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Abstract
As application complexity continues to grow we have reached a limit on increasing 
performance by merely scaling clock speed. To meet the ever-increasing processing 
demand, modern System-On-Chip solutions contain multiple processing cores. The 
dilemma is how to map applications to multicore devices. In this paper, we present a 
programming methodology for converting applications to run on multicore devices. 
We also describe the features of Texas Instruments DSPs that enable efficient 
implementation, execution, synchronization, and analysis of multicore applications. 
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1 Introduction
For the past 50 years, Moore’s law accurately predicted that the number of transistors 
on an integrated circuit would double every two years. To translate these transistors 
into equivalent levels of system performance, chip designers increased clock 
frequencies (requiring deeper instruction pipelines), increased instruction level 
parallelism (requiring concurrent threads and branch prediction), increased memory 
performance (requiring larger caches), and increased power consumption (requiring 
active power management). 

Each of these four areas is hitting a wall that impedes further growth:
• Increased processing frequency is slowing due to diminishing improvements in 

clock rates and poor wire scaling as semiconductor devices shrink. 
• Instruction level parallelism is limited by the inherent lack of parallelism in the 

applications. 
• Memory performance is limited by the increasing gap between processor and 

memory speeds. 
• Power consumption scales with clock frequency, so at some point, extraordinary 

means are needed to cool the device.

Using multiple processor cores on a single chip allows designers to meet performance 
goals without using the maximum operating frequency. They can select a frequency in 
the sweet spot of a process technology that results in lower power consumption. Overall 
performance is achieved with cores having simplified pipeline architectures relative to 
an equivalent single core solution. Multiple instances of the core in the device result in 
dramatic increases in the MIPS-per-watt performance.

2 Mapping an Application to a Multicore Processor
Until recently, advances in computing hardware provided significant increases in the 
execution speed of software, with little effort from software developers. The 
introduction of multicore processors provides a new challenge for software developers, 
who must now master the programming techniques necessary to fully exploit multicore 
processing potential. 

Task parallelism is the concurrent execution of independent tasks in software. On a 
single-core processor, separate tasks must share the same processor. On a multicore 
processor, tasks essentially run independently of one another, resulting in more 
efficient execution.

2.1 Parallel Processing Models
One of the first steps in mapping an application to a multicore processor is to identify 
the task parallelism and select a processing model that fits best. The two dominant 
models are a Master/Slave model in which one core controls the work assignments on 
all cores, and the Data Flow model in which work flows through processing stages as in 
a pipeline.
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2.1.1 Master/Slave Model

The Master/Slave model represents centralized control with distributed execution. A 
master core is responsible for scheduling various threads of execution that can be 
allocated to any available core for processing. It also must deliver any data required by 
the thread to the slave core. Applications that fit this model inherently consist of many 
small independent threads that fit easily within the processing resources of a single 
core. This software often contains a significant amount of control code and often 
accesses memory in random order with multiple levels of indirection. There is 
relatively little computation per memory access and the code base is usually very large. 
Applications that fit the Master/Slave model often run on a high-level OS like Linux 
and potentially already have multiple threads of execution defined. In this scenario, the 
high-level OS is the master in charge of the scheduling.

The challenge for applications using this model is real-time load balancing because the 
thread activation can be random. Individual threads of execution can have very 
different throughput requirements. The master must maintain a list of cores with free 
resources and be able to optimize the balance of work across the cores so that optimal 
parallelism is achieved. An example of a Master/Slave task allocation model is shown 
in Figure 1.
Figure 1 Master / Slave Processing Model

One application that lends itself to the Master/Slave model is the multi-user data link 
layer of a communication protocol stack. It is responsible for media access control and 
logical link control of a physical layer including complex, dynamic scheduling and data 
movement through transport channels. The software often accesses multi-dimensional 
arrays resulting in very disjointed memory access.

Task Master

Task A

Task B

Tasks C, D, E

Tasks F, G
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One or more execution threads are mapped to each core. Task assignment is achieved 
using message-passing between cores. The messages provide the control triggers to 
begin execution and pointers to the required data. Each core has at least one task whose 
job is to receive messages containing job assignments. The task is suspended until a 
message arrives triggering the thread of execution.

2.1.2 Data Flow Model

The Data Flow model represents distributed control and execution. Each core 
processes a block of data using various algorithms and then the data are passed to 
another core for further processing. The initial core is often connected to an input 
interface supplying the initial data for processing from either a sensor or FPGA. 
Scheduling is triggered upon data availability. Applications that fit the Data Flow 
model often contain large and computationally complex components that are 
dependent on each other and may not fit on a single core. They likely run on a real time 
OS where minimizing latency is critical. Data access patterns are very regular because 
each element of the data arrays is processed uniformly.

The challenge for applications using this model is partitioning the complex 
components across cores and the high data flow rate through the system. Components 
often need to be split and mapped to multiple cores to keep the processing pipeline 
flowing regularly. The high data rate requires good memory bandwidth between cores. 
The data movement between cores is regular and low latency hand-offs are critical. An 
example of Data Flow processing is shown in Figure 2.

Figure 2 Data Flow Processing Model

One application that lends itself to the Data Flow model is the physical layer of a 
communication protocol stack. It translates communications requests from the data 
link layer into hardware-specific operations to effect transmission or reception of 
electronic signals. The software implements complex signal processing using intrinsic 
instructions that take advantage of the instruction level parallelism in the hardware.

The processing chain requires one or more tasks to be mapped to each core. 
Synchronization of execution is achieved using message passing between cores. Data 
are passed between cores using shared memory or DMA transfers.

Task A Task G

Tasks B, C

Tasks B, C
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http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


Page 6 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback 

www.ti.com

2.2 Identifying a Parallel Task Implementation
Identifying the task parallelism in an application is a challenge that, for now, must be 
tackled manually. TI is developing code generation tools that will allow users to 
instrument their source code to identify opportunities for automating the mapping of 
tasks to individual cores. Even after identifying parallel tasks, mapping and scheduling 
the tasks across a multicore system requires careful planning. A four-step process, 
derived from Software Decomposition for Multicore Architectures [1], is proposed to 
guide the design of the application:

1. Partitioning — Partitioning of a design is intended to expose opportunities for 
parallel execution. The focus is on defining a large number of small tasks in order 
to yield a fine-grained decomposition of a problem.

2. Communication — The tasks generated by a partition are intended to execute 
concurrently but cannot, in general, execute independently. The computation to 
be performed in one task will typically require data associated with another task. 
Data must then be transferred between tasks to allow computation to proceed. 
This information flow is specified in the communication phase of a design. 

3. Combining — Decisions made in the partitioning and communication phases 
are reviewed to identify a grouping that will execute efficiently on the multicore 
architecture. 

