads, and is connect-able to another entity through a 'link’,

between the pads.

Sub-devices

Conceptually similar to a media Entity, a subdevice is viewed as sub-block of a V4L2 Video device which is
independently configurable through its own set of file operations. The file operations are exposed through V4L2
-like IOCTLS particular to subdevs.Each sub-device is exposed to the user level through device files starting with
“subdev-*". User applications need to configure V4L2 related settings like format, crop,, size parameters through
these device handles for each of the sub-devices to make the work in tandem. Structurally, there is almost an

one-to-one correspondence between a Media Entity and a sub-device.

Writing V4L2 Media Controller Applications on Dm36x Video Capture

71

/ Subdev \ / Subdev \
\

=

entity 2 - 1

2NN =

pad \

Entit}' link

Pads

“Pads” are input and output connect-able points of a Media Entity. Depending on the number of connections the
entity can have the pads are pre-fixed in the driver. Typically, a device like a sensor or a video decoder would have
only an output pad since it only feeds video into the system, and a /dev/video pad would be modeled as an input pad
since it is the end of the stream. The other entities like Resizer, previewer would have typically an input and an

output pad and sometimes more depending on the capability.

Link
A link is a 'connection' between pads of different entities. These links can be set, get and enumerated through the

Media Device. The application, for proper working of a driver is responsible for setting up of the links properly so

that the driver understands the source and destination of the video data.

Entity Graph

An entity graph is the complete setup of different entities, pads, and the links. For proper working of the software, an
entity graph should be properly setup, and the driver, before it can start streaming will validate for the proper graph
and the appropriate settings on the sub-device to get to know the intent of the application. Choice of if the video

input is RAW BAYER or YUV video is determined by the appropriate setup of the entity graph.
The DM365 supports the following fixed entity and pad configuration.

http://processors.wiki.ti.com/index.php?title=File:Subdev.png

Writing V4L2 Media Controller Applications on Dm36x Video Capture

72

TVP7002

cCDC § VIDEO-0

%

PREVIEWE TN AEW J
MT9P031 § L

RESIZER § AF]
[TVP5147 &

Sink Pad

B Source pad

VIDEO-0] Entity

Modes of Operation

Continuous Mode Operation

Continuous Mode refers to the configuration where the input data stream is regulated by the standard capture format
like NTSC/720p etc and where the data is input from an external source t be stored int DDR. Here the input data is
“streamed” to the DDR and thereby the exchange of buffers between drivers and applications happen on a continuous
basis regulated by the interrupts generated at every field or frame. So, the sink is invariably a video node whereas the
source is an external sensor or decoder or an inbuilt ADC. The streaming mode supported here is the standard V4L2

mode of streaming.

PREVIE
[TVP7002]——:—:U[CCDC WER RESIZER

"B
: i i
[MT9P031]- e T e .. VIDEO-0
: o
: i
[TVPSM?]- 3 = AEW
:-----' A

i

—s active

» =p |Nactive

http://processors.wiki.ti.com/index.php?title=File:Entities.png
http://processors.wiki.ti.com/index.php?title=File:Continuous.png

Writing V4L2 Media Controller Applications on Dm36x Video Capture

73

Single Shot Mode Operation

» o«

As opposed to “continuous mode”,

single-shot mode” is referred to setup where the data input is from DDR as

opposed to an external source, and the output is DDR again. So here both the source and sinks are video nodes. To

facilitate this kind of interface, the input DDR source is mapped to a separate Video device, which is only used in

case of single shot modes. Here the input video node supports a source media device pad, and the output video node

supports a sink media device pad.

The driver here supports buffer exchanges on input and output using the standard V4L2 calls, with an exception that

the present driver supports a single buffer at a time. In DM365, the list of Single shot drivers is as follows:

¢ Resizer
e Previewer

* Previewer + Resizer configuration

VIDEO-0 %

pr—

VIDEO-1]

A\

PREVIEWER

Source pad

Sink Pad

1

VIDEO-0] Entity

'

Steps for writing a Media Controller application

Initial set of pre-defined strings and PAD identification numbers for each entity.

/* Media entity names */

#define E_VIDEO_CCDC_OUT_NAME

#define E_VIDEO_PRV_OUT_NAME
#define E_VIDEO_PRV_IN_NAME
#define E_VIDEO_RSZ_OUT_NAME
#define E_VIDEO_RSZ_IN_NAME
fdefine E_TVP514X_NAME
#define E_TVP7002_NAME
fdefine E_MT9P031_NAME
#define E_CCDC_NAME

#define E_PRV_NAME

#define E_RSZ_NAME

#define E_AEW_NAME

#define E_AF_ NAME

"DAVINCI VIDEO CCDC output"
"DAVINCI VIDEO PRV output"
"DAVINCI VIDEO PRV input"
"DAVINCI VIDEO RSZ output"
"DAVINCI VIDEO RSZ input"
"tvp51l4x"
"tvp7002"
"mt9p031"
"DAVINCI CcCDC"

"DAVINCI PREVIEWER"

"DAVINCI RESIZER"

"DAVINCI AEW"

