
SPRAB27A—August 2009 Multicore Programming Guide Page 1 of 36
Submit Documentation Feedback

SPRAB27A—August 2009

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications
of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.

Application Report

Multicore Programming Guide
Communications Infrastructure and Voice/DSP Systems

David Bell
Greg Wood

Abstract
As application complexity continues to grow we have reached a limit on increasing
performance by merely scaling clock speed. To meet the ever-increasing processing
demand, modern System-On-Chip solutions contain multiple processing cores. The
dilemma is how to map applications to multicore devices. In this paper, we present a
programming methodology for converting applications to run on multicore devices.
We also describe the features of Texas Instruments DSPs that enable efficient
implementation, execution, synchronization, and analysis of multicore applications.

Contents
1 Introduction. 3
2 Mapping an Application to a Multicore Processor . 3

2.1 Parallel Processing Models . 3
2.2 Identifying a Parallel Task Implementation . 6

3 Inter-Processor Communication. 10
3.1 Data Movement . 10
3.2 Notification . 12

4 Data Transfer Engines . 15
4.1 EDMA . 15
4.2 Ethernet . 15
4.3 RapidIO . 15
4.4 Antenna Interface . 16

5 Shared Resource Management. 17
5.1 Global Flags . 17
5.2 OS Semaphores . 17
5.3 Hardware Semaphores . 17
5.4 Direct Signaling . 17

6 Memory Management . 18
6.1 CPU View of the Device . 19
6.2 Cache Considerations. 20
6.3 Shared Code Program Memory Placement . 22
6.4 Peripheral Drivers . 22
6.5 Data Memory Placement. 23
6.6 Data Memory Access . 23

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 2 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

7 DSP Code and Data Image . 24
7.1 Single Image . 24
7.2 Multiple Image . 24
7.3 Multiple Image with Shared Code and Data . 25
7.4 Device Boot . 26

8 System Debug. 27
8.1 Debug and Tooling Categories. 27
8.2 Trace Logs . 28

9 Summary. 35
10 References . 36

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 3 of 36
Submit Documentation Feedback

www.ti.com

1 Introduction
For the past 50 years, Moore’s law accurately predicted that the number of transistors
on an integrated circuit would double every two years. To translate these transistors
into equivalent levels of system performance, chip designers increased clock
frequencies (requiring deeper instruction pipelines), increased instruction level
parallelism (requiring concurrent threads and branch prediction), increased memory
performance (requiring larger caches), and increased power consumption (requiring
active power management).

Each of these four areas is hitting a wall that impedes further growth:
• Increased processing frequency is slowing due to diminishing improvements in

clock rates and poor wire scaling as semiconductor devices shrink.
• Instruction level parallelism is limited by the inherent lack of parallelism in the

applications.
• Memory performance is limited by the increasing gap between processor and

memory speeds.
• Power consumption scales with clock frequency, so at some point, extraordinary

means are needed to cool the device.

Using multiple processor cores on a single chip allows designers to meet performance
goals without using the maximum operating frequency. They can select a frequency in
the sweet spot of a process technology that results in lower power consumption. Overall
performance is achieved with cores having simplified pipeline architectures relative to
an equivalent single core solution. Multiple instances of the core in the device result in
dramatic increases in the MIPS-per-watt performance.

2 Mapping an Application to a Multicore Processor
Until recently, advances in computing hardware provided significant increases in the
execution speed of software, with little effort from software developers. The
introduction of multicore processors provides a new challenge for software developers,
who must now master the programming techniques necessary to fully exploit multicore
processing potential.

Task parallelism is the concurrent execution of independent tasks in software. On a
single-core processor, separate tasks must share the same processor. On a multicore
processor, tasks essentially run independently of one another, resulting in more
efficient execution.

2.1 Parallel Processing Models
One of the first steps in mapping an application to a multicore processor is to identify
the task parallelism and select a processing model that fits best. The two dominant
models are a Master/Slave model in which one core controls the work assignments on
all cores, and the Data Flow model in which work flows through processing stages as in
a pipeline.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 4 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

2.1.1 Master/Slave Model

The Master/Slave model represents centralized control with distributed execution. A
master core is responsible for scheduling various threads of execution that can be
allocated to any available core for processing. It also must deliver any data required by
the thread to the slave core. Applications that fit this model inherently consist of many
small independent threads that fit easily within the processing resources of a single
core. This software often contains a significant amount of control code and often
accesses memory in random order with multiple levels of indirection. There is
relatively little computation per memory access and the code base is usually very large.
Applications that fit the Master/Slave model often run on a high-level OS like Linux
and potentially already have multiple threads of execution defined. In this scenario, the
high-level OS is the master in charge of the scheduling.

The challenge for applications using this model is real-time load balancing because the
thread activation can be random. Individual threads of execution can have very
different throughput requirements. The master must maintain a list of cores with free
resources and be able to optimize the balance of work across the cores so that optimal
parallelism is achieved. An example of a Master/Slave task allocation model is shown
in Figure 1.
Figure 1 Master / Slave Processing Model

One application that lends itself to the Master/Slave model is the multi-user data link
layer of a communication protocol stack. It is responsible for media access control and
logical link control of a physical layer including complex, dynamic scheduling and data
movement through transport channels. The software often accesses multi-dimensional
arrays resulting in very disjointed memory access.

Task Master

Task A

Task B

Tasks C, D, E

Tasks F, G

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 5 of 36
Submit Documentation Feedback

www.ti.com

One or more execution threads are mapped to each core. Task assignment is achieved
using message-passing between cores. The messages provide the control triggers to
begin execution and pointers to the required data. Each core has at least one task whose
job is to receive messages containing job assignments. The task is suspended until a
message arrives triggering the thread of execution.

2.1.2 Data Flow Model

The Data Flow model represents distributed control and execution. Each core
processes a block of data using various algorithms and then the data are passed to
another core for further processing. The initial core is often connected to an input
interface supplying the initial data for processing from either a sensor or FPGA.
Scheduling is triggered upon data availability. Applications that fit the Data Flow
model often contain large and computationally complex components that are
dependent on each other and may not fit on a single core. They likely run on a real time
OS where minimizing latency is critical. Data access patterns are very regular because
each element of the data arrays is processed uniformly.

The challenge for applications using this model is partitioning the complex
components across cores and the high data flow rate through the system. Components
often need to be split and mapped to multiple cores to keep the processing pipeline
flowing regularly. The high data rate requires good memory bandwidth between cores.
The data movement between cores is regular and low latency hand-offs are critical. An
example of Data Flow processing is shown in Figure 2.

Figure 2 Data Flow Processing Model

One application that lends itself to the Data Flow model is the physical layer of a
communication protocol stack. It translates communications requests from the data
link layer into hardware-specific operations to effect transmission or reception of
electronic signals. The software implements complex signal processing using intrinsic
instructions that take advantage of the instruction level parallelism in the hardware.

The processing chain requires one or more tasks to be mapped to each core.
Synchronization of execution is achieved using message passing between cores. Data
are passed between cores using shared memory or DMA transfers.

Task A Task G

Tasks B, C

Tasks B, C

Tasks D, E, F

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 6 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

2.2 Identifying a Parallel Task Implementation
Identifying the task parallelism in an application is a challenge that, for now, must be
tackled manually. TI is developing code generation tools that will allow users to
instrument their source code to identify opportunities for automating the mapping of
tasks to individual cores. Even after identifying parallel tasks, mapping and scheduling
the tasks across a multicore system requires careful planning. A four-step process,
derived from Software Decomposition for Multicore Architectures [1], is proposed to
guide the design of the application:

1. Partitioning — Partitioning of a design is intended to expose opportunities for
parallel execution. The focus is on defining a large number of small tasks in order
to yield a fine-grained decomposition of a problem.