4. Mapping — This stage consists of determining where each task is to execute.

2.2.1 Partitioning

Partitioning of an application into base components requires a complexity analysis of 
the computation (Reads, Writes, Executes, Multiplies) in each software component and 
an analysis of the coupling and cohesion of each component.

For an existing application, the easiest way to measure the computational requirements 
is to instrument the software to collect timestamps at the entry and exit of each module 
of interest. Using the execution schedule, it is then possible to calculate the throughput 
rate requirements in MIPS. Measurements should be collected with both cold and 
warm caches to understand the overhead of instruction and data cache misses.

Estimating the coupling of a component characterizes its interdependence with 
other subsystems. An analysis of the number of functions or global data outside the 
subsystem that depend on entities within the subsystem can pinpoint too many 
responsibilities to other systems. An analysis of the number of functions inside the 
subsystem that depend on functions or global data outside the subsystem identifies the 
level of dependency on other systems.

A subsystem's cohesion characterizes its internal interdependencies and the degree to 
which the various responsibilities of the module are focused. It expresses how well all 
the internal functions of the subsystem work together. If a single algorithm must use 
every function in a subsystem, then there is high cohesion. If several algorithms each 
use only a few functions in a subsystem, then there is low cohesion. Subsystems with 
high cohesion tend to be very modular, supporting partitioning more easily.
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Partitioning the application into modules or subsystems is a matter of finding the 
breakpoints where coupling is low and cohesion is high. If a module has too many 
external dependencies, it should be grouped with another module that together would 
reduce coupling and increase cohesion. It is also necessary to take into account the 
overall throughput requirements of the module to ensure it fits within a single core.

2.2.2 Communication

After the software modules are identified in the partitioning stage it is necessary to 
measure the control and data communication requirements between them. Control 
flow diagrams can identify independent control paths that help determine concurrent 
tasks in the system. Data flow diagrams help determine object and data 
synchronization needs.

Control flow diagrams represent the execution paths between modules. Modules in a 
processing sequence that are not on the same core must rely on message passing to 
synchronize their execution and possibly require data transfers. Both of these actions 
can introduce latency. The control flow diagrams should be used to create metrics that 
assist the module grouping decision to maximize overall throughput. Figure 3 contains 
an example of a control flow diagram.
Figure 3 Example Control Flow Diagram
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Data flow diagrams identify the data that must pass between modules and this can be 
used to create a measure of the amount and rate of data passed. They also show the level 
of interaction between a module and outside entities. Metrics should be created to assist 
the grouping of modules to minimize the number and amount of data communicated 
between cores. Figure 4 contains an example diagram.

Figure 4 Example Data Flow Diagram

2.2.3 Combining

The combining phase determines whether it is useful to combine tasks identified by the 
partitioning phase, so as to provide a smaller number of tasks, each of greater size. It 
also includes determining whether it is worthwhile to replicate data or computation. 
Related modules with low computational requirements and high coupling are grouped 
together. Modules with high computation and high communication costs are 
decomposed into smaller modules with lower individual costs.

2.2.4 Mapping

Mapping is the process of assigning modules, tasks or subsystems to individual cores. 
Using the results from Partitioning, Communication, and Combining, a plan is made 
identifying concurrency issues and module coupling. This is also the time to consider 
available hardware accelerators and any dependencies this would place on software 
modules.
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Subsystems are allocated onto different cores based on the selected programming 
model: Master/Slave or Data Flow. To allow for inter-processor communication 
latency and parametric scaling, it is important to reserve some of the available MIPS, 
L2 memory, and communication bandwidth on the first iteration of mapping. Once all 
modules are mapped, the overall loading of each core can be evaluated to indicate areas 
for additional refactoring to balance the processing load across cores. 

In addition to the throughput requirements of each individual module, message 
passing latency and processing synchronization must be factored into the overall 
timeline. Critical latency issues can be addressed by adjusting the module factoring to 
reduce the overall number of communication steps. When multiple cores need to share 
a resource like a DMA engine or critical memory section, a hardware semaphore is used 
to ensure mutual exclusion as described in Section 5.3. Blocking time for a resource 
must be factored into the overall processing efficiency equation.

Embedded processors typically have a memory hierarchy consisting of multiple levels 
of cache and off-chip memory. It is preferred to operate on data in cache to minimize 
the performance hit of the external memory interface. The processing partition selected 
may require additional memory buffers or data duplication to compensate for 
inter-processor communication latency. Refactoring the software modules to optimize 
the cache performance is an important consideration.

When a particular algorithm or critical processing loop requires more throughput than 
available on a single core, consider the data parallelism as a potential way to split the 
processing requirements. A brute force division of the data by the available number of 
cores is not always the best split due to data locality and organization, and required 
signal processing. Carefully evaluate the amount of data that must be shared between 
cores to determine the best split and any need to duplicate some portion of the data.

The use of hardware accelerators like FFT or Viterbi coprocessors is common in 
embedded processing. Sharing the accelerator across multiple cores would require 
mutual exclusion via a lock to ensure correct behavior. Partitioning all functionality 
requiring the use of the coprocessor to a single core eliminates the need for a hardware 
semaphore and the associated latency. Developers should study the efficiency of 
blocking multicore access to the accelerator versus non-blocking single core access 
with potentially additional data transfer costs to get the data to the single core.

Consideration must be given to scalability as part of the partitioning process. Critical 
system parameters are identified and their likely instantiations and combinations 
mapped to important use cases. The mapping of tasks to cores would ideally remain 
fixed as the application scales for the various use cases.

The mapping process requires multiple cycles of task allocation and parallel efficiency 
measurement to find an optimal solution. There is no heuristic that is optimal for all 
applications. 
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3 Inter-Processor Communication
The Texas Instruments TCI64xx and C64xx multicore devices offer several 
architectural mechanisms to support inter-processor communication. All cores have 
full access to the device memory map, meaning any core can read from and write to any 
memory. In addition, there is support for direct event signaling between cores for 
notification as well as DMA event control for 3rd-party notification. The signaling 
available is flexible to allow the solution to be tailored to the communication desired. 
Last, there are hardware elements to allow for atomic access arbitration, which can be 
used to communicate ownership of a shared resource.

Inter-core communication consists of two primary actions: data movement and 
notification.

3.1 Data Movement
The physical movement of data can be accomplished by several different techniques:

• Use of a shared message buffer — The sender and receiver have access to the 
same physical memory.

• Use of dedicated memories — There is a transfer between dedicated send and 
receive buffers

• Transitioned memory buffer — The ownership of a memory buffer is given from 
sender to receiver, but the contents do not transfer.

For each technique, there are two means to read and write the memory contents: CPU 
load/store and DMA transfer. The sending and receiving cores choose different 
mechanisms. 