"DAVINCI AFR"

http://processors.wiki.ti.com/index.php?title=File:Singleshot.png

Writing V4L2 Media Controller Applications on Dm36x Video Capture

/* pad id's as enumerated by media device*/

#define P_RSZ_SINK 0 /* sink pad of rsz */

#define P_RSZ_SOURCE 1 /* source pad of rsz */

#define P_PRV_SINK 0

#define P_PRV_SOURCE 1

#define P_RSZ_VID_OUT 0 /* only one pad for video node */
#define P_RSZ VID_ IN 0 /* only one pad for video node */
#define P_PRV_VID_IN 0

#define P_PRV_VID_OUT 0

#define P_TVP514X 0 /* only one pad for decoder */

#define P_TVP7002 0 /* only one pad for decoder */

#define P_MT9P031 0 /* only one pad for sensor */

#define P_CCDC_SINK 0 /* sink pad of ccdc */

#define P_CCDC_SOURCE 1 /* source pad which connects video node */
#define P_VIDEO 0 /* only one input pad for video node */
#define P_AEW 0

#define P_AF 0

Open the Media Device

/* 3.open media device */
media_fd = open("/dev/medialO", O_RDWR) ;
if (media_fd < 0) {
printf ("%$s: Can't open media device %s\n", __ func__,
"/dev/medialO") ;

goto cleanup;

Enumerate media-entities. Here it is a good idea to store the indices of the entities so they can be addressed using

index next time.

/* 4.enumerate media-entities */

printf ("4.enumerating media entities\n");

index = 0;

do {
memset (&entity[index], 0, sizeof (entity));
entity[index].id = index | MEDIA_ENT_ID_FLAG_NEXT;

ret = ioctl (media_fd, MEDIA_TIOC_ENUM_ENTITIES,
&entity[index]) ;
if (ret < 0) {

if (errno == EINVAL)
break;
}else {
if (!strcmp(entity[index] .name,
E_VIDEO_CCDC_OUT_NAME)) {
E_VIDEO = entity[index].id;

}
else if (!strcmp(entity[index].name, E_MTO9P031_NAME))

Writing V4L2 Media Controller Applications on Dm36x Video Capture

E_MTO9P031 = entityl[index].id;
}
else if (!strcmp(entity[index].name, E_CCDC_NAME)) {

E_CCDC = entity[index].id;
}
printf (" [%$x]:%s\n", entity[index].id,
entity[index] .name) ;
}
index++;
}while (ret == 0);
entities_count = index;

printf ("total number of entities: %$x\n", entities_count);

Enumerate all the links and pads. This is just as an information.This step is optional.

/* 5.enumerate links for each entity */

printf ("5.enumerating links/pads for entities\n");

links.pads = malloc (sizeof(struct media_pad_desc) *
entity[index] .pads);
links.links = malloc(sizeof (struct media_link_desc) *

entity[index].links);

for (index = 0; index < entities_count; index++) {

links.entity = entity[index].id;

ret = ioctl (media_fd, MEDIA_IOC_ENUM_LINKS, &links);
if (ret < 0) {
if (errno == EINVAL)
break;
}else(
/* display pads info first */
if (entity[index] .pads)
printf ("pads for entity %x=",
entity[index].id);

for(i = 0;i< entity[index] .pads; i++)
{
printf (" (%x, %s) ",

links.pads->index, (links.pads->flags &
MEDIA_PAD_FL_INPUT) ?"INPUT":"OUTPUT") ;
links.pads++;

printf ("\n");

Writing V4L2 Media Controller Applications on Dm36x Video Capture

/* display links now */

for(i = 0;i< entity[index].links; i++)
{
printf (" [%x:%$x]—————————————— >[%$x:%x]",links.links->source.entity,

links.links—->source.index,links.links->sink.entity, links.links->sink.index) ;
if(links.links->flags &
MEDIA_LNK_FI_ENABLED)
printf ("\tACTIVE\n") ;
else
printf ("\tINACTIVE \n");

links.links++;

printf ("\n") ;

Enable the appropriate links. It is about connecting the pads in such a way that fulfills the application's need for
Video Capture. If RAW capture is needed, MT9P031 can be linked, If processed YUV is needed, TVP514x link is
enabled. Here we are assuming RAW BAYER and hence MT9P031.

/* 6. enable 'mt9p031-->ccdc' link */
printf ("6. ENABLEing link [tvp7002]-——-——-———- >[ccde]\n");

memset (&1link, 0, sizeof(link));

link.flags |= MEDIA_LNK_FI_ENABLED;
link.source.entity = E_MT9P031;
link.source.index = P_MT9P031;
link.source.flags = MEDIA PAD_FIL_OUTPUT;

link.sink.entity = E_CCDC;
link.sink.index = P_CCDC_SINK;
link.sink.flags = MEDIA_PAD_FI_INPUT;

ret = ioctl (media_fd, MEDIA_IOC_SETUP_LINK, &link);

if (ret) {
printf ("failed to enable link between tvp7002 and ccdc\n");
goto cleanup;

} else
printf (" [tvp7002] —————————— >[ccdc] \tENABLED\n") ;