2. Communication — The tasks generated by a partition are intended to execute
concurrently but cannot, in general, execute independently. The computation to
be performed in one task will typically require data associated with another task.
Data must then be transferred between tasks to allow computation to proceed.
This information flow is specified in the communication phase of a design.

3. Combining — Decisions made in the partitioning and communication phases
are reviewed to identify a grouping that will execute efficiently on the multicore
architecture.

4. Mapping — This stage consists of determining where each task is to execute.

2.2.1 Partitioning

Partitioning of an application into base components requires a complexity analysis of
the computation (Reads, Writes, Executes, Multiplies) in each software component and
an analysis of the coupling and cohesion of each component.

For an existing application, the easiest way to measure the computational requirements
is to instrument the software to collect timestamps at the entry and exit of each module
of interest. Using the execution schedule, it is then possible to calculate the throughput
rate requirements in MIPS. Measurements should be collected with both cold and
warm caches to understand the overhead of instruction and data cache misses.

Estimating the coupling of a component characterizes its interdependence with
other subsystems. An analysis of the number of functions or global data outside the
subsystem that depend on entities within the subsystem can pinpoint too many
responsibilities to other systems. An analysis of the number of functions inside the
subsystem that depend on functions or global data outside the subsystem identifies the
level of dependency on other systems.

A subsystem's cohesion characterizes its internal interdependencies and the degree to
which the various responsibilities of the module are focused. It expresses how well all
the internal functions of the subsystem work together. If a single algorithm must use
every function in a subsystem, then there is high cohesion. If several algorithms each
use only a few functions in a subsystem, then there is low cohesion. Subsystems with
high cohesion tend to be very modular, supporting partitioning more easily.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 7 of 36
Submit Documentation Feedback

www.ti.com

Partitioning the application into modules or subsystems is a matter of finding the
breakpoints where coupling is low and cohesion is high. If a module has too many
external dependencies, it should be grouped with another module that together would
reduce coupling and increase cohesion. It is also necessary to take into account the
overall throughput requirements of the module to ensure it fits within a single core.

2.2.2 Communication

After the software modules are identified in the partitioning stage it is necessary to
measure the control and data communication requirements between them. Control
flow diagrams can identify independent control paths that help determine concurrent
tasks in the system. Data flow diagrams help determine object and data
synchronization needs.

Control flow diagrams represent the execution paths between modules. Modules in a
processing sequence that are not on the same core must rely on message passing to
synchronize their execution and possibly require data transfers. Both of these actions
can introduce latency. The control flow diagrams should be used to create metrics that
assist the module grouping decision to maximize overall throughput. Figure 3 contains
an example of a control flow diagram.
Figure 3 Example Control Flow Diagram

Configuration Request

Configuration Confirmation

Data Delivery

Frame Processing Start

Processing Complete Indication

Frame Input

Frame Output

Data I/O Task Controller Accelerator

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 8 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

Data flow diagrams identify the data that must pass between modules and this can be
used to create a measure of the amount and rate of data passed. They also show the level
of interaction between a module and outside entities. Metrics should be created to assist
the grouping of modules to minimize the number and amount of data communicated
between cores. Figure 4 contains an example diagram.

Figure 4 Example Data Flow Diagram

2.2.3 Combining

The combining phase determines whether it is useful to combine tasks identified by the
partitioning phase, so as to provide a smaller number of tasks, each of greater size. It
also includes determining whether it is worthwhile to replicate data or computation.
Related modules with low computational requirements and high coupling are grouped
together. Modules with high computation and high communication costs are
decomposed into smaller modules with lower individual costs.

2.2.4 Mapping

Mapping is the process of assigning modules, tasks or subsystems to individual cores.
Using the results from Partitioning, Communication, and Combining, a plan is made
identifying concurrency issues and module coupling. This is also the time to consider
available hardware accelerators and any dependencies this would place on software
modules.

Bit Data 3 Bit Data 2

Core 1

Core 2

Cmd Status Cmd

CoProcessor 1

Symbol Data

Core 3

Status

Core 0

Bit Data 1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 9 of 36
Submit Documentation Feedback

www.ti.com

Subsystems are allocated onto different cores based on the selected programming
model: Master/Slave or Data Flow. To allow for inter-processor communication
latency and parametric scaling, it is important to reserve some of the available MIPS,
L2 memory, and communication bandwidth on the first iteration of mapping. Once all
modules are mapped, the overall loading of each core can be evaluated to indicate areas
for additional refactoring to balance the processing load across cores.

In addition to the throughput requirements of each individual module, message
passing latency and processing synchronization must be factored into the overall
timeline. Critical latency issues can be addressed by adjusting the module factoring to
reduce the overall number of communication steps. When multiple cores need to share
a resource like a DMA engine or critical memory section, a hardware semaphore is used
to ensure mutual exclusion as described in Section 5.3. Blocking time for a resource
must be factored into the overall processing efficiency equation.

Embedded processors typically have a memory hierarchy consisting of multiple levels
of cache and off-chip memory. It is preferred to operate on data in cache to minimize
the performance hit of the external memory interface. The processing partition selected
may require additional memory buffers or data duplication to compensate for
inter-processor communication latency. Refactoring the software modules to optimize
the cache performance is an important consideration.

When a particular algorithm or critical processing loop requires more throughput than
available on a single core, consider the data parallelism as a potential way to split the
processing requirements. A brute force division of the data by the available number of
cores is not always the best split due to data locality and organization, and required
signal processing. Carefully evaluate the amount of data that must be shared between
cores to determine the best split and any need to duplicate some portion of the data.

The use of hardware accelerators like FFT or Viterbi coprocessors is common in
embedded processing. Sharing the accelerator across multiple cores would require
mutual exclusion via a lock to ensure correct behavior. Partitioning all functionality
requiring the use of the coprocessor to a single core eliminates the need for a hardware
semaphore and the associated latency. Developers should study the efficiency of
blocking multicore access to the accelerator versus non-blocking single core access
with potentially additional data transfer costs to get the data to the single core.

Consideration must be given to scalability as part of the partitioning process. Critical
system parameters are identified and their likely instantiations and combinations
mapped to important use cases. The mapping of tasks to cores would ideally remain
fixed as the application scales for the various use cases.

The mapping process requires multiple cycles of task allocation and parallel efficiency
measurement to find an optimal solution. There is no heuristic that is optimal for all
applications.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 10 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

3 Inter-Processor Communication
The Texas Instruments TCI64xx and C64xx multicore devices offer several
architectural mechanisms to support inter-processor communication. All cores have
full access to the device memory map, meaning any core can read from and write to any
memory. In addition, there is support for direct event signaling between cores for
notification as well as DMA event control for 3rd-party notification. The signaling
available is flexible to allow the solution to be tailored to the communication desired.
Last, there are hardware elements to allow for atomic access arbitration, which can be
used to communicate ownership of a shared resource.

Inter-core communication consists of two primary actions: data movement and
notification.

3.1 Data Movement
The physical movement of data can be accomplished by several different techniques:

• Use of a shared message buffer — The sender and receiver have access to the
same physical memory.

• Use of dedicated memories — There is a transfer between dedicated send and
receive buffers

• Transitioned memory buffer — The ownership of a memory buffer is given from
sender to receiver, but the contents do not transfer.

For each technique, there are two means to read and write the memory contents: CPU
load/store and DMA transfer. The sending and receiving cores choose different
mechanisms.

