
Multicore Design Considerations

Multicore: The Forefront of Computing Technology

“We’re not going to have faster processors. Instead, making

software run faster in the future will mean using parallel

programming techniques. This will be a huge shift.”

-- Katherine Yelick, Lawrence Berkeley National Laboratory

from The Economist: Parallel Bars

• Multicore is a term associated with parallel processing, which refers to

the use of simultaneous processors to execute an application or

multiple computational threads.

• Parallel programming/processing can be implemented on TI’s

KeyStone multicore architecture.

Parallel Processing

• Parallel processing divides big applications into smaller

applications and distributes tasks across multiple cores.

• The goal is to speed up processing of a computationally-

intensive applications.

• Characteristics of computationally-intensive applications:

– Large amount of data to process

– Complex algorithms require many computations

• Goals of task partitioning

– Computational load balancing evenly divides effort among all

available cores

– Minimizes contention of system resources

• Memory (DDR, shared L2)

• Transport (Teranet, peripherals)

Parallel Processing: Use Cases

• Network gateway, speech/voice processing

• Typically hundreds or thousands of channels

• Each channel consumes about 30 MIPS

• Large, complex, floating point FFT (1M)

• Multiple-size, short FFTs

• Video processing

• Slice-based encoder

• Video transcoder (low quality)

• High-quality decoder

Parallel Processing: Use Cases

• Medical imaging

• Filtering > reconstruction > post filtering

• Edge detection

• LTE channel excluding turbo decoder/encoder

• Two cores uplink

• Two cores downlink

• LTE channel including turbo decoder

• Equal to the performance of 30 cores

• Each core works on a package of bits

• Scientific processing

• Large complex matrix manipulations

• Use Case: Oil exploration

Parallel Processing: Control Models

• Master Slave Model
– Multiple speech processing

– Variable-size, short FFT

– Video encoder slice processing

– VLFFT

• Data Flow Model
– High quality video encoder

– Video decoder

– Video transcoder

– LTE physical layer

Core 2Core 1Core 0

Master

SlaveSlaveSlave

Parallel Processing: Partitioning Considerations

• Function driven
– Large tasks are divided into function blocks

– Function blocks are assigned to each core

– The output of one core is the input of the next core

– Use cases: H.264 high quality encoding and decoding, LTE

• Data driven
– Large data sets are divided into smaller data sets

– All cores perform the same process on different blocks of data

– Use cases: image processing, multi-channel speech processing,
sliced-based encoder

Parallel Processing: System Recommendations

• Ability to perform many operations

– Fixed-point AND floating-point processing

– SIMD instruction, multicore architecture

• Ability to communicate with the external world

– Fast two-way peripherals that support high bit-rate traffic

– Fast response to external events

• Ability to address large external memory

– Fast and efficient save and retrieve methods

– Transparent resource sharing between cores

• Efficient communication between cores

– Synchronization

– Messaging

– Data sharing

Parallel Processing: Recommended Tools

• Easy-to-use IDE (Integrated Development Environment)

– Advanced debug features (system trace, CP tracer)

– Simultaneous, core-specific debug monitoring

• Real-time operating system (e.g., SYS/BIOS)

• Multicore software development kit

– Standard APIs simplifies programming

– Layered abstraction hides physical details from the application

• System optimized capabilities

– Full-featured compiler, optimizer, linker

– Third-party support

Example: High Def 1080i60 Video H264 Encoder

• A short introduction to video encoding

• Pixel format

• Macroblocks

• Performance numbers and limitations

• Motion estimation

• Encoding

• Entropy encoder

• Reconstruction

• Data in and out of the system

• DDR bandwidth

• Synchronization, data movement

• System architecture

Macroblock and Pixel Data

RGB and YUV

4:4:4 and 4:2:0 format

• Typically 8-bit values (10, 12, 14)

• Macroblock = 16x16 pixels

4:2:04:4:4

-- Pixel with only Y value

-- Pixel with only Cr and Cb values

-- Pixel with Y, Cr, and Cb values

macroblock

Video Encoder Flow (per Macroblock)