/* 7. enable 'ccdc->memory' link */
printf ("7. ENABLEing link [ccdc]-——————————- >[video_node]l\n");

memset (&1link, 0, sizeof(link));

Writing V4L2 Media Controller Applications on Dm36x Video Capture

link.flags |= MEDIA_LNK_FI_ENABLED;
link.source.entity = E_CCDC;
link.source.index = P_CCDC_SOURCE;
link.source.flags = MEDIA PAD_FIL_OUTPUT;

link.sink.entity = E_VIDEO;
link.sink.index = P_VIDEO;
link.sink.flags = MEDIA_PAD_FI_INPUT;

ret = ioctl (media_fd, MEDIA_IOC_SETUP_LINK, &link);
if (ret) {
printf ("failed to enable link between ccdc and video
node\n") ;
goto cleanup;
} else

printiE (¥ [eeele] =========== >[video_node]\t ENABLED\n");

printf("**\n"),-

Now that all the links are set properly, It is time to open the capture device.

/* 14 .open capture device */
if ((capt_fd = open("/dev/videoO", O_RDWR | O_NONBLOCK, 0)) <=
-1) {
printf ("failed to open %$s \n", "/dev/videoO");

goto cleanup;

Enumerate the inputs. For camera,

/* 15.enumerate inputs supported by capture*/
printf ("15.enumerating INPUTS\n") ;
bzero (&input, sizeof (struct v412_input));
input.type = V4L2_INPUT_TYPE_CAMERA;
input.index = 0;
index = 0;

while (1) {

ret = ioctl (capt_fd, VIDIOC_ENUMINPUT, &input);

if (ret !'= 0)
break;
printf (" [%$x].%s\n", index, input.name);

bzero (&input, sizeof (struct v412_input));
index++;

input.index = index;

Set Camera as the input.

Writing V4L2 Media Controller Applications on Dm36x Video Capture

/* 16.setting CAMERA as input */

printf ("16. setting CAMERA as input. . .\n");

bzero (&input, sizeof (struct v412_input));

input.type = V4L2_INPUT_TYPE_CAMERA;

input.index = 0;

if (-1 == ioctl (capt_fd, VIDIOC_S_INPUT, &input.index)) {
printf ("failed to set CAMERA with capture device\n");
goto cleanup;

} else

printf ("successfully set CAMERA input\n");

Set the FORMAT on the output PAD of MT9P031. Here we are opening the appropriate sub-device node to do this.
In this example, we know the sub-device number. However, it might not be known always.

/* 8. set format on pad of mt9p031 */
mt9p_fd = open("/dev/v4l-subdev0", O_RDWR) ;
if(mt9p_fd == -1) {
printf ("failed to open %$s\n", "/dev/v4l-subdev0O");

goto cleanup;

printf ("8. setting format on pad of mt9p031 entity. . .\n");

memset (&fmt, 0, sizeof (fmt));

fmt .pad = P_MT9P031;

fmt .which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt.format.code = CODE;
fmt.format.width = width;
fmt.format.height = height;
fmt.format.field = V4L2_FIELD_NONE;

ret = ioctl (mt9p_fd, VIDIOC_SUBDEV_S_FMT, &fmt);
if (ret) {
printf ("failed to set format on pad %$x\n", fmt.pad);

goto cleanup;

else

printf ("successfully format is set on pad %x\n", fmt.pad);

Similarly, set the format on the sink-pad of CCDC (Sink : input , Source : output) for a given entity.

/* 9. set format on sink-pad of ccdc */

ccde_fd = open("/dev/v4l-subdevl", O_RDWR) ;

if (ccde_fd == -1) {
printf ("failed to open %s\n", "/dev/v4l-subdev2");
goto cleanup;

}

/* set format on sink pad of ccdc */

printf ("12. setting format on sink-pad of ccdc entity. . .\n");

Writing V4L2 Media Controller Applications on Dm36x Video Capture

79

memset (&fmt, 0, sizeof (fmt));

fmt.pad = P_CCDC_SINK;

fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt.format.code = CODE;
fmt.format.width = width;
fmt.format.height = height;
fmt.format.field = V4L2_FIELD_NONE;

ret = ioctl (ccdc_£fd, VIDIOC_SUBDEV_S_FMT, &fmt);
if (ret) {
printf ("failed to set format on pad %x\n", fmt.pad);

goto cleanup;

else

printf ("successfully format is set on pad %x\n", fmt.pad);

Now, set the format on the Source pad of CCDC which is connected to Video node.