3.1.1 Shared Memory

Using a shared memory buffer does not necessarily mean that an equally-shared
memory is used, though this would be typical. Rather, it means that a message buffer is
set up in a memory accessible by both sender and receiver, with each responsible for
their portion of the transaction. The sender sends the message to the shared buffer and
notifies the receiver. The receiver retrieves the message by copying the contents from a
source buffer to a destination buffer and notifies the sender that the buffer is free. It is
important to maintain coherency when multiple cores access data from shared
memory.

The DSP/BIOS message queue transport, developed for TCI64x and C64xx multicore
devices to send messages between cores, makes use of this scheme.

3.1.2 Dedicated Memories

It is also possible to manage the transport between the sending and receiving memories.
This is typically used when the cores are using local memory for their data, and
overhead is reduced by keeping the data local. As with the shared memory, there are
notification and transfer stages, and this can be accomplished through a push or pull
mechanism, depending on the use case.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 11 of 36
Submit Documentation Feedback

www.ti.com

In a push model, the sender is responsible to fill the receive buffer; in a pull model, the
receiver is responsible to retrieve the data from the send buffer (Table 1). There are
advantages and disadvantages to both. Primarily, it affects the point of
synchronization.

The differences are only in the notifications. Typically the push model is used due to
the overhead of a remote read request used in the Pull Model. However, if resources are
tight on the receiver, then it may be advantageous for the receiver to control the data
transfer to allow tighter management of its memory.

3.1.3 Transitioned Memory

It is also possible for the sender and receiver to use the same physical memory, but
unlike the shared memory transfer mentioned above, common memory is not
temporary. Rather, the buffer ownership is transferred, but the data does not move
through a message path. The sender passes a pointer to the receiver and the receiver
uses the contents from the original memory buffer.

Message sequence:
1. Sender generates data into memory
2. Sender notifies receiver of data ready/ownership given
3. Receiver consumes memory directly
4. Receiver notifies sender of data ready/ownership given

If applicable for symmetric flow of data, the receiver may switch to the sender role prior
to returning ownership and use the same buffer for its message.

Table 1 Dedicated Memory Models

Push Model Pull Model

Sender prepares send buffer Sender prepares send buffer

Sender transfers to receive buffer Receiver is notified of data ready

Receiver is notified of data ready Receiver transfers to receive buffer

Receiver consumes data Receiver frees memory

Receiver frees memory Receiver consumes data

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 12 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

3.2 Notification
After the communication message data are prepared by the sender for delivery to the
receiver using shared, dedicated, or transitional memory, it is necessary to notify
the receiver of the message availability. This can be accomplished by direct or indirect
signaling, or by atomic arbitration.

3.2.1 Direct Signaling

The devices support a simple peripheral that allows for a core to generate a physical
event to another core. This event is routed through the cores’ local interrupt controller
along with all other system events. The programmer can select whether this event will
generate a CPU interrupt or if the CPU will poll its status. The peripheral includes a flag
register to indicate the originator of the event so that the notified CPU can take the
appropriate action (including clearing the flag) as shown in Figure 5.

The processing steps are:
1. CPU A writes to CPU B’s inter-processor communication (IPC) control register
2. IPC event generated to interrupt controller
3. Interrupt controller notifies CPU B (or polls)
4. CPU B queries IPC
5. CPU B clears IPC flag(s)
6. CPU B performs appropriate action

Figure 5 Direct IPC Signaling

IPC Peripheral

CPU BInterrupt
Controller

CPU A

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 13 of 36
Submit Documentation Feedback

www.ti.com

3.2.2 Indirect Signaling

If a 3rd-party transport, such as the EDMA controller, is used to move data, then the
signaling between cores can also be performed through this transport as well. In other
words, the notification follows the data movement in hardware, rather than through
software control, as shown in Figure 6.

The processing steps are:
1. CPU A configures and triggers transfer using EDMA
2. EDMA completion event generated to interrupt controller
3. Interrupt controller notifies CPU B (or polls)

Figure 6 Indirect Signaling

3.2.3 Atomic Arbitration

Each device includes hardware support for atomic arbitration. The supporting
architecture does vary on different devices, but the same underlying function can be
achieved easily. Atomic arbitration instructions are supported with hardware monitors
in the Shared L2 controller present on the TCI6486 and C6472 devices, while a
semaphore peripheral is present on the TCI6487/88 and C6474 devices because they do
not have a shared L2 memory. On all devices, a CPU can atomically acquire a lock,
modify any shared resource, and release the lock back to the system.

Data

Send
BufferCPU A

Configure

EDMA

Notify

CPU B Receive
Buffer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 14 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

The hardware guarantees that the acquisition of the lock itself is atomic, meaning only
a single core can own it at any time. There is no hardware guarantee that the shared
resource(s) associated with the lock are protected. Rather, the lock is a hardware tool
that allows software to guarantee atomicity through a well defined (and simple)
protocol outlined in Table 2 and shown in Figure 7.

Figure 7 Atomic Arbitration

Table 2 Atomic Arbitration Protocol

CPU A CPU B

1: Acquire lock 1: Acquire lock

→ Pass (lock available) → Fail (Fails because lock is unavailable)

2: Modify resource 2: Repeat step 1 until Pass

3: Release lock → Pass (lock available)

3: Modify resource

4: Release lock

Free Lock

Resource
Lock

Pass

Acquire Lock
Fail

Modify
Resource

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 15 of 36
Submit Documentation Feedback

www.ti.com

4 Data Transfer Engines
Within the device, the primary data transfer engines on current Texas Instruments
TCI64xx and C64xx devices are the EDMA (enhanced DMA) modules. For inter-core
communication between devices, there are several transfer engines, depending on the
physical interface selected for communication:

• EDMA: The EDMA is an integrated DMA transfer engine that can be used to
transfer data between any two memory locations on the device, and is required
for using some of the peripherals (device-specific).

• Antenna Interface (TCI6487/88 and C6474 only): The EDMA is used in
conjunction with the AIF to transport data.

• Serial RapidIO: There are two modes available — DirectIO and Messaging.
Depending on the mode, the EDMA or built-in DMA control are available.

• Ethernet: There is a built-in DMA controller for handling all of the data
movement.

4.1 EDMA
Channels and parameter RAM can be separated by software into regions, with each
region assigned to a core. The event-to-channel routing and EDMA interrupts are fully
programmable, allowing flexibility as to ownership. All event, interrupt, and channel
parameter control is designed to be controlled independently, meaning that once
allocated to a core, that core does not need to arbitrate prior to accessing the resource.

4.2 Ethernet
The peripheral allows for up to 32 MAC addresses to be serviced by up to eight
channels. These can be dedicated to a given core and used for broadcast or multi-cast.
Each core can have a dedicated receive channel that is independently controlled. This
allows for any number of the cores directly consuming Ethernet traffic to a given MAC
address. Once a channel is allocated to a core, that core may access it directly without
arbitration. Likewise, each core can control outbound Ethernet traffic directly.