3.1.1 Shared Memory

Using a shared memory buffer does not necessarily mean that an equally-shared 
memory is used, though this would be typical. Rather, it means that a message buffer is 
set up in a memory accessible by both sender and receiver, with each responsible for 
their portion of the transaction. The sender sends the message to the shared buffer and 
notifies the receiver. The receiver retrieves the message by copying the contents from a 
source buffer to a destination buffer and notifies the sender that the buffer is free. It is 
important to maintain coherency when multiple cores access data from shared 
memory.

The DSP/BIOS message queue transport, developed for TCI64x and C64xx multicore 
devices to send messages between cores, makes use of this scheme. 

3.1.2 Dedicated Memories

It is also possible to manage the transport between the sending and receiving memories. 
This is typically used when the cores are using local memory for their data, and 
overhead is reduced by keeping the data local. As with the shared memory, there are 
notification and transfer stages, and this can be accomplished through a push or pull 
mechanism, depending on the use case.
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In a push model, the sender is responsible to fill the receive buffer; in a pull model, the 
receiver is responsible to retrieve the data from the send buffer (Table 1). There are 
advantages and disadvantages to both. Primarily, it affects the point of 
synchronization.

The differences are only in the notifications. Typically the push model is used due to 
the overhead of a remote read request used in the Pull Model. However, if resources are 
tight on the receiver, then it may be advantageous for the receiver to control the data 
transfer to allow tighter management of its memory.

3.1.3 Transitioned Memory

It is also possible for the sender and receiver to use the same physical memory, but 
unlike the shared memory transfer mentioned above, common memory is not 
temporary. Rather, the buffer ownership is transferred, but the data does not move 
through a message path. The sender passes a pointer to the receiver and the receiver 
uses the contents from the original memory buffer.

Message sequence:
1. Sender generates data into memory
2. Sender notifies receiver of data ready/ownership given
3. Receiver consumes memory directly
4. Receiver notifies sender of data ready/ownership given

If applicable for symmetric flow of data, the receiver may switch to the sender role prior 
to returning ownership and use the same buffer for its message. 

Table 1 Dedicated Memory Models 

Push Model Pull Model

Sender prepares send buffer Sender prepares send buffer

Sender transfers to receive buffer Receiver is notified of data ready

Receiver is notified of data ready Receiver transfers to receive buffer

Receiver consumes data Receiver frees memory

Receiver frees memory Receiver consumes data
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3.2 Notification
After the communication message data are prepared by the sender for delivery to the 
receiver using shared, dedicated, or transitional memory, it is necessary to notify 
the receiver of the message availability. This can be accomplished by direct or indirect 
signaling, or by atomic arbitration.

3.2.1 Direct Signaling

The devices support a simple peripheral that allows for a core to generate a physical 
event to another core. This event is routed through the cores’ local interrupt controller 
along with all other system events. The programmer can select whether this event will 
generate a CPU interrupt or if the CPU will poll its status. The peripheral includes a flag 
register to indicate the originator of the event so that the notified CPU can take the 
appropriate action (including clearing the flag) as shown in Figure 5. 

The processing steps are:
1. CPU A writes to CPU B’s inter-processor communication (IPC) control register
2. IPC event generated to interrupt controller
3. Interrupt controller notifies CPU B (or polls)
4. CPU B queries IPC
5. CPU B clears IPC flag(s)
6. CPU B performs appropriate action

Figure 5 Direct IPC Signaling

IPC Peripheral

CPU BInterrupt
Controller

CPU A
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3.2.2 Indirect Signaling

If a 3rd-party transport, such as the EDMA controller, is used to move data, then the 
signaling between cores can also be performed through this transport as well. In other 
words, the notification follows the data movement in hardware, rather than through 
software control, as shown in Figure 6.

The processing steps are:
1. CPU A configures and triggers transfer using EDMA
2. EDMA completion event generated to interrupt controller
3. Interrupt controller notifies CPU B (or polls)

Figure 6 Indirect Signaling

3.2.3 Atomic Arbitration

Each device includes hardware support for atomic arbitration. The supporting 
architecture does vary on different devices, but the same underlying function can be 
achieved easily. Atomic arbitration instructions are supported with hardware monitors 
in the Shared L2 controller present on the TCI6486 and C6472 devices, while a 
semaphore peripheral is present on the TCI6487/88 and C6474 devices because they do 
not have a shared L2 memory. On all devices, a CPU can atomically acquire a lock, 
modify any shared resource, and release the lock back to the system. 
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The hardware guarantees that the acquisition of the lock itself is atomic, meaning only 
a single core can own it at any time. There is no hardware guarantee that the shared 
resource(s) associated with the lock are protected. Rather, the lock is a hardware tool 
that allows software to guarantee atomicity through a well defined (and simple) 
protocol outlined in Table 2 and shown in Figure 7.

Figure 7 Atomic Arbitration

Table 2 Atomic Arbitration Protocol

CPU A CPU B

1: Acquire lock 1: Acquire lock

→ Pass (lock available) → Fail (Fails because lock is unavailable)

2: Modify resource 2: Repeat step 1 until Pass

3: Release lock → Pass (lock available)

3: Modify resource

4: Release lock

Free Lock

Resource
Lock

Pass

Acquire Lock
Fail 

Modify 
Resource
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4 Data Transfer Engines
Within the device, the primary data transfer engines on current Texas Instruments 
TCI64xx and C64xx devices are the EDMA (enhanced DMA) modules. For inter-core 
communication between devices, there are several transfer engines, depending on the 
physical interface selected for communication:

• EDMA: The EDMA is an integrated DMA transfer engine that can be used to 
transfer data between any two memory locations on the device, and is required 
for using some of the peripherals (device-specific).

• Antenna Interface (TCI6487/88 and C6474 only): The EDMA is used in 
conjunction with the AIF to transport data.

• Serial RapidIO: There are two modes available — DirectIO and Messaging. 
Depending on the mode, the EDMA or built-in DMA control are available.

• Ethernet: There is a built-in DMA controller for handling all of the data 
movement.

4.1 EDMA
Channels and parameter RAM can be separated by software into regions, with each 
region assigned to a core. The event-to-channel routing and EDMA interrupts are fully 
programmable, allowing flexibility as to ownership. All event, interrupt, and channel 
parameter control is designed to be controlled independently, meaning that once 
allocated to a core, that core does not need to arbitrate prior to accessing the resource.

4.2 Ethernet 
The peripheral allows for up to 32 MAC addresses to be serviced by up to eight 
channels. These can be dedicated to a given core and used for broadcast or multi-cast. 
Each core can have a dedicated receive channel that is independently controlled. This 
allows for any number of the cores directly consuming Ethernet traffic to a given MAC 
address. Once a channel is allocated to a core, that core may access it directly without 
arbitration. Likewise, each core can control outbound Ethernet traffic directly.