/* 13. set format on source-pad of ccdc */
printf ("13. setting format on OF-pad of ccdc entity. . . \n");

memset (&fmt, 0, sizeof (fmt));

fmt .pad = P_CCDC_SOURCE;

fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt.format.code = CODE;

fmt.format.width = width;

fmt.format.height = height;

fmt.format.colorspace = V4L2_COLORSPACE_SMPTE170M;
fmt.format.field = V4L2_FIELD_NONE;

ret = ioctl (ccdc_fd, VIDIOC_SUBDEV_S_FMT, &fmt);
if (ret) {
printf ("failed to set format on pad %$x\n", fmt.pad);

goto cleanup;

else

printf ("successfully format is set on pad %x\n", fmt.pad);

Setup the CCDC for proper configuration which might include a host of internal parameters. This is done through a

private sub-device IOCTL for CCDC - VPFE_CMD_S_CCDC_RAW_PARAMS

/* 10. get ccdc raw params from ccdc*/

printf ("10. getting RAW params from ccdc\n");

bzero (&raw_params, sizeof (raw_params)) ;

if (-1 == ioctl(ccdc_£fd, VPFE_CMD_G_CCDC_RAW_PARAMS,

&raw_params)) {

Writing V4L2 Media Controller Applications on Dm36x Video Capture

80

printf ("failed to get raw params, %p", &raw_params);
goto cleanup;
}
/* 11. set raw params in ccdc */
printf ("11. setting raw params in ccdc\n");
raw_params.compress.alg = CCDC_NO_COMPRESSION;
raw_params.gain_offset.gain.r_ye = r;
raw_params.gain_offset.gain.gr_cy = gr;

raw_params
raw_params
raw_params
raw_params
raw_params

raw_params

.gain_offset

.gain_offset
.gain_offset
.gain_offset

.gain_offset

.gain.gb_g = gb;

.gain_offset.

gain.b_mg = b;

.gain_sdram_en = 1;
.gain_ipipe_en = 1;
.offset = 0;

.0offset_sdram_en =

/* To test linearization, set this to 1, and update the
* linearization table with correct data
*/
if (linearization_en) {
raw_params.linearize.en = 1;
raw_params.linearize.corr_shft = CCDC_1BIT_SHIFT;
07

raw_params.linearize.scale_fact.decimal = 10;

raw_params.linearize.scale_fact.integer

for (i = 0; i < CCDC_LINEAR_TAB_SIZE; i++)
raw_params.linearize.table[i] = i;
} else {

raw_params.linearize.en = 0;

/* csc */
if (csc_en) {
raw_params.df_csc.df_or_csc = 0;
raw_params.df_csc.csc.en = 1;
/* I am hardcoding this here. But this should
* really match with that of the capture standard

=4
raw_params.df_csc.start_pix = 1;
raw_params.df_csc.num_pixels = 720;
raw_params.df_csc.start_line = 1;
raw_params.df_csc.num_lines = 480;

/* These are unit test values. For real case, use
* correct values in this table

%/

raw_params.df_csc.csc.coeff[0] = csc_coef_val;

raw_params.df_csc.csc.coeff[1l].decimal = 1;

Writing V4L2 Media Controller Applications on Dm36x Video Capture

raw_params.df_csc.csc.coeff[2].decimal = 2;
raw_params.df_csc.csc.coeff[3].decimal = 3;
raw_params.df_csc.csc.coeff[4].decimal = 4;
raw_params.df_csc.csc.coeff[5].decimal = 5;
raw_params.df_csc.csc.coeff[6].decimal = 6;
raw_params.df_csc.csc.coeff[7].decimal = 7;
raw_params.df_csc.csc.coeff[8].decimal = 8;
raw_params.df_csc.csc.coeff[9].decimal = 9;
raw_params.df_csc.csc.coeff[10].decimal = 10;
raw_params.df_csc.csc.coeff[ll].decimal = 11;
raw_params.df_csc.csc.coeff[12].decimal = 12;
raw_params.df_csc.csc.coeff[13].decimal = 13;
raw_params.df_csc.csc.coeff[14].decimal = 14;
raw_params.df_csc.csc.coeff[15].decimal = 15;
} else {
raw_params.df_csc.df_or_csc = 0;
raw_params.df_csc.csc.en = 0;

/* vertical line defect correction */

if (vldfc_en) {
raw_params.dfc.en = 1;
// correction method
raw_params.dfc.corr_mode = CCDC_VDFC_HORZ_INTERPOL_IF_SAT;
// not pixels upper than the defect corrected
raw_params.dfc.corr_whole_line = 1;

raw_params.dfc.def_level shift = CCDC_VDFC_SHIFT_2;

raw_params.dfc.def_sat_level = 20;
raw_params.dfc.num_vdefects = 7;
for (i = 0; i < raw_params.dfc.num_vdefects; i++) {
raw_params.dfc.table[i] .pos_vert = 1i;
raw_params.dfc.table[i] .pos_horz = i + 1;
raw_params.dfc.table[i].level_at_pos = i + 5;
raw_params.dfc.table[i].level_up_pixels = i1 + 6;
raw_params.dfc.table[i] .level low_pixels = 1 + 7;
}
printf ("DFC enabled\n");
} else {
raw_params.dfc.en = 0;
}
if (en_culling) {
printf ("Culling enabled\n");
raw_params.culling.hcpat_odd = Oxaa;
raw_params.culling.hcpat_even = 0xaa;

Writing V4L2 Media Controller Applications on Dm36x Video Capture

raw_params.culling.vcpat = 0x55;
raw_params.culling.en_lpf = 1;