4.3 RapidIO
Both DirectIO and messaging protocols allow for orthogonal control by each of the
cores. For DSP-initiated DirectIO transfers, the load-store units (LSUs) are used. There
are four of these, each independent from the others, and each can submit transactions
on any physical link. The LSUs may be allocated to individual cores, after which the
cores need not arbitrate for access. Alternatively, the LSUs can be allocated as needed
to any core, in which case there would need to be a temporary ownership assigned that
may be done using a semaphore resource. Similar to the Ethernet peripheral, messaging
allows for individual control for multiple transfer channels. When using messaging
protocols, each core is responsible for managing its own messaging traffic, and
ownership can be assigned for in-bound messages based on RapidIO mailbox numbers.
If using DSP/BIOS MSGQ over RapidIO, this is transparent to the user.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 16 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

4.4 Antenna Interface
The AIF is serviced by multiple EDMA channels, whose timing is controlled by the
frame synchronization (FSYNC) module. EDMA channels are set up once based on the
system timing, board topology, and allocation of antenna streams to cores. Data can be
directed to or from any core, which, in turn, dictates the EDMA channel allocation and
programming. If multiple cores are using the AIF, then each core is required to allocate
EDMA resources according to Section 4.1. In addition, the synchronization of the
selected EDMA channels is critical. If circuit-switched transfer mode is selected, then
the FSYNC module must be programmed to notify each core's associated EDMA
channel(s) at the appropriate time to ensure data is correctly transmitted across the
link. If packet-switched (PS) transfer mode is used, then the cores must control the
EDMA resources efficiently to pass data through the PS FIFO.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 17 of 36
Submit Documentation Feedback

www.ti.com

5 Shared Resource Management
When sharing resources on the device, it is critical that there is a protocol followed
uniformly by all of the cores in the system. The protocol may depend on the set of
resources being shared, but all cores must follow the same rules.

Section 3.2 mentioned signaling in the context of message passing. The same signalling
mechanisms can be used for general resource management as well. One can use direct
signaling or atomic arbitration between cores. Within a core, one can use a global flag
or an OS semaphore. It is not recommended to use a simple global flag for inter-core
arbitration because there is significant overhead to ensure updates are atomic.

5.1 Global Flags
Global flags are useful within a single core using a single-threaded model. If there is a
resource that depends on an action being completed (typically a hardware event), a
global flag may be set and cleared for simple control.

5.2 OS Semaphores
All multi-task operating systems include semaphore support for arbitration of shared
resources and for task synchronization. On a single core, this is essentially a global flag
controlled by the OS that keeps track of when a resource is owned by a task, or when a
thread should block or proceed with execution based on signals the semaphore has
received.

5.3 Hardware Semaphores
Hardware semaphores are needed only when arbitrating between cores. There is no
advantage for using them for single-core arbitration, as the OS can use its own
mechanism with much less overhead. When arbitrating between cores, hardware
support is essential to ensure updates are atomic. There are software algorithms that
can be used along with shared memory, but these consume CPU cycles unnecessarily.

5.4 Direct Signaling
As with the message passing, direct signaling can be used for simple arbitration. If there
is only a small set of resources being shared between cores, then the IPC signaling
described in Section 3.2.1 can be used. A protocol can be followed to allow a notify and
acknowledge handshake to pass ownership of a resource.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 18 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

6 Memory Management
In programming a multicore device, it is important to consider the processing model.
On the Texas Instruments TCI64xx and C64xx devices, each core has local L1/L2
memory and equal access to any shared internal and external memory. It is typically
expected that each core will execute some or the entire code image from shared
memory, with data being the predominant use of the local memories. This is not a
restriction on the user and is explained later in this section.

In the case of each core having its own code and data space, the aliased L1/L2 addresses
should not be used. Only the global addresses should be used, which gives a common
view to the entire system of each memory location. This also means that for software
development, each core would have its own project, built in isolation from the others.
Shared regions would be commonly defined in each core’s map and accessed directly
by any master, using the same address.

In the case of there being a shared code section, there may be a desire to use aliased
addresses for data structures or scratch memory used in the common function(s). This
would allow the same address to be used by any of the cores without regard for checking
which core it is. The data structure/scratch buffer would need to have a run address
defined using the aliased address region so that when accessed by the function it is
core-agnostic. The load address would need to be the global address for the same offset.
The run-time, aliased address is usable for direct CPU load/store and internal DMA
(IDMA) paging, though not EDMA or other master transactions. These transactions
must use the global address.

It is always possible for the software to verify on which core it is running as well, so the
aliased addresses are not required to be used in common code. There is a CPU register
(DNUM) that holds the DSP core number and can be read during run-time to
conditionally execute code and update pointers.

Any shared data resource should be arbitrated so that there are no conflicts of
ownership. There is an on-chip semaphore peripheral that allows threads executing on
different CPUs to arbitrate for ownership of a shared resource. This ensures that a
read-modify-write update to a shared resource can be made atomically.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 19 of 36
Submit Documentation Feedback

www.ti.com

6.1 CPU View of the Device
Each of the CPUs has an identical view of the device. As shown in Figure 8, beyond each
core’s L2 memory there is a switched central resource (SCR) that inter-connects the
cores, external memory interface, and on-chip peripherals through a switch fabric.
Figure 8 CPUs' Device View

Each of the cores is a master to both the configuration (access to peripheral control
registers) and DMA (internal and external data memories) switch fabrics. In Addition,
each core has a slave interface to the DMA switch fabric allowing access to its L1 and
L2 SRAM. All cores have equal access to all slave end-points, with priority assigned per
master by user software for arbitration between all accesses at each end-point.

Each slave in the system (e.g. Timer control, DDR2 SDRAM, each core's L1/L2 SRAM)
has a unique address in the device’s memory map that is used by any of the masters to
access it. Restrictions to the chip-level routing is beyond the scope of the document, but
for the most part, each core has access to all control registers and all RAM locations in
the memory map. For details of restrictions to chip-level routing, see TI reference guide
SPRU871, TMS320C64x+ DSP Megamodule [2].

Within each core there are Level 1 program and data memories directly connected to
the CPU, and a Level 2 unified memory. Details for the cache and SRAM control
(see [2]) are beyond the scope of this document, but each memory is user-configurable
to have some portion be memory-mapped SRAM.

As described previously, the local core's L1/L2 memories have two entries in the
memory map. All memory local to the processors has global addresses that are
accessible to all masters in the device. In addition, local memory can be accessed
directly by the associated processor through aliased addresses, where the eight most
significant bits are masked to zero. The aliasing is handled within the core and allows
for common code to be run unmodified on multiple cores. For example, address
location 0x10800000 is the global base address for core 0’s L2 memory. Core 0 can
access this location by using either 0x10800000 or 0x00800000. Any other master on
the device must use 0x10800000 only. Conversely, 0x00800000 can be used by any of
the three cores as their own L2 base addresses. For Core 0, as mentioned, this is
equivalent to 0x10800000, for core 1 this is equivalent to 0x11800000, and for core 2

DDR2
SDRAM

Peripheral
Config

Local
Memory

CPU

CFG SCR

DMA SCR

Shared
Memory

Non-Local
Memory

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 20 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

this is equivalent to 0x12800000. Local addresses should be used only for shared code
or data, allowing a single image to be included in memory. Any code/data targeted to a
specific core, or a memory region allocated during run-time by a particular core, should
always use the global address only.

6.2 Cache Considerations
It is important to point out that the only coherency guaranteed by hardware with no
software management is L1D cache coherency with L2 SRAM within the same core.
The hardware will guarantee that any updates to L2 will be reflected in L1D cache, and
vice versa. There is no guaranteed coherency between L1P cache and L2 within the
same core, there is no coherency between L1/L2 on one core and L1/L2 on another
core, and there is no coherency between any L1/L2 on the chip and external memory.

The TCI64xx and C64xx devices do not support automated cache coherency because
of the power consumption involved and the latency overhead introduced. Real-time
applications targeted for these devices require predictability and determinism, which
comes from data coherency being coordinated at select times by the application
software. As developers manage this coherency, they develop designs that run faster
and at lower power because they control when and if local data must be replicated into
different memories.

This coherency can all be managed through software. For shared L2 cache (SL2),
coherency is not maintained between cores, so for any shared writeable data sections,
the user must manage coherency as with external memory. If a section of the SL2 is used
for writeable data by a single core only, then that core’s L1D cache is guaranteed to be
coherent with this portion of the SL2. This is summarized in Figure 9.