Coder Width Height Frames/Second MCycles/Second

D1(NTSC) 720 480 30 660

D1 (PAL) 720 576 25 660

720P30 1280 720 30 1850

1080i 1920 1080 (1088) 60 fields 3450

Module Percentage Approximate MIPS

(1080i)/Second

Number of Cores

Motion Estimation ~50% 1750 2

IP, MC, Transform,

Quantization

~12.5% 437.7 0.5

Entropy Encoder ~25% 875 1

IT, IQ and

Reconstruction

~12.5% 437.5 0.5

 Intra prediction

and Motion

Compensation

Integer transform

Quantization

Inverse

Quantization

Entropy

Encoder

(Cabac or

CAVLC)

Out

Inverse Integer

transform

And

reconstruction

De-blocking Filter

and re-

construction

Motion estimation

Video Coding Algorithm Limitations

• Motion estimation
– Depends on the reconstruction of previous (and future)

frames

– Shortcuts can be performed (e.g., first row of frame N
does not need last row of frame N-1).

• Intra-prediction
– Depends on the macroblock above and to the left

– Must be done consecutively or encoding efficiency is
lost (i.e., lower quality for the same number of bits)

• Entropy encoding (CABAC, CAVLC)
– Must be processed in the macroblock order

– Each frame is independent of other frames.

How Many Channels Can One C6678 Process?

• Looks like two channels;
Each one uses four cores.

– Two cores for motion estimation

– One core for entropy encoding

– One core for everything else

• What other resources are needed?

– Streaming data in and out of the system

– Store and load data to and from DDR

– Internal bus bandwidth

– DMA availability

– Synchronization between cores, especially if trying to
minimize delay

What are the System Input Requirements?

• Stream data in and out of the system:
– Raw data: 1920 * 1080 * 1.5 = 3,110,400 bytes per frame

= 24.883200 bits per frame (~25M bits per frame)

– At 30 frames per second, the input is 750 Mbps

– NOTE: The order of raw data for a frame is Y component first,

followed by U and V

• 750 Mbps input requires one of the following:
– One SRIO lane (5 Gbps raw, about 3.5 Gbps of payload),

– One PCIe lane (5 Gbps raw)

– NOTE: KeyStone devices provide four SRIO lanes and two PCIe

lanes

• Compressed data (e.g., 10 to 20 Mbps) can use
SGMII (10M/100M/1G) or SRIO or PCIe.

How Many Accesses to the DDR?

• For purposes of this example, only consider frame-size
accesses.

• All other accesses (ME vectors, parameters, compressed
data, etc.) are negligible.

• Requirements for processing a single frame:
– Retrieving data from peripheral to DDR - 25M bits = 3.125MB

– Motion estimation phase reads the current frame (only Y) and older
Y component of reconstruction frame(s).

• A good ME algorithm may read up to 6x older frame(s).

• 7 * 1920 * 1088 = ~ 15M Bytes

– Encoding phase reads the current frame and one old frame. The
total size is about 6.25 MB.

– Reconstruction phase reads one frame and writes one frame. So
the total bandwidth is 6.25 MB.

– Frame compression before or after the entropy encoder is
negligible.

– Total DDR access for a single frame is less than 32 MB.

How Does This Access Avoid Contention?

• Total DDR access for a single frame is less than 32
MB.

• The total DDR access for 30 frames per second (60 fields)
is less than 32 * 30 = 960 MBps.

• The DDR3 raw bandwidth is more than 10 GBps (1333

MHz clock and 64 bits). 10% utilization reduces contention

possibilities.

• DDR3 DMA uses TeraNet with clock/3 and 128 bits.

TeraNet bandwidth is 400 MHz * 16B = 6.4 GBps.

KeyStone SoC Architecture Resources

• 10 EDMA transfer controllers with 144 EDMA
channels and 1152 PaRAM (parameter blocks)
– The EDMA scheme must be designed by the user.

– The LLD provides easy EDMA usage.

• In addition, Navigator has its own PKTDMA for
each master.

• Data in and out of the system (SRIO, PCIe or
SGMII) is done using the Navigator.

• All synchronization between cores and moving
pointers to data between cores is done using the
Navigator.

• IPC provides easy access to the Navigator.

Conclusion

• Two H264 high-quality 1080i encoders can be
processed on a single TMS320C6678

System Architecture