4.3 RapidIO 
Both DirectIO and messaging protocols allow for orthogonal control by each of the 
cores. For DSP-initiated DirectIO transfers, the load-store units (LSUs) are used. There 
are four of these, each independent from the others, and each can submit transactions 
on any physical link. The LSUs may be allocated to individual cores, after which the 
cores need not arbitrate for access. Alternatively, the LSUs can be allocated as needed 
to any core, in which case there would need to be a temporary ownership assigned that 
may be done using a semaphore resource. Similar to the Ethernet peripheral, messaging 
allows for individual control for multiple transfer channels. When using messaging 
protocols, each core is responsible for managing its own messaging traffic, and 
ownership can be assigned for in-bound messages based on RapidIO mailbox numbers. 
If using DSP/BIOS MSGQ over RapidIO, this is transparent to the user.
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4.4 Antenna Interface 
The AIF is serviced by multiple EDMA channels, whose timing is controlled by the 
frame synchronization (FSYNC) module. EDMA channels are set up once based on the 
system timing, board topology, and allocation of antenna streams to cores. Data can be 
directed to or from any core, which, in turn, dictates the EDMA channel allocation and 
programming. If multiple cores are using the AIF, then each core is required to allocate 
EDMA resources according to Section 4.1. In addition, the synchronization of the 
selected EDMA channels is critical. If circuit-switched transfer mode is selected, then 
the FSYNC module must be programmed to notify each core's associated EDMA 
channel(s) at the appropriate time to ensure data is correctly transmitted across the 
link. If packet-switched (PS) transfer mode is used, then the cores must control the 
EDMA resources efficiently to pass data through the PS FIFO.
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5 Shared Resource Management
When sharing resources on the device, it is critical that there is a protocol followed 
uniformly by all of the cores in the system. The protocol may depend on the set of 
resources being shared, but all cores must follow the same rules.

Section 3.2 mentioned signaling in the context of message passing. The same signalling 
mechanisms can be used for general resource management as well. One can use direct 
signaling or atomic arbitration between cores. Within a core, one can use a global flag 
or an OS semaphore. It is not recommended to use a simple global flag for inter-core 
arbitration because there is significant overhead to ensure updates are atomic.

5.1 Global Flags
Global flags are useful within a single core using a single-threaded model. If there is a 
resource that depends on an action being completed (typically a hardware event), a 
global flag may be set and cleared for simple control.

5.2 OS Semaphores
All multi-task operating systems include semaphore support for arbitration of shared 
resources and for task synchronization. On a single core, this is essentially a global flag 
controlled by the OS that keeps track of when a resource is owned by a task, or when a 
thread should block or proceed with execution based on signals the semaphore has 
received.

5.3 Hardware Semaphores
Hardware semaphores are needed only when arbitrating between cores. There is no 
advantage for using them for single-core arbitration, as the OS can use its own 
mechanism with much less overhead. When arbitrating between cores, hardware 
support is essential to ensure updates are atomic. There are software algorithms that 
can be used along with shared memory, but these consume CPU cycles unnecessarily.

5.4 Direct Signaling
As with the message passing, direct signaling can be used for simple arbitration. If there 
is only a small set of resources being shared between cores, then the IPC signaling 
described in Section 3.2.1 can be used. A protocol can be followed to allow a notify and 
acknowledge handshake to pass ownership of a resource.
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6 Memory Management
In programming a multicore device, it is important to consider the processing model. 
On the Texas Instruments TCI64xx and C64xx devices, each core has local L1/L2 
memory and equal access to any shared internal and external memory. It is typically 
expected that each core will execute some or the entire code image from shared 
memory, with data being the predominant use of the local memories. This is not a 
restriction on the user and is explained later in this section.

In the case of each core having its own code and data space, the aliased L1/L2 addresses 
should not be used. Only the global addresses should be used, which gives a common 
view to the entire system of each memory location. This also means that for software 
development, each core would have its own project, built in isolation from the others. 
Shared regions would be commonly defined in each core’s map and accessed directly 
by any master, using the same address. 

In the case of there being a shared code section, there may be a desire to use aliased 
addresses for data structures or scratch memory used in the common function(s). This 
would allow the same address to be used by any of the cores without regard for checking 
which core it is. The data structure/scratch buffer would need to have a run address 
defined using the aliased address region so that when accessed by the function it is 
core-agnostic. The load address would need to be the global address for the same offset. 
The run-time, aliased address is usable for direct CPU load/store and internal DMA 
(IDMA) paging, though not EDMA or other master transactions. These transactions 
must use the global address.

It is always possible for the software to verify on which core it is running as well, so the 
aliased addresses are not required to be used in common code. There is a CPU register 
(DNUM) that holds the DSP core number and can be read during run-time to 
conditionally execute code and update pointers.

Any shared data resource should be arbitrated so that there are no conflicts of 
ownership. There is an on-chip semaphore peripheral that allows threads executing on 
different CPUs to arbitrate for ownership of a shared resource. This ensures that a 
read-modify-write update to a shared resource can be made atomically.
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6.1 CPU View of the Device
Each of the CPUs has an identical view of the device. As shown in Figure 8, beyond each 
core’s L2 memory there is a switched central resource (SCR) that inter-connects the 
cores, external memory interface, and on-chip peripherals through a switch fabric.
Figure 8 CPUs' Device View

Each of the cores is a master to both the configuration (access to peripheral control 
registers) and DMA (internal and external data memories) switch fabrics. In Addition, 
each core has a slave interface to the DMA switch fabric allowing access to its L1 and 
L2 SRAM. All cores have equal access to all slave end-points, with priority assigned per 
master by user software for arbitration between all accesses at each end-point.

Each slave in the system (e.g. Timer control, DDR2 SDRAM, each core's L1/L2 SRAM) 
has a unique address in the device’s memory map that is used by any of the masters to 
access it. Restrictions to the chip-level routing is beyond the scope of the document, but 
for the most part, each core has access to all control registers and all RAM locations in 
the memory map. For details of restrictions to chip-level routing, see TI reference guide 
SPRU871, TMS320C64x+ DSP Megamodule [2].

Within each core there are Level 1 program and data memories directly connected to 
the CPU, and a Level 2 unified memory. Details for the cache and SRAM control 
(see [2]) are beyond the scope of this document, but each memory is user-configurable 
to have some portion be memory-mapped SRAM.