The DSP/BIOS operating system provides a BCACHE module that includes API
functions to perform cache coherency operations including cache line invalidation,
cache line writeback to stored memory, and a writeback-invalidation operation.
DSP/BIOS also provide RapidIO and shared memory Message Queue Transports
(MQT) that maintain cache coherency for the application using them.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 21 of 36
Submit Documentation Feedback

www.ti.com

Figure 9 Cache Coherency Mapping

In addition, if any portion of the L1s is configured as memory-mapped SRAM, there is
a small paging engine built into the core (IDMA) that can be used to transfer linear
blocks of memory between L1 and L2 in the background of CPU operation. IDMA
transfers have a user-programmable priority to arbitrate against other masters in the
system. The IDMA may also be used to perform bulk peripheral configuration register
access.

In programming a TCI6486 or C6472 device, it is important to consider the processing
model. As shown in Figure 9, each core has local L1/L2 memory and a direct
connection to the shared L2 memory (if present in the device), plus equal access to the
external DDR2 SDRAM (if present in the system).

L2
code_0

data_0

SL2
code_all

data_all

L2
code_1

CPU1DMA SCRCPU0

DDR2
code_all

data_all

data_0

data_1

Not coherent

Coherent with core 0

Coherent with core 1

data_0

data_1
data_1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 22 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

6.3 Shared Code Program Memory Placement
When CPUs execute from a shared code image, it is important to take care to manage
local data buffers. Memory used for stack or local data tables can use the aliased
address, and will therefore be identical for all cores. In addition, any L1D SRAM used
for scratch data, with paging from L2 SRAM using the IDMA, can use the aliased
address.

As mentioned in preceding sections of the document, DMA masters must use the
global address for any memory transaction. Therefore, when programming the DMA
context in any peripheral, the code must insert the core number (DNUM) into the
address.

External data sections or unique data tables within the SL2 data sections cannot simply
be placed using the linker. Instead, the per-core addresses must be determined at
initialization time and stored in a pointer (or calculated each time they are used).

The programmer can use the formula:
<base address> + <per-core-area size> × DNUM

This can be done at boot time or during thread creation time when pointers are
calculated and stored in local L2. This allows the rest of the processing through this
pointer to be core-independent, such that the correct unique pointer is always retrieved
from local L2 when it is needed.

Thus, the shared application can be created, using the local L2 memory, such that each
core can run the same application with little knowledge of the multicore system (such
knowledge is only in initialization code). The actual components within the thread are
not aware that they are running on a multicore system.

6.4 Peripheral Drivers
All device peripherals are shared and any core can access any of the peripherals at any
time. Initialization should occur during the boot process, either directly by an external
host, by parameter tables in an I2C EEPROM, or by an initialization sequence within
the application code itself (one core only). For all run-time control, it is up to the
software to determine when a particular core is to initialize a peripheral. In addition,
rules must be provided either at build time or system-initialization time to allow the
routing of information received from a peripheral to the correct core. For example, one
set of EMAC addresses are uniquely assigned to each core, a unique Utopia VPI field
value is assigned per core, or a unique mailbox number for SRIO messages is assigned.

For each of the DMA resources on the device mentioned above, it is the up to the
software architecture to determine whether all resources for a given peripheral will be
controlled by a single core (master control) or if each core will control its own (peer
control). With the TCI6486 or C6472, as summarized above, all peripherals have
multiple DMA channel context that allows for peer control without requiring
arbitration. That is to say that each DMA context is autonomous and no considerations
for atomic access need to be taken in to account.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 23 of 36
Submit Documentation Feedback

www.ti.com

It should be noted that because a subset of the cores can be reset during run-time, the
application software must own re-initialization of the reset cores in a way that avoids
interruption of the cores not being reset. This can be accomplished by having each core
check the state of the peripheral it is configuring. If the peripheral is not powered up
and enabled for transmit and receive, the core will perform the power up and global
configuration. There is an inherent race condition in this method if two cores read the
peripheral state when it is powered down and begin a power up sequence, but this can
be managed by using the atomic monitors in the shared memory controller (SMC).

A host control method allows deferring the decision on device initialization to a higher
layer, outside the DSP. When a core needs to access a peripheral, it is directed by this
upper layer on whether to perform a global initialization or simply a local initialization.

6.5 Data Memory Placement
Data buffers may reside in any of the device memories, but typically are brought into
L1D SRAM (for critical sections) or L2 SRAM for processing. Low-priority data may
reside in DDR2 SDRAM and be accessed through the cache.

6.6 Data Memory Access
Memory selection for data is dependent primarily on how the data is to be transmitted
and received and the access pattern/timing of the data by the CPU(s). Ideally, all data
is allocated to L2 SRAM. Often, however, there is a space limitation in the internal DSP
memory that requires some code and data to reside off chip in DDR2 SDRAM.

Typically, data for run-time critical functions are located within local L2 RAM for the
core to which the data is assigned and non-time-critical data such as statistics are
pushed to external memory and accessed through the cache. In the instance that
run-time data must be placed off-chip it is often preferred to page data between L2
SRAM and external memory rather than access through the cache. The tradeoff is
simply control overhead versus performance, though even if accessing the data through
the cache, coherency must be maintained in software for any DMA of data to or from
the external memory.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 24 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

7 DSP Code and Data Image
In order to better support the configuration of these multicore devices, it is important
to understand how to define the software project(s) and OS partitioning. In this section,
DSP/BIOS will be referenced, but comparable considerations would need to be taken
for any OS.

DSP/BIOS provides configuration platforms for all Texas Instruments TCI64xx and
C64xx devices. In the DSP/BIOS configuration for the TCI6486 and C6472, there are
separate memory sections for local L2 memory (LL2RAM) and shared L2 memory
(SL2RAM). Depending how much of the application is common across the cores,
different configurations are necessary to minimize the footprint of the OS and
application in the device memory.

7.1 Single Image
The single image application shares some code and data memory across all cores. This
technique allows the exact same application to load and run on all cores. If running a
completely shared application (all cores execute the same program), then only a single
project is required for the device, and likewise, a single DSP/BIOS configuration file is
required. As mentioned in the previous sections, there are some considerations for the
code and linker command file:

• The code must set up pointer tables for unique data sections that reside in shared
L2 or DDR2 SDRAM

• The code must add DNUM to any data buffer addresses when programming
DMA channels

• The linker command file should define the device memory map using aliased
addresses only

7.2 Multiple Image
In this scenario, each core runs a different and independent application. This requires
that any code or data placed in a shared memory region (L2 or DDR) be allocated a
unique address range to prevent other cores from accessing the same memory region.

For this application, the DSP/BIOS configuration file for each application adjusts the
locations of the memory sections to ensure that overlapping memory ranges are not
accessible by multiple cores.

Each core requires a dedicated project or at least a dedicated linker command file if the
code is to be replicated. The linker output needs to map all sections to unique addresses,
which can be done using global addressing for all sections. In this case, there is no
aliasing required, and all addresses used by DMA are identical to those used by each
CPU.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 25 of 36
Submit Documentation Feedback

www.ti.com

7.3 Multiple Image with Shared Code and Data
In this scenario, a common code image is shared by different applications running on
different cores. Sharing common code between multiple applications reduces the
overall memory requirement while still allowing for the different cores to run unique
applications.

This requires a combination of the techniques used for a single image and for multiple
images, which can be accomplished through the use of partial linking.

The output generated from a partially-linked image can be linked again with additional
modules or applications. Partial linking allows the programmer to partition large
applications, link each part separately, and then link all the parts together to create the
final executable. The TI Code Generation tool's linker provides an option (–r) to create
a partial image. The –r option allows the image to be linked again with the final
application.