} else {
raw_params.culling.hcpat_odd = OxFF;
raw_params.culling.hcpat_even = 0xFF;
raw_params.culling.vcpat = 0OxFF;

raw_params.col_pat_field0.olop = CCDC_GREEN_BLUE;
raw_params.col_pat_fieldO.olep = CCDC_BLUE;
raw_params.col_pat_field0.elop = CCDC_RED;
raw_params.col_pat_fieldO.elep = CCDC_GREEN_RED;
raw_params.col_pat_fieldl.olop = CCDC_GREEN_BLUE;
raw_params.col_pat_fieldl.olep = CCDC_BLUE;
raw_params.col_pat_fieldl.elop = CCDC_RED;
raw_params.col_pat_fieldl.elep = CCDC_GREEN_RED;
raw_params.data_size = CCDC_12_BITS;
raw_params.data_shift = CCDC_NO_SHIFT;

if (-1 == ioctl (ccdc_fd, VPFE_CMD_S_CCDC_RAW_PARAMS,
&raw_params)) {
printf ("failed to set raw params, %p", &raw_params);
return -1;
} else

printf ("successfully set raw params in ccdc\n");

Set the format on the Video node for capture. This format is used to store into the DDR.

/* 17.setting format */

printf ("17. setting format V4L2_PIX_FMT_SBGGR16\n") ;
CLEAR (v412_fmt) ;

v4l2_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
v41l2_fmt.fmt.pix.width = width;
v4l2_fmt.fmt.pix.height = height;
v4l2_fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_SBGGR16;
v4l2_fmt.fmt.pix.field = V4L2_FIELD_NONE;

if (-1 == ioctl (capt_fd, VIDIOC_S_FMT, &v4l2_ fmt)) {
printf ("failed to set format on captute device \n");
goto cleanup;

} else

printf ("successfully set the format\n");

/* 15.call G_FMT for knowing picth */
if (-1 == ioctl (capt_fd, VIDIOC_G_FMT, &v4l2_fmt)) {
printf ("failed to get format from captute device \n");

goto cleanup;

Writing V4L2 Media Controller Applications on Dm36x Video Capture

83

} else {
printf ("capture_pitch: %x\n",
v4dl2_fmt.fmt.pix.bytesperline);
capture_pitch = v412_fmt.fmt.pix.bytesperline;

Request for buffers. This is the standard V4L2 procedure of doing REQ_BUFS

/* 18.make sure 3 buffers are supported for streaming */
printf ("18. Requesting for 3 buffers\n");

CLEAR (req) ;

reqg.count = 3;

req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

reqg.memory = V4L2_MEMORY_USERPTR;

if (-1 == ioctl (capt_fd, VIDIOC_REQBUFS, &req)) {
printf ("call to VIDIOC_REQBUFS failed\n");

goto cleanup;

if (reg.count != 3) {
printf ("3 buffers not supported by capture device");
goto cleanup;

} else

printf ("3 buffers are supported for streaming\n");

Initial set of pre-queing of buffers so that as soon as we start on streaming we can do the DQ-Q cycle. A minimum of
3 buffers are needed for minimum effective running of V4L2 capture. One buffer remains with the driver for current
capture, one can be held with application and the other in a queued state so that a buffer is ready for next frame
capture. This has do do with the sync nature of the hardware operation where the registers are shadowed and take
effect at every VSYNC.

/* 19.queue the buffers */

printf ("19. queing buffers\n");

for (1 = 0; 1 < 3; i++) {
struct v41l2_buffer buf;
CLEAR (buf) ;
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.index = 1i;
buf.length = buf_size;

buf.m.userptr = (unsigned long)capture_buffers[i].user_addr;
if (-1 == ioctl (capt_fd, VIDIOC_QBUF, &buf)) {

printf ("call to VIDIOC_QBRUF failed\n");

goto cleanup;

Start Streaming!!

Writing V4L2 Media Controller Applications on Dm36x Video Capture

84

/* 20.start streaming */

CLEAR (type) ;

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (capt_fd, VIDIOC_STREAMON, &type)) {
printf ("failed to start streaming on capture device");
goto cleanup;

} else

printf ("streaming started successfully\n");

The DQ-Q cycle.

while (frame_count != 5) {

CLEAR (cap_buf) ;

cap_buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
cap_buf.memory = V4L2_MEMORY_USERPTR;
try_again:
ret = ioctl (capt_fd, VIDIOC_DQRUF, &cap_buf);
if (ret < 0) {
if (errno == EAGAIN) {
goto try_again;
}
printf ("failed to DQ buffer from capture device\n");

goto cleanup;

temp = cap_buf.m.userptr;

source = (char *)temp;

/* copy frame to a file */
for (i=0 ; i < height; i++) {
fwrite (source, 1 , width*2, file);

source += capture_pitch;

/* Q the buffer for capture, again */
ret = ioctl (capt_fd, VIDIOC_QRUF, &cap_buf);
if (ret < 0) {
printf ("failed to Q buffer onto capture device\n");

goto cleanup;

frame_count++;

Once done, make sure to do Stream-off to indicate the stop for the capture.