As described previously, the local core's L1/L2 memories have two entries in the 
memory map. All memory local to the processors has global addresses that are 
accessible to all masters in the device. In addition, local memory can be accessed 
directly by the associated processor through aliased addresses, where the eight most 
significant bits are masked to zero. The aliasing is handled within the core and allows 
for common code to be run unmodified on multiple cores. For example, address 
location 0x10800000 is the global base address for core 0’s L2 memory. Core 0 can 
access this location by using either 0x10800000 or 0x00800000. Any other master on 
the device must use 0x10800000 only. Conversely, 0x00800000 can be used by any of 
the three cores as their own L2 base addresses. For Core 0, as mentioned, this is 
equivalent to 0x10800000, for core 1 this is equivalent to 0x11800000, and for core 2 
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this is equivalent to 0x12800000. Local addresses should be used only for shared code 
or data, allowing a single image to be included in memory. Any code/data targeted to a 
specific core, or a memory region allocated during run-time by a particular core, should 
always use the global address only. 

6.2 Cache Considerations
It is important to point out that the only coherency guaranteed by hardware with no 
software management is L1D cache coherency with L2 SRAM within the same core. 
The hardware will guarantee that any updates to L2 will be reflected in L1D cache, and 
vice versa. There is no guaranteed coherency between L1P cache and L2 within the 
same core, there is no coherency between L1/L2 on one core and L1/L2 on another 
core, and there is no coherency between any L1/L2 on the chip and external memory. 

The TCI64xx and C64xx devices do not support automated cache coherency because 
of the power consumption involved and the latency overhead introduced. Real-time 
applications targeted for these devices require predictability and determinism, which 
comes from data coherency being coordinated at select times by the application 
software. As developers manage this coherency, they develop designs that run faster 
and at lower power because they control when and if local data must be replicated into 
different memories.

This coherency can all be managed through software. For shared L2 cache (SL2), 
coherency is not maintained between cores, so for any shared writeable data sections, 
the user must manage coherency as with external memory. If a section of the SL2 is used 
for writeable data by a single core only, then that core’s L1D cache is guaranteed to be 
coherent with this portion of the SL2. This is summarized in Figure 9.

The DSP/BIOS operating system provides a BCACHE module that includes API 
functions to perform cache coherency operations including cache line invalidation, 
cache line writeback to stored memory, and a writeback-invalidation operation. 
DSP/BIOS also provide RapidIO and shared memory Message Queue Transports 
(MQT) that maintain cache coherency for the application using them.
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Figure 9 Cache Coherency Mapping

In addition, if any portion of the L1s is configured as memory-mapped SRAM, there is 
a small paging engine built into the core (IDMA) that can be used to transfer linear 
blocks of memory between L1 and L2 in the background of CPU operation. IDMA 
transfers have a user-programmable priority to arbitrate against other masters in the 
system. The IDMA may also be used to perform bulk peripheral configuration register 
access.

In programming a TCI6486 or C6472 device, it is important to consider the processing 
model. As shown in Figure 9, each core has local L1/L2 memory and a direct 
connection to the shared L2 memory (if present in the device), plus equal access to the 
external DDR2 SDRAM (if present in the system). 
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6.3 Shared Code Program Memory Placement
When CPUs execute from a shared code image, it is important to take care to manage 
local data buffers. Memory used for stack or local data tables can use the aliased 
address, and will therefore be identical for all cores. In addition, any L1D SRAM used 
for scratch data, with paging from L2 SRAM using the IDMA, can use the aliased 
address.

As mentioned in preceding sections of the document, DMA masters must use the 
global address for any memory transaction. Therefore, when programming the DMA 
context in any peripheral, the code must insert the core number (DNUM) into the 
address.

External data sections or unique data tables within the SL2 data sections cannot simply 
be placed using the linker. Instead, the per-core addresses must be determined at 
initialization time and stored in a pointer (or calculated each time they are used). 

The programmer can use the formula: 
<base address> + <per-core-area size> × DNUM

This can be done at boot time or during thread creation time when pointers are 
calculated and stored in local L2. This allows the rest of the processing through this 
pointer to be core-independent, such that the correct unique pointer is always retrieved 
from local L2 when it is needed.

Thus, the shared application can be created, using the local L2 memory, such that each 
core can run the same application with little knowledge of the multicore system (such 
knowledge is only in initialization code). The actual components within the thread are 
not aware that they are running on a multicore system.

6.4 Peripheral Drivers
All device peripherals are shared and any core can access any of the peripherals at any 
time. Initialization should occur during the boot process, either directly by an external 
host, by parameter tables in an I2C EEPROM, or by an initialization sequence within 
the application code itself (one core only). For all run-time control, it is up to the 
software to determine when a particular core is to initialize a peripheral. In addition, 
rules must be provided either at build time or system-initialization time to allow the 
routing of information received from a peripheral to the correct core. For example, one 
set of EMAC addresses are uniquely assigned to each core, a unique Utopia VPI field 
value is assigned per core, or a unique mailbox number for SRIO messages is assigned. 

For each of the DMA resources on the device mentioned above, it is the up to the 
software architecture to determine whether all resources for a given peripheral will be 
controlled by a single core (master control) or if each core will control its own (peer 
control). With the TCI6486 or C6472, as summarized above, all peripherals have 
multiple DMA channel context that allows for peer control without requiring 
arbitration. That is to say that each DMA context is autonomous and no considerations 
for atomic access need to be taken in to account. 
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It should be noted that because a subset of the cores can be reset during run-time, the 
application software must own re-initialization of the reset cores in a way that avoids 
interruption of the cores not being reset. This can be accomplished by having each core 
check the state of the peripheral it is configuring. If the peripheral is not powered up 
and enabled for transmit and receive, the core will perform the power up and global 
configuration. There is an inherent race condition in this method if two cores read the 
peripheral state when it is powered down and begin a power up sequence, but this can 
be managed by using the atomic monitors in the shared memory controller (SMC).

A host control method allows deferring the decision on device initialization to a higher 
layer, outside the DSP. When a core needs to access a peripheral, it is directed by this 
upper layer on whether to perform a global initialization or simply a local initialization.

6.5 Data Memory Placement
Data buffers may reside in any of the device memories, but typically are brought into 
L1D SRAM (for critical sections) or L2 SRAM for processing. Low-priority data may 
reside in DDR2 SDRAM and be accessed through the cache.

6.6 Data Memory Access
Memory selection for data is dependent primarily on how the data is to be transmitted 
and received and the access pattern/timing of the data by the CPU(s). Ideally, all data 
is allocated to L2 SRAM. Often, however, there is a space limitation in the internal DSP 
memory that requires some code and data to reside off chip in DDR2 SDRAM. 