There are a few restrictions when using the –r linker option to create a partial image:
• Conditional linking is disabled. Memory requirement may increase.
• Trampolines are disabled. All code needs to be within a 21-bit boundary.
• .cinit and .pinit can not be placed in the partial image.

The partial image must be placed in shared memory so that all the cores can access it,
and it should contain all code (.bios and .text) except for .hwi_vec. It should also
contain the constant data (.sysinit and .const) needed by the DSP/BIOS code in the
same location. The image is placed in a fixed location, with which the final applications
will link.

Because the DSP/BIOS code contains data references (.far and .bss sections), these
sections need to be placed in the same memory location in non-shared memory by the
different applications that will link with this partial image. To allow this to work
correctly, each core must have a non-shared memory section at the same address
location. For the TCI6486 and C6472, these sections must be placed in local L2 memory
for each core.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 26 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

7.4 Device Boot
As discussed in Section 6, there may be one or more projects and resulting .out files
used in software development for a single device, depending on the mix of shared and
unique sections. Regardless of the number of .out files created, a single boot table
should be generated for the final image to be loaded in the end system.

TI has several utilities to help with the creation of the single boot table. Figure 10
contains an example of how these utilities can be used to build a single boot table from
three separate executable files.
Figure 10 Boot Table Merge

Once a single boot table is created, it can be used to load the entire DSP image. As
mentioned in previous sections, there is a single global memory map, which allows for
a straightforward boot loading process. All sections are loaded as defined by their
global address.

The boot sequence is controlled by a single core. After device reset, Core 0 is
responsible for releasing all cores from reset after the boot image is loaded into the
device. With a single boot table, Core 0 is able to load any memory on the device, and
the user does not need to take any special care for the multiple cores other than to
ensure that code is properly loaded in the memory map to all cores' start addresses
(which is configurable).

Details on the boot loader are available in TI user guides SPRUEA7, TMS320TCI648x
DSP Bootloader [3] and SPRUG24, TMS320C6474 DSP Bootloader [4].

Hex6x

Hex6x

Hex6x
Core0.out
Core0.rmd

Core1.out
Core1.rmd

Core2.out
Core2.rmd

Core0.btbl

Core1.btbl

Core2.btbl

MERGEBTBL
DSPCode.btbl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 27 of 36
Submit Documentation Feedback

www.ti.com

8 System Debug
The Texas Instruments TCI6486 and C6472 devices offer hardware support for
visualization of the program and data flow through the device. Much of the hardware
is built into the core, with system events used to extend the visibility through the rest of
the chip. Events also serve as synchronization points between cores and the system,
allowing for all activity to be “stitched together” in a single timeline.

8.1 Debug and Tooling Categories
There are hardware and software tools available during runtime that can be used to
debug a particular problem. Given that different problems can arise during different
phases of system development, the debug and tooling resources available are described
in several categories. The four scenarios are addressed in Table 3.

While the characteristics described in Table 3 are not unique to multicore devices,
having multiple cores, accelerators, and a large number of endpoints means that there
is a lot of activity occurring within the device. As such, it is important to use the
emulation and instrumentation capabilities as much as possible to ease the complexity
of debugging real-time problems in the development, test, and field environments. The
following sections outline the system software instrumentation required to generate
trace captures and logs for a particular problem.

Table 3 Debug and Tooling Categories

Resident Configuration Debug Configuration

Emulation Hardware

• Configured at start-up and always
available for non-intrusive debug

• Resources may be steered by
application or external host, based on
system events that are available
within the application (e.g. no code
modification required)

• May be intrusive to the system
software, depending on when
configuration occurs (startup vs.
run-time), but performance is not
changed when leveraged for
diagnostics

• Used as needed for system bring-up
issues

• Resources must be traded off to look at
points of interest

• May be intrusive to the system
performance, depending on the
resources used to investigate a
problem

• May require multiple runs of the
software to collect all needed
information

Software
Instrumentation

• Code must be built with hooks to
prevent the need to re-compile for
diagnostic purposes

• Hooks leveraged during run-time either
by software (through host
interaction) or through Code
Composer Studio (CCS) commands

• Host tools/processor can analyze data
offline while system is running

• May be intrusive to the software
performance, but performance is not
changed when leveraged for
diagnostics as it is always present

• Code must be re-compiled to include
additional diagnostic capability

• Hooks enabled during compile-time
and re-loaded onto target

• Host tools/processor can analyze data
offline while system is running

• May be intrusive to the software
performance and may modify system
behavior slightly, depending on the
resources used

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 28 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

8.2 Trace Logs
Fundamentally, the code running on each of the cores must be instrumented, and the
available hardware emulation logic configured to generate a trace of the software and
data flow of the device execution. This process supports debug of problems found
during development or even problems that arise in a deployed system. Trace logs can
be enabled all the time or just during debug sessions, and can include any of the
following data items:

• API call log: The target software incorporates logging functionality to record
all API calls of interest. API calls can be recorded to memory with an ID,
timestamp, and any parameters of interest.

• Statistics log: Chip-level statistics can be periodically captured to provide a
picture of the activity going through the SCR switch fabric over time. Statistics
include bus monitors, event counters, and any other data of interest. This is
typically resident in the system, though different/additional statistics may be
optionally captured during debug.

• DMA transaction log: DMA transfers of interest can trigger a statistics capture,
including timer values, chip registers, and data tables. This is typically resident in
the system, though different/additional events and transactions may be
optionally captured during debug.

• Core trace log: Core advanced emulation trigger (AET) can trace system events
of interest, correlated to the CPU time. This is typically resident in the system,
though different system events may be traced during debug. Also, PC trace may
be added to the trace log. If data trace is desired during debug, it requires
disabling the event trace.

• Other events/data can be recorded in a log buffer, as desired, by the CPU or
DMA. The usage here is entirely customer specific.

Historical information can then be used to construct a stand-alone test case using the
same control and data flows that reproduce a scenario in the lab for further analysis.

8.2.1 API Call Log

The API call log is based on software instrumentation within the target software.
Multiple logs may be correlated with respect to time either on the same core or across
cores. The API call log is recorded by software directly into device memory.

Each of the API records will be accompanied by a time stamp to allow correlation with
other transaction logs. The content of the logs may be useful in understanding both the
call flow as well as details on the processed information at various points in time of
execution.

8.2.2 Statistics Log

The statistics log consists of chip statistics taken at regular intervals that give a
high-level picture of the device activity. The DDR, receive accelerator (RAC), and
antenna interface (AIF) modules all have statistics registers built into them to keep
track of bus activity. These statistics can be captured at regular intervals to record the
activity to those modules during each time window. The log can then be used to give a
high-level view of the data flow through the SCR switch fabric during each window of
time.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 29 of 36
Submit Documentation Feedback

www.ti.com

Statistics recorded by software in memory can also be recorded in the statistics log.

In addition to the statistics values, a chip time value must be recorded as well, to allow
correlation with other transaction logs.

There is some flexibility in the statistics to be captured by the system, so the
configuration of the statistics capture is left to the application. The required format is
for the log to contain a time value following by the statistics of interest. Multiple logs
are possible, provided that each holds a time value to allow correlation with the others.

8.2.3 DMA Transaction Log

Given the amount of data traffic that is handled within the SCR switch fabric by
the EDMA controller, it is useful to record when certain DMA transactions take place.
EDMA channels can be configured to trigger a secondary DMA channel to record
statistics related to its activity: an identifier and reference time. Each DMA channel of
interest can have a transaction log in which the transfer identifier, time of transfer, and
any relevant information surrounding the transfer can be recorded. The number of
transaction logs is flexible, and is limited only by the number of EDMA channels that
can be dedicated to performing the recording.