Writing V4L2 Media Controller Applications on Dm36x Video Capture

/* 21. do stream off */

CLEAR (type) ;

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (capt_fd, VIDIOC_STREAMOFF, &type)) {
printf ("failed to stop streaming on capture device");
goto cleanup;

} else

printf ("streaming stopped successfully\n");

Start with relinquishing the linkages so a new/different set of linkages can be established for the next application.

cleanup:
/* 24. de—enable all the links which are active right now */

for (index = 0; index < entities_count; index++) {

links.entity = entity[index].id;

links.pads = malloc(sizeof(struct media_pad_desc) *
entity[index] .pads);
links.links = malloc(sizeof (struct media_link_desc) *

entity[index].links);

ret = ioctl (media_fd, MEDIA_TIOC_ENUM_LINKS, &links);
if (ret < 0) {

if (errno == EINVAL)
break;
telse(
for(i = 0;i< entity[index].links; i++)

if(links.links->flags &
MEDIA_LNK_FIL_ENABLED) {
/* de-enable the link */
memset (&1link, O,

sizeof (1link));

link.flags |=
~MEDIA_TLNK_FL_ENABLED;
link.source.entity =

links.links—->source.entity;

link.source.index
links.links—>source.index;

link.source.flags =
MEDIA_ PAD_FIL_OUTPUT;

link.sink.entity =
links.links->sink.entity;

link.sink.index =

Writing V4L2 Media Controller Applications on Dm36x Video Capture

links.links—>sink.index;
link.sink.flags =
MEDIA_PAD_FI_INPUT;

ret = ioctl (media_fd,
MEDIA_TIOC_SETUP_LINK, &link);
if (ret) {
printf ("failed to de-enable
link \n");

links.links++;

Close the file Descriptors

/* 25.close all the file descriptors */
printf ("closing all the file descriptors. . .\n");
if (capt_£fd) {

close (capt_£fd) ;

printf ("closed capture device\n");
}
if (ccdc_£fd) {

close (ccdc_£d) ;

printf ("closed ccdc sub-device\n");
}
if (mt9p_£fd) {

close (mt9p_£fd) ;

printf ("closed mt9p031 sub-device\n");
}
if (media_fd) {

close (media_fd);

printf ("closed media device\n");
}
if (file) {

fclose (file) ;

printf ("closed the file \n");
}

return ret;

Article Sources and Contributors

87

Article Sources and Contributors

Community Linux PSP for DaVinci devices Source: http://processors.wiki.ti.com/index.php?oldid=56898 Contributors: Manjunathhadli, Sudhakar.raj

GSG: Booting the OMAP-L138/AM18x Out of the Box Source: http://processors.wiki.ti.com/index.php?oldid=36641 Contributors: Hezhengting, ManishKhare, Mariana, SekharNori,
Sudhakar.raj, Xyvonned

Booting DM36x Out of the Box Source: http://processors.wiki.ti.com/index.php?0ldid=56457 Contributors: Sudhakar.raj

GSG: DA8x/OMAP-L1/AMI1x DVEVM Additional Procedures Source: http://processors.wiki.ti.com/index.php?oldid=56628 Contributors: Akshay.s, Binary0101, D-allred, Dswag89, Jeff
Cobb, Mariana, SekharNori, Sudhakar.raj, Sugumar, Xyvonned

OMAP-L1 Linux Drivers Usage Source: http://processors.wiki.ti.com/index.php?0ldid=56416 Contributors: Chaithrika, ChristinaLam, Hezhengting, SekharNori, Sudhakar.raj, Sugumar

UG: DaVinci PSP Installation on DM36x EVM Source: http://processors.wiki.ti.com/index.php?oldid=56467 Contributors: Alexander.stohr, Israel DaVinci, Leon Luo, Nsnehaprabha,
Sandeeppaulraj, Stsongas, Sudhakar.raj

GSG: Building Software Components for OMAP-L1/AMIx Source: http://processors.wiki.ti.com/index.php?oldid=56545 Contributors: A0272049, Akshay.s, Alexander.stohr, Arnier,
Chaithrika, ChrisRing, DanRinkes, Dswag89, FarMcKon, Loc, ManishKhare, Mariana, Prakash.pm, SekharNori, Sudhakar.raj, Sugumar, Swami, Xyvonned

Getting Started Guide for OMAP-L1 Source: http://processors.wiki.ti.com/index.php?oldid=55216 Contributors: Arnier, BrianBarrera, Dfriedland, FrankW, Jeff Cobb, ManishKhare,
Mariana, Prakash.pm, SekharNori, Stsongas, Sudhakar.raj, Xyvonned

Writing V4L2 Media Controller Applications on Dm36x Video Capture Source: http://processors.wiki.ti.com/index.php?oldid=56675 Contributors: Manjunathhadli

Image Sources, Licenses and Contributors

88

Image Sources, Licenses and Contributors

Image:TIBanner.png Source: http://processors.wiki.ti.com/index.php?title=File:TIBanner.png License: unknown Contributors: Nsnehaprabha
File:OMAP-L138_inifiles.zip Source: http://processors.wiki.ti.com/index.php?title=File:OMAP-L138_inifiles.zip License: unknown Contributors: D-allred
Image:NandAis.jpg Source: http://processors.wiki.ti.com/index.php?title=File:NandAis.jpg License: unknown Contributors: Sudhakar.raj