Typically, data for run-time critical functions are located within local L2 RAM for the 
core to which the data is assigned and non-time-critical data such as statistics are 
pushed to external memory and accessed through the cache. In the instance that 
run-time data must be placed off-chip it is often preferred to page data between L2 
SRAM and external memory rather than access through the cache. The tradeoff is 
simply control overhead versus performance, though even if accessing the data through 
the cache, coherency must be maintained in software for any DMA of data to or from 
the external memory.
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7 DSP Code and Data Image
In order to better support the configuration of these multicore devices, it is important 
to understand how to define the software project(s) and OS partitioning. In this section, 
DSP/BIOS will be referenced, but comparable considerations would need to be taken 
for any OS.

DSP/BIOS provides configuration platforms for all Texas Instruments TCI64xx and 
C64xx devices. In the DSP/BIOS configuration for the TCI6486 and C6472, there are 
separate memory sections for local L2 memory (LL2RAM) and shared L2 memory 
(SL2RAM). Depending how much of the application is common across the cores, 
different configurations are necessary to minimize the footprint of the OS and 
application in the device memory.

7.1 Single Image
The single image application shares some code and data memory across all cores. This 
technique allows the exact same application to load and run on all cores. If running a 
completely shared application (all cores execute the same program), then only a single 
project is required for the device, and likewise, a single DSP/BIOS configuration file is 
required. As mentioned in the previous sections, there are some considerations for the 
code and linker command file:

• The code must set up pointer tables for unique data sections that reside in shared 
L2 or DDR2 SDRAM

• The code must add DNUM to any data buffer addresses when programming 
DMA channels

• The linker command file should define the device memory map using aliased 
addresses only

7.2 Multiple Image
In this scenario, each core runs a different and independent application. This requires 
that any code or data placed in a shared memory region (L2 or DDR) be allocated a 
unique address range to prevent other cores from accessing the same memory region. 

For this application, the DSP/BIOS configuration file for each application adjusts the 
locations of the memory sections to ensure that overlapping memory ranges are not 
accessible by multiple cores.

Each core requires a dedicated project or at least a dedicated linker command file if the 
code is to be replicated. The linker output needs to map all sections to unique addresses, 
which can be done using global addressing for all sections. In this case, there is no 
aliasing required, and all addresses used by DMA are identical to those used by each 
CPU.
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7.3 Multiple Image with Shared Code and Data
In this scenario, a common code image is shared by different applications running on 
different cores. Sharing common code between multiple applications reduces the 
overall memory requirement while still allowing for the different cores to run unique 
applications.

This requires a combination of the techniques used for a single image and for multiple 
images, which can be accomplished through the use of partial linking.

The output generated from a partially-linked image can be linked again with additional 
modules or applications. Partial linking allows the programmer to partition large 
applications, link each part separately, and then link all the parts together to create the 
final executable. The TI Code Generation tool's linker provides an option (–r) to create 
a partial image. The –r option allows the image to be linked again with the final 
application.

There are a few restrictions when using the –r linker option to create a partial image:
• Conditional linking is disabled. Memory requirement may increase.
• Trampolines are disabled. All code needs to be within a 21-bit boundary.
• .cinit and .pinit can not be placed in the partial image.

The partial image must be placed in shared memory so that all the cores can access it, 
and it should contain all code (.bios and .text) except for .hwi_vec. It should also 
contain the constant data (.sysinit and .const) needed by the DSP/BIOS code in the 
same location. The image is placed in a fixed location, with which the final applications 
will link.

Because the DSP/BIOS code contains data references (.far and .bss sections), these 
sections need to be placed in the same memory location in non-shared memory by the 
different applications that will link with this partial image. To allow this to work 
correctly, each core must have a non-shared memory section at the same address 
location. For the TCI6486 and C6472, these sections must be placed in local L2 memory 
for each core.
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7.4 Device Boot
As discussed in Section 6, there may be one or more projects and resulting .out files 
used in software development for a single device, depending on the mix of shared and 
unique sections. Regardless of the number of .out files created, a single boot table 
should be generated for the final image to be loaded in the end system. 

TI has several utilities to help with the creation of the single boot table. Figure 10 
contains an example of how these utilities can be used to build a single boot table from 
three separate executable files.
Figure 10 Boot Table Merge

Once a single boot table is created, it can be used to load the entire DSP image. As 
mentioned in previous sections, there is a single global memory map, which allows for 
a straightforward boot loading process. All sections are loaded as defined by their 
global address.

The boot sequence is controlled by a single core. After device reset, Core 0 is 
responsible for releasing all cores from reset after the boot image is loaded into the 
device. With a single boot table, Core 0 is able to load any memory on the device, and 
the user does not need to take any special care for the multiple cores other than to 
ensure that code is properly loaded in the memory map to all cores' start addresses 
(which is configurable).

Details on the boot loader are available in TI user guides SPRUEA7, TMS320TCI648x 
DSP Bootloader [3] and SPRUG24, TMS320C6474 DSP Bootloader [4].
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8 System Debug
The Texas Instruments TCI6486 and C6472 devices offer hardware support for 
visualization of the program and data flow through the device. Much of the hardware 
is built into the core, with system events used to extend the visibility through the rest of 
the chip. Events also serve as synchronization points between cores and the system, 
allowing for all activity to be “stitched together” in a single timeline. 

8.1 Debug and Tooling Categories
There are hardware and software tools available during runtime that can be used to 
debug a particular problem. Given that different problems can arise during different 
phases of system development, the debug and tooling resources available are described 
in several categories. The four scenarios are addressed in Table 3.

While the characteristics described in Table 3 are not unique to multicore devices, 
having multiple cores, accelerators, and a large number of endpoints means that there 
is a lot of activity occurring within the device. As such, it is important to use the 
emulation and instrumentation capabilities as much as possible to ease the complexity 
of debugging real-time problems in the development, test, and field environments. The 
following sections outline the system software instrumentation required to generate 
trace captures and logs for a particular problem.

Table 3 Debug and Tooling Categories 

Resident Configuration Debug Configuration

Emulation Hardware

• Configured at start-up and always 
available for non-intrusive debug

• Resources may be steered by 
application or external host, based on 
system events that are available 
within the application (e.g. no code 
modification required)

• May be intrusive to the system 
software, depending on when 
configuration occurs (startup vs. 
run-time), but performance is not 
changed when leveraged for 
diagnostics

• Used as needed for system bring-up 
issues

• Resources must be traded off to look at 
points of interest

• May be intrusive to the system 
performance, depending on the 
resources used to investigate a 
problem

• May require multiple runs of the 
software to collect all needed 
information

Software 
Instrumentation

• Code must be built with hooks to 
prevent the need to re-compile for 
diagnostic purposes

• Hooks leveraged during run-time either 
by software (through host 
interaction) or through Code 
Composer Studio (CCS) commands

• Host tools/processor can analyze data 
offline while system is running

• May be intrusive to the software 
performance, but performance is not 
changed when leveraged for 
diagnostics as it is always present

• Code must be re-compiled to include 
additional diagnostic capability

• Hooks enabled during compile-time 
and re-loaded onto target

• Host tools/processor can analyze data 
offline while system is running

• May be intrusive to the software 
performance and may modify system 
behavior slightly, depending on the 
resources used
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8.2 Trace Logs
Fundamentally, the code running on each of the cores must be instrumented, and the 
available hardware emulation logic configured to generate a trace of the software and 
data flow of the device execution. This process supports debug of problems found 
during development or even problems that arise in a deployed system. Trace logs can 
be enabled all the time or just during debug sessions, and can include any of the 
following data items:

• API call log: The target software incorporates logging functionality to record 
all API calls of interest. API calls can be recorded to memory with an ID, 
timestamp, and any parameters of interest.