The time value recorded with each entry should have a relationship to the time value
used in the other transaction logs to allow correlation with other chip activity.

8.2.4 Event Log

The event logs are provided by each TCI64xx and C64xx core through their event trace
capability. Event trace allows system events to be traced along with the CPU activity so
that the device activity in relation to the processing being performed within the CPUs
can be understood. The trace data output from each of the cores can be captured
off-chip through an emulator or on-chip in the embedded trace buffers. Event logs do
add additional visibility to the state of the processor over time, but also use additional
free-running hardware and could be a power consumption concern in a deployed
system. During development, however, the event trace can be used in conjunction with
the other transaction logs for greater visibility.

The event log allows the recording of PC discontinuities, the execute/stall status for
each CPU cycle, and up to eight system events (user programmable). In order to
correlate the event traces of multiple cores with one another, and with the other
transaction logs, one of the eight system events must be a time event common to the
other logs.

8.2.5 Customer Data Log

Additional instrumentation of the application software is possible and should follow
the guidelines outlined for the other transaction logs to record a time stamp with each
entry to allow correlation to other chip activity. The contents of each entry can be
anything meaningful in the customer system.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 30 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

8.2.6 Correlation of Trace Logs

As mentioned in Section 8.2, a common system time event needs to be used to correlate
the multiple trace logs collected by the system in order to put together a complete view
of the program and data flow on the chip. All API, statistics, DMA, and data logs must
include a count value that corresponds to the window in time for which the log data was
collected. The recording of the time value may be different depending on the type of log
it is, but provided that the counts are off of the same base and with a common period
or relationship, the logs can be merged together.

The count is recorded as described in Table 4.

In Table 4, the time intervals are shown as an integer (x or y) times a common period p.
The integer multiples should all be integer multiples of one another (e.g. there could be
four statistics log windows for every DMA transaction log window).

For the API call log, the time value itself is recorded with each API call. Since the log
recording is under CPU software control rather than DMA control, recording a
window marker would require an interrupt and does not provide any additional
information because the window can be determined by the count value divided by the
window period, p.

The Statistics log gets a timestamp recorded in memory. Every x × p UMTS (universal
mobile telecommunications system) cycles in time an event is asserted to the DMA to
capture the time value and all statistics of interest. In addition, the statistics registers
must be cleared to begin collecting over the next time window because the statistics
represent events during the current window. The time value recorded along with the
statistics data serves as the start time of the next window.

The DMA transaction log is similar to the API call log, in that the time is recorded with
each transaction or multiple chained transactions of interest. The time value is
captured by a DMA channel that is chained to the transfer(s) of interest along with
information necessary to identify the transaction(s). As with the API call log, the
window to which the transaction records belong can be determined by dividing the
value recorded by the period, p.

Table 4 Event Log Time Markers

Log Time Event(s) Recorded Relationship to Log Data

API Call System time With each API call Reflection of the point at which the call was made

Statistics System time
(at interval x × p)

At time of statistics collection The end of the time window for which the statistics are
valid

DMA Transaction System time After each DMA transaction of interest Reflection of the point at which the DMA transfer took
place

Event System time interval (y × p)
marker

Within the event stream Marker at each time window boundary

Program Counter With each event recorded Reflection of the PC value at the time of arrival of the event
to the core

Data System time With each data record Customer defined

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 31 of 36
Submit Documentation Feedback

www.ti.com

The Event log contains UMTS timing markers and CPU program counter (PC)
markers. The UMTS time interval marker is used to correlate the event log to the other
logs and serves to distinguish the collection windows. The time value represents the
beginning of the time window. The CPU PC value is recorded with each time event and
can be used to indicate the processing activity occurring during each time window. It
may provide insight as to what caused some of the information collected in the other
logs.

The customer data log is customer defined, but should map to one or more of the above
definitions. Examples of correlating different logs are shown in Table 5 and Table 6.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 32 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

Table 5 Trace Log Correlation

CPU 0 DMA Log System Trace

Cycle Event Entry Data Entry Event

10000 GLOBAL_TIME 0 GLOBAL_TIME = 10020 0 GLOBAL_TIME = 10080

10203 DMA_INT 0 ValueX 0 Transaction log

11150 EMAC_INT 0 ValueY 1 GLOBAL_TIME = 10110

11601 DMA_INT 1 GLOBAL_TIME = 10108 1 Transaction log

1 ValueX 2 GLOBAL_TIME = 10220

1 ValueY 2 Transaction log

3 GLOBAL_TIME = 10280

3 Transaction log

4 GLOBAL_TIME = 10340

4 Transaction log

5 GLOBAL_TIME = 10400

5 Transaction log

6 GLOBAL_TIME = 10488

6 Transaction log

12000 GLOBAL_TIME 2 GLOBAL_TIME = 12096 7 GLOBAL_TIME = 12060

12706 DMA_INT 2 ValueX 7 Transaction log

13033 EMAC_INT 2 ValueY 8 GLOBAL_TIME = 12120

13901 GPINT 3 GLOBAL_TIME = 13330 8 Transaction log

3 ValueX 9 GLOBAL_TIME = 12180

3 ValueY 9 Transaction log

10 GLOBAL_TIME = 12240

10 Transaction log

11 GLOBAL_TIME = 12300

11 Transaction log

12 GLOBAL_TIME = 12360

12 Transaction log

14000 GLOBAL_TIME 4 GLOBAL_TIME = 14100 13 GLOBAL_TIME = 14120

15006 DMA_INT 4 ValueX 13 Transaction log

15063 EMAC_INT 4 ValueY 14 GLOBAL_TIME = 14180

5 GLOBAL_TIME = 14200 14 Transaction log

5 ValueX 15 GLOBAL_TIME = 14240

5 ValueY 15 Transaction log

16 GLOBAL_TIME = 14300

16 Transaction log

17 GLOBAL_TIME = 14360

17 Transaction log

18 GLOBAL_TIME = 14420

18 Transaction log

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 33 of 36
Submit Documentation Feedback

www.ti.com

As described in the preceding sections, the trace logs can be correlated with one another
using common time events. The core event trace has a PC value with each event, and
the GLOBAL_TIME is the marker that is common to the other trace logs. The DMA
log is recorded with every GLOBAL_EVENT (or multiple), and the UMTS Time
recorded with the log entry shows which window in time. The time stamp recorded
with each API call in the call log is the actual time.

With the core event traces, each entry in the logs are referenced to the PC value of the
core that is performing the trace function. Given that each core can stall independently
from the others, the logs need to be correlated to one another using common time
markers. The Global_TIME shown for each log is the same and matches that used for
correlation to other trace logs.

Table 6 Core Event Trace Correlation

CPU 0 CPU 1 CPU 2

Cycle Event Cycle Event Cycle Event

10161 SEM_INT 10115 DMA_INT

10000 GLOBAL_TIME 13001 GLOBAL_TIME 11061 GLOBAL_TIME

10203 DMA_INT 13070 DMA_INT

11150 EMAC_INT 13404 GPINT

11601 DMA_INT

12000 GLOBAL_TIME 15001 GLOBAL_TIME 13044 GLOBAL_TIME

12706 DMA_INT 15390 DMA_INT 13910 DMA_INT

13033 EMAC_INT 16012 DMA_INT

13901 GPINT

14000 GLOBAL_TIME 16804 GLOBAL_TIME 15036 GLOBAL_TIME

15006 DMA_INT 17506 DMA_INT 16690 DMA_INT

15063 EMAC_INT 18029 DMA_INT

16000 GLOBAL_TIME 19001 GLOBAL_TIME 17876 GLOBAL_TIME

16079 DMA_INT 19740 DMA_INT 18101 DMA_INT

20406 DMA_INT

20485 GLOBAL_TIME

20496 DMA_INT

20500 GPINT

21028 DMA_INT

22008 GLOBAL_TIME

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 34 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

Using the above information it is possible to build summaries per time window of the
device operation, as shown in Table 7. This information provides details into the
activity on each core as well as the system loading through the device interfaces and
important events from user-defined sources.