Image:SpiAis.jpg Source: http://processors.wiki.ti.com/index.php?title=File:SpiAis.jpg License: unknown Contributors: Sudhakar.raj

Image:NorAis.jpg Source: http://processors.wiki.ti.com/index.php?title=File:NorAis.jpg License: unknown Contributors: Sudhakar.raj
Image:NandAisOMAPL137.png Source: http://processors.wiki.ti.com/index.php?title=File:NandAisOMAPL137.png License: unknown Contributors: Sudhakar.raj
Image:SpiAisOMAPL137.png Source: http://processors.wiki.ti.com/index.php?title=File:SpiAisOMAPL137.png License: unknown Contributors: Sudhakar.raj
File:Subdev.png Source: http://processors.wiki.ti.com/index.php?title=File:Subdev.png License: unknown Contributors: Manjunathhadli

File:Entities.png Source: http://processors.wiki.ti.com/index.php?title=File:Entities.png License: unknown Contributors: Manjunathhadli

File:Continuous.png Source: http://processors.wiki.ti.com/index.php?title=File:Continuous.png License: unknown Contributors: Manjunathhadli

File:Singleshot.png Source: http://processors.wiki.ti.com/index.php?title=File:Singleshot.png License: unknown Contributors: Manjunathhadli

License

89

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE
A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

License
1. Definitions

1. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or
phonogram or performance and includes cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work
that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License.

2. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below,
which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with one or more other contributions, each constituting
separate and independent works in themselves, which together are 'mbled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined below) for the purposes of this License.

3. "Creative Commons Compatible License" means a license that is listed at http:// creativecommons. org/ compatiblelicenses that has been approved by Creative Commons as being essentially equivalent to this License,

including, at a minimum, because that license: (i) contains terms that have the same purpose, meaning and effect as the License Elements of this License; and, (ii) explicitly permits the relicensing of adaptations of works made

available under that license under this License or a Creative Commons jurisdiction license with the same License Elements as this License.

"Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership.

"License Elements" means the following high-level license attributes as selected by Licensor and indicated in the title of this License: Attribution, ShareAlike.

"Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.

"Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a

performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the

pmducer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

8. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression
including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-| mllled] work; a choreographic work or entertainment in dumb show; a
musical composition with or without words; a cinematographic work to which are works expressed by a process anal, to 1 a work of drawing, painting, architecture, sculpture, engraving or
lithography: a photographic work to which are works expre: by a process to pl hy: a work of applied art; an |lluslrauon map plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is prolecled as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work.

9. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise
rights under this License despite a previous violation.

10. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire or wireless means or public digital performances; to
make available to the public Works in such a way that members of the public may access these Works from a place and at a place individually chosen by them: to perform the Work to the public by any means or process and the
communication to the public of the performances of the Work, including by public digital performance: to broadcast and rebroadcast the Work by any means including signs, sounds or images.

11. "Reproduce” means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected
performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other

applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:

Nk

1. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections;

2. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original
‘Work. For example, a translation could be marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has been modified.";

3. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

4. to Distribute and Publicly Perform Adaptations.

5. For the avoidance of doubt:

1. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right
to collect such royalties for any exercise by You of the rights granted under this License;
2. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect
such royalties for any éxercise by You of the rights granted under this License; and,
3. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via
that society, from any exercise by You of the rights granted under this License.
The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and
formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions
The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

1. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or
Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that recipient under the terms of the License.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License.
This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(c), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable,
remove from the Adaptation any credit as required by Section 4(c), as requested.

2. You may Distribute or Publicly Perform an Adaptation only under the terms of? (i) this License; (ii) a later version of this License with the same License Elements as this License; (iii) a Creative Commons jurisdiction license
(either this or a later license version) that contains the same License Elements as this License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If you license the Adaptation under one of the
licenses mentioned in (iv), you must comply with the terms of that license. If you license the Adaptation under the terms of any of the licenses mentioned in (i), (ii) or (iii) (the "Applicable License"), you must comply with the
terms of the Applicable License generally and the following provisions: (I) You must include a copy of, or the URI for, the Applicable License with every copy of each Adaptation You Distribute or Publicly Perform; (II) You
may not offer or impose any terms on the Adaptation that restrict the terms of the Applicable License or the ability of the recipient of the Adaptation to exercise the rights granted to that recipient under the terms of the Applicable
License; (IIT) You must keep intact all notices that refer to the Applicable License and to the disclaimer of warranties with every copy of the Work as included in the Adaptation You Distribute or Publicly Perform; (IV) when
You Distribute or Publicly Perform the Adaptation, You may not impose any effective technological measures on the Adaptation that restrict the ability of a recipient of the Adaptation from You to exercise the rights granted to
that recipient under the terms of the Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a Collection, but this does not require the Collection apart from the Adaptation itself to be made subject to
the terms of the Applicable License.

3. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the
med|um or means You are uu]mng (i) the name of lhe Orlgmdl Aulhur (or pseudonym |f dpp]lCdble) if supplled and/or lf Lhe Ongmal Aulhot d"d/Ol Llcensor deslgndte dnother party or parties (e.g., a sponsor institute,

cxlunl reasonably pmcucablg the URL, if any, that LlCCl’l
Ssection 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Ad: ion (e.g., "French ion of the Work by Original Author," or "Screenplay based on original Work by Ongmal Author"). The
credit required by this Section 4(c) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of
the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the
Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.

4. Exccpl as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections,
You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in
which any exercise of the right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this
License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

1. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Adaptations or Collections from You under this License,
however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

2. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this Licen:
If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provlslon shall be reformed to the mi; extent necessary to make such provision valid and

No term or pmvlslon of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in wmmg and slgned by the party to be charged with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no und: with respect to the Work not specified here. Licensor shall not
be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual wri men agreement of the Licensor and You.

The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979),
the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the
license of any rights under applicable law.

bl

e

il

http://creativecommons.org/compatiblelicenses

	Community Linux PSP for DaVinci devices
	Document License
	PSP Overview
	Host platform Requirements
	Host Software Requirements

	Running PSP Components on OMAP-L138
	Using Linux Kernel Drivers

	Running PSP Components on DM36x
	Building PSP Components
	Additional topics

	GSG: Booting the OMAP-L138/AM18x Out of the Box
	Booting the EVM
	What's next?

	Booting DM36x Out of the Box
	GSG: DA8x/OMAP-L1/AM1x DVEVM Additional Procedures
	DA850/OMAP-L138/AM18xx
	Flashing images to SPI Flash
	Flashing images to NAND Flash
	Flashing images to NOR Flash

	DA830/OMAP-L137
	Flashing images to SPI Flash
	Flashing images to NAND Flash

	AM17xx
	Flashing images to SPI Flash
	Flashing images to NAND Flash

	OMAP-L138
	DA850/OMAP-L138/AM18xx
	Booting from SPI Flash
	Booting from NAND Flash
	Booting from NOR Flash

	DA830/OMAP-L137/AM17xx
	Booting from SPI Flash
	Booting from NAND Flash

	Building uflash
	Loading USB 2.0
	SPI flash
	NAND Flash
	NOR Flash

	OMAP-L1 Linux Drivers Usage
	Ethernet
	Audio
	Character LCD
	RTC
	McBSP
	Power Management
	CPUFreq
	CPUIdle
	Suspend-to-RAM

	Video Port Interface (VPIF)
	Touchscreen
	Timers

	UG: DaVinci PSP Installation on DM36x EVM
	Booting Linux Kernel from a SDRAM (via TFTP download to SDRAM)
	Booting Linux Kernel from NAND flash
	Setting up the target filesystem
	Booting with RAMDISK as a root filesystem
	Booting with NFS as a root filesystem

	Rebuilding the Linux kernel
	Preparing your Environment
	Basic Configuration of the Kernel
	Building uImage
	Building Modules
	Installing modules to Target File System

	Rebuilding U-Boot
	Building the User Boot Loader (UBL)
	Building the NAND Flash writer

	GSG: Building Software Components for OMAP-L1/AM1x
	Rebuilding the Linux kernel
	Preparing your Environment
	Basic Configuration of the Kernel
	Building uImage
	Building Modules
	Installing modules to Target File System

	Driver configuration in the Linux kernel
	USB 2.0
	USB 1.1
	Audio
	Graphical LCD
	Character LCD
	NAND
	NOR
	SPI
	MMC/SD
	RTC
	SATA
	McBSP
	Power Management
	CPUFreq
	CPUIdle
	Suspend-to-RAM

	Ethernet
	Using the RMII PHY on OMAP-L138 (or DA850, AM18xx) UI card

	VPIF
	Touchscreen
	TSC2004
	TPS65070

	Rebuilding U-Boot
	Rebuilding the ARM Side User Boot Loader
	For OMAP-L138 (or DA850, AM18xx)
	Generating ARM AIS File For OMAP-L138 (or DA850, AM18xx)

	For OMAP-L137 (or DA830, AM17xx)
	Generating ARM AIS File For AM17xx

	Rebuilding DSP Side User Boot Loader
	Rebuilding the SPI Flash writer
	Rebuilding the NAND Flash writer
	Rebuilding NOR Flash writer
	What's next?

	Getting Started Guide for OMAP-L1
	EVM overview
	Hardware setup
	Booting the EVM out of the box
	Installing the SDK software
	Setting up target file system
	Building software components
	Building the SDK
	Running PSP Components
	Additional procedures
	Additional information

	Writing V4L2 Media Controller Applications on Dm36x Video Capture
	Media Controller Basics
	Media Device
	Media Entity
	Sub-devices
	Pads
	Link
	Entity Graph

	Modes of Operation
	Continuous Mode Operation
	Single Shot Mode Operation

	Steps for writing a Media Controller application

	License
	1. Definitions
	2. Fair Dealing Rights
	3. License Grant
	4. Restrictions
	5. Representations, Warranties and Disclaimer
	6. Limitation on Liability
	7. Termination
	8. Miscellaneous