• Statistics log: Chip-level statistics can be periodically captured to provide a 
picture of the activity going through the SCR switch fabric over time. Statistics 
include bus monitors, event counters, and any other data of interest. This is 
typically resident in the system, though different/additional statistics may be 
optionally captured during debug.

• DMA transaction log: DMA transfers of interest can trigger a statistics capture, 
including timer values, chip registers, and data tables. This is typically resident in 
the system, though different/additional events and transactions may be 
optionally captured during debug.

• Core trace log: Core advanced emulation trigger (AET) can trace system events 
of interest, correlated to the CPU time. This is typically resident in the system, 
though different system events may be traced during debug. Also, PC trace may 
be added to the trace log. If data trace is desired during debug, it requires 
disabling the event trace.

• Other events/data can be recorded in a log buffer, as desired, by the CPU or 
DMA. The usage here is entirely customer specific. 

Historical information can then be used to construct a stand-alone test case using the 
same control and data flows that reproduce a scenario in the lab for further analysis.

8.2.1 API Call Log

The API call log is based on software instrumentation within the target software. 
Multiple logs may be correlated with respect to time either on the same core or across 
cores. The API call log is recorded by software directly into device memory.

Each of the API records will be accompanied by a time stamp to allow correlation with 
other transaction logs. The content of the logs may be useful in understanding both the 
call flow as well as details on the processed information at various points in time of 
execution.

8.2.2 Statistics Log

The statistics log consists of chip statistics taken at regular intervals that give a 
high-level picture of the device activity. The DDR, receive accelerator (RAC), and 
antenna interface (AIF) modules all have statistics registers built into them to keep 
track of bus activity. These statistics can be captured at regular intervals to record the 
activity to those modules during each time window. The log can then be used to give a 
high-level view of the data flow through the SCR switch fabric during each window of 
time.
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Statistics recorded by software in memory can also be recorded in the statistics log.

In addition to the statistics values, a chip time value must be recorded as well, to allow 
correlation with other transaction logs.

There is some flexibility in the statistics to be captured by the system, so the 
configuration of the statistics capture is left to the application. The required format is 
for the log to contain a time value following by the statistics of interest. Multiple logs 
are possible, provided that each holds a time value to allow correlation with the others.

8.2.3 DMA Transaction Log

Given the amount of data traffic that is handled within the SCR switch fabric by 
the EDMA controller, it is useful to record when certain DMA transactions take place. 
EDMA channels can be configured to trigger a secondary DMA channel to record 
statistics related to its activity: an identifier and reference time. Each DMA channel of 
interest can have a transaction log in which the transfer identifier, time of transfer, and 
any relevant information surrounding the transfer can be recorded. The number of 
transaction logs is flexible, and is limited only by the number of EDMA channels that 
can be dedicated to performing the recording.

The time value recorded with each entry should have a relationship to the time value 
used in the other transaction logs to allow correlation with other chip activity.

8.2.4 Event Log

The event logs are provided by each TCI64xx and C64xx core through their event trace 
capability. Event trace allows system events to be traced along with the CPU activity so 
that the device activity in relation to the processing being performed within the CPUs 
can be understood. The trace data output from each of the cores can be captured 
off-chip through an emulator or on-chip in the embedded trace buffers. Event logs do 
add additional visibility to the state of the processor over time, but also use additional 
free-running hardware and could be a power consumption concern in a deployed 
system. During development, however, the event trace can be used in conjunction with 
the other transaction logs for greater visibility.

The event log allows the recording of PC discontinuities, the execute/stall status for 
each CPU cycle, and up to eight system events (user programmable). In order to 
correlate the event traces of multiple cores with one another, and with the other 
transaction logs, one of the eight system events must be a time event common to the 
other logs.

8.2.5 Customer Data Log

Additional instrumentation of the application software is possible and should follow 
the guidelines outlined for the other transaction logs to record a time stamp with each 
entry to allow correlation to other chip activity. The contents of each entry can be 
anything meaningful in the customer system.
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8.2.6 Correlation of Trace Logs

As mentioned in Section 8.2, a common system time event needs to be used to correlate 
the multiple trace logs collected by the system in order to put together a complete view 
of the program and data flow on the chip. All API, statistics, DMA, and data logs must 
include a count value that corresponds to the window in time for which the log data was 
collected. The recording of the time value may be different depending on the type of log 
it is, but provided that the counts are off of the same base and with a common period 
or relationship, the logs can be merged together. 

The count is recorded as described in Table 4.

In Table 4, the time intervals are shown as an integer (x or y) times a common period p. 
The integer multiples should all be integer multiples of one another (e.g. there could be 
four statistics log windows for every DMA transaction log window).

For the API call log, the time value itself is recorded with each API call. Since the log 
recording is under CPU software control rather than DMA control, recording a 
window marker would require an interrupt and does not provide any additional 
information because the window can be determined by the count value divided by the 
window period, p.

The Statistics log gets a timestamp recorded in memory. Every x × p UMTS (universal 
mobile telecommunications system) cycles in time an event is asserted to the DMA to 
capture the time value and all statistics of interest. In addition, the statistics registers 
must be cleared to begin collecting over the next time window because the statistics 
represent events during the current window. The time value recorded along with the 
statistics data serves as the start time of the next window.

The DMA transaction log is similar to the API call log, in that the time is recorded with 
each transaction or multiple chained transactions of interest. The time value is 
captured by a DMA channel that is chained to the transfer(s) of interest along with 
information necessary to identify the transaction(s). As with the API call log, the 
window to which the transaction records belong can be determined by dividing the 
value recorded by the period, p.