Table 7 Time Window Trace Log Summary

Time Window 0

Start UMTS Time 0

Core 0 Event Trace Core 1 Event Trace Core 2 Event Trace

10000 TIME_EVENT 11500 TIME_EVENT 14350 TIME_EVENT

10203 DMA_INT0 11620 DMA_INT3 14440 DMA_INT6

11150 DMA_INT1 12110 DMA_INT4 14550 DMA_INT7

11601 DMA_INT2 12230 DMA_INT5 14590 DMA_INT6

12950 DMA_INT3 14620 DMA_INT6

12970 DMA_INT4 14680 DMA_INT6

12970 DMA_INT5

Statistics Summary

Interface % Utilization % Reads % Writes

DDR2 17.6 79.3 20.7

RAC (cfg) 3.1 5.0 95.0

RAC (data) 26.8 22.9 77.1

AIF 86.4 50.9 49.1

General Stats

User Stat 1 8493

User Stat 2 26337

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27A—August 2009 Multicore Programming Guide Page 35 of 36
Submit Documentation Feedback

www.ti.com

9 Summary
In this paper, two programming models for use in real-time multicore applications are
described, and a methodology to analyze and partition application software for a
multicore environment is introduced. In addition, features of the Texas Instruments
TCI64xx and C64xx multicore processor families used for data transfer,
communication, resource sharing, memory management and debug are explained.

TI TCI64xx and C64xx processors offer a high level of performance through efficient
memory architectures, coordinated resource sharing, and sophisticated
communication techniques. To facilitate customers achieving full performance from
these parts, TI has included hardware in the devices to allow the cores to both execute
with minimal overhead and to easily interact with each other through signaling and
arbitration. These devices also contain hardware that provides trace and debug
visibility into the multicore system.

TI’s multicore architectures deliver excellent cost/performance and
power/performance ratios for customers requiring maximum performance in small
footprints with low power requirements. As the leader in many applications that
require high-performance products, TI is committed to multicore technology with a
robust roadmap of products.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 36 of 36 Multicore Programming Guide SPRAB27A—August 2009
Submit Documentation Feedback

www.ti.com

10 References
See the following documents for additional information regarding this application
note.

1 Ankit Jain, Ravi Shankar. Software Decomposition for Multicore Architectures, Dept. of
Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL, 33431.
Internet.
http://www.csi.fau.edu/download/attachments/327/Software_Decomposition_for_
Multicore_Architectures.pdf?version=1

2 TI reference guide SPRU871, TMS320C64x+ DSP Megamodule
http://www.ti.com/lit/pdf/spru871

3 TI user guide SPRUEA7, TMS320TCI648x DSP Bootloader
http://www.ti.com/lit/pdf/spruea7

4 TI user guide SPRUG24, TMS320C6474 DSP Bootloader
http://www.ti.com/lit/pdf/sprug24

http://www.ti.com/lit/pdf/spruea7
http://www.ti.com/lit/pdf/spruea7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.csi.fau.edu/download/attachments/327/Software_Decomposition_for_Multicore_Architectures.pdf?version=1
http://www.ti.com/lit/pdf/spru871

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Multicore Programming Guide
	Communications Infrastructure and Voice/DSP Systems David Bell Greg Wood
	Abstract
	Contents

	1 Introduction
	2 Mapping an Application to a Multicore Processor
	2.1 Parallel Processing Models
	2.1.1 Master/Slave Model
	Figure 1 Master / Slave Processing Model

	2.1.2 Data Flow Model
	Figure 2 Data Flow Processing Model

	2.2 Identifying a Parallel Task Implementation
	1. Partitioning - Partitioning of a design is intended to expose opportunities for parallel execution. The focus is on defining a large number of small tasks in order to yield a fine-grained decomposition of a problem.
	2. Communication - The tasks generated by a partition are intended to execute concurrently but cannot, in general, execute indep...
	3. Combining - Decisions made in the partitioning and communication phases are reviewed to identify a grouping that will execute efficiently on the multicore architecture.
	4. Mapping - This stage consists of determining where each task is to execute.
	2.2.1 Partitioning
	2.2.2 Communication
	Figure 3 Example Control Flow Diagram
	Figure 4 Example Data Flow Diagram

	2.2.3 Combining
	2.2.4 Mapping

	3 Inter-Processor Communication
	3.1 Data Movement
	3.1.1 Shared Memory
	3.1.2 Dedicated Memories
	Table 1 Dedicated Memory Models

	3.1.3 Transitioned Memory
	1. Sender generates data into memory
	2. Sender notifies receiver of data ready/ownership given
	3. Receiver consumes memory directly
	4. Receiver notifies sender of data ready/ownership given

	3.2 Notification
	3.2.1 Direct Signaling
	1. CPU A writes to CPU B’s inter-processor communication (IPC) control register
	2. IPC event generated to interrupt controller
	3. Interrupt controller notifies CPU B (or polls)
	4. CPU B queries IPC
	5. CPU B clears IPC flag(s)
	6. CPU B performs appropriate action
	Figure 5 Direct IPC Signaling

	3.2.2 Indirect Signaling
	1. CPU A configures and triggers transfer using EDMA
	2. EDMA completion event generated to interrupt controller
	3. Interrupt controller notifies CPU B (or polls)
	Figure 6 Indirect Signaling

	3.2.3 Atomic Arbitration
	Table 2 Atomic Arbitration Protocol
	Figure 7 Atomic Arbitration

	4 Data Transfer Engines
	4.1 EDMA
	4.2 Ethernet
	4.3 RapidIO
	4.4 Antenna Interface

	5 Shared Resource Management
	5.1 Global Flags
	5.2 OS Semaphores
	5.3 Hardware Semaphores
	5.4 Direct Signaling

	6 Memory Management
	6.1 CPU View of the Device
	Figure 8 CPUs' Device View

	6.2 Cache Considerations
	Figure 9 Cache Coherency Mapping

	6.3 Shared Code Program Memory Placement
	6.4 Peripheral Drivers
	6.5 Data Memory Placement
	6.6 Data Memory Access

	7 DSP Code and Data Image
	7.1 Single Image
	7.2 Multiple Image
	7.3 Multiple Image with Shared Code and Data
	7.4 Device Boot
	Figure 10 Boot Table Merge

	8 System Debug
	8.1 Debug and Tooling Categories
	Table 3 Debug and Tooling Categories

	8.2 Trace Logs
	8.2.1 API Call Log
	8.2.2 Statistics Log
	8.2.3 DMA Transaction Log
	8.2.4 Event Log
	8.2.5 Customer Data Log
	8.2.6 Correlation of Trace Logs
	Table 4 Event Log Time Markers
	Table 5 Trace Log Correlation
	Table 6 Core Event Trace Correlation
	Table 7 Time Window Trace Log Summary

	9 Summary
	10 References
	1 Ankit Jain, Ravi Shankar. Software Decomposition for Multicore Architectures, Dept. of Computer Science and Engineering, Flori...
	2 TI reference guide SPRU871, TMS320C64x+ DSP Megamodule http://www.ti.com/lit/pdf/spru871
	3 TI user guide SPRUEA7, TMS320TCI648x DSP Bootloader http://www.ti.com/lit/pdf/spruea7
	4 TI user guide SPRUG24, TMS320C6474 DSP Bootloader http://www.ti.com/lit/pdf/sprug24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