Table 4 Event Log Time Markers 

Log Time Event(s) Recorded Relationship to Log Data

API Call System time With each API call Reflection of the point at which the call was made

Statistics System time 
(at interval x × p)

At time of statistics collection The end of the time window for which the statistics are 
valid

DMA Transaction System time After each DMA transaction of interest Reflection of the point at which the DMA transfer took 
place

Event System time interval (y × p) 
marker

Within the event stream Marker at each time window boundary

Program Counter With each event recorded Reflection of the PC value at the time of arrival of the event 
to the core

Data System time With each data record Customer defined
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The Event log contains UMTS timing markers and CPU program counter (PC) 
markers. The UMTS time interval marker is used to correlate the event log to the other 
logs and serves to distinguish the collection windows. The time value represents the 
beginning of the time window. The CPU PC value is recorded with each time event and 
can be used to indicate the processing activity occurring during each time window. It 
may provide insight as to what caused some of the information collected in the other 
logs.

The customer data log is customer defined, but should map to one or more of the above 
definitions. Examples of correlating different logs are shown in Table 5 and Table 6.
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Table 5 Trace Log Correlation

CPU 0 DMA Log System Trace

Cycle Event Entry Data Entry Event

10000 GLOBAL_TIME 0 GLOBAL_TIME = 10020 0 GLOBAL_TIME = 10080

10203 DMA_INT 0 ValueX 0 Transaction log

11150 EMAC_INT 0 ValueY 1 GLOBAL_TIME = 10110

11601 DMA_INT 1 GLOBAL_TIME = 10108 1 Transaction log

1 ValueX 2 GLOBAL_TIME = 10220

1 ValueY 2 Transaction log

3 GLOBAL_TIME = 10280

3 Transaction log

4 GLOBAL_TIME = 10340

4 Transaction log

5 GLOBAL_TIME = 10400

5 Transaction log

6 GLOBAL_TIME = 10488

6 Transaction log

12000 GLOBAL_TIME 2 GLOBAL_TIME = 12096 7 GLOBAL_TIME = 12060

12706 DMA_INT 2 ValueX 7 Transaction log

13033 EMAC_INT 2 ValueY 8 GLOBAL_TIME = 12120

13901 GPINT 3 GLOBAL_TIME = 13330 8 Transaction log

3 ValueX 9 GLOBAL_TIME = 12180

3 ValueY 9 Transaction log

10 GLOBAL_TIME = 12240

10 Transaction log

11 GLOBAL_TIME = 12300

11 Transaction log

12 GLOBAL_TIME = 12360

12 Transaction log

14000 GLOBAL_TIME 4 GLOBAL_TIME = 14100 13 GLOBAL_TIME = 14120

15006 DMA_INT 4 ValueX 13 Transaction log

15063 EMAC_INT 4 ValueY 14 GLOBAL_TIME = 14180

5 GLOBAL_TIME = 14200 14 Transaction log

5 ValueX 15 GLOBAL_TIME = 14240

5 ValueY 15 Transaction log

16 GLOBAL_TIME = 14300

16 Transaction log

17 GLOBAL_TIME = 14360

17 Transaction log

18 GLOBAL_TIME = 14420

18 Transaction log
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As described in the preceding sections, the trace logs can be correlated with one another 
using common time events. The core event trace has a PC value with each event, and 
the GLOBAL_TIME is the marker that is common to the other trace logs. The DMA 
log is recorded with every GLOBAL_EVENT (or multiple), and the UMTS Time 
recorded with the log entry shows which window in time. The time stamp recorded 
with each API call in the call log is the actual time.

With the core event traces, each entry in the logs are referenced to the PC value of the 
core that is performing the trace function. Given that each core can stall independently 
from the others, the logs need to be correlated to one another using common time 
markers. The Global_TIME shown for each log is the same and matches that used for 
correlation to other trace logs.

Table 6 Core Event Trace Correlation

CPU 0 CPU 1 CPU 2

Cycle Event Cycle Event Cycle Event

10161 SEM_INT 10115 DMA_INT

10000 GLOBAL_TIME 13001 GLOBAL_TIME 11061 GLOBAL_TIME

10203 DMA_INT 13070 DMA_INT

11150 EMAC_INT 13404 GPINT

11601 DMA_INT

12000 GLOBAL_TIME 15001 GLOBAL_TIME 13044 GLOBAL_TIME

12706 DMA_INT 15390 DMA_INT 13910 DMA_INT

13033 EMAC_INT 16012 DMA_INT

13901 GPINT

14000 GLOBAL_TIME 16804 GLOBAL_TIME 15036 GLOBAL_TIME

15006 DMA_INT 17506 DMA_INT 16690 DMA_INT

15063 EMAC_INT 18029 DMA_INT

16000 GLOBAL_TIME 19001 GLOBAL_TIME 17876 GLOBAL_TIME

16079 DMA_INT 19740 DMA_INT 18101 DMA_INT

20406 DMA_INT

20485 GLOBAL_TIME

20496 DMA_INT

20500 GPINT

21028 DMA_INT

22008 GLOBAL_TIME
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Using the above information it is possible to build summaries per time window of the 
device operation, as shown in Table 7. This information provides details into the 
activity on each core as well as the system loading through the device interfaces and 
important events from user-defined sources.

Table 7 Time Window Trace Log Summary

Time Window 0

Start UMTS Time 0

Core 0 Event Trace Core 1 Event Trace Core 2 Event Trace

10000 TIME_EVENT 11500 TIME_EVENT 14350 TIME_EVENT

10203 DMA_INT0 11620 DMA_INT3 14440 DMA_INT6

11150 DMA_INT1 12110 DMA_INT4 14550 DMA_INT7

11601 DMA_INT2 12230 DMA_INT5 14590 DMA_INT6

12950 DMA_INT3 14620 DMA_INT6

12970 DMA_INT4 14680 DMA_INT6

12970 DMA_INT5

Statistics Summary

Interface % Utilization % Reads % Writes

DDR2 17.6 79.3 20.7

RAC (cfg) 3.1 5.0 95.0

RAC (data) 26.8 22.9 77.1

AIF 86.4 50.9 49.1

General Stats

User Stat 1 8493

User Stat 2 26337
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9 Summary
In this paper, two programming models for use in real-time multicore applications are 
described, and a methodology to analyze and partition application software for a 
multicore environment is introduced. In addition, features of the Texas Instruments 
TCI64xx and C64xx multicore processor families used for data transfer, 
communication, resource sharing, memory management and debug are explained. 

TI TCI64xx and C64xx processors offer a high level of performance through efficient 
memory architectures, coordinated resource sharing, and sophisticated 
communication techniques. To facilitate customers achieving full performance from 
these parts, TI has included hardware in the devices to allow the cores to both execute 
with minimal overhead and to easily interact with each other through signaling and 
arbitration. These devices also contain hardware that provides trace and debug 
visibility into the multicore system. 

TI’s multicore architectures deliver excellent cost/performance and 
power/performance ratios for customers requiring maximum performance in small 
footprints with low power requirements. As the leader in many applications that 
require high-performance products, TI is committed to multicore technology with a 
robust roadmap of products.
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